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Abstract

This thesis presents an experimental benchmarking study of the IQM Spark,
an on-premise five-qubit superconducting quantum device recently installed at
Politecnico di Torino. The main objective is to provide a first validation of the
quantum computer through practical experiments, in order to understand its
capabilities and limitations.

In order to better evaluate the results obtained from the quantum machine,
the defined set of experiments has also been performed using classical emulation,
both noiseless and noisy. In particular, this stage made it possible to validate the
workflow and to prepare the circuits in advance. Then, all experiments have been
repeated on the actual IQM Spark quantum computer, and the results have been
compared with those obtained on a fake backend. The comparison has provided a
measure of consistency between the emulator and the physical quantum processor.

With the aim of providing an overview as wide as possible, both fault-tolerant
and non fault-tolerant algorithms have been identified and implemented. More in
detail, the study focuses on three applications. The first addresses a fault-tolerant
version of the Deutsch-Jozsa algorithm, implemented using the error detection
code [[4,2,2]]. This case shows how a simple quantum algorithm can be protected
against noise by encoding logical qubits into a small code, and it highlights the
trade-off between error detection and hardware resources. The second application
investigates the Single-Impurity Anderson Model (SIAM), studied with a Variational
Quantum Eigensolver (VQE) and, again, leveraging the [[4,2,2]] code to provide
partial detection. For both the Deutsch-Jozsa algorithm and the SIAM problem, the
experiments quantify the reduction of errors achieved by encoded implementations
compared to their unencoded counterparts. The third application explores Quantum
Reservoir Computing (QRC), a framework that leverages quantum systems for
tasks such as time-series processing, classification and control. In this work, QRC is
specifically applied to temporal signal prediction, with a model trained and tested on
the NARMA10 sequence, a widely used nonlinear benchmark in time-series prediction,
consisting of a tenth-order Nonlinear Autoregressive Moving Average system, which
probes the ability of the model to capture complex temporal dependencies. This
implementation offers insight into the expected performance of such a class of
algorithms on Noisy Intermediate-Scale Quantum (NISQ) devices.

Although the algorithms presented in this thesis have already been investigated
on other quantum platforms based on different technologies, such as trapped
ions and neutral-atom systems, they have never before been implemented on the
IQM Spark quantum processor. The study required careful adaptation of the
implementations to the hardware architecture and constraints, and it delivers a
benchmark that highlights both the capabilities and the limitations of the device
at the algorithmic level.



In conclusion, this thesis shows that the IQM Spark quantum computer can
already serve as a platform for preliminary implementations of error detection,
variational algorithms and quantum machine learning models. Although the results
are limited in scale, they establish the first experimental reference point for future
research on the IQM Spark processor.
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Chapter 1

Introduction

Before delving into the heart of this thesis, it is appropriate to briefly recap the
basic building blocks of quantum computing. From cryptography and optimization
to materials science and machine learning, the list of potential applications goes far
beyond our current imagination. Quantum technology is no longer the exclusive
playground of theoretical speculation; there have been significant achievements in
hardware, software, and algorithmic complexity.

The objective of this chapter is to offer a clear and concise introduction to these
essential concepts, setting a solid foundation for the technical discussions that will
follow.

1.1 Quantum Computing

As a rapidly advancing domain of study and innovation, quantum computing
introduces a revolution in the way information is manipulated and processed. By
exploiting the principles of quantum mechanics - such as superposition, entangle-
ment, and quantum interference - quantum computers have the potential to tackle
challenges beyond the reach of classical systems.

This section will first introduce the concept of qubits, followed by an overview
of single and multi-qubit gates. Then, some fundamental quantum and hybrid
algorithms will be presented.

1.1.1 Quantum Bit

Quantum computing relies on quantum bits, or qubits, which are two-level quantum
systems represented by vectors in a two-dimensional Hilbert space. In classical
computing, information is encoded in bits that can exist in one of two definite
states: 0 or 1. In contrast, a qubit can be in a state of superposition of the two
basis states |0⟩ and |1⟩:
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|𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ = 𝛼

(
1
0

)
+ 𝛽

(
0
1

)
(1.1)

The coefficients 𝛼 and 𝛽 belong to the set of complex numbers, i.e., 𝛼, 𝛽 ∈ C, and
must satisfy the normalization condition |𝛼 |2 + |𝛽 |2 = 1. The set {|0⟩ , |1⟩} is known
as the computational basis and forms an orthonormal basis for the two-dimensional
Hilbert vector space.

Although a qubit can exist in a superposition of the basis states |0⟩ and |1⟩,
performing a projective measurement in the computational basis {|0⟩ , |1⟩} causes
the state |𝜓⟩ to collapse into one of the two basis states. The probability of obtaining
outcome |0⟩ is given by 𝑃(0) = | ⟨0|𝜓⟩ |2 = |𝛼 |2, and the probability of measuring
|1⟩ is 𝑃(1) = | ⟨1|𝜓⟩ |2 = |𝛽 |2. These correspond to the squared magnitudes of the
projections of |𝜓⟩ onto |0⟩ and |1⟩, respectively. By definition of probability, the
total must satisfy 𝑃(0) + 𝑃(1) = 1, which implies that the state vector must be
normalized. If it is not, one can normalize it by applying the following operation:

|𝜓′⟩ = |𝜓⟩
∥ |𝜓⟩ ∥2

(1.2)

By relying on the normalization condition on the coefficients 𝛼 and 𝛽, the state
|𝜓⟩ can be conveniently expressed using polar coordinates. This allows rewriting
the qubit as:

|𝜓⟩ = cos

(
𝜃

2

)
|0⟩ + 𝑒𝑖𝜑 sin

(
𝜃

2

)
|1⟩ (1.3)

where 𝜃 and 𝜑 represent the polar and azimuthal angles on the Bloch sphere,
shown below.

Figure 1.1: Representation of a qubit in the Bloch Sphere [1].
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As already mentioned before, in quantum mechanics the state of a single qubit is
described by a vector in a two-dimensional complex Hilbert space. More generally,
particularly when dealing with statistical mixtures or partial information, the
formalism of the density matrix 𝜌 is employed. A density matrix is a positive
semi-definite, Hermitian operator with unit trace. For a pure state, it can be
written as 𝜌 = |𝜓⟩⟨𝜓 |, while a mixed state is expressed as a convex combination of
pure states:

𝜌 =
∑︁
𝑖

𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖 |, with 𝑝𝑖 ≥ 0,
∑︁
𝑖

𝑝𝑖 = 1. (1.4)

Any single-qubit state can be conveniently represented using the Bloch sphere
formalism, in which the density matrix takes the form:

𝜌 =
1

2
(I + ®𝑟 · ®𝜎) , (1.5)

where ®𝑟 = (𝑟𝑥 , 𝑟𝑦, 𝑟𝑧) is the Bloch vector and ®𝜎 = (𝜎𝑥 , 𝜎𝑦, 𝜎𝑧) denotes the Pauli
matrices. The identity operator I and the Pauli matrices form a basis for all
Hermitian 2 × 2 operators.

The Pauli matrices are an essential set of Hermitian and unitary operators given
by:

𝜎𝑥 =

(
0 1
1 0

)
, 𝜎𝑦 =

(
0 −𝑖
𝑖 0

)
, 𝜎𝑧 =

(
1 0
0 −1

)
. (1.6)

The purity of a qubit state is determined by the norm of the Bloch vector. If
|®𝑟 | = 1, the state is pure and lies on the surface of the Bloch sphere. If |®𝑟 | < 1, the
state is mixed and represents a probabilistic ensemble of pure states.

For composite systems, such as two qubits, quantum states are classified as
either separable or entangled. A bipartite state 𝜌𝐴𝐵 is separable if it can be written
as a convex combination of product states:

𝜌𝐴𝐵 =
∑︁
𝑘

𝑝𝑘 𝜌
(𝑘)
𝐴

⊗ 𝜌
(𝑘)
𝐵

, with 𝑝𝑘 ≥ 0,
∑︁
𝑘

𝑝𝑘 = 1. (1.7)

If no such decomposition exists, the state is said to be entangled. Entangled states
exhibit correlations that cannot be explained by any classical probabilistic model.

A well-known example is the Bell state:

|Φ+⟩ = 1
√
2
( |00⟩ + |11⟩) . (1.8)

This state cannot be expressed as a product of two single-qubit states. Assuming a
separable form:

|Φ+⟩ = (𝑎 |0⟩ + 𝑏 |1⟩) ⊗ (𝑐 |0⟩ + 𝑑 |1⟩), (1.9)
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would lead to the expression:

|Φ+⟩ = 𝑎𝑐 |00⟩ + 𝑎𝑑 |01⟩ + 𝑏𝑐 |10⟩ + 𝑏𝑑 |11⟩. (1.10)

Equating this to the original Bell state imposes the following conditions:

𝑎𝑐 =
1
√
2
, 𝑏𝑑 =

1
√
2
, 𝑎𝑑 = 0, 𝑏𝑐 = 0.

These equations cannot be satisfied simultaneously unless some coefficients vanish,
which contradicts the requirement that both 𝑎𝑐 and 𝑏𝑑 be non-zero. Therefore,
the Bell state cannot be decomposed into product form and is entangled. The
term entanglement refers to the fact that a measurement of the first qubit on the
computational basis immediately determines the outcome of the second qubit: in
the case of the Bell state |Φ+⟩, if the first qubit is found in state |0⟩, the second is
also in |0⟩; if the first is in |1⟩, so is the second. Formally, conditional probabilities
such as 𝑃𝐵 (1 | 𝐴 = 1) = 1 hold in the ideal case, illustrating the perfect correlation
between the outcomes.

Entanglement is a non-classical type of correlation in which the measurement
of one qubit instantaneously determines the state of the other, regardless of the
spatial separation between the two subsystems. Thanks to this property, it finds
application in quantum teleportation, superdense coding, and secure quantum
communication. Moreover, it is essential for achieving computational advantages
in various quantum algorithms.

1.1.2 Quantum Circuit
A quantum circuit is a mathematical model used to describe quantum computations.
As in classical computing, a circuit is composed of wires and logic gates. In the
quantum case, the wires represent qubits, and the gates correspond to unitary
operations that manipulate quantum information. The circuit evolves a quantum
state |𝜓⟩ from an initial input to a final output through a sequence of quantum
gates.

For instance, let the system be initialized in a computational basis state
|𝑥1𝑥2 . . . 𝑥𝑛⟩, where 𝑥 𝑗 ∈ {0,1}. A quantum circuit applies a sequence of unitary
operations 𝑈1,𝑈2, . . . ,𝑈𝑘 to this state, resulting in the transformation:

|𝜓out⟩ = 𝑈𝑘 . . . 𝑈2𝑈1 |𝑥1𝑥2 . . . 𝑥𝑛⟩ . (1.11)

Each 𝑈 𝑗 is a unitary matrix of dimension 2𝑛×2𝑛, possibly acting only on a subset of
qubits, and extended to the full Hilbert space via the tensor product with identity
operators.

Unlike classical gates, quantum gates must be reversible (even more specifically,
they must be unitary):

𝑈†𝑈 = 𝑈𝑈† = I. (1.12)
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Before introducing more advanced logic operations, single-qubit gates must be
defined: they act on a two-dimensional Hilbert space and are represented by 2 × 2
unitary matrices. They perform rotations and reflections on the Bloch sphere and
are the building blocks of more complex quantum operations.

Pauli Gates (𝑋, 𝑌 , 𝑍): These gates correspond to 𝜋-rotations around the 𝑥, 𝑦,
and 𝑧 axes of the Bloch sphere. They can be expressed in matrix formalism:

𝑋 =

(
0 1
1 0

)
, 𝑌 =

(
0 −𝑖
𝑖 0

)
, 𝑍 =

(
1 0
0 −1

)
. (1.13)

Hadamard Gate (𝐻): The action of the Hadamard gate creates an equally
weighted superposition of all states in the computational basis |𝑥1, . . . , 𝑥𝑛⟩, with
𝑥 𝑗 ∈ {0,1}.

𝐻 =
1
√
2

(
1 1
1 −1

)
, 𝐻 |0⟩ = 1

√
2
( |0⟩ + |1⟩), 𝐻 |1⟩ = 1

√
2
( |0⟩ − |1⟩). (1.14)

This gate is essential for creating quantum interference.

Phase Gate (𝑆 and 𝑇): Phase gates modify the phase of the |1⟩ component of
a state. They are defined as:

𝑆 =

(
1 0
0 𝑖

)
, 𝑇 =

(
1 0
0 𝑒𝑖𝜋/4

)
. (1.15)

Both gates preserve the computational basis but apply complex phases, which are
essential for interference.

Arbitrary Rotational Gates: Single-qubit rotations about the Bloch sphere
axes are defined using the exponential of Pauli operators:

𝑅𝑥 (𝜃) = 𝑒−𝑖
𝜃
2 𝑋 = cos

(
𝜃

2

)
I − 𝑖 sin

(
𝜃

2

)
𝑋, (1.16)

𝑅𝑦 (𝜃) = 𝑒−𝑖
𝜃
2𝑌 = cos

(
𝜃

2

)
I − 𝑖 sin

(
𝜃

2

)
𝑌, (1.17)

𝑅𝑧 (𝜃) = 𝑒−𝑖
𝜃
2 𝑍 = cos

(
𝜃

2

)
I − 𝑖 sin

(
𝜃

2

)
𝑍. (1.18)

These gates allow arbitrary rotations on the Bloch sphere.
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At this point, it is possible to generalize the action of logical gates from one to
multiple qubits.

Controlled operations apply a given unitary transformation only when all the
control qubits are in state |1⟩.

CNOT Gate (Controlled-NOT): The controlled-NOT gate acts on two qubits
and flips the target qubit when the control qubit is |1⟩. Its matrix in the basis
{|00⟩ , |01⟩ , |10⟩ , |11⟩} is expressed as:

CNOT =
©­­«
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

ª®®¬ . (1.19)

Figure 1.2: Two different representations for the controlled-NOT gate [1].

CZ Gate (Controlled-Z): The controlled-Z gate applies a 𝑍 operation to the
target qubit conditioned on the control qubit being |1⟩. It introduces a relative
phase of −1 to the |11⟩ state, leaving all others unchanged. Its matrix in the
computational basis is expressed as:

CZ =
©­­«
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

ª®®¬ . (1.20)

Figure 1.3: Symmetry of the controlled-Z gate [1].

This gate is symmetric (i.e., it commutes with qubit exchange) and is diagonal
in the computational basis. When applied to the state |+⟩ |+⟩, it produces the
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entangled Bell state:

CZ
(
1

2
( |00⟩ + |01⟩ + |10⟩ + |11⟩)

)
=
1

2
( |00⟩ + |01⟩ + |10⟩ − |11⟩) = |Φ−⟩ . (1.21)

SWAP Gate: The SWAP gate is a two-qubit gate that exchanges the states of
the two qubits. It is used to rearrange qubit positions in a quantum circuit without
altering the information contained in the individual qubits. In the computational
basis {|00⟩ , |01⟩ , |10⟩ , |11⟩}, the SWAP gate is represented by the following 4 × 4
matrix:

SWAP =
©­­«
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

ª®®¬ . (1.22)

Figure 1.4: Representation of the SWAP gate [1].

Toffoli Gate (CCNOT): The Toffoli gate applies a NOT operation to the third
(target) qubit only if the first two (controls) are both in state |1⟩. It is represented
by an 8 × 8 unitary matrix and is universal for classical reversible computation.

Toffoli =

©­­­­­­­­­­«

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

ª®®®®®®®®®®¬
. (1.23)

Figure 1.5: Representation of the Toffoli gate [1].
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Finally, the measurement operation is applied at the end of a quantum circuit
to extract classical information from the qubits, resulting in classical bits.

Figure 1.6: Representation of the measurement symbol [1].
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Gate Name Matrix / Output Effect on the state

X Pauli-X

0 1

1 0

 Bit-flip: swaps amplitudes 𝛼 and 𝛽

Y Pauli-Y

0 −𝑖

𝑖 0


Bit and phase flip: adds ±𝑖 phase
depending on state

Z Pauli-Z

1 0

0 −1


Phase-flip: changes sign of |1⟩ com-
ponent

H Hadamard 1√
2


1 1

1 −1


Creates superpositions from basis
states

𝑅𝑥 (𝜃) Rotation
around X


cos 𝜃

2 −𝑖 sin 𝜃
2

−𝑖 sin 𝜃
2 cos 𝜃

2


Rotates state vector around X-axis
by angle 𝜃

𝑅𝑦 (𝜃) Rotation
around Y


cos 𝜃

2 − sin 𝜃
2

sin 𝜃
2 cos 𝜃

2


Rotates state vector around Y-axis
by angle 𝜃

𝑅𝑧 (𝜃) Rotation
around Z


𝑒−𝑖𝜃/2 0

0 𝑒𝑖𝜃/2


Adds phase shift by rotating
around Z-axis

CNOT |𝑎, 𝑏⟩ → |𝑎, 𝑏 ⊕ 𝑎⟩ Flips target qubit if control qubit
is 1 (entangling gate)

CZ |𝑎, 𝑏⟩ → (−1)𝑎𝑏 |𝑎, 𝑏⟩ Adds phase −1 when both qubits
are 1

SWAP |𝑎, 𝑏⟩ → |𝑏, 𝑎⟩ Exchanges the states of two qubits

Toffoli |𝑎, 𝑏, 𝑐⟩ → |𝑎, 𝑏, 𝑐 ⊕ 𝑎𝑏⟩ Flips target if both controls are 1

Table 1.1: Summary of the main logical quantum gates. The table lists commonly
used single- and multi-qubit gates, including their symbolic representation, matrix
form, and effect on the quantum state. These gates form the building blocks for
most quantum circuits and algorithms.

1.1.3 Quantum Algorithms and Hybrid Algorithms

In quantum computing, a quantum algorithm is defined as a sequence of computa-
tional steps that can be implemented on a quantum computer, typically modeled
using the quantum circuit framework. While classical algorithms consist of finite
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sets of instructions executable by classical computers, quantum algorithms follow
a similar step-by-step structure, with operations that exploit the principles of
quantum mechanics. The term quantum algorithm is generally used to describe
procedures that leverage distinctly quantum phenomena, such as superposition and
entanglement, to achieve tasks that may be inefficient or infeasible using classical
approaches.

At the core of many quantum algorithms lies the concept of oracle. The term
originates from ancient mythology, referring to the Oracle of Delphi, a prophetic
figure believed to provide cryptic yet insightful answers to important questions.
The Oracle of Delphi was an important sanctuary in ancient Greece, located on
Mount Parnassus. It was dedicated to the god Apollo, and its priestess, known
as the Pythia, was the sole person authorized to pronounce prophecies on his
behalf. Oracles were consulted for political, personal, and religious matters, and
the sanctuary was considered the spiritual center of the Hellenic world.

In quantum computing, an oracle is a special type of quantum subroutine or
function that behaves like a black box. It provides information about a computa-
tional problem by encoding part of the solution in the quantum state of the system.
The oracle typically operates by marking (or identifying) certain basis states that
satisfy a particular condition, without revealing any internal mechanism or logic
used to perform this identification. This enables quantum algorithms to explore
the solution space more efficiently, as the oracle can be queried in superposition,
allowing the simultaneous evaluation of multiple inputs. Moreover, on a quantum
computer, since operator must be both unitary and reversible, if a function takes 𝑛
qubits as input and produces 𝑚 qubits as output, the corresponding quantum gate
requires an additional 𝑚 − 𝑛 qubits as input, referred to as ancillae qubits. This
ensures that the input can be uniquely determined from the output.

Quantum oracles can be generally classified into two main categories: Boolean
oracles and phase oracles. Each type encodes information differently and plays
distinct roles in quantum algorithms. A Boolean oracle is a unitary operator 𝑂 𝑓

that encodes a Boolean function

𝑓 : {0,1}𝑛 → {0,1}. (1.24)

The oracle acts on two registers: an input register |𝑥⟩ with 𝑛 qubits, and an ancilla
qubit |𝑦⟩. Its action is defined as

𝑂 𝑓 |𝑥⟩|𝑦⟩ = |𝑥⟩|𝑦 ⊕ 𝑓 (𝑥)⟩, (1.25)

In other words, the oracle flips the ancilla qubit if and only if 𝑓 (𝑥) = 1, otherwise
it leaves it unchanged.

A phase oracle also encodes a Boolean function 𝑓 : {0,1}𝑛 → {0,1}, but instead
of flipping an ancillary qubit, it applies a phase factor to the input state. Its action
on the input register alone is

𝑂 𝑓 |𝑥⟩ = (−1) 𝑓 (𝑥) |𝑥⟩. (1.26)
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This means that the oracle multiplies the basis state |𝑥⟩ by a phase of −1 if 𝑓 (𝑥) = 1,
and leaves it unchanged if 𝑓 (𝑥) = 0.

Phase oracles are useful in many quantum algorithms because they enable
interference effects by modifying the relative phases of quantum states [2].

Such oracles play a fundamental role in algorithms like Grover’s search and
Deutsch-Jozsa, where their combination with quantum interference1 leads to com-
putational speedup.

𝑓 (𝑥)
|𝑥⟩ 𝑈 𝑓 (𝑥) 𝑈

†
𝑓 (𝑥) |𝑥⟩

|0⟩ |0⟩ ⊕ 𝑓 (𝑥)

(a) Boolean oracle

𝑓 (𝑥)
|𝑥⟩ 𝑈 𝑓 (𝑥) 𝑈

†
𝑓 (𝑥) |𝑥⟩

|0⟩ 𝑍 (−1) 𝑓 (𝑥) |0⟩

(b) Phase oracle

Figure 1.7: Comparison between the construction of a Boolean oracle (top) and
of a phase oracle (bottom). In both circuits, 𝑈 𝑓 (𝑥) and 𝑈

†
𝑓 (𝑥) refer to the unitary

transformation implementing the function 𝑓 (𝑥) and its conjugate, respectively. In
the bottom circuit, the oracle operates as follows: the first CNOT transfers the
value of 𝑓 (𝑥) into the ancilla qubit. The 𝑍 gate then applies a phase shift of −1,
but only when the ancilla qubit is flipped to |1⟩ (i.e., when 𝑓 (𝑥) = 1). Finally, the
second CNOT restores the ancilla qubit to |0⟩, leaving the phase shift intact after
being applied [2].

On the other hand, hybrid quantum-classical algorithms combine the strengths
of both quantum and classical computing to solve problems that are challenging
for either approach alone. These algorithms typically use a quantum processor
to prepare and manipulate quantum states, while a classical computer optimizes
parameters based on measurement results. One of the most prominent examples
of such algorithms are Variational Quantum Eigensolver (VQE) and Quantum
Approximate Optimization Algorithm (QAOA). In particular, the VQE is designed

1Quantum interference occurs when probability amplitudes associated to different quantum
paths combine, either reinforcing or cancelling each other, which is essential to amplify the correct
solutions marked by the oracle.
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to find the lowest eigenvalue (ground state energy) of a Hamiltonian, which is a
fundamental problem in quantum chemistry and materials science.

Deutsch-Jozsa Algorithm

The Deutsch-Jozsa algorithm was first proposed by David Deutsch and Richard
Jozsa in 1992. It was intentionally constructed to be efficiently solvable by a quan-
tum algorithm, while remaining difficult for any deterministic classical algorithm.

In the Deutsch-Jozsa problem, one is given access to a black-box oracle, which
evaluates a function 𝑓 taking binary inputs of length 𝑛, and for each such input,
returns either 0 or 1. It is guaranteed in advance that the function is either constant
(i.e., producing the same output for every input) or balanced (i.e., returning 1
for exactly half of the possible inputs and 0 for the other half). The goal is to
determine, by querying the oracle, whether the function 𝑓 is constant or balanced.

Let 𝑛 be the number of bits in the input to the function 𝑓 . In the worst case,
a classical deterministic algorithm would require 2𝑛−1 + 1 evaluations of 𝑓 . This
is because, in order to confirm that 𝑓 is constant, it is necessary to check just
over half of all possible inputs and verify that the output is the same in each case.
Given the promise that 𝑓 is either constant or balanced (but never something in
between), this number of evaluations is sufficient to reach a conclusion. In the best
case, where the function is balanced and the first two outputs are different, the
determination can be made in only two evaluations.

In contrast, the Deutsch-Jozsa quantum algorithm requires only a single evalua-
tion of 𝑓 and always produces the correct result with certainty.

It is now appropriate to examine the specific steps of the algorithm, both from
a mathematical perspective and in terms of circuit construction.
The derivations and explanations in this section are largely based on the presentation
in Nielsen and Chuang’s work [1].

Figure 1.8: Quantum circuit implementing the Deutsch-Jozsa algorithm [1].

By relying on Fig. 1.8, it is possible to write the mathematical expression of
the evolution of the state at each step.
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First of all, the input state is characterized by 𝑛 input qubits initialized in the
|0⟩ state and an additional ancilla qubit initialized in the |1⟩ state:

|𝜓0⟩ = |0⟩⊗𝑛 |1⟩ (1.27)

After the action of the Hadamard gates, the query register becomes a superposi-
tion of all possible values:

|𝜓1⟩ =
©­« 1
√
2𝑛

∑︁
𝑥∈{0,1}𝑛

|𝑥⟩ª®¬ ⊗
(
|0⟩ − |1⟩

√
2

)
(1.28)

In the next step, the function 𝑓 is evaluated by means of the unitary transfor-
mation 𝑈 𝑓 : |𝑥, 𝑦⟩ → |𝑥, 𝑦 ⊕ 𝑓 (𝑥)⟩ and the state evolves as:

|𝜓2⟩ =
1

√
2𝑛

∑︁
𝑥∈{0,1}𝑛

(−1) 𝑓 (𝑥) |𝑥⟩ ⊗
(
|0⟩ − |1⟩

√
2

)
(1.29)

In this precise step of the algorithm, the result of the evaluation of 𝑓 is coded
in the amplitude of the qubit superposition state. It is then necessary to apply a
Hadamard transform to the query register to interfere the terms in the superposition.

To understand the effect of the Hadamard transform, it is useful to first analyze
its action on a single qubit state |𝑥⟩. Considering the two cases 𝑥 = 0 and 𝑥 = 1
separately, one finds that

𝐻 |𝑥⟩ = 1
√
2

1∑︁
𝑧=0

(−1)𝑥𝑧 |𝑧⟩. (1.30)

Extending this to 𝑛 qubits, the transformation is given by

𝐻⊗𝑛 |𝑥1, . . . , 𝑥𝑛⟩ =
1

√
2𝑛

∑︁
𝑧1,...,𝑧𝑛∈{0,1}

(−1)𝑥1𝑧1+···+𝑥𝑛𝑧𝑛 |𝑧1, . . . , 𝑧𝑛⟩. (1.31)

This result can be more compactly expressed as

𝐻⊗𝑛 |𝑥⟩ = 1
√
2𝑛

∑︁
𝑧∈{0,1}𝑛

(−1)𝑥·𝑧 |𝑧⟩, (1.32)

where 𝑥 · 𝑧 denotes the bitwise inner product modulo 2 of the bitstrings 𝑥 and 𝑧.
Thus, one can obtain:

|𝜓3⟩ =
∑︁
𝑧

∑︁
𝑥

(−1)𝑥·𝑧+ 𝑓 (𝑥)
2𝑛

|𝑧⟩
[
|0⟩ − |1⟩

√
2

]
(1.33)
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At this point, the measurement of the query register is performed. It is note-
worthy that the amplitude corresponding to the state |0⊗𝑛⟩ is given by

∑
𝑥
(−1) 𝑓 (𝑥)

2𝑛 .
One proceeds by analyzing two distinct scenarios (where 𝑓 is constant, and where
𝑓 is balanced) based on the outcome.

Should 𝑓 be a constant function, the amplitude for |0⟩⊗𝑛 will be either +1 or −1,
depending on the fixed value assumed by 𝑓 . Given that the state |𝜓3⟩ possesses unit
norm, it necessarily follows that all other amplitudes are zero. Consequently, an
observation will invariably result in all qubits in the query register being measured
as 0.

Conversely, if 𝑓 is a balanced function, the constructive and destructive inter-
ferences within the amplitude for |0⊗𝑛⟩ will lead to a cancellation, resulting in an
amplitude of zero. This implies that any measurement will necessarily produce a
non-zero outcome for at least one qubit within the query register.

In summary, a measurement yielding all 0s indicates that the function is constant;
otherwise, the function is balanced.

Bernstein-Vazirani Algorithm

Another oracle-based quantum algorithm is the Bernstein-Vazirani algorithm,
invented in 1992 by Ethan Bernstein and Umesh Vazirani. It is very similar to the
Deutsch-Jozsa algorithm, but this time the aim is to find an unknown or secret
bitstring. Given a black-box function 𝑓 : {0,1}𝑛 → {0,1}, the algorithm is designed
to find 𝑠, such that 𝑓 (𝑥) = 𝑠 · 𝑥 mod 2.

As in the case of the Deutsch-Jozsa algorithm, solving this problem classically
would require a check of each value one bit at a time, while thanks to quantum
algorithms it is possible to find the secret bitstring 𝑠 with a single query.

The circuit to be constructed to implement the Bernstein-Vazirani algorithm is
depicted in Fig. 1.9.

Figure 1.9: Quantum circuit implementing the Bernstein-Vazirani algorithm [3].

The Bernstein-Vazirani algorithms implements the same steps as the Deutsch-
Jozsa algorithm [4]:

• All 𝑛 input qubits are initialized to the ground state |0⟩;

• The ancilla qubit is initialized to the excited state |1⟩;
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• Hadamard gates are applied to all input qubits and to the ancilla qubit to
create superposition;

• The oracle is created with the aim of applying a phase shift based on the
secret bistring 𝑠 through CNOT gates;

• To create interference among the terms in the superposition, a Hadamard
transform is applied to the query register;

• The input qubits are measured to obtain the secret bitstring 𝑠.

Grover’s Algorithm

Grover’s algorithm stands as a powerful quantum algorithm that provides a
quadratic speedup for unstructured search problems. Its primary goal is to effi-
ciently locate a unique "marked" item within an unsorted database of 𝑁 elements,
typically requiring about 𝑂 (

√
𝑁) queries to an oracle, a substantial improvement

over the 𝑂 (𝑁) queries needed by any classical algorithm. In essence, the search
problem involves finding the input 𝑥0 for which a boolean function 𝑓 (𝑥) outputs
1, and 0 otherwise, with the algorithm operating on an 𝑛-qubit quantum register
where 𝑁 = 2𝑛.

The process begins by preparing all qubits in a uniform superposition state,
achieved by applying the Hadamard operator to each qubit of the initial |0⟩⊗𝑛 state:

|𝜓0⟩ = 𝐻⊗𝑛 |0⟩⊗𝑛 = 1
√
𝑁

𝑁−1∑︁
𝑥=0

|𝑥⟩ (1.34)

This state ensures that every possible item has an equal amplitude. Following
this, the quantum oracle (𝑈 𝑓 ) comes into play, serving as a unitary operator that
"marks" the target item by flipping the phase of the state corresponding to 𝑥0,
while leaving all other states untouched. Formally, its action is defined by:

𝑈 𝑓 |𝑥⟩ = (−1) 𝑓 (𝑥) |𝑥⟩ (1.35)

Specifically, if 𝑓 (𝑥0) = 1 and 𝑓 (𝑥) = 0 for 𝑥 ≠ 𝑥0, then the oracle acts as:

𝑈 𝑓 |𝑥⟩ =
{
−|𝑥⟩ if 𝑥 = 𝑥0

|𝑥⟩ if 𝑥 ≠ 𝑥0
(1.36)

After the oracle’s application, the amplitude of the marked state becomes
negative. This is where the Grover diffusion operator, also known as the diffuser
(𝐺𝐷 or 𝐷), becomes crucial. This operator is often referred to as inversion about the
mean because it amplifies the amplitude of the marked state while simultaneously
reducing the amplitudes of all other states (see Fig. 1.10). The diffuser is defined
as:
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𝐺𝐷 = 2|𝜓0⟩⟨𝜓0 | − 𝐼 (1.37)

where 𝐼 is the identity operator. Its effect can be geometrically visualized as
a reflection around the average amplitude vector. By inverting the amplitudes
relative to their mean, the marked state’s amplitude, which had its phase flipped by
the oracle, experiences a significant increase, while the amplitudes of the unmarked
states proportionally decrease. A single Grover iteration consists of applying the
oracle followed by the diffusion operator:

𝐺 = 𝐺𝐷𝑈 𝑓 (1.38)

Figure 1.10: Inversion about the mean (example with 2 qubits) [2]. (a) States
amplitude after 𝐻⊗𝑛 operator; (b) States amplitude after the action of 𝑈 𝑓 ; (c) State
amplitudes after a Grover iteration 𝐺 = 𝐺𝐷𝑈 𝑓 .

The algorithm’s power lies in repeating this iteration for an optimal number of
iterations, approximately:

𝑅 ≈ 𝜋

4

√︂
𝑁

𝑀
− 1

2
, (1.39)

where 𝑁 is the number of elements in the dataset and 𝑀 is the number of
solutions. After 𝑅 iterations, the amplitude of the marked state will be very close
to 1, making the measurement of 𝑥0 almost certain. Geometrically, each Grover
iteration can be interpreted as a rotation within a two-dimensional subspace spanned
by the marked state |𝑥0⟩ and the uniform superposition of all unmarked states.
Each subsequent Grover iteration increases the amplitude of |𝑥0⟩ and decreases
that of the non-solutions, systematically steering the system’s state towards |𝑥0⟩.
This process beautifully illustrates quantum computing’s capability to solve specific
problems with remarkable efficiency compared to classical methods.

Variational Quantum Eigensolver (VQE)

The Variational Quantum Eigensolver (VQE) is a hybrid quantum-classical algo-
rithm belonging to the family of Variational Quantum Algorithms (VQAs) with
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Figure 1.11: Schematic circuit of a single Grover iteration [1].

Figure 1.12: Schematic circuit of the Grover’s search algorithm [1].

possible applications in optimization, quantum simulations and quantum chemistry.
It was developed to approximate the ground state energy of quantum systems
described by a Hamiltonian 𝐻. The VQE algorithm is particularly well suited to
Noisy Intermediate-Scale Quantum (NISQ) devices for several reasons. First, it
requires quantum circuits of shallow depth, which minimizes the accumulation of
noise and decoherence (two major limitations in current quantum hardware). Sec-
ondly, the hybrid structure of VQE means that the quantum computer is used only
for state preparation and expectation value estimation, while the optimization loop
is carried out on classical hardware. This division exploits the current strengths of
both platforms: the quantum processor performs quantum mechanical operations
that are exponentially costly on classical computers, while the classical processor
handles optimization tasks that would be challenging on quantum hardware.

