
Politecnico di Torino

Master’s Degree : Computer Engineering - Artificial Intelligence and Data Analytics
A.a. 2024/2025

Graduation Session October 2025

Optimizing Microcontroller
Performance Screening through
Data-Efficient Active Learning

An Experimental Study

Supervisors:
Riccardo Cantoro
Nicolò Bellarmino

Candidate:
Alessandro Vancini

Summary

Microcontrollers play a fundamental role in modern electronic systems, from con-
sumer devices to critical domains, such as the automotive and aerospace industries.
In order to ensure their reliability, microcontrollers undergo performance-based
screening during production. Underperforming units are typically detected by
measuring their maximum frequency under stressful operating conditions. However,
such testing is both expensive and time-consuming. The screening phase typically
provides only binary performance insights, but it could greatly benefit from the in-
tegration of real-valued information obtained with minimal effort through Machine
Learning algorithms. This thesis explores the use of Machine Learning techniques
to support and improve this screening phase, leveraging data from embedded Speed
Monitors as predictors of device performance. A variety of regression models are
evaluated and compared, with particular focus on how their accuracy evolves when
trained with different amounts of data. To address the high cost of labeled samples,
transfer learning strategies at database level are investigated, with the aim of
constructing optimized training sets with minimal labeling effort. The final result
of this experimentation is a set of learning curves that analyze the performance
of different models, generated with incremental data availability and different
sampling strategies, with the ultimate goal of improving predictive accuracy and
reducing test costs in industrial settings.

ii

Acknowledgements

I would like to sincerely thank Professor Riccardo Cantoro for giving me the
opportunity to work on this thesis. I am especially grateful to my supervisor,
Nicolò Bellarmino, for guiding me throughout these months, helping me overcome
the many technical challenges I faced, and providing valuable personal advice. I
also wish to thank Infineon Technologies AG for providing the data and information
essential to this work, and for the insights shared during our meetings. Through the
guidance of the Professor and my supervisor, and the collaboration with Infineon
Technologies AG, this experience has been an important opportunity for personal
growth, helping me develop skills and confidence that will undoubtedly be valuable
in my future professional endeavors.

I would also like to thank my friends, who supported me, listened to my
frustrations, offered advice, and, whether over a coffee, a game night, a simple walk,
or keeping me company on Discord, helped me navigate truly stressful moments
throughout my entire university journey.

A special thanks goes to my girlfriend, Sabrina, for being a pillar in my life
over these years, giving me strength and peace of mind, and for even having the
patience to follow my work and provide valuable suggestions, as well as offering
moments of reflection and complete breaks from studying to recharge.

Finally, I owe the greatest gratitude to my parents and family, who made
all of this possible from the very beginning. Despite moments of difficulty or
misunderstanding, they always believed in me and maintained a positive attitude,
even when I struggled to organize my life and studies. They worked tirelessly to
give me the opportunity to succeed. Their patience, support, and sacrifices have
allowed me to reach the end of this academic journey.

Finally, knowing this may sound inappropriate or even overly narcissistic, a
huge thank you to myself for persevering through these years and continuing to
move forward despite adversity.

iii

Ringraziamenti (Versione Italiana)
Vorrei ringraziare sinceramente il professor Riccardo Cantoro per avermi dato
l’opportunità di lavorare su questa tesi. Inoltre, sono particolarmente grato al mio
relatore, Nicolò Bellarmino, per avermi guidato durante questi mesi, aiutandomi a
risolvere le numerose sfide tecniche che ho dovuto affrontare e fornendomi preziosi
consigli personali. Desidero inoltre ringraziare Infineon Technologies AG per aver
fornito i dati e le informazioni fondamentali per questo lavoro, e per gli spunti
condivisi durante i nostri incontri. Grazie alla guida del professor Cantoro e del
mio relatore, e alla collaborazione con Infineon Technologies AG, questa esperienza
è stata un’importante occasione di crescita personale, che mi ha permesso di
sviluppare competenze e fiducia in me stesso che saranno senz’altro preziose nel
mio futuro percorso professionale.

Desidero inoltre ringraziare i miei amici, che mi hanno supportato, ascoltato
nei momenti di sfogo, dato consigli e, tra un caffè, una serata passata giocando,
una semplice passeggiata o facendomi compagnia su Discord, mi hanno aiutato ad
affrontare momenti davvero stressanti durante tutto il mio percorso universitario.

Un ringraziamento speciale va alla mia ragazza, Sabrina, per essere stata un
pilastro nella mia vita in questi anni, donandomi forza e serenità, e per aver avuto
la pazienza persino di seguire il mio lavoro e offrire suggerimenti preziosi, oltre a
momenti di riflessione e di completo stacco dallo studio per ricaricare le batterie.

Infine, sono profondamente grato ai miei genitori e alla mia famiglia, che hanno
reso tutto questo possibile fin dall’inizio. Anche se non sono mancati momenti di
difficoltà o di incomprensione, hanno sempre continuato a credere in me e mantenere
un atteggiamento positivo, anche quando faticavo a organizzare la mia vita e i miei
studi. Hanno lavorato instancabilmente per darmi la possibilità di avere successo.
La loro pazienza, il loro sostegno e i loro sacrifici mi hanno permesso di giungere al
termine di questo percorso accademico.

Infine, consapevole di sembrare inopportuno o persino di sembrare eccessivamente
narcisistico, un enorme grazie a me stesso per aver tenuto duro in questi anni e
continuato ad andare avanti nonostante le avversità.

iv

Table of Contents

List of Tables ix

List of Figures xi

1 Introduction 1
1.1 Problem Description . 1
1.2 Goal . 2
1.3 Related Work . 3
1.4 Organization . 3

2 Background: Microcontrollers and Testing 4
2.1 Microcontrollers . 4
2.2 Reliability Assessment . 5
2.3 Speed Monitors . 5
2.4 Wafer Classification . 6
2.5 Testing . 6
2.6 Application-Oriented SBST Programs 9

3 Background: Machine Learning 10
3.1 Core ML foundations . 12

3.1.1 Supervised vs. Unsupervised Learning 12
3.1.2 Linear Regression . 12
3.1.3 Feature Scaling . 13
3.1.4 Principal Component Analysis (PCA) 14
3.1.5 Ridge Regression . 14
3.1.6 Polynomial Features . 15

3.2 Model evaluation and behavior . 16
3.3 Active Learning . 18
3.4 Handling domain/data differences 18
3.5 Improving models with limited data 19

vi

4 Prior Work and Baseline Knowledge 21
4.1 Problem Definition . 21
4.2 Key Contributions . 22
4.3 Dataset and Modeling Overview . 22

4.3.1 Data Collection and Preprocessing 22
4.3.2 Regressor Chain: Conceptual Overview 23
4.3.3 Machine Learning and Multi-Target Approaches 23
4.3.4 Active Learning and Dataset-Shift Considerations 24

4.4 Experimental Results and Considerations 25

5 Methodology and Data 26
5.1 Datasets and Preprocessing . 26

5.1.1 Overview of Data . 26
5.1.2 Data Cleaning and Pruning 27
5.1.3 Feature Preprocessing . 28
5.1.4 Feature Space Reduction (PCA) 29
5.1.5 Feature Expansion . 30

5.2 Train-Test Split Strategy . 32
5.3 Learning Curve Strategies . 32

5.3.1 Incremental Strategies . 32
5.3.2 Experimental Procedure for Learning Curves 33

5.4 Active Learning Setup . 34
5.5 Experimental Design . 35

5.5.1 Evaluation Metrics and Methods 36
5.5.2 Comparisons and Analysis Objectives 37

6 Experiments and Results 38
6.1 Baseline Performance on Dataset A 38

6.1.1 Full-Dataset Training Evaluation 38
6.2 Multi-Dataset Experiments . 41

6.2.1 Full-Dataset Training on Combined Datasets 41
6.2.2 Dataset A Learning Curves (Baseline Reference) 55
6.2.3 Incremental Learning Strategy Comparison 56
6.2.4 Dataset Similarity Analysis 74

6.3 Active Learning Integration . 77
6.3.1 Comparison of the Best Performing Configurations 82

6.4 Complementary Experiments . 84
6.4.1 Alternative Scalers Evaluation 84
6.4.2 CORAL Experiments . 87
6.4.3 Wafer-type Based Training 87

vii

7 Conclusion 91
7.1 Summary of Findings . 91
7.2 Final Considerations . 93

Bibliography 94

viii

List of Tables

5.1 Dataset sizes before and after data pruning. 28

6.1 Normalized/relative performance metrics (baseline models - trained
on entirety of dataset A). 39

6.2 Normalized performance metrics (models trained on the full com-
bined dataset A + B, global StandardScaler, no binary labels in
training). 43

6.3 Normalized performance metrics (models trained on the full com-
bined dataset A + B, per-product scaler, binary labels in training). 44

6.4 Normalized performance metrics (models trained on the full com-
bined dataset A + C, global StandardScaler, no binary labels in
training). 45

6.5 Normalized performance metrics (models trained on the full com-
bined dataset A + C, per-product scaler, binary labels in training). 46

6.6 Normalized performance metrics (models trained on the full com-
bined dataset A + D, global StandardScaler, no binary labels in
training). 47

6.7 Normalized performance metrics (models trained on the full com-
bined dataset A + D, per-product scaler, binary labels in training). 48

6.8 Normalized performance metrics (models trained on the full com-
bined dataset A + B + C, global StandardScaler, no binary labels
in training). 49

6.9 Normalized performance metrics (models trained on the full com-
bined dataset A + B + C, per-product scaler, binary labels in
training). 50

6.10 Normalized performance metrics (models trained on the full com-
bined dataset A + B + D, global StandardScaler, no binary labels
in training). 51

6.11 Normalized performance metrics (models trained on the full com-
bined dataset A + B + D, per-product scaler, binary labels in
training). 52

ix

6.12 Normalized performance metrics (models trained on the full com-
bined dataset A + B + C + D, global StandardScaler, no binary
labels in training). 53

6.13 Normalized performance metrics (models trained on the full com-
bined dataset A + B + C + D, per-product scaler, binary labels in
training). 54

6.14 Comparison of nRMSE and err-STD at specific training set sizes
for Ridge and Polynomial Ridge models (corresponding to learning
curves in figs. 6.28 and 6.29). 56

6.15 Comparison of baseline Ridge (A) and the two best Strategy 2 (S2)
combinations (without AL) at different training set sizes. Metrics
shown: R2, MAPE, nRMSE, nMAE, Err-STD. 73

6.16 Comparison of nRMSE and err-STD at selected training set sizes
for Ridge models (Strategy 2) on the A+B+C dataset, with and
without active learning (AL). 78

6.17 Comparison of nRMSE and err-STD at selected training set sizes for
Ridge models (Strategy 2) on the A+C dataset, with and without
active learning (AL). 81

6.18 Comparison at selected training set sizes for Ridge models (Strategy
2) on the A+B+C dataset with AL and baseline reference. Metrics
shown: R2, MAPE, nRMSE, nMAE, Err-STD. 83

6.19 Comparison at selected training set sizes for the optimal configu-
ration (A+B+C w/ AL, Strategy 2) using StandardScaler versus
RobustScaler in the per-product scaling strategy. Metrics shown:
R2, MAPE, nRMSE, nMAE, and Err-STD. 86

6.20 Comparison at selected training set sizes of best configurations and
and baseline reference (production wafer-only test set). Metrics
shown: R2, nRMSE, Err-STD. “#P” and “#S” indicate the number
of production and split-lot samples in the training set. 90

x

List of Figures

5.1 Preprocessing pipeline for microcontroller test data. 31

6.1 Actual vs. predicted (normalized) values - Ridge (dataset A). 39
6.2 Actual vs. predicted values - Polynomial Ridge (dataset A). 40
6.3 Actual vs. predicted (normalized) values - tabPFN (dataset A). . . 40
6.4 Actual vs. predicted values - Ridge (dataset A + B, global Stan-

dardScaler, no binary labels in training). 43
6.5 Actual vs. predicted values - Polynomial Ridge (dataset A + B,

global StandardScaler, no binary labels in training). 43
6.6 Actual vs. predicted values - Ridge (dataset A + B, per-product

scaler, binary labels in training). 44
6.7 Actual vs. predicted values - Polynomial Ridge (dataset A + B,

per-product scaler, binary labels in training). 44
6.8 Actual vs. predicted values - Ridge (dataset A + C, global Stan-

dardScaler, no binary labels in training). 45
6.9 Actual vs. predicted values - Polynomial Ridge (dataset A + C,

global StandardScaler, no binary labels in training). 45
6.10 Actual vs. predicted values - Ridge (dataset A + C, per-product

scaler, binary labels in training). 46
6.11 Actual vs. predicted values - Polynomial Ridge (dataset A + C,

per-product scaler, binary labels in training). 46
6.12 Actual vs. predicted values - Ridge (dataset A + D, global Stan-

dardScaler, no binary labels in training). 47
6.13 Actual vs. predicted values - Polynomial Ridge (dataset A + D,

global StandardScaler, no binary labels in training). 47
6.14 Actual vs. predicted values - Ridge (dataset A + D, per-product

scaler, binary labels in training). 48
6.15 Actual vs. predicted values - Polynomial Ridge (dataset A + D,

per-product scaler, binary labels in training). 48
6.16 Actual vs. predicted values - Ridge (dataset A + B + C, global

StandardScaler, no binary labels in training). 49

xi

6.17 Actual vs. predicted values - Polynomial Ridge (dataset A + B +
C, global StandardScaler, no binary labels in training). 49

6.18 Actual vs. predicted values - Ridge (dataset A + B + C, per-product
scaler, binary labels in training). 50

6.19 Actual vs. predicted values - Polynomial Ridge (dataset A + B +
C, per-product scaler, binary labels in training). 50

6.20 Actual vs. predicted values - Ridge (dataset A + B + D, global
StandardScaler, no binary labels in training). 51

6.21 Actual vs. predicted values - Polynomial Ridge (dataset A + B +
D, global StandardScaler, no binary labels in training). 51

6.22 Actual vs. predicted values - Ridge (dataset A + B + D, per-product
scaler, binary labels in training). 52

6.23 Actual vs. predicted values - Polynomial Ridge (dataset A + B +
D, per-product scaler, binary labels in training). 52

6.24 Actual vs. predicted values - Ridge (dataset A + B + C + D, global
StandardScaler, no binary labels in training). 53

6.25 Actual vs. predicted values - Polynomial Ridge (dataset A + B + C
+ D, global StandardScaler, no binary labels in training). 53

6.26 Actual vs. predicted values - Ridge (dataset A + B + C + D,
per-product scaler, binary labels in training). 54

6.27 Actual vs. predicted values - Polynomial Ridge (dataset A + B + C
+ D, per-product scaler, binary labels in training). 54

6.28 Learning curves of Ridge and Polynomial Ridge models on dataset
A: nRMSE versus training set size. 55

6.29 Learning curves of Ridge and Polynomial Ridge models on dataset
A: err-STD versus training set size. 55

6.30 Learning curves (nRMSE versus training set size): baseline Ridge
model (A), Ridge with Strategy 1 (A+B). 57

6.31 Learning curves (err-STD versus training set size): baseline Ridge
model (A), Ridge with Strategy 1 (A+B). 57

6.32 Learning curves (nRMSE versus training set size): baseline Ridge
model (A), Ridge with Strategy 1 (A+B+C). 58

6.33 Learning curves (err-STD versus training set size): baseline Ridge
model (A), Ridge with Strategy 1 (A+B+C). 58

6.34 Learning curves (nRMSE versus training set size): baseline Ridge
model (A), Ridge with Strategy 1 (A+B+C+D). 59

6.35 Learning curves (err-STD versus training set size): baseline Ridge
model (A), Ridge with Strategy 1 (A+B+C+D). 59

6.36 Learning curves (nRMSE versus training set size): baseline Ridge
model (A), Ridge with Strategy 2 (A+B, global StandardScaler, no
binary labels in training). 60

xii

6.37 Learning curves (err-STD versus training set size): baseline Ridge
model (A), Ridge with Strategy 2 (A+B, global StandardScaler, no
binary labels in training). 60

6.38 Learning curves (nRMSE versus training set size): baseline Ridge
model (A), Ridge with Strategy 2 (A+B, per-product scaler, binary
labels in training). 61

6.39 Learning curves (err-STD versus training set size): baseline Ridge
model (A), Ridge with Strategy 2 (A+B, per-product scaler, binary
labels in training). 61

6.40 Learning curves (nRMSE versus training set size): baseline Ridge
model (A), Ridge with Strategy 2 (A+C, global StandardScaler, no
binary labels in training). 62

6.41 Learning curves (err-STD versus training set size): baseline Ridge
model (A), Ridge with Strategy 2 (A+C, global StandardScaler, no
binary labels in training). 62

6.42 Learning curves (nRMSE versus training set size): baseline Ridge
model (A), Ridge with Strategy 2 (A+C, per-product scaler, binary
labels in training). 63

6.43 Learning curves (err-STD versus training set size): baseline Ridge
model (A), Ridge with Strategy 2 (A+C, per-product scaler, binary
labels in training). 63

6.44 Learning curves (nRMSE versus training set size): baseline Ridge
model (A), Ridge with Strategy 2 (A+D, global StandardScaler, no
binary labels in training). 64

6.45 Learning curves (err-STD versus training set size): baseline Ridge
model (A), Ridge with Strategy 2 (A+D, global StandardScaler, no
binary labels in training). 64

6.46 Learning curves (nRMSE versus training set size): baseline Ridge
model (A), Ridge with Strategy 2 (A+D, per-product scaler, binary
labels in training). 65

6.47 Learning curves (err-STD versus training set size): baseline Ridge
model (A), Ridge with Strategy 2 (A+D, per-product scaler, binary
labels in training). 65

6.48 Learning curves (nRMSE versus training set size): baseline Ridge
model (A), Ridge with Strategy 2 (A+B+C, global StandardScaler,
no binary labels in training). 66

6.49 Learning curves (err-STD versus training set size): baseline Ridge
model (A), Ridge with Strategy 2 (A+B+C, global StandardScaler,
no binary labels in training). 66

xiii

6.50 Learning curves (nRMSE versus training set size): baseline Ridge
model (A), Ridge with Strategy 2 (A+B+C, per-product scaler,
binary labels in training). 67

6.51 Learning curves (err-STD versus training set size): baseline Ridge
model (A), Ridge with Strategy 2 (A+B+C, per-product scaler,
binary labels in training). 67

