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Abstract
Reconstructing effective interaction potentials from structural data is a central in-
verse problem in statistical physics, particularly relevant for coarse-grained mod-
elling of polymer and colloidal interactions. In this work, we introduce an enhanced
version of the Iterative Boltzmann Inversion method for recovering pairwise inter-
action potentials U(r) from a target radial distribution function g(r). Standard
iterative schemes require costly many-body simulations at each step to update
structural observables. We overcome this bottleneck by incorporating the Borgis
force-based estimator for g(r), which allows the inversion procedure to proceed
directly from a fixed ensemble of particle configurations. This approach preserves
the minimal-assumption philosophy of Iterative Boltzmann Inversion while signifi-
cantly improving computational efficiency. We validate the method across a diverse
set of benchmark potentials, including Lennard-Jones, Weeks-Chandler-Andersen,
power-law and shoulder-type interactions, demonstrating accurate reconstructions
even under undersampled or experimental-like conditions. The framework is par-
ticularly suited for systems where running repeated simulations is too expensive or
impractical, such as when working with large colloidal systems or active matter.
These results highlight the potential of force-based inversion schemes as practical
and robust tools for effective interaction reconstruction.
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1 Introduction

1.1 Inverse Problems in Statistical Mechanics

Inverse Problems – Learning Nature’s rules directly from observations should
be inherently an interesting problem for a scientist, even though it reverses the
usual theoretical approach of deriving phenomena from first principles. In sta-
tistical mechanics, for instance, the main goal is to predict emerging physical
behaviours from a set of given microscopic rules that govern each constituent of
the system. However, when facing directly experimental observations, the most
natural questions that arise concern what kind of rules, parameters, or interactions
are at the root of such phenomenology: this is known as an inverse problem.

Inverse Problems in Literature – The field of inverse statistical problems
has evolved over five decades [1] with applications in different disciplines. In sta-
tistical physics, inferring spin couplings for Ising models has enabled quantitative
analysis of complex networks, from gene regulatory interactions to financial mar-
ket correlations, by mapping them to equivalent spin systems [2]. In biophysics,
inverse methods have addressed the challenge of protein design by reverse engi-
neering energy landscapes that reproduce folded structures [3]. Lastly, in living
matter physics, these techniques have extracted interaction rules from collective
behaviours, like flocking or pattern formation, providing validation for individuals-
based models [4].

1.2 Force Inference in Particle Systems

Inverting Interactions – In physics, the inverse problem often involves find-
ing the proper set of parameters for the system’s Hamiltonian based on empirical
data. Choosing an appropriate initial set of observables is itself a non-trivial task
for formulating the inverse procedure. While for many years X-ray scattering
was a reliable method to extract information about the structure of many-body
systems, modern advances in optical microscopy have provided direct access to
particle positions, and thus to pair correlation statistics in the form of the ra-
dial distribution function [5, 6]. Proving hope that such reconstruction is indeed
possible, Henderson’s theorem demonstrates that, for systems governed purely by
pairwise interactions at fixed temperature and density, the radial distribution func-
tion uniquely determines the inter-particle potential [7]. Thus, knowledge of one
should directly grant access to the other.

Applications – Extracting effective inter-particle potentials from structural
data has broad applications across soft matter, polymer physics, and active mat-
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ter systems. In the context of coarse-grained modelling, the goal is to replace
a high-dimensional description involving all-atom interactions with a simplified,
effective potential that faithfully reproduces the essential physics of the system.
By reducing the complexity of molecular interactions while preserving key physi-
cal behaviours, coarse-grained potentials enable efficient simulations of large-scale
or long-timescale phenomena [8]. In colloidal systems, which are widely used as
benchmark platforms for testing predictions in statistical physics. However, en-
gineering an experimental setup that precisely reproduces a desired interaction
potential remains a complex and delicate task. An alternative and more direct
approach is to measure the interactions present in existing experimental systems
[6].
Beyond equilibrium systems, effective potentials also offer crucial insights into non-
equilibrium behaviour. For instance, motility-induced phase separation, where ac-
tive particles spontaneously cluster into a dense phase without explicit attractive
interactions, could be better understood in terms of emergent effective attractions
[9]. Although such systems are fundamentally out of equilibrium, their steady-
state structures can often be effectively captured using equilibrium-like interaction
models [10], providing a practical framework for both theoretical interpretation and
computational analysis.

1.3 Existing Inversion Algorithms

Different classes – Over the years, at least three main classes of methods have
been developed to address the so-called Henderson problem, namely recovering the
pair potential U(r) from a known radial distribution function g(r).
The first class of methods is based on solving the Ornstein–Zernike equation [11]:

g(r)− 1 = c(r) + ρ

∫
c(|r− r′|)(g(r′)− 1)dr′ , (1)

where c(r) is the so-called direct correlation function. To establish a direct link be-
tween the radial distribution function and the pair potential, the Ornstein–Zernike
equation must be complemented by a closure relation, which expresses c(r) in terms
of g(r) and U(r). Two widely used closures are the Percus–Yevick approximation,

c(r) ≈ g(r)
[
1− eU(r)/kBT

]
, (2)

and the Hypernetted-Chain approximation,

c(r) ≈ g(r)− 1− ln g(r)eU(r)/kBT . (3)

The biggest advantage of this method is that inversion can be performed analyt-
ically, meaning one can write an explicit expression of the form U(r) = F [g(r)].
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However, these closures are inherently approximate and rely on assumptions that
can limit both the accuracy and generality of the inversion procedure [12].
The second group aims to fit the target radial distribution function (RDF) by op-
timizing a parametrized family of potential functions. While this offers a straight-
forward solution to the problem, finding numerous applications [10], it depends
strictly on the correct interaction parametrization and becomes increasingly less
tractable and reliable as the number of fitting parameters grows, particularly when
dealing with a variety of diverse interactions [13].