As described in a very detailed way in the work by Tilly et al. [5], the algorithm
is based on the variational principle, which guarantees that the energy expectation
value over any normalized trial wavefunction |𝜓(𝜽)⟩, with 𝜽 denoting a set of
parameters taking values in (−𝜋, 𝜋], gives an upper bound to the ground state
energy 𝐸0 of 𝐻:

𝐸0 ≤ ⟨𝜓(𝜽) |𝐻 |𝜓(𝜽)⟩
⟨𝜓(𝜽) |𝜓(𝜽)⟩ . (1.40)

In practice, the trial wavefunction is generated by applying a parameterized
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unitary operator 𝑈 (𝜽) to a known initial state |0⟩⊗𝑁 :

|𝜓(𝜽)⟩ = 𝑈 (𝜽) |0⟩⊗𝑁 . (1.41)

The core objective of the VQE is thus to solve the following optimization
problem:

𝐸VQE = min
𝜽

⟨0|𝑈†(𝜽)𝐻𝑈 (𝜽) |0⟩ . (1.42)

The Hamiltonian 𝐻 is typically written in second quantization as a linear
combination of tensor products of Pauli operators (Pauli strings), after appropriate
mapping (e.g., Jordan-Wigner or Bravyi-Kitaev transformation):

𝐻 =

|P |∑︁
𝑎=1

𝑤𝑎𝑃𝑎, 𝑃𝑎 ∈ {𝐼, 𝑋,𝑌 , 𝑍}⊗𝑁 , 𝑤𝑎 ∈ R. (1.43)

The expectation value is computed term by term:

𝐸VQE(𝜽) =
|P |∑︁
𝑎=1

𝑤𝑎 ⟨0|𝑈†(𝜽)𝑃𝑎𝑈 (𝜽) |0⟩ . (1.44)

The classical optimizer seeks the parameter set 𝜽∗ that minimizes 𝐸VQE(𝜽).
In order to accomplish the task of the optimization, the VQE algorithm relies

on the construction of the ansatz, a parameterized quantum circuit that is used to
construct a trial wavefunction |𝜓(𝜽)⟩ for the quantum system under study. The
expressivity of the ansatz determines how accurately it can approximate the true
ground state of the Hamiltonian, while its structure influences the trainability
and depth of the circuit. A well-designed ansatz should strike a balance between
expressiveness (the ability to represent complex states) and feasibility (the ability
to optimize it efficiently on noisy hardware).

For what concerns the classical optimizers, they fall into two major families,
described in the following.

• Gradient-based optimizers are frequently used within the VQE framework
to iteratively update the ansatz parameters 𝜽 in the direction of steepest
descent of the cost function 𝐸 (𝜽). These methods require the evaluation of
gradients with respect to the parameters. In quantum computing, gradients of
the cost function with respect to variational parameters can often be computed
analytically using the parameter-shift rule. Let 𝑓 (𝜽) denote the expectation
value of an observable measured on the output state of a parameterized
quantum circuit. The function 𝑓 depends on the vector of parameters 𝜽 =

(𝜃1, 𝜃2, . . . ), and can be regarded as a quantum function. In many common
cases, particularly when the parameterized gates are generated by Hermitian
operators with two distinct eigenvalues (such as Pauli operators), the partial
derivative 𝜕 𝑓 /𝜕𝜃𝑘 can be exactly expressed as a linear combination of values
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of 𝑓 evaluated at shifted parameter configurations. Specifically, the derivative
with respect to 𝜃𝑘 can be written as:

𝜕 𝑓

𝜕𝜃𝑘
=
1

2

[
𝑓 (𝜽+𝑘 ) − 𝑓 (𝜽−𝑘 )

]
, (1.45)

where 𝜽±
𝑘
= 𝜽± 𝜋

2e𝑘 , and e𝑘 is the unit vector in the 𝑘-th direction. Importantly,
both 𝑓 (𝜽+

𝑘
) and 𝑓 (𝜽−

𝑘
) can be evaluated using the same quantum circuit

structure as the original function, differing only by a deterministic shift in one
parameter. This allows for efficient and exact gradient computation without
requiring access to ancillae qubits or full tomography of the quantum state.
First-order optimizers, such as stochastic gradient descent (SGD), RMSProp,
and Adam, are based solely on first-order derivative information. These
methods employ adaptive learning rates and momentum-like terms to stabilize
convergence in the presence of shot noise and hardware imperfections.
Second-order methods attempt to accelerate convergence by incorporating
curvature information of the cost landscape. A prominent example is the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, which approximates
the inverse Hessian matrix to guide parameter updates. While BFGS offers
faster convergence in convex regions of the cost function, its computational cost
and memory requirements scale poorly with the number of parameters, which
can become prohibitive for high-dimensional variational circuits. For this
reason, limited-memory variants (such as L-BFGS) are sometimes preferred.
The performance of gradient-based optimizers in VQE can be significantly
affected by noise, barren plateaus, and optimization landscape ruggedness.
As such, careful calibration with gradient-free methods are often explored in
practical implementations.

• Gradient-free optimizers These include:

– COBYLA (Constrained Optimization By Linear Approxima-
tions): builds a simplex around the current parameter vector and ap-
proximates the cost landscape locally.

– Nelder-Mead: uses a heuristic search among a set of candidate solutions,
iteratively reflecting, expanding, or contracting the simplex.

– Bayesian Optimization: constructs a surrogate probabilistic model of
the cost function and selects new samples based on expected improvement.

– POWELL: proceeds by optimizing one parameter (i.e., one dimension of
the search space) at a time. During each step, all parameters are fixed
except for one, which is varied to minimize the objective function along
that direction. This process is repeated cyclically for all dimensions. The
algorithm employs a hill climbing strategy along each coordinate direction
to iteratively refine the solution.
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These optimizers are useful when gradients are too noisy to be useful or
unavailable due to hardware limitations.

A major issue in VQE optimization is the barren plateau phenomenon, where
gradients vanish exponentially with the number of qubits, making optimization
intractable. The barren plateau phenomenon in VQE can be formally characterized
by the following probabilistic bound: given a cost function

𝐸 (𝜽) = ⟨𝜓(𝜽) | 𝐻 |𝜓(𝜽)⟩ ,

for any parameter 𝜃𝑖 ∈ 𝜽 and any 𝜖 > 0, there exists a constant 𝑏 > 1 such that:

Pr

(����𝜕𝐸 (𝜽)𝜕𝜃𝑖

���� ≥ 𝜖

)
≤ O

(
1

𝑏𝑁

)
, (1.46)

where 𝑁 is the number of qubits. This inequality implies that the probability of
observing a gradient with magnitude greater than an arbitrary threshold 𝜖 decays
exponentially with system size. As a result, for sufficiently large 𝑁 , gradients become
exceedingly small with high probability, rendering gradient-based optimization
practically infeasible without mitigation strategies.

The possible sources for barren plateaus are listed below:

• Ansatz expressibility: highly expressive circuits lead to uniform gradient
landscapes.

• Random initialization: causes the parameters to fall into flat regions of the
cost function.

• Circuit depth: deeper circuits increase the likelihood of gradient vanishing.

• Quantum noise: decoherence and gate imperfections can introduce noise-
induced barren plateaus (NIBP).

For the sake of clarity, a description of the general pipeline of the VQE algorithm
is provided (see Fig. 1.13).

• Pre-processing:

– Hamiltonian representation: The system Hamiltonian is expressed as
a quantum observable, using a predefined basis set that captures the
electronic structure of the problem.

– Encoding: The Hamiltonian is mapped into a form compatible with
quantum hardware by converting fermionic operators into spin operators
acting on qubits, using appropriate encoding techniques.

– Measurement grouping: The resulting operators are organized into groups
of commuting terms, enabling simultaneous measurement. This typically
involves applying basis rotation gates within a group to allow simultaneous
diagonalization.

21



Introduction

– State initialization: The initial quantum state is prepared as the reference
state to which the variational ansatz will be applied.

• VQE loop:

– Ansatz application: A parameterized quantum circuit is applied to the
initial state to prepare a trial wavefunction. The parameters are initialized
either randomly or using heuristics.

– Measurement: The trial state is rotated into the appropriate basis and
measured to obtain expectation values of the observables.

– Cost evaluation: Expectation values are classically combined (typically
via weighted summation) to compute the value of the cost function.

– Parameter update: The cost function is minimized by updating the ansatz
parameters through a classical optimization routine, initiating the next
iteration of the loop.

• Post-processing:

– Error mitigation: Techniques are applied to reduce the impact of quantum
noise, either on the raw measurement results or directly on the quantum
state before measurement.

Figure 1.13: The VQE pipeline with an indication of the steps solved classically
and quantum [5].
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1.1.4 Quantum Fourier Transform
The Quantum Fourier Transform (QFT) is a linear, unitary transformation that
plays a fundamental role in several quantum algorithms that outperform their
classical counterparts. It can be seen as the quantum analogue of the classical
Discrete Fourier Transform (DFT), and generalizes the Hadamard transformation
to higher-dimensional systems. In particular, it is central to algorithms like Shor’s
factoring algorithm and those designed to solve periodicity problems.

The content in this section is based on the lecture notes by Professor Nilanjana
Datta from the University of Cambridge [6].

Definition and Matrix Form

Let 𝑁 be a positive integer, and consider a Hilbert space H𝑁 with an orthonormal
basis {|0⟩ , |1⟩ , . . . , |𝑁 − 1⟩} labeled by elements of Z𝑁 . The QFT modulo 𝑁,
denoted QFT𝑁 , is defined on the computational basis as follows:

QFT𝑁 |𝑥⟩ = 1
√
𝑁

𝑁−1∑︁
𝑦=0

exp

(
2𝜋𝑖𝑥𝑦

𝑁

)
|𝑦⟩ , (1.47)

for all 𝑥 ∈ Z𝑁 . This transformation is unitary and maps each basis vector into
an equally weighted superposition, where the amplitudes encode phase information
that depends linearly on 𝑥 and 𝑦.

The matrix representation of QFT𝑁 is given by:

[QFT𝑁 ] 𝑗 ,𝑘 =
1
√
𝑁

exp

(
2𝜋𝑖 𝑗 𝑘

𝑁

)
, 0 ≤ 𝑗 , 𝑘 < 𝑁. (1.48)

Letting 𝜔 = 𝑒2𝜋𝑖/𝑁 be the 𝑁-th primitive root of unity, each matrix element
becomes a power of 𝜔, and the matrix is symmetric and unitary.

Unitarity Proof. To show that QFT𝑁 is unitary, consider the product
QFT†

𝑁
QFT𝑁 . The inner product of the 𝑗-th and 𝑘-th rows yields:(

QFT†
𝑁
QFT𝑁

)
𝑗 𝑘

=
1

𝑁

𝑁−1∑︁
ℓ=0

exp

(
2𝜋𝑖ℓ(𝑘 − 𝑗)

𝑁

)
. (1.49)

This is a finite geometric series that sums to 𝑁 when 𝑗 = 𝑘 , and 0 otherwise, due
to the properties of roots of unity. Hence, QFT†

𝑁
QFT𝑁 = 𝐼𝑁 , confirming unitarity.

Efficient Implementation for Powers of Two

When 𝑁 = 2𝑛, the QFT can be efficiently implemented as a quantum circuit acting
on 𝑛 qubits. The transformation can be rewritten as:
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QFT2𝑛 |𝑥⟩ =
1

√
2𝑛

2𝑛−1∑︁
𝑦=0

exp

(
2𝜋𝑖𝑥𝑦

2𝑛

)
|𝑦⟩ . (1.50)

Let 𝑥 = 𝑥𝑛−1𝑥𝑛−2 . . . 𝑥0 be the binary expansion of 𝑥. It turns out that the output
state can be expressed as a tensor product of 𝑛 single-qubit states with phase
rotations depending on binary fractions:

QFT2𝑛 |𝑥⟩ =
𝑛−1⊗
𝑗=0

1
√
2

(
|0⟩ + 𝑒2𝜋𝑖·0.𝑥 𝑗𝑥 𝑗−1...𝑥0 |1⟩

)
. (1.51)

This factorisation allows an efficient circuit construction using:

• 𝑛 Hadamard gates (one per qubit);

• 𝑛(𝑛−1)
2 controlled-𝑅𝑘 phase shift gates, where each 𝑅𝑘 acts as:

𝑅𝑘 =
©­«
1 0

0 𝑒2𝜋𝑖/2
𝑘

ª®¬ . (1.52)

• 𝑛/2 SWAP gates to reverse the qubit order.

The total gate count scales as O(𝑛2), making the QFT one of the few non-trivial
quantum operations implementable in polynomial time.

In Fig. 1.14, the circuit for 𝑛 = 3 is depicted as an example.

Figure 1.14: Circuit scheme of the Quantum Fourier Transform for 𝑛 = 3 [6].
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Chapter 2

Quantum Error Correction

2.1 Introduction and Motivation

This chapter draws conceptual inspiration from the doctoral thesis of Daniel
Gottesman [7], which represents the foundation for the theory of stabilizer codes
and modern quantum error correction.

In practice, quantum systems are never perfectly isolated. When qubits are
stored in memory, transmitted through communication channels, or manipulated via
quantum gates, they inevitably interact with their surrounding environment. This
interaction introduces noise and alters the system’s evolution, typically degrading
the coherence and integrity of the quantum information. An initially pure state |𝜓⟩
may, as a consequence of entanglement with the environment, evolve into a mixed
state described by a density matrix 𝜌. Such noise can arise from various sources,
including thermal fluctuations, electromagnetic interference, or imperfections in
hardware components. Even in the absence of active operations, idle qubits are
subject to decoherence over time.

To model this noisy evolution mathematically, one uses the formalism of quantum
channels. A quantum channel is represented by a linear map E acting on density
matrices. To ensure that this map produces valid quantum states as output, it
must satisfy two essential properties:

• Complete positivity (CP): A map E is completely positive if, when extended
to any larger system by tensoring with the identity map on an ancillary space,
it still maps positive operators to positive operators. This condition guarantees
that even if the system of interest is entangled with an external reference
system, the evolution remains physically valid.

• Trace preservation (TP): The trace of the density matrix is preserved under
E: Tr(E(𝜌)) = Tr(𝜌) = 1. This condition ensures that the total probability is
conserved, i.e., no part of the quantum state is "lost" or "created" during the
process.
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A map satisfying both properties is called a completely positive trace-preserving
(CPTP) map. CPTP maps form the most general class of transformations that
can describe physical evolutions of quantum states, including noise, decoherence,
and imperfect operations.

Any CPTP map admits a representation known as the operator-sum or Kraus
decomposition:

E(𝜌) =
∑︁
𝑖

𝐸𝑖𝜌𝐸
†
𝑖
, (2.1)

where the operators 𝐸𝑖 are called Kraus operators, and satisfy the completeness
condition: ∑︁

𝑖

𝐸
†
𝑖
𝐸𝑖 = 𝐼 . (2.2)

This condition is what ensures that the map E is trace-preserving. The Kraus
operators describe different possible ways the quantum system may evolve due to
interaction with the environment, each associated with a certain probability. These
operators are not required to be unitary; they may represent irreversible processes
such as amplitude damping or phase noise.

From the perspective of quantum error correction, it is sufficient to construct a
code that is capable of correcting the effect of each individual Kraus operator. If
this condition is met, the code can correct the entire action of the noisy channel
E, regardless of whether the output state is pure or mixed. In particular, a mixed
state can be understood as a statistical ensemble of pure states, and if all pure
components of the ensemble can be individually corrected, then the full state is
effectively recovered.

For simplicity, the following analysis will focus on pure input states affected
by arbitrary (possibly non-unitary) error operators. This abstraction provides a
general and powerful foundation for the development of quantum error-correcting
codes, without loss of generality regarding the physical noise processes involved.
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2.2 Classical Error Correction Fundamentals
Before delving into the core of quantum error correction, it is beneficial to establish
a solid algebraic foundation by formalizing key definitions and concepts from
classical error correction. This section follows the framework presented in Protecting
Information: From Classical Error Correction to Quantum Cryptography by Loepp
and Wootters [8].

2.2.1 Linear Block Codes
Let 𝐴 be a finite set and 𝑛 ≥ 1 an integer. A code 𝐶 of length 𝑛 is any subset of
𝐴𝑛. In this setting, 𝐴𝑛 is called the codespace and the elements of 𝐶 are called
codewords.

Moreover, 𝐶 is a linear code if

• 𝐶 is not empty

• ∀ ®𝑐1, ®𝑐2 ∈ 𝐶, ®𝑐1 + ®𝑐2 ∈ 𝐶 (closed under addition)

• ∀®𝑐 ∈ 𝐶,∀𝛼 ∈ F2, 𝛼®𝑐 ∈ 𝐶 (closed under scalar multiplication)

Generator Matrix

A linear code 𝐶 can be uniquely specified by a 𝑘 × 𝑛 matrix 𝐺, known as the
generator matrix, whose 𝑘 rows form a basis for 𝐶. The generator matrix is
typically presented in a systematic form, 𝐺 = [𝐼𝑘 |𝑃], where 𝐼𝑘 is the 𝑘 × 𝑘 identity
matrix and 𝑃 is a 𝑘 × (𝑛 − 𝑘) matrix.

Weight and Distance

The Hamming weight of a vector ®𝑣 ∈ F𝑛2, denoted 𝑤(®𝑣), is defined as the number of
non-zero components in ®𝑣. This is equivalent to the number of 1s in the vector.

The Hamming distance between two vectors ®𝑢, ®𝑣 ∈ F𝑛2, denoted 𝑑 ( ®𝑢, ®𝑣), is the
number of positions in which they differ. The minimum distance of a linear code 𝐶,
denoted 𝑑 (𝐶) or simply 𝑑, is a critical parameter quantifying its error-correcting
capability. It is defined as the smallest Hamming distance between any two distinct
codewords:

𝑑 = min{𝑑 ( ®𝑢, ®𝑣) | ®𝑢, ®𝑣 ∈ 𝐶, ®𝑢 ≠ ®𝑣} (2.3)

For a linear code, this simplifies significantly: the minimum distance is equal to
the minimum weight of any non-zero codeword:

𝑑 = min{𝑤( ®𝑐) | ®𝑐 ∈ 𝐶, ®𝑐 ≠ ®0} (2.4)

A linear code with minimum distance 𝑑 is capable of detecting up to 𝑑 − 1 errors
and correcting up to 𝑡 = ⌊(𝑑 − 1)/2⌋ errors. This fundamental relationship is often
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summarized by stating that a code is an [𝑛, 𝑘, 𝑑] code. 𝑘 represents the dimension
of 𝐶.

Parity-Check Matrix

A linear code 𝐶 can also be defined as the set of all vectors ®𝑥 ∈ F𝑛2 that are
orthogonal to the rows of a specific (𝑛 − 𝑘) × 𝑛 matrix 𝐻. This matrix 𝐻 is called
the parity-check matrix of 𝐶. Formally, a vector ®𝑥 ∈ F𝑛2 is a codeword not affected
by errors if and only if:

𝐻®𝑥𝑇 = ®0𝑇 (2.5)

where ®0 is the zero vector of length 𝑛 − 𝑘. If the generator matrix 𝐺 is in
systematic form 𝐺 = [𝐼𝑘 |𝑃], then the corresponding parity-check matrix 𝐻 can be
constructed as 𝐻 = [−𝑃𝑇 |𝐼𝑛−𝑘 ].

Dual Code

The dual code 𝐶⊥ of a code 𝐶 is defined as the set of all vectors ®𝑣 ∈ F𝑛2 that are
orthogonal to every codeword in 𝐶 under the standard dot product (modulo 2):

𝐶⊥ = {®𝑣 ∈ F𝑛2 | ®𝑣 · ®𝑐 = 0 for all ®𝑐 ∈ 𝐶} (2.6)

If 𝐶 is an [𝑛, 𝑘] linear code, then its dual 𝐶⊥ is an [𝑛, 𝑛 − 𝑘] linear code. Crucially,
if 𝐺 is a generator matrix for 𝐶, then 𝐺 is a parity-check matrix for 𝐶⊥. Conversely,
if 𝐻 is a parity-check matrix for 𝐶, then 𝐻 is a generator matrix for 𝐶⊥.

A code 𝐶 is said to be self-orthogonal if 𝐶 ⊆ 𝐶⊥. If, in addition, 𝐶 = 𝐶⊥, the
code is called self-dual. For a self-dual code, it must hold that 𝑘 = 𝑛 − 𝑘, implying
𝑛 must be an even number and 𝑘 = 𝑛/2.

Syndrome Decoding

Upon receiving a potentially erroneous vector ®𝑦 ∈ F𝑛2, the decoding process begins
by computing the syndrome ®𝑠 = 𝐻®𝑦𝑇 . If ®𝑠 = ®0𝑇 , then ®𝑦 is a codeword not affected
by errors. If ®𝑠 ≠ ®0𝑇 , an error has occurred. The syndrome uniquely corresponds
to a correctable error pattern. If ®𝑒 is the error vector such that ®𝑦 = ®𝑐 + ®𝑒 for
some codeword ®𝑐, then ®𝑠 = 𝐻 ( ®𝑐 + ®𝑒)𝑇 = 𝐻 ®𝑐𝑇 + 𝐻 ®𝑒𝑇 = ®0𝑇 + 𝐻 ®𝑒𝑇 = 𝐻 ®𝑒𝑇 . Thus, the
syndrome reveals information about the error vector ®𝑒. Syndrome decoding involves
pre-calculating the syndrome for all possible correctable error patterns (those with
weight up to 𝑡) and then, upon computing a syndrome ®𝑠, identifying the most
likely error pattern ®𝑒 that produces this ®𝑠 (i.e., 𝐻 ®𝑒𝑇 = ®𝑠 and 𝑤( ®𝑒) is minimal). The
corrected codeword is then ®𝑐 = ®𝑦 − ®𝑒.
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Cosets and Coset Leaders

For a linear code 𝐶 ⊆ F𝑛2, a coset of 𝐶 with respect to a vector ®𝑥 ∈ F𝑛2 is the set:

𝐶 + ®𝑥 = { ®𝑐 + ®𝑥 | ®𝑐 ∈ 𝐶} (2.7)

Each coset partitions the entire vector space F𝑛2 into disjoint subsets. Importantly,
two vectors ®𝑥1, ®𝑥2 ∈ F𝑛2 belong to the same coset if and only if their difference
®𝑥1 − ®𝑥2 ∈ 𝐶, which implies 𝐻 (®𝑥1 − ®𝑥2)𝑇 = ®0𝑇 , or 𝐻®𝑥𝑇1 = 𝐻®𝑥𝑇2 . This means that all
vectors within the same coset share the identical syndrome.

A coset leader is the vector of minimum Hamming weight within a given coset.
If there are multiple vectors with the same minimum weight in a coset, any one of
them can be chosen as the coset leader. If a received vector ®𝑦 has syndrome ®𝑠, one
can find the coset leader ®𝑒 associated with that syndrome. The decoded codeword
is then ®𝑐 = ®𝑦 − ®𝑒.

Example: The Hamming Code A well-known example of a linear code is
the binary Hamming code Ham(𝑟, 2), where 𝑟 ≥ 2. It is an [𝑛, 𝑘, 𝑑] code with
parameters 𝑛 = 2𝑟 − 1, 𝑘 = 2𝑟 − 1 − 𝑟, and 𝑑 = 3. This means a Hamming code can
correct any single bit error. Its parity-check matrix 𝐻 is constructed by taking as
its columns all distinct non-zero vectors in F𝑟2. For instance, for 𝑟 = 3, the Hamming
code is a [7,4,3] code. Its parity-check matrix 𝐻 has dimensions (𝑛 − 𝑘) × 𝑛 = 3× 7,
and its columns are all non-zero binary vectors of length 3:

𝐻 =

©­­­«
1 1 1 0 1 0 0

1 1 0 1 0 1 0

0 1 1 1 0 0 1

ª®®®¬
Suppose a vector ®𝑦 = (1011100) is received. To determine if ®𝑦 is a valid codeword
or if it has been affected by an error, its syndrome is computed:

®𝑠 = 𝐻®𝑦𝑇 =

©­­­«
1 1 1 0 1 0 0

1 1 0 1 0 1 0

0 1 1 1 0 0 1

ª®®®¬

©­­­­­­­­­­­­­­­«

1

0

1

1

1

0

0

ª®®®®®®®®®®®®®®®¬

=

©­­­«
1

0

0

ª®®®¬
Since the computed syndrome ®𝑠 = (100)𝑇 is not the zero vector, the received
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vector ®𝑦 is not a valid codeword. This indicates that a detectable error occurred
during transmission for this particular received vector.

By computing the coset leader corresponding to the syndrome ®𝑠 = (100)𝑇 , one
knows that an error in the 5th bit has occured. So, the correct codeword is
®𝑐 = (1011000).

In this example, every coset possesses a unique coset leader. This is not univer-
sally the case: if a coset contains more than one coset leader, unique identification
of the error pattern becomes impossible. In such scenarios, accurate correction of
errors by a linear code designed to correct 𝑡 errors cannot be guaranteed. Instead,
the code may only be able to detect that the number of errors exceeds its correction
capability.

2.3 General Quantum Error-Correcting Codes

A quantum code that encodes 𝑘 logical qubits into 𝑛 physical qubits defines a
subspace of the 2𝑛-dimensional Hilbert space. This subspace, denoted T , consists
of 2𝑘 basis codewords that correspond to the computational basis states of the
logical qubits. Any linear combination of these basis codewords remains a valid
codeword, preserving the linear structure of quantum states.

To determine whether a code can correct a given set of errors, it is sufficient to
consider a basis for the space of all possible errors. A common choice is the group
G𝑛 of 𝑛-fold tensor products of the single-qubit operators {𝐼, 𝜎𝑥 , 𝜎𝑦, 𝜎𝑧}, including
possible global phases such as ±1 and ±𝑖. The weight of an operator is defined as
the number of qubits on which it acts non-trivially (i.e., not as the identity).

For a code to distinguish between two correctable errors 𝐸𝑎 and 𝐸𝑏 acting on
potentially different codewords |𝜓𝑖⟩ and |𝜓 𝑗 ⟩, it is required that

⟨𝜓𝑖 |𝐸†
𝑎𝐸𝑏 |𝜓 𝑗 ⟩ = 0 for 𝑖 ≠ 𝑗 . (2.8)

This condition ensures that the errors do not cause confusion between distinct
logical states.

Furthermore, in order to preserve superpositions and avoid acquiring information
about the encoded state during error detection, it is also necessary that

⟨𝜓𝑖 |𝐸†
𝑎𝐸𝑏 |𝜓𝑖⟩ = ⟨𝜓 𝑗 |𝐸†

𝑎𝐸𝑏 |𝜓 𝑗 ⟩ ∀𝑖, 𝑗 . (2.9)

Both conditions can be combined into the more general requirement:

⟨𝜓𝑖 |𝐸†
𝑎𝐸𝑏 |𝜓 𝑗 ⟩ = 𝐶𝑎𝑏𝛿𝑖 𝑗 , (2.10)

where 𝐶𝑎𝑏 is a Hermitian matrix independent of the codeword indices 𝑖 and 𝑗 .
The condition in Eq. (2.10) is both necessary and sufficient for a code to correct

the set of errors {𝐸𝑎}. By diagonalizing the Hermitian matrix 𝐶𝑎𝑏, one can obtain
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an orthonormal error basis {𝐹𝑎} such that

⟨𝜓𝑖 |𝐹†
𝑎𝐹𝑏 |𝜓 𝑗 ⟩ = 𝛿𝑎𝑏𝛿𝑖 𝑗 or 0, (2.11)

depending on the nature of the errors. Errors of the second type may annihilate the
code space, making their occurrence detectable and ignorable. The other type of
errors always results in orthogonal states, allowing the identification of the specific
error through an appropriate measurement, from which the location and nature of
the disturbance within the code can be precisely detected.

A code for which the matrix 𝐶𝑎𝑏 is not full-rank is called degenerate, while it is
non-degenerate if 𝐶𝑎𝑏 has full rank.

2.3.1 Code Distance and Error Correction Capability

The weight of the smallest 𝐸 = 𝐸
†
𝑎𝐸𝑏 ∈ G𝑛 that violates Eq. (2.10) represents the

distance 𝑑 of the code. A code capable of correcting up to 𝑡 arbitrary errors must
satisfy 𝑑 ≥ 2𝑡 + 1. A quantum code encoding 𝑘 qubits into 𝑛 physical qubits with
distance 𝑑 is denoted [𝑛, 𝑘, 𝑑]. In literature, the notation [[𝑛, 𝑘, 𝑑]] is sometimes
used to avoid confusion with classical codes.

Quantum error correction can also be adapted to different error models:

• To detect (but not correct) up to 𝑠 errors, a code must have distance at least
𝑠 + 1.

• If the positions of up to 𝑟 errors are known (e.g., in a quantum erasure channel),
the code needs a minimum distance of 𝑟 + 1 to correct them.

• A code that corrects 𝑡 arbitrary errors, 𝑟 known-location errors, and detects 𝑠

additional errors must have 𝑑 ≥ 2𝑡 + 𝑟 + 𝑠 + 1.

It is assumed that errors occur independently across different qubits and that
single-qubit errors are uniformly distributed among the Pauli operators 𝜎𝑥, 𝜎𝑦, and
𝜎𝑧. Under the assumption of a small error probability 𝜖 per qubit, the probability
of more than 𝑡 errors is 𝑂 (𝜖 𝑡+1) and can typically be neglected.

Some systems experience leakage errors, which cause the system to leave the
computational subspace. Examples include atomic transitions to unintended energy
levels or photon loss. These errors can be identified by measurements distinguishing
computational from non-computational states. Once detected, such errors may be
reinterpreted as located errors and corrected accordingly.

Correlated errors acting on multiple qubits simultaneously present another chal-
lenge. Nevertheless, if the probability of such correlated errors decays exponentially
with their weight, they can be treated within the same framework.

In practice, error models often deviate from the uniform assumption. For
example, in ion-trap qubits, spontaneous emission tends to generate specific error
types more frequently. Such amplitude damping channels can produce errors like

31



Quantum Error Correction

𝜎𝑥 + 𝑖𝜎𝑦 with probability 𝜖 , while other errors, such as 𝐼 −𝜎𝑧, occur with probability
𝑂 (𝜖2). These asymmetries suggest that tailoring error-correcting codes to realistic
noise models can improve efficiency. Hence, a careful characterization of the physical
error processes is essential for the design of practical quantum error correction
schemes.

‘̀‘latex

2.4 The Stabilizer Codes
Stabilizer codes constitute a broad class of quantum codes that are naturally
described in group-theoretical terms. The central idea is to define the codespace
T ⊆ C2𝑛 as the common +1 eigenspace of a subgroup of the 𝑛-qubit Pauli group
G𝑛. The operators belonging to this subgroup are called stabilizers because they
stabilize the codespace: every state |𝜓⟩ ∈ T remains invariant under their action,

𝑆 |𝜓⟩ = |𝜓⟩ ∀ 𝑆 ∈ S, (2.12)

where S ⊂ G𝑛 denotes the stabilizer group.
Each element of the Pauli group G𝑛 is unitary and either Hermitian or anti-

Hermitian. Any two elements 𝐴, 𝐵 ∈ G𝑛 either commute, [𝐴, 𝐵] = 0, or anticom-
mute, {𝐴, 𝐵} = 0. A stabilizer code is defined by a subgroup S ⊂ G𝑛 (the stabilizer
group) that satisfies the following conditions:

• S is Abelian, ensuring that all its elements commute pairwise and admit a
common set of eigenvectors.

• S does not contain the elements −𝐼, 𝑖𝐼, −𝑖𝐼.
Given an [[𝑛, 𝑘]] stabilizer code, the codespace T has dimension 2𝑘 , and the
stabilizer group S contains 2𝑛−𝑘 elements. Although stabilizer codes are often used
as quantum error-correcting codes, this is not always the case. In particular, codes
of distance 𝑑 = 2 cannot correct arbitrary single-qubit errors, yet they are still
described within the stabilizer formalism.

It is useful to recall some algebraic properties of Pauli operators. For single-
qubit Pauli matrices 𝜎𝑥 , 𝜎𝑦, 𝜎𝑧 one has 𝜎2

𝑥 = 𝜎2
𝑦 = 𝜎2

𝑧 = 𝐼, so every element of G𝑛

squares to either +𝐼 or −𝐼. Pauli matrices acting on the same qubit anticommute,
while those acting on different qubits commute. Since 𝜎𝑦 has imaginary matrix
elements, whereas 𝜎𝑥 and 𝜎𝑧 are real, the parity of the number of 𝜎𝑦 factors in
a stabilizer element determines whether a simultaneous eigenbasis can be chosen
with real coefficients. Nevertheless, it has been proven that for any stabilizer
code defined over the complex numbers there exists a real representation with
identical parameters, so one may often restrict attention to real codes without loss
of generality.

For the sake of clarity, an explicit example is provided for the two-qubit Bell
state |Φ+⟩ = |00⟩+|11⟩√

2
. This state is a simultaneous +1 eigenstate of the commuting
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operators 𝑋 ⊗ 𝑋 and 𝑍 ⊗ 𝑍 . Indeed,

(𝑋 ⊗ 𝑋) |Φ+⟩ = 1√
2

(
𝑋 |0⟩ ⊗ 𝑋 |0⟩ + 𝑋 |1⟩ ⊗ 𝑋 |1⟩

)
= 1√

2

(
|1⟩ ⊗ |1⟩ + |0⟩ ⊗ |0⟩

)
= |Φ+⟩,

(2.13)

and
(𝑍 ⊗ 𝑍) |Φ+⟩ = 1√

2

(
𝑍 |0⟩ ⊗ 𝑍 |0⟩ + 𝑍 |1⟩ ⊗ 𝑍 |1⟩

)
= 1√

2

(
|0⟩ ⊗ |0⟩ + (−1) (−1) |1⟩ ⊗ |1⟩

)
= |Φ+⟩.

(2.14)

Since [𝑋 ⊗ 𝑋, 𝑍 ⊗ 𝑍] = 0, their common +1 eigenspace is one-dimensional and
spanned precisely by |Φ+⟩.