6.52 Learning curves (nRMSE versus training set size): baseline Ridge
model (A), Ridge with Strategy 2 (A+B+D, global StandardScaler,
no binary labels in training). 68

6.53 Learning curves (err-STD versus training set size): baseline Ridge
model (A), Ridge with Strategy 2 (A+B+D, global StandardScaler,
no binary labels in training). 68

6.54 Learning curves (nRMSE versus training set size): baseline Ridge
model (A), Ridge with Strategy 2 (A+B+D, per-product scaler,
binary labels in training). 69

6.55 Learning curves (err-STD versus training set size): baseline Ridge
model (A), Ridge with Strategy 2 (A+B+D, per-product scaler,
binary labels in training). 69

6.56 Learning curves (nRMSE versus training set size): baseline Ridge
model (A), Ridge with Strategy 2 (A+B+C+D, global Standard-
Scaler, no binary labels in training). 70

6.57 Learning curves (err-STD versus training set size): baseline Ridge
model (A), Ridge with Strategy 2 (A+B+C+D, global Standard-
Scaler, no binary labels in training). 70

6.58 Learning curves (nRMSE versus training set size): baseline Ridge
model (A), Ridge with Strategy 2 (A+B+C+D, per-product scaler,
binary labels in training). 71

6.59 Learning curves (err-STD versus training set size): baseline Ridge
model (A), Ridge with Strategy 2 (A+B+C+D, per-product scaler,
binary labels in training). 71

6.60 Learning curves (nRMSE versus training set size): comparison be-
tween baseline and best configurations (Strategy 2, without AL). . . 73

6.61 Datasets B, C, and D grouped bar plot of percentage of features per
divergence ranges with respect to dataset A. 74

6.62 Datasets B, C, and D divergence value for prediction target value
with respect to dataset A. 75

6.63 Prediction target variable density plots for each dataset. 76
6.64 Comparison of nRMSE from S2 Ridge A+B+C with and without AL. 77
6.65 Comparison of err-STD from S2 Ridge A+B+C with and without AL. 77
6.66 Comparison of nRMSE: S2 Ridge A+B+C with AL vs baseline

model (Ridge, A). 78

xiv

6.67 Comparison of nRMSE from S2 Ridge A+B+C+D with and without
AL. 79

6.68 Comparison of err-STD from S2 Ridge A+B+C+D with and without
AL. 79

6.69 Comparison of nRMSE from S2 Ridge A+B+C+D with and without
AL and with baseline reference. 79

6.70 Comparison of nRMSE from S2 Ridge A+C with and without AL. . 80
6.71 Comparison of err-STD from S2 Ridge A+C with and without AL. 80
6.72 Comparison of nRMSE from S2 Ridge A+C with and without AL

and with baseline reference. 81
6.73 Comparison of nRMSE from the three best performing configurations

and baseline reference. 82
6.74 Comparison of nRMSE from the three best performing configurations

and baseline reference (lower range, 50 samples and below). 82
6.75 nRMSE learning curve comparison for the optimal configuration

(A+B+C with Active Learning, Strategy 2), highlighting the effect of
using StandardScaler versus MinMaxScaler within the per-product
scaling strategy. 84

6.76 nRMSE learning curve comparison for the optimal configuration
(A+B+C with Active Learning, Strategy 2), highlighting the effect of
using StandardScaler versus RobustScaler within the per-product
scaling strategy. 85

6.77 nRMSE learning curve comparison for the optimal configuration
(A+B+C with Active Learning, Strategy 2), highlighting the effect of
using StandardScaler versus MaxAbsScaler within the per-product
scaling strategy. 85

6.78 nRMSE learning curve comparison for the optimal configuration
(A+B+C with Active Learning, Strategy 2), highlighting the im-
provement of using RobustScaler within the per-product scaling
strategy versus second best optimal configuration (A+B+C+D,
without Active Learning, Strategy 2). 86

6.79 Comparison of nRMSE plots (learning curves) of baseline reference
model (Ridge, A) for mixed, split-lot only, and production only test
sets. 88

6.80 Comparison of nRMSE plots (learning curves) of second best configu-
ration (Ridge, A+B+C+D, without AL, Strategy 2) for mixed,split-
lot only, and production only test sets. 88

6.81 Comparison of nRMSE plots (learning curves) of second best config-
uration (Ridge, A+B+C, without AL, Strategy 2, RobustScaler) for
mixed,split-lot only, and production only test sets. 89

xv

Chapter 1

Introduction

Machine learning is a rapidly developing field of research, driven by the strong
attention it has received from the scientific community in recent years, and rightly
so, as its impact and applications continue to expand. As a branch of the broader
field of Artificial Intelligence, it is widely applied to support decision-making
processes across numerous disciplines. Its effectiveness lies in the ability of models
to automatically learn patterns from data and use them to generate predictions
that can assist human experts in their tasks.

1.1 Problem Description
In this work, machine learning models with different configurations are employed to
predict the performance of microcontrollers manufactured by Infineon Technologies
A.G (specifically designed for the automotive field). These models are intended to be
integrated into the production test flow to help achieve the security and performance
standard. The performance of such microcontrollers is measured by finding their
maximum operating frequency under worst-case voltage and temperature conditions.

Manufacturers of automotive microcontrollers, such as Infineon, must guarantee
the reliability of the devices they produce. This means making sure that each
unit can operate at the required minimum operating frequency even under disad-
vantageous environmental conditions. The automotive sector is particularly strict
with quality standards, tolerating a maximum of 0.1 defective parts per million.
Given that such constraints are fundamental, manufacturers have naturally adopted
different screening processes to separate robust devices from those that do not
meet performance requirements, ensuring that these sub-optimal units never reach
the customer. However, carrying out these screening procedures is costly and
time-consuming, as they require extensive testing to obtain a sufficient quantity of
measurements under extreme conditions. In this work, the problem is addressed

1

Introduction

through the exploration of machine learning models that operate on a reduced
set of measurements, available from early-stage testing, to predict the maximum
operating frequency.

The objective is to predict the worst-case maximum operating frequency with
sufficient accuracy, while minimizing the need for exhaustive performance char-
acterization. Ultimately, the models can be integrated into the production flow
to improve efficiency and reduce costs, while maintaining the required reliability
standards.

1.2 Goal
The goal of this work is to develop machine learning models to predict the worst-
case maximum operating frequency of automotive microcontrollers manufactured by
Infineon Technologies AG, where the prediction relies on measurements, collected
in the early stages of production, by Speed Monitors (ring oscillators integrated in
devices that capture physical quantities related to circuit performance). The models
aim to establish a mathematical relationship between these measurements and the
operating frequencies, enabling the generation of predictions of the frequency under
critical voltage and temperature conditions. This approach shortens testing time
and reduces resource usage while maintaining reliability, improving the performance
screening process by providing detailed, real-valued estimates of the maximum
operating frequency with minimal additional effort.

This study addresses several challenges:
• Limited data availability: Only a small number of devices and their

associated measurements can be used for training, requiring careful selection
of samples.

• Production variability: Data comes from non-stationary environments and
inter-wafer variations, which can reduce prediction accuracy.

• Multi-generation devices: Older microcontroller generations are included
to improve predictions on the latest generation of devices (A) leveraging
transfer learning principles.

• Lightweight model requirements: Pipelines must be efficient to allow
potential deployment directly on devices or in hardware-constrained environ-
ments, motivating Ridge as the most efficient option.

2

Introduction

1.3 Related Work
The experimental foundation of this work derives from previous research (Com-
putational Intelligence Techniques for Device Testing, Nicolò Bellarmino, 2021
[1]), which itself builds on earlier work on performance prediction from speed
monitor measurements [2] and the application of active learning for training set
optimization [3]. The fusion of these ideas led to the development of pipelines for
model training and produced detailed analyses of PCA, dataset distributions, and
multi-task learning. Furthermore, it highlighted the potential of lightweight models
such as Ridge and Polynomial Ridge regressors. Expanding on these findings, the
present study empirically evaluates predictive models, scaling strategies, and sample
efficiency across various training strategies, data combinations, and preprocessing
approaches.

1.4 Organization
The work is organized as follows: Chapter 2 provides background on automotive
microcontrollers and the industrial testing process, with particular emphasis on
early-stage measurements from speed monitors. Chapter 3 introduces the machine
learning concepts relevant to this work, including regression methods, feature
scaling, and strategies for handling dataset shift. Chapter 4 summarizes prior
research that serves as the baseline and motivation for the present study. Chapter
5 describes the datasets, preprocessing pipeline, and methodology adopted, includ-
ing scaling, learning curve strategies, and active learning approaches. Chapter 6
presents the main experiments and results, covering baseline models, comparisons
between learning strategies, scaling techniques, wafer type distinctions, and feature
similarity analyses. Finally, Chapter 7 summarizes the findings, highlights their
implications for production testing, and discusses future research directions.

3

Chapter 2

Background:
Microcontrollers and Testing

2.1 Microcontrollers
A microcontroller unit (MCU) can be thought of as a compact computer on a
single chip, designed to handle dedicated tasks within embedded systems without
the need for a full operating system. These integrated circuits incorporate a
central processing unit (CPU), memory (both volatile RAM for temporary data
and non-volatile flash or EEPROM), and a set of peripherals, such as timers,
counters, analog-to-digital (ADC) and digital-to-analog (DAC) converters, and
communication interfaces like UART, SPI, or I2C.

Unlike standard microprocessors, microcontrollers integrate processing, mem-
ory, and I/O functionality in a single chip, enabling efficient real-time control of
devices. They are particularly suited for applications that require monitoring and
signal processing, including controlling motors, reading sensors, and managing
communication with other modules.

Automotive microcontrollers, in particular, are optimized for reliability, real-time
processing, and operation under wide temperature and voltage ranges. They often
include built-in diagnostic and safety features, along with specialized hardware
modules like timers and on-chip monitoring structures like ring oscillators or Speed
Monitors. These monitoring structures provide low-level measurements correlated
with device performance, which can be exploited to predict operational charac-
teristics and support production testing, removing the need for a full functional
evaluation of every device.

Microcontrollers are widely applied in battery-powered consumer devices like
smartphones and wearables, but also in professional environments such as auto-
motive systems, industrial automation, robotics, and IoT solutions. They can be

4

Background: Microcontrollers and Testing

programmed with languages such as C, C++, or Python, making them accessible
to both developers working on personal or home projects, as well as engineers
working on professional and industrial applications.

2.2 Reliability Assessment
To guarantee that devices perform as intended under critical operating conditions,
manufacturers conduct systematic tests, including performance screening, which
evaluates the maximum operating frequency under critical voltage, temperature, and
task execution conditions. Units that do not meet performance criteria are discarded,
ensuring that only compliant devices reach the customer. In the automotive
sector, where quality standards are extremely high, and even a minimal fraction of
defective units is unacceptable, extensive screening is required. This process relies
on speed monitors, on-chip ring oscillators that capture physical quantities related
to circuit performance, to efficiently identify underperforming devices. Traditionally,
performance screening is carried out by executing dedicated test programs, which
in this work are used to determine the maximum operating frequency. The use
of speed monitors as predictive features, instead, represents a non-standard yet
innovative approach forming the basis of a new framework being developed in
collaboration with Infineon. This methodology allows the implementation of the
so-called Alternate Test, which allows estimating key performance parameters, like
the maximum frequency, from alternative but correlated measurements, such as
the oscillation frequencies of the speed monitors.

2.3 Speed Monitors
As already mentioned, Speed Monitors (SMONs) are ring oscillators integrated
in the microcontroller itself. More specifically, a ring oscillator consists of a
cascaded chain of an odd number of inverters (logical NOT gates) arranged in a
ring, meaning that the output of the last inverter in the chain is fed back into
the first one. Since each inverter adds a small propagation delay to the signal,
the signal continuously toggles, producing a stable square-wave oscillation. The
frequency of this oscillation is highly sensitive to variation in the manufacturing
process, voltage and temperature which directly affect the delay introduced by
each inverter. Thanks to this sensitivity, Speed Monitors are capable of capturing
critical information about the performance of the device at an early production
stage. By placing multiple ring oscillators across a wafer, manufacturers can assess
local variations in fabrication and detect underperforming units before proceeding
further in the production pipeline. In the automotive context, ring oscillators
provide a quick and low-cost method to perform performance screening, making

5

Background: Microcontrollers and Testing

them one of the most versatile tools for chip evaluation. In this study, the evaluation
of device performance relies exclusively on measurements obtained from Speed
Monitors. The core assumption is that a direct relationship exists between the
oscillation frequencies of these monitors and the maximum operating frequency
of the microcontroller. Each device includes approximately 130 Speed Monitors,
organized into identical modules distributed across different regions of the die to
capture within-die variations. In earlier product generations, the number of Speed
Monitors was limited to 27, categorized into five structural groups (INV, NAND,
NOR, and VM). The increased number and distributed placement of SMONs in
newer devices provide a more comprehensive characterization of the device, enabling
more accurate performance modeling. Further information on SMON placement
strategies and feature grouping for MCU performance screening can be found in [4,
5]. The information collected from the Speed Monitors serve as the primary input
features for predicting the operational performance of each device, providing an
indirect yet reliable estimation of performance through machine learning models.

2.4 Wafer Classification
In the context of wafer-based microcontroller production, it is important to distin-
guish between standard production wafers and split-lot wafers, as each serves a
specific role. Production wafers represent the fully processed units, intended for
distribution to the customer and mass fabrication. In contrast, split-lot wafers are
a subset separated from production lots for engineering purposes: they are used
to explore parameter spaces, test corner cases and evaluate design choices before
implementation in full production. Therefore, these wafers are not intended to
be reach the customer, but instead are used to study performance variations and
possible optimizations. In this work, by including both production and split-lot
wafers in the training set, it was possible to assess how the proportion of each type
affects model accuracy on production, split-lot, and mixed test sets.

2.5 Testing
Testing of integrated circuits (ICs) is essential to ensure that devices meet the
specifications declared in their datasheets, especially when it comes to maximum
operating frequency and functional performance. Although testing is both time and
cost intensive, it remains indispensable for delivering reliable devices. Therefore,
an optimal trade-off between test coverage and production costs must be found.

IC testing occurs at multiple stages of the product’s life-cycle. During the
design phase, validation tests verify that the design can theoretically meet the
specifications. Then, characterization tests are performed on the first prototypes

6

Background: Microcontrollers and Testing

to identify potential failures, triggering design revisions if necessary. After these
preliminary stages, large-scale production begins, with on-wafer testing performed
before the chips are diced and packaged. Finally, post-packaging tests verify the
correctness of the assembly process, and in some cases, in-field tests may be
performed to validate the device under real operating conditions.

Beyond this life-cycle perspective, different types of tests target specific aspects
of IC quality and reliability. Wafer testing is carried out in the early stages of
production to identify defective chips before dicing. Reliability testing evaluates
long-term device behavior by subjecting ICs to stress conditions to uncover potential
degradation mechanisms. Parametric testing measures electrical characteristics such
as voltage, current, and resistance, ensuring they remain within the specification.
Finally, memory testing focuses on verifying correct operation of memory blocks
and data storage functionality.

7

Background: Microcontrollers and Testing

Test strategies can be broadly classified into two categories:

• Functional tests: These verify whether the IC performs according to its
specifications by simulating real-world usage. This typically involve providing
input to the IC, and then observing its output to confirm it behaves as expected,
without relying on any knowledge of the internal structure. However, for
modern digital microcontrollers, exhaustive functional verification has become
infeasible due to the increasing complexity of their functionality.

• Structural tests: These aim to detect faults in the circuit itself rather than
verifying every functional aspect. Structural testing generally involves checking
individual components and their physical interconnections to ensure they are
correctly placed and assembled according to the circuit’s design. These tests
may require additional external equipment and can be costly, particularly for
devices with a large number of pins.

The key difference is that functional testing focuses on what the circuit does (its
behavior and applications), whereas structural testing examines how it is built and
connected.

To reduce costs and facilitate testing, features can be embedded into the chip
itself. The design phase of the chip then also has to take into account the presence
of required structures used for testing; this approach is also known as Design for
Testability or Design for Testing (DfT). An alternative approach for microcontrollers
is Software Based Self Test (SBST), which relies on executing tests through specific
test programs that run inside the assembled system itself. These tests, executed by
the processor, will exercise parts of the circuit and collect responses for evaluation
making use of existing special instructions and performance monitoring mechanisms
of the processor. The SBST approach is non-intrusive, does not require additional
hardware, and runs at the processor’s actual speed, allowing to detect defects that
might be missed at lower speeds. Moreover, it provides a flexible and low-cost
solution for testing embedded processors, especially those with limited circuitry
dedicated to testing. However, despite the fact that SBST allows for a broader
range of checks at lower cost and is easily applicable in the field, it is typically used
to complement rather than replace traditional test strategies.

8

Background: Microcontrollers and Testing

2.6 Application-Oriented SBST Programs
Within the SBST framework, the performance of each microcontroller is assessed
by executing a set of application-oriented programs directly on the packaged die.
These programs, referred to as functional patterns, are designed to emulate realistic
customer workloads. For example, some reproduce complete applications, while
others specifically target critical sub-circuits of the chip. In this way, all major
functional aspects are exercised under representative operating conditions.

For each pattern, the operating frequency is gradually increased until a failure
is observed. This procedure is repeated five times, and the median frequency is
recorded to mitigate measurement noise. The evaluation relies on ten distinct
patterns, ensuring a broad coverage of possible use cases. The lowest maximum
frequency among them, referred to as the critical pattern frequency, is used as
the decisive metric for device classification. If this value falls below a prede-
fined performance threshold, the device is labeled as defective and excluded from
shipment.

This methodology balances realism and precision by combining diverse functional
scenarios with systematic frequency stepping. This allows manufacturers to obtain a
reliable characterization of device performance that reflects both customer-oriented
usage and critical hardware limitations.

9

Chapter 3

Background: Machine
Learning

Machine Learning (ML) is a branch of artificial intelligence, whose core idea is to
learn patterns from data rather than relying on explicit programming and modeling.
Instead of relying on fixed rules or pre-defined mappings between input and output,
ML systems improve their performance as they are exposed to more data. This
makes them particularly suitable for complex problems where explicit modeling
is infeasible. Over the past decade, ML has gained prominence across virtually
all scientific and engineering domains, driven both by the exponential growth of
available data and by advances in computational power and learning algorithms.
Applications span diverse fields, from natural language processing and analysis of
medical imaging, to autonomous driving. In each field, ML has proven capable of
extracting meaningful representations from high-dimensional data and mapping
them to accurate predictions in real-world scenarios. Within the semiconductor
industry, and in particular for microcontroller testing, these same capabilities open
new opportunities for performance prediction, test optimization, and reliability
assessment.