Simulation-Based Algorithms – Lastly, a third class of algorithms employs
iterative schemes to overcome the limitations of previous approaches [14]. These
methods begin with an initial potential estimate that is refined iteratively. At
each step, a full many-body simulation must be performed to compute the RDF,
after which an update rule minimizes its discrepancy with the reference RDF.
This approach has the advantage of not placing any restrictions on the functional
form of the potential, allowing any analytic shape to emerge naturally. However,
it remains computationally demanding, as new simulations are required at each
iteration.
The algorithms in this class differ mainly in the complexity of their update rules
[15], which is often inversely related to the number of iterations needed for con-
vergence. For example, Inverse Monte Carlo [16] achieves accurate results within
relatively few steps, also matching higher-order statistics. Unfortunately, it re-
quires long forward-simulations to obtain sufficiently converged statistics and a
reasonably good initial guess to ensure stable convergence [17].
Iterative Boltzmann Inversion (IBI) is one of the most widely used and straight-
forward methods in this category, thanks to its simple update rule. However,
convergence is found to be much slower than other algorithms, often requiring ten
times more iterations [18]. Its robustness has led to widespread application in ar-
eas such as liquid interfaces [19], polymer physics [8], and biomolecular modelling
[20]. Nonetheless, like all methods in this class, IBI still suffers from the core lim-
itation of requiring costly many-body simulations at each step to obtain updated
structural data.

1.4 Stop Making New Simulations

New proposal – Recently, an alternative approach based on the Test-Particle
Insertion (TPI) formula has emerged as a promising solution [21, 22]. The TPI
method estimates g(r) through the expression

gTPI(r) =
⟨exp−Ψ/kBT ⟩r
⟨exp−Ψ/kBT ⟩

, (4)

3



where Ψ represents the interaction energy associated with inserting a test particle
at a given location. The numerator ⟨·⟩r denotes a local average over insertions
constrained to lie at a fixed distance r from existing particles, while the denom-
inator accounts for the global average over all possible insertion positions. This
approach provides a direct connection between g(r) and the potential energy land-
scape, which allows direct access to new structural information without the need
for additional simulations. However, TPI faces significant limitations at high den-
sities, where most insertion attempts become energetically unfavourable. Under
these conditions, the method requires prohibitively many new particles to achieve
accurate estimates, as the majority of insertions contribute negligibly to the aver-
ages.
To address these challenges, in this work we propose an alternative strategy that
exploits the Borgis formula [23]. Similar to TPI, this approach reconstructs g(r)
directly from a trial potential without full simulation. Nevertheless, it eliminates
the need for test particles and remains valid across a broader range of thermo-
dynamic conditions, including high densities where TPI fails. This makes our
approach both computationally more efficient and more generally applicable than
traditional TPI methods.

Summary of the report – The report begins with a concise yet rigorous the-
oretical foundation on the concept of pair distribution functions (subsection 2.1),
followed by a detailed comparison between two approaches to evaluate them: the
distance-histogram method and the Borgis formula (subsection 2.2). While the
distance-histogram method is often preferred in cases where the interaction po-
tential is completely unknown, it comes at a considerable computational cost for
traditional Iterative Boltzmann Inversion schemes. This is because this formula
requires expensive molecular dynamics simulations at each step of the iteration to
generate updated structural information.

To overcome this limitation, we introduce and implement an enhanced version
of the IBI algorithm (subsection 2.3), which directly exploits the knowledge of
inter-particle forces using the Borgis formula to compute the radial distribution
function. This modification allows the inversion procedure to proceed without
running new simulations at each iteration, offering a substantial gain in computa-
tional efficiency without compromising accuracy.
To validate the reliability and generality of our algorithm, we applied it to a diverse
set of benchmark pair potentials, each presenting unique challenges for inversion,
which were simulated using molecular dynamics. The methodology and parame-
ters used to set up these simulations are thoroughly discussed in subsection 3.1,
ensuring the reproducibility of our results.
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Special attention is paid to mimic realistic, experiment-like conditions in order
to ease the application in such contexts: in particular, the target radial distribu-
tion function is constructed by smoothing and interpolating data collected from
molecular dynamics simulations, improving numerical stability during the inver-
sion process. These details are systematically discussed before we present the final
results of our algorithm in subsection 3.4, where we show successful examples of
the inversion procedure.

2 Theoretical Framework

2.1 Pair statistics and the Radial Distribution Function

The RDF – A many-body system ofN particles can be completely characterized
by the knowledge of all the n-particle distribution functions g(n)N (r1, ..., rn) [11].
The computation of all these quantities for N > 2 is often a nightmare, but
fortunately the knowledge of low-order particle distribution functions n ≤ 2 is often
sufficient to evaluate the equation of state and other thermodynamic properties.
In particular, if the system is both isotropic and homogeneous, the local density is
constant ρ(r) = ρ and the pair distribution function g

(2)
N (r1, r2) depends only on

the separation r = ∥r2 − r1∥. In this case, it is usually called radial distribution
function (RDF) and referred as g(r), taking the form

g(r) =
1

ρ

〈
1

N

N∑
i=1

∑
j ̸=i

δ(r − rij)

〉
, (5)

where rij = ∥ri − rj∥, δ(·) is the Dirac delta function centered in zero, and ⟨...⟩
represents an ensemble average.

Distance Histogram – Given the configurations of a homogeneous system,
the target gref(r) can be computed using a histogram procedure, that is a simple
discretization of Equation 5. In practice, it simply amounts to counting the number
of particles N(r) within a spherical shell of radius r and thickness ∆r, normalized
by the shell volume Ωdr

d−1∆r and the particle density ρ = N/V , where Ωd is the
solid angle in d dimensions (Ω2 = 2π and Ω3 = 4π). Averaging over an ensemble
of configurations ⟨...⟩ yields

gDH(r) =
⟨N(r)⟩

ρΩdrd−1∆r
. (6)

Note that Equation 6 depends explicitly on the choice of ∆r, and the variance
of the RDF obtained via this method diverges as 1/∆r2. This approach scales
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quadratically with the number of particles N2 and is ideal for generating gref(r)
since it assumes no prior knowledge of the inter-particle potential.
However, the RDF evaluated this way is uniquely tied to the potential used to
generate the configurations.

2.2 Borgis Formula for the Radial Distribution Function

Inspired by previous work on quantum electronic densities, Borgis proposed a new
formula to estimate the pair correlation function of a homogenous and isotropic
system when the forces acting on each particle are known [23]

g∞(r) = 1− 1

ρNΩd

〈
N∑
i=1

∑
j<i

fi − fj
kBT

· rij

rdij
Θ(rij − r)

〉
, (7)

where Θ(·) is the Heaviside theta function. It is important to note that the pres-
ence of the total forces fi, acting on each particle i, is due to the gradient of the
Boltzmann weight with respect to the particles positions, coming from an integra-
tion by parts, and that no assumption on the pairwise nature of the interaction is
required. Moreover, this formula differs from the original work [23] by a factor 2
that was omitted, as already pointed out in [24]. The RDF estimate form Equa-
tion 7 matches perfectly the one obtained with the distance-histogram method, as
shown in Figure 1.