Furthermore, using the identity 𝑌 = 𝑖𝑋𝑍 , one finds

𝑌 ⊗ 𝑌 = (𝑖𝑋𝑍) ⊗ (𝑖𝑋𝑍) = − (𝑋 ⊗ 𝑋) (𝑍 ⊗ 𝑍), (2.15)

so that
(𝑌 ⊗ 𝑌 ) |Φ+⟩ = − (𝑋 ⊗ 𝑋) (𝑍 ⊗ 𝑍) |Φ+⟩ = − |Φ+⟩. (2.16)

Therefore, the stabilizer group of |Φ+⟩ is

S = ⟨𝑋 ⊗ 𝑋, 𝑍 ⊗ 𝑍⟩ = { 𝐼, 𝑋 ⊗ 𝑋, 𝑍 ⊗ 𝑍, −𝑌 ⊗ 𝑌 }. (2.17)

The group contains 22−0 = 4 elements, corresponding to a one-dimensional codespace
(𝑘 = 0).

2.4.1 Error Detection and Correction

An error 𝐸 ∈ G𝑛 is detectable by the code if it anticommutes with at least one
generator of S. In that case, the error flips the sign of at least one stabilizer
measurement, which signals that an error has occurred. More precisely, for any
state |𝜓⟩ ∈ T and any stabilizer generator 𝑀 ∈ S, if {𝐸, 𝑀} = 0, then:

𝑀𝐸 |𝜓⟩ = −𝐸 |𝜓⟩,

which implies that 𝐸 |𝜓⟩ lies outside of T and can therefore be detected.
In addition, some errors commute with all elements of the stabilizer but are not

themselves in the stabilizer. These errors do not take states out of T , but they can
transform one logical state into another. The set of all such operators forms the
centralizers C(S) of S in G𝑛. Due to the algebraic properties of the stabilizer group
S and the Pauli group G𝑛, the centralizer of S in G𝑛 coincides with the normalizer
N(S) of S in G𝑛.
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The quotient group N(S)/S describes how these commuting errors act non-
trivially within the codespace T . Logical operations on the encoded qubits are
represented by elements of this quotient group. For a code encoding 𝑘 logical qubits,
a standard choice is to define logical Pauli operators 𝑋1, . . . , 𝑋 𝑘 and 𝑍1, . . . , 𝑍 𝑘 ,
which satisfy the same algebraic relations as their physical counterparts:

[𝑋 𝑖, 𝑋 𝑗 ] = 0, (2.18)

[𝑍 𝑖, 𝑍 𝑗 ] = 0, (2.19)

[𝑋 𝑖, 𝑍 𝑗 ] = 0 for 𝑖 ≠ 𝑗 , (2.20)

{𝑋 𝑖, 𝑍 𝑖} = 0. (2.21)

2.4.2 Error Syndromes
To determine which error has occurred, one measures the eigenvalues of each
generator of S. This yields a binary vector known as the syndrome, which depends
on the commutation properties between the error and the generators. For each
stabilizer generator 𝑀𝑖, one can define:

𝑓𝑀𝑖
(𝐸) =

{
0 if [𝑀𝑖, 𝐸] = 0,

1 if {𝑀𝑖, 𝐸} = 0.

The full syndrome is the vector 𝑓 (𝐸) = ( 𝑓𝑀1 (𝐸), . . . , 𝑓𝑀𝑛−𝑘 (𝐸)). For nondegenerate
codes, each correctable error yields a distinct syndrome, allowing the error to be
identified and corrected. In degenerate codes, different errors may produce the same
effect on all codewords, making them indistinguishable but functionally equivalent.

The error operator can always be assumed to lie within the Pauli group G𝑛,
since the code is defined with respect to this error basis. All elements of G𝑛 are
unitary, and therefore invertible, which ensures that any correctable error can be
reversed.

Once the error is identified (up to equivalence under multiplication by elements
of the stabilizer group S), an appropriate inverse operator can be applied to
restore the state to the codespace. Even if the original error is a non-trivial linear
combination of Pauli operators, the act of measuring the syndrome will project the
system onto a specific error component within the Pauli basis.

2.4.3 Encoding and Decoding of Stabilizer Codes
To use a stabilizer code in practice, it is necessary to specify how logical qubits are
encoded into physical qubits. This involves identifying a set of logical operators
and constructing an encoding circuit that prepares codewords from standard basis
inputs.

Let S be the stabilizer group for an [[𝑛, 𝑘]] stabilizer code. The codespace T is
the subspace of C2𝑘 consisting of all quantum states that are stabilized by every
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element of S, that is,

T = {|𝜓⟩ ∈ C2𝑘 | 𝑀 |𝜓⟩ = |𝜓⟩, ∀𝑀 ∈ S}.

To define the logical structure of the code, one must select a set of 2𝑘 Pauli
operators 𝑋1, . . . , 𝑋 𝑘 , 𝑍1, . . . , 𝑍 𝑘 that satisfy the usual Pauli commutation relations.
These operators act on the codespace in the same way that 𝑋𝑖 and 𝑍𝑖 act on
unencoded qubits, allowing quantum gates and algorithms to be carried out directly
on the encoded information.

Let us assume that the code is specified in the binary symplectic representation.
The Pauli group on 𝑛 qubits, denoted G𝑛, has a natural binary representation via
the map:

𝑋u𝑍v → (u|v) ∈ F2𝑛2 ,

where u, v ∈ F𝑛2 are binary vectors indicating the positions where 𝑋 and 𝑍 act,
respectively.

To characterize commutation relations in this representation, one introduces a
bilinear form known as the symplectic product. Given two elements (u1 |v1), (u2 |v2) ∈
F2𝑛2 , their symplectic product is defined as:

[[(u1 |v1), (u2 |v2)]] := u1 · v2 + v1 · u2 (mod 2). (2.22)

This operation determines whether two Pauli operators commute or anticom-
mute:

• If the symplectic product is 0, the corresponding Pauli operators commute.

• If the symplectic product is 1, the operators anticommute.

A set of vectors in F2𝑛2 is called a symplectic subspace if it is closed under addition
and its elements satisfy specific symplectic orthogonality constraints. Stabilizer
codes rely on the fact that the generators of the stabilizer group must pairwise
commute, and this condition is equivalent to requiring their binary representations
to be symplectically orthogonal. Each Pauli operator on 𝑛 qubits can be represented
by a binary vector (u|v) ∈ F2𝑛2 , where u indicates the positions of 𝑋 operators and
v the positions of 𝑍 operators. The stabilizer is then generated by 𝑛 − 𝑘 linearly
independent vectors (u𝑖 |v𝑖), corresponding to the generators 𝑀𝑖 = 𝑖𝜆𝑖𝑋u𝑖𝑍v𝑖 , where
𝜆𝑖 ∈ {0,1,2,3} determines the global phase.

To simplify the encoding process, it is useful to bring the stabilizer matrix into
a standard form. This is done by applying row operations and permuting qubit
labels so that:

𝑀 =
©­«
𝐼𝑟 𝐴1 𝐵 𝐶1

0 𝐴2 𝐷 𝐶2

ª®¬ ,
where 𝐼𝑟 is an identity block, and the remaining blocks are arbitrary binary matrices.
Here, 𝑟 is the rank of the 𝑋 part of the stabilizer matrix.
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Logical operators 𝑋 𝑖 and 𝑍 𝑖 can be chosen in such a way that they commute
with all stabilizer generators and with each other as required. For each logical
qubit 𝑖, the operator 𝑋 𝑖 can be chosen to act as an 𝑋 on the (𝑛 − 𝑘 + 𝑖)-th physical
qubit, together with other operations that ensure commutation with S. A similar
construction is used for 𝑍 𝑖.

Once the stabilizer and logical operators are in standard form, an encoding
circuit can be constructed.

To implement the encoding procedure of a general stabilizer code, all 𝑛 qubits
are first initialized in the computational basis state |0⟩⊗𝑛. The goal is to apply a
unitary operation that transforms this product state into a valid codeword of the
stabilizer code:

|𝑐1 · · · 𝑐𝑘⟩ → 𝑋
𝑐1
1 · · · 𝑋𝑐𝑘

𝑘

∑︁
𝑀∈S

𝑀 |0⟩⊗𝑛 . (2.23)

Let 𝑟 be the number of stabilizer generators that contain Pauli 𝑋-type terms.
The encoding process can be organized into the following steps:

• Eliminating trivial 𝑍-type actions from logical operators. Logical
𝑋-type operators, when brought into standard form, act as Pauli 𝑍 operators
on the first 𝑟 qubits and as Pauli 𝑋 operators on the remaining 𝑛− 𝑘 − 𝑟 qubits.
Since 𝑍 |0⟩ = |0⟩, the action of 𝑍 on |0⟩ is trivial and can be ignored in the
encoder. The non-trivial contributions come from the 𝑋-type parts, which are
implemented using CNOT gates. In general, this step is necessary if 𝑟 < 𝑛 − 𝑘 .

• Creating superpositions with Hadamard gates and applying con-
trolled 𝑀𝑖 operators. The first 𝑟 stabilizer generators include 𝑋-terms, which
require superpositions to be created. This is done by applying Hadamard
gates to the first 𝑟 qubits, turning them into |+⟩ states. Then, each stabilizer
generator 𝑀𝑖 is applied conditionally, controlled on the 𝑖-th qubit. If 𝑀𝑖

includes only phase-type operators (such as 𝑍 or 𝑌) on the target qubits, these
can be applied without interfering with other operations. If 𝑀𝑖 includes a 𝑍

on the control qubit, it introduces only a phase flip, which can be applied
after the Hadamard gate directly.

• Omitting purely 𝑍-type stabilizers. When 𝑟 < 𝑛 − 𝑘, there exist 𝑍-only
stabilizers that leave the initial state unchanged. For any such generator 𝑀,
acting on |0⟩⊗𝑛 produces no effect, because each 𝑍 leaves |0⟩ invariant. These
stabilizers also commute with other generators and logical operators, so their
effect is encoded indirectly. Therefore, they can be omitted from the encoder.

• Resource estimate. The implementation of logical 𝑋-operators (ignoring
trivial 𝑍-parts) may involve up to 𝑛 − 𝑘 − 𝑟 CNOT gates. The preparation
of 𝑟 qubits in the |+⟩ state requires 𝑟 Hadamard gates, possibly followed by
additional single-qubit 𝑍 gates for sign corrections. Each of the 𝑟 stabilizer
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generators may act on up to 𝑛 − 1 other qubits, contributing up to 𝑟 (𝑛 − 1)
two-qubit gates. Thus, the total number of two-qubit gates is bounded by:

𝑘 (𝑛 − 𝑘 − 𝑟) + 𝑟 (𝑛 − 1) ≤ (𝑘 + 𝑟) (𝑛 − 𝑘) ≤ 𝑛(𝑛 − 𝑘). (2.24)

This provides a meaningful upper bound for the encoding circuit complexity,
based on the code parameters (𝑛, 𝑘, 𝑟).

Decoding consists of reversing the encoding procedure, either to extract the
logical information or as a preliminary step in measurement-based algorithms.

To correct errors, the stabilizer generators are measured, producing a syndrome
vector 𝑠 ∈ F𝑛−𝑘2 that identifies the equivalence class of the error. A recovery operator
𝑅𝑠 is then applied such that for any |𝜓⟩ ∈ T and any error 𝐸 consistent with the
syndrome 𝑠, one has:

𝑅𝑠𝐸 |𝜓⟩ ∈ T . (2.25)

In a non-degenerate code, the syndrome uniquely identifies the error up to
stabilizer equivalence. In a degenerate code, different errors may correspond to
the same syndrome but have the same action on the codespace, making explicit
distinction unnecessary.

The recovery must preserve logical information, meaning that for any two logical
states |𝜓𝑖⟩ , |𝜓 𝑗 ⟩ ∈ T , the following condition holds:

⟨𝜓𝑖 | 𝑅𝑠𝐸 |𝜓 𝑗 ⟩ = 𝛿𝑖 𝑗 . (2.26)

This guarantees that the corrected state retains the correct logical content and
that the error correction procedure introduces no additional disturbance.

Together, the encoding and decoding mechanisms define the operational frame-
work through which stabilizer codes are applied to protect quantum information
from noise and decoherence.

An important connection between classical and quantum coding theory is the
quantum Hamming bound, which can be seen as the quantum analogue of the
classical sphere-packing bound.1

Consider a quantum stabilizer code with parameters J𝑛, 𝑘, 𝑑K. Since each Pauli
error acts non-trivially on 𝑖 qubits with 3𝑖 possibilities (excluding identity on

1In classical coding theory, a binary code with parameters [𝑛, 𝑘, 𝑑] maps 2𝑘 messages to 𝑛-bit
codewords. The code can correct up to 𝑡 =

⌊
𝑑−1
2

⌋
errors if Hamming balls of radius 𝑡 centered at

each codeword are disjoint. The number of distinct error patterns within such a ball is
∑𝑡

𝑖=0

(𝑛
𝑖

)
,

so the sphere-packing bound requires that

2𝑘
𝑡∑︁

𝑖=0

(
𝑛

𝑖

)
≤ 2𝑛. (2.27)
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remaining qubits), the number of errors up to weight 𝑡 is:

𝑡∑︁
𝑖=0

3𝑖
(
2𝑛

𝑖

)
. (2.28)

To ensure that each of these errors yields a distinct syndrome (i.e., is detectable
and correctable), it is required that

2𝑛 ≥ 2𝑛−𝑘 ·
𝑡∑︁

𝑖=0

3𝑖
(
2𝑛

𝑖

)
(2.29)

This is the quantum Hamming bound. If one aims at finding the smallest number
of physical qubits needed to protect a single qubit from single erros, by setting
𝑡 = 1 and 𝑛 − 𝑘 = 1, the inequality becomes:

2(3𝑛 + 1) ≤ 2𝑛 (2.30)

Solving this inequality, the smallest integer 𝑛 for which it holds is 𝑛 = 5. Thus,
at least five physical qubits are required to protect one logical qubit against all
single-qubit errors. Notably, there exists a [[5,1,3]] stabilizer code that saturates
this bound. It encodes one logical qubit into five physical qubits, has distance 𝑑 = 3,
and corrects any arbitrary single-qubit error. Such a code is called perfect, since
equality is achieved in the quantum Hamming bound. In analogy with classical
codes, a quantum code is defined to be perfect if the total number of correctable
errors exactly matches the upper bound given by the quantum Hamming bound
[1]. More in detail, the generators of the [[5,1,3]] stabilizer code exhibit symmetry
under cyclic permutation of the qubits. An explicit set of stabilizer generators is
given by:

𝑆1 = 𝑋𝑍𝑍𝑋𝐼 (2.31)
𝑆2 = 𝐼𝑋𝑍𝑍𝑋 (2.32)
𝑆3 = 𝑋𝐼𝑋𝑍𝑍 (2.33)
𝑆4 = 𝑍𝑋𝐼𝑋𝑍 (2.34)

The automorphism group of the code corresponds to the dihedral group of order
10. A natural graphical representation of the code, respecting the structure of the
encoder, takes the form of a pentagon with an additional central input node. This
is the unique quantum stabilizer code with parameters [[5,1,3]] up to equivalence.
In fact, any transversal stabilizer code with these parameters and distance must
necessarily coincide with the five-qubit code. The code is also sometimes referred
to as the DiVincenzo–Shor code, in reference to a study that analyzed its syndrome
extraction circuitry. Further technical details and background can be found in the
Error Correction Zoo website [9].
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2.4.4 CSS Codes
Calderbank-Shor-Steane (CSS) codes form a distinguished subclass of quantum
stabilizer codes that can be constructed from pairs of classical linear binary codes.
These codes are especially important due to their algebraic transparency, their
support for transversal logical gates, and the simplification they bring to the
syndrome extraction process. The general framework is well described in [10].

Definition and Construction Let 𝐶1, 𝐶2 ⊆ F𝑛2 be two classical binary linear
codes such that 𝐶2 ⊆ 𝐶1 and 𝐶1, 𝐶

⊥
2 are both capable of correcting up to 𝑡 errors.

Then, a CSS code constructed from the pair (𝐶1, 𝐶2) encodes

𝑘 = dim𝐶1 − dim𝐶2 (2.35)

logical qubits into 𝑛 physical qubits. The code distance is given by

𝑑 = min
{
𝑤(𝑣) : 𝑣 ∈ (𝐶1 \ 𝐶2) ∪ (𝐶⊥

2 \ 𝐶⊥
1 )

}
, (2.36)

where 𝑤(𝑣) denotes the Hamming weight of 𝑣.

Stabilizer Formalism The stabilizer group 𝑆 ⊂ G𝑛 associated with the CSS
code is generated by two sets of Pauli operators:

• 𝑍-type stabilizers derived from the generator matrix 𝐺2 of 𝐶2,

• 𝑋-type stabilizers derived from the generator matrix 𝐺⊥
1 of the dual code 𝐶⊥

1 .

Explicitly, the stabilizer group is given by:

𝑆 = ⟨𝑍𝑔 : 𝑔 ∈ 𝐶2⟩ ∪
〈
𝑋ℎ : ℎ ∈ 𝐶⊥

1

〉
, (2.37)

where the notation 𝑍𝑔 indicates the application of Pauli-𝑍 on qubits indexed by
the support of 𝑔, and analogously for 𝑋ℎ. The orthogonality condition

∀𝑔 ∈ 𝐶2, ∀ℎ ∈ 𝐶⊥
1 , 𝑔 · ℎ = 0 (2.38)

guarantees that all generators commute, as required in the stabilizer formalism.

Matrix Representation In terms of the binary stabilizer matrix formalism
(using symplectic representation), the stabilizer group can be written as a binary
matrix 𝐺 ∈ F𝑟×2𝑛2 , where:

𝐺 =


0 𝐻𝐶2

𝐻𝐶⊥
1

0

 , (2.39)

with 𝐻𝐶2 being the parity-check matrix of 𝐶2 and 𝐻𝐶⊥
1

the parity-check matrix of
𝐶⊥
1 . This structure reflects that all stabilizers are composed either purely of Pauli-𝑍
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or purely of Pauli-𝑋, and not mixed 𝑌 -type operators. This property significantly
simplifies fault-tolerant circuit design and syndrome extraction.

Logical Operators Logical Pauli operators are constructed as representatives of
the quotient spaces:

𝑋𝑖 ∈ 𝐶1 \ 𝐶2, 𝑍𝑖 ∈ 𝐶⊥
2 \ 𝐶⊥

1 , (2.40)

for 𝑖 = 1, . . . , 𝑘, such that the canonical commutation relations are satisfied:

𝑋𝑖𝑍 𝑗 = (−1)𝛿𝑖 𝑗𝑍 𝑗𝑋𝑖 . (2.41)

Encoding Let {𝑢𝑖} ⊂ 𝐶1 be coset representatives of 𝐶1/𝐶2. Each logical state
corresponds to a uniform superposition over the associated coset:

|𝑢𝑖⟩𝐿 =
1√︁
|𝐶2 |

∑︁
𝑐∈𝐶2

|𝑢𝑖 + 𝑐⟩. (2.42)

Example: The [[4,2,2]] CSS Code

The [[4,2,2]] code is the smallest qubit CSS stabilizer code capable of detecting
any single-qubit error. It is defined by the classical codes:

𝐶1 = [4,3,2] (SPC code), 𝐶2 = [4,1,4] (Repetition code). (2.43)

A single-parity-check (SPC) code is a linear [𝑛, 𝑛− 1, 2] code defined over F2, where
each codeword satisfies a single linear constraint: the sum (modulo 2) of all bits
must be zero. Formally, the code consists of all vectors ®𝑥 ∈ F𝑛2 such that

∑𝑛
𝑖=1 𝑥𝑖 = 0.

The minimum distance is 2, allowing the detection (but not correction) of any
single-bit error. Its parity-check matrix is a single row of all ones.

The binary repetition code of length 𝑛 is a linear [𝑛,1, 𝑛] code over F2, consisting
of only two codewords: the all-zero vector and the all-one vector. It encodes one bit
of information redundantly and achieves the maximum possible minimum distance
𝑛, enabling correction of up to ⌊ 𝑛−12 ⌋ errors. The generator matrix is a row vector
of all ones, and the parity-check matrix has 𝑛 − 1 linearly independent rows.

The generator matrices are:

𝐺1 =


1 0 0 1

0 1 0 1

0 0 1 1

 , 𝐺2 =

[
1 1 1 1

]
. (2.44)
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The corresponding stabilizer matrix in binary symplectic form is:

𝐺 =


0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

 . (2.45)

Its codewords span a four-dimensional Hilbert space with logical basis states:

|00⟩𝐿 =
1
√
2
( |0000⟩ + |1111⟩), (2.46)

|01⟩𝐿 =
1
√
2
( |1100⟩ + |0011⟩), (2.47)

|10⟩𝐿 =
1
√
2
( |0101⟩ + |1010⟩), (2.48)

|11⟩𝐿 =
1
√
2
( |0110⟩ + |1001⟩). (2.49)

Structure and Subcodes This code can be interpreted as a concatenation of
a two-qubit bit-flip code with a two-qubit phase-flip code. Additionally, the code
contains a subcode known as the Leung-Nielsen-Chuang-Yamamoto (LNCY) code
that encodes one logical qubit with the basis:

|0⟩𝐿 ′ =
1
√
2
( |0000⟩ + |1111⟩), (2.50)

|1⟩𝐿 ′ =
1
√
2
( |0101⟩ + |1010⟩). (2.51)

The [[4,2,2]] code is unique up to local Clifford equivalence for its parameters
and admits a graphical representation as a square lattice (planar surface code
with open boundaries) [9]. The surface code is defined on a square lattice of size
𝐿 × 𝐿, where qubits reside on the edges. For analytical convenience, periodic
boundary conditions are often assumed. The code is specified by its stabilizer
group, generated by two types of operators: vertex stabilizers 𝐴𝑣, which are tensor
products of four 𝑍 operators around each vertex, and plaquette stabilizers 𝐵𝑝,
tensor products of four 𝑋 operators around each face. These stabilizers commute
because each pair intersects on an even number of qubits.

All 𝑋-type stabilizers correspond to loops on the lattice formed by plaquettes;
their products form closed loops due to cancellation of 𝑋 operators on overlapping
edges. Similarly, 𝑍-type stabilizers correspond to loops on the dual lattice, where
vertex stabilizers become plaquette-like operators. Thus, both types of stabilizers
are represented by loops, either on the primal or dual lattice. Errors create
excitations (measured syndromes) only at the boundaries of error strings, which
appear in pairs and move as the error string increases. When an error string forms
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a loop, excitations vanish, i.e., loops always commute with all stabilizers. For
further details, refer to the bibliography [11].

2.5 The Gottesman-Knill Theorem
Before stating the Gottesman-Knill theorem, it is appropriate to define a key class
of quantum operations known as Clifford gates.
Definition. The Clifford group on 𝑛 qubits is defined as the normalizer of the
𝑛-qubit Pauli group G𝑛 within the unitary group 𝑈 (2𝑛). A unitary operator 𝑈

belongs to the Clifford group if

𝑈G𝑛𝑈
† ⊆ G𝑛.

Equivalently, 𝑈 is a Clifford operation if for every Pauli operator 𝑃 ∈ G𝑛, the
conjugated operator 𝑈𝑃𝑈† is also a Pauli operator.

The Clifford group is generated by the following gates:
• The Hadamard gate 𝐻, which maps 𝑋 ↔ 𝑍 ;

• The phase gate 𝑃 = diag(1, 𝑖), which maps 𝑋 → 𝑌 ;

• The controlled-NOT (CNOT) gate, which maps tensor products of Pauli
operators to other such products.

Theorem (Gottesman-Knill). Any quantum computation that involves only
the following operations can be efficiently simulated on a classical computer:

• Initialization of qubits in computational basis states;

• Application of Clifford gates (Hadamard, phase, and CNOT);

• Application of Pauli gates (𝑋, 𝑌 , 𝑍);

• Measurements of observables in the Pauli group;

• Classical control conditioned on previous measurement outcomes.
Each Clifford operation corresponds to a deterministic update of the stabilizer

generators. For instance, if a Hadamard gate is applied to qubit 𝑖, each generator
𝑀 is updated via conjugation: 𝑀 → 𝐻𝑖𝑀𝐻

†
𝑖
.

Each such update can be performed in 𝑂 (𝑛2) time, where 𝑛 is the number
of qubits. Hence, a circuit consisting of 𝑚 Clifford operations can be simulated
classically in time 𝑂 (𝑛2𝑚).

The Gottesman-Knill theorem illustrates that the presence of quantum entangle-
ment is not sufficient to guarantee exponential computational advantage. Several
important quantum protocols, including teleportation and superdense coding, are
implementable within the Clifford framework and therefore admit efficient classical
simulation. Exponential speedup over classical computation becomes possible only
when operations outside the Clifford group are incorporated.
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2.6 Fault-Tolerant Quantum Computation

A quantum operation is said to be fault-tolerant if a single physical error during its
execution causes at most one error in each encoded block. This guarantees that if
the number of errors per block remains within the error-correcting capacity of the
code, the original quantum information can still be recovered.

More formally, consider a quantum code that encodes 𝑘 logical qubits into 𝑛

physical qubits, capable of correcting up to 𝑡 errors. A fault-tolerant circuit ensures
that any single fault leads to at most one error per block, preserving the ability of
the code to correct up to 𝑡 errors.

Error correction must be implemented in a fault-tolerant manner in order to
prevent the propagation of errors during the measurement of stabilizer generators.
Consider the task of measuring a multi-qubit Pauli operator, for example 𝑀 = 𝑍1𝑍2.
A straightforward implementation employs a single ancilla qubit and two CNOT
gates, with control lines from the data qubits to the ancilla. This configuration
is vulnerable to fault propagation: a phase error on the ancilla may propagate
backward to both data qubits, potentially introducing multiple errors within the
same code block.

To avoid this problem, a fault-tolerant approach uses a specially prepared ancilla
in an entangled state (e.g., a cat state). This ancilla is verified prior to use, and
only valid ancilla states are employed in the syndrome extraction process. By
coupling the verified ancilla to the data block in a controlled way, it is possible to
extract the error syndrome without directly entangling the data qubits.

If verification fails, the ancilla is discarded and a new one is prepared. This
procedure reduces the risk of introducing correlated errors during syndrome extrac-
tion.

The result of the measurement yields a classical syndrome vector 𝑠 ∈ F𝑛−𝑘2 , which
identifies the error up to stabilizer equivalence.

Universal quantum computation requires the ability to implement at least one
gate that lies outside 𝑁 (G𝑛). Examples include the Toffoli gate and the 𝑇 gate
(i.e., the 𝜋/8 phase rotation gate). Such gates cannot in general be implemented
transversally in stabilizer codes.

A standard method for implementing non-Clifford gates fault-tolerantly is based
on gate teleportation. This approach consists of the following steps:

1. Preparation of a special ancilla state encoding the desired gate,

2. Coupling of the data block and ancilla via a Clifford subcircuit,

3. Measurement of the ancilla and application of classically controlled correction
operators to the data block.

Ancilla verification is essential to ensure that faults do not propagate during
the interaction, preserving the overall fault-tolerant structure of the computation.
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2.6.1 Propagation of Errors in Quantum Gates
In quantum circuits, certain gates can propagate errors between qubits. For
example, in a controlled-NOT (CNOT) gate, a bit-flip (𝑋) error on the control
qubit propagates forward to the target, while a phase-flip (𝑍) error on the target
propagates backward to the control. This is summarized as follows:

• 𝑋 ⊗ 𝐼 → 𝑋 ⊗ 𝑋 (bit-flip propagates forward),

• 𝐼 ⊗ 𝑍 → 𝑍 ⊗ 𝑍 (phase-flip propagates backward).

A common strategy to achieve fault tolerance is the use of transversal gates. A
transversal gate acts independently on corresponding qubits in different blocks. For
example, applying a single-qubit gate 𝑈 transversally to a block means applying 𝑈

to each physical qubit in the block individually. Since each qubit only interacts with
its counterpart, a single physical fault cannot propagate within a block, making
the operation inherently fault-tolerant. However, not all gates in a universal gate
set can be implemented transversally.

Following the overview of the fault-tolerant mechanism, it is instructive to
analyze a representative example of a fault-tolerant implementation, namely that
of the CNOT gate [1].

Figure 2.1: Logical structure of the fault-tolerant protocol, with explicit inclusion
of error-correction stages [1].

By looking at Fig. 2.1, it is possible to notice the following:

• A single pre-existing error may be present at step 1 in each encoded block.
Although this error originates outside the current fault-tolerant gadget, it can
propagate through the circuit and induce multiple errors. If all operations up to
this point have been performed in a fault-tolerant manner, the probability that
such a pre-existing error arises from the prior syndrome extraction or recovery
steps is upper bounded by 𝑐0𝑝 per block. Assuming independent errors on
both blocks, the joint probability of such a configuration is at most 𝑐20𝑝

2,
where 𝑐0 quantifies the number of possible fault locations during syndrome
measurement and recovery.
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• A single error may enter one of the blocks at step 1 (either from an earlier stage
or due to residual noise), and a separate fault may occur during the execution
of the fault-tolerant CNOT gate. If these two errors are sufficiently correlated
or lie in locations that cause them to propagate and combine destructively, the
result may be two or more errors in the output block. The joint probability
of this event is bounded by 𝑐1𝑝

2, where 𝑐1 represents the number of pairs of
failure locations.

• Two independent faults may occur during the execution of the encoded CNOT
itself. In a fault-tolerant construction, the gate is typically implemented
transversally or via an ancilla-assisted method, but simultaneous faults in
distinct locations can lead to a breakdown of the fault-tolerance condition.
The total number of such failure pairs gives a probability upper bound of
𝑐2𝑝

2, where 𝑐2 is determined by the combinatorics of fault locations within
the CNOT implementation.

• A fault may occur during the CNOT gate, and another during the following
syndrome measurement. If the syndrome measurement yields an incorrect
outcome due to the latter fault, the recovery procedure may introduce addi-
tional errors instead of correcting them. The logical error only manifests if
the syndrome is incorrect; thus, the total probability of this combined event
is 𝑐3𝑝

2, where 𝑐3 counts combinations of failure points across gate execution
and syndrome extraction.

• Two or more faults may happen during syndrome extraction itself. Although
individual faults are typically corrected, multiple faults can corrupt the syn-
drome data beyond the code’s error-correcting capacity. This type of event
occurs with probability at most 𝑐4𝑝

2, where 𝑐4 reflects the number of fault
pairs within the syndrome measurement circuit.

• One fault may occur during syndrome measurement, and a second fault
during recovery. If both events occur in a manner that leads to an incorrect
outcome (either by misinterpreting the syndrome or introducing an error
during recovery) the system may end up with an uncorrectable state. The
joint probability of this situation is bounded by 𝑐5𝑝

2, with 𝑐5 depending on
the circuit depth and interaction points between measurement and recovery
stages.

• Two or more faults may occur during the recovery process itself. Since recovery
involves conditional operations based on the measured syndrome, multiple
faults in this phase can directly lead to logical errors. The probability of such
a case is upper bounded by 𝑐6𝑝

2, where 𝑐6 is the number of relevant fault
pairs in the recovery circuitry.

The total probability of introducing two or more errors into the output of the
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encoded block is therefore bounded by

𝑃fail ≤ 𝑐𝑝2, with 𝑐 = 𝑐20 + 𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 + 𝑐5 + 𝑐6. (2.52)

This shows that, provided the physical error rate 𝑝 is sufficiently small (for instance,
𝑝 < 10−4), the overall logical error rate can be suppressed quadratically, demon-
strating the effectiveness of fault-tolerant procedures in reducing error propagation
within quantum circuits with respect to unencoded implementations.

In general, in order to achieve universal fault-tolerant computation for a given
code, the initial step involves generating the encoded CNOT for that code. For
the most general stabilizer code, this process necessitates a four-qubit operation
utilizing two ancilla qubits, followed by two measurements. Within a CSS code,
this procedure simplifies considerably, requiring only a single transversal operation.

Subsequently, to implement one-qubit operations, one ancilla qubit is needed,
along with a CNOT operation and a measurement. This requirement persists even
for the most general CSS code. However, if the code exhibits the property where
𝐶1 = 𝐶2 (thereby implying 𝐶⊥

1 ⊆ 𝐶1), then the 𝜎𝑥 generators adopt the same form
as the 𝜎𝑧 generators. Consequently, a transversal Hadamard rotation is also a valid
fault-tolerant operation. Furthermore, if the parity check matrix of 𝐶1 contains a
multiple of four 1s in each row, then the transversal phase 𝑃 similarly becomes a
valid fault-tolerant operation.

For a general CSS code that satisfies these conditions, these operations will
execute a multiple-qubit gate on the qubits encoded within a single block. Nonethe-
less, if each block exclusively encodes a single qubit, the 𝑋 and 𝑍 operators can
be conveniently chosen such that a transversal Hadamard performs an encoded
Hadamard rotation, and a transversal 𝑃 performs an encoded 𝑃 or 𝑃†. To attain
universal computation, the Toffoli gate or another gate external to 𝑁 (𝐺) will also be
indispensable, and this will almost invariably demand a more intricate construction.
For further information, refer once again to the bibliography [7].
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Basis Operations

Logical Basis Physical Basis

𝑋1 ⊗ 𝐼2 𝑋 ⊗ 𝐼 ⊗ 𝑋 ⊗ 𝐼

𝐼1 ⊗ 𝑋2 𝑋 ⊗ 𝑋 ⊗ 𝐼 ⊗ 𝐼

𝑍1 ⊗ 𝐼2 𝑍 ⊗ 𝑍 ⊗ 𝐼 ⊗ 𝐼

𝐼1 ⊗ 𝑍2 𝑍 ⊗ 𝐼 ⊗ 𝑍 ⊗ 𝐼

𝐻1 ⊗ 𝐻2 𝐻 ⊗ 𝐻 ⊗ 𝐻 ⊗ 𝐻

𝐶𝑁𝑂𝑇12 𝑆𝑊𝐴𝑃12

𝐶𝑁𝑂𝑇21 𝑆𝑊𝐴𝑃13

Table 2.1: Fault-tolerant basis operations for the [[4,2,2]] code [12].
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Chapter 3

Theory of Superconductivity

This section provides an overview of superconductivity, as the quantum proces-
sor employed for all the experiments (IQM Spark) is based on superconducting
technology.