Moreover, at its core, ML relies on the concept of training a model on a dataset
and evaluating its ability to generalize to unseen data. The typical ML workflow
generally consists of data collection, preprocessing, feature engineering, model
training, and finally performance evaluation. A key factor in achieving good results
is the quality and representativeness of the training data, since a model can only
learn the patterns present in the training data it is exposed to. In this context, the
notions of overfitting and underfitting describe the balance between memorizing
training examples and learning patterns that allow the model to generalize well. A
model is said to overfit when it adapts too closely to the properties and noise of
the training data, achieving excellent accuracy on this or other data drawn from a

10

Background: Machine Learning

similar distribution, but poor performance on unseen data. Conversely, it is said to
underfit when the model fails to capture the underlying relationships, leading to
poor overall accuracy (both on training set and on unseen data). To address these
challenges and improve robustness, ML engineers often rely on techniques such
as feature scaling, dimensionality reduction, and regularization. These methods
improve the ability of models to generalize and mitigate the issues arising from
noise or high-dimensionality in the data.

In the semiconductor industry, and specifically in the testing of microcontrollers,
ML has emerged as a valuable tool to face challenges posed by increasing circuit
complexity and stringent performance requirements. Traditional test strategies,
while effective, unfortunately suffer from high costs and limited flexibility and
scalability when dealing with modern and more complex devices, which can have
millions of transistors and a huge variety of applications. Therefore, given these
limitations of traditional testing approaches, ML is becoming progressively more
adopted and explored in field of microcontrollers testing, offering the potential
of learning correlations between test data and device performance to predict key
metrics (e.g. maximum operating frequency). This can significantly reduce test
time and cost, while maintaining or even improving reliability.

In recent years, various studies have highlighted the potential of machine learn-
ing in the field of integrated circuit testing and semiconductor manufacturing
([6],[7],[8],[9]). These works discuss how ML can complement and, in some cases
even outperform, traditional testing and analysis methods, especially when applied
to industrial datasets and real-world case studies. Applications cover a broad range
of tasks, including performance prediction, defect detection, process optimization,
and reliability assessment. The relevance of ML grows as semiconductor technology
evolves towards increasingly complex System on Chip (SoC) designs. Collectively,
these studies illustrate that ML provides a powerful tool to extract meaningful
patterns from the large volumes of structured data that are routinely generated,
but often not fully exploited.

In the context of this thesis, machine learning provides the foundation for
analyzing and predicting microcontroller performance based on functional test
patterns. By leveraging regression models, dimensionality reduction techniques,
and active learning strategies, the goal is to estimate the worst-case maximum
operating frequency of a device (the lowest maximum frequency observed across
all applied test patterns) using fewer measurements, thereby reducing the overall
testing burden. Additional concepts such as domain adaptation and dataset-shift
considerations are also relevant, as measurements from devices tested under varying
conditions may follow significantly different distributions.

11

Background: Machine Learning

3.1 Core ML foundations

3.1.1 Supervised vs. Unsupervised Learning
Machine learning tasks are commonly divided into two broad categories:

• Supervised learning: The model is trained on data for which both inputs
and corresponding outputs (labels) are known. The objective of the learning
process is finding the mapping between input features and outputs. Typical
supervised tasks include classification, where the goal is assigning an input to
one of two or more categories; and regression, where the output is instead a
continuous numerical value.

• Unsupervised learning: The model deals with unlabeled data, aiming to
uncover hidden structures or groupings in the data, often through clustering
or dimensionality reduction.

In the context of the present work, supervised learning is the central paradigm,
since the available data consist of input features derived from functional test
patterns together with corresponding labels indicating device performance.

3.1.2 Linear Regression
Linear regression is a fundamental supervised learning method used to model the
relationship between a set of input variables x ∈ RD and a continuous output
y ∈ R. At its core, linear regression assumes that the output can be expressed as a
linear combination of the inputs:

y = w⊤x + b + ϵ, (3.1)

where w are the weights, b is a bias term, and ϵ is an error term capturing
the noise in the data. Formally, linear regression can be seen as a hypothesis
space hθ(x) parameterized by θ = (w, b), and the optimal parameters are found by
minimizing a cost function. The most common choice is the mean squared error
(MSE) over the training dataset:

MSE(θ) = 1
N

NØ
i=1

1
yi − hθ(xi)

22
, (3.2)

which corresponds to the classical least squares solution. From a probabilistic
perspective, assuming Gaussian noise on the outputs, minimizing the MSE is
equivalent to maximizing the likelihood of the observed data under the model
(maximum likelihood estimation). This dual interpretation allows linear regression
to be understood in two complementary ways: as a deterministic optimization

12

Background: Machine Learning

problem, focusing on fitting parameters to minimize prediction error; and as a
probabilistic model, focusing on explaining the distribution of outputs given inputs.

Extensions such as multiple outputs, regularization techniques, and Bayesian
linear regression further expand the model’s flexibility and robustness. These
theoretical concepts, in addition to many others such as regularization techniques
or the probabilistic vs deterministic interpretation, are described in detail in Bishop
(2006, Ch. 3, pp. 137–143) [10].

3.1.3 Feature Scaling
Machine learning algorithms are often sensitive to the relative magnitude of input
features. When features have different units or ranges, those with larger scales can
dominate distance-based metrics (functions that measure how far apart two data
points are in the feature space) or disproportionately affect optimization during
training. Dealing with this problem is of utmost importance, since many ML
algorithms rely on distance-based metrics (therefore on the geometry of the feature
space) and a disparity in the scale of the features would completely compromise
the learning process. Feature scaling refers to the process of transforming input
variables so that they share comparable ranges or distributions mitigating this
problem and improving the performance of the model, ensuring that all features
contribute proportionally to the learning process. To be more precise, when input
variables differ greatly in scale, optimization processes such as gradient descent
may converge slowly or become highly biased towards those features with larger
numerical ranges [10, Ch. 3].

A widely used approach is standard scaling, which transforms features to have
zero mean and unit variance. Formally, given a feature x, its standardized form is
obtained as

x′ = x − µ

σ
,

where µ and σ denote the mean and standard deviation of the feature across
the training set. This procedure is implemented, for instance, in scikit-learn (an
open-source Python library for machine learning and data analysis [11]) through the
StandardScaler class [12]. Another common technique is min–max normalization,
which linearly rescales data to a fixed interval such as [0,1].

In this work in particular, normalization is essential on a practical level since,
without it, regression-based models could distort the relationships between features
and device performance.

13

Background: Machine Learning

3.1.4 Principal Component Analysis (PCA)
Principal Component Analysis (PCA) is a widely used dimensionality reduction
technique that transforms a set of possibly correlated features into a set of linearly
uncorrelated variables called principal components [13]. Given a dataset X ∈ Rn×d

with n samples and d features, PCA seeks a set of orthogonal vectors w1, . . . , wk

(principal components) that maximize the variance of the projections of the data:

zi = Xwi, i = 1, . . . , k,

subject to orthonormality constraints

w⊤
i wj = δij,

where δij is the Kronecker delta, equal to 1 if i = j and 0 otherwise. Each vector
zi represents the projection of the original data onto the i-th principal component,
capturing the maximum variance along that direction. The orthonormality con-
straints ensure that different components are uncorrelated and that each has unit
length, avoiding redundancy in the captured information. The first component w1
captures the maximum variance in the data, the second captures the maximum
remaining variance orthogonal to the first, and so on. By projecting the data
onto the first k components, dimensionality is reduced while retaining most of the
information.

In this work, PCA is applied to microcontroller test measurements to reduce the
feature space, simplifying regression models. This not only allows more efficient
training, but by filtering out redundant or noisy features, can additionally improve
predictive performance, and also results in more lightweight models, as required by
hardware-constrained environments.

3.1.5 Ridge Regression
Ridge regression, also known as Tikhonov regularization, is an extension of linear
regression that introduces a penalty term on the magnitude of the model coefficients.
Specifically, it is a regularization technique used to estimate regression coefficients
when the independent variables are highly correlated or when the model is at
risk of overfitting. By penalizing large coefficients, Ridge regression stabilizes the
estimates and improves the model’s generalization to unseen data. Formally, given
a dataset with input features X ∈ Rn×d and output targets y ∈ Rn, the Ridge
objective is

β̂ = arg min
β

î
∥y − Xβ∥2

2 + λ∥β∥2
2

ï
,

where λ ≥ 0 is the regularization parameter controlling the strength of the
penalty. The vector β contains the weights assigned to each feature, and the

14

Background: Machine Learning

regularization term λ∥β∥2
2 discourages excessively large coefficients, helping to

prevent overfitting and improving generalization. The first term is the least squares
error, while the second term is responsible for penalizing large coefficients, reducing
model complexity and mitigating overfitting, especially when features are highly
correlated or the dataset is high-dimensional.

Ridge regression is widely used in practice because it provides more stable and
generalizable models than ordinary least squares in these scenarios. It provides also
robustness against correlations between features, improving again generalization to
unseen data [10, Ch. 3, pp. 138–142].

3.1.6 Polynomial Features
Polynomial features are a technique used to extend linear models by introducing
non-linear relationships between the original features. Given an input vector
x = [x1, x2, . . . , xd]⊤, polynomial feature expansion generates new features by
including all products of the original features up to a specified degree p. For
instance, for degree p = 2 and two features x1 and x2, the expanded feature vector
becomes

ϕ(x) = [1, x1, x2, x2
1, x1x2, x2

2]⊤.

Mathematically, polynomial regression can still be formulated as a linear regres-
sion problem in the transformed feature space:

y ≈ w⊤ϕ(x) + ϵ,

where w are the weights in the polynomial feature space and ϵ represents the noise
term. Given an original feature vector of dimension d and a polynomial degree p,
the total number of features after expansion grows combinatorially as

Nfeatures =
A

d + p

p

B
= (d + p)!

d! p! ,

The main advantage of using polynomial features is that they allow linear models to
capture non-linear dependencies in the data while still benefiting from the convex
optimization (minimization of a convex cost function, typically the mean squared
error plus a regularization term) properties of linear models. However, increasing
the polynomial degree may lead to higher-dimensional feature spaces, which can
exacerbate overfitting and computational cost if not combined with regularization
techniques.

In this work, polynomial features were explored, using the PolynomialFeatures
function from the scikit-learn Python library [14] on microcontroller test measure-
ments, to investigate whether capturing potential non-linear interactions between
different functional test patterns and the worst-case maximum operating frequency
could improve model performance.

15

Background: Machine Learning

3.2 Model evaluation and behavior
Properly evaluating a machine learning model is a crucial step to understand its
predictive performance and generalization capability and identify opportunities for
improving the model through adjustments in data, features, or model parameters. It
represents a fundamental step for every machine learning engineer,in both research
and practical applications.

In supervised regression tasks, common evaluation metrics include the mean
squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE),
and the coefficient of determination (R2). Formally, given a dataset with n samples,
inputs xi and target outputs yi, and model predictions ŷi, these metrics are defined
as follows:

MSE = 1
n

nØ
i=1

(yi − ŷi)2 (3.3)

The mean squared error (MSE) measures the average squared difference between
predicted and actual values.

RMSE =
√

MSE (3.4)

The root mean squared error (RMSE) expresses the error in the same units as the
target variable, making interpretation more intuitive.

MAE = 1
n

nØ
i=1

|yi − ŷi| (3.5)

The mean absolute error (MAE) gives the average magnitude of errors without
squaring.

R2 = 1 −
qn

i=1(yi − ŷi)2qn
i=1(yi − ȳ)2 (3.6)

The coefficient of determination (R2) is a measure of quality of fit calculated as the
proportion of variance in the dependent variable that can be predicted using the
independent variables (ȳ is the mean of the observed values). Moreover, (R2) is a
number between 0 and 1 which represents how well the model predicts an outcome.

Performance can be evaluated using different metrics, by using the appropriate
method. For example, regression models use real numbers, while classification
models use discrete or categorical labels. One of the most commonly used metrics is

16

Background: Machine Learning

accuracy, which measures the proportion of correct predictions, divided by the total
number of predictions. For a binary classification problem, accuracy is computed
as:

Accuracy = TP + TN

TP + FP + FN + TN
(3.7)

where TP and TN denote true positives and true negatives, while FP and FN
denote false positives and false negatives, respectively. Accuracy is meaningful
when the classes are well balanced. However, if the dataset is heavily imbalanced,
accuracy can be misleading. For example, if 99% of the samples belong to the
positive class and the model always predicts positive, accuracy would be 99%,
despite the model failing to identify any negative samples.

To address this limitation, other metrics such as precision, recall, and the
F1-score are introduced. Precision measures the proportion of predicted positive
samples that are actually positive, and is calculated as follows:

Precision = TP

TP + FP
(3.8)

Precision is particularly important when it is critical to minimize false positive
predictions.

Recall, on the other hand, measures the proportion of actual positive samples
that are correctly predicted:

Recall = TP

TP + FN
(3.9)

Recall is a key metric when the goal is to capture as many positive samples as
possible, when missing true positives has a high cost. Possible applications include
the classification of whether people have an illness or not, or in the context of
microcontrollers, detecting as many defective devices as possible.

The F1-score combines precision and recall into a single metric, calculated as
their harmonic mean:

F1 = 2 · Precision · Recall
Precision + Recall (3.10)

The F1-score is useful when a balance between precision and recall is desired.
In particular, it is effective in scenarios with imbalanced datasets, as it penalizes
models that perform well on one metric but poorly on the other.

17

Background: Machine Learning

Beyond these fundamental metrics, the study of model behavior involves analyz-
ing how performance evolves as a function of the amount of training data or model
complexity. Such studies aim to understand how much "experience" the model
requires to reach a desired level of accuracy. For this purpose, learning curves are
a widely used tool: they plot performance metrics against the training set size,
providing insights into whether additional data or feature engineering is required;
and guide hyperparameter selection for optimal model tuning, to meet specific
requirements.

3.3 Active Learning
Active learning is a machine learning paradigm in which the model is not trained
on a fixed dataset, but actively selects the most informative samples from a pool of
training data instead. The key idea is that not all data points are equally useful for
training, therefore it is more optimal to focus on the most representative samples
in order to improve model performance faster and with fewer labeled examples[15].

From a technical perspective, active learning strategies generally rely on a query
function that measures informativeness, such as uncertainty sampling, margin sam-
pling, or representativeness criteria. A commonly used notion of representativeness
is based on the Hausdorff distance, which measures the distance between two sets,
by capturing the largest deviation between any point in one set and the closest
point in the other. In practice, this criterion guides the selection of new training
samples that best represent unexplored regions of the feature space, ensuring both
diversity and coverage of the training set. This incremental, data-efficient approach
enables the study of how model performance evolves with training set size, under
the assumption that the new data it is exposed to while building the learning
curve is the most informative. Applying this to the context of microcontroller
test measurements and performance prediction, such sampling strategies become
particularly valuable. They make it possible to maximize predictive accuracy even
when little data is available, as is generally the case in the early stages of the
production process.

3.4 Handling domain/data differences
Models are often trained on data collected under specific conditions (the source
domain) and later deployed in a target domain, which may be characterized by
slightly different conditions. These discrepancies, commonly referred to as dataset
shift or domain shift, can substantially degrade predictive performance if not
properly addressed [16].

18

Background: Machine Learning

Technically speaking, dataset shift occurs when the joint distribution of inputs
and outputs changes between training and deployment. Typical cases include
covariate shift, where the distribution of features changes, and label shift, where the
distribution of outputs differs. In the case of microcontroller test measurements,
such variations arise across different product families, wafer lots, or measurement
setups, rendering careful analysis and robust data handling essential.

A straightforward way to mitigate this problem is through scaling strategies,
either applied globally or within each domain. Applying scaling facilitates the
reduction of discrepancies in feature distributions, but despite being essential, it
only represents the first simple step of the solution. Facing this challenge generally
also requires the use of more advanced techniques that fall under the scope of
domain adaptation, which explicitly seeks to align the source and target domains,
to optimize the model performance as well as possible for its deployment. A
widely studied example is the Correlation Alignment (CORAL) method, which
matches the covariance structure of source and target features, thereby improving
transferability [17].

By adopting such strategies, it becomes possible to ensure reliable model perfor-
mance across heterogeneous data sources, a crucial requirement for performance
prediction in production environments.

3.5 Improving models with limited data
When only a limited amount of labeled data is available, strengthening machine
learning models through specific strategies becomes essential in order to try to
achieve the required level of performance despite data scarcity. Among the main
approaches for this specific situation, two are widely adopted: data augmentation
and transfer learning.

Data augmentation refers to techniques that artificially expand the training set by
introducing synthetic variations of the existing data, effectively creating additional,
fictitious examples, designed to mimic plausible patterns in the original dataset.
For example, when dealing with measurement data, this might involve adding
controlled noise or transformations of the preexisting data, in order to preserve
the underlying semantics while diversifying the feature space. Naturally, this is
beneficial for the model, allowing it to achieve better generalization capabilities
and robustness. This strategy is also applied when dealing with imbalanced classes
in the available data, by constructing synthetic samples for the minority classes, as
widely studied in [18].

Another powerful strategy is transfer learning, where knowledge gained from
one task or domain (source domain) is reused to improve performance on a related
but different task or target domain [19].

19

Background: Machine Learning

Formally, given a source domain DS with task TS and a target domain DT with
task TT , transfer learning aims to improve the predictive function fT (·) for TT in
DT by utilizing information from DS and TS.

The main advantage of transfer learning is efficiency. By reusing previously
acquired knowledge, models can adapt to new tasks with less labeled data and
reduced computational effort. This also improves robustness, as prior exposure
to related tasks or domains provides the model with richer representations that
generalize better to the target domain. In the scope of this thesis, transfer learning
can support the adaptation of predictive models across different microcontroller
families, wafer lots, or testing conditions, enabling accurate estimation of frequencies
(or other measured quantities from testing) even when only limited new data is
available.