Equation 7 represents a complete paradigm shift with respect to the histogram
procedure described in Equation 6, because each pair (i, j) contributes now at all
distances r ≤ rij. This helps reducing the variance of the estimate, which now
does not depend any more on the shell thickness ∆r, meaning that the RDF can
be evaluated with arbitrary resolution without fearing the divergent variance.
However, the g(r) obtained using Equation 7 always shows a spurious non-zero
value in the "hard-core" region as r → 0, and its variance does not vanish either.
This is unlike distance-histogram approaches, where both the mean and variance
at small distances correctly go to zero, reflecting the physical exclusion of parti-
cles from the hard-core region. In contrast, at low distances Equation 7 includes
contributions from all pairs and thus it approaches the correct zero limit only in
the case of infinite statistics.
An alternative expression of this formula can be obtained by exchanging the inte-
gration boundaries in the integration by parts, leading to

g0(r) =
1

ρNΩd

〈
N∑
i=1

∑
j<i

fi − fj
kBT

· rij

rdij
Θ(r − rij)

〉
. (8)
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Figure 1: Radial distribution functions (RDFs) computed using different
methods for 500 equilibrium configurations of a Lennard-Jones system (ρσ2 =
0.56, kBT/ϵ = 1). Histograms were constructed with bin size ∆r = 0.002σ.
The right panel shows the variance of these estimates, demonstrating the non-
vanishing asymptotic limit predicted by Equation 7.

This formula maintains the same structure as the previous one, but the Heaviside
function now has an opposite sign, meaning that each pair affects all distances
r ≥ rij. Symmetrically to g∞(r), g0(r) displays a vanishing variance at small
distances, but its convergence to g(r ≫ 1) = 1 is not guaranteed in the case of
limited statistics [25]. The three formulas (g0(r), g∞(r), and gDH(r)) for the ra-
dial distribution function provide unbiased estimates of the analytical quantity, as
evidenced by their convergence to identical results in Figure 1.

The additional features of the Borgis formulas come with the requirement of
knowing all the forces that act on the system: This is often an insurmountable
request that makes it impossible to use Equation 7 and 8 for systems whose in-
teractions are unknown. However, this aligns perfectly with the IBI framework,
where forces are inherently defined through iterative potential updates. Thus, in
the IBI context, Borgis formula become both viable and advantageous, bypassing
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the need for new simulations at each step of the procedure.

2.3 Iterative Boltzmann Inversion

IBI – Iterative Boltzmann Inversion (IBI) is a commonly used inversion scheme
aimed at reconstructing the potential U(r) from a target pair distribution func-
tion gref(r) obtained experimentally [26]. The procedure consists of updating the
potential at each iteration t according to the rule proposed by Schommers [27]:

Ut+1(r) = Ut(r) + αkBT ln
gt(r)

gref(r)
, (9)

where α ∈ (0, 1] is a regularization factor used to control the stability of the pro-
cedure. The optimal potential is given by the fixed point U∗(r) of this iteration,
provided that such a fixed point exists.

In the spirit of a minimal assumption algorithm and motivated by relations
from statistical mechanics, the initial guess is typically chosen as

U0(r) = −kBT ln gref(r), (10)

which is often referred to as the potential of the mean force or the Boltzmann
inverse of the RDF [28]. This estimate becomes exact in the limit of an infinitely
dilute system, but it provides a reasonable starting point also for finite densities.
Alternative initial guesses should not effect the final results [26]; in principle, they
should not affect the final outcome of the inversion. However, the potential of
mean force has the advantage of allowing the shape of the potential to emerge
freely, without imposing strong biases toward a specific analytical form.

To apply Equation 9, one needs a protocol to evaluate all pair correlation func-
tions. Although the distance-histogram method provides a direct route to com-
pute gref(r), unfortunately new ensemble configurations must be produced using
the current potential Ut(r) to use it for each iteration t. Its iterative dependency
on new simulations, which is illustrated in Figure 2, renders the IBI scheme com-
putationally expensive. To circumvent this bottleneck, we propose an alternative
approach to evaluate the running gt(r), namely the formula proposed by Borgis
and discussed in the previous section.

2.4 Description of the New Algorithm

forceIBI – Finally, we present our improved iterative algorithm, forceIBI. As in
the traditional Iterative Boltzmann Inversion (IBI) scheme, the procedure begins
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IBI

Input: configurations
⇒ gref(r)

U0(r) = −kBT ln gref(r)

Numerical Simulation
using Ut(r)

gt(r) = gDH(r)

Ut+1(r) = Ut(r) + αkBT ln gt(r)
gref(r)

Fixed Point
g∗(r)
U∗(r)

forceIBI

Input: configurations
⇒ gref(r)

U0(r) = −kBT ln gref(r)

Borgis Formula
using Ut(r)

gt(r) = gBorgis(r)

Ut+1(r) = Ut(r) + αkBT ln gt(r)
gref(r)

Fixed Point
g∗(r)
U∗(r)

Figure 2: Schematic of the standard IBI method (on the left) compared to
the improved version that includes the Borgis formula feedback loop (on the
right).

with an ensemble of system configurations, from which the target radial distribu-
tion function gref(r) is computed using the distance-histogram method presented
in Equation 6.
The initial guess for the interaction potential is given by the direct Boltzmann
inversion of the target distribution U0(r) = −kBT ln gref(r).
To avoid the need for costly molecular simulations at each iteration, we replace the
traditional step of generating a new gt(r) with the histogram method by using the
Borgis formula (see Equation 7). We specifically adopt this "outer-integration"
version rather than the inner one (see Equation 8) because it does not accumulate
many contributions from close-contact pairs, which are prone to undersampling
due to the divergence of hard-core potentials. These short-distance pairs must be
treated with care, as discussed in detail in subsection 3.3.
The potential is then iteratively updated according to the Schommers scheme
(Equation 9) until the algorithm meets the desired convergence criterion.
An overview of the full algorithmic pipeline is provided schematically in Figure 2.
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3 Results and Validation of the New Algorithm

3.1 Test Systems and Simulations

The ultimate goal of our inversion algorithm is to reconstruct the pair potential
u(r) starting from equilibrium configurations of the system. Experimentally, mod-
ern advances in confocal microscopy gives access to this information [6], but, before
applying our procedure presented in figure Figure 2 to experimental conditions, we
want to test it against configurations obtained through numerical simulations, so
that we can asses the quality of the inversion by comparing the inverted potential
with the one used for the simulation.