This chapter draws conceptual inspiration from the work of Neil W. Ashcroft
and N. David Mermin [13], with additional references taken from personal course
materials [14, 15, 16].

3.1 Basic experimental evidences
A brief description of the general properties of superconductors is provided below.

3.1.1 Perfect conductivity
The electrical resistance of a superconductor vanishes completely when the material
is cooled below a characteristic critical temperature 𝑇𝑐. This phenomenon was first
discovered by Kamerlingh Onnes in 1911 during experiments with mercury.

Very pure samples exhibit a sharp superconducting transition, while impure or
"dirty" samples show a broadened transition (see Fig. 3.1). Notably, even the best
samples of high-𝑇𝑐 superconductors do not display an extremely sharp transition,
with a typical transition width Δ𝑇𝑐 exceeding 0.3 K.

3.1.2 Perfect diamagnetism (Meissner effect)
Superconductors differ from perfect conductors in their magnetic response. While a
perfect conductor only preserves the magnetic flux already present when it becomes
resistanceless, a superconductor always expels magnetic flux upon cooling below 𝑇𝑐.

This phenomenon, discovered by Meissner and Ochsenfeld in 1933, proves that
superconductivity is a distinct state of matter. The magnetic field penetrates only
to a finite depth, the penetration depth 𝜆, typically a few tens of nanometers.
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Figure 3.1: Comparison of resistance vs.temperature for pure and impure super-
conductors [14, 15].

Any claim of a new superconductor requires demonstration of both zero resistance
and perfect diamagnetism.

3.1.3 Critical magnetic field

Superconductivity is destroyed above a critical magnetic field 𝐻𝑐, related to the
condensation energy of the superconducting state. For type-I superconductors, the
temperature dependence is well approximated by:

𝐻𝑐 (𝑇) ≈ 𝐻𝑐 (0)
[
1 −

(
𝑇

𝑇𝑐

)2]
.

Type-II superconductors, which include most alloys and compounds, display two
critical fields 𝐻𝑐1 and 𝐻𝑐2, defining a mixed state in which flux partially penetrates
the material (Fig. 3.2).

A critical transport current density 𝐽𝑐 also exists, beyond which superconductiv-
ity breaks down (Silsbee effect). The interplay of temperature, field, and current
defines a critical surface (Fig. 3.3).
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Figure 3.2: Temperature dependence of the critical magnetic field in type-I and
type-II superconductors [15].

Figure 3.3: Critical surface describing the superconducting-to-normal transition
[15].

3.1.4 Energy gap
Experiments reveal the existence of an excitation gap in the superconducting state:

• The exponential decay of the specific heat at low temperatures.

• The threshold photon energy observed in absorption spectra.

• Tunneling spectroscopy of the density of states.

The gap has magnitude on the order of 2×1.5 𝑘𝐵𝑇𝑐, confirming that superconducting
charge carriers exist only for excitations below this threshold.

3.2 The Macroscopic Quantum Model
In 1935, the London brothers introduced equations that successfully described zero
resistance and the Meissner effect, though without microscopic justification.
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Fritz London later emphasized that superconductivity must be understood as a
macroscopic quantum phenomenon, analogous to the coherence of light in a laser.
The key assumption is the existence of a collective quantum wavefunction:

Ψ(r, 𝑡) = Ψ0(r, 𝑡)𝑒𝑖𝜃 (r,𝑡) ,

where |Ψ|2 represents the density of superconducting carriers.
Within this framework:

• The supercurrent depends on the phase gradient and vector potential, linking
superconductivity to electromagnetic fields.

• The London equations emerge naturally, predicting magnetic field expulsion
over the penetration depth 𝜆.

• Fluxoid quantization arises, showing that magnetic flux is quantized in units
of

Φ0 =
ℎ

2𝑒
≈ 2.07 × 10−15Tm2.

Flux quantization provides direct evidence that the charge carriers in supercon-
ductors are Cooper pairs with effective charge 2𝑒.

3.2.1 The Josephson Effect and the DC Josephson Effect
The Josephson effect refers to the quantum mechanical tunneling of Cooper pairs
between two superconductors separated by a thin insulating barrier (see Fig. 3.4).
This process arises from the overlap of the superconducting wavefunctions in the
barrier region, leading to a coherent supercurrent even in the absence of an applied
voltage.

For a junction composed of two superconductors with respective macroscopic
wavefunctions Ψ1 = |Ψ1 |𝑒𝑖𝜃1 and Ψ2 = |Ψ2 |𝑒𝑖𝜃2 , the resulting supercurrent across
the junction is given by:

J𝑠 = J𝑐 sin(𝜃1 − 𝜃2), (3.1)

where J𝑐 denotes the critical current density, and 𝜃1 − 𝜃2 is the phase difference
across the junction. This relation is known as the Josephson current-phase relation,
and it represents the DC Josephson effect: it shows that the supercurrent flowing
through a Josephson junction varies sinusoidally with the phase difference across it.

The critical current density can be expressed in terms of the Cooper pair
parameters and the geometry of the junction. For tunnel junctions, the current
decays exponentially with increasing thickness 2𝑎 of the barrier:

𝐽𝑐 ∝ sinh−1(2𝑐/𝜁) ≈ 1

2
exp(−2𝑎/𝜁), (3.2)
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Figure 3.4: Schematic representation of a Josephson Junction [15].

where 𝜁 denotes the characteristic decay length of the wavefunction in the
insulating layer.

Unlike conventional electron tunneling, this effect occurs without requiring an
applied bias voltage and persists as long as the current remains below the critical
threshold. This dissipationless current is a direct result of phase coherence between
the superconducting condensates.

Overall, The fundamental equations governing the dynamics of a Josephson
junction are the following:

1. Current-phase relation:

J𝑠 (r, 𝑡) = J𝑐 (𝑦, 𝑧, 𝑡) sin 𝜑(𝑦, 𝑧, 𝑡) (3.3)

2. Gauge-invariant phase difference:

𝜑(𝑦, 𝑧, 𝑡) = 𝜃1(𝑦, 𝑧, 𝑡) − 𝜃2(𝑦, 𝑧, 𝑡) −
2𝜋

Φ0

∫ r2

r1

A(r, 𝑡) · 𝑑l (3.4)

3. Voltage-phase relation:

𝜕𝜑(𝑦, 𝑧, 𝑡)
𝜕𝑡

=
2𝜋

Φ0

∫ r2

r1

E(r, 𝑡) · 𝑑l (3.5)

These relations were initially derived for tunnel junctions but remain applicable
to a wider class of weak-link structures in which the superconducting wavefunctions
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overlap via their evanescent tails. Representative examples include point-contact
junctions, microbridges, and constrictions.

3.2.2 Basic lumped Junctions and the AC Josephson Effect

When a constant voltage 𝑉0 is applied across the junction, the phase difference
evolves in time according to the voltage-phase relation:

𝑑𝜑(𝑡)
𝑑𝑡

=
2𝜋

Φ0
𝑉0, (3.6)

where 𝜑(𝑡) = 𝜃1(𝑡) − 𝜃2(𝑡) is the gauge-invariant phase difference.
Integrating this relation yields:

𝜑(𝑡) = 𝜑0 +
2𝜋𝑉0
Φ0

𝑡, (3.7)

which, when substituted into the current-phase relation, leads to a time-
dependent supercurrent:

𝐼 (𝑡) = 𝐼𝑐 sin

(
𝜑0 +

2𝜋𝑉0
Φ0

𝑡

)
. (3.8)

This phenomenon is referred to as the AC Josephson effect, and it implies that
a DC voltage induces an AC supercurrent oscillating at the Josephson frequency :

𝑓𝐽 =
2𝑒

ℎ
𝑉0 ≈ 483.6GHz/mV. (3.9)

This effect demonstrates that a Josephson junction acts as an ideal voltage-to-
frequency converter. The relationship is used in metrology to establish primary
voltage standards, exploiting the precision of frequency measurements.

Furthermore, when the junction is driven by both DC and AC voltage sources
(e.g., 𝑉 (𝑡) = 𝑉0+𝑉𝑠 cos(𝜔𝑠𝑡)), the resulting current includes frequency mixing terms,
leading to phenomena such as Shapiro steps. These are discrete values of 𝑉0 for
which a DC component in the current is observed, given by:

𝑉0 =
𝑛ℎ 𝑓𝑠

2𝑒
, 𝑛 ∈ Z, (3.10)

which again confirms the quantum nature of the phase dynamics.
Finally, the dynamic response of Josephson junctions also reveals their non-linear

inductive behavior. By differentiating the current-phase relation and using the
voltage-phase relation, one obtains:

𝑑𝐼

𝑑𝑡
=

𝐼𝑐2𝜋

Φ0
cos(𝜑)𝑉 (𝑡), (3.11)
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which is equivalent to the response of a non-linear inductor with Josephson
inductance:

𝐿𝐽 (𝜑) =
Φ0

2𝜋𝐼𝑐 cos(𝜑)
. (3.12)

This kinetic inductance originates from the inertia of Cooper pairs rather than
from magnetic energy storage and is a key design parameter in superconducting
circuit models.

3.3 Implementation of Superconducting Qubits
Superconducting qubits are artificial two-level quantum systems implemented using
nonlinear electrical circuits. These circuits rely on Josephson junctions to introduce
anharmonicity into otherwise harmonic resonators, allowing quantum information
to be stored and manipulated within discrete energy levels.

Moreover, the quantity ℏ𝜔/𝑘𝐵 defines the characteristic energy scale associated
with quantum excitations in the system. Thermal fluctuations become strongly
suppressed when the operating temperature satisfies 𝑇 ≪ ℏ𝜔/𝑘𝐵.

For a typical superconducting circuit operating at microwave frequencies, such
as 𝜔 = 2𝜋 × 8GHz, the corresponding thermal energy scale is approximately:

ℏ𝜔
𝑘𝐵

≈ 0.38K. (3.13)

The excitation probability of the qubit due to thermal fluctuations decreases
exponentially with temperature. Representative values are summarized below:

Temperature (mK) Excitation Probability

400 38%

100 2%

50 0.04%

10 ∼ 10−15%

Therefore, operating the quantum circuit inside a dilution refrigerator capable
of reaching temperatures in the 20–50mK range ensures that thermal excitation
probabilities are negligible, preserving the qubit in its ground state with high
fidelity.

The simplest realization is the charge qubit, consisting of a small superconducting
island connected to a ground plane via a Josephson junction, and capacitively
coupled to a voltage source through a gate capacitor. The lumped elements in the
circuit include:
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• a Josephson junction with critical current 𝐼𝑐,

• a total capacitance 𝐶 to ground (including the junction’s intrinsic capacitance),

• a gate capacitance 𝐶𝑔,

• a voltage source 𝑉 .

The quantization procedure follows that of the linear LC resonator, but the
current-flux relation of the junction introduces a nonlinearity:

𝐼𝑎 = 𝐼𝑐 sin

(
𝜙𝑎

𝜑0

)
, (3.14)

where 𝜙𝑎 is the superconducting phase difference and 𝜑0 = Φ0/2𝜋 is the reduced
flux quantum.

The Lagrangian of the system leads to a Hamiltonian of the form:

𝐻 = 4𝐸𝐶 (𝑛 − 𝑛𝑔)2 − 𝐸𝐽 cos 𝜑, (3.15)

where 𝐸𝐶 = 𝑒2/2𝐶Σ is the charging energy, 𝐸𝐽 = 𝐼𝑐𝜑0 is the Josephson energy, 𝑛 is
the Cooper pair number operator, and 𝜑 is the phase operator conjugate to 𝑛. The
offset charge is defined as 𝑛𝑔 = 𝐶𝑔𝑉/2𝑒.

Another variant is the phase qubit that operates in the regime 𝐸𝐽 ≫ 𝐸𝐶 ,
where the Josephson energy dominates over the charging energy. In this limit,
the superconducting phase 𝜑 becomes a well-defined quantum variable, while the
charge 𝑛 undergoes strong quantum fluctuations. The potential energy landscape
takes the form of a tilted cosine potential:

𝑈 (𝜑) = −𝐸𝐽 cos 𝜑 − 𝐼bias𝜑0𝜑, (3.16)

where 𝐼bias is an externally applied current bias. For suitable values of 𝐼bias,
the potential forms an asymmetric well in which discrete quantized levels appear.
Quantum state manipulation is achieved via microwave excitation resonant with
the transition frequency 𝜔01. Readout typically exploits quantum tunneling from
the excited state out of the potential well.

The flux qubit is based on a superconducting loop interrupted by one or more
Josephson junctions and biased by an external magnetic flux Φext. Its dynamics
are governed by the flux Φ threading the loop, which plays the role of the canonical
coordinate. Here the potential forms a double-well structure in the phase space. The
two lowest eigenstates, corresponding to clockwise and counter-clockwise circulating
persistent currents, define the computational basis states. Tunneling between the
wells gives rise to quantum coherence, and the energy splitting is tunable via Φext.

The scheme in Fig. 3.5 summarizes the different implementations of supercon-
ducting qubits based on the Josephson junction, each corresponding to a distinct
regime of circuit parameters and quantum variables.
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Figure 3.5: Scematic representation and summary of the three basic Josephson-
Jucntion qubits [16].

In the regime 𝐸𝐶 ≫ 𝐸𝐽 , the energy spectrum of a superconducting qubit
becomes highly sensitive to background charge fluctuations. This charge noise
significantly limits coherence times. To mitigate this sensitivity, the transmon
qubit was developed by shunting the Josephson junction with a large additional
capacitance. Charge and transmon qubits can be described by the same circuit,
what changes is the parameters regime. This design moves the system into the
opposite regime 𝐸𝐽 ≫ 𝐸𝐶 , in which the qubit becomes exponentially less sensitive
to offset charge, while still preserving sufficient anharmonicity to function effectively
as a two-level system.

In this transmon configuration, the cosine potential associated with the Josephson
junction becomes weakly anharmonic, resulting in an energy level spectrum that is
nearly harmonic but with a small anharmonicity defined as:

𝛼 = 𝜔12 − 𝜔01, (3.17)

where 𝜔𝑖 𝑗 denotes the transition frequency between energy levels |𝑖⟩ and | 𝑗⟩. This
anharmonicity ensures that selective excitation of the |0⟩ ↔ |1⟩ transition is possible
without inadvertently populating higher energy levels.

To enable in-situ tunability of the Josephson energy 𝐸𝐽 , the single junction is
often replaced by a Superconducting Quantum Interference Device (SQUID). A
SQUID consists of a superconducting loop interrupted by one or more Josephson
junctions. When placed in a magnetic field, the effective Josephson energy becomes
a function of the external magnetic flux Φ threading the loop:
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𝐸𝐽 (Φ) = 𝐸𝐽,max

����cos (
𝜋Φ

Φ0

)���� , (3.18)

where Φ0 = ℎ/2𝑒 is the flux quantum. This tunability provides dynamic control
over the qubit transition frequency, enabling functionalities such as frequency
multiplexing, qubit-qubit detuning, and flux-based gate operations.

There are two principal types of SQUIDs used in superconducting circuits:

• RF-SQUID: This configuration consists of a single Josephson junction em-
bedded in a superconducting loop. The loop behaves as a nonlinear inductor,
and the system is typically driven by an external radio-frequency magnetic
flux. The RF-SQUID supports a flux-tunable potential landscape and can be
used as a qubit in the flux regime. It features a relatively simple design but
offers limited tunability and is generally more sensitive to flux noise.

• DC-SQUID: The DC-SQUID consists of two Josephson junctions connected
in parallel within a superconducting loop. This arrangement enables precise
modulation of the effective critical current (and hence the Josephson energy)
by means of an externally applied static magnetic flux. The DC-SQUID
provides symmetric tuning of 𝐸𝐽 and is widely employed in transmon-type
architectures due to its higher flux tunability and compatibility with planar
circuit layouts.

Fig. 3.6 shows the representations of the RF-SQUID and the DC-SQUID.

Figure 3.6: Schematic representation of (a) the RF-SQUID and (b) the DC-
SQUID [16].
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3.4 The IQM Spark Quantum Computer
In this section, a brief description of the IQM Spark quantum computer is provided,
by summarizing the information reported in the paper by Rönkkö et al. [17].

3.4.1 Overview
The Quantum Processing Unit (QPU) in this system consists of five data qubits
arranged in a star configuration. A central qubit is linked to the four outer qubits
through tunable couplers. The layout is created using KQCircuits, an open-source
extension for KLayout, which allows for circuit design, simulation, and export for
fabrication.

Figure 3.7: Layout of the 5-qubit superconducting quantum processor, featuring
five qubits (QB) interconnected by four tunable couplers (TC). Regions shaded in
black represent areas where the superconducting film has been selectively etched
to reveal the substrate. Flux control lines are shown in red, while microwave drive
lines are depicted in blue [17].

3.4.2 Qubit Type
The quantum processor utilizes transmon qubits, which are nonlinear superconduct-
ing oscillators engineered for stability and coherence. Structurally, each transmon
consists of a SQUID (two Josephson junctions connected in parallel) shunted by a
large capacitance. This configuration ensures that the Josephson energy dominates
over the charging energy by a factor of few tens, thereby reducing sensitivity to
charge and flux noise.

The qubit capacitor is realized through a metallic island, patterned with six-fold
rotational symmetry, and separated from the ground plane by etched gaps that
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expose the underlying dielectric. Each sector of the island contributes to the total
capacitance, with carefully varied dimensions allowing tailored capacitive coupling
to neighboring qubits, resonators, and ground.

A narrow strip between adjacent sectors minimizes unintended capacitive cross-
coupling between couplers. The SQUID provides tunability of the qubit frequency
via externally applied magnetic flux, enabling frequency selection and gate imple-
mentation with high precision.

3.4.3 Qubit Control
Each qubit is equipped with two independent control lines: a flux line for frequency
tuning and a drive line for state manipulation. Both types of lines are implemented
as coplanar waveguides integrated on the chip.

The flux control line is terminated to ground near the SQUID loop of the
transmon, creating a mutual inductance that allows magnetic flux to thread the
loop when a current is applied. This flux modifies the phase across the Josephson
junctions, effectively tuning the Josephson energy and, consequently, the qubit
transition frequency. Flux tuning is also used to configure interaction rates and
implement native 𝑍 and 𝐶𝑍 gates.

The drive line, in contrast, is left open at the end near the qubit and capacitively
couples to the qubit’s charge island. Applying microwave pulses to this line enables
coherent transitions between energy levels. The strength of this coupling is carefully
engineered to ensure that qubit control remains efficient while minimizing radiative
losses (i.e., Purcell decay) to the environment. The drive allows the implementation
of arbitrary single-qubit rotations 𝑅(𝜃, 𝜙), as well as access to higher excited states
of the transmon when needed.

3.4.4 Readout Mechanism
Qubit readout is performed using the dispersive regime of circuit quantum elec-
trodynamics, wherein each qubit is coupled to a dedicated microwave resonator.
This interaction leads to a qubit-state-dependent frequency shift of the resonator,
known as the dispersive shift, which enables indirect measurement of the qubit
state (for more details, refer to the bibliography [18].).

To avoid radiative energy loss (Purcell decay) through the readout resonators,
each resonator is connected not directly to the external transmission line but via
a dedicated Purcell filter. These bandpass filters are designed to suppress signal
components near the qubit frequency while allowing efficient transmission at the
resonator frequency.

All readout resonators are coupled to a common probe line, which is driven by
a frequency comb that excites all resonators simultaneously (see Fig. 3.8). The
transmitted signal is analyzed to extract the amplitude and phase response at each
resonator frequency. By comparing these values to calibrated thresholds, the state
of each qubit can be inferred with high fidelity.
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Figure 3.8: Schematic representation of the readout circuit modeled as a quasi-
lumped element network. Each qubit is coupled to a dedicated readout resonator,
which is in turn connected to a Purcell filter. These elements interface with a
shared probe line that incorporates a distributed Purcell filtering structure. Qubits
are symbolized as circles intersected by two horizontal lines [17].

3.4.5 Tunable Couplers

Tunable couplers are employed to implement high-fidelity two-qubit gates by
dynamically controlling the effective interaction strength between neighboring
qubits. These components are based on superconducting circuits similar in structure
to transmon qubits, and are placed between data qubits to mediate interactions
through a controllable coupling mechanism.

In the architecture considered, the couplers are arranged in such a way that
their interaction with the qubits is mediated by waveguide extenders (see Fig. 3.9).

The strength of the effective ZZ interaction (𝑔𝑍𝑍) between any two qubits can
be modulated by applying a magnetic flux through the coupler’s SQUID loop. By
tuning the coupler frequency appropriately, the system can span a wide range of
interaction strengths, including both positive and negative values. Crucially, there
exists a flux bias point where 𝑔𝑍𝑍 = 0, which is used when the quantum processor
is idle to ensure minimal residual interaction.

During gate execution, the coupler is pulsed to a specific frequency using
baseband square-shaped flux signals. The resulting interaction between the selected
qubit pair enables the implementation of entangling gates such as CZ, iSWAP,
or more general fermionic simulation gates, depending on the relative detuning
between the qubit transition frequencies.

3.4.6 QPU Packaging

The chip is mounted in a copper carrier with gold-plated surfaces to enhance thermal
and electrical properties. This assembly is connected to a cryogenic environment
and enclosed in magnetic shielding to ensure stable and isolated operation.
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Figure 3.9: Quasi-lumped element schematic illustrating the coupling between
two transmon qubits (depicted in blue and orange) mediated by a tunable coupling
structure. The coupler consists of a floating qubit (shown in red) and interconnecting
waveguide extenders (in turquoise). Electrical nodes are labeled with capital letters.
Grey elements represent effective coupling paths introduced by the waveguide
extenders [17].

3.4.7 Refrigerator
The quantum processor is operated at cryogenic temperatures using a dilution
refrigerator designed to maintain millikelvin-range conditions. The QPU, mounted
within its thermally anchored carrier, is affixed to the mixing chamber plate (the
coldest stage of the cryostat) ensuring efficient thermal contact and temperature
stabilization.

The refrigeration system is based on a combination of a pulse tube cooler and a
dilution unit. The upper stages of the cryostat are pre-cooled to a few kelvin via
the pulse tube, while the dilution circuit reaches base temperatures below 30 mK.

3.4.8 Signal Inputs and Outputs
All microwave signals required for controlling and reading out the qubits, including
drive pulses, flux tuning, readout probes, and amplifier pumps, are routed from
room temperature down to the quantum processing unit (QPU) using coaxial
SCuNi cables. These cables include attenuation at various thermal stages and
low-pass filters at the base temperature to ensure noise suppression.

DC signals, particularly for flux biasing, are delivered using twisted pair wiring.
These lines are also filtered at room temperature, at the 3 K stage, and at the base
stage to prevent thermal and electrical noise from reaching the QPU.

For readout amplification, a Traveling Wave Parametric Amplifier (TWPA) is
used as the first amplification stage, providing near-quantum-limited performance.
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The amplified signal is passed through superconducting NbTi coaxial cables to a
High-Electron-Mobility Transistor (HEMT) amplifier at approximately 3 K. The
signal is then routed through silver-plated coaxial lines to the top plate of the
cryostat, where it can be digitized and processed.

3.4.9 QPU Control Electronics
The microwave control pulses for qubit operations are generated by AC-coupled
Arbitrary Waveform Generators (AWGs), which operate in the qubit frequency
range. The flux control pulses, necessary for tuning the tunable couplers and qubit
frequencies, are generated by baseband DC-coupled AWGs.

Readout tones are generated and digitized by a quantum analyzer operating at
the resonator frequencies. The electronics are designed to support fast feedback
protocols, where the result of a measurement can condition a control operation
within the qubit coherence time.

DC sources used for flux tuning and TWPA biasing are connected through low-
pass filtered lines, which include inline resistors to ensure stable current delivery.

All control and readout equipment is housed in electronics racks, which also
contain a main Linux host for control software, a Windows machine for dilution
refrigerator management, various specialized Linux machines for hardware interfac-
ing, a reference clock, power supplies, a remotely controllable power distribution
unit (ePDU), and an Uninterruptible Power Supply (UPS) for stable operation.

3.4.10 Software
The software stack is organized into three main layers, each offering a different
level of abstraction and control over the quantum computer.

Cortex is the high-level interface designed for end users to define and run
quantum circuits. It supports circuit definitions in standard languages such as
Qiskit, Cirq, and OpenQASM 2.0.

EXA is a Python-based framework used for calibration, control, and experimen-
tation. It allows the execution of both pre-defined and custom experiments. Users
can create modular experiment units that combine data acquisition, analysis, and
visualization. It supports both Jupyter notebooks and standalone Python scripts.

IQM Station Control manages low-level hardware interactions. It houses de-
vice parameters and drivers, and provides an HTTP (Hypertext Transfer Protocol)-
based JSON (JavaScript Object Notation) API (Application Programming In-
terface) that Cortex and EXA use to execute commands. This service abstracts
hardware-level details from higher layers and is not typically accessed directly by
users.

The following scheme allows to visualize the layers and modules of the control
stack described above.
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Figure 3.10: The software layers and modules of IQM Spark quantum computer
control software stack (source: [17]).
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Part II

Benchmarking and
Experimental Validation
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As a preliminary step in the benchmarking process, a series of tests on several
quantum algorithms was conducted by employing the IQMFakeAdonis() backend,
an emulated environment reproducing the noise characteristics of IQM’s 5-qubit
Adonis architecture. It does not aim to exactly reproduce the operational character-
istics of the IQM Spark quantum processor. Instead, IQMFakeAdonis provides the
closest available model in terms of topology and native gate set. Its use still allowed
the tests to yield meaningful insights into the performance that could reasonably be
expected on real hardware, thereby mitigating the uncertainty inherent in purely
theoretical analyses. Operating within this emulated framework offered several
advantages. First, it enabled the validation of the entire workflow, from quantum
circuit compilation to execution, without the overhead and constraints associated
with limited hardware availability. Second, the noise model integrated into the fake
backend provided the opportunity to explore noise-aware behaviors, such as the
susceptibility of certain algorithms to specific error channels. This made it possible
to identify early-stage challenges related to noise sensitivity, limitations imposed by
the connectivity graph, and the non-trivial decomposition of high-level quantum
gates into the native gate set of the device.

The benchmarking phase focused on two distinct implementations of quantum
algorithms based on the [[4,2,2]] quantum error-detecting code (see Section 2.4.4).
This particular code was selected as a pragmatic compromise between fault-tolerance
principles and the constraints imposed by the hardware. Specifically, the IQM
Spark device features a star-shaped qubit connectivity pattern, which, combined
with a relatively limited number of physical qubits, poses a non-trivial challenge
for implementing more sophisticated codes. While more advanced error-correcting
codes such as the [[5,1,3]] or even larger stabilizer codes offer superior error
resilience and error-correction, their deployment on the IQM Spark architecture
would require a number of qubits and connectivity configurations beyond the
available resources.

Moreover, the benchmarking comprised implementations with physical circuits,
implemented directly at the level of hardware qubits without any form of quan-
tum error encoding. These served as reference baselines to assess algorithmic
performance under native device conditions.

As a final remark, in the theoretical foundations (Section 2.6), fault-tolerant
quantum computation was defined in its rigorous and scalable sense: a quantum
operation is fault-tolerant if a single physical fault results in at most one error per
encoded block, thereby preserving the error-correcting capability of the code and
enabling arbitrarily long computations with active error correction.

In the present chapter, however, the term fault-tolerant is employed in the
more restricted sense introduced by Gottesman for small-scale experiments [19].
According to this criterion, an implementation is considered fault-tolerant if, for a
given family of circuits, the encoded version consistently achieves a lower error rate
than the corresponding unencoded circuit when executed on the same hardware or
backend. In practice, this is realized through error detection and post-selection:
single-qubit errors that would alter the logical outcome are identified by the code
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structure, and the corresponding runs are discarded. The logical results are then
reconstructed from the subset of post-selected data.

It should be noted that the [[4,2,2]] code can only detect single errors, but
it cannot correct them. As a result, the scheme is unable to protect against all
possible faults. The results should therefore be interpreted as a fault-tolerant
demonstration in the sense of Gottesman (2016), and not as an implementation of
universal, large-scale fault-tolerant quantum computation.
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Chapter 4

Encoded Deutsch-Jozsa

4.1 Introduction
Implementing textbook quantum algorithms in a fault-tolerant manner remains a
crucial benchmark on the road to scalable quantum computation. The Deutsch-
Jozsa algorithm (see Section 1.1.3), due to its simplicity and reliance solely on
Clifford gates, is particularly suitable for fault-tolerant experiments. In this work,
I have closely followed the methodology and circuits presented by Singh and
Prakash [20], where the authors demonstrate a fully fault-tolerant implementation
of the Deutsch-Jozsa algorithm using the smallest error-detecting code, namely the
[[4,2,2]] stabilizer code. Their work shows that, by preparing specific logical states
and performing transversal operations, a statistically significant noise reduction
can be achieved using existing commercial hardware without ancilla qubits.

4.2 Methods
The [[4,2,2]] code is an error-detecting code defined by the stabilizer generators
𝑆1 = 𝑋𝑋𝑋𝑋 and 𝑆2 = 𝑍𝑍𝑍𝑍 . The logical basis states used are:

| + 0⟩ = 1
√
2
( |0000⟩ + |1111⟩),

| + 1⟩ = 1
√
2
( |1100⟩ + |0011⟩),

| − 0⟩ = 1
√
2
( |1010⟩ + |0101⟩),

| − 1⟩ = 1
√
2
( |0110⟩ + |1001⟩).
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A logical | + +⟩ state can be defined as:

| + +⟩ = 1

2
( |0000⟩ + |0011⟩ + |1100⟩ + |1111⟩) = 1

2
( |00⟩ + |11⟩)(|00⟩ + |11⟩) (4.1)

and it serves as the input of this specific implementation that can be prepared
using the following fault-tolerant circuit:

𝑞1

𝑞2 𝐻

𝑞3

𝑞4 𝐻

Figure 4.1: Fault tolerant preparation of the state |++⟩ in the [[4, 2, 2]] error-
detecting code [20].

The authors could implement a fault-tolerant simultaneous measurement of
𝑋 ⊗ 𝐼 and 𝐼 ⊗ 𝑍 without using any ancillae by measuring each of the four physical
qubits in the computational basis. If a single X error occurs on any physical qubit,
the total number of measured 1’s will be odd, leading to discard that particular
bitstring. Conversely, a single Z error on any physical qubit, while undetectable,
will not affect the measurement results and can therefore be safely disregarded.

To understand the fault tolerance of this circuit, consider that an error in one
of the CNOT gates could induce a two-qubit error on one of the Bell states. Such
an error can be written as a linear superposition of Pauli errors. However, by using
the identity 𝑈1 ⊗𝑈2( |00⟩ + |11⟩) = 1 ⊗𝑈2𝑈

𝑇
1 ( |00⟩ + |11⟩), any two-qubit Pauli error

on the Bell state is effectively equivalent to a single-qubit error. It is important to
note that preparing other logical states, such as |+⟩|0⟩, would generally necessitate
the use of an ancilla qubit.

Regarding a fault-tolerant implementation of the Deutsch-Jozsa algorithm, Alice
provides Bob with an oracle that implements one of four binary functions. The
authors assume Alice commits to providing a fault-tolerant version of this oracle,
utilizing a pre-specified dictionary. Bob then applies a fault-tolerant encoding of
the circuit implementing the Deutsch-Jozsa algorithm to this oracle. Crucially, Bob
remains unaware of Alice’s chosen oracle, meaning his circuit must maintain fault
tolerance regardless of which of the four oracles Alice provides. The authors also
permit Alice and Bob to individually simplify their respective quantum circuits.
However, the oracles and the Deutsch-Jozsa circuit must be prepared and executed
independently. Therefore, the authors stipulate that no simplification should occur
that combines gates from both Alice’s and Bob’s circuits.

68



Encoded Deutsch-Jozsa

𝑞1

oracle

𝐻

𝑞2 𝐻 𝑌 𝐻

𝑞3 𝐻

𝑞4 𝐻 𝑌 𝐻

Figure 4.2: Fault-tolerant encoding of the Deutsch-Jozsa algorithm in the [[4,2,2]]
code. In the last step, the authors swap the logical qubits before measurement, in
order to measure 𝑋 rather than 𝑍 on the logical qubit of interest [20].

Due to the limited number of transversal gates associated with the [[4, 2, 2]]
code, it is not immediately apparent how to implement the Deutsch-Jozsa algorithm
without ancillae using this code. Nevertheless, a fault-tolerant implementation
of the Deutsch-Jozsa algorithm is indeed possible. This is critically achieved by
leveraging the ability to fault-tolerantly prepare the | + +⟩ state and measure one
of the qubits in the X eigenbasis.

Each of the four possible oracles 𝑓 (𝑥) ∈ {0, 𝑥, 1 ⊕ 𝑥, 1} is implemented fault-
tolerantly with transversal operations as indicated in Table 4.1.

The correctness of the implementation is verified through post-selection on valid
codewords (even parity bitstrings), which correspond to the logical qubit outcomes.
It is necessary to define a decoding step that maps the 4-bit output bitstring
produced by the encoded circuit to the corresponding 2-bit output bitstring of the
bare circuit. The decoding proceeds by aggregating the probabilities of the valid
codewords into logical states as:

𝑅00 = 𝑅′
0000 + 𝑅′

1111, (4.2)
𝑅01 = 𝑅′

1100 + 𝑅′
0011, (4.3)

𝑅10 = 𝑅′
1010 + 𝑅′

0101, (4.4)
𝑅11 = 𝑅′

0110 + 𝑅′
1001. (4.5)

The logical measurement probabilities are then:

𝑅0 = 𝑅00 + 𝑅01, 𝑅1 = 𝑅10 + 𝑅11

In order to compare the results between bare and encoded circuits, the statistical
distance has been used as a performance metric for small fault-tolerant experiments.
This metric compares the observed probability distribution of outcomes for a given
circuit with the ideal probability distribution expected for that circuit in the absence
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Binary Function Bare Oracle Encoded Oracle

𝑓 (𝑥) = 0 𝑞1 :
𝑞2 :

𝑞1 :
𝑞2 :
𝑞3 :
𝑞4 :

𝑓 (𝑥) = 𝑥
𝑞1 :

𝑞2 :

𝑞1 : 𝑆

𝑞2 : 𝑍 𝑆

𝑞3 : 𝑍 𝑆

𝑞4 : 𝑆

𝑓 (𝑥) = 1 ⊕ 𝑥
𝑞1 : 𝑋

𝑞2 :

𝑞1 : 𝑍 𝑆

𝑞2 : 𝑆

𝑞3 : 𝑍 𝑆

𝑞4 : 𝑆

𝑓 (𝑥) = 1 𝑞1 : 𝑋

𝑞2 :

𝑞1 : 𝑍

𝑞2 : 𝑍

𝑞3 :
𝑞4 :

Table 4.1: Comparison between bare and encoded oracles for all the oracle
functions [20].

of noise. While a complete characterization of the noise reduction associated with
a fault-tolerant scheme should ideally include detailed tomography studies, for
the purpose of evaluating a fault-tolerant implementation of a particular quantum
algorithm, the statistical distance is the most natural performance metric to use.