20

Chapter 4

Prior Work and Baseline
Knowledge

The work presented in Computational Intelligence Techniques for Device Testing
(Bellarmino, 2021) [1] provides the foundation for this thesis. The former study
explored the use of machine learning to predict the worst-case maximum operating
frequency of automotive microcontrollers, using speed monitor measurements.
Preprocessing steps such as feature scaling and principal component analysis
(PCA) were applied, followed by regression methods like Ridge and Polynomial
Ridge regression, in order to capture correlations between test data and device
performance. These pipelines demonstrated the potential of lightweight models in
linking early-stage measurements to final performance, establishing the baseline
knowledge on which the present work builds.

4.1 Problem Definition
The problem addressed in Computational Intelligence Techniques for Device Testing
(Bellarmino, 2021) [1] is closely aligned with the context of the present thesis.
Both works focus on predicting the worst-case maximum operating frequency of
automotive microcontrollers from Speed Monitor measurements, a task motivated
by the high cost and time demands of exhaustive testing. The key challenge
is to exploit early-stage measurements to obtain reliable predictions of device
performance under critical operating conditions, thereby reducing testing effort
while meeting stringent quality requirements. The two studies are tightly connected
by this shared context, with the present work representing a natural continuation
of the previous study. While the earlier thesis established the foundations by
exploring various models, addressing dataset-shift and multi-target learning, and
developing preprocessing pipelines, the present work extends the analysis in a more

21

Prior Work and Baseline Knowledge

empirical direction, focusing on model behavior under multi-dataset training and
active learning.

4.2 Key Contributions
The cited prior work conducted several analyses, focusing primarily on the following
aspects:

• Development of regression models to predict the maximum operating frequency
from low-level measurements obtained from Speed Monitors.

• Application of feature space reduction techniques (e.g. PCA) to mitigate
redundancy and noise, ensuring lightweight and efficient models.

• Use of active learning strategies to optimize prediction performance in data-
scarce scenarios.

• Implementation of domain adaptation and dataset-shift handling methods to
account for process variations across wafer lots and product families.

• Systematic comparison of multiple models to establish robust baselines for
predictive performance (Support Vector Classifier, Decision Tree Classifier,
Random Forest Classifier, Multi-Layer Perceptron, Ridge Classifier, and a
custom Neural Network).

4.3 Dataset and Modeling Overview

4.3.1 Data Collection and Preprocessing
The dataset used in the prior work is collected from split wafer lots in two phases.
First, Speed Monitor values are measured while devices are still on the wafer and
un-packaged. Then, functional patterns are applied to measure the maximum
operating frequency for each device. Devices exhibiting physical or local defects
are identified using the Outlier Index, calculated as:

OutlierIndex = n

x
(4.1)

where n is the number of tests in which the device is an outlier and x is the
total number of tests. Only devices with OutlierIndex = 0 and with all ten label
measurements available are retained for training. The resulting dataset consists
of 2403 devices, each with 27 Speed Monitor features and 11 labels (10 functional
patterns plus one artificial minimum frequency label) from 26 wafers. PCA is used
to visualize wafer distributions in two dimensions.

22

Prior Work and Baseline Knowledge

4.3.2 Regressor Chain: Conceptual Overview
The Regressor Chain is a method used in multi-target regression that leverages
the correlations among multiple output variables (labels) to improve prediction
accuracy, originally proposed in the context of multi-label classification by [20] and
later extended to regression.

The core idea is that, in multi-target problems where you have several dependent
variables to predict simultaneously, instead of predicting each label independently,
the prediction is performed sequentially. Therefore, each model in the chain predicts
one label using not only the original input features but also the predictions of all
previous labels in the chain.

The order of labels in the chain can influence performance, as earlier predictions
impact subsequent ones. To mitigate sensitivity to label ordering, an Ensemble of
Regressor Chains (ERC) can be used, averaging predictions from multiple chains
with different label permutations.

Assuming multiple highly correlated labels, the main advantage of this approach
is that it leverages the correlations between labels to improve predictive accuracy.

4.3.3 Machine Learning and Multi-Target Approaches
The screening methodology is designed to predict device performance using Speed
Monitor measurements, y = f(x), in order to determine whether a device meets
a predefined performance threshold. Polynomial Ridge Regression serves as the
baseline model, while additional models, including Random Forest and Support
Vector Regression (SVR), are employed for error estimation and to support active
learning. To predict the worst-case maximum operating frequency, two strategies
are considered: a single-target approach, which selects the minimum frequency
among the 10 patterns as a single label; and a multi-target approach, which
leverages all pattern labels simultaneously to exploit correlations among them.
Correlation analysis confirms that the labels are highly correlated, motivating the
use of multi-target learning. Two multi-target strategies are applied: the Regressor
Chain, which sequentially predicts labels using prior predictions; and Multi-Target
Regressor Stacking, a two-stage approach. Any single-target model can serve
as the base learner in these frameworks, allowing flexible combinations of linear
and non-linear regressors while taking advantage of label correlations to improve
prediction accuracy.

Preliminary experiments with the Regressor Chain confirmed that chaining single-
target models can improve prediction performance over non-chained approaches.
Using the scikit-learn implementation, a standard regression model (Polynomial
Ridge or Random Forest) is placed in each step of the chain, with 5-fold cross-
validation applied to avoid using true labels from prior steps. The approach

23

Prior Work and Baseline Knowledge

demonstrated improvements not only for the final label, representing the minimum
operating frequency (Pmin), but also for intermediate labels.

An important factor is the order of regressors in the chain, since early predictions
influence subsequent ones. To mitigate performance variability due to chain
order, an Ensemble of Regressor Chains (ERC) was tested, averaging predictions
from multiple chains with random permutations. This yielded modest additional
improvements but increased computational cost, so ERC was not used extensively
in later experiments.

A brief evaluation of a Two-Stage regression approach, using Polynomial Ridge
as the weak learner, showed inferior performance compared to the Regressor Chain
and was therefore not pursued further.

4.3.4 Active Learning and Dataset-Shift Considerations
Preliminary studies of active learning focused on selecting heterogeneous models
for the Query-by-Committee (QBC) approach, including Polynomial Ridge, SVR,
Random Forest, and Gaussian Process Regressor. For the experiments, Polynomial
Ridge, Random Forest, and SVR were used due to their strong baseline performance.
The objective is to exploit model diversity to guide sample selection efficiently in
data-scarce scenarios.

A critical challenge arises from dataset shift, where the distribution of new
production data differs from the training data. Since devices originate from 26
distinct wafers, standard random train-test splits may under-represent certain
wafers. Additionally, process variations and time-dependent factors create a non-
stationary environment, potentially reducing model reliability on unseen data.

To address this, a rigorous training/test split strategy was implemented using
LeavePGroupsOut from scikit-learn library [21], leaving 1–5 wafers out at a time.
This resulted in 397,150 unique train-test combinations. For each split, seven
unsupervised distance-based metrics were computed to quantify the divergence
between training and test sets. These features were then used to train a model,
predicting the potential prediction error on unseen wafers.

Direct regression of the mean squared error (MSE) proved challenging, so
errors were discretized into an Error Zone with three categories: Green (MSE
< 50), Yellow (50–150), and Red (> 150). This categorization reflects increasing
uncertainty in predictions, with Red samples requiring additional analysis. The
resulting dataset consists of 397,150 points with 7 features and one categorical
label, however, it was highly unbalanced (64% Green, 29% Yellow, 6% Red), which
must be considered when evaluating model performance.

24

Prior Work and Baseline Knowledge

4.4 Experimental Results and Considerations
• Ridge and Polynomial Ridge Regression emerged as the most effective baseline

due to their strong predictive power and reduced complexity. Hence, this
forms the foundation for the present work, but with a multi-dataset approach.

• Multi-task learning leveraged correlations among target variables to improve
critical pattern estimation, while Regressor Chain reduced nRMSE by nearly
half a percentage point for most regression algorithms, although tree-based
models saw limited gains.

• Non-Linear models (Random Forse, XGBoost) captured more complex rela-
tionship, at the expense of efficiency.

• Active learning proved effective in reducing the number of labeled samples
needed to reach a target error, with LOF and Hausdorff Distance being the
most reliable selection metrics.

• To mitigate dataset-shift, a novel Error Zone approach was introduced to
estimate prediction reliability on new unlabeled wafers. Random Forest
classifiers achieved up to 98% F1-Score, and custom neural networks matched
this performance, but additionally offer the benefit of on-board mathematical
representation.

Overall, the results from the prior work [1] demonstrated that machine learning
can effectively reduce the cost and time of MCU performance screening, by reducing
the reliance on costly exhaustive functional testing. In addition, it established
a methodological foundation (scaling, PCA, Ridge, and Polynomial Ridge) as a
baseline ML pipeline, and it showed how active learning and adaptation methods
can extend these result to realistic production environments, where data vary in
both quantity and characteristics over time.

25

Chapter 5

Methodology and Data

5.1 Datasets and Preprocessing

5.1.1 Overview of Data
The datasets employed in this work consist of measurements collected from on-chip
Speed Monitors (integrated in the microcontrollers), during the device testing
process. Alongside these measurements (features), each tested device is associated
with a set of function labels, corresponding to its measured operating frequency
under different test conditions (functional patterns). The number of functional
patterns varies by dataset, ranging from 8 to 10.

The final label used for training and evaluation is defined as:

Fworst = min
p∈P

Fp,

where P denotes the set of functional test patterns and Fp is the maximum frequency
measured under pattern p. This value represents the worst-case maximum operating
frequency, and it is the target variable in the employed machine learning models,
which are designed to support performance screening. This is achieved by ensuring
that each product reliably meets the minimum operating frequency, declared in
the datasheet, across all possible practical scenarios. By focusing on the most
conservative estimate (worst-case scenario), the prediction task aligns directly with
the strict reliability requirements of the manufacturing process.

It is important to note that the datasets considered in this work consist of devices
belonging to the same family. The similarity among the devices ensures that the
measured features and functional labels are comparable across samples, making the
development of machine learning models feasible. Had the datasets included devices
with large architectural or functional differences, the relationships between features
and performance could vary substantially, potentially preventing the creation of

26

Methodology and Data

accurate predictive models. This inherent similarity within each family provides a
solid foundation for learning reliable mappings from Speed Monitor measurements
to device performance.

The available data, however, is limited in size and heterogeneous in nature. For
this reason, before being used for modeling, it undergoes a dedicating pruning
process whose aim is to remove invalid or non-informative entries. This includes
discarding samples with missing or inconsistent measurements, eliminating wafers
represented by fewer than three samples, and filtering out features that are either
deemed unrelated to the considered test configurations or contain non-valid infor-
mation. The actual number of retained samples and features after data pruning
differs across datasets and will be reported in the subsections below.

The datasets employed are four: dataset A, which corresponds to the microcon-
troller family used as the reference target for performance prediction; and datasets
B, C and D, which correspond to older microcontroller families. Datasets B–D
serve as complementary sources of information to dataset A, enabling multi-dataset
training and transfer learning experiments. All the models developed in this work
are evaluated in terms of their ability to predict the worst-case maximum frequency

Fworst

on samples from dataset A, making the latter the central benchmark for the study.

5.1.2 Data Cleaning and Pruning
Dataset A

The raw dataset initially consists of 427 samples and 144 features (Speed Monitor
measurements, and other data) together with the functional frequency labels.
As previously mentioned, the raw data contains non-valid measurements and
underrepresented wafers. Therefore, data pruning was performed to prepare the
dataset for the models, resulting in the final dataset containing 412 valid samples
and 122 features.

Datasets B–D

Similar to Dataset A, each dataset originally comprises Speed Monitor measure-
ments as features and functional frequency labels as targets.

Prior to modeling and just like dataset A, all datasets underwent a dedicated
pruning process to ensure quality and consistency. Additionally, for consistency
with Dataset A, only the worst-case maximum operating frequency (Fworst), defined
as the minimum among all functional pattern labels, was retained as the target
variable.

After pruning, the datasets were reduced as follows:

27

Methodology and Data

• Dataset B: reduced from (1963, 537) to (1642, 378) features and samples.

• Dataset C: reduced from (2002, 819) to (1244, 388) features and samples.

• Dataset D: reduced from (1032, 731) to (1030, 434) features and samples.

These preprocessing steps ensure that all datasets contain valid, informative
samples suitable for training and evaluation. The retained data preserves the
structure necessary to predict Fworst, supporting subsequent machine learning
experiments and comparisons across microcontroller families.

Table 5.1 summarizes the final number of samples and features retained for each
dataset after preprocessing.

Dataset Raw Samples Raw Features Final Samples Final Features
A 427 144 412 122
B 1963 537 1642 378
C 2002 819 1244 388
D 1032 731 1030 434

Table 5.1: Dataset sizes before and after data pruning.

As shown, the difference in sample sizes between the target dataset A and
the others is significant, highlighting the need for careful model handling when
making predictions on A, where data is more limited. This scenario also reflects in
general real-world production conditions, in which new devices typically have fewer
available measurements compared to older generations.

5.1.3 Feature Preprocessing

Feature Scaling

Feature scaling is a critical preprocessing step in this work, as the measured
values from Speed Monitors can vary widely in magnitude. Scaling is particularly
important for linear models such as Ridge Regression, which form the baseline
in this work. In linear models, the optimization of the cost function is sensitive
to the relative magnitude of features and if it is not standardized, the parameter
estimation could be biased towards features with bigger magnitude, especially
with larger numerical ranges. Standardization ensures that all features contribute
equally to the model fitting.

28

Methodology and Data

Standardization (StandardScaler)

The baseline model in the majority of experiments, Ridge Regression and Polynomial
Ridge Regression, relies on standard scaling of the input features. Standardization
transforms each feature to have zero mean and unit variance, which is particularly
suitable for linear models and regression-based approaches.

In the case of multi-dataset setting, this approach has been extended to a
per-product strategy, where each product type (or microcontroller model) is scaled
independently, ensuring that intra-product feature distributions are preserved.
The transformation was performed using StandardScaler [22] which computes
the mean and standard deviation from the training data, and applies the scaling
consistently to the test set.

Alternative Scaling Strategies

In addition to standardization, other scaling techniques were briefly explored for
further experiments to assess their impact on model performance:

• Min-Max Scaling: Scales each feature to a fixed range, typically [0,1], using
MinMaxScaler [23].

• Robust Scaling: Scales features using statistics that are robust to outliers
(median and interquartile range), implemented via RobustScaler [24].

• Quantile Transformation: Maps the feature distribution to a uniform or
normal distribution, using QuantileTransformer [25].

• Max-Absolute Scaling: Scales features by their maximum absolute value,
preserving sparsity in the dataset, via MaxAbsScaler [26].

These alternative scaling strategies were tested in experiments beyond the
baseline, and specifically on the configuration with the best performance, to check
whether substituting the standardization with a different scaling strategy could
result in higher predictive performance.

5.1.4 Feature Space Reduction (PCA)
As in the baseline regression model pipeline introduced by [1], PCA is applied
after standardization (scaling) of the features. This step is essential given the large
number of features (5.1), which otherwise would lead to high computational costs.

The number of retained components was determined empirically, by finding a
compromise between the preservation of predicting performance, and maintaining
the model sufficiently lightweight for the hardware constraint of the environment.

29

Methodology and Data

Following the baseline work, the number of components is set to 32 for Ridge
Regression and to 20 for Polynomial Ridge Regression. The implementation
adopted is PCA from scikit-learn [27].

In multi-dataset setups, PCA was applied globally across all products. No
per-product strategy was adopted.

5.1.5 Feature Expansion
Polynomial Features

To increase the representational power of linear models, the baseline methodology
also considered polynomial feature expansion. In this work, polynomial features of
degree 2 were considered.

Trade-off: Expressivity vs. Complexity

Introducing polynomial features increases the expressive capacity of linear models,
enabling them to approximate non-linear dependencies that may exist between
functional test measurements and device performance. However, this comes at
the cost of a rapidly growing feature space, which increases both computational
demands and the risk of overfitting. Moreover, such non-linear relationships may
not always be strong enough to justify the added complexity. For this reason,
polynomial ridge regression was explored and directly compared to the baseline
Ridge regression without feature expansion.

To mitigate the dimensionality explosion, polynomial expansion was combined
with PCA for feature space reduction. Following the results of the prior work [1],
the feature space was reduced to 20 principal components, which was found to
provide the best balance between expressivity and efficiency. This trade-off ensures
that the resulting models remain lightweight and computationally feasible, while
still potentially benefiting from the richer representational capacity of polynomial
features.

30

Methodology and Data

Raw measurements (Speed Monitors +
Functional Patterns + other information)

Target Extraction
- Compute Fworst = min(Fp)

Data Cleaning & Pruning
- Remove invalid samples

- Remove wafers associated
with less than 3 samples
- Drop irrelevant features

Feature Selection & Scaling
- Drop uninformative columns

- Standardize features
- PCA

- Feature expansion (optional)

Final Preprocessed Dataset
- Ready for ML models

Figure 5.1: Preprocessing pipeline for microcontroller test data.

31

Methodology and Data

5.2 Train-Test Split Strategy
To evaluate model performance in a robust reproducible way, the dataset was
divided into training and test sets. A test size of 20% of the available samples
was selected, while the remaining 80% were used for training. The split was
stratified according to the LOT_Waf identifier (a combined identifier linking each
wafer to its production lot), ensuring that wafers with different lot associations
were proportionally represented in both training and test sets. This stratification
reduces the risk of having certain wafers entirely excluded from either of the subsets,
which could bias the evaluation and compromise fairness during training.

Moreover, to account for variability due to random partitioning, each experiment
was repeated over multiple splits using five different random seeds (42, 16, 8, 9,
20). The reported results are thus aggregated across these iterations, improving the
statistical reliability of the performance comparison between models and setups.

The implementation of the split procedure relies on the train_test_split
function from the scikit-learn library [28].

5.3 Learning Curve Strategies
To evaluate model performance as a function of the amount of training data, all
experiments were conducted using an incremental learning strategy. Learning
curves were generated by progressively increasing the number of training samples,
providing insights into how predictive accuracy evolves as more data becomes
available. This procedure reflects the practical scenario in production, where
initially only a limited number of labeled samples for new devices are available. To
emphasize the importance of dataset A in training, sample weights were applied in
all incremental strategies, such that samples from dataset A received a weight of
1.0, while samples from older generations were assigned near-zero weights (0.0001).
This was implemented to ensure that the model primarily learned from target-
device data, while the data from older-generation devices was used as auxiliary
information.