Test Potentials – We’ll analyze different 2D systems of monodisperse particles
of mass m, interacting with various widely used potentials, each one posing differ-
ent challenges for the inversion.
The first is the ubiquitous 12− 6 Lennard-Jones potential [29]

ULJ(r) = ϵ

[(σ
r

)12

−
(σ
r

)6
]
, (11)

which presents both a repulsive soft core and an attractive long-range behaviour,
perfectly modelling van der Waals interactions for fluids with a characteristic en-
ergy minimum at rmin = 21/6σ. To limit interactions beyond a certain range,
the potential is truncated at a distance rcut = 2.5σ and then shifted so that
U(r ≥ rcut) = 0.
The second potential to be tested is the Weeks-Chandler-Anderson (WCA) po-
tential [30], which is nothing but the LJ potential truncated at rcut = 21/6σ, thus
creating a purely repulsive reference potential which is often used in high-density
regimes where the role of attractive forces diminishes.
Thirdly, we introduce a long-range power-law potential that scales as the inverse
of the cubic distance

UR3(r) = ϵ
(σ
r

)3

. (12)

The r−3 potential describes softer repulsive interactions compared to LJ and WCA,
with slower decay relevant for dipole-like or screened electrostatic effects, common
in colloidal systems [31]. This potential belongs to the class of inverse power-law
interactions U (n)(r) = ϵ

(
σ
r

)n, which does not define separate energy and length
scales, and thus its phase diagram depends only on the dimensionless inverse tem-
perature Γ = (σdρ)n/d · ϵ/kBT [32]. This contrasts with standard liquid-state
systems, where temperature and density are treated as independent order param-
eters.
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Lastly, we introduce the shoulder potential [33]

Ush(r) = ϵ
(σ
r

)n

+
ϵ

2
tanh

(
k0
σ
(r − r0)

)
, (13)

that features two characteristic length scales, having an hard core r−n and an outer
softer shell represented by the hyperbolic tangent. The parameters are fixed as in
the reference work [22], namely n = 14, k0 = 10 and r0 = 2.5σ with a cut-off of
rcut = 2.8σ.
Note that for all the above potential choices, there is a common length scale σ.

Molecular Dynamics – The forceIBI scheme was tested using mono-atomic
system configurations obtained through molecular dynamics simulations. These
simulations were performed using the LAMMPS package, a powerful and open-
source tool popular for its flexibility [34], which allowed precise control over the
input potential for direct comparison with the reconstructed one.

All simulations were performed in a two-dimensional periodic box with lateral
size L = 60σ, where σ is the characteristic length scale common to all the po-
tentials discussed above. Particles were initially placed on a square lattice and
evolved in the canonical NV T ensemble using a Nosé–Hoover thermostat. The
number of particles N was selected to achieve densities ranging from approxi-
mately ρσ2 = 0.28 to ρσ2 = 0.56, depending on the target potential. Exact values
for ρ = N/L2, temperature T , and other simulation parameters are reported in the
captions accompanying the inversion results. For each input potential, the target
radial distribution function gref(r) was computed from 500 independent snapshots
using the distance-histogram method described previously.

3.2 Smoothing the Reference g(r)

Smoothing – The reference radial distribution function gref(r) must be carefully
preprocessed to enable accurate potential inversion. A critical consideration is that
the resolution of the inverted potential is directly inherited from the input RDF.
While finer binning yields smoother potentials, essential for well-behaved force
profiles via numerical differentiation, it introduces a trade-off: statistical noise in
histogram-based RDFs scales as 1/(∆r)2, potentially creating artificial roughness
in the reconstructed potential. Sufficient sampling can mitigate this effect, as
larger numbers of MD configurations improve statistics for small bin sizes. How-
ever, experimental data often face stricter constraints, like limited measurement
time, instrument resolution, or sample stability, restricting the number of usable
configurations.
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Figure 3: Comparison of radial distribution functions (RDFs) computed via
direct distance-histogram and weighted spline interpolation methods for a sys-
tem with shoulder potentials (ρσ2 = 0.56, kBT/ϵ = 2.0). Results are obtained
for 500 configurations using a histogram bin size of ∆r = 0.002σ. The right
panel displays the spline-interpolation weights, highlighting discontinuities at
r = 0.94σ and r = 4.35σ.

Splines – To balance resolution and noise while preserving key physical features,
we apply spline interpolation to the RDF. This approach reduces noise by fitting
the histogram data with a continuous function evaluable at any desired resolu-
tion. Given a dataset D = {(ri, gi)}Mi=1, the spline is obtained by minimizing the
following loss functional

L[f ] =
M∑
i=1

wi|gi − f(ri)|2 + λ

∫ ∣∣∣∣∂2f∂r2
∣∣∣∣2dr (14)

using piecewise cubic polynomials. The first term measures deviation from data
points, while the second penalizes curvature, enforcing smoothness of the interpo-
lated function f . Here λ tunes the trade-off between data fidelity and smoothness.
Once the smoothing parameter λ and the weights wi are chosen, the spline is con-
structed using the scipy.signal module in Python.
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While conceptually easy, applying a single smoothing function across the en-
tire radial distribution function poses various challenges, since the RDF behaves
very differently across regions. At short distances, the hard-core region is heav-
ily undersampled and exhibits a sharp rise from zero, which splines may fail to
capture without introducing unphysical oscillations. Mid-range RDF peaks suffer
from noise in distance-histogram methods, obscuring fine structural features. At
long distances, where g(r) ≈ 1, noise dominates, rendering interpolation unreliable
due to overfitting. Among these, the short-distance regime is the most challenging
and the most important for the reconstruction.
To address these issues systematically, we implement a region-specific weighting
scheme wi with three distinct zones: the hard-core region (from r = 0 to the
midpoint of the first ascent) receives a weight 1000 times stronger than the inter-
mediate region with unitary weighting. Instead, the noisy long-range region where
the RDF approaches g(r) ≈ 1 is deliberately suppressed with weights reduced to
1/100. Lastly, the smoothing parameter λ is determined automatically through
generalized cross-validation. This approach maintains simplicity and transferabil-
ity across diverse RDF shapes while delivering robust performance for inversion
procedures, as demonstrated in Figure 3s by the comparison between distance-
histogram and smoothed spline results.