Let 𝑃𝑖 denote the theoretical probability of outcome labeled 𝑖 in an ideal
quantum circuit, 𝑄𝑖 denote the observed probability of the outcome 𝑖 in the bare
(non-fault-tolerant) quantum circuit, and 𝑅𝑖 the observed probability in the encoded
(fault-tolerant) circuit.

In the bare circuit implementing the Deutsch-Josza algorithm the output is
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obtained by measuring the second qubit only. If the oracle implements a constant
function, then 𝑃0 = 0 and 𝑃1 = 1. Conversely, if the oracle implements a balanced
function, then 𝑃0 = 1 and 𝑃1 = 0. When the algorithm is executed, the measurement
of the second qubit leads to obtain probabilities 𝑄0 and 𝑄1. These can be compared
to the ideal probabilities 𝑃0 and 𝑃1 via the statistical distance, that is defined as:

𝐷bare =
1

2
( |𝑃0 −𝑄0 | + |𝑃1 −𝑄1 |) (4.6)

The statistical distance for the encoded circuit is similarly defined as:

𝐷enc =
1

2
( |𝑃0 − 𝑅0 | + |𝑃1 − 𝑅1 |) (4.7)

The fraction of runs that were not discarded is referred to as the post-selection
ratio. The percentage noise reduction is calculated as:

Percentage Noise Reduction =
(𝐷enc − 𝐷bare)

𝐷bare
× 100% (4.8)

As indicated in Eq. 4.8, a negative value of noise reduction denotes that the
encoding procedure effectively mitigates the impact of noise, whereas a positive
value implies that the encoding instead amplifies it.

The complete source code is available in Appendix 7.

4.3 Results

The results of the fault-tolerant Deutsch-Jozsa algorithm are presented in this
section.

4.3.1 AerSimulator Results: The Noiseless Baseline

The analysis begins with noiseless simulations on the AerSimulator, which serve
as a validation tool for the logical design and as a baseline against which noisy
implementations can later be compared.

For each oracle, 150 independent repetitions were performed, with 1024 shots
per run. Fig. 4.3 shows the outcomes for the four oracle functions: 𝑓 (𝑥) = 0,
𝑓 (𝑥) = 𝑥, 𝑓 (𝑥) = 1 + 𝑥, and 𝑓 (𝑥) = 1. Each panel reports three metrics:
the bare distance (D_bare), the encoded distance (D_enc), and the postselec-
tion ratio (Postselection). In addition, the logical probability distributions
𝑅00, 𝑅01, 𝑅10, 𝑅11 are displayed.

In the noiseless case, the computation proceeds under idealized conditions: all
quantum gates are applied as exact unitary operations, without over-rotations,
crosstalk, or calibration errors, and measurement deterministically projects each
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Figure 4.3: Noiseless simulation of the fault-tolerant Deutsch-Jozsa algorithm
showing average D_bare, D_enc, and post-selection ratio over 150 repetitions
per oracle, with 1024 shots per run. Note that the noiseless case is not physically
meaningful, as the encoding offers no real advantage without errors to detect. It
only serves as a consistency check to ensure that the overall workflow is correct.

qubit onto the correct computational basis state. As a result, the decoded dis-
tributions 𝑅𝑖 𝑗 exactly match the theoretical predictions for each oracle: only the
expected logical outcomes occur with nonzero probability, and spurious contri-
butions are completely absent. This agreement confirms that the encoding and
decoding pipeline is implemented correctly.
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Consequently, the distance metrics (which quantify deviations between observed
and target distributions) are identically zero. Any nonzero distance would indicate
a fault in the logical design or in the encoding procedure. The post-selection
ratio similarly reaches 1.00 for all oracle functions, confirming that the logical
computation is perfectly preserved under encoding.

It is important to stress, however, that the analysis of encoded circuits in
a noiseless scenario does not represent a physically meaningful setting. In the
absence of noise, the additional resources introduced by the encoding provide no
real benefit, since there are no errors to detect or mitigate. The noiseless case
therefore serves only as a logical consistency check: it ensures that the encoding
preserves the intended computation and that the decoding correctly maps the four-
qubit codewords to the two-qubit logical outcomes, without introducing artificial
deviations.

In summary, the noiseless simulation provides a rigorous baseline: any deviation
observed on noisy simulators or real quantum hardware can be attributed to the
specific noise profile of the backend, rather than to flaws in the logical design or in
the implementation of the encoding scheme.

4.3.2 IQMFakeAdonis Results: Performance on a Noisy
Backend

To assess the effectiveness of the fault-tolerant scheme under realistic noise condi-
tions, the Deutsch-Jozsa algorithm was executed on the IQMFakeAdonis backend.
For this experiment, 1000 independent repetitions were performed for each oracle,
with 8192 shots per run.

Fig. 4.4 reports the average noise reduction observed across the four different
oracles.

The error bars in Fig. 4.4 were obtained by combining two complementary sources
of uncertainty. First, within each of the 1000 independent runs, the statistical
uncertainties of the bare and encoded statistical distances were propagated to
obtain the uncertainty on the noise reduction. This was achieved through explicit
error propagation formulas.

Then, in order to consistently report the overall uncertainty, the average of the
per-run errors was combined in quadrature with the variability of the mean values
across the 1000 repetitions per oracle.

This procedure ensures that both the intrinsic shot noise (internal variance) and
the run-to-run fluctuations are faithfully included in the reported error bars.

The complete source code used for data analysis is available in Appendix 7.
As already explained, a negative value of noise reduction indicates that the

encoded circuit attains a smaller distance from the ideal probability distribution
compared to the bare circuit, thereby demonstrating that the fault-tolerant en-
coding effectively mitigates noise. Conversely, positive values correspond to cases
where the logical encoding introduces an overhead that outweighs its protective
benefits. By analyzing Fig. 4.4, a clear distinction emerges between the constant
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and balanced oracles. For the balanced oracles 𝑓 (𝑥) = 1 + 𝑥 and 𝑓 (𝑥) = 𝑥, the
encoded implementation consistently yields a strong and statistically significant
noise reduction, with average improvements approaching −65%. This indicates
that the additional structure of the encoded circuit successfully suppresses noise
in more complex oracle configurations. In contrast, the constant oracles 𝑓 (𝑥) = 0
and 𝑓 (𝑥) = 1 show values fluctuating around zero, with large uncertainties that
sometimes obscure any net benefit from the encoding. These results suggest that
the protective effect of the [[4,2,2]] code becomes more evident in scenarios where
the oracle induces nontrivial transformations, while its advantage is less pronounced
for simpler mappings.

Figure 4.4: Fault-Tolerant Deutsch-Jozsa Algorithm: Average noise reduction for
each oracle on the IQMFakeAdonis backend, computed over 1000 repetitions per
oracle, with 8192 shots per run. The metric is defined as (𝐷encoded−𝐷bare)/𝐷bare×
100, with error bars denoting the combined uncertainty as described in the text.
Negative values indicate that the encoded circuit achieves a lower error rate than
the bare circuit, corresponding to a successful reduction of noise.

The average post-selection ratio from the experiments on the IQMFakeAdonis
backend was analyzed. This metric provides insight into the rate of successful error
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detection and is crucial for evaluating the practical performance of a fault-tolerant
circuit. Fig. 4.5 shows the average post-selection ratio across 1000 independent
repetitions for each oracle. Because the y-axis does not start at zero, the differences
appear visually amplified, though they are in fact minimal.

Unlike the ideal noiseless simulation where the post-selection ratio was 1.00 (as
shown in Fig. 4.3), the results from the noisy backend show a significant decrease.
For the constant oracles ( 𝑓 (𝑥) = 0 and 𝑓 (𝑥) = 1), the average post-selection ratio
remains relatively high, around 0.80. This indicates that approximately 80% of the
runs were considered successful, meaning the syndrome measurements correctly
returned the "no-error" state.

However, a slight drop in the post-selection ratio is observed for the balanced
oracles ( 𝑓 (𝑥) = 1+𝑥 and 𝑓 (𝑥) = 𝑥), where the ratio falls below 0.790. This difference
is a direct consequence of the higher gate count and circuit depth associated with
balanced oracles in this implementation. The increased number of gates leads to a
higher probability of gate errors, such as bit flips or phase flips, which are detected
by the syndrome measurements. When an error is detected, the run is considered
a failure and is not post-selected, thus lowering the ratio.

The error bars in Fig. 4.4 correspond to the Standard Error of the Mean
(SEM), calculated as 𝜎/

√
𝑁 , where 𝜎 is the standard deviation across the runs and

𝑁 = 1000.
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Figure 4.5: Fault-Tolerant Deutsch-Jozsa Algorithm: Average post-selection ratio
for each oracle on the IQMFakeAdonis backend, computed across 1000 independent
repetitions per oracle, with 8192 shots per run. The error bars represent the
Standard Error of the Mean (SEM), calculated as 𝜎/

√
𝑁 , where 𝜎 is the standard

deviation across the repetitions and 𝑁 = 1000. Note that the y-axis does not start
from 0, which can visually exaggerate the differences among values; in reality, the
observed variations are relatively small.

4.3.3 IQM Spark: Real Hardware Execution

The experiment was conducted with a high number of shots (50,000 shots per run,
repeated 700 times per oracle) to reduce the impact of shot noise, whose magnitude
scales inversely with the square root of the number of shots (∝ 1/

√
𝑁𝑠ℎ𝑜𝑡𝑠). By

employing 50,000 shots, the statistical uncertainty in the estimated probabilities is
significantly minimized, allowing for a more accurate and reliable determination of
the average post-selection ratio and noise reduction.

Fig. 4.6 illustrates the average noise reduction for the Deutsch-Jozsa algorithm
executed on real hardware. The data clearly shows that the constant oracles,
𝑓 (𝑥) = 0 and 𝑓 (𝑥) = 1, exhibit significant negative noise reduction values, with
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Figure 4.6: Fault-Tolerant Deutsch-Jozsa Algorithm: Average noise reduction for
each oracle on the IQM Spark processor, computed over 700 repetitions per oracle,
with 50,000 shots per run. The metric is defined as (𝐷encoded − 𝐷bare)/𝐷bare × 100,
with error bars denoting the combined uncertainty as described in the text. Negative
values indicate that the encoded circuit achieves a lower error rate than the bare
circuit, corresponding to a successful reduction of noise.

average noise reduction values of −45% and −40% respectively. This indicates
that the encoding was highly effective in mitigating noise for these simpler circuit
implementations. In contrast, the balanced oracles, 𝑓 (𝑥) = 1 + 𝑥 and 𝑓 (𝑥) = 𝑥,
show positive average noise reduction values of +17% and +10% respectively. This
suggests that the logical overhead associated with the more complex circuits for
balanced functions outweighs the noise-mitigation benefits, leading to an overall
increase in errors.

Overall, the analysis is severely constrained by the presence of large error bars.
In several cases, the fluctuations exceed the absolute magnitude of the mean values,
and for some oracles (e.g., 𝑓 (𝑥) = 0 and 𝑓 (𝑥) = 1) the error bars extend well beyond
the corresponding averages. This indicates a statistical inconsistency: the mean
values alone are not reliable indicators of the actual effect of the encoding, since
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the variability across runs is of the same order or even larger than the estimated
value. Consequently, although the mean values suggest that encoding may either
improve or worsen performance depending on the oracle, the large uncertainties
prevent any definitive conclusion.

Figure 4.7: Fault-Tolerant Deutsch-Jozsa Algorithm: Average post-selection ratio
for each oracle on the IQM Spark processor, computed across 700 independent
repetitions per oracle, with 50,000 shots per run. The error bars represent the
Standard Error of the Mean (SEM), calculated as 𝜎/

√
𝑁 , where 𝜎 is the standard

deviation across the repetitions and 𝑁 = 700. Note that the y-axis does not start
from 0, which can visually exaggerate the differences among values; in reality, the
observed variations are relatively small.

Fig. 4.7 presents the average post-selection ratio. The y-axis does not begin at
zero, which can overemphasize the differences; the actual variations are minimal.
The plot shows that the constant oracles ( 𝑓 (𝑥) = 0 and 𝑓 (𝑥) = 1) exhibit a
significantly higher average post-selection ratio (approximately 0.872 and 0.869,
respectively) compared to the balanced oracles ( 𝑓 (𝑥) = 1 + 𝑥 and 𝑓 (𝑥) = 𝑥), which
have ratios of approximately 0.844 and 0.846. This difference suggests that the

78



Encoded Deutsch-Jozsa

constant oracles result in a higher fidelity of the final state within the logical
subspace, likely due to a simpler circuit implementation that introduces less noise
and decoherence.

A direct comparison between the results obtained on the IQMFakeAdonis back-
end and those on the IQM Spark processor highlights some important discrepancies
that can be attributed to the fundamental difference between a noise fake back-
end and a real hardware platform. On IQMFakeAdonis, the balanced oracles
( 𝑓 (𝑥) = 1 + 𝑥 and 𝑓 (𝑥) = 𝑥) consistently demonstrated strong negative noise reduc-
tion, indicating that the encoding was effective in mitigating noise under these more
complex scenarios. In contrast, the constant oracles ( 𝑓 (𝑥) = 0 and 𝑓 (𝑥) = 1) showed
values close to zero, with uncertainties large enough to obscure any conclusive
improvement. This trend suggests that the noise model used in the fake backend
captures gate errors in a way that makes the protective effect of the [[4,2,2]] code
more evident for circuits with greater depth and gate count.

On the real IQM Spark hardware, however, the opposite behavior was observed:
the constant oracles exhibited significant noise reduction, while the balanced ones
often resulted in a worsening of the error rate. This inversion can be explained
by the fact that real quantum devices are subject not only to gate noise, but
also to additional sources of error such as crosstalk, leakage, decoherence, and
time-correlated noise. The balanced oracles, which already involve deeper circuits
and larger gate counts, accumulate these errors in a way that outweighs the benefits
of the encoding, thereby leading to positive (worsened) noise reduction values.
In contrast, the constant oracles benefit from their simpler structure, where the
encoding provides a relatively greater protective effect without being overwhelmed
by hardware-induced errors.

Another notable difference lies in the post-selection ratios. On IQMFakeAdonis,
values typically ranged between 0.79 and 0.80, whereas on IQM Spark the average
ratios were slightly higher, approaching 0.87 for the constant oracles and around
0.84 for the balanced ones. This discrepancy reflects the fact that in the fake
backend, all errors prescribed by the noise model are faithfully registered as faults,
whereas in real hardware, not all physical errors are detected or propagated into
the logical subspace in the same way. Consequently, real devices may yield slightly
inflated post-selection ratios, even though the overall logical performance can still
be degraded. This subtle effect indicates that higher post-selection ratios do not
necessarily translate into superior logical behavior, but instead reflect the complex
interplay between error detection and the physical noise landscape.

To further contextualize these observations, additional analyses were carried
out focusing on circuit depth, circuit size, and the number of SWAP operations.
The circuit depth quantifies the number of layers of gates executed sequentially,
corresponding to the effective execution time and the degree of exposure to deco-
herence. The circuit size, on the other hand, counts the total number of operations
applied, regardless of their parallelizability, and thus provides a measure of the
accumulation of raw errors due to gate imperfections. While both metrics are
related, they capture different aspects of circuit complexity: a circuit may have a
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large size but relatively shallow depth if many gates can be executed in parallel, or
conversely a modest size but high depth if gates must be performed sequentially.
Including these analyses enables a more nuanced understanding of why certain ora-
cle implementations exhibit better or worse performance across different platforms,
as they reveal the structural differences in resource requirements that amplify or
mitigate the impact of noise.

The data presented in Fig. 4.8 provides direct evidence of the resource overhead
introduced by the fault-tolerant encoding. As shown in Fig. 4.8(a), the circuit
depth for all logical (encoded) circuits is considerably larger than their unencoded
counterparts. For constant oracles, the logical circuit depth is approximately 12,
a substantial increase from the bare physical depth of around 2. The depth for
balanced oracles exhibits a more pronounced increase, rising from a physical depth
of approximately 4 to a logical depth of about 14. This notable increase in depth
correlates with a prolonged circuit execution, thereby exacerbating the impact of
decoherence and time-dependent noise on qubit state fidelity.

Similarly, the circuit size, as seen in Fig. 4.8(b), follows a comparable trend.
The logical encoding introduces a significant overhead in the total number of gate
operations. The bare circuits for constant oracles have a size of roughly 3, which
expands to over 24 for their logical equivalents. For balanced oracles, the size
increases from about 6 gates to over 25. This increase in the total number of
operations leads to a higher accumulation of raw errors due to the imperfect fidelity
of each gate, which further substantiates the performance disparities observed
between the constant and balanced oracles in terms of noise reduction and post-
selection ratio. The inherent complexity of the balanced oracles necessitates greater
depth and size in both their bare and encoded forms, and this substantial logical
overhead serves as a primary driver for their degraded performance relative to the
simpler constant oracles.

Furthermore, the number of SWAP operations was evaluated for each oracle
implementation and found to be zero in all cases. This absence of SWAP gates
ensures that the observed trends are not influenced by qubit connectivity constraints.
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(a) Circuit Depth vs Oracle

(b) Circuit Size vs Oracle

Figure 4.8: Additional circuit metrics for the fault-tolerant Deutsch-Jozsa al-
gorithm on IQMSpark processor. (a) Circuit depth, representing the sequential
layers of operations. (b) Circuit size, indicating the total number of applied gates.
Together, these metrics provide complementary insights into the structural com-
plexity of the circuits and their susceptibility to noise.
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Chapter 5

Encoded VQE for AIM

5.1 Introduction

Studying the Anderson Impurity Model (AIM) with Variational Quantum Eigen-
solver (VQE) (see Section 1.1.3) in combination with logical encoding techniques,
such as the J4,2,2K code, provides a meaningful opportunity to explore the practical
benefits of quantum error detection in a physically relevant setting. While many
fault-tolerant demonstrations are limited to abstract benchmarks or toy problems,
applying encoded quantum algorithms to a well-known model from condensed
matter physics offers deeper insight into how error detection affects both the
expressibility and stability of variational circuits. The AIM involves nontrivial
correlations that are challenging to capture classically, and studying its simulation
under realistic noise with logical qubits allows to move beyond simple gate-level
analysis toward more application-driven evaluations.

The Anderson Impurity Model (AIM) is a paradigmatic model for describing a
small number of interacting electronic degrees of freedom (the impurity) embedded
in a non-interacting environment (the bath). It plays a central role in the study
of strongly correlated electron systems, including magnetic impurities in metals,
quantum dots, and as a key component in the Dynamical Mean Field Theory
(DMFT) [21].

The basic AIM consists of three parts: the impurity (or dot), which features a
local Coulomb interaction; the bath, representing a continuum of non-interacting
fermionic states; and a hybridization term that couples the impurity to the bath.

Historically introduced by Anderson to model magnetic impurities in metals [22],
the AIM Hamiltonian in its canonical second-quantized form is given by:

𝐻 =
∑︁
𝑘,𝜎

𝜖𝑘𝑐
†
𝑘𝜎
𝑐𝑘𝜎 +

∑︁
𝜎

𝜖𝜎𝑑
†
𝜎𝑑𝜎 +𝑈𝑑

†
↑𝑑↑𝑑

†
↓𝑑↓ +

∑︁
𝑘,𝜎

𝑉𝑘 (𝑑†𝜎𝑐𝑘𝜎 + 𝑐
†
𝑘𝜎
𝑑𝜎), (5.1)

where 𝑐𝑘𝜎 and 𝑑𝜎 denote the annihilation operators for conduction and impurity
electrons, respectively; 𝑘 is the wavevector index for the conduction electrons,
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and 𝜎 is the spin. The parameters 𝜖𝑘 and 𝜖𝜎 correspond to the energy levels
of conduction and impurity electrons, 𝑈 is the on-site Coulomb repulsion at the
impurity, and 𝑉𝑘 is the hybridization strength.

This model admits several physically distinct regimes depending on the relative
position of the impurity energy level 𝜖𝑑 and the Fermi energy 𝐸𝐹 :

• Empty orbital regime: 𝜖𝑑 ≫ 𝐸𝐹 or 𝜖𝑑 +𝑈 ≫ 𝐸𝐹 , where the impurity site
remains unoccupied.

• Intermediate valence regime: 𝜖𝑑 ≈ 𝐸𝐹 or 𝜖𝑑 + 𝑈 ≈ 𝐸𝐹 , where charge
fluctuations are significant.

• Local moment regime: 𝜖𝑑 ≪ 𝐸𝐹 ≪ 𝜖𝑑 + 𝑈, where the impurity hosts a
magnetic moment.

In the local moment regime, the system exhibits the Kondo effect: at sufficiently
low temperature, the impurity spin becomes screened by the conduction electrons,
forming a non-magnetic singlet many-body state [23, 24].

In the experimental demonstration reported in [25], a simplified single-impurity
Anderson model (SIAM) has been used as a prototype for simulating materials
systems. The Hamiltonian of the SIAM in its fermionic form reads:

𝐻SIAM = ℎ
∑︁
𝜎=↑,↓

𝑐
†
𝐼𝜎

𝑐𝐼𝜎 +𝑈 𝑐
†
𝐼↑𝑐𝐼↑𝑐

†
𝐼↓𝑐𝐼↓ + 𝜖

∑︁
𝜎=↑,↓

𝑐
†
𝐵𝜎

𝑐𝐵𝜎 +𝑉
∑︁
𝜎=↑,↓

(
𝑐
†
𝐼𝜎

𝑐𝐵𝜎 + h.c.
)

(5.2)

where 𝑐
†
𝑖𝜎

(𝑐𝑖𝜎) are fermionic creation (annihilation) operators for an electron
with spin 𝜎 on site 𝑖, which can be either impurity (𝑖 = 𝐼) or bath (𝑖 = 𝐵). This
Hamiltonian requires four qubits to be simulated on a quantum computer in its
general form.

At half-filling, the model is simplified by taking the chemical potential ℎ = −𝑈/2
and the bath energy 𝜖 = 0, where the system still retains important features such as
the metal-insulator transition. To make the model suitable for quantum simulation,
a mapping to qubit operators is necessary. Ordering the fermionic orbitals as
(𝐼 ↑, 𝐵 ↑, 𝐼 ↓, 𝐵 ↓) → (0,1,2,3), and applying the Bravyi-Kitaev transformation [26],
the Hamiltonian becomes:

𝐻BK =
𝑈

4
(𝑍0𝑍2 − 1) + 𝑉

2
(𝑋0 − 𝑋0𝑍1 − 𝑍1𝑋2𝑍3 + 𝑋2). (5.3)

Here, 𝑋𝑖 and 𝑍𝑖 denote the standard Pauli operators acting on qubit 𝑖. The
relevant subspace supporting the ground state at half-filling is spanned by the
four fermionic basis states {|0101⟩ , |0110⟩ , |1001⟩ , |1010⟩}, which map under the
Bravyi-Kitaev transformation to {|0111⟩ , |0110⟩ , |0011⟩ , |0010⟩}, all having the
form |0𝑧21𝑧0⟩. Therefore, the state of qubits 1 and 3 is fixed, and the Hamiltonian
effectively reduces to a two-qubit model acting on qubits 0 and 2, defined by the
Coulomb interaction 𝑈 and hybridization strength 𝑉 .
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This leads to a reduced Hamiltonian of the form:

𝐻 (𝑈,𝑉) = 𝑈

4
(𝑍0𝑍2 − 1) +𝑉 (𝑋0 + 𝑋2), (5.4)

which acts on the reduced basis {|00⟩ , |01⟩ , |10⟩ , |11⟩}, where |𝑧2𝑧0⟩ defines the
logical qubit states. This qubit-reduction technique, although inspired by similar
methods applied to molecular systems such as H2 [27], is a novel application in the
context of the SIAM.

Each term in Eq. 5.4 can be measured using the [[4,2,2]] code, as both 𝑍 and
𝑋 basis measurements are available in the logical gateset.

5.2 Methods
My implementation is inspired by the methodology presented in [25], where the
authors propose a restricted two-parameter Hamiltonian Varational Ansatz of the
form:

𝑈 (𝛼, 𝛽) = 𝑒−𝑖𝛽𝑍0𝑍2/2 · 𝑒−𝑖𝛼𝑋0/2, (5.5)

acting on the entangled Bell state |𝜙+⟩ = ( |00⟩ + |11⟩)/
√
2. This ansatz is expressive

enough to approximate the ground state of the SIAM Hamiltonian and can be
trained using classical optimization.

Following the authors’ implementation, the unencoded ansatz circuit begins
with a Bell state preparation, followed by sequential application of 𝑅𝑋 (𝛼) and
𝑍𝑍 (𝛽) interactions. The complete circuit is given in Fig. 5.1.

X/Z

X/Z

|0⟩ 𝐻 𝑅𝑋 (𝛼)

|0⟩ 𝑅𝑍 (𝛽)

Figure 5.1: Physical (unencoded) ground state preparation circuit for Anderson
Impurity Model, using a restricted Hamiltonian Variational Ansatz [25].

To increase resilience to noise, the authors have adopted the [[4,2,2]] error-
detecting code, which encodes two logical qubits in four data qubits and uses
ancilla-mediated gates for non-transversal operations.

The full encoded circuit is given in Fig. 5.2.
The encoded circuit is structured to accomplish these tasks:

• The first segment prepares fault-tolerantly the logical Bell state;
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Figure 5.2: Logical (encoded) ground state preparation circuit for Anderson
Impurity Model, using a restricted Hamiltonian Variational Ansatz. Though not
fully fault tolerant, the use of ancillary flag qubits enables us to detect if a single-
qubit error occurs nearly anywhere in the circuit [25].

• The second segment applies a mediated 𝑅𝑋 (𝛼) rotation through the top
ancilla;

• The third segment applies a mediated 𝑍𝑍 (𝛽) interaction, together with a
parity-check-like structure acting as an implicit measurement of the 𝑍𝑍𝑍𝑍

stabilizer;

• The final segment performs measurements: the ancillae are measured in the
𝑍 basis; the data qubits are measured in either the 𝑍 or 𝑋 basis.

The post-selection step is implemented as follows:

• If the top ancilla measures |1⟩ after 𝑅𝑋 (𝛼), a phase error is suspected and the
shot is discarded;
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• If the bottom ancilla ancilla measures |1⟩ after 𝑍𝑍 (𝛽), an 𝑋-type error on any
data qubit (or the ancilla itself) is likely, and again the shot is discarded.

Although this is not a fully fault-tolerant scheme, it detects most single-qubit
errors, with only a few remaining undetectable:

1. 𝑋 errors immediately before/after the 𝑅𝑋 (𝛼) gate on the ancilla, mimicking a
shift in 𝛼;

2. 𝑍 errors near the 𝑅𝑍 (𝛽) gate on the ancilla, interpreted as a shift in 𝛽.

Z=0? Z=0?

X/Z

X/Z

X/Z

X/Z

|0⟩ 𝐻 𝑅𝑋 (𝛼) 𝐻 𝑟𝑒𝑠𝑒𝑡 𝑅𝑍 (𝛽)

|0⟩ 𝐻

|0⟩ 𝐻

|0⟩

|0⟩

Figure 5.3: Modified ground state preparation encoded circuit for Anderson
Impurity Model adapted for the IQM Spark processor. The design leverages
mid-circuit measurement and qubit reset to reuse a single ancilla qubit, enabling
implementation within the hardware’s 5-qubit constraint.

The logic and structural design of the encoded ansatz illustrated in Figure 5.2
were faithfully preserved. However, in order to accommodate the practical con-
straints imposed by the available hardware (specifically, a quantum device limited
to only 5 qubits), significant adaptations to the original circuit implementation
were necessary. The most notable modification involves the reuse of a single ancilla
qubit through the application of mid-circuit measurement followed by qubit reset
operations.
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Another important distinction lies in the software framework utilized for the
circuit implementation. Whereas the original authors employed CUDA-Q for their
code development, Qiskit was adopted in this case. This choice was primarily
motivated by the need to ensure compatibility with the IQM Spark environment,
which is the target platform for subsequent experimentation stages. Additionally,
Qiskit offers robust community support and extensive documentation, facilitating
reproducibility and future scalability of the work.

In light of these adaptations, the version of the encoded circuit tailored for
execution on the IQM Spark processor is depicted in Fig. 5.3.

For the classical optimization subroutine, COBYLA (Constrained Optimization
BY Linear Approximations) was employed, a gradient-free algorithm particularly
suitable for problems with nonlinear constraints. COBYLA iteratively approximates
the objective function and constraints using linear models constructed from function
evaluations at nearby points. At each step, it solves a trust-region subproblem of
the form:

min
x∈R𝑛

𝑓 (x) subject to 𝑐𝑖 (x) ≥ 0 for 𝑖 = 1, . . . , 𝑚, ∥x − x𝑘 ∥ ≤ 𝜌𝑘 , (5.6)

where 𝑓 (x) and 𝑐𝑖 (x) are linear approximations of the objective and constraint
functions around the current point x𝑘 , and 𝜌𝑘 is the trust-region radius. The
method does not rely on gradient information, making it especially useful when
derivatives are unavailable or unreliable, as often occurs in quantum variational
algorithms.

5.3 Results
The results of the not fully fault-tolerant implementation of the AIM via VQE are
presented in this section.

5.3.1 AerSimulator Results: The Noiseless Baseline
Before analyzing the performance of AIM circuits under noisy conditions or on
real hardware, it is essential to establish a noiseless baseline. To this end, Qiskit’s
AerSimulator was used to validate the correctness of the circuit logic and the
post-processing pipeline in the absence of hardware noise.

Exactly as in the previous implementation of the Deutsch-Jozsa algorithm, it
is worth stressing that analyzing encoded circuits in a noiseless scenario does not
provide any physically relevant insight. In the absence of errors, the additional
overhead introduced by encoding has no practical advantage, since there are
no faults to detect or mitigate. The noiseless simulations are therefore only a
consistency check: they confirm that the encoding correctly preserves the intended
computation and that the decoding maps the four-qubit codewords back to the
two logical qubits without introducing unwanted effects. In other words, this
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Figure 5.4: AIM Circuits: Noiseless simulation results averaged over 200 rep-
etitions per parameter setting (𝑈 : 𝑉). Each circuit execution used 1024 shots.
The black dashed line denotes the brute-force ground state energy. Error bars
correspond to the Standard Error of the Mean (SEM), computed as the sample
standard deviation divided by

√
200. Note that the y-axis scale has been zoomed,

which visually exaggerates the differences between the physical and logical energies;
in reality, these differences are extremely small, appearing only in the decimal
places.

step ensures that any deviations observed in later experiments can be confidently
attributed to physical noise sources, rather than structural issues in the code or
encoding strategy.

Fig. 5.4 shows the average energy with respect to the exact ground state for
both the physical and logical AIM circuits. Each data point represents the average
over 200 independent repetitions per layer (𝑈 : 𝑉), with each circuit executed
using 1024 shots. The error bars correspond to the Standard Error of the Mean
(SEM), calculated by dividing the sample standard deviation by

√
200. It should be

noted that the y-axis has been rescaled, which makes the gap between physical and
logical energies appear larger than it actually is. In practice, these discrepancies
are minimal and only become visible at the level of decimal precision.

The noiseless simulations confirm that both circuit families reproduce the ground
state energy with high accuracy. The key observations from the figure are as follows:
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• For small Hamiltonian parameters (𝑈 : 𝑉), both the physical and logical
circuits yield energies very close to the exact solution, with negligible deviations
(within 10−3 eV) and very small error bars. This demonstrates the stability of
the circuits under these conditions.

• As the parameter values increase, both the energy deviation from the true
ground state and the variance increase significantly. This effect is visible in
the growing length of the error bars for both the physical and logical circuits.
This increase in the error bars is expected. For larger values of 𝑈 : 𝑉 , the
Hamiltonian becomes more complex, requiring the VQE algorithm to explore
a more intricate energy landscape. This leads to a greater statistical variance
in the measured energy values for a fixed number of shots (1024 in this case),
as the circuit’s final state becomes more sensitive to small changes in the
variational parameters.

Overall, these noiseless simulations provide crucial validation of the methodology.
Since no systematic deviations from the brute-force solution are observed, the
implemented circuits and decoding logic are confirmed to be structurally correct.
This provides a solid baseline for interpreting results under noisy conditions or on
real quantum hardware.

5.3.2 IQMFakeAdonis Results: Performance on a Noisy
Backend

The performance of the AIM circuits on the IQMFakeAdonis backend is illustrated
in Fig. 5.5, where the energy deviations from the true ground state are presented
for both the physical and logical circuit implementations. The data for each Hamil-
tonian parameter setting (𝑈 : 𝑉) are averaged over 200 independent repetitions,
with each run consisting of 8192 shots. The error bars represent the Standard Error
of the Mean (SEM), calculated as 𝜎/

√
200, where 𝜎 is the standard deviation of

the energy deviations across the repetitions.
The logical circuit, utilizing a partially fault-tolerant implementation with

the [[4,2,2]] quantum error-detecting code, consistently achieves lower energy
deviations compared to the bare physical circuit. This outcome aligns with the
theoretical expectation that the logical encoding should mitigate the effects of noise
present on the quantum hardware. A lower energy deviation indicates a closer
approximation to the true ground state, signifying improved performance.

Specifically, the results demonstrate that for all tested parameter settings, the
logical circuit outperforms the physical circuit. The magnitude of the performance
gain varies depending on the Hamiltonian parameters, with some settings showing a
more significant reduction in energy deviation than others. This empirical evidence
validates the effectiveness of the [[4,2,2]] code in this context, highlighting the
potential of quantum error-detecting codes to enhance the robustness of variational
quantum algorithms like VQE in the presence of noise. This marks a crucial step
toward achieving practical, fault-tolerant quantum computation.
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Figure 5.5: AIM Circuits: Noisy IQMFakeAdonis backend results averaged over
200 independent repetitions per parameter setting (𝑈 : 𝑉). Each circuit execution
used 8192 shots. The black dashed line denotes the brute-force ground state energy.
Error bars correspond to the Standard Error of the Mean (SEM), computed as the
sample standard deviation divided by

√
200.