5.3.1 Incremental Strategies
Two main incremental strategies were investigated:

1. Mixed Incremental Strategy: All available samples, including older and
newer generation devices, were shuffled and incrementally added to the train-
ing set. Standard preprocessing steps, such as feature scaling and the use
of sample weights, were applied, but in an equal way across all device types.
Experiments using this approach generally produced lower performance, as

32

Methodology and Data

the heterogeneity of the mixed training set supposedly reduces the model’s
ability to capture target-specific patterns. For simplicity, this approach is
referred to as “Strategy 1” in the following sections.

2. Old-Generation Baseline-First Incremental Strategy: All samples
from older generation devices were included in the training set from the
beginning, serving as a baseline. Samples from the target microcontroller
family (Dataset A) were then added incrementally. This strategy leverages
knowledge from older devices while gradually incorporating target-specific
information, consistently producing superior results compared to the mixed
strategy. For simplicity, this approach is referred to as “Strategy 2” in the
following sections.

5.3.2 Experimental Procedure for Learning Curves
Learning curves were generated to analyze model performance as a function of
training set size, using the incremental strategies mentioned above. For each
iteration, the following steps were performed:

1. Train-Test Split: The dataset was split into training and test sets, stratified
by wafer labels. However, the test set contained only the target dataset to
specifically evaluate the performance of the new-generation devices.

2. Scaling: The training set was expanded incrementally according to the chosen
strategy. Target labels were standardized using StandardScaler fitted on
the current training subset. In the experiments in which multiple device
types were present, per-product scaling was applied, while global scaling was
performed in the others. Sample weights, reflecting device type importance,
were optionally applied.

3. Model Training: Models were trained using predefined pipelines, including
Ridge and Polynomial Ridge regressors. Pipelines optionally included feature
scaling and PCA transformations. Sample weights were incorporated in the
training.

4. Prediction and Evaluation: Predictions were made on the test set restricted
to the target dataset. Standardized predictions were inverse-transformed to
the original target scale. Performance metrics were computed, including
normalized root mean squared error (nRMSE), standard deviation of errors
(Err-STD), as well as others (MSE, MAE, MAPE).

5. Aggregation for Learning Curves: Metrics were saved for each training
fraction and random seed. For plotting, values were grouped by model type

33

Methodology and Data

and training set size, and averaged over random seeds to generate smoothed
learning curves. The resulting plots included:

• nRMSE vs. training set size (logarithmic scale)
• Err-STD vs. training set size (logarithmic scale)

These plots allowed evaluation of model convergence and the impact of incre-
mentally adding samples from the target dataset.

This protocol ensures that learning curves reflect the influence of incremental
training, per-product scaling, sample weighting, and stratified evaluation, providing
a reliable assessment of model performance on new-generation devices.

5.4 Active Learning Setup
Active learning (AL) experiments were performed in parallel with the incremental
learning curve studies, following a phased approach to explore its effectiveness
under different conditions.

1. Strategy 1 Experiments with AL: The first incremental strategy was
initially tested on the target dataset (Dataset A) alone, applying active learning
to select samples based on model uncertainty. Subsequently, Dataset A was
combined with older generation datasets in various combinations, and the first
incremental strategy was applied again, incorporating active learning in all
cases.

2. Strategy 2 Experiments without AL: The second incremental strategy,
which became the primary method after producing excellent results, was
first executed without active learning. These experiments produced the best-
performing learning curves and served as the baseline for further AL tests.

3. Strategy 2 Experiments with AL: Active learning was later applied to
the best curves obtained from Strategy 2 experiments. The aim was to assess
whether selective sampling from the target dataset could further enhance
model performance, keeping the incremental setup.

4. Additional Active Learning Experiments: Further experiments were
conducted using active learning guided by feature similarity analysis. These
tests focused on a restricted set of the most similar features across datasets,
applying Strategy 1 with active learning, and Strategy 2, first without ac-
tive learning, and then applying active learning only to the best-performing
configurations.

34

Methodology and Data

This structured approach ensures that the impact of active learning can be
evaluated both in isolation and in combination with the different incremental
strategies, providing a clear comparison of baseline performance and potential
improvements.

For each iteration in the incremental training process, the training set was
expanded fractionally, according to a predefined sequence of train sizes. The initial
subset of samples was taken directly from the available training pool. Subsequent
samples were selected using a Hausdorff distance-based approach, which measures
the similarity between the current training set and the remaining candidates in
feature space. The sample with the maximum Hausdorff distance to the current
training set was chosen iteratively, ensuring that newly added samples contributed
maximal diversity and information to the model.

5.5 Experimental Design
Given the methodology described in the previous sections, this section summarizes
the experimental setup and outlines how the experiments were structured practically.

The experiments were organized to assess the impact of incremental strategies,
active learning and feature selection on model performance, in addition to enabling
comparisons across dataset combinations. Furthermore, sample weights, as defined
in the section describing the incremental strategies (section 5.3.1), were incorporated
during model training to prioritize dataset A samples.

The experiments can be categorized into the following groups:

1. Full-Dataset Training Experiments:

• Evaluation of models trained on full datasets.
• Performed first on dataset A alone, then with combinations of the latter

with older datasets (B-D).

2. Strategy 1 Experiments:

• Performed with active learning.
• Applied to Dataset A alone, then in combination with older datasets

(B-D).

3. Strategy 2 Experiments:

• First performed without active learning to identify the best-performing
incremental configurations. Followed by a second stage applying active
learning to the optimal configurations to assess whether selective sampling
could further improve model performance.

35

Methodology and Data

• Applied to combinations of datasets since Strategy 2 cannot be applied
to dataset A alone, as it relies on older-generation devices serving as a
baseline training set.

4. Dataset Similarity Analysis Experiments:

• Brief analysis of similarities among datasets in terms of feature and
prediction target distributions (through Jensen-Shannon Divergence).

5. Scaling Experiments:

• Testing different feature scaling strategies on the best-performing configu-
ration, including MinMaxScaler, RobustScaler, and MaxAbsScaler.

• Aiming to evaluate whether substituting the standard scaling with an
alternative could further improve predictive performance.

6. CORAL Experiments:

• Applying CORAL (Correlation Alignment) to the best-performing setup
to align feature distributions across datasets in multi-dataset training.

• Aiming to determine whether distribution alignment could provide addi-
tional performance gains when combining older generations and the target
dataset.

7. Wafer-distinction Based Training Experiments:

• Performing incremental training based on the distinction between produc-
tion wafer samples and split-lot samples

• Analyzing the performance in terms of accuracy (mainly nRMSE) on three
different test sets : one consisting in mixed samples (both production
and split-lot wafers samples), one consisting of production wafers samples
only, and one made up of split-lot wafer samples only.

5.5.1 Evaluation Metrics and Methods
• Performance metrics included normalized root mean squared error (nRMSE),

standard deviation of errors (Err-STD), and additional regression statistics
(MSE, MAE, MAPE, R2). Err-STD and nRMSE were the primary metrics
used for plotting.

• Each experiment was repeated across five random seeds to account for vari-
ability in train-test splits. Similarly, metrics were aggregated (averaged) over
random seeds for each training fraction, in order to generate smoothed learning
curves and provide a more reliable measure of performance.

36

Methodology and Data

• Plots of nRMSE and err-STD versus training set size (number of samples from
dataset A) were used to evaluate convergence and the effect of incrementally
adding samples from the target dataset.

5.5.2 Comparisons and Analysis Objectives
The experiments were designed to meet the following goals of this thesis:

• Evaluate the relative performance of Strategy 1 versus Strategy 2.

• Assess the effect of active learning in the best configurations found with
incremental strategies.

• Analyze briefly the similarity across older-generation datasets and target
dataset A.

• Determine the impact of adding older-generation samples versus focusing
solely on the target dataset (Dataset A).

37

Chapter 6

Experiments and Results

This chapter evaluates the performances of the previously described experiments,
followed by a detailed report of the resulting data and outcomes of all of the
conducted experiments.

The analysis begins with baseline experiments on the target dataset A, providing
a reference point for model performance without incremental sampling and multi-
dataset strategies. Next, experiments involving multiple datasets are presented,
first through full-dataset training evaluations, subsequently comparing incremental
learning strategies via learning curves. The best-performing setups are then
revisited with active learning to assess the impact of selective sampling. Next,
some complementary experiments are presented, covering scaling methods and
wafer-type distinctions, which despite not being central to the thesis, still provide
useful insights. Finally, the chapter concludes with a discussion of the results,
highlighting the most effective strategies and most relevant findings.

The results are presented in full, displaying the baseline performance on the full
training set, learning curves (nRMSE and Err-STD vs. training set size), and key
observations.

6.1 Baseline Performance on Dataset A

6.1.1 Full-Dataset Training Evaluation
In this preliminary comparison, three regression algorithms were evaluated to
establish a baseline performance using the target dataset A alone. Each model was
trained following a specific pipeline configuration:

• Ridge Regression: StandardScaler → PCA (32 components) → Ridge
regressor.

38

Experiments and Results

• Polynomial Ridge Regression: StandardScaler → PCA (20 components)
→ polynomial feature expansion (degree 2) → Ridge regressor.

• TabPFN: A modern transformer-based regression model included here for
reference, to assess how a more complex approach compares to the lightweight
models.

In each model, train-test splits were stratified by LOT_Waf, with random state
fixed at 42 to ensure reproducibility. Moreover, all experiments were performed by
training on the entirety of dataset A and evaluating on the corresponding test set.
Table 6.1 reports normalized and relative metrics.

Algorithm R2 MAPE nRMSE nMAE Err-STD
Ridge 0.9478 1.12% 1.50% 1.12% 7.609
Poly Ridge 0.9451 1.20% 1.53% 1.21% 7.869
TabPFN 0.9435 1.22% 1.55% 1.22% 7.947

Table 6.1: Normalized/relative performance metrics (baseline models - trained on
entirety of dataset A).

The scatter plots below (figs. 6.1 to 6.3) display the actual versus predicted
target values for visual assessment of prediction quality by each model.

Figure 6.1: Actual vs. predicted (normalized) values - Ridge (dataset A).

39

Experiments and Results

Figure 6.2: Actual vs. predicted values - Polynomial Ridge (dataset A).

Figure 6.3: Actual vs. predicted (normalized) values - tabPFN (dataset A).

These results show that all three models achieve strong predictive performance
with R2 values consistently above 0.94, while nRMSE and nMAE remain low.
The lightweight models deliver competitive results, with minimal differences in
error spread (Err-STD). TabPFN, despite its higher model complexity, does not
significantly outperform the simpler baselines. This suggests that the linear or
polynomial models, when combined with appropriate preprocessing, are already
sufficient to capture underlying patterns in the target dataset. Consequently, in this
specific context, the use of complex transformer-based models might not provide
real benefits, especially considering their higher computational cost. In contrast,

40

Experiments and Results

lightweight linear models remain as the main candidates for subsequent incremental
learning experiments.

6.2 Multi-Dataset Experiments
In this section, the objective is to investigate the potential benefits of combining
multiple datasets. The following experiments evaluate model performance on various
combinations of the target dataset A and older-generation datasets, considering
both full-dataset and incremental learning scenarios. The Ridge and Polynomial
Ridge models are trained according to the pipelines described in the baseline section
6.1.1. The analysis consists of:

1. Assessing baseline performance when models are trained on the entire combined
datasets under two specific configurations (described below in subsection 6.2.1).

2. Analyzing the baseline reference models (Ridge and Polynomial Ridge trained
on dataset A only) (see subsection 6.2.2). The subsequent results will be
compared to the Ridge model.

3. Examining how the models’ predictive performance evolves as training samples
are gradually incorporated (see subsection 6.2.3). This evaluation is particu-
larly important to assess model behavior when only a limited amount of data
is available.

4. Exploring briefly the similarities and relationships between datasets (see
subsection 6.2.4)

6.2.1 Full-Dataset Training on Combined Datasets
Initially, the models are trained on the full combined dataset using a global
StandardScaler, omitting product-specific information in the features. Subse-
quently, experiments are repeated using per-product scaling and introducing binary
labels to indicate the origin of each sample during training. These binary labels
help the model to explicitly account for dataset differences.

Sample weights (different for each experiment, but always in favor of dataset A)
are also applied to give higher importance to dataset A samples relative to older
datasets. Train-test splits are stratified by LOT_Waf with a fixed random state of
42 for reproducibility. The test set size is 20% of the original combined dataset.

Metrics are computed both globally and per product group, and scatter plots
(similarly to baseline experiments) are provided for visual inspection of model
performance. The results of these experiments are presented below, grouped by
combination.

41

Experiments and Results

Moreover, after evaluating pair-wise combinations of the target dataset A with
the older-generation datasets, further experiments include a limited number of
three-dataset combinations (A+B+C and A+B+D) and the full four dataset
combination. The decision not to test every possible three-dataset combinations
was motivated by the observed trends in the pair-wise experiments, with the result
being that only the combinations producing relevant results underwent further
testing, in order to limit the already large number of experimental setups.

42

Experiments and Results

Dataset Combination: A + B

1. Global StandardScaler, no binary labels in training
Sample weight values : 1.0 for A, 0.001 for B

Algorithm Test Set R2 MAPE nRMSE nMAE Err-STD
Ridge A+B 0.9567 1.85% 2.43% 1.83% 15.69
Poly Ridge A+B 0.9652 1.71% 2.18% 1.73% 14.32
Ridge A 0.9167 1.49% 1.81% 1.49% 9.33
Poly Ridge A 0.9256 1.43% 1.70% 1.42% 8.80
Ridge B 0.6864 1.95% 2.49% 1.90% 16.74
Poly Ridge B 0.7504 1.78% 2.22% 1.79% 15.34

Table 6.2: Normalized performance metrics (models trained on the full combined dataset
A + B, global StandardScaler, no binary labels in training).

Figure 6.4: Actual vs. predicted values - Ridge (dataset A + B, global StandardScaler,
no binary labels in training).

Figure 6.5: Actual vs. predicted values - Polynomial Ridge (dataset A + B, global
StandardScaler, no binary labels in training).

43

Experiments and Results

2. Per-product scaler, binary labels in training
Sample weight values : 1.0 for A, 0.01 for B

Algorithm Test Set R2 MAPE nRMSE nMAE Err-STD
Ridge A+B 0.9795 1.35% 1.67% 1.33% 10.96
Poly Ridge A+B 0.9753 1.43% 1.84% 1.42% 11.79
Ridge A 0.9225 1.43% 1.74% 1.43% 8.99
Poly Ridge A 0.9242 1.42% 1.72% 1.41% 8.92
Ridge B 0.8622 1.32% 1.65% 1.32% 11.33
Poly Ridge B 0.8287 1.43% 1.84% 1.43% 12.26

Table 6.3: Normalized performance metrics (models trained on the full combined dataset
A + B, per-product scaler, binary labels in training).

Figure 6.6: Actual vs. predicted values - Ridge (dataset A + B, per-product scaler,
binary labels in training).

Figure 6.7: Actual vs. predicted values - Polynomial Ridge (dataset A + B, per-product
scaler, binary labels in training).

44

Experiments and Results

Dataset Combination: A + C
1. Global StandardScaler, no binary labels in training

Sample weight values : 1.0 for A, 0.01 for C

Algorithm Test Set R2 MAPE nRMSE nMAE Err-STD
Ridge A+C 0.8499 1.48% 2.24% 1.46% 11.31
Poly Ridge A+C 0.8350 1.60% 2.34% 1.57% 11.83
Ridge A 0.9484 1.18% 1.58% 1.18% 8.19
Poly Ridge A 0.9458 1.29% 1.62% 1.28% 8.39
Ridge C 0.7631 1.58% 2.43% 1.55% 12.15
Poly Ridge C 0.7379 1.70% 2.55% 1.67% 12.75

Table 6.4: Normalized performance metrics (models trained on the full combined dataset
A + C, global StandardScaler, no binary labels in training).

Figure 6.8: Actual vs. predicted values - Ridge (dataset A + C, global StandardScaler,
no binary labels in training).

Figure 6.9: Actual vs. predicted values - Polynomial Ridge (dataset A + C, global
StandardScaler, no binary labels in training).

45

Experiments and Results

2. Per-product scaler, binary labels in training
Sample weight values : 1.0 for A, 0.01 for C

Algorithm Test Set R2 MAPE nRMSE nMAE Err-STD
Ridge A+C 0.7441 2.08% 2.92% 2.05% 14.15
Poly Ridge A+C 0.8120 1.76% 2.50% 1.71% 12.19
Ridge A 0.9516 1.13% 1.53% 1.13% 7.93
Poly Ridge A 0.9496 1.21% 1.56% 1.20% 8.09
Ridge C 0.5692 2.39% 3.27% 2.36% 15.39
Poly Ridge C 0.6937 1.93% 2.76% 1.88% 13.02

Table 6.5: Normalized performance metrics (models trained on the full combined dataset
A + C, per-product scaler, binary labels in training).

Figure 6.10: Actual vs. predicted values - Ridge (dataset A + C, per-product scaler,
binary labels in training).

Figure 6.11: Actual vs. predicted values - Polynomial Ridge (dataset A + C, per-
product scaler, binary labels in training).

46

Experiments and Results

Dataset Combination: A + D
1. Global StandardScaler, no binary labels in training

Sample weight values : 1.0 for A, 0.01 for D

Algorithm Test Set R2 MAPE nRMSE nMAE Err-STD
Ridge A+D 0.9770 1.55% 2.02% 1.54% 12.97
Poly Ridge A+D 0.9878 1.18% 1.47% 1.16% 9.42
Ridge A 0.9323 1.36% 1.72% 1.37% 9.01
Poly Ridge A 0.9327 1.38% 1.72% 1.38% 8.98
Ridge D 0.8095 1.62% 2.06% 1.59% 14.24
Poly Ridge D 0.9135 1.10% 1.39% 1.10% 9.57

Table 6.6: Normalized performance metrics (models trained on the full combined dataset
A + D, global StandardScaler, no binary labels in training).

Figure 6.12: Actual vs. predicted values - Ridge (dataset A + D, global StandardScaler,
no binary labels in training).

Figure 6.13: Actual vs. predicted values - Polynomial Ridge (dataset A + D, global
StandardScaler, no binary labels in training).