3.3 Practical Implementation Details

Inversion Parameters – Although one might hope to reconstruct the inter-
action potential across the full range of distances r, meaningful results are only
achievable within a finite window r ∈ [rlow, rinv-cut]. This limitation arises from
fundamental physical and computational constraints tied to these parameters.
The upper cut-off rinv-cut truncates the potential where interactions become negli-
gible, reducing unnecessary computational cost. In experimental applications, this
cutoff is typically refined iteratively: starting from a high value and progressively
lowering it while monitoring potential stability. For consistency with forward sim-
ulations, we fix rinv-cut = rcut.
The lower bound rlow marks the hard-core repulsion scale, defining the distance be-
low which the potential U(r) ≫ kBT becomes so strongly repulsive that the Boltz-
mann factor exp[−U(r)/kBT ] effectively suppresses configurations with particles
at such close separations. This exclusion leads to severe undersampling, making
accurate potential reconstruction in this regime practically impossible without in-
finite statistics.
Although the choice of rlow is arbitrary due to the unknown true potential, it is
the most delicate parameter for the convergence of the inversion procedure. If
set too small, undersampling causes numerical instabilities in the radial distribu-
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Figure 4: The first few iteration steps are shown for a Lennard-Jones poten-
tial with density ρσ2 = 0.56 and kBT/ϵ = 1.0. The starting potential labelled
as ’0’ in the central panel is the potential of the mean force described in Equa-
tion 10. On right-most panel, two different convergence metrics are shown.

tion function. If set too large, one must explicitly handle particle pairs (i, j) with
rij < rlow. In our implementation, we extend the potential quadratically in this
region, which yields stable results unless rlow is excessively large. To balance these
competing requirements, we adopt a pragmatic strategy, as rlow is incrementally
increased until the inversion stabilizes. After extensive testing, we identified the
most stable initialization: for each configuration, one first computes the minimum
distance between any pair of particles, then sets rlow to the most frequent value in
this distribution of minimum distances.

Convergence Criteria – Any iterative algorithm requires a criterion to de-
termine when convergence has been reached. Given some distance metric D(·||·)
defined on a (discretized) functions space, the most intuitive approach is to stop
the procedure at step t∗ when the current estimate gt∗(r) is closer to the target
than a desired precision ∆, namely

t∗ : D(gt∗||gref) ≤ ∆ . (15)

Instead, the approach we adopt defines convergence as

t∗ : D(gt∗||gt∗−1) ≤ ∆ . (16)

This has several advantages: it is more transferable across different pair distri-
bution shapes and does not assume that the distance to the reference decreases

14
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Figure 5: Reconstruction results for LJ and WCA potential, in the upper
and lower panel respectively. Both systems were simulated using ρσ2 = 0.56
and kBT/ϵ = 1.0. The reconstruction was performed using α = 0.2 and
rlow = 0.92σ for both systems.

monotonically. In practice, both criteria yield similar results, as shown in Figure 4.
Throughout this work, the chosen metric D(·||·) is the mean squared error (MSE)

D(f ||g) = MSE(f, g) =
1

rlow − rinv-cut

∫ rinv-cut

rlow

|f(r)− g(r)|2dr (17)

computed over the potential reconstruction window [rlow, rinv-cut].
These same prescriptions could be extended to potential differences, although we
emphasize that in experimental scenarios where the true interaction is unknown,
the target-based convergence criterion in Equation 15 cannot be applied.
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Figure 6: Reconstruction results for the r−3. Simulations of the r−3 were
performed using ρσ2 = 0.80 and kBT/ϵ = 0.3, leading to an reduced inverse
temperature Γ = 0.83/2 × 0.3−1. The reconstruction is performed from rlow =
0.65σ using α = 0.5.

3.4 Potentials Reconstruction

To assess the reliability and versatility of our inversion procedure, we tested it
on several benchmark potentials introduced in subsection 3.4, using only 125 in-
dependent snapshots for the reconstruction out of the 500 employed to build the
target. Each potential poses distinct challenges to the inversion process, making
them valuable test cases for assessing convergence and reconstruction accuracy.

Figure 4 illustrates the early iterations of the inversion scheme for the Lennard-
Jones (LJ) potential, showing the evolution of both the radial distribution func-
tion gt(r) and the reconstructed potential Ut(r). Notably, gt(r) rapidly converges
toward the reference distribution, despite the initial guess for the interaction po-
tential differs significantly from the target. While the global shape of the potential
is largely recovered in the first iteration, residual artifacts, such as spurious double
attractive wells, require additional steps to resolve. The rightmost panel of the
figure shows the evolution of different convergence metrics, demonstrating that
after roughly 50 iterations, the distance to the reference gref(r) saturates, while
the change between successive iterations falls below one part per million.

The overall agreement between the reconstructed and target potentials is ex-
cellent, even for particularly challenging systems. The Lennard-Jones potential
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Figure 7: Reconstruction results for the shoulder potential, simulated using
ρσ2 = 0.28 and kBT/ϵ = 1.0. The inversion parameters were set to α = 0.2
and rlow = 0.90σ.

(Figure 5), in particular, characterized by steep short-range repulsion and a shal-
low attractive tail, is notoriously difficult to invert, especially because its attractive
component plays a minor role in the resulting structure and is easily missed by
standard algorithms. In contrast, the WCA potential, which is non-zero over a very
narrow region, is accurately resolved, highlighting the robustness of the method in
handling short-range interactions. The long-range r−3 potential, often problematic
for inverse methods due to its slow decay, is also faithfully reconstructed, as shown
in Figure 6. Finally, the shoulder potential (Figure 7), featuring both a steep re-
pulsive core and an intermediate plateau, is successfully recovered, demonstrating
the ability of the method to capture potentials with multiple intrinsic length scales.