5.3.3 IQM Spark: Real Hardware Execution

The performance of the AIM circuits on the real IQM Spark hardware is shown
in Figure 5.6. For this set of experiments, 150 independent repetitions were run
for each Hamiltonian parameter setting (𝑈 : 𝑉), with a high shot count of 50,000
per run. This large number of shots was chosen to minimize statistical sampling
noise (shot noise) and to obtain a more precise estimate of the energy expectation
values, ensuring that the measurements reflect the system’s behavior rather than
stochastic fluctuations. The error bars represent the Standard Error of the Mean
(SEM), calculated as 𝜎/

√
150, where 𝜎 is the standard deviation of the measured

energies across the 150 repetitions.
In stark contrast to the results from the simulated backend, the execution on

real hardware shows a significant deviation from theoretical expectations. The
logical circuit not only fails to outperform the bare physical circuit but exhibits
a substantial degradation in performance. This is evidenced by the significantly
higher average energies and larger data dispersion, as shown by the much wider
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Figure 5.6: AIM Circuits: Real Hardware Execution averaged over 150 inde-
pendent repetitions per parameter setting (𝑈 : 𝑉). Each circuit execution used
50,000 shots. The black dashed line denotes the brute-force ground state energy.
Error bars correspond to the Standard Error of the Mean (SEM), computed as the
sample standard deviation divided by

√
150.

error bars for the logical circuit.
This failure can be attributed to several factors. Primarily, this implementation

is not fully fault-tolerant. The [[4,2,2]] code is an error-detecting code, not a
error-correcting code, and crucially, as noted in the methodology section, not all
errors are detectable by this specific implementation. Specifically, single-qubit
errors such as 𝑋 errors immediately before or after the 𝑅𝑋 (𝛼) gate on the ancilla,
or 𝑍 errors near the 𝑅𝑍 (𝛽) gate on the ancilla, may remain undetected and
propagate. Additionally, the experimental implementation of the logical circuit
relies on mid-circuit measurements and qubit resets, which represent advanced
operations that are not yet fully optimized or robust on current quantum hardware.
These operations typically exhibit slower execution times and higher error rates
compared to standard gate operations. In particular, the duration of a reset can
approach or even exceed the coherence time of the qubits, potentially introducing
decoherence before subsequent gates are applied. As a result, any imperfections
in these intermediate measurements or reset operations can generate additional
errors that propagate throughout the circuit, thereby compounding the challenge
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for the limited error-detecting capabilities of the employed code. This limitation
underscores the current immaturity of hardware-level support for fault-tolerant
protocols that rely on real-time mid-circuit control.

Ultimately, the overhead introduced by the logical encoding (in terms of increased
circuit depth and qubit count) amplifies the effects of noise on the device to a
greater extent than the code can mitigate, leading to the observed output.

As already done for the previous implementation, in order to complement these
observations, additional structural metrics of the AIM circuits were investigated,
focusing on circuit depth, circuit size, and the number of SWAP operations. The
circuit depth measures the number of sequential layers of gates and thus reflects
the effective execution time of the circuit and its exposure to decoherence. The
circuit size, in contrast, quantifies the total number of gates applied, regardless
of their parallelizability, and therefore provides a measure of the cumulative error
contribution from imperfect operations. Although related, these two quantities
capture different aspects of circuit complexity: a circuit can exhibit a relatively
small depth but large size if many gates can be executed in parallel, or conversely,
a modest size but large depth if operations must be applied sequentially. Including
these analyses allows for a more detailed understanding of why logical and physical
circuits behave differently across noise models and real hardware, as they reveal
how resource overheads in the encoded implementation exacerbate or mitigate the
impact of noise.

The circuit metrics for the AIM via VQE implementation, as depicted in Fig. 5.7,
highlight a consistent and substantial overhead introduced by the logical encoding
across all circuit layers. As shown in Fig. 5.7(a), the circuit depth for the logical
(encoded) circuits is consistently around 33, a significant increase compared to
the physical (bare) circuit depth, which remains stable at approximately 8. This
substantial increase in depth signifies a longer execution time, which directly
correlates with a greater exposure to decoherence and other time-dependent noise
processes, thereby degrading the circuit’s fidelity. Similarly, in Fig. 5.7(b), the
bare circuits have a consistent size of about 10 operations per layer, whereas the
logical circuits exhibit a five-fold increase to around 50 operations per layer. This
higher gate count directly contributes to the accumulation of raw errors due to the
imperfect fidelity of each individual gate.

Finally, the absence of SWAP operations in all cases ensures that the observed
behavior is not biased by qubit connectivity constraints.
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(a) Circuit Depth vs Layer (𝑈 : 𝑉)

(b) Circuit Size vs Layer (𝑈 : 𝑉)

Figure 5.7: Additional circuit metrics for the AIM via VQE implementation on
IQM Spark processor. (a) Circuit depth, representing the number of sequential
layers of gates and exposure to decoherence. (b) Circuit size, corresponding to the
total number of operations applied and the cumulative error contribution. These
complementary metrics clarify the structural overhead of the logical encoding and
its implications for performance under noise.
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Chapter 6

QRC with repeated
measurements

6.1 Introduction
Reservoir Computing (RC) is a machine learning framework designed for processing
temporal data using the intrinsic dynamics of a fixed system, known as the reservoir.
In classical RC, the reservoir is typically a recurrent neural network or a physical
system whose internal parameters remain untrained. Instead, learning is performed
only at the output layer via linear regression. The reservoir acts as a nonlinear
temporal filter, transforming input sequences into high-dimensional representations
that retain memory of past inputs. This structure enables efficient learning for
tasks such as time-series prediction, classification, and control.

Figure 6.1: Typical reservoir system. The input passes through the intermediate
(artificial or physical) layer and is linearly regressed at the output.The weights of
the intermediate layer are fixed and are not used for learning [28].

Quantum Reservoir Computing (QRC) extends this paradigm to quantum
systems, leveraging their complex dynamics, high-dimensional Hilbert spaces, and
intrinsic nonlinearity. In QRC, input signals are encoded into quantum states, which
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evolve under fixed unitary dynamics. Outputs are extracted through measurements,
often on ancilla qubits. The term reservoir reflects the system’s ability to store
and process temporal information through quantum correlations and entanglement.

Figure 6.2: Conventional QRC model. To obtain the output signal at time 𝑡, the
quantum circuit corresponding to the 𝑡-th repetition is prepared, and projective
measurements are performed at the end of the circuit to estimate the expected
values [28].

Running QRC experiments on real quantum hardware serves multiple purposes.
It validates theoretical models under realistic noise and decoherence, and it bench-
marks the dynamical capacity, memory depth, and nonlinearity of quantum systems
without relying on fault-tolerant computation. Importantly, it broadens the scope
of benchmarking beyond algorithms designed for error-corrected devices, offering
insights into the practical utility of quantum dynamics for machine learning tasks.
This contributes to a more inclusive and hardware-aware evaluation of quantum
computational resources, especially in the context of hybrid quantum-classical
systems and near-term applications.

6.2 Methods
To better understand the implementation proposed by Yasuda et al. [28], it is
appropriate to first examine the underlying mathematical formalism.

The quantum reservoir computing (QRC) model under consideration consists of
a system of 𝑛 qubits and an equal number of ancilla qubits. The dynamics of the
system are governed by an input-dependent unitary transformation, followed by
projective measurements performed on the ancilla qubits at each timestep.

The evolution of the system at time 𝑡 is described by:

𝜌𝑡 (𝑚𝑡) =
1

𝑝(𝑚𝑡)
Tr𝑎

[
𝑀𝑚𝑡

𝑈 (𝑢𝑡)
(
𝜌
(𝑚𝑡−1)
𝑡−1 ⊗ 𝜎𝑎

)
𝑈†(𝑢𝑡)𝑀†

𝑚𝑡

]
, (6.1)
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where 𝜌𝑡 (𝑚𝑡) denotes the system’s density matrix conditioned on the measure-
ment result 𝑚𝑡 , and 𝑈 (𝑢𝑡) is a unitary operator parameterized by the input 𝑢𝑡 . The
ancilla is initialized in the state 𝜎𝑎 = ( |0⟩⟨0|)⊗𝑛.

The measurement operator associated with a specific outcome 𝑚𝑡 is defined as:

𝑀𝑚𝑡
= I𝑠 ⊗

(
𝑛⊗
𝑖=1

|𝑚𝑖,𝑡⟩⟨𝑚𝑖,𝑡 |
)
, (6.2)

where 𝑚𝑖,𝑡 ∈ {0,1} indicates the measurement result of the 𝑖-th ancilla qubit, and
𝑚𝑡 = (𝑚1,𝑡 , . . . , 𝑚𝑛,𝑡) is the resulting bitstring.

The probability of obtaining a given measurement result 𝑚𝑡 is given by:

𝑝(𝑚𝑡) = Tr
[
𝑀𝑚𝑡

𝑈 (𝑢𝑡)
(
𝜌
(𝑚𝑡−1)
𝑡−1 ⊗ 𝜎𝑎

)
𝑈†(𝑢𝑡)𝑀†

𝑚𝑡

]
. (6.3)

The QRC dynamics are inherently stochastic, being conditioned on the ancilla
measurement outcomes at each timestep. The output of the reservoir at time 𝑡 is
defined as a column vector of expectation values of the Pauli-𝑍 operators acting on
the ancilla qubits:

ℎ(𝜌𝑡) =



⟨𝑍1,𝑎⟩
⟨𝑍2,𝑎⟩

...

⟨𝑍𝑛,𝑎⟩


, (6.4)

where 𝑍𝑖,𝑎 denotes the Pauli-𝑍 operator acting on the 𝑖-th ancilla qubit, expressed
as 𝑍𝑖,𝑎 = I ⊗ · · · ⊗ 𝑍 ⊗ · · · ⊗ I.

The output ℎ(𝜌𝑡) is estimated by repeating the quantum experiment 𝑁𝑠 times
and averaging over the corresponding ancilla measurement outcomes, denoted by
the set 𝐵𝑡 = {𝑚 (1)

𝑡 , 𝑚
(2)
𝑡 , . . . , 𝑚

(𝑁𝑠)
𝑡 }. Each expectation value ⟨𝑍𝑖,𝑎⟩ is approximated

as:
⟨𝑍𝑖,𝑎⟩ ≈

1

𝑁𝑠

∑︁
𝑚𝑘∈𝐵𝑡

[
I𝐵𝑖,0 (𝑚𝑘 ) − I𝐵𝑖,1 (𝑚𝑘 )

]
, (6.5)

where I𝐴 (·) denotes the indicator function and 𝐵𝑖,𝑙 = {𝑚 ∈ 𝐵𝑡 | 𝑚𝑖 = 𝑙}.
Accordingly, the ensemble dynamics of the system may be described by the

linear map:
𝜌ens
𝑡 =

∑︁
𝑚′

𝑡−1∈{0,1}𝑛
𝑀′

𝑚′ 𝑈 (𝑢𝑡)𝜌ens
𝑡−1𝑈

†(𝑢𝑡)𝑀′†
𝑚′, (6.6)

with the operator 𝑀′
𝑚 defined as:

𝑀′
𝑚 =

(
I𝑠 ⊗

𝑛∏
𝑖=1

𝑋
I[𝑚𝑖,𝑡−1=1]
𝑖

)
𝑀𝑚 . (6.7)
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To construct a regression model, the reservoir outputs are collected over a set of
timesteps and organized into the matrix:

𝑋 =

[
ℎ(𝜌𝑡 𝑓 ) ℎ(𝜌𝑡 𝑓 +1) · · · ℎ(𝜌𝑡𝑙 ) 1

]𝑇
, (6.8)

where 𝑡 𝑓 and 𝑡𝑙 indicate the initial and final timesteps of the training phase,
respectively, and 1 is a column vector of ones.

The predicted output is computed via:

𝑦pred = 𝑋𝑤out, (6.9)

where 𝑤out denotes the output weight vector. The optimal weight vector that
minimizes the squared error ∥𝑦target − 𝑦pred∥2 is obtained using the Moore-Penrose
pseudo-inverse:

𝑦pred = 𝑋 (𝑋𝑇𝑋)−1𝑋𝑇 𝑦target. (6.10)

The structure of the input-dependent unitary 𝑈 (𝑢𝑡) is constructed as a product
of 4-qubit unitaries acting on disjoint subsets of the system and ancilla:

𝑈 (𝑢𝑡) =
𝑛/4−1∏
𝑖=0

𝑈4𝑖,4𝑖+1,4𝑖+2,4𝑖+3, (6.11)

where each 𝑈 𝑗 ,𝑘,𝑙,𝑚 acts on system qubits 𝑗 and 𝑘 and ancilla qubits 𝑙 and 𝑚, and
is defined as:

𝑈 𝑗 ,𝑘,𝑙,𝑚 = CX𝑘,𝑚 · CX 𝑗 ,𝑙 ·𝑈 𝑗 ,𝑘 (𝑢𝑡), (6.12)

𝑈 𝑗 ,𝑘 (𝑢𝑡) = CX 𝑗 ,𝑘 · 𝑅𝑋 𝑗
(𝑠𝑢𝑡) · 𝑅𝑍𝑘

(𝑠𝑢𝑡) · CX 𝑗 ,𝑘 · 𝑅𝑋 𝑗
(𝑠𝑢𝑡), (6.13)

where 𝑠 ∈ R is a scaling factor and the rotation gates are defined as:

𝑅𝑋 𝑗
(𝜃) = exp(−𝑖𝜃𝑋/2), 𝑅𝑍 𝑗

(𝜃) = exp(−𝑖𝜃𝑍/2). (6.14)

The Nonlinear Autoregressive Moving Average (NARMA) model is a benchmark
task commonly used to evaluate the nonlinear and memory capabilities of dynamical
systems. Given an input time series {𝑢𝑡}, the model generates a corresponding
output time series {𝑦𝑡}. The NARMA10 task is defined by the recursive relation:

𝑦𝑡+1 = 𝛼𝑦𝑡 + 𝛽𝑦𝑡

𝑛−1∑︁
𝑖=0

𝑦𝑡−𝑖 + 𝛾𝑢𝑡−𝑛+1𝑢𝑡 + 𝛿, (6.15)

where the parameters are set to (𝛼, 𝛽, 𝛾, 𝛿) = (0.3, 0.05, 1.5, 0.1), and the nonlin-
earity degree is determined by 𝑛 = 10.

The input time series used for the task is given by:
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𝑢𝑡 = 𝛿 sin

(
2𝜋𝛼̄𝑡

𝑇

)
sin

(
2𝜋𝛽𝑡

𝑇

)
sin

(
2𝜋𝛾𝑡

𝑇

)
+ 1, (6.16)

The goal is to construct a quantum reservoir computer whose output sequence
{𝑦𝑡} closely approximates the target sequence {𝑦𝑡} generated by the NARMA10 model.

To evaluate the performance of the QRC, two metrics are employed: the
Normalized Mean Square Error (NMSE) and the Dynamic Time Warping (DTW).
The NMSE is defined as:

NMSE =
1

𝑀eval

𝑀eval∑︁
𝑡=1

(𝑦𝑡 − 𝑦𝑡)2 , (6.17)

where 𝑀eval is the number of evaluation points.
In addition to NMSE, the DTW distance is used to quantify the similarity

between two time series 𝑆 = {𝑠𝑖}𝑀𝑖=1 and 𝑇 = {𝑡 𝑗 }𝑁𝑗=1. It is recursively defined as:

DTW(𝑆, 𝑇) = 𝑓 (𝑀, 𝑁), (6.18)

where

𝑓 (𝑖, 𝑗) = |𝑠𝑖 − 𝑡 𝑗 | +min


𝑓 (𝑖, 𝑗 − 1),
𝑓 (𝑖 − 1, 𝑗),
𝑓 (𝑖 − 1, 𝑗 − 1),

(6.19)

𝑓 (0, 0) = 0, 𝑓 (𝑖, 0) = 𝑓 (0, 𝑗) = ∞. (6.20)

For this implementation, two different ansatzes have been employed: the first
corresponds to the repeated measurement quantum reservoir circuit introduced
by the authors of the paper [28], while the second is the Multiscale Entanglement
Renormalization Ansatz (MERA) presented in the ansatz catalog [29]. Both
ansatzes were adapted to the specific task of encoding input sequences into a
quantum reservoir system and extracting output features through measurements
on ancilla qubits.

The first ansatz is the one proposed in the reference paper, where the design
is centered on a repeated measurement scheme that allows the system to process
temporal data efficiently. The model consists of a set of system qubits and an equal
number of ancilla qubits. At each timestep, the input value is encoded into the
system by single-qubit rotations, in particular through 𝑅𝑥 and 𝑅𝑧 gates applied to
the system qubits, together with entangling CNOT gates that couple them. The
crucial part is the interaction between system and ancilla: the system qubits are
connected to the ancilla qubits via CNOT gates, and after each interaction the
ancillas are measured and reset to |0⟩ (see Fig. 6.3). This repeated projective
measurement extracts stochastic output information without destroying the system
dynamics, which is preserved across timesteps. The measurement results are
collected from the ancilla qubits, mapped into ±1 values depending on the outcome,
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and then averaged over many shots to form the reservoir state.

Figure 6.3: Subsystem Structure (Repeated Measurement Scheme) for the QRC
model proposed in [28].

The advantage of this approach, compared to conventional quantum reservoir
computing where the circuit is restarted at each timestep, is that the repeated
measurement scheme enables producing the entire time series within a single run,
reducing execution time and improving reproducibility of the dynamics. In the
implementation, the circuit is built by initializing all qubits, encoding each input
with scaled rotation angles, applying system-system and system-ancilla interactions,
measuring and resetting the ancillas, and finally introducing barriers to clearly
separate timesteps. A simplified version of the corresponding code is shown below.� �

1 def _build_full_circuit(self , input_sequence):
2 for t, u in enumerate(input_sequence):
3 angle = self.scale_input * u
4 qc.rx(angle , sys_qr [0])
5 qc.cx(sys_qr [0], sys_qr [1])
6 qc.rx(angle , sys_qr [0])
7 qc.rz(angle , sys_qr [1])
8 qc.cx(sys_qr [0], sys_qr [1])
9 qc.cx(sys_qr [0], anc_qr [0])

10 qc.cx(sys_qr [1], anc_qr [1])
11 qc.measure(anc_qr [0], cl_reg [2*t])
12 qc.measure(anc_qr [1], cl_reg [2*t+1])
13 qc.reset(anc_qr [0])
14 qc.reset(anc_qr [1])
15 qc.barrier ()� �

For the complete implementation, including initialization and data collection,
see Appendix 7.

The second ansatz is the MERA (Multiscale Entanglement Renormalization
Ansatz), a tensor-network-inspired representation designed to efficiently encode
quantum many-body states. Its key feature is the hierarchical structure: layers of
unitary operations capture entanglement at different scales, from local to global,
providing a coarse-grained description of the system. In the circuit implementation,
this translates into repeated layers where entangling CNOT operations are combined
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with parametric single-qubit unitaries, here realized as 𝑈 (𝜃, 𝜃, 𝜃) gates applied both
to system and ancilla qubits (see Fig. 6.4). The structure alternates between
entangling gates and local unitaries, mimicking the multiscale renormalization
process.

Figure 6.4: Representation of the Multiscale Entanglement Renormalization
Ansatz (MERA) [29].

As in the first ansatz, ancillas are measured at each timestep and reset to allow
iterative processing of the input sequence. The MERA circuit therefore preserves
the hierarchical encoding of correlations while simultaneously producing outputs
through ancilla measurements. This ansatz is motivated by its ability to efficiently
represent states of lattice systems and compute local expectation values with
controlled resources, and in practice it allows the reservoir to capture correlations
across multiple scales of the input sequence. A code excerpt highlighting the central
structure is reported in the following.� �

1 def _build_full_circuit(self , input_sequence):
2 for t, u in enumerate(input_sequence):
3 angle = self.scale_input * u
4 qc.cx(sys_qr [0], sys_qr [1])
5 for qb in sys_qr:
6 qc.append(UGate(angle , angle , angle), [qb])
7 qc.cx(anc_qr [0], sys_qr [0])
8 for qb in anc_qr:
9 qc.append(UGate(angle , angle , angle), [qb])

10 qc.barrier ()
11 qc.measure(anc_qr [0], cl_reg [2*t])
12 qc.measure(anc_qr [1], cl_reg [2*t+1])
13 qc.reset(anc_qr [0])
14 qc.reset(anc_qr [1])
15 qc.barrier ()� �

Again, the full implementation is provided in Appendix 7.
As a final remark, in order to map the quantum reservoir states to the target

sequence, ridge regression combined with cross-validation was employed. A plain
linear regression model minimizes the least-squares error, but this often leads to
overfitting, especially when there are many features or strong correlations among
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them. Ridge regression addresses this issue by introducing an ℓ2 regularization
term that penalizes large regression coefficients. The effect is a more stable model
that controls variance while only slightly increasing bias, which generally makes
predictions more reliable.

The strength of the regularization is controlled by the parameter 𝛼. Choosing
the right 𝛼 is crucial: if it is too small, the model behaves almost like ordinary
least squares and may overfit; if it is too large, the model underfits because the
coefficients are overly suppressed. In practice, instead of fixing 𝛼 manually, I defined
a set of candidate values to be explored:

alphas = np.logspace(-4, 2, 8)

This command generates 8 values between 10−4 and 102, equally spaced on a
logarithmic scale. These values range from very weak regularization (close to plain
linear regression) to very strong regularization (coefficients pushed towards zero).
The idea is that the optimal balance is usually found in the intermediate values.

To automatically select the best 𝛼, I used a grid search with cross-validation:

ridge_cv = GridSearchCV(Ridge(), ’alpha’: alphas, cv=5)

Here, the argument cv specifies the number of folds used in cross-validation. To
make this concrete, with cv=5 the training dataset is divided into five equal parts
(folds). In the first round, the model is trained on four folds and validated on the
remaining one. In the second round, another fold is used for validation while the
remaining four are used for training. This process continues until every fold has
served once as the validation set. The performance scores from all five rounds are
then averaged to evaluate how well the model generalizes to unseen data.

Cross-validation therefore reduces the risk that the choice of hyperparameters
depends on a particular split of the data. Instead, the model is tested across several
different partitions, giving a more reliable estimate of its predictive performance. In
this setting, grid search combines cross-validation with the exploration of different
values of 𝛼, so that the final model corresponds to the best trade-off between bias
and variance.

6.3 Results
The results of the QRC implementation are presented in this section.

The core of the implementation is based on the repeated measurement scheme,
a novel approach designed to mitigate the effects of noise and environmental
fluctuations. This methodology, as described in the reference paper [28], stands
in direct contrast to the conventional natural noise scheme, which relies on the
intrinsic dissipative dynamics of the physical hardware as a computational resource.

Given this foundational principle, running the QRC experiment on a noiseless
simulator, such as the AerSimulator, would be counterproductive. A noiseless
environment would remove the very mechanism on which this scheme is built,
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making the simulation results meaningless for an experiment designed to operate
with and exploit noise. The results that follow are therefore obtained both from
the noisy simulated backend IQMFakeAdonis and from the real quantum computer
IQM Spark.

Representative outputs are reported in Fig. 6.9 and Fig. 6.11 for the ansatz
proposed in [28], and in Fig. 6.10 and Fig. 6.12 for the MERA, executed on both
the IQMFakeAdonis backend and the IQM Spark processor. Each run used 8192
shots.

6.3.1 IQMFakeAdonis Results: Performance on a Noisy
Backend

Figure 6.5: Quantum Reservoir Computing (QRC) performance metrics obtained
using the IQMFakeAdonis backend. The plots report the Normalized Mean Squared
Error (NMSE) and Dynamic Time Warping (DTW) distances for both training and
testing phases, across varying values of the input scaling parameter. Two ansatzes
are compared: the MERA (blue) and the ansatz of the reference paper (orange).
Error bars represent the Standard Error of the Mean (SEM), computed as the
standard deviation over 10 repetitions (with 8192 shots per run) divided by

√
10.

Fig. 6.5 illustrates the performance of QRC as a function of the input scal-
ing parameter using the noisy backend IQMFakeAdonis, with train_length=80,
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Figure 6.6: Performance metrics of Quantum Reservoir Computing (QRC) ob-
tained on the noisy backend IQMFakeAdonis. The plots display the Normalized
Mean Squared Error (NMSE) and the Dynamic Time Warping (DTW) distance
for both training and testing phases, evaluated across different values of the input
scaling parameter and the k -fold cross-validation parameter cv. A comparison is
provided between the MERA (blue) and the ansatz of the reference paper (orange).
Error bars represent the Standard Error of the Mean (SEM), computed over 10
repetitions (with 8192 shots per run) for each value of cv.

test_length=20 and washout=10. For these fixed lengths of training, test, and
washout, a total of 10 independent repetitions were performed with 8192 shots per
run, for each value of 𝑐𝑣 ∈ {0,3,5,10}.

The NMSE (Train) curves indicate that both ansatzes achieve relatively low
error across all scaling values (≈ 8 × 10−3), with only minor variations. The ansatz
of the reference paper consistently attains slightly lower NMSE values compared
to MERA, particularly at 𝜋/4, 𝜋/2 and 𝜋 scaling, where the gap is most evident.
Nevertheless, both models maintain stability with respect to error fluctuations, as
confirmed by the narrow confidence intervals.

The NMSE (Test) curves reveal a more distinct behavior: for scaling values
ranging from 𝜋/4 to 𝜋, the MERA outperforms the ansatz of the reference paper.
At higher scaling (3/2𝜋 to 2𝜋), both ansatzes converge to very low NMSE values,
with minimal difference between them. This suggests that the noisy backend favors
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robust generalization at larger input scaling.
Regarding DTW (Train), the ansatz of the reference paper achieves an advantage

at 𝜋/2 and 𝜋, while the MERA outperforms the ansatz of the reference paper at
larger input scaling parameters.

For the DTW (Test), the MERA presents a better performance for lower scaling
input parameters, especially at 𝜋/2.

Fig. 6.6 shows the dependency on the cross-validation parameter. The NMSE
(Train) remains comparable across folds for both ansatzes, with the ansatz of the
reference paper slightly outperforming the MERA in most cases. In the NMSE
(Test) curves, a more visible difference emerges: the ansatz of the reference paper
achieves consistently lower errors at 𝑐𝑣 = 3. Instead, at 𝑐𝑣 = 10, the MERA clearly
outperforms the ansatz of the reference paper. The results are subject to higher
fluctuations because the number of evaluation points is smaller for the test.

In DTW (Train), no ansatz demonstrates a net superior performance compared
to the other. For DTW (Test), however, the trend is very similar to the one of the
NMSE (Test): the ansatz of the reference paper slightly outperforms MERA for
𝑐𝑣 = 3, while at 𝑐𝑣 = 10 the gap in performance between the two ansatzes is more
evident.

6.3.2 IQM Spark: Real Hardware Execution

Fig. 6.7 illustrates the QRC performance obtained on the real quantum processor
IQM Spark as a function of the input scaling parameter, with train_length=80,
test_length=20 and washout=10. For these fixed lengths of training, test, and
washout, a total of 10 independent repetitions were performed with 8192 shots per
run, for each value of 𝑐𝑣 ∈ {0,3,5,10}.

The NMSE (Train) curves show a clear separation between the two ansatzes:
the ansatz of the reference paper consistently achieves lower error across almost all
scaling values, with a pronounced advantage at 𝜋/2, 𝜋 and 3𝜋/2. MERA displays
a larger error spread at 𝜋.

In terms of NMSE (Test), the ansatz of the reference paper again shows stronger
generalization. As scaling increases, both ansatzes converge, with minimal difference
observed at 3𝜋/2 and 2𝜋.

The DTW (Train) plots reveal a consistent superiority of the ansatz of the
reference paper across almost the entire scaling range. At 𝜋/2 and 3𝜋/2, the ansatz
of the reference paper achieves a lower DTW with respect to the MERA, showing
a more accurate temporal alignment. This trend is mirrored in the DTW (Test)
curves: the ansatz of the reference paper achieves visibly lower DTW values across
almost all scalings, with the strongest improvement at 3𝜋/2, where the reduction
compared to MERA is most pronounced.

Fig. 6.8 presents the impact of the cross-validation parameter on hardware
runs. For NMSE (Train), the ansatz of the reference paper shows more stable and
consistently lower errors across folds, while MERA fluctuates more significantly,
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Figure 6.7: Quantum Reservoir Computing (QRC) performance metrics obtained
using the IQM Spark quantum processor. The plots report the Normalized Mean
Squared Error (NMSE) and Dynamic Time Warping (DTW) distances for both
training and testing phases, across varying values of the input scaling parameter.
Two ansatzes are compared: the MERA (blue) and the ansatz of the reference
paper (orange). Error bars represent the Standard Error of the Mean (SEM),
computed as the standard deviation over 10 repetitions (with 8192 shots per run)
divided by

√
10.

particularly at 𝑐𝑣 = 5. Similarly, NMSE (Test) indicates that the ansatz of the
reference paper maintains an advantage at higher folds.

For DTW (Train), the ansatz of the reference paper once again outperforms
MERA in all folds, with a clear reduction of distance and lower variance. DTW
(Test) confirms this trend: while MERA tends to maintain higher DTW values,
the ansatz of the reference paper consistently achieves better alignment, especially
at 𝑐𝑣 = 5 and 𝑐𝑣 = 10.

These results highlight that in real hardware execution, the ansatz of the reference
paper systematically outperforms MERA across both NMSE and DTW metrics,
suggesting superior resilience against hardware-induced noise and decoherence.

A direct comparison between the two execution environments reveals important
differences. On the noisy backend IQMFakeAdonis, both ansatzes achieve relatively
similar performance. Variances remain modest, reflecting the backend’s noise model
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Figure 6.8: Performance metrics of Quantum Reservoir Computing (QRC) ob-
tained on the IQM Spark quantum processor. The plots display the Normalized
Mean Squared Error (NMSE) and the Dynamic Time Warping (DTW) distance
for both training and testing phases, evaluated across different values of the input
scaling parameter and the k -fold cross-validation parameter cv. A comparison is
provided between the MERA (blue) and the ansatz of the reference paper (orange).
Error bars represent the Standard Error of the Mean (SEM), computed over 10
repetitions (with 8192 shots per run) for each value of cv.

stability.
On the real hardware, however, the discrepancy between the ansatzes becomes

much clearer. The ansatz of the reference paper consistently outperforms MERA
across nearly all metrics. The hardware execution introduces stronger fluctuations
and higher variances compared to the simulated backend, underscoring the impact
of real noise sources such as decoherence, gate errors, and readout imperfections.
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QRC with repeated measurements

(a) (b)

(c) (d)

Figure 6.9: Representative outputs of the Quantum Reservoir Computing (QRC)
implementation on the IQMFakeAdonis backend. The figure displays a selection
of results from 10 independent repetitions, each utilizing the ansatz described
in the reference paper. All runs were executed with a total of 8192 shots and a
5-fold cross-validation (cv = 5). The hyperparameter configurations for the time
series data for the different subplots are as follows: (a) and (c) a training length
of train_len = 300, a testing length of test_len = 200, and a washout period
of washout = 50; (b) a training length of train_len = 300, a testing length of
test_len = 120, and a washout period of washout = 20; (d) a training length of
train_len = 300, a testing length of test_len = 100, and a washout period of
washout = 25.
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QRC with repeated measurements

(a) (b)

(c) (d)

Figure 6.10: Representative outputs of the Quantum Reservoir Computing (QRC)
implementation on the IQMFakeAdonis backend. The figure displays a selection of
results from 10 independent repetitions, each utilizing the MERA. All runs were
executed with a total of 8192 shots and a 5-fold cross-validation (cv = 5). The
hyperparameter configurations for the time series data for the different subplots
are as follows: (a), (c) and (d) a training length of train_len = 300, a testing
length of test_len = 200, and a washout period of washout = 75; (b) a training
length of train_len = 175, a testing length of test_len = 100, and a washout
period of washout = 25.
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QRC with repeated measurements

(a) (b)

(c) (d)

Figure 6.11: Representative outputs of the Quantum Reservoir Computing (QRC)
implementation on the IQM Spark processor. The figure displays a selection of
results from 10 independent repetitions, each utilizing the ansatz described in the
reference paper. All runs were executed with a total of 8192 shots and a 5-fold
cross-validation (cv = 5). The hyperparameter configurations for the time series
data for the different subplots are as follows: (a) a training length of train_len
= 300, a testing length of test_len = 100, and a washout period of washout =
50. (b), (c) and (d) a training length of train_len = 300, a testing length of
test_len = 200, and a washout period of washout = 50.

109



QRC with repeated measurements

(a) (b)

(c) (d)

Figure 6.12: Representative outputs of the Quantum Reservoir Computing (QRC)
implementation on the IQM Spark processor. The figure displays a selection of
results from 10 independent repetitions, each utilizing the MERA. All runs were
executed with a total of 8192 shots and a 5-fold cross-validation (cv = 5). The
hyperparameter configurations for the time series data for the different subplots
are as follows: (a) and (d) a training length of train_len = 300, a testing length
of test_len = 200, and a washout period of washout = 50; (b) and (c) a training
length of train_len = 175, a testing length of test_len = 100, and a washout
period of washout = 25.
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Chapter 7

Conclusions

This work has investigated three advanced implementations of quantum algorithms
and models across noiseless simulations, a noisy simulated backend, and real quan-
tum hardware. The first implementation concerned the fault-tolerant realization
of the Deutsch-Jozsa algorithm using the [[4,2,2]] error-detecting code. In this
setting, logical qubits were prepared and transversal operations performed without
the use of ancillary qubits, allowing the detection and rejection of errors by means
of post-selection. The second implementation addressed a variational quantum
algorithm, namely the Variational Quantum Eigensolver (VQE), applied to the
Anderson Impurity Model, with the aim of comparing bare and encoded circuits in
reproducing ground state energies. The third implementation explored Quantum
Reservoir Computing (QRC) for sequence prediction tasks, contrasting a simple
reference ansatz from the literature with a more complex MERA-inspired structure.
Taken together, these three case studies span fault-tolerant computation, variational
algorithms, and quantum machine learning, offering a broad perspective on the
challenges of near-term quantum devices.