47

Experiments and Results

2. Per-product scaler, binary labels in training
Sample weight values : 1.0 for A, 0.01 for D

Algorithm Test Set R2 MAPE nRMSE nMAE Err-STD
Ridge A+D 0.9848 1.33% 1.64% 1.32% 10.35
Poly Ridge A+D 0.9239 2.66% 3.67% 2.76% 21.29
Ridge A 0.9278 1.37% 1.78% 1.37% 9.31
Poly Ridge A 0.9308 1.40% 1.74% 1.40% 9.11
Ridge D 0.8863 1.32% 1.59% 1.31% 10.61
Poly Ridge D 0.3007 3.17% 3.95% 3.18% 23.16

Table 6.7: Normalized performance metrics (models trained on the full combined dataset
A + D, per-product scaler, binary labels in training).

Figure 6.14: Actual vs. predicted values - Ridge (dataset A + D, per-product scaler,
binary labels in training).

Figure 6.15: Actual vs. predicted values - Polynomial Ridge (dataset A + D, per-
product scaler, binary labels in training).

48

Experiments and Results

Dataset Combination: A + B + C
1. Global StandardScaler, no binary labels in training

Sample weight values : 1.0 for A, 0.01 for B and C

Algorithm Test Set R2 MAPE nRMSE nMAE Err-STD
Ridge A+B+C 0.9835 1.51% 2.12% 1.47% 12.69
Poly Ridge A+B+C 0.9875 1.33% 1.85% 1.27% 11.06
Ridge A 0.9352 1.27% 1.61% 1.27% 8.34
Poly Ridge A 0.9309 1.37% 1.66% 1.36% 8.58
Ridge B 0.8493 1.42% 1.79% 1.40% 12.37
Poly Ridge B 0.9162 1.04% 1.33% 1.04% 9.24
Ridge C 0.6950 1.70% 2.82% 1.65% 14.14
Poly Ridge C 0.7163 1.68% 2.72% 1.64% 13.65

Table 6.8: Normalized performance metrics (models trained on the full combined dataset
A + B + C, global StandardScaler, no binary labels in training).

Figure 6.16: Actual vs. predicted values - Ridge (dataset A + B + C, global Standard-
Scaler, no binary labels in training).

Figure 6.17: Actual vs. predicted values - Polynomial Ridge (dataset A + B + C,
global StandardScaler, no binary labels in training).

49

Experiments and Results

2. Per-product scaler, binary labels in training
Sample weight values : 1.0 for A, 0.01 for B and C

Algorithm Test Set R2 MAPE nRMSE nMAE Err-STD
Ridge A+B+C 0.9818 1.67% 2.22% 1.59% 13.33
Poly Ridge A+B+C 0.9463 3.02% 3.82% 3.00% 22.69
Ridge A 0.9364 1.26% 1.59% 1.26% 8.24
Poly Ridge A 0.9370 1.25% 1.59% 1.25% 8.18
Ridge B 0.8779 1.30% 1.61% 1.30% 11.11
Poly Ridge B 0.3764 3.02% 3.63% 3.02% 20.19
Ridge C 0.5692 2.29% 3.35% 2.22% 16.80
Poly Ridge C 0.1967 3.61% 4.57% 3.55% 19.97

Table 6.9: Normalized performance metrics (models trained on the full combined dataset
A + B + C, per-product scaler, binary labels in training).

Figure 6.18: Actual vs. predicted values - Ridge (dataset A + B + C, per-product
scaler, binary labels in training).

Figure 6.19: Actual vs. predicted values - Polynomial Ridge (dataset A + B + C,
per-product scaler, binary labels in training).

50

Experiments and Results

Dataset Combination: A + B + D
1. Global StandardScaler, no binary labels in training

Sample weight values : 1.0 for A, 0.01 for B and D

Algorithm Test Set R2 MAPE nRMSE nMAE Err-STD
Ridge A+B+D 0.9700 1.37% 1.73% 1.36% 11.61
Poly Ridge A+B+D 0.9789 1.13% 1.45% 1.12% 9.73
Ridge A 0.9351 1.36% 1.64% 1.34% 8.53
Poly Ridge A 0.9377 1.31% 1.61% 1.29% 8.35
Ridge B 0.8467 1.42% 1.79% 1.41% 12.32
Poly Ridge B 0.8975 1.13% 1.46% 1.12% 10.03
Ridge D 0.8754 1.30% 1.62% 1.28% 11.06
Poly Ridge D 0.9114 1.06% 1.37% 1.06% 9.45

Table 6.10: Normalized performance metrics (models trained on the full combined
dataset A + B + D, global StandardScaler, no binary labels in training).

Figure 6.20: Actual vs. predicted values - Ridge (dataset A + B + D, global Standard-
Scaler, no binary labels in training).

Figure 6.21: Actual vs. predicted values - Polynomial Ridge (dataset A + B + D,
global StandardScaler, no binary labels in training).

51

Experiments and Results

2. Per-product scaler, binary labels in training
Sample weight values : 1.0 for A, 0.01 for B and D

Algorithm Test Set R2 MAPE nRMSE nMAE Err-STD
Ridge A+B+D 0.9759 1.25% 1.55% 1.24% 10.41
Poly Ridge A+B+D 0.9788 1.18% 1.45% 1.17% 9.75
Ridge A 0.9430 1.27% 1.54% 1.26% 8.01
Poly Ridge A 0.9379 1.33% 1.61% 1.32% 8.37
Ridge B 0.8764 1.30% 1.61% 1.30% 11.13
Poly Ridge B 0.8985 1.18% 1.46% 1.18% 10.02
Ridge D 0.9024 1.16% 1.44% 1.15% 9.86
Poly Ridge D 0.9086 1.11% 1.39% 1.10% 9.23

Table 6.11: Normalized performance metrics (models trained on the full combined
dataset A + B + D, per-product scaler, binary labels in training).

Figure 6.22: Actual vs. predicted values - Ridge (dataset A + B + D, per-product
scaler, binary labels in training).

Figure 6.23: Actual vs. predicted values - Polynomial Ridge (dataset A + B + D,
per-product scaler, binary labels in training).

52

Experiments and Results

Dataset Combination: A + B + C + D
1. Global StandardScaler, no binary labels in training

Sample weight values : 1.0 for A, 0.001 for B, C and D

Algorithm Test Set R2 MAPE nRMSE nMAE Err-STD
Ridge A+B+C+D 0.9755 1.81% 2.44% 1.81% 15.15
Poly Ridge A+B+C+D 0.9830 1.52% 2.04% 1.52% 12.68
Ridge A 0.9477 1.13% 1.47% 1.13% 7.53
Poly Ridge A 0.9407 1.22% 1.57% 1.22% 8.07
Ridge B 0.7487 1.84% 2.28% 1.82% 15.43
Poly Ridge B 0.8695 1.29% 1.64% 1.29% 11.39
Ridge C 0.6323 2.15% 3.05% 2.11% 13.65
Poly Ridge C 0.6408 2.19% 3.01% 2.15% 15.03
Ridge D 0.7645 1.79% 2.33% 1.75% 14.82
Poly Ridge D 0.8527 1.45% 1.85% 1.44% 12.64

Table 6.12: Normalized performance metrics (models trained on the full combined
dataset A + B + C + D, global StandardScaler, no binary labels in training).

Figure 6.24: Actual vs. predicted values - Ridge (dataset A + B + C + D, global
StandardScaler, no binary labels in training).

Figure 6.25: Actual vs. predicted values - Polynomial Ridge (dataset A + B + C + D,
global StandardScaler, no binary labels in training).

53

Experiments and Results

2. Per-product scaler, binary labels in training
Sample weight values : 1.0 for A, 0.001 for B, C and D

Algorithm Test Set R2 MAPE nRMSE nMAE Err-STD
Ridge A+B+C+D 0.9764 1.92% 2.39% 1.83% 14.89
Poly Ridge A+B+C+D 0.9591 2.53% 3.15% 2.46% 19.61
Ridge A 0.9495 1.08% 1.45% 1.07% 7.35
Poly Ridge A 0.9390 1.19% 1.59% 1.20% 8.14
Ridge B 0.7871 1.74% 2.10% 1.74% 14.55
Poly Ridge B 0.6490 2.12% 2.69% 2.12% 17.77
Ridge C 0.4648 2.85% 3.68% 2.77% 18.42
Poly Ridge C 0.1755 3.63% 4.57% 3.57% 19.41
Ridge D 0.8562 1.43% 1.82% 1.42% 12.55
Poly Ridge D 0.6433 2.40% 2.87% 2.39% 17.79

Table 6.13: Normalized performance metrics (models trained on the full combined
dataset A + B + C + D, per-product scaler, binary labels in training).

Figure 6.26: Actual vs. predicted values - Ridge (dataset A + B + C + D, per-product
scaler, binary labels in training).

Figure 6.27: Actual vs. predicted values - Polynomial Ridge (dataset A + B + C + D,
per-product scaler, binary labels in training).

54

Experiments and Results

6.2.2 Dataset A Learning Curves (Baseline Reference)
These learning curves are generated with active learning. They provide a baseline
reference that will be used to compare the results obtained in the subsequent
experiments, while assessing the behavior of the models under increasing training
data (trained only on dataset A, incrementally enlarging the training set size). The
analysis focuses on the normalized root mean squared error (nRMSE) and the error
standard deviation (err-STD) as evaluation metrics. The plots below (figs. 6.28
and 6.29) describe those metrics versus the training set size.

Figure 6.28: Learning curves of Ridge and Polynomial Ridge models on dataset A:
nRMSE versus training set size.

Figure 6.29: Learning curves of Ridge and Polynomial Ridge models on dataset A:
err-STD versus training set size.

55

Experiments and Results

Model Metric 32 59 98 330

Ridge nRMSE 1.86% 1.54% 1.52% 1.53%
err-STD 9.60 7.91 7.84 7.91

Polynomial Ridge nRMSE 2.21% 1.79% 1.59% 1.55%
err-STD 11.47 9.26 8.22 8.03

Table 6.14: Comparison of nRMSE and err-STD at specific training set sizes for Ridge
and Polynomial Ridge models (corresponding to learning curves in figs. 6.28 and 6.29).

As demonstrated by these results (where 330 corresponds to the point where all
available samples are used), Ridge model outperforms the polynomial counterpart
by achieving better accuracy at the same training set size.

6.2.3 Incremental Learning Strategy Comparison
This section explores the results of the multi-dataset experiments performed with
an incremental approach (as explained in section 5.3). Strategy 1 experiments are
performed with active learning, while Strategy 2 experiments are performed without
active learning (which will be further explored in section 6.3). It is reminded to the
reader that the plots show the nRMSE and err-STD metrics versus the increasing
amount of dataset A samples used in training.

Since the full multi-dataset training experiments (6.2.1) produced the best
results with Ridge model, rather than the Polynomial counterpart, only the results
of the Ridge model are presented for conciseness.

Strategy 1 Learning Curves (with Active Learning)
The learning curves obtained with this strategy turned out to be highly irregular,
exhibiting strong oscillation and noise. This was not conducive to the formulation
of any meaningful interpretation of the model’s behavior as training data increased.
For this reason, only a few symbolic examples are reported here to illustrate the
instability of this approach, which ultimately proved unfeasible for the analysis.
Moreover, in order to make the figures more interpretable, only the baseline reference
Ridge on dataset A and Strategy 1 Ridge learning curves are shown for comparison.

56

Experiments and Results

• Dataset Combination: A + B
Per-product scaler, binary labels in training
Sample weights values : 1.0 for A, 0.00001 for B

Figure 6.30: Learning curves (nRMSE versus training set size): baseline Ridge model
(A), Ridge with Strategy 1 (A+B).

Figure 6.31: Learning curves (err-STD versus training set size): baseline Ridge model
(A), Ridge with Strategy 1 (A+B).

57

Experiments and Results

• Dataset Combination: A + B + C
Per-product scaler, binary labels in training
Sample weights values : 1.0 for A, 0.00001 for B and C

Figure 6.32: Learning curves (nRMSE versus training set size): baseline Ridge model
(A), Ridge with Strategy 1 (A+B+C).

Figure 6.33: Learning curves (err-STD versus training set size): baseline Ridge model
(A), Ridge with Strategy 1 (A+B+C).

58

Experiments and Results

• Dataset Combination: A + B + C + D
Per-product scaler, binary labels in training
Sample weights values : 1.0 for A, 0.00001 for B,C and D

Figure 6.34: Learning curves (nRMSE versus training set size): baseline Ridge model
(A), Ridge with Strategy 1 (A+B+C+D).

Figure 6.35: Learning curves (err-STD versus training set size): baseline Ridge model
(A), Ridge with Strategy 1 (A+B+C+D).

As shown, while Strategy 1 is highly ineffective and produces learning curves
with strong oscillations and irregularities, the initial portion of the curve still reflects
the accuracy advantage achievable with fewer training samples when combining
datasets.

59

Experiments and Results

Strategy 2 Learning Curves (without Active Learning)
This strategy, unlike the previous approach, produced consistent and interpretable
learning curves. Therefore, all dataset combinations already introduced in 6.2.1
are systematically analyzed here.

To assess the effect of per-product scaling and binary labels, the following results
for each combination of datasets, are structured in this way:

1. Global StandardScaler, no binary labels in training

2. Per-product scaler, binary labels in training

• Dataset Combination: A + B
Sample weights values : 1.0 for A, 0.00001 for B

1. Global StandardScaler, no binary labels in training

Figure 6.36: Learning curves (nRMSE versus training set size): baseline Ridge model
(A), Ridge with Strategy 2 (A+B, global StandardScaler, no binary labels in training).

Figure 6.37: Learning curves (err-STD versus training set size): baseline Ridge model
(A), Ridge with Strategy 2 (A+B, global StandardScaler, no binary labels in training).

60

Experiments and Results

2. Per-product scaler, binary labels in training

Figure 6.38: Learning curves (nRMSE versus training set size): baseline Ridge model
(A), Ridge with Strategy 2 (A+B, per-product scaler, binary labels in training).

Figure 6.39: Learning curves (err-STD versus training set size): baseline Ridge model
(A), Ridge with Strategy 2 (A+B, per-product scaler, binary labels in training).

61

Experiments and Results

• Dataset Combination: A + C
Sample weights values : 1.0 for A, 0.00001 for C

1. Global StandardScaler, no binary labels in training

Figure 6.40: Learning curves (nRMSE versus training set size): baseline Ridge model
(A), Ridge with Strategy 2 (A+C, global StandardScaler, no binary labels in training).

Figure 6.41: Learning curves (err-STD versus training set size): baseline Ridge model
(A), Ridge with Strategy 2 (A+C, global StandardScaler, no binary labels in training).

62

Experiments and Results

2. Per-product scaler, binary labels in training

Figure 6.42: Learning curves (nRMSE versus training set size): baseline Ridge model
(A), Ridge with Strategy 2 (A+C, per-product scaler, binary labels in training).

Figure 6.43: Learning curves (err-STD versus training set size): baseline Ridge model
(A), Ridge with Strategy 2 (A+C, per-product scaler, binary labels in training).

63

Experiments and Results

• Dataset Combination: A + D
Sample weights values : 1.0 for A, 0.00001 for D

1. Global StandardScaler, no binary labels in training

Figure 6.44: Learning curves (nRMSE versus training set size): baseline Ridge model
(A), Ridge with Strategy 2 (A+D, global StandardScaler, no binary labels in training).

Figure 6.45: Learning curves (err-STD versus training set size): baseline Ridge model
(A), Ridge with Strategy 2 (A+D, global StandardScaler, no binary labels in training).

64

Experiments and Results

2. Per-product scaler, binary labels in training

Figure 6.46: Learning curves (nRMSE versus training set size): baseline Ridge model
(A), Ridge with Strategy 2 (A+D, per-product scaler, binary labels in training).

Figure 6.47: Learning curves (err-STD versus training set size): baseline Ridge model
(A), Ridge with Strategy 2 (A+D, per-product scaler, binary labels in training).

65

Experiments and Results

• Dataset Combination: A + B + C
Sample weights values : 1.0 for A, 0.00001 for B and C

1. Global StandardScaler, no binary labels in training

Figure 6.48: Learning curves (nRMSE versus training set size): baseline Ridge model
(A), Ridge with Strategy 2 (A+B+C, global StandardScaler, no binary labels in training).

Figure 6.49: Learning curves (err-STD versus training set size): baseline Ridge model
(A), Ridge with Strategy 2 (A+B+C, global StandardScaler, no binary labels in training).

66

Experiments and Results

2. Per-product scaler, binary labels in training

Figure 6.50: Learning curves (nRMSE versus training set size): baseline Ridge model
(A), Ridge with Strategy 2 (A+B+C, per-product scaler, binary labels in training).

Figure 6.51: Learning curves (err-STD versus training set size): baseline Ridge model
(A), Ridge with Strategy 2 (A+B+C, per-product scaler, binary labels in training).

67

Experiments and Results

• Dataset Combination: A + B + D
Sample weights values : 1.0 for A, 0.00001 for B and D

1. Global StandardScaler, no binary labels in training

Figure 6.52: Learning curves (nRMSE versus training set size): baseline Ridge model
(A), Ridge with Strategy 2 (A+B+D, global StandardScaler, no binary labels in training).

Figure 6.53: Learning curves (err-STD versus training set size): baseline Ridge model
(A), Ridge with Strategy 2 (A+B+D, global StandardScaler, no binary labels in training).

68

Experiments and Results

2. Per-product scaler, binary labels in training

Figure 6.54: Learning curves (nRMSE versus training set size): baseline Ridge model
(A), Ridge with Strategy 2 (A+B+D, per-product scaler, binary labels in training).

Figure 6.55: Learning curves (err-STD versus training set size): baseline Ridge model
(A), Ridge with Strategy 2 (A+B+D, per-product scaler, binary labels in training).

69

Experiments and Results

• Dataset Combination: A + B + C + D

Sample weights values : 1.0 for A, 0.00001 for B, C and D

1. Global StandardScaler, no binary labels in training

Figure 6.56: Learning curves (nRMSE versus training set size): baseline Ridge model
(A), Ridge with Strategy 2 (A+B+C+D, global StandardScaler, no binary labels in
training).

Figure 6.57: Learning curves (err-STD versus training set size): baseline Ridge model
(A), Ridge with Strategy 2 (A+B+C+D, global StandardScaler, no binary labels in
training).

70

Experiments and Results

2. Per-product scaler, binary labels in training

Figure 6.58: Learning curves (nRMSE versus training set size): baseline Ridge model
(A), Ridge with Strategy 2 (A+B+C+D, per-product scaler, binary labels in training).

Figure 6.59: Learning curves (err-STD versus training set size): baseline Ridge model
(A), Ridge with Strategy 2 (A+B+C+D, per-product scaler, binary labels in training).