Across all test cases, potential reconstructions exceed expectations, with dis-
crepancies appearing primarily in the derived force profiles. However, this limita-
tion comes from the numerical differentiation used to compute forces. In appli-
cations where the goal is force reconstruction, additional post-processing, such as
smoothing or filtering of the underlying potential, can significantly improve the
quality of the force field.
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4 Conclusion
We have presented a robust and flexible inversion framework capable of recon-
structing effective pair potentials from radial distribution functions, with strong
performance across a range of benchmark interactions. By removing the expen-
sive numerical simulation required at each iterative step, our method drastically
reduces the computational cost, exploiting the Borgis formula for the radial dis-
tribution function. Nevertheless, it matches the performance of traditional algo-
rithms in recovering potentials, even in challenging regimes with steep repulsions,
short interaction ranges, or multiple characteristic length scales.

Applications – Beyond its technical success, the method holds significant promise
for practical applications. In experimental soft matter systems, such as colloidal
suspensions [6], structural data from scattering or microscopy can be combined
with this inversion scheme to infer underlying inter-particle interactions, providing
otherwise inaccessible insights. Moreover, in active matter systems, where micro-
scopic dynamics violate detailed balance, this approach enables the extraction of
effective pairwise interactions that reproduce steady-state structures. Such coarse-
grained representations are invaluable for interpreting phenomena like motility-
induced phase separation, where emergent clustering can be attributed to effective
attractions.
In the future, we intend to apply the developed algorithm directly to these sce-
narios, leveraging the interdisciplinary environment of our laboratory where such
experimental contexts are readily available.

18



References
1J. T. Chayes, L. Chayes, and E. H. Lieb, “The inverse problem in classical statis-
tical mechanics”, Communications in Mathematical Physics 93, 57–121 (1984).

2H. C. Nguyen, R. Zecchina, and J. Berg, “Inverse statistical problems: from the
inverse Ising problem to data science”, Advances in Physics 66, 197–261 (2017).

3B. Kuhlman, G. Dantas, G. C. Ireton, G. Varani, B. L. Stoddard, and D. Baker,
“Design of a Novel Globular Protein Fold with Atomic-Level Accuracy”, Science
302, 1364–1368 (2003).

4R. Lukeman, Y.-X. Li, and L. Edelstein-Keshet, “Inferring individual rules from
collective behavior”, Proceedings of the National Academy of Sciences 107, 12576–
12580 (2010).

5A. D. Dinsmore, E. R. Weeks, V. Prasad, A. C. Levitt, and D. A. Weitz,
“Three-dimensional confocal microscopy of colloids”, Applied Optics 40, 4152–
4159 (2001).

6C. P. Royall, A. A. Louis, and H. Tanaka, “Measuring colloidal interactions with
confocal microscopy”, The Journal of Chemical Physics 127, 044507 (2007).

7R. L. Henderson, “A uniqueness theorem for fluid pair correlation functions”,
Physics Letters A 49, 197–198 (1974).

8G. Maurel, F. Goujon, B. Schnell, and P. Malfreyt, “Multiscale Modeling of the
Polymer–Silica Surface Interaction: From Atomistic to Mesoscopic Simulations”,
The Journal of Physical Chemistry C 119, 4817–4826 (2015).

9A. Brossollet, E. Lempereur, S. Mallat, and G. Biroli, Effective Energy, Interac-
tions And Out Of Equilibrium Nature Of Scalar Active Matter, (Dec. 19, 2024)
http://arxiv.org/abs/2412.15175, pre-published.

10H. Wang and S. Torquato, “Equilibrium states corresponding to targeted hype-
runiform nonequilibrium pair statistics”, Soft Matter 19, 550–564 (2023).

11J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press,
Oxford, Jan. 1, 2013).

12J. K. Percus, “Approximation Methods in Classical Statistical Mechanics”, Phys-
ical Review Letters 8, 462–463 (1962).

13S. Izvekov, M. Parrinello, C. J. Burnham, and G. A. Voth, “Effective force fields
for condensed phase systems from ab initio molecular dynamics simulation: a
new method for force-matching”, The Journal of Chemical Physics 120, 10896–
10913 (2004).

19

https://doi.org/10.1007/BF01218639
https://doi.org/10.1080/00018732.2017.1341604
https://doi.org/10.1126/science.1089427
https://doi.org/10.1126/science.1089427
https://doi.org/10.1073/pnas.1001763107
https://doi.org/10.1073/pnas.1001763107
https://doi.org/10.1364/AO.40.004152
https://doi.org/10.1364/AO.40.004152
https://doi.org/10.1063/1.2755962
https://doi.org/10.1016/0375-9601(74)90847-0
https://doi.org/10.1021/jp510979d
http://arxiv.org/abs/2412.15175
https://doi.org/10.1039/D2SM01294D
https://doi.org/10.1103/PhysRevLett.8.462
https://doi.org/10.1103/PhysRevLett.8.462
https://doi.org/10.1063/1.1739396
https://doi.org/10.1063/1.1739396


14F. Delbary, M. Hanke, and D. Ivanizki, “A generalized Newton iteration for
computing the solution of the inverse Henderson problem”, Inverse Problems in
Science and Engineering 28, 1166–1190 (2020).

15M. P. Bernhardt, M. Hanke, and N. F. A. Van Der Vegt, “Iterative integral equa-
tion methods for structural coarse-graining”, The Journal of Chemical Physics
154, 084118 (2021).

16A. P. Lyubartsev and A. Laaksonen, “Calculation of effective interaction po-
tentials from radial distribution functions: A reverse Monte Carlo approach”,
Physical Review E 52, 3730–3737 (1995).

17T. Murtola, E. Falck, M. Karttunen, and I. Vattulainen, “Coarse-grained model
for phospholipid/cholesterol bilayer employing inverse Monte Carlo with ther-
modynamic constraints”, The Journal of Chemical Physics 126, 075101 (2007).

18S. Jain, S. Garde, and S. K. Kumar, “Do Inverse Monte Carlo Algorithms Yield
Thermodynamically Consistent Interaction Potentials?”, Industrial & Engineer-
ing Chemistry Research 45, 5614–5618 (2006).