In order to assess correctness, the first two implementations were first tested
under noiseless simulations. It is important to emphasize that such results hold
little physical significance: in an ideal environment, with no noise and perfect
gate operations, error detection and encoding provide no tangible advantage,
since no errors are present to be detected or corrected. The purpose of noiseless
simulations was therefore not to demonstrate practical benefits, but to establish a
rigorous baseline, ensuring that the encodings, logical state preparations, and circuit
constructions were implemented correctly, and that no mistakes were introduced at
the code or workflow level. This baseline was indispensable for interpreting the
results obtained on noisy backends and hardware.

Subsequently, the three implementations were executed on IQMFakeAdonis, a
noisy simulated backend. It must be stressed that this is a backend with a fixed and
controlled noise model, chosen because it matches the gate set and coupling map of
the IQM Spark processor. On this platform, the results highlighted the potential
of logical encoding and advanced algorithms under controlled noise conditions.
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In the Deutsch-Jozsa algorithm, balanced oracle functions particularly benefited
from encoding, showing improved noise resilience. In the VQE experiments, logical
circuits consistently reduced energy deviations compared to bare implementations,
providing evidence of noise mitigation. In QRC, both ansatzes performed stably
with only modest differences, confirming that logical encodings and advanced designs
can operate reliably in a fixed-noise environment. These findings demonstrate
that, under simplified assumptions of static noise, the advantages of encoding and
advanced protocols are clearly observable.

Execution on the real IQM Spark processor, however, presented a more nuanced
picture. Hardware noise is not fixed but varies with calibrations and environmental
factors, leading to significant fluctuations in performance. In the Deutsch-Jozsa
implementation, constant oracles benefited from encoding, but balanced oracles
experienced a degradation due to the increased circuit depth and gate count
associated with encoding. In the VQE experiments, logical circuits failed to
surpass the bare ones: their larger depth, combined with the need for mid-circuit
measurement and reset, led to broader error bars and deviations in the estimation
of the ground state energy. In QRC, the simpler reference ansatz from the literature
proved more resilient to hardware noise than the more complex MERA-inspired
structure, underscoring that current hardware favors shallow, resource-efficient
designs.

These observations make clear that while the device can successfully run simple
circuits from the literature (appearing fully functional in those contexts) limitations
emerge when more advanced and resource-intensive algorithms are attempted.

A central conclusion concerns the role of mid-circuit measurement and reset
operations. These are indispensable for reusing ancillary qubits, enabling conditional
operations, and implementing quantum error correction cycles. They constitute
the very foundation of scalable fault-tolerance. On the present hardware, however,
these operations are not fully optimized: their execution times approach, and
in some cases exceed, qubit coherence times. This mismatch directly impacts
performance, limiting the benefits of encoding and advanced algorithms. Thus,
while theoretical frameworks for error detection and logical encoding are sound,
their practical effectiveness is constrained by the current maturity of hardware
operations.

In summary, this work has shown that noiseless and noisy simulated backends
validate the theoretical soundness of the three implementations, while real hardware
exposes bottlenecks related to decoherence, fluctuating noise, and particularly mid-
circuit measurement and reset. The experiments confirm that the hardware operates
reliably for simple benchmarks, but advanced protocols reveal subtler limitations,
highlighting the distance still to be bridged between theory and practice in quantum
fault-tolerance and learning models.
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Future Improvements
Several paths for future research emerge from this study, aimed at improving the
reliability and scalability of advanced quantum protocols:

• Optimization of Mid-Circuit Measurement and Reset: These opera-
tions are essential for ancilla reuse and constitute the backbone of quantum
error correction. At present, these operations are not optimized and their
execution times may approach or exceed coherence times, creating a bottleneck
that limits the benefits of error-detecting codes. Enhancing both the speed
and fidelity of these operations is indispensable for scalable fault-tolerance.

• Development of Noise-Aware Simulated Backends: IQMFakeAdonis
employs a fixed noise model, which fails to reproduce the variability of real
hardware such as IQM Spark. Future work should focus on constructing
backends that incorporate historical calibration data and realistic noise fluctu-
ations of the real quantum processor, providing a more faithful testbed for
pre-hardware circuit validation and benchmarking.

• Advanced Error-Mitigation and Circuit Optimization: Improvements
in transpilation, qubit mapping, and gate cancellation can substantially reduce
circuit depth and gate count. Shallow and noise-resilient ansatzes are partic-
ularly important for variational and quantum machine learning algorithms,
whose performance is highly sensitive to depth and error accumulation.

• Hybrid Classical-Quantum Post-Processing: Incorporating statistical
corrections, filtering, and post-selection strategies can mitigate the impact of
noise in experimental data, complementing hardware-level improvements and
enhancing the fidelity of results.

• Hardware-Level Enhancements: Long-term progress requires improving
gate fidelities, reducing crosstalk, and fully optimizing readout, reset, and mid-
circuit measurements. These enhancements are particularly crucial for logical
encodings, where the overhead amplifies the impact of hardware imperfections.
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Appendix

Code Availability
� �

1 from qiskit import QuantumCircuit , ClassicalRegister , transpile
2 import matplotlib as plt
3 import numpy as np
4 import pandas as pd
5
6 # --- Define initial bare state ---
7 def bare_initial_state ():
8 qc = QuantumCircuit (2)
9 qc.x(0)

10 qc.h(0)
11 qc.x(1)
12 qc.h(1)
13 return qc
14
15 # --- Define initial encoded state ---
16 def encoded_initial_state ():
17 qc = QuantumCircuit (4)
18 qc.h(1)
19 qc.cx(1, 0)
20 qc.h(3)
21 qc.cx(3, 2)
22 qc.barrier ()
23 qc.y(1)
24 qc.y(3)
25 return qc
26
27 # --- Define bare oracle ---
28 def bare_oracle(fx):
29 qc = QuantumCircuit (2)
30 if fx == "0":
31 pass
32 elif fx == "1":
33 qc.x(0)
34 elif fx == "x":
35 qc.cx(1, 0)
36 elif fx == "1+x":
37 qc.x(0)
38 qc.cx(1, 0)
39 return qc
40
41 # --- Define encoded oracle ---
42 def encoded_oracle(fx):
43 qc = QuantumCircuit (4)
44 if fx == "0":
45 pass
46 elif fx == "1":
47 qc.z(0)
48 qc.z(1)
49 qc.barrier ()
50 elif fx == "x":
51 qc.s(0)
52 qc.z(1)
53 qc.z(2)
54 qc.s(3)
55 qc.barrier ()
56 qc.s(1)
57 qc.s(2)
58 qc.barrier ()
59 elif fx == "1+x":
60 qc.z(0)
61 qc.s(1)
62 qc.z(2)
63 qc.s(3)
64 qc.barrier ()
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65 qc.s(0)
66 qc.s(2)
67 qc.barrier ()
68 return qc
69
70 # --- Build full bare circuit ---
71 def bare_circuit(fx):
72 qc = bare_initial_state ()
73 qc = qc.compose(bare_oracle(fx))
74 qc.h(1)
75 qc.barrier ()
76 full_qc = QuantumCircuit (2, 1)
77 full_qc = full_qc.compose(qc)
78 full_qc.measure(1, 0)
79 return full_qc
80
81 # --- Build full encoded circuit ---
82 def encoded_circuit(fx):
83 qc = encoded_initial_state ()
84 qc = qc.compose(encoded_oracle(fx))
85 qc.h([0, 1, 2, 3])
86 qc.barrier ()
87 full_qc = QuantumCircuit (4, 4)
88 full_qc = full_qc.compose(qc)
89 full_qc.measure(0, 0)
90 full_qc.measure(1, 1)
91 full_qc.measure(2, 2)
92 full_qc.measure(3, 3)
93 return full_qc
94
95 # --- Transpile bare circuit ---
96 def transpiled_circuit_bare(circuit , backend):
97 mapping = {circuit.qubits [0]: 0, circuit.qubits [1]: 2}
98 initial_layout = Layout(mapping)
99 transpiled = transpile(

100 circuit ,
101 backend=backend ,
102 coupling_map=iqm_coupling_map ,
103 optimization_level =0
104 )
105 print(transpiled)
106 swap_count_optimized = transpiled.count_ops ().get(’swap’, 0)
107 print("Number of SWAP gates after optimization:", swap_count_optimized)
108 layout_info = transpiled._layout
109 if isinstance(layout_info , TranspileLayout):
110 print(layout_info.final_layout)
111 return transpiled
112
113 # --- Transpile encoded circuit ---
114 def transpiled_circuit_encoded(circuit , backend):
115 mapping = {
116 circuit.qubits [0]: 0,
117 circuit.qubits [1]: 1,
118 circuit.qubits [2]: 2,
119 circuit.qubits [3]: 3
120 }
121 initial_layout = Layout(mapping)
122 transpiled = transpile(
123 circuit ,
124 backend=backend ,
125 coupling_map=iqm_coupling_map ,
126 optimization_level =0
127 )
128 print(transpiled)
129 swap_count_optimized = transpiled.count_ops ().get(’swap’, 0)
130 print("Number of SWAP gates after optimization:", swap_count_optimized)
131 layout_info = transpiled._layout
132 if isinstance(layout_info , TranspileLayout):
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133 print(layout_info.final_layout)
134 return transpiled
135
136 # --- Run simulation and get raw counts ---
137 def run_simulation(circuit , backend , shots):
138 results = backend.run(circuit , shots=shots).result ()
139 counts = results.get_counts ()
140 print(f"Original Counts: {counts} \n")
141 return counts
142
143 # --- Filter counts for valid encoded outcomes ---
144 def filter_encoded_counts(counts):
145 return {k: v for k, v in counts.items () if k.count(’1’) % 2 == 0}
146
147 # --- Compute ratio of valid post -selected outcomes ---
148 def compute_postselection_ratio(counts):
149 total = sum(counts.values ())
150 valid = sum(v for k, v in counts.items () if k.count(’1’) % 2 == 0)
151 return valid / total if total > 0 else 0.0
152
153 # --- Statistical distance for bare circuit ---
154 def statistical_distance_bare(P0, P1 , Q0 , Q1):
155 return 0.5 * (abs(P0 - Q0) + abs(P1 - Q1))
156
157 # --- Logical probabilities for encoded outcomes ---
158 def compute_logical_probabilities(filtered_counts):
159 total_valid = sum(filtered_counts.values ())
160 R00 = (filtered_counts.get(’0000’, 0) + filtered_counts.get(’1111’, 0)) /

total_valid
161 R01 = (filtered_counts.get(’1100’, 0) + filtered_counts.get(’0011’, 0)) /

total_valid
162 R10 = (filtered_counts.get(’1010’, 0) + filtered_counts.get(’0101’, 0)) /

total_valid
163 R11 = (filtered_counts.get(’0110’, 0) + filtered_counts.get(’1001’, 0)) /

total_valid
164 return {"R00": R00 , "R01": R01 , "R10": R10 , "R11": R11}
165
166 # --- Statistical distance for encoded circuit ---
167 def statistical_distance_encoded(P0, P1, logical_probs):
168 R0 = logical_probs["R00"] + logical_probs["R01"]
169 R1 = logical_probs["R10"] + logical_probs["R11"]
170 return 0.5 * (abs(P0 - R0) + abs(P1 - R1))
171
172 # --- Noise reduction factor ---
173 def compute_noise_reduction(D_bare , D_enc):
174 return (D_enc - D_bare) / D_bare if D_bare != 0 else float(’nan’)
175
176 # --- Statistical error for bare distance ---
177 def statistical_distance_bare_error(P0, P1, Q0, Q1, N):
178 sigma_Q0 = np.sqrt(Q0 * (1 - Q0) / N) if N > 0 else 0
179 sigma_Q1 = np.sqrt(Q1 * (1 - Q1) / N) if N > 0 else 0
180 return 0.5 * np.sqrt(sigma_Q0 **2 + sigma_Q1 **2)
181
182 # --- Statistical error for encoded distance ---
183 def statistical_distance_encoded_error(P0 , P1 , logical_probs , counts_filtered ,

N_valid):
184 if N_valid == 0:
185 return 0.0
186 terms = [’0000’,’1111’,’1100’,’0011’,’1010’,’0101’,’0110’,’1001’]
187 variances = {}
188 for term in terms:
189 freq = counts_filtered.get(term , 0)
190 p = freq / N_valid
191 variances[term] = p * (1 - p) / N_valid
192 R0_variance = variances[’0000’] + variances[’1111’] + variances[’1100’] +

variances[’0011’]
193 R1_variance = variances[’1010’] + variances[’0101’] + variances[’0110’] +

variances[’1001’]
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194 return 0.5 * np.sqrt(R0_variance + R1_variance)
195
196 # --- Error on noise reduction ---
197 def compute_noise_reduction_error(D_bare , D_enc , sigma_bare , sigma_enc):
198 if D_bare == 0:
199 return float(’nan’)
200 term_bare = (D_enc / D_bare) * sigma_bare
201 term_enc = sigma_enc
202 return np.sqrt(term_enc **2 + term_bare **2) / abs(D_bare)
203
204 # --- Analyze bare and encoded circuits ---
205 def analyze_circuits(ideal_P0 , ideal_P1 , bare_circuit , encoded_circuit , backend ,

shots):
206 transpiled_bare = transpiled_circuit_bare(bare_circuit , backend)
207 transpiled_encoded = transpiled_circuit_encoded(encoded_circuit , backend)
208 counts_bare = run_simulation(transpiled_bare , backend , shots)
209 counts_encoded = run_simulation(transpiled_encoded , backend , shots)
210 total_bare = sum(counts_bare.values ())
211 Q0 = counts_bare.get(’0’, 0) / total_bare if total_bare > 0 else 0
212 Q1 = counts_bare.get(’1’, 0) / total_bare if total_bare > 0 else 0
213 D_bare = statistical_distance_bare(ideal_P0 , ideal_P1 , Q0 , Q1)
214 sigma_bare = statistical_distance_bare_error(ideal_P0 , ideal_P1 , Q0 , Q1 ,

total_bare)
215 postselection_ratio = compute_postselection_ratio(counts_encoded)
216 filtered_counts = filter_encoded_counts(counts_encoded)
217 logical_probs = compute_logical_probabilities(filtered_counts)
218 D_enc = statistical_distance_encoded(ideal_P0 , ideal_P1 , logical_probs)
219 N_valid = sum(v for k, v in counts_encoded.items() if k.count(’1’) % 2 == 0)
220 sigma_enc = statistical_distance_encoded_error(ideal_P0 , ideal_P1 ,

logical_probs , counts_encoded , N_valid)
221 noise_reduction = compute_noise_reduction(D_bare , D_enc)
222 sigma_reduction = compute_noise_reduction_error(D_bare , D_enc , sigma_bare ,

sigma_enc)
223 return {
224 ’postselection_ratio ’: postselection_ratio ,
225 ’D_bare ’: D_bare ,
226 ’sigma_bare ’: sigma_bare ,
227 ’D_enc ’: D_enc ,
228 ’sigma_enc ’: sigma_enc ,
229 ’noise_reduction ’: noise_reduction ,
230 ’sigma_reduction ’: sigma_reduction
231 }
232
233 # --- Run full analysis and save results ---
234 def run_full_analysis(oracle_definitions , backend , shots =50000 , repetitions =40,

csv_filename="deutsch_422_results.csv"):
235 all_rows = []
236 for rep in range(1, repetitions + 1):
237 print(f"\n### Repetition {rep} of {repetitions} ###")
238 for oracle_name , P0, P1, bare_circ , encoded_circ in oracle_definitions:
239 print(f"--- Oracle: {oracle_name} ---")
240 res = analyze_circuits(P0 , P1, bare_circ , encoded_circ , backend ,

shots)
241 row = {
242 "Repetition": rep ,
243 "Oracle": oracle_name ,
244 "D_bare": res[’D_bare ’],
245 "sigma_bare": res[’sigma_bare ’],
246 "D_encoded": res[’D_enc ’],
247 "sigma_encoded": res[’sigma_enc ’],
248 "D_diff": res[’D_enc ’] - res[’D_bare ’],
249 "sigma_diff": np.sqrt(res[’sigma_bare ’]**2 + res[’sigma_enc ’]**2),
250 "Postselection": res[’postselection_ratio ’],
251 "Noise_Reduction_ (%)": res[’noise_reduction ’] * 100,
252 "sigma_Reduction_ (%)": res[’sigma_reduction ’] * 100
253 }
254 all_rows.append(row)
255 df_full = pd.DataFrame(all_rows)
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256 df_full.to_csv(csv_filename , index=False)
257 print(f"\nAll results saved in: {csv_filename}")
258
259 # --- Define oracles and run experiment ---
260 oracle_definitions = [
261 ("f(x) = 0", 0, 1, bare_circuit("0"), encoded_circuit("0")),
262 ("f(x) = x", 1, 0, bare_circuit("x"), encoded_circuit("x")),
263 ("f(x) = 1+x", 1, 0, bare_circuit("1+x"), encoded_circuit("1+x")),
264 ("f(x) = 1", 0, 1, bare_circuit("1"), encoded_circuit("1"))
265 ]
266
267 shots = 50000
268 repetitions = 1000
269 csv_filename = "deutsch_422_results.csv"
270
271 run_full_analysis(
272 oracle_definitions ,
273 backend=noisy_simulator ,
274 shots=shots ,
275 repetitions=repetitions ,
276 csv_filename=csv_filename
277 )� �

Listing 1: Source code for the fault-tolerant implementation of the Deutsch-Jozsa
Algorithm� �

1 from qiskit import QuantumCircuit
2 from qiskit.circuit import Parameter
3 from qiskit.quantum_info import SparsePauliOp
4 from qiskit_algorithms import VQE
5 from qiskit_algorithms.optimizers import COBYLA
6 from qiskit.primitives import Estimator
7 import numpy as np
8
9 # Definition of the parametric ansatz

10 def ansatz(n_qubits: int) -> tuple[QuantumCircuit , list[Parameter ]]:
11 # Two variational parameters
12 theta_0 = Parameter(’theta_0 ’)
13 theta_1 = Parameter(’theta_1 ’)
14
15 qc = QuantumCircuit(n_qubits)
16 qc.h(0)
17 qc.cx(0, 1)
18
19 qc.rx(theta_0 , 0)
20 qc.cx(0, 1)
21 qc.rz(theta_1 , 1)
22 qc.cx(0, 1)
23
24 return qc, [theta_0 , theta_1]
25
26
27 def run_logical_vqe(qiskit_hamiltonian: SparsePauliOp) -> tuple[float ,

list[float ]]:
28 np.random.seed (42)
29
30 # Initial angles for the optimizer
31 init_angles = np.random.random (2) * 1e-1
32
33 # Obtain Qiskit Ansatz
34 num_qubits = qiskit_hamiltonian.num_qubits
35 qc_ansatz , params = ansatz(num_qubits)
36
37 # VQE solver setup
38 vqe_solver = VQE(ansatz=qc_ansatz ,
39 optimizer=COBYLA(maxiter =350, tol=1e-10),
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40 initial_point=init_angles , estimator=Estimator ())
41
42 # Compute the minimum eigenvalue (energy) of the Hamiltonian
43 result = vqe_solver.compute_minimum_eigenvalue(qiskit_hamiltonian)
44
45 return result.eigenvalue.real , result.optimal_point.tolist ()
46
47
48 from qiskit import QuantumCircuit
49 from qiskit.circuit import Parameter
50 from typing import List
51
52 def aim_physical_circuit(angles: List[float], basis: str , ignore_meas_id: bool =

False) -> QuantumCircuit:
53 qc = QuantumCircuit (2)
54
55 # Bell state preparation
56 qc.h(0)
57 qc.cx(0, 1)
58
59 # Rx gate on the first qubit
60 qc.rx(angles [0], 0)
61
62 # ZZ interaction
63 qc.cx(0, 1)
64 qc.rz(angles [1], 1)
65 qc.cx(0, 1)
66
67 if basis == "z_basis":
68 if not ignore_meas_id:
69 qc.barrier () # equivalent to identity
70 qc.measure_all ()
71 elif basis == "x_basis":
72 qc.h([0, 1])
73 if not ignore_meas_id:
74 qc.barrier ()
75 qc.measure_all ()
76 else:
77 raise ValueError(f"Unsupported basis provided: {basis}")
78
79 return qc
80
81
82 from qiskit import QuantumCircuit
83 from qiskit.circuit import Parameter
84 from typing import List
85
86 def aim_logical_circuit(angles: List[float], basis: str , ignore_meas_id: bool =

False) -> QuantumCircuit:
87 qc = QuantumCircuit (5, 6)
88
89 # Bell state preparation
90 qc.h([1, 2])
91 qc.cx(2, 3)
92 qc.cx(1, 4)
93
94 # Rx on the first qubit
95 qc.h(0)
96 qc.cx(0, 1)
97 qc.cx(0, 3)
98 qc.rx(angles [0], 0)
99 qc.cx(0, 1)

100 qc.cx(0, 3)
101 qc.h(0)
102 qc.measure(0, 0) # --> syndrome 1
103 qc.reset (0)
104 qc.barrier ()
105
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106 # Rz on the second qubit
107 qc.cx(2, 0)
108 qc.cx(3, 0)
109 qc.rz(angles [1], 0)
110 qc.cx(1, 0)
111 qc.cx(4, 0)
112 qc.barrier ()
113 qc.measure(0, 1) # --> syndrome 2
114
115 if basis == "z_basis":
116 if not ignore_meas_id:
117 qc.barrier ()
118 qc.measure ([1, 2, 3, 4], [2, 3, 4, 5])
119 elif basis == "x_basis":
120 qc.h([1, 2, 3, 4])
121 qc.swap(2, 3)
122 if not ignore_meas_id:
123 qc.barrier ()
124 qc.measure ([1, 2, 3, 4], [2, 3, 4, 5])
125 else:
126 raise ValueError(f"Unsupported basis provided: {basis}")
127
128 import matplotlib.pyplot as plt
129 fig = qc.draw(output=’mpl’)
130 fig.savefig(’circuit.png’, dpi=300, bbox_inches=’tight ’)
131 plt.close(fig)
132
133 return qc
134
135
136 from qiskit import transpile
137 from qiskit_aer import AerSimulator
138
139 simulator = AerSimulator ()
140
141 def generate_circuit_set(ignore_meas_id: bool = False) -> dict:
142 u_vals = [1, 5, 9]
143 v_vals = [-9, -1, 7]
144 circuit_dict = {}
145
146 for u in u_vals:
147 for v in v_vals:
148 # Build Hamiltonian in Qiskit
149 hamiltonian = (
150 0.25 * u * SparsePauliOp.from_list ([("ZZ", 1.0)])
151 - 0.25 * u * SparsePauliOp.from_list ([("II", 1.0)])
152 + v * SparsePauliOp.from_list ([("XI", 1.0)])
153 + v * SparsePauliOp.from_list ([("IX", 1.0)])
154 )
155
156 # Run VQE to get optimal angles
157 _, opt_params = run_logical_vqe(hamiltonian)
158 angles = [float(angle) for angle in opt_params]
159 print(f"Computed optimal angles ={ angles} for U={u}, V={v}")
160
161 tmp_physical_dict = {}
162 tmp_logical_dict = {}
163
164 for basis in ("z_basis", "x_basis"):
165 # Create circuits
166 physical = aim_physical_circuit(angles , basis ,

ignore_meas_id=ignore_meas_id)
167 logical = aim_logical_circuit(angles , basis ,

ignore_meas_id=ignore_meas_id)
168
169 # Transpile both circuits
170 transpiled_physical = transpile(
171 physical ,
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172 noisy_simulator ,
173 optimization_level =0,
174 coupling_map=iqm_coupling_map
175 )
176 transpiled_logical = transpile(
177 logical ,
178 noisy_simulator ,
179 optimization_level =0,
180 coupling_map=iqm_coupling_map
181 )
182
183 tmp_physical_dict[basis] = transpiled_physical
184 tmp_logical_dict[basis] = transpiled_logical
185
186 circuit_dict[f"{u}:{v}"] = {
187 "physical": tmp_physical_dict ,
188 "logical": tmp_logical_dict ,
189 }
190
191 print("\nFinished building optimized circuits!")
192 return circuit_dict
193
194 from typing import Mapping , Sequence
195 import numpy as np
196 from collections import defaultdict
197
198 # Helper to compute the number of qubits from counts
199 def _num_qubits(counts: Mapping[str , float]) -> int:
200 for key in counts:
201 if key.isdecimal ():
202 return len(key)
203 return 0
204
205
206 def process_counts(counts: Mapping[str , float ]) -> dict[str , float]:
207 """
208 - Reverse the bitstring.
209 - Keep only bitstrings ending with ’00’ (null syndromes).
210 - Extract the 4 data qubits (bits -3,-4,-5,-6).
211 - Keep only those with even number of ’1’.
212 - Return filtered dictionary with the 4 remaining bits as keys.
213 """
214 new_data = defaultdict(float)
215
216 for bitstring , count in counts.items():
217 reversed_bitstring = bitstring [::-1]
218
219 # Condition 1: flag bits must be ’00’
220 if not reversed_bitstring.startswith("00"):
221 continue
222
223 # Extract the 4 data qubits
224 data_bits = reversed_bitstring [2:6]
225
226 # Condition 2: even number of ones
227 if data_bits.count("1") % 2 != 0:
228 continue
229
230 new_data[data_bits] += count
231
232 return dict(new_data)
233
234
235 def decode(counts: Mapping[str , float ]) -> dict[str , float]:
236 """
237 - Assume each key has 4 bits (from process_counts output).
238 - Apply the [[4,2,2]] code map to decode into two logical bits.
239 """
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240 physical_to_logical = {
241 "0000": "00",
242 "1111": "00",
243 "0011": "01",
244 "1100": "01",
245 "0101": "10",
246 "1010": "10",
247 "0110": "11",
248 "1001": "11",
249 }
250
251 logical_counts = defaultdict(float)
252
253 for key , val in counts.items():
254 logical_key = physical_to_logical.get(key)
255 if logical_key is not None:
256 logical_counts[logical_key] += val
257
258 return dict(logical_counts)
259
260
261 # Expectation value for the X observable
262 def ev_x(counts: Mapping[str , float]) -> float:
263 ev = 0.0
264 for k, val in counts.items():
265 ev += val * ((-1)**int(k[0]) + (-1)**int(k[1]))
266 total = sum(counts.values ())
267 ev /= total
268 return ev
269
270
271 # Expectation value for the XX observable
272 def ev_xx(counts: Mapping[str , float]) -> float:
273 ev = 0.0
274 for k, val in counts.items():
275 ev += val * (-1) ** k.count("1")
276 total = sum(counts.values ())
277 ev /= total
278 return ev
279
280
281 # Expectation value for the ZZ observable
282 def ev_zz(counts: Mapping[str , float]) -> float:
283 ev = 0.0
284 for k, val in counts.items():
285 ev += val * (-1) ** k.count("1")
286 total = sum(counts.values ())
287 ev /= total
288 return ev
289
290
291 def _aim_energies(
292 counts_data: Mapping[tuple[int , int , str], dict[str , float]],
293 ) -> tuple[dict[tuple[int , int], float], dict[tuple[int , int], float ]]:
294 evxs: dict[tuple[int , int], float] = {}
295 evxxs: dict[tuple[int , int], float] = {}
296 evzzs: dict[tuple[int , int], float] = {}
297 totals: dict[tuple[int , int], float] = {}
298
299 for key , counts in counts_data.items():
300 h_params , basis = key
301 key_a , key_b = h_params.split(":")
302 u, v = int(key_a), int(key_b)
303 if basis.startswith("x"):
304 evxs[u, v] = ev_x(counts)
305 evxxs[u, v] = ev_xx(counts)
306 else:
307 evzzs[u, v] = ev_zz(counts)
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308
309 totals.setdefault ((u, v), 0)
310 totals[u, v] += sum(counts.values ())
311
312 energies = {}
313 uncertainties = {}
314 for u, v in evxs.keys() & evzzs.keys():
315 string_key = f"{u}:{v}"
316 energies[string_key] = u * (evzzs[u, v] - 1) / 4 + v * evxs[u, v]
317
318 uncertainty_xx = 2 * v**2 * (1 + evxxs[u, v]) - u * v * evxs[u, v] / 2
319 uncertainty_zz = u**2 * (1 - evzzs[u, v]) / 2
320
321 uncertainties[string_key] = np.sqrt(
322 (uncertainty_zz + uncertainty_xx - energies[string_key] ** 2) /

(totals[u, v] / 2)
323 )
324
325 return energies , uncertainties
326
327
328 def aim_logical_energies(data_ordering , counts_list):
329 for i, counts in enumerate(counts_list):
330 processed = process_counts(counts)
331 decoded = decode(processed)
332 if not decoded:
333 print(f"[DEBUG] No decoded data at step {i}")
334 else:
335 print(f"[DEBUG] Decoded at step {i}: {decoded}")
336 counts_data = {
337 data_ordering[i]: decode(process_counts(counts))
338 for i, counts in enumerate(counts_list)
339 }
340 return _aim_energies(counts_data)
341
342
343 def process_counts_unencoded(counts: Mapping[str , float]) -> dict[str , float ]:
344 """ Extract the 2 bits from the measured bitstrings."""
345 return {k[:: -1]: v for k, v in counts.items()}
346
347
348 def aim_physical_energies(
349 data_ordering: object , counts_list: Sequence[dict[str , float ]]
350 ) -> tuple[dict[tuple[int , int], float], dict[tuple[int , int], float ]]:
351 counts_data = {
352 data_ordering[i]: process_counts_unencoded(counts)
353 for i, counts in enumerate(counts_list)
354 }
355 return _aim_energies(counts_data)
356
357
358 from typing import Dict , Tuple , List , Any
359 import os
360
361 def _get_energy_diff(
362 bf_energies: Dict[str , float],
363 physical_energies: Dict[str , float],
364 logical_energies: Dict[str , float],
365 ) -> Tuple[List[float], List[float ]]:
366 physical_energy_diff = []
367 logical_energy_diff = []
368
369 # Data ordering following bf_energies keys
370 for layer in bf_energies.keys():
371 physical_sim_energy = physical_energies[layer]
372 logical_sim_energy = logical_energies[layer]
373 true_energy = bf_energies[layer]
374 u, v = layer.split(":")
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375 print(f"Layer =({u}, {v}) has brute -force energy of: {true_energy}")
376 print(f"Physical circuit of layer =({u}, {v}) got an energy of:

{physical_sim_energy}")
377 print(f"Logical circuit of layer =({u}, {v}) got an energy of:

{logical_sim_energy}")
378 print("-" * 72)
379
380 if logical_sim_energy < physical_sim_energy:
381 print("Logical circuit achieved the lower energy!")
382 else:
383 print("Physical circuit achieved the lower energy")
384 print("-" * 72, "\n")
385
386 physical_energy_diff.append(-1 * (true_energy - physical_sim_energy))
387 logical_energy_diff.append(-1 * (true_energy - logical_sim_energy))
388
389 return physical_energy_diff , logical_energy_diff
390
391
392 def submit_aim_circuits(
393 circuit_dict: Dict[str , Any],
394 *,
395 folder_path: str = "future_aim_results",
396 shots_count: int = 50000,
397 run_async: bool = False ,
398 ) -> Dict[str , List[Dict[str , int]]] | None:
399 if run_async:
400 os.makedirs(folder_path , exist_ok=True)
401 else:
402 aim_results = {"physical": [], "logical": []}
403
404 for layer in circuit_dict.keys():
405 if run_async:
406 print(f"Posting circuits associated with layer=(’{layer}’)")
407 else:
408 print(f"Running circuits associated with layer=(’{layer}’)")
409
410 for basis in ("z_basis", "x_basis"):
411 if run_async:
412 u, v = layer.split(":")
413 tmp_physical_results = noisy_simulator.run(
414 circuit_dict[layer]["physical"][basis],

shots=shots_count).result ()
415 file =

open(f"{folder_path }/ physical_{basis}_job_u ={u}_v={v}_result.txt", "w")
416 file.write(str(tmp_physical_results.get_counts ()))
417 file.close()
418
419 tmp_logical_results = noisy_simulator.run(
420 circuit_dict[layer]["logical"][basis],

shots=shots_count).result ()
421 file =

open(f"{folder_path }/ logical_{basis}_job_u ={u}_v={v}_result.txt", "w")
422 file.write(str(tmp_logical_results.get_counts ()))
423 file.close()
424 else:
425 tmp_physical_results = noisy_simulator.run(
426 circuit_dict[layer]["physical"][basis],
427 shots=shots_count).result ()
428 tmp_logical_results = noisy_simulator.run(
429 circuit_dict[layer]["logical"][basis],
430 shots=shots_count).result ()
431
432 aim_results["physical"]. append ({k: v for k, v in

tmp_physical_results.get_counts ().items()})
433 aim_results["logical"]. append ({k: v for k, v in

tmp_logical_results.get_counts ().items()})
434

125



Appendix

435 if not run_async:
436 print("\nCompleted all circuit sampling!")
437 return aim_results
438 else:
439 print("\nAll circuits submitted for async sampling!")
440
441
442 bf_energies = {
443 "1:-9": -18.251736027394713 ,
444 "1:-1": -2.265564437074638 ,
445 "1:7": -14.252231964940428 ,
446 "5:-9": -19.293350575766127 ,
447 "5:-1": -3.608495283014149 ,
448 "5:7": -15.305692796870582 ,
449 "9:-9": -20.39007993367173 ,
450 "9:-1": -5.260398644698076 ,
451 "9:7": -16.429650912487233 ,
452 }
453
454 import numpy as np
455 import csv
456 import os
457
458 REPEAT_COUNT = 100
459 csv_file = "energy_comparison_IQMFakeAdonis.csv"
460
461 # Complete CSV header
462 fieldnames = [
463 "Repetition Index",
464 "Layer (u:v)",
465 "Brute -Force Energy",
466 "Physical Circuit Energy",
467 "Logical Circuit Energy",
468 "Logical Lower Energy"
469 ]
470
471 # Create (or overwrite) the CSV file with header
472 with open(csv_file , mode=’a’, newline=’’) as csvfile:
473 writer = csv.DictWriter(csvfile , fieldnames=fieldnames)
474 writer.writeheader ()
475
476 # Loop repetitions
477 for repeat_index in range (51, REPEAT_COUNT +1):
478 print(f"\n[INFO] Starting repetition {repeat_index }/{ REPEAT_COUNT}")
479
480 sim_circuit_dict = generate_circuit_set ()
481 aim_sim_data = submit_aim_circuits(sim_circuit_dict)
482
483 circuit_layers = sim_circuit_dict.keys()
484 data_ordering = []
485 for key in circuit_layers:
486 for basis in ("z_basis", "x_basis"):
487 data_ordering.append ((key , basis))
488
489 sim_physical_energies , _ = aim_physical_energies(data_ordering ,

aim_sim_data["physical"])
490 sim_logical_energies , _ = aim_logical_energies(data_ordering ,

aim_sim_data["logical"])
491
492 # Compute differences for log
493 _get_energy_diff(bf_energies , sim_physical_energies , sim_logical_energies)
494
495 # Save results into CSV
496 with open(csv_file , mode=’a’, newline=’’) as csvfile:
497 writer = csv.DictWriter(csvfile , fieldnames=fieldnames)
498 for layer in sim_physical_energies.keys():
499 physical_energy = sim_physical_energies.get(layer)
500 logical_energy = sim_logical_energies.get(layer)
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501 brute_force_energy = bf_energies.get(layer)
502 if physical_energy is not None and logical_energy is not None and

brute_force_energy is not None:
503 logical_lower = logical_energy < physical_energy
504 writer.writerow ({
505 "Repetition Index": repeat_index ,
506 "Layer (u:v)": layer ,
507 "Brute -Force Energy": brute_force_energy ,
508 "Physical Circuit Energy": physical_energy ,
509 "Logical Circuit Energy": logical_energy ,
510 "Logical Lower Energy": logical_lower ,
511 })
512
513 print(f"\n CSV file ’{csv_file}’ created with all {REPEAT_COUNT} repetitions.")� �

Listing 2: Source code for the SIAM study via VQE and partial error-detection� �
1 import numpy as np
2 import matplotlib.pyplot as plt
3 from qiskit import QuantumCircuit , QuantumRegister , ClassicalRegister , transpile
4 from qiskit.circuit.library import UGate
5 from qiskit_aer import AerSimulator
6 from sklearn.linear_model import Ridge
7 from sklearn.model_selection import GridSearchCV
8
9 def compute_dtw(s, t):

10 """ Compute DTW distance between sequences s and t."""
11 M, N = len(s), len(t)
12 f = np.full((M + 1, N + 1), np.inf)
13 f[0, 0] = 0
14 for i in range(1, M + 1):
15 for j in range(1, N + 1):
16 cost = abs(s[i-1] - t[j-1])
17 f[i, j] = cost + min(f[i - 1, j], f[i, j - 1], f[i - 1, j - 1])
18 return f[M, N]
19
20 class QuantumReservoirComputer:
21 def __init__(self , n_system , n_ancilla , scale_input ,
22 interaction_theta=np.pi , num_shots =50000):
23 if n_system != 2 or n_ancilla != 2:
24 raise NotImplementedError("Only 2 system qubits + 2 ancilla

supported")
25 self.n_system = n_system
26 self.n_ancilla = n_ancilla
27 self.scale_input = scale_input
28 self.interaction_theta = interaction_theta
29 self.num_shots = num_shots
30 self.simulator = noisy_simulator
31 self.ridge_model = None
32
33 def _build_full_circuit(self , input_sequence):
34 """ Build quantum circuit for the input sequence."""
35 T = len(input_sequence)
36 sys_qr = QuantumRegister(self.n_system , ’sys’)
37 anc_qr = QuantumRegister(self.n_ancilla , ’anc’)
38 cl_reg = ClassicalRegister (2 * T, ’c’)
39 qc = QuantumCircuit(sys_qr , anc_qr , cl_reg)
40 for qb in list(sys_qr) + list(anc_qr):
41 qc.initialize ([1, 0], qb)
42 for t, u in enumerate(input_sequence):
43 angle = self.scale_input * u
44 qc.rx(angle , sys_qr [0])
45 qc.cx(sys_qr [0], sys_qr [1])
46 qc.rx(angle , sys_qr [0])
47 qc.rz(angle , sys_qr [1])
48 qc.cx(sys_qr [0], sys_qr [1])
49 qc.cx(sys_qr [0], anc_qr [0])
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50 qc.cx(sys_qr [1], anc_qr [1])
51 qc.measure(anc_qr [0], cl_reg [2*t])
52 qc.measure(anc_qr [1], cl_reg [2*t+1])
53 qc.reset(anc_qr [0])
54 qc.reset(anc_qr [1])
55 qc.barrier ()
56 return qc
57
58 def _run_reservoir(self , input_sequence):
59 """ Run the reservoir circuit and collect ancilla measurements."""
60 T = len(input_sequence)
61 z = np.zeros((T, self.n_ancilla , self.num_shots))
62 qc = self._build_full_circuit(input_sequence)
63 transpiled = transpile(qc, backend=noisy_simulator ,
64 coupling_map=iqm_coupling_map ,
65 optimization_level =0)
66 job = self.simulator.run(transpiled , shots=self.num_shots , memory=True)
67 memory = job.result ().get_memory ()
68 for shot_idx , bstr in enumerate(memory):
69 for t in range(T):
70 b0 = int(bstr [-(2*t + 1)])
71 b1 = int(bstr [-(2*t + 2)])
72 z[t, 0, shot_idx] = 1 if b0 == 0 else -1
73 z[t, 1, shot_idx] = 1 if b1 == 0 else -1
74 reservoir_states = np.mean(z, axis =2)
75 return reservoir_states
76
77 def _add_memory(self , X, depth =10):
78 """ Embed memory into reservoir states (time -delay)."""
79 T, N = X.shape
80 return np.hstack ([X[depth - d:T - d, :] for d in range(depth)])
81
82 def train(self , input_sequence , target_sequence):
83 """ Train linear readout via Ridge regression with CV."""
84 X0 = self._run_reservoir(input_sequence)
85 X = self._add_memory(X0, depth =10)
86 y = target_sequence [10:]. reshape (-1)
87 alphas = np.logspace(-4, 2, 8)
88 ridge_cv = GridSearchCV(Ridge (), {’alpha ’: alphas}, cv=10)
89 ridge_cv.fit(X, y)
90 self.ridge_model = ridge_cv.best_estimator_
91
92 def predict(self , input_sequence):
93 """ Predict output sequence given new inputs."""
94 X0 = self._run_reservoir(input_sequence)
95 X = self._add_memory(X0, depth =10)
96 return self.ridge_model.predict(X)
97
98 def generate_narma10(length , seed =42):
99 """ Generate NARMA10 benchmark dataset."""

100 np.random.seed(seed)
101 u = np.random.uniform(0, 0.5, length)
102 y = np.zeros(length)
103 alpha , beta , gamma , delta = 0.3, 0.05, 1.5, 0.1
104 for t in range(9, length -1):
105 y[t+1] = (alpha * y[t]
106 + beta * y[t] * np.sum(y[t-9:t+1])
107 + gamma * u[t-9] * u[t] + delta)
108 return u, y
109
110 # --- MAIN SCRIPT ---
111 train_len , test_len , washout = 300, 200, 75
112 total = train_len + test_len
113 u, y = generate_narma10(total)
114 u_train , y_train = u[washout:train_len], y[washout:train_len]
115 u_test , y_test = u[train_len:], y[train_len :]
116
117 best = {’nmse’: np.inf}
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118 scales = [np.pi, np.pi/4, np.pi/2, 2*np.pi, 3*np.pi]
119 results = []
120
121 for scale in scales:
122 print(f"\n=== scale_input = {scale :.3f} ===")
123 qrc = QuantumReservoirComputer (2, 2, scale_input=scale ,
124 interaction_theta=np.pi,
125 num_shots =8192)
126 qrc.train(u_train , y_train)
127 pred_train = qrc.predict(u_train)
128 pred_test = qrc.predict(u_test)
129
130 # --- Evaluate performance ---
131 y_train_eval = y_train [10:]
132 M_eval_train = len(y_train_eval)
133 nmse_tr = np.sum(( pred_train - y_train_eval) ** 2) / M_eval_train
134 dtw_tr = compute_dtw(pred_train , y_train_eval) / M_eval_train
135
136 y_test_eval = y_test [10:]
137 M_eval_test = len(y_test_eval)
138 nmse_te = np.sum(( pred_test - y_test_eval) ** 2) / M_eval_test
139 dtw_te = compute_dtw(pred_test , y_test_eval) / M_eval_test
140
141 print(f"M_eval (train) = {M_eval_train}, M_eval (test) = {M_eval_test}")
142 print(f"NMSE (train) = {nmse_tr :.7e}")
143 print(f"DTW (train) = {dtw_tr :.7e}")
144 print(f"NMSE (test) = {nmse_te :.7e}")
145 print(f"DTW (test) = {dtw_te :.7e}")
146
147 results.append ({
148 ’scale ’: scale ,
149 ’nmse’: nmse_te ,
150 ’dtw’: dtw_te ,
151 ’nmse_train ’: nmse_tr ,
152 ’dtw_train ’: dtw_tr ,
153 ’model ’: qrc ,
154 ’pred_test ’: pred_test ,
155 ’pred_train ’: pred_train
156 })
157
158 # --- Normalized score selection ---
159 nmse_vals = np.array([r[’nmse’] for r in results ])
160 dtw_vals = np.array([r[’dtw’] for r in results ])
161 nmse_z = (nmse_vals - nmse_vals.mean()) / nmse_vals.std()
162 dtw_z = (dtw_vals - dtw_vals.mean()) / dtw_vals.std()
163 scores = nmse_z + dtw_z
164
165 best_idx = np.argmin(scores)
166 best_result = results[best_idx]
167
168 print(f"\nBest scale_input = {best_result[’scale ’]:.3f}, "
169 f"NMSE = {best_result[’nmse ’]:.7e}, DTW = {best_result[’dtw ’]:.7e}")
170
171 # --- Plot results ---
172 pred_tr = best_result[’model’]. predict(u_train)
173 pred_te = best_result[’model’]. predict(u_test)
174 fig , (ax1 , ax2) = plt.subplots(2, 1, figsize =(10, 7))
175
176 ax1.plot(np.arange(total), u, label=’Input signal $u(t)$’)
177 ax1.plot(np.arange(total), y, label=’Target signal $y(t)$’)
178 ax1.axvline(train_len , color=’gray’, ls=’--’, label=’Train/Test split ’)
179 ax1.set_title(’Input and Target Signals ’)
180 ax1.set_xlabel(’Time step’)
181 ax1.set_ylabel(’Signal value’)
182 ax1.legend ()
183
184 ax2.plot(np.arange(washout + 10, train_len), y_train [10:], ’b-’, label=’Training

target ’)
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185 ax2.plot(np.arange(washout + 10, train_len), pred_tr , ’g--’, label=’Training
prediction ’)

186 ax2.plot(np.arange(train_len + 10, total), y_test [10:] , ’r-’, label=’Test target ’)
187 ax2.plot(np.arange(train_len + 10, total), pred_te , color=’orange ’,

linestyle=’--’, label=’Test prediction ’)
188 ax2.axvline(train_len , color=’gray’, ls=’--’, label=’Train/Test split ’)
189 ax2.set_title(’Target vs Predicted Output ’)
190 ax2.set_xlabel(’Time step’)
191 ax2.set_ylabel(’Signal value’)
192 ax2.legend ()
193
194 plt.tight_layout ()
195 plt.savefig("qrc_output3_IQMFakeAdonis.png", dpi =300)
196 plt.show()
197
198 import csv , os
199
200 # --- Save results as CSV ---
201 image_filename = "qrc_output3_IQMFakeAdonis.png"
202 csv_filename = os.path.splitext(image_filename)[0] + ".csv"
203
204 with open(csv_filename , mode=’w’, newline=’’) as csv_file:
205 writer = csv.writer(csv_file)
206 writer.writerow (["scale_input", "nmse_train", "dtw_train", "nmse_test",

"dtw_test"])
207 for r in results:
208 writer.writerow ([r[’scale’], r[’nmse_train ’], r[’dtw_train ’], r[’nmse’],

r[’dtw’]])
209
210 print(f"\nResults saved in: {csv_filename}")� �

Listing 3: Source code for the Quantum Reservoir Computing experiment and
NARMA10 benchmark� �

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from qiskit import QuantumCircuit , QuantumRegister , ClassicalRegister , transpile
4 from qiskit.circuit.library import UGate
5 from qiskit_aer import AerSimulator
6 from sklearn.linear_model import Ridge
7 from sklearn.model_selection import GridSearchCV
8 import csv
9 import os

10
11 # --- Dynamic Time Warping (DTW) function ---
12 def compute_dtw(s, t):
13 M, N = len(s), len(t)
14 f = np.full((M + 1, N + 1), np.inf)
15 f[0, 0] = 0
16 for i in range(1, M + 1):
17 for j in range(1, N + 1):
18 cost = abs(s[i-1] - t[j-1])
19 f[i, j] = cost + min(f[i - 1, j], f[i, j - 1], f[i - 1, j - 1])
20 return f[M, N]
21
22
23 class QuantumReservoirComputer:
24 def __init__(self , n_system , n_ancilla , scale_input ,
25 interaction_theta=np.pi , num_shots =50000):
26 if n_system != 2 or n_ancilla != 2:
27 raise NotImplementedError("Only 2 system qubits + 2 ancilla qubits

are supported")
28 self.n_system = n_system
29 self.n_ancilla = n_ancilla
30 self.scale_input = scale_input
31 self.interaction_theta = interaction_theta
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32 self.num_shots = num_shots
33 self.simulator = backend
34 self.ridge_model = None
35
36 # --- Build the full quantum circuit for a given input sequence ---
37 def _build_full_circuit(self , input_sequence):
38 T = len(input_sequence)
39 sys_qr = QuantumRegister(self.n_system , ’sys’)
40 anc_qr = QuantumRegister(self.n_ancilla , ’anc’)
41 cl_reg = ClassicalRegister (2 * T, ’c’)
42 qc = QuantumCircuit(sys_qr , anc_qr , cl_reg)
43
44 # Initialize all qubits in |0>
45 for qb in list(sys_qr) + list(anc_qr):
46 qc.initialize ([1, 0], qb)
47
48 # Time evolution with input encoding
49 for t, u in enumerate(input_sequence):
50 angle = self.scale_input * u
51
52 qc.cx(sys_qr [0], sys_qr [1])
53 for qb in sys_qr:
54 qc.append(UGate(angle , angle , angle), [qb])
55 qc.cx(anc_qr [0], sys_qr [0])
56 for qb in anc_qr:
57 qc.append(UGate(angle , angle , angle), [qb])
58 for qb in sys_qr:
59 qc.append(UGate(angle , angle , angle), [qb])
60 qc.cx(sys_qr [0], sys_qr [1])
61 for qb in sys_qr:
62 qc.append(UGate(angle , angle , angle), [qb])
63
64 # Mid -circuit measurement and reset of ancilla
65 qc.barrier ()
66 qc.measure(anc_qr [0], cl_reg [2*t])
67 qc.measure(anc_qr [1], cl_reg [2*t+1])
68 qc.reset(anc_qr [0])
69 qc.reset(anc_qr [1])
70 qc.barrier ()
71 return qc
72
73 # --- Execute the reservoir and collect the averaged output states ---
74 def _run_reservoir(self , input_sequence):
75 T = len(input_sequence)
76 z = np.zeros((T, self.n_ancilla , self.num_shots))
77 qc = self._build_full_circuit(input_sequence)
78 transpiled = transpile(qc, backend=backend)
79 job = self.simulator.run(transpiled , shots=self.num_shots , memory=True)
80 memory = job.result ().get_memory ()
81 for shot_idx , bstr in enumerate(memory):
82 for t in range(T):
83 b0 = int(bstr [-(2*t + 1)])
84 b1 = int(bstr [-(2*t + 2)])
85 z[t, 0, shot_idx] = 1 if b0 == 0 else -1
86 z[t, 1, shot_idx] = 1 if b1 == 0 else -1
87 reservoir_states = np.mean(z, axis =2)
88 return reservoir_states
89
90 # --- Add memory depth to the reservoir states ---
91 def _add_memory(self , X, depth =10):
92 T, N = X.shape
93 return np.hstack ([X[depth - d:T - d, :] for d in range(depth)])
94
95 # --- Train using ridge regression with cross -validation ---
96 def train(self , input_sequence , target_sequence):
97 X0 = self._run_reservoir(input_sequence)
98 X = self._add_memory(X0, depth =10)
99 y = target_sequence [10:]. reshape (-1)
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100 alphas = np.logspace(-4, 2, 8)
101 ridge_cv = GridSearchCV(Ridge (), {’alpha ’: alphas}, cv=7)
102 ridge_cv.fit(X, y)
103 self.ridge_model = ridge_cv.best_estimator_
104
105 # --- Predict outputs using the trained model ---
106 def predict(self , input_sequence):
107 X0 = self._run_reservoir(input_sequence)
108 X = self._add_memory(X0, depth =10)
109 return self.ridge_model.predict(X)
110
111
112 # --- Generate NARMA10 sequence ---
113 def generate_narma10(length , seed =42):
114 np.random.seed(seed)
115 u = np.random.uniform(0, 0.5, length)
116 y = np.zeros(length)
117 alpha , beta , gamma , delta = 0.3, 0.05, 1.5, 0.1
118 for t in range(9, length - 1):
119 y[t+1] = (alpha * y[t]
120 + beta * y[t] * np.sum(y[t-9:t+1])
121 + gamma * u[t-9] * u[t] + delta)
122 return u, y
123
124
125 # --- MAIN ---
126 train_len , test_len , washout = 300, 200, 75
127 total = train_len + test_len
128 u, y = generate_narma10(total)
129 u_train , y_train = u[washout:train_len], y[washout:train_len]
130 u_test , y_test = u[train_len:], y[train_len :]
131
132 results = []
133 for scale in [np.pi, np.pi/4, np.pi/2, 2*np.pi, 3*np.pi , 4*np.pi, 5*np.pi]:
134 print(f"\n=== scale_input = {scale :.3f} ===")
135 qrc = QuantumReservoirComputer (2, 2, scale_input=scale ,
136 interaction_theta=np.pi,
137 num_shots =8192)
138 qrc.train(u_train , y_train)
139 pred_train = qrc.predict(u_train)
140 pred_test = qrc.predict(u_test)
141
142 y_train_eval = y_train [10:]
143 M_eval_train = len(y_train_eval)
144 nmse_tr = np.sum(( pred_train - y_train_eval) ** 2) / M_eval_train
145 dtw_tr = (compute_dtw(pred_train , y_train_eval)) / M_eval_train
146
147 # --- TEST ---
148 y_test_eval = y_test [10:]
149 M_eval_test = len(y_test_eval)
150 nmse_te = np.sum(( pred_test - y_test_eval) ** 2) / M_eval_test
151 dtw_te = (compute_dtw(pred_test , y_test_eval)) / M_eval_test
152
153 # --- PRINT RESULTS ---
154 print(f"M_eval (train) = {M_eval_train}, M_eval (test) = {M_eval_test}")
155 print(f"NMSE (train) = {nmse_tr :.7e}")
156 print(f"DTW (train) = {dtw_tr :.7e}")
157 print(f"NMSE (test) = {nmse_te :.7e}")
158 print(f"DTW (test) = {dtw_te :.7e}")
159
160 results.append ({
161 ’scale ’: scale ,
162 ’nmse’: nmse_te ,
163 ’dtw’: dtw_te ,
164 ’nmse_train ’: nmse_tr ,
165 ’dtw_train ’: dtw_tr ,
166 ’model ’: qrc ,
167 ’pred_test ’: pred_test ,
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168 ’pred_train ’: pred_train
169 })
170
171 # --- Normalization of NMSE and DTW for combined selection ---
172 nmse_vals = np.array([r[’nmse’] for r in results ])
173 dtw_vals = np.array([r[’dtw’] for r in results ])
174
175 nmse_z = (nmse_vals - nmse_vals.mean()) / nmse_vals.std()
176 dtw_z = (dtw_vals - dtw_vals.mean()) / dtw_vals.std()
177
178 scores = nmse_z + dtw_z
179 best_idx = np.argmin(scores)
180 best_result = results[best_idx]
181
182 print(f"\nBest scale_input = {best_result[’scale ’]:.3f}, NMSE =

{best_result[’nmse ’]:.7e}, DTW = {best_result[’dtw ’]:.7e}")
183
184 # --- Plot results ---
185 pred_tr = best_result[’model’]. predict(u_train)
186 pred_te = best_result[’model’]. predict(u_test)
187
188 fig , (ax1 , ax2) = plt.subplots(2, 1, figsize =(10, 7))
189
190 # Upper subplot: Input and Target
191 ax1.plot(np.arange(total), u, label=’Input signal $u(t)$’)
192 ax1.plot(np.arange(total), y, label=’Target signal $y(t)$’)
193 ax1.axvline(train_len , color=’gray’, ls=’--’, label=’Train/Test split ’)
194 ax1.set_title(’Input and Target Signals ’)
195 ax1.set_xlabel(’Time step’)
196 ax1.set_ylabel(’Signal value’)
197 ax1.legend ()
198
199 # Lower subplot: Target vs Prediction
200 t_train = np.arange(washout + 10, train_len)
201 t_test = np.arange(train_len + 10, total)
202 ax2.plot(t_train , y_train [10:], ’b-’, label=’Training target ’)
203 ax2.plot(t_train , pred_tr , ’g--’, label=’Training prediction ’)
204 ax2.plot(t_test , y_test [10:], ’r-’, label=’Test target ’)
205 ax2.plot(t_test , pred_te , color=’orange ’, linestyle=’--’, label=’Test prediction ’)
206 ax2.axvline(train_len , color=’gray’, ls=’--’, label=’Train/Test split ’)
207 ax2.set_title(’Target vs Predicted Output ’)
208 ax2.set_xlabel(’Time step’)
209 ax2.set_ylabel(’Signal value’)
210 ax2.legend ()
211
212 plt.tight_layout ()
213 plt.savefig("qrc_output2_MERA_SPARK.png", dpi =300)
214 plt.show()
215
216 # --- Save results to CSV ---
217 image_filename = "qrc_output2_MERA_SPARK.png"
218 csv_filename = os.path.splitext(image_filename)[0] + ".csv"
219
220 with open(csv_filename , mode=’w’, newline=’’) as csv_file:
221 writer = csv.writer(csv_file)
222 writer.writerow (["scale_input", "nmse_train", "dtw_train", "nmse_test",

"dtw_test"])
223 for r in results:
224 writer.writerow ([r[’scale’], r[’nmse_train ’], r[’dtw_train ’], r[’nmse’],

r[’dtw’]])
225
226 print(f"\nResults saved in: {csv_filename}")� �

Listing 4: Source code for the Quantum Reservoir Computing experiment and
NARMA10 benchmark with MERA

133



Bibliography

[1] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. 10th Anniversary Edition. Cambridge: Cambridge University
Press, 2010. isbn: 9781107002173 (cit. on pp. 3, 7–9, 13, 18, 38, 44).

[2] Giovanna Turvani. Personal course materials. Lecture slides from the
course "Quantum Hardware Design and Optimization", Master’s Degree in
Quantum Engineering, Politecnico di Torino, Academic Year 2024/2025 (cit.
on pp. 12, 17).

[3] Yaru Wang, Haodong Jiang, Hong Wang, and Qianheng Duan. «An improved
quantum algorithm for the quantum learning with errors problem». In: Quan-
tum Information Processing 21 (Apr. 2022). doi: 10.1007/s11128-022-
03507-8 (cit. on p. 15).

[4] Robert Loredo. Learn Quantum Computing with Python and IBM Quantum
Experience. A hands-on introduction to quantum computing and writing your
own quantum programs with Python. Packt Publishing Ltd., 2020. isbn: 978-
1-83898-100-6 (cit. on p. 15).

[5] Jules Tilly et al. «The Variational Quantum Eigensolver: a review of methods
and best practices». In: arXiv preprint arXiv:2111.05176 (2022) (cit. on
pp. 18, 22).

[6] Nilanjana Datta. Quantum Information and Computation: The Quantum
Fourier Transform and Periodicities. Lecture Notes, Part IIC Lent Term
2019–2020. 2020 (cit. on pp. 23, 24).

[7] Daniel Gottesman. «Stabilizer Codes and Quantum Error Correction». PhD
thesis. California Institute of Technology, 1997. url: https://arxiv.org/
pdf/quant-ph/9705052v1 (cit. on pp. 25, 46).

[8] Susan Loepp and William K. Wootters. Protecting Information: From Classical
Error Correction to Quantum Cryptography. Cambridge University Press, 2006.
isbn: 9781139457668 (cit. on p. 27).

[9] Victor V. Albert, Philippe Faist, Alexander Barg, Daniel Gottesman, Leonid
Pryadko, et al. Error Correction Zoo. 2024. url: https://errorcorrectio
nzoo.org/ (cit. on pp. 38, 41).

134

https://doi.org/10.1007/s11128-022-03507-8
https://doi.org/10.1007/s11128-022-03507-8
https://arxiv.org/pdf/quant-ph/9705052v1
https://arxiv.org/pdf/quant-ph/9705052v1
https://errorcorrectionzoo.org/
https://errorcorrectionzoo.org/


BIBLIOGRAPHY

[10] Atsushi Hu, Joey Li, and Rebecca Shapiro. Quantum Benchmarking on the
[[4,2,2]] Code. Tech. rep. Duke University, DOmath 2018, July 2018. url:
https://sites.math.duke.edu/DOmath/DOmath2018/hu-li-shapiro.pdf
(cit. on p. 39).

[11] Arthur Pesah. An Interactive Introduction to the Surface Code. https://
arthurpesah.me/blog/2023-05-13-surface-code/. May 2023 (cit. on
p. 42).

[12] Meenambika Gowrishankar, Daniel Claudino, Jerimiah Wright, and Travis
Humble. «Logical Error Rates for a [[4,2,2]]-encoded Variational Quantum
Eigensolver Ansatz». In: arXiv preprint arXiv:2405.03032 (2025). Version 2,
submitted on 14 Jan 2025. url: https://arxiv.org/pdf/2405.03032v2
(cit. on p. 47).

[13] Neil W. Ashcroft and N. David Mermin. Solid State Physics. Brooks/Cole, a
part of Cengage Learning, 1976. isbn: 9788131500521 (cit. on p. 48).

[14] Renato S. Gonnelli. Personal course materials. Lecture slides from the
course "Fisica dello stato solido (Solid State Physics)", Bachelor’s Degree
in Physical Engineering, Politecnico di Torino, Academic Year 2022/2023
(cit. on pp. 48, 49).

[15] Erik Piatti. Personal course materials. Lecture slides from the course
"Quantum Condensed Matter Physics", Master’s Degree in Quantum Engi-
neering, Politecnico di Torino, Academic Year 2023/2024 (cit. on pp. 48–50,
52).

[16] Daniele Torsello. Personal course materials. Lecture slides from the course
"Quantum Devices", Master’s Degree in Quantum Engineering, Politecnico di
Torino, Academic Year 2023/2024 (cit. on pp. 48, 56, 57).

[17] Jami Rönkkö et al. «On-premises superconducting quantum computer for
education and research». In: EPJ Quantum Technology (2024). url: https:
//doi.org/10.1140/epjqt/s40507-024-00243-z (cit. on pp. 58, 60, 61,
63).

[18] Philip Krantz, Morten Kjaergaard, Fei Yan, Terry P. Orlando, Simon Gustavs-
son, and William D. Oliver. «A Quantum Engineer’s Guide to Superconducting
Qubits». In: Applied Physics Reviews (2019). Updated draft dated July 9,
2021. url: https://arxiv.org/pdf/1904.06560 (cit. on p. 59).

[19] Daniel Gottesman. «Quantum fault tolerance in small experiments». In: arXiv
preprint arXiv:1610.03507 (2016). url: https://doi.org/10.48550/arXiv.
1610.03507 (cit. on p. 65).

[20] Divyanshu Singh and Shiroman Prakash. «Fault-Tolerant Implementation of
the Deutsch-Josza Algorithm». In: arXiv preprint arXiv:2412.04791 (Decem-
ber 6, 2024). url: https://arxiv.org/pdf/2412.04791 (cit. on pp. 67–
70).

135

https://sites.math.duke.edu/DOmath/DOmath2018/hu-li-shapiro.pdf
https://arthurpesah.me/blog/2023-05-13-surface-code/
https://arthurpesah.me/blog/2023-05-13-surface-code/
https://arxiv.org/pdf/2405.03032v2
https://doi.org/10.1140/epjqt/s40507-024-00243-z
https://doi.org/10.1140/epjqt/s40507-024-00243-z
https://arxiv.org/pdf/1904.06560
https://doi.org/10.48550/arXiv.1610.03507
https://doi.org/10.48550/arXiv.1610.03507
https://arxiv.org/pdf/2412.04791


BIBLIOGRAPHY

[21] Michael Wolfgang Kinza. «Single Impurity Anderson Model and Dynamical
Mean Field Theory: A Functional Renormalization Group Study». PhD thesis.
RWTH Aachen University, December 17, 2013. url: https://publications.
rwth-aachen.de/record/229234/files/4979.pdf (cit. on p. 82).

[22] P. W. Anderson. «Localized magnetic states in metals». In: Physical Review
124.1 (1961), pp. 41–53. doi: 10.1103/PhysRev.124.41 (cit. on p. 82).

[23] J. R. Schrieffer and P. A. Wolff. «Relation between the Anderson and Kondo
Hamiltonians». In: Physical Review 149.2 (1966), pp. 491–492. doi: 10.1103/
PhysRev.149.491 (cit. on p. 83).

[24] A. C. Hewson. The Kondo Problem to Heavy Fermions. Cambridge University
Press, 1993 (cit. on p. 83).

[25] Matt J. Bedalov, Matt Blakely, and Peter D. et al. Buttler. «Fault-Tolerant
Operation and Materials Science with Neutral Atom Logical Qubits». In:
arXiv preprint arXiv:2412.07670 (December 10, 2024). url: https://arxiv.
org/pdf/2412.07670 (cit. on pp. 83–85).

[26] Sergey B. Bravyi and Alexei Yu. Kitaev. «Fermionic quantum computation».
In: Annals of Physics 298.1 (2002), pp. 210–226 (cit. on p. 83).

[27] Peter J. J. O’Malley et al. «Scalable Quantum Simulation of Molecular
Energies». In: Physical Review X 6.3 (2016), p. 031007. doi: 10.1103/
PhysRevX.6.031007 (cit. on p. 84).

[28] Toshiki Yasuda, Yudai Suzuki, Tomoyuki Kubota, Kohei Nakajima, Qi Gao,
Wenlong Zhang, Satoshi Shimono, Hendra I. Nurdin, and Naoki Yamamoto.
Quantum reservoir computing with repeated measurements on superconducting
devices. arXiv preprint arXiv:2310.06706v1. October 10, 2023. arXiv: 2310.
06706 [quant-ph]. url: https://arxiv.org/abs/2310.06706v1 (cit. on
pp. 94, 95, 98, 99, 101, 102).

[29] Xiaoyu Guo, Takahiro Muta, and Jianjun Zhao. «Quantum Circuit Ansatz:
Patterns of Abstraction and Reuse of Quantum Algorithm Design». In: (Dec.
2024). arXiv:2405.05021. doi: 10.48550/arXiv.2405.05021. url: https:
//doi.org/10.48550/arXiv.2405.05021 (cit. on pp. 98, 100).

136

https://publications.rwth-aachen.de/record/229234/files/4979.pdf
https://publications.rwth-aachen.de/record/229234/files/4979.pdf
https://doi.org/10.1103/PhysRev.124.41
https://doi.org/10.1103/PhysRev.149.491
https://doi.org/10.1103/PhysRev.149.491
https://arxiv.org/pdf/2412.07670
https://arxiv.org/pdf/2412.07670
https://doi.org/10.1103/PhysRevX.6.031007
https://doi.org/10.1103/PhysRevX.6.031007
https://arxiv.org/abs/2310.06706
https://arxiv.org/abs/2310.06706
https://arxiv.org/abs/2310.06706v1
https://doi.org/10.48550/arXiv.2405.05021
https://doi.org/10.48550/arXiv.2405.05021
https://doi.org/10.48550/arXiv.2405.05021

	List of Tables
	List of Figures
	Acronyms
	I Theoretical Framework
	Introduction
	Quantum Computing
	Quantum Bit
	Quantum Circuit
	Quantum Algorithms and Hybrid Algorithms
	Quantum Fourier Transform


	Quantum Error Correction
	Introduction and Motivation
	Classical Error Correction Fundamentals
	Linear Block Codes

	General Quantum Error-Correcting Codes
	Code Distance and Error Correction Capability

	The Stabilizer Codes
	Error Detection and Correction
	Error Syndromes
	Encoding and Decoding of Stabilizer Codes
	CSS Codes

	The Gottesman-Knill Theorem
	Fault-Tolerant Quantum Computation
	Propagation of Errors in Quantum Gates


	Theory of Superconductivity
	Basic experimental evidences
	Perfect conductivity
	Perfect diamagnetism (Meissner effect)
	Critical magnetic field
	Energy gap

	The Macroscopic Quantum Model
	The Josephson Effect and the DC Josephson Effect
	Basic lumped Junctions and the AC Josephson Effect

	Implementation of Superconducting Qubits
	The IQM Spark Quantum Computer
	Overview
	Qubit Type
	Qubit Control
	Readout Mechanism
	Tunable Couplers
	QPU Packaging
	Refrigerator
	Signal Inputs and Outputs
	QPU Control Electronics
	Software



	II Benchmarking and Experimental Validation
	Encoded Deutsch-Jozsa
	Introduction
	Methods
	Results
	AerSimulator Results: The Noiseless Baseline
	IQMFakeAdonis Results: Performance on a Noisy Backend
	IQM Spark: Real Hardware Execution


	Encoded VQE for AIM
	Introduction
	Methods
	Results
	AerSimulator Results: The Noiseless Baseline
	IQMFakeAdonis Results: Performance on a Noisy Backend
	IQM Spark: Real Hardware Execution


	QRC with repeated measurements
	Introduction
	Methods
	Results
	IQMFakeAdonis Results: Performance on a Noisy Backend
	IQM Spark: Real Hardware Execution


	Conclusions
	Bibliography