71

Experiments and Results

Key Takeaways from Incremental Strategies Experiments

Compared to Strategy 1, in which Active Learning was applied and which proved
largely ineffective and irregular, Strategy 2 (without Active Learning) demonstrates
a clear advantage. Combining datasets with this approach yielded mixed outcomes
when using a global StandardScaler without binary labels in training, even though
in some cases (e.g. A+B+C) already showed tangible benefits over the baseline.
The use of a per-product scaler with binary labels in training consistently improved
stability and performance. This was clear by looking at the resulting smoother
learning curves characterized by decreased error values. This configuration also
produced the best results, particularly for A+B+C and A+B+C+D combinations,
with the latter emerging as the most effective combination so far, achieving the
lowest error with relatively small training set size. A few irregular behaviors have
been observed (e.g. A+B+D or a slight increase in initial error for A+C), but
they can be considered as outliers, since the overall pattern consistently points to
improvements with per-product scaling. A remark has to be done for the A+C
case, where it can be seen that good accuracy at few dataset A samples is already
achieved without per-product scaler and binary labels (see 6.40), improving then,
even further, when applying them.

72

Experiments and Results

These results are further highlighted through the direct curve comparison with
baseline Ridge below, confirming that combination A+B+C+D with per-product
scaling and binary labels represents indeed the best configuration.

Figure 6.60: Learning curves (nRMSE versus training set size): comparison between
baseline and best configurations (Strategy 2, without AL).

Model / Dataset Training size R2 MAPE nRMSE nMAE Err-STD

20 - - - - -
Baseline Ridge (A) 33 0.92 1.47% 1.86% 1.48% 9.60

50 0.94 1.22% 1.57% 1.23% 8.05
330 0.95 1.20% 1.53% 1.20% 7.91

20 0.93 1.50% 1.84% 1.51% 9.41
Ridge S2: A+B+C 33 0.95 1.28% 1.59% 1.28% 8.20

50 0.95 1.28% 1.56% 1.29% 8.11
330 0.95 1.22% 1.51% 1.22% 7.81

20 0.94 1.40% 1.70% 1.40% 8.68
Ridge S2: A+B+C+D 33 0.95 1.27% 1.58% 1.27% 8.20

50 0.95 1.21% 1.54% 1.21% 7.94
330 0.95 1.19% 1.52% 1.19% 7.83

Table 6.15: Comparison of baseline Ridge (A) and the two best Strategy 2 (S2)
combinations (without AL) at different training set sizes. Metrics shown: R2, MAPE,
nRMSE, nMAE, Err-STD.

73

Experiments and Results

6.2.4 Dataset Similarity Analysis

To assess the similarity between datasets, Jensen-Shannon Divergence (JSD) has
been used. JSD provides a measure of difference between probability distributions.
The divergence value ranges from 0 to 1, with values closer to 0 representing higher
similarity in the distribution. The analysis was performed both on the feature and
target variable distributions, comparing datasets B, C, and D against the reference
dataset A. The results for feature analysis were grouped into ranges and visualized
in a grouped bar plot, showing the percentage of features within each divergence
range for each dataset. This brief analysis provides information that might help
identify potential directions to further improve accuracy and provide additional
insight into the results of this work.

Feature Similarity Analysis

Figure 6.61: Datasets B, C, and D grouped bar plot of percentage of features per
divergence ranges with respect to dataset A.

It is evident from the plot that the distributions of many features in each datasets
differ substantially from their counterparts in dataset A. Nevertheless, it is impor-
tant to note that each dataset also contains features with similar distributions.

74

Experiments and Results

Prediction Target Variable Analysis

Figure 6.62: Datasets B, C, and D divergence value for prediction target value with
respect to dataset A.

The target variable, like most features, is distributionally distant from dataset A
in dataset B and D, whereas in dataset C it shows a much closer alignment.This
might explain why, among the pairwise combinations using Strategy 2, A+C (in
Strategy 2 learning curves subsection, 6.2.3) already shows better performance and
a smoother learning curve, even without per-product scaling or binary labels in
training, compared to A+B and A+D.

75

Experiments and Results

These differences between target variable distributions can be visualized in the
figure (6.63) below:

Figure 6.63: Prediction target variable density plots for each dataset.

Key Takeaways

Despite noticeable differences in feature and target distributions across dataset,
combining datasets in model training, as shown in section 6.2 and especially in
the key takeaways of incremental strategies section (6.2.3), still improves perfor-
mance. By adopting careful strategies for sample weighting, scaling and feature
selection/preprocessing the models are still able to extract useful patterns even
when distributions diverge, without precluding effective multi-dataset learning.
This basically means that by training on multiple datasets together, the model
is exposed to a broader variety of input distribution, which, with a carefully se-
lected configuration, enhances robustness as additional target-specific samples are
incorporated, as it happens for the incremental training strategies described in this
work.

76

Experiments and Results

6.3 Active Learning Integration

The optimal setups determined under Strategy 2 were replicated, with the integra-
tion of Active Learning as the sampling method for incremental training. The same
experiments were naturally performed on other dataset combinations as well but
did not produce relevant results. In this section, the main comparison focuses on
the differences between the best configurations with and without Active Learning.

• A+B+C (S2 Ridge Model): With vs Without Active Learning

Figure 6.64: Comparison of nRMSE from S2 Ridge A+B+C with and without AL.

Figure 6.65: Comparison of err-STD from S2 Ridge A+B+C with and without AL.

In this case, integrating Active Learning brought visible benefits to the model.
In the table below, the metrics from the two curves, at specific training set
sizes, to allow a direct numerical comparison:

77

Experiments and Results

Model / AL Metric 13 26 33 98 330

Ridge A+B+C w/ AL nRMSE 1.87% 1.55% 1.57% 1.51% 1.51%
err-STD 9.62 8.02 8.00 7.81 7.81

Ridge A+B+C w/o AL nRMSE 2.01% 1.72% 1.59% 1.55% 1.51%
err-STD 10.27 8.91 8.20 8.00 7.81

Table 6.16: Comparison of nRMSE and err-STD at selected training set sizes for Ridge
models (Strategy 2) on the A+B+C dataset, with and without active learning (AL).

These results (where 330 corresponds to the maximum available samples
from dataset A in training) confirm that, in the case of Ridge A+B+C with
incremental Strategy 2, integrating Active Learning further improved accuracy
especially in the lower range of used samples in training. Here is a comparison
with the baseline reference learning curve (Ridge, A), where it is even more
evident how the Active Learning version achieves roughly the same accuracy
of the baseline reference but with a much smaller training set size:

Figure 6.66: Comparison of nRMSE: S2 Ridge A+B+C with AL vs baseline model
(Ridge, A).

78

Experiments and Results

• A+B+C+D (S2 Ridge Model): With vs Without Active Learning

Figure 6.67: Comparison of nRMSE from S2 Ridge A+B+C+D with and without AL.

Figure 6.68: Comparison of err-STD from S2 Ridge A+B+C+D with and without AL.

In this case, Active Learning seems to have underperformed compared to its
counterpart. While the learning curve indicates that the model still performs
well with smaller training set sizes, it no longer stands out as the best. Between
45 and 230 A samples in training, its accuracy consistently falls slightly below
the baseline reference, as illustrated below:

Figure 6.69: Comparison of nRMSE from S2 Ridge A+B+C+D with and without AL
and with baseline reference.

79

Experiments and Results

A plausible explanation for why integrating AL in this configuration actually
hurt performance might lie in the underlying distribution mismatch among
datasets. Given the analysis performed on dataset similarity (Subsection 6.2.4),
in the case of A+B+C, where the baseline training set is composed of B and
C, the combination offers a reasonable compromise since dataset B introduces
variability, while dataset C shows a target distribution that partially aligns
with A. This balance allows Active Learning to effectively identify and select
informative samples from A, ultimately improving the model’s predictive
performance. Conversely, when the baseline training set includes also dataset
D (A+B+C+D case), the overall distributional distance becomes too large,
introducing excessive heterogeneity. In this scenario, the AL mechanism
probably struggles to select good informative samples for the target A, often
selecting extreme or uninformative outliers instead, which ultimately negatively
affect the training process and performance.

• A+C (S2 Ridge Model): With vs Without Active Learning
Given the results obtained with this combination (Subsection 6.2.3 figs. 6.42
and 6.44) both with and without per-product scaling and binary labels, it was
worth analyzing the effect of Active Learning also in this case.

Figure 6.70: Comparison of nRMSE from S2 Ridge A+C with and without AL.

Figure 6.71: Comparison of err-STD from S2 Ridge A+C with and without AL.

80

Experiments and Results

Similar to A+B+C, this combination demonstrates measurable benefits from
the integration of Active Learning. These improvements are quantitatively
detailed in the table below.

Model / AL Metric 13 26 33 98 330

Ridge A+C w/ AL nRMSE 1.81% 1.63% 1.63% 1.56% 1.55%
err-STD 9.12 8.37 8.30 8.07 8.03

Ridge A+C w/o AL nRMSE 1.88% 1.71% 1.72% 1.60% 1.55%
err-STD 9.56 8.76 8.73 8.21 8.03

Table 6.17: Comparison of nRMSE and err-STD at selected training set sizes for Ridge
models (Strategy 2) on the A+C dataset, with and without active learning (AL).

Figure 6.72: Comparison of nRMSE from S2 Ridge A+C with and without AL and
with baseline reference.

As shown in figure 6.72, this combination together with Active Learning
integration achieves good accuracy, reaching the baseline reference performance
with a considerably smaller number of samples. This advantage persists up to
approximately 45 samples, beyond which the performance for both non-AL
and AL versions slightly declines, remaining consistently below the baseline
until eventually plateauing around comparable error levels.

81

Experiments and Results

6.3.1 Comparison of the Best Performing Configurations
To determine the overall best-performing configuration, the three most promising
setups are compared in this section: A+B+C with Active Learning, A+B+C+D
without Active Learning, and A+C with Active Learning.

Figure 6.73: Comparison of nRMSE from the three best performing configurations and
baseline reference.

From the figure above, it is immediately evident that the A+B+C with Active
Learning configuration achieves the lowest overall error. However, when focusing on
smaller training set sizes, the A+C with Active Learning curve actually yields the
lowest error in the early stages. To better highlight these differences, the analysis
below concentrates on the lower range of training samples (approximately 50 and
below).

Figure 6.74: Comparison of nRMSE from the three best performing configurations and
baseline reference (lower range, 50 samples and below).

Considering all aspects, the configuration that achieves the highest accuracy
with the smallest number of training samples is A+C with Active Learning. How-
ever, when evaluating overall performance, the configuration A+B+C with Active
Learning stands out as the most effective setup. It consistently exhibits the lowest

82

Experiments and Results

error values across the full training range, remaining well below both the baseline
and the other configurations. In contrast, the A+B+C+D configuration performs
very close to the baseline after around 70 samples, while A+C, despite its early
advantage at low training set sizes, gradually converges and remains consistently
above the baseline after around 45 training samples.

Therefore, A+B+C with Active Learning (Strategy 2) can be identified
as the best overall configuration, offering the most stable and accurate results.

Model / Dataset Training size R2 MAPE nRMSE nMAE Err-STD

13 - - - - -
26 - - - - -

Baseline Ridge (A) 33 0.92 1.47% 1.86% 1.48% 9.60
100 0.95 1.20% 1.52% 1.20% 7.85
330 0.95 1.20% 1.53% 1.20% 7.91

13 0.93 1.49% 1.87% 1.49% 9.62
26 0.95 1.24% 1.55% 1.25% 8.02

Ridge AL A+B+C 33 0.95 1.26% 1.57% 1.26% 8.00
100 0.95 1.21% 1.51% 1.21% 7.81
330 0.95 1.22% 1.51% 1.22% 7.81

Table 6.18: Comparison at selected training set sizes for Ridge models (Strategy 2)
on the A+B+C dataset with AL and baseline reference. Metrics shown: R2, MAPE,
nRMSE, nMAE, Err-STD.

83

Experiments and Results

6.4 Complementary Experiments
These additional experiments were performed using only the best configuration
identified in the previous analyses (A+B+C with Active Learning), as extending
them to all configuration would not have been meaningful. Their purpose was to
investigate whether the optimal setup could be further improved. In particular,
alternative scaling strategies were tested to assess potential benefits in predictive
accuracy, while the CORAL (Correlation Alignment) method was employed as a
domain adaptation technique to evaluate its effect on model performance. Lastly,
an additional analysis was carried out to explore the model’s behavior with respect
to wafer types through a dedicated traning process.

6.4.1 Alternative Scalers Evaluation
These experiments were conducted using the same pipeline and configuration that
produced the optimal result (A+B+C with Active Learning). However, the scaling
method within the per-product strategy was varied, replacing the StandardScaler
with the alternative techniques listed below.

• MinMaxScaler

Figure 6.75: nRMSE learning curve comparison for the optimal configuration (A+B+C
with Active Learning, Strategy 2), highlighting the effect of using StandardScaler versus
MinMaxScaler within the per-product scaling strategy.

Applying MinMaxScaler led to slightly better performance for very small
training set sizes (below 20 sample) but introduced an evident error spike
between 25–40 samples, after which it converged to the same error plateau as
the optimal configuration.

84

Experiments and Results

• RobustScaler

Figure 6.76: nRMSE learning curve comparison for the optimal configuration (A+B+C
with Active Learning, Strategy 2), highlighting the effect of using StandardScaler versus
RobustScaler within the per-product scaling strategy.

The RobustScaler produced an almost identical learning curve to the optimal
one, but with a lower initial error, suggesting improved stability on small
training set sizes due to its robustness to outliers.

• MaxAbsScaler

Figure 6.77: nRMSE learning curve comparison for the optimal configuration (A+B+C
with Active Learning, Strategy 2), highlighting the effect of using StandardScaler versus
MaxAbsScaler within the per-product scaling strategy.

The MaxAbsScaler behaves similarly to the RobustScaler but with slightly
higher errors in the 20-35 sample range, remaining nonetheless a reasonable
alternative.

85

Experiments and Results

Final Considerations on Alternative Scalers

Among the scalers tested, RobustScaler provides the best performance, slightly
reducing the initial error in lower ranges of training set size while mantaining the
same overall learning curve as the optimal StandardScaler configuration. MinMaxS-
caler and MaxAbsScaler also perform reasonably well, with minor deviations in
small training sizes. Overall, applying especially RobustScaler in the per-product
scaling strategy allows for a further refinement of the already high-performing model
(A+B+C with Active Learning, Strategy 2) enhancing stability and reducing initial
error without altering the plateau performance. When using the RobustScaler, the
improvement over the second-best optimal model becomes even more pronounced,
as illustrated in the figure below (6.78).

Scaler Training size R2 MAPE nRMSE nMAE Err-STD

13 0.93 1.49% 1.87% 1.49% 9.62
26 0.95 1.24% 1.55% 1.25% 8.02

StandardScaler 33 0.95 1.26% 1.57% 1.26% 8.00
100 0.95 1.21% 1.51% 1.21% 7.81
330 0.95 1.22% 1.51% 1.22% 7.81

13 0.94 1.39% 1.74% 1.40% 9.01
26 0.95 1.24% 1.55% 1.25% 8.01

RobustScaler 33 0.95 1.27% 1.57% 1.27% 8.00
100 0.95 1.20% 1.50% 1.20% 7.79
330 0.95 1.22% 1.51% 1.22% 7.81

Table 6.19: Comparison at selected training set sizes for the optimal configuration
(A+B+C w/ AL, Strategy 2) using StandardScaler versus RobustScaler in the per-product
scaling strategy. Metrics shown: R2, MAPE, nRMSE, nMAE, and Err-STD.

Figure 6.78: nRMSE learning curve comparison for the optimal configuration (A+B+C
with Active Learning, Strategy 2), highlighting the improvement of using RobustScaler
within the per-product scaling strategy versus second best optimal configuration
(A+B+C+D, without Active Learning, Strategy 2).

86

Experiments and Results

6.4.2 CORAL Experiments
The learning curves experiments were conducted using the same pipeline as before,
with per-product scaling and Active Learning. CORAL alignment was applied
after scaling to achieve correlation alignment of the samples from older generations
and the A samples (increasing at each iteration).

No additional plots are included here, as the learning curves for this configuration
is essentially overlapping with the one obtained from the optimal configuration.
This indicated that the combination of per-product scaling with labels in training
(through a custom scaler applying RobustScaler) does not introduce any significant
changes.

6.4.3 Wafer-type Based Training
To further investigate how the model behaves with respect to different wafer
production stages, additional experiments were performed considering the wafer
type as criteria to distinguish samples. In semiconductor manufacturing, wafers are
typically categorized into production wafers (fully processed lots used for standard
production), and split-lot wafers (from partially processed lots used mainly for
testing and characterization purposes). These two different categories represent
distinct points in the manufacturing flow.

The purpose of these experiment was to analyze how model performance evolves
as samples from these two wafer types are incrementally introduced in the training
set. Specifically, following an incremental approach with Active Learning, pro-
duction samples were initially added into the training set, and once all of them
were included, the split-lot samples were added to training set in the same manner.
For the multi-dataset scenario, the Strategy 2 incremental approach was applied
(older-generation datasets as baseline training set expanded by incrementally adding
samples from dataset A). This approach allows assessing how accuracy is influences
by the nature and order of wafer data included in training.

The tests were carried out on three configurations:

1. the Ridge baseline model (trained only on dataset A).

2. the A+B+C+D Ridge model without Active Learning (second-best configura-
tion under Strategy 2).

3. the A+B+C Ridge model with Active Learning using RobustScaler in the
per-product scaling strategy (the configuration identified as the best one
overall)

87

Experiments and Results

In the learning curves shown below, nRMSE for three different test sets can
be seen: one for the mixed test set (both split-lot and production samples), one
for a split-lot only samples test set, and one for a production only samples test
set. The pool of production samples in all of three cases consists of 80 production
samples, after which split-lot samples are incrementally added to the training set.
It is, indeed, possible to notice major differences in plots starting exactly from the
point where those split-lot samples are starting to be included.

Wafer-type Based Training: Ridge Baseline Model

Figure 6.79: Comparison of nRMSE plots (learning curves) of baseline reference model
(Ridge, A) for mixed, split-lot only, and production only test sets.