19M. Jochum, D. Andrienko, K. Kremer, and C. Peter, “Structure-based coarse-
graining in liquid slabs”, The Journal of Chemical Physics 137, 064102 (2012).

20H. I. Ingólfsson, C. A. Lopez, J. J. Uusitalo, D. H. de Jong, S. M. Gopal, X.
Periole, and S. J. Marrink, “The power of coarse graining in biomolecular simu-
lations”, WIREs Computational Molecular Science 4, 225–248 (2014).

21A. E. Stones, R. P. A. Dullens, and D. G. A. L. Aarts, “Model-Free Measurement
of the Pair Potential in Colloidal Fluids Using Optical Microscopy”, Physical
Review Letters 123, 098002 (2019).

22C. R. Rees-Zimmerman, J. Martín-Roca, D. Evans, M. A. Miller, D. G. A. L.
Aarts, and C. Valeriani, “Numerical methods for unraveling inter-particle poten-
tials in colloidal suspensions: A comparative study for two-dimensional suspen-
sions”, The Journal of Chemical Physics 162, 074103 (2025).

23D. Borgis, R. Assaraf, B. Rotenberg, and R. Vuilleumier, “Computation of pair
distribution functions and three-dimensional densities with a reduced variance
principle”, Molecular Physics 111, 3486–3492 (2013).

24A. Purohit, A. J. Schultz, and D. A. Kofke, “Force-sampling methods for density
distributions as instances of mapped averaging”, Molecular Physics 117, 2822–
2829 (2019).

25S. W. Coles, E. Mangaud, D. Frenkel, and B. Rotenberg, “Reduced variance
analysis of molecular dynamics simulations by linear combination of estimators”,
The Journal of Chemical Physics 154, 191101 (2021).

20

https://doi.org/10.1080/17415977.2019.1710504
https://doi.org/10.1080/17415977.2019.1710504
https://doi.org/10.1063/5.0038633
https://doi.org/10.1063/5.0038633
https://doi.org/10.1103/PhysRevE.52.3730
https://doi.org/10.1063/1.2646614
https://doi.org/10.1021/ie060042h
https://doi.org/10.1021/ie060042h
https://doi.org/10.1063/1.4742067
https://doi.org/10.1002/wcms.1169
https://doi.org/10.1103/PhysRevLett.123.098002
https://doi.org/10.1103/PhysRevLett.123.098002
https://doi.org/10.1063/5.0246890
https://doi.org/10.1080/00268976.2013.838316
https://doi.org/10.1080/00268976.2019.1572243
https://doi.org/10.1080/00268976.2019.1572243
https://doi.org/10.1063/5.0053737


26D. Reith, M. Pütz, and F. Müller-Plathe, “Deriving effective mesoscale potentials
from atomistic simulations”, Journal of Computational Chemistry 24, 1624–1636
(2003).

27W. Schommers, “A pair potential for liquid rubidium from the pair correlation
function”, Physics Letters A 43, 157–158 (1973).

28A. K. Soper, “Empirical potential Monte Carlo simulation of fluid structure”,
Chemical Physics 202, 295–306 (1996).

29J. E. Jones and S. Chapman, “On the determination of molecular fields.—I. From
the variation of the viscosity of a gas with temperature”, Proceedings of the Royal
Society of London. Series A 106, 441–462 (1924).

30J. D. Weeks, D. Chandler, and H. C. Andersen, “Role of Repulsive Forces in De-
termining the Equilibrium Structure of Simple Liquids”, The Journal of Chemical
Physics 54, 5237–5247 (1971).

31K. Zahn, R. Lenke, and G. Maret, “Two-Stage Melting of Paramagnetic Colloidal
Crystals in Two Dimensions”, Physical Review Letters 82, 2721–2724 (1999).

32S. C. Kapfer and W. Krauth, “Two-Dimensional Melting: From Liquid-Hexatic
Coexistence to Continuous Transitions”, Physical Review Letters 114, 035702
(2015).

33N. V. Gribova, Yu. D. Fomin, D. Frenkel, and V. N. Ryzhov, “Waterlike thermo-
dynamic anomalies in a repulsive-shoulder potential system”, Physical Review E
79, 051202 (2009).

34A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown,
P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R.
Shan, M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton, “LAMMPS -
a flexible simulation tool for particle-based materials modeling at the atomic,
meso, and continuum scales”, Computer Physics Communications 271, 108171
(2022).

21

https://doi.org/10.1002/jcc.10307
https://doi.org/10.1002/jcc.10307
https://doi.org/10.1016/0375-9601(73)90591-4
https://doi.org/10.1016/0301-0104(95)00357-6
https://doi.org/10.1098/rspa.1924.0081
https://doi.org/10.1098/rspa.1924.0081
https://doi.org/10.1063/1.1674820
https://doi.org/10.1063/1.1674820
https://doi.org/10.1103/PhysRevLett.82.2721
https://doi.org/10.1103/PhysRevLett.114.035702
https://doi.org/10.1103/PhysRevLett.114.035702
https://doi.org/10.1103/PhysRevE.79.051202
https://doi.org/10.1103/PhysRevE.79.051202
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.cpc.2021.108171


A Laplacian Representation of the Dirac delta
In the study of physics, one often observes that not all equations hold the same sig-
nificance; some appear more frequently due to their fundamental nature. Consider,
for instance, the equation:

LG(r) = δ(r), (18)

where δ denotes the Dirac delta function and G is the Green’s function associated
with the linear operator L.

Solving such equations is generally non-trivial, and Green’s functions find ap-
plications in many areas of physics and mathematics. In the particular case where
L = ∇2, the equation becomes:

∇ · (∇G(r)) = δ(r). (19)

This equation closely resembles Gauss’s law in electrostatics, one of Maxwell’s
equations. If we define the electric field as

E(r) = ∇G(r),

then the equation takes the form:{
∇ · E(r) = δ(r),

E(r) = ∇G(r).
(20)

This is precisely Maxwell’s first equation in the electrostatic case, where the
delta function represents a unit point charge located at the origin. Therefore, the
Green’s function G can be interpreted as the electric potential generated by such
a point charge.