Wafer-type Based Training: Ridge without AL, A+B+C+D

Figure 6.80: Comparison of nRMSE plots (learning curves) of second best configuration
(Ridge, A+B+C+D, without AL, Strategy 2) for mixed,split-lot only, and production
only test sets.

88

Experiments and Results

Wafer-type Based Training: Ridge with AL, A+B+C

Figure 6.81: Comparison of nRMSE plots (learning curves) of second best configuration
(Ridge, A+B+C, without AL, Strategy 2, RobustScaler) for mixed,split-lot only, and
production only test sets.

Key Takeaways for Wafer-type Based Training

For this experiments, the main focus is placed on the learning curve obtained
by evaluating the model on production wafer samples. This choice reflects the
nature of the manufacturing process itself, where in the early stages, the majority
of available data originates from production wafers, while split-lot wafers become
available only later.

The baseline model already achieves strong performance, with an initial nRMSE
of approximately 1.8% and a final value around 1.65%. However, the multi-dataset
models consistently outperform the baseline, even in this context. Among them,
the already highlighted best configuration (Ridge with AL, A+B+C, Strategy2,
RobustScaler in the per-product scaling strategy) delivers the best overall perfor-
mance.

It is also important to note that when split-lot samples begin to be introduced
into the training set, a slight decrease in accuracy on the production wafer test set
can be observed. This effect is generally minor, so small that the learning curve
remains nearly unchanged after few increments. However, this trend does not hold
for the best-performing configuration, where instead the accuracy on the production
test set deteriorates more noticeably after adding split-lot samples. In this case,
the curve gradually plateaus, converging with the curves obtained from the mixed
and split-lot only test sets, all reaching a similar nRMSE of approximately 1.5%.

89

Experiments and Results

Additional evaluation metrics summarizing these observations are reported in
the Table 6.20 below. The best configuration (Ridge, A+B+C with AL and
RobustScaler, Strategy 2) has been called “R-AL-R,A+B+C” , while the second
best configuration (Ridge, A+B+C+D without AL, Strategy 2) has been named
“R-nAL,A+B+C+D” (these short labels have been adopted for brevity within the
table).

Model / Dataset Training size #P #S R2 nRMSE Err-STD

32 32 0 0.72 1.78% 8.98
65 65 0 0.75 1.66% 8.62

Baseline Ridge (A) 98 79 19 0.75 1.68% 8.75
170 79 91 0.76 1.64% 8.67
330 79 247 0.75 1.65% 8.71

32 32 0 0.62 1.90% 10.15
65 65 0 1.76 1.60% 8.51

R-nAL, A+B+C+D 98 80 18 0.77 1.59% 8.38
170 80 90 0.77 1.60% 8.34
330 80 250 0.76 1.64% 8.23

32 32 0 0.79 1.51% 8.22
65 65 0 0.81 1.41% 7.65

R-AL-R, A+B+C 98 80 18 0.80 1.46% 7.87
170 80 90 0.80 1.46% 7.88
330 80 250 0.78 1.51% 8.08

Table 6.20: Comparison at selected training set sizes of best configurations and and
baseline reference (production wafer-only test set). Metrics shown: R2, nRMSE, Err-STD.
“#P” and “#S” indicate the number of production and split-lot samples in the training
set.

90

Chapter 7

Conclusion

This work presented an empirical exploration of incremental and active learning
strategies for multi-dataset regression applied to MCU performance prediction,
investigating how different preprocessing, scaling, and sampling strategies impact
model behavior and accuracy. The experiments progressively built on each other,
revealing key insights into dynamics of scaling effects, dataset merging, and active
sample selection.

7.1 Summary of Findings

Initial experiments on the single-dataset baseline (Ridge, dataset A) confirmed
that even simple linear models, when combined with appropriate preprocessing,
can achieve high predictive performance, with R2 > 0.94 and low error values (e.g.
nRMSE, Err-STD ...). More complex models such as TabPFN did not provide
significant advantages, validating the choice of lightweight models for incremental
and multi-dataset scenarios, specifically in a hardware-constrained environment
where computationally heavier models cannot be employed.

When expanding to multi-dataset configurations, results demonstrated that
Strategy 2, where all older generation datasets form the baseline training set
and new-generation samples are added incrementally, significantly outperforms
Strategy 1, which relied on Active Learning from the start, but was based on a
mixed training set of old-generation and new-generation samples all together. The
addition of per-product scaling and binary product labels in training provided
further improvements, producing smoother learning curves and lower overall error.
Among all tested combinations, A+B+C+D emerged as the best configuration
under Strategy 2, achieving the lowest error with relatively few samples and
especially with less samples than the baseline reference.

91

Conclusion

Furthermore, the dataset similarity analysis clarified that, despite clear differ-
ences in both feature and target variable distributions among datasets, multi-dataset
learning can still be highly effective, especially in situations in which available
data is scarce. However, proper scaling, sample weighting, and preprocessing are
essential to make this approach work and allow models to extract useful information
and patterns from multiple datasets. The results obtained overall confirmed that
distributional differences does not preclude effective learning. On the contrary,
diversity in data might actually be enhancing robustness and generalization, as
long as the relationship between features and prediction target are similar across
datasets and at least a fraction of the data is distributionally close.

Experiments on Active Learning (AL) integration in Strategy 2 produced im-
proved models, although performance gains were not uniform across all configura-
tions. These tests showed that A+C (with AL) combination achieved the highest
accuracy with the smallest number of samples (probably also because dataset C
was the most similar to dataset A), while A+B+C (with AL) provided the best
overall and most stable performance across all training ranges, maintaining the
lowest errors visibly below the baseline. Therefore, this configuration represents
the most effective overall setup, combining the benefits of multi-dataset learning
with the efficiency of an active sample selection approach.

The experiments performed with alternative scaling approaches revealed that
the RobustScaler, within the per-product scaling strategy, resulted in improved
performance, slightly reducing early-stage errors while maintaining the same behav-
ior and plateau accuracy as StandardScaler. This result highlights how the scaling
choice in this context can influence model performance.

Tests with CORAL (Correlation Alignment), aimed at domain adaptation
between source and target datasets, showed no benefits in this context. When
applied, infact, in combination with per-product scaling, CORAL produced basically
identical results to the version without CORAL. This suggests that the existing
per-product scaling already achieves a substantial degree of domain normalization
and that methods such as CORAL might offer low additional benefits when datasets
are already properly handled through scaling strategies.

Finally, the wafer based training analysis provided additional insights into the
model’s behavior in relation to production stages. When trained on progressively
added production and split-lot wafers samples, the baseline Ridge model performed
well, but the multi-dataset models again achieved slightly higher accuracy. From
the learning curves it was clear that when split-lot samples were introduced, a
slight, almost negligible, drop in accuracy on production wafers was observed. Also
in this case, the best configuration was the same found in previous experiments:
Ridge with AL and RobustScaler within the per-product scaling approach with
A+B+C datasets, under Strategy 2, where the overall nRMSE remained low (1.5%),
confirming the robustness of the best model even with mixed wafers.

92

Conclusion

7.2 Final Considerations
This work achieved and demonstrated tangible improvements with multi-dataset and
active learning strategies, showing their effectiveness. Several open challenges and
opportunities to extend the analysis in this context still remain. One direction to
further analyze lies in domain adaptation, where more advanced nonlinear alignment
methods, such as deep CORAL, could better handle complex inter-dataset shifts
and improve cross-generation generalization. Similarly, also the Active Learning
strategy based on Hausdorff distance could be enhanced by integrating selection
based on uncertainty or hybrid criteria to prevent the model from prioritizing
outliers in a context of heterogeneous data.

From a methodological point of view, future work could explore richer model
architectures, such as neural networks, to assess whether their increased capability
of finding pattern and information can further leverage the data across different
datasets.

Beyond these potential refinements, the significance of this research lies in
demonstrating how Machine Learning approaches can directly support the opti-
mization of semiconductor manufacturing. By integrating an incremental learning
approach, Active Learning, proper scaling, and multi-dataset fusion to leverage
prior knowledge, this work shows how these algorithms can be effectively embedded
into industrial workflows to predict device performance, improving production effi-
ciency and making product characterization easier, especially given the predictive
performance and convergence achieved with reduced data requirements.

Furthermore, while the findings of this work are focused on the specific context of
MCU production, they extend more broadly, demonstrating how carefully designed
learning pipelines and domain-aware modeling can produce algorithms that serve
as core analytical components supporting adaptive and autonomous screening for
efficient industrial production.

93

Bibliography

[1] Nicolò Bellarmino. «Computational Intelligence Techniques for Device Test-
ing». MA thesis. Politecnico di Torino, 2021 (cit. on pp. 3, 21, 25, 29, 30).

[2] Riccardo Cantoro, Martin Huch, Tobias Kilian, Raffaele Martone, Ulf Schlicht-
mann, and Giovanni Squillero. «Machine Learning based Performance Pre-
diction of Microcontrollers using Speed Monitors». In: 2020 IEEE Interna-
tional Test Conference (ITC). 2020, pp. 1–5. doi: 10.1109/ITC44778.2020.
9325253 (cit. on p. 3).

[3] Nicolò Bellarmino, Riccardo Cantoro, Martin Huch, Tobias Kilian, Raffaele
Martone, Ulf Schlichtmann, and Giovanni Squillero. «Exploiting Active Learn-
ing for Microcontroller Performance Prediction». In: 2021 IEEE European Test
Symposium (ETS). 2021, pp. 1–4. doi: 10.1109/ETS50041.2021.9465472
(cit. on p. 3).

[4] Nicolò Bellarmino, Riccardo Cantoro, Martin Huch, Tobias Kilian, Ulf Schlicht-
mann, and Giovanni Squillero. «Feature Selection for Cost Reduction in MCU
Performance Screening». In: 2023 24th IEEE Latin-American Test Symposium
(LATS). Veracruz, Mexico, Mar. 2023, pp. 1–6. doi: 10.1109/LATS58125.
2023.10154495 (cit. on p. 6).

[5] Nicolò Bellarmino, Riccardo Cantoro, Martin Huch, Tobias Kilian, and Gio-
vanni Squillero. «Grouped Feature Selection for SMONs Placement in MCU
Performance Screening». In: 2025 IEEE 26th Latin American Test Sympo-
sium (LATS). San Andrés, Colombia, Mar. 2025, pp. 1–6. doi: 10.1109/
lats65346.2025.10963942 (cit. on p. 6).

[6] Hussam Amrouch et al. «Special Session: Machine Learning for Semiconductor
Test and Reliability». In: 2021 IEEE 39th VLSI Test Symposium (VTS). 2021,
pp. 1–11. doi: 10.1109/VTS50974.2021.9441052 (cit. on p. 11).

[7] Duanyang Liu, Liming Xu, Xumin Lin, Xing Wei, Wenjie Yu, Yang Wang,
and Zhongming Wei. «Machine Learning for Semiconductors». In: Chip 1
(Nov. 2022), p. 100033. doi: 10.1016/j.chip.2022.100033 (cit. on p. 11).

94

https://doi.org/10.1109/ITC44778.2020.9325253
https://doi.org/10.1109/ITC44778.2020.9325253
https://doi.org/10.1109/ETS50041.2021.9465472
https://doi.org/10.1109/LATS58125.2023.10154495
https://doi.org/10.1109/LATS58125.2023.10154495
https://doi.org/10.1109/lats65346.2025.10963942
https://doi.org/10.1109/lats65346.2025.10963942
https://doi.org/10.1109/VTS50974.2021.9441052
https://doi.org/10.1016/j.chip.2022.100033

BIBLIOGRAPHY

[8] Haralampos-G. Stratigopoulos. «Machine Learning Applications in IC Test-
ing». In: 2018 IEEE 23rd European Test Symposium (ETS). 2018, pp. 1–10.
doi: 10.1109/ETS.2018.8400701 (cit. on p. 11).

[9] Chen He, Hanbin Hu, and Peng Li. «Applications for Machine Learning
in Semiconductor Manufacturing and Test (Invited Paper)». In: Apr. 2021,
pp. 1–3. doi: 10.1109/EDTM50988.2021.9420935 (cit. on p. 11).

[10] Christopher M. Bishop. Pattern Recognition and Machine Learning. 1st. New
York: Springer, 2006, pp. 137–143 (cit. on pp. 13, 15).

[11] Fabian Pedregosa et al. «Scikit-learn: Machine Learning in Python». In:
Journal of Machine Learning Research 12 (2011), pp. 2825–2830 (cit. on
p. 13).

[12] Scikit-learn developers. Scikit-learn: User Guide – Preprocessing data. https:
//scikit-learn.org/stable/modules/preprocessing.html. Accessed:
2025-09-20 (cit. on p. 13).

[13] I. T. Jolliffe. Principal Component Analysis. 2nd. Springer, 2002 (cit. on
p. 14).

[14] Scikit-learn developers. Polynomial Features — Scikit-learn 1.3.2 documenta-
tion. Accessed: 2025-09-20. 2025. url: https://scikit-learn.org/stable/
modules/generated/sklearn.preprocessing.PolynomialFeatures.html
(cit. on p. 15).

[15] Burr Settles. «Active Learning Literature Survey». In: University of Wisconsin,
Madison 52 (July 2010) (cit. on p. 18).

[16] Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and
Neil Lawrence. «Dataset Shift in Machine Learning». In: (Jan. 2009) (cit. on
p. 18).

[17] Baochen Sun, Jiashi Feng, and Kate Saenko. «Return of Frustratingly Easy
Domain Adaptation». In: Proceedings of the AAAI Conference on Artificial
Intelligence. 2016 (cit. on p. 19).

[18] Nitesh Chawla, Kevin Bowyer, Lawrence Hall, and W. Kegelmeyer. «SMOTE:
Synthetic Minority Over-sampling Technique». In: J. Artif. Intell. Res. (JAIR)
16 (June 2002), pp. 321–357. doi: 10.1613/jair.953 (cit. on p. 19).

[19] Sinno Jialin Pan and Qiang Yang. «A Survey on Transfer Learning». In: IEEE
Transactions on Knowledge and Data Engineering 22.10 (2010), pp. 1345–1359.
doi: 10.1109/TKDE.2009.191 (cit. on p. 19).

[20] Jesse Read, Bernhard Pfahringer, Geoffrey Holmes, and Eibe Frank. «Classifier
Chains for Multi-label Classification». In: vol. 85. Aug. 2009, pp. 254–269.
isbn: 978-3-642-04173-0. doi: 10.1007/978-3-642-04174-7_17 (cit. on
p. 23).

95

https://doi.org/10.1109/ETS.2018.8400701
https://doi.org/10.1109/EDTM50988.2021.9420935
https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://doi.org/10.1613/jair.953
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1007/978-3-642-04174-7_17

BIBLIOGRAPHY

[21] Scikit-learn developers. LeavePGroupsOut. Accessed: 2025-09-21. 2025. url:
https://scikit-learn.org/stable/modules/generated/sklearn.model
_selection.LeavePGroupsOut.html (cit. on p. 24).

[22] Scikit-learn developers. StandardScaler. Accessed: 2025-09-22. 2025. url:
https://scikit-learn.org/stable/modules/generated/sklearn.prepr
ocessing.StandardScaler.html (cit. on p. 29).

[23] Scikit-learn developers. MinMaxScaler. Accessed: 2025-09-22. 2025. url: htt
ps://scikit-learn.org/stable/modules/generated/sklearn.preproce
ssing.MinMaxScaler.html (cit. on p. 29).

[24] Scikit-learn developers. RobustScaler. Accessed: 2025-09-22. 2025. url: https:
//scikit-learn.org/stable/modules/generated/sklearn.preprocessi
ng.MinMaxScaler.html (cit. on p. 29).

[25] Scikit-learn developers. QuantileScaler. Accessed: 2025-09-22. 2025. url:
https://scikit-learn.org/stable/modules/generated/sklearn.prepr
ocessing.MinMaxScaler.html (cit. on p. 29).

[26] Scikit-learn developers. MaxAbs. Accessed: 2025-09-22. 2025. url: https:
//scikit-learn.org/stable/modules/generated/sklearn.preprocessi
ng.MinMaxScaler.html (cit. on p. 29).

[27] Scikit-learn developers. PCA. Accessed: 2025-09-22. 2025. url: https://s
cikit-learn.org/stable/modules/generated/sklearn.decomposition.
PCA.html (cit. on p. 30).

[28] Scikit-learn developers. TrainTestSplit. Accessed: 2025-09-22. 2025. url: h
ttps://scikit-learn.org/stable/modules/generated/sklearn.model_
selection.train_test_split.html (cit. on p. 32).

96

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeavePGroupsOut.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeavePGroupsOut.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

	List of Tables
	List of Figures
	Introduction
	Problem Description
	Goal
	Related Work
	Organization

	Background: Microcontrollers and Testing
	Microcontrollers
	Reliability Assessment
	Speed Monitors
	Wafer Classification
	Testing
	Application-Oriented SBST Programs

	Background: Machine Learning
	Core ML foundations
	Supervised vs. Unsupervised Learning
	Linear Regression
	Feature Scaling
	Principal Component Analysis (PCA)
	Ridge Regression
	Polynomial Features

	Model evaluation and behavior
	Active Learning
	Handling domain/data differences
	Improving models with limited data

	Prior Work and Baseline Knowledge
	Problem Definition
	Key Contributions
	Dataset and Modeling Overview
	Data Collection and Preprocessing
	Regressor Chain: Conceptual Overview
	Machine Learning and Multi-Target Approaches
	Active Learning and Dataset-Shift Considerations

	Experimental Results and Considerations

	Methodology and Data
	Datasets and Preprocessing
	Overview of Data
	Data Cleaning and Pruning
	Feature Preprocessing
	Feature Space Reduction (PCA)
	Feature Expansion

	Train-Test Split Strategy
	Learning Curve Strategies
	Incremental Strategies
	Experimental Procedure for Learning Curves

	Active Learning Setup
	Experimental Design
	Evaluation Metrics and Methods
	Comparisons and Analysis Objectives

	Experiments and Results
	Baseline Performance on Dataset A
	Full-Dataset Training Evaluation

	Multi-Dataset Experiments
	Full-Dataset Training on Combined Datasets
	Dataset A Learning Curves (Baseline Reference)
	Incremental Learning Strategy Comparison
	Dataset Similarity Analysis

	Active Learning Integration
	Comparison of the Best Performing Configurations

	Complementary Experiments
	Alternative Scalers Evaluation
	CORAL Experiments
	Wafer-type Based Training

	Conclusion
	Summary of Findings
	Final Considerations

	Bibliography