To derive a general expression for the electric field, we can apply the divergence
theorem by integrating over a sphere of radius r centered around the origin.∫

V

∇ · E(r) dV =

∫
∂V

E(r) · dS, (21)

along with the assumption of rotational symmetry E(r) = E(r) r̂, where r = |r|.
The flux through the boundary then becomes:∫

∂V

E(r) · dS = E(r) Ωd r
d−1, (22)

where Ωd is the surface area of the unit sphere in Rd. Since the divergence of E
integrates to 1 (due to the delta function), we obtain:

E(r) =
1

Ωdrd−1
, E(r) = ∇G(r). (23)
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We can now integrate to find the Green’s function:

G(r) =


−1

2
r for d = 1,

− 1
2π

log r for d = 2,

− 1
4πr

for d = 3.

(24)

Substituting this expression back into the original differential equation provides
a useful representation of the Dirac delta function

δ(r) = −∇2G(r). (25)

B Derivation of Borgis formula
The pair correlation function for a binary mixture of species µ, ν is defined as

gµν(r) = ϵµν

〈 Nµ∑
i=1

Nν
′∑

j=1

δ
(
r− rij

)〉
, rij = ri − rj, (26)

where the configurational average is represented by

⟨· · · ⟩ = 1

ZN

∫
d{rk} (· · · ) e−βU({rk}), ZN =

∫
d{rk} e−βU({rk}), (27)

while the prefactor

ϵµν =
(
1− 1

2
δµν

) V

NµNν

, (28)

with V being the system volume and Nµ, Nν the particle numbers of each species.
Introduce a Green function G(x) satisfying

∆xG(x) = −δ(x). (29)

Then
δ(r− rij) = −∆rG(r− rij), (30)

and

gµν(r) = −ϵµν
′∑
i,j

1

ZN

∫
d{rk}∆rG(r− rij) e

−βU . (31)

Because G depends on r only via r − rij, the Laplacian may be viewed as acting
on rij:

∆rG(r− rij) = ∆rijG(r− rij). (32)
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Fixing all coordinates except rij and applying Green’s first identity in the rij-
variable with ϕ = e−βU and ψ = G(r− rij) yields∫

Rd

e−βU ∆rijG(r− rij) drij =

∫
∂BR

e−βU ∇rijG · dS

−
∫
Rd

∇rije
−βU · ∇rijG drij, (33)

where BR is a ball of radius R → ∞ and the integrals are taken for fixed remaining
coordinates; subsequently integrate over the remaining coordinates and divide by
ZN . The pair correlation function therefore splits into a surface contribution plus
a bulk contribution:

gµν(r) = ϵµν

′∑
i,j

[
Sij(r)−Bij(r)

]
, (34)

with

Sij(r) =
1

ZN

∫
d{rk}

(
lim
R→∞

∫
∂BR

e−βU ∇rijG(r− rij) · dS
)
, (35)

Bij(r) =
1

ZN

∫
d{rk} ∇rije

−βU · ∇rijG(r− rij). (36)

Evaluate the surface term Sij. For physically reasonable, short-ranged poten-
tials one has e−βU → 1 on ∂BR as R → ∞. Use the asymptotic flux of ∇G:

lim
R→∞

∫
∂BR

∇xG(x) · dSx =
1

Ωd

∫
Sd−1

dΩ = 1, (37)

where Ωd is the surface area of the unit sphere in d dimensions and we used the
standard normalization of G so that this flux equals 1. Thus for each fixed pair
(i, j) the surface integral contributes 1 after averaging and taking R → ∞, hence

ϵµν

′∑
i,j

Sij(r) = ϵµν

′∑
i,j

1. (38)

The combinatorics of the sum together with ϵµν give

ϵµν

′∑
i,j

1 = 1, (39)

both for µ ̸= ν and for µ = ν (the factor 1− 1
2
δµν and the restriction j ̸= i ensure

the correct counting). Therefore the surface term yields the additive baseline 1 in
gµν .
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We now treat the bulk term. Compute the gradient of the Boltzmann factor:

∇rije
−βU = −βe−βU ∇rijU = −βe−βU

(
∇riU −∇rjU

)
= −βe−βU

(
−fi + fj

)
= βe−βU (fi − fj), (40)

where fℓ = −∇rℓU is the total force on particle ℓ.
Consequently

gµν(r) = 1 + ϵµν

′∑
i,j

1

ZN

∫
d{rk} βe−βU

(
fi − fj

)
· ∇rijG(r− rij). (41)

Use the explicit radial form of ∇G. In d dimensions one may write

∇xG(x) =
x

Ωd |x|d
, x = r− rij, (42)

so the bulk term becomes

gµν(r) = 1 +
ϵµν
Ωd

〈 ′∑
i,j

β
r− rij

|r− rij| d
·
(
fi − fj

)〉
. (43)

We now perform the angular average to obtain the scalar radial correlation
gµν(r) which depends only on r = |r|. Define the angular average over the direction
r̂ as

gµν(r) =
1

Ωd

∫
Sd−1

gµν(rr̂) dΩr̂. (44)

Insert the bulk term and exchange the order of the r̂-integral and the configura-
tional average. Assuming that the forces fi are independent of r̂, namely that the
system is isotropic, we need to evaluate the angular integral

1

Ωd

∫
Sd−1

r− rij
|r− rij| d

dΩr̂ =
rij
r d
ij

Θ(r − rij) , (45)

where Θ is the Heaviside step function. This identity follows from the fact that
the integral vanishes for r < rij by symmetry, while for r > rij it equals the flux of
∇G through a sphere of radius r centered at the origin, which is independent of r
and equals 1 in the direction of rij. Thus, putting all together, under the isotropy
assumption we arrive at Borgis’ formula:

gµν(r) = 1 +
ϵµν
Ωd

〈 ′∑
i,j

rij
r d
ij

· β
(
fi − fj

)
Θ(r − rij)

〉
. (46)
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It’s worth noting that the derivation did not require the forces to be pairwise ad-
ditive, only that they are derivable from a potential energy function U . Moreover,
since g(r → ∞) = 1, we obtain that

〈 ′∑
i,j

rij
r d
ij

· β
(
fi − fj

)〉
= 0. (47)

Then by using the identity Θ(r − rij) = 1 − Θ(rij − r), we can rewrite Borgis’
formula in an alternative form:

gµν(r) = −ϵµν
Ωd

〈 ′∑
i,j

rij
r d
ij

· β
(
fi − fj

)
Θ(rij − r)

〉
. (48)
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