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Abstract

Multi-object tracking and road feature detection are critical perception tasks in
Advanced Driver Assistance Systems (ADAS), as they directly affect perception
robustness and driving safety. This paper proposes algorithms for target tracking
and speed bump detection based on solid-state LIDAR point clouds.

For multi-object tracking, an Extended Kalman Filter (EKF) with a Constant
Turn Rate and Velocity (CTRV) motion model is used to estimate full target states
including position, velocity, heading, and yaw rate. By performing inter-frame data
association and state estimation on solid-state LIDAR data, the method enables
robust tracking of dynamic targets. A Markov chain—based track management
strategy ensures reliable initiation, maintenance, and termination of tracks in
complex traffic environments.

For speed bump detection, this paper proposes a method based on local point
cloud height variations. Edge points are first extracted from ground point clouds
using local height differences and then clustered to derive geometric features
including position, size, slope, and confidence. These features are incorporated
into a geometric decision model designed for sparse LiDAR data, enabling accurate
and reliable speed bump localization. Validated detections are published via ROS
topics, integrated into the Autoware perception pipeline, and transmitted through
CAN messages for vehicle control support.

The algorithms were developed in ROS2 Humble, deployed on NVIDIA® Jetson
AGX Orin™ platform, and tested on a PIX-KIT 2.0 platform with verification in
the Autoware environment. Real-world experiments demonstrate accurate track-
ing, robust speed bump detection, and efficient runtime performance. This work
provides a practical perception solution for low-cost intelligent driving systems and
broadens the application of LIDAR in static road structure recognition.

Keywords: LiDAR Perception, Multi-Object Tracking, Extended Kalman Filter,
Speed Bump Detection, ROS2, Autoware
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Chapter 1

Introduction

1.1 Background

In recent years, with the rapid advancement of artificial intelligence, sensor tech-
nology, and automatic control theory, intelligent driving technology has emerged
as one of the core fields in global technological innovation. Intelligent driving
systems aim to achieve automated vehicle operation through multi-sensor fusion for
environmental perception, precise decision-making and planning, and stable control
execution. Their ultimate objectives are to enhance road traffic safety, improve
traffic efficiency, and reduce energy consumption. According to SAE International
standards, environmental perception and dynamic target management remain core
technological bottlenecks throughout the evolution of intelligent driving systems
from Level 1 (L1) driver assistance to Level 5 (L5) full autonomy.[1]

As reported in Figure 1.1, the SAE Levels of Driving Automation consist of six
distinct levels, each representing a progressive level of autonomy:

e Level 0 - No Automation: The driver has full control of the vehicle. Warnings
and momentary assistance such as emergency braking and blind spot warning
are provided, but no intervention.

e Level 1 - Driver Assistance: The vehicle incorporates basic driver assistance
features of steering or speed management support, such as adaptive cruise con-
trol or lane-keeping assistance. However, the driver remains fully responsible
for vehicle operation and must monitor the driving environment.

e Level 2 - Partial Automation: The vehicle can control both steering and
speed management under specific conditions. The driver is still responsible for
monitoring the driving environment and must be ready to take control at any
time. This is made possible by Advanced Driver Assistance Systems(ADAS).

1
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INTERNATIONAL:

What does the

SAE J3016™ LEVELS OF DRIVING AUTOMATION™

Learn more here: sae.org/standards/content/j3016_202104

Copyright © 2021 SAE International. The summary table may be freely copied and distributed AS-IS provided that SAE International is acknowledged as the source of the content.
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Figure 1.1: SAE Levels of Driving Automation™

o Level 3 - Conditional Automation: The vehicle can manage most aspects
of the driving task under specific conditions. However, the driver must be
prepared to intervene when alerted by the system to resume control.

o Level 4 - High Automation: The vehicle can perform all driving tasks within de-
fined operational domains and conditions without driver intervention. However,
the system may require the driver to take over in exceptional circumstances.

o Level 5 - Full Automation: The vehicle is capable of performing all driving
tasks under all conditions, and the driver is not required to be involved in
the driving process. Level 5 vehicles are fully autonomous and do not require
human intervention.[2]

As the “eyes” of intelligent vehicles, environmental perception systems are
required to accurately and reliably identify both static road obstacles—such as
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speed bumps, manhole covers, and construction zones—and dynamic objects,
including pedestrians, vehicles, and cyclists, in real time. These systems provide
essential information regarding object position, velocity, and geometry, which
is fundamental to higher-level perception and planning modules. Among the
numerous perception tasks, dynamic multi-object tracking and static road obstacle
detection represent two critical challenges that directly influence the reliability
and robustness of vehicle decision-making processes. To ensure safe navigation,
intelligent vehicles must not only detect surrounding objects but also predict their
future motion states through consistent tracking. Continuous, stable, and accurate
tracking of dynamic targets such as vehicles and pedestrians forms the basis for
trajectory prediction and collision risk assessment. In addition to dynamic entities,
complex road environments contain numerous static yet safety-critical features. For
instance, speed bumps, as common traffic-calming infrastructure, must be detected
accurately and in a timely manner to prevent sudden shocks, enable proactive
suspension control, or trigger autonomous deceleration when required—thereby
enhancing both vehicle stability and passenger safety.|[3]

This thesis work relates to the perception tasks of two ADAS projects. One is
the MOST — Centro Nazionale per la Mobilita Spostenibile under the SPOKE 2 —
Sustainable Road Vehicle project, which consists of the development of algorithms
for the optimization of the Energy Flow Management based on the environment
perception through ADAS sensors. The activity aims at providing a scalable
framework to improve the energy efficiency of Battery Electric Vehicle (BEV)
and Fuel Cell Electric Vehicle (FCEV) demonstrators through the optimization of
the Energy Management System (EMS) based on ADAS sensors’ measurements.
Our task aims to develop a LiDAR-based perception module for multi-object
tracking and trajectory management based on the existing sensor fusion perception
system.[4]

The other one is the Traction Control System with Road Preview Information
project, which is an advanced traction control solution for electric, combustion,
and hybrid vehicles, based on a nonlinear model predictive controller (NMPC).
Unlike conventional TCS, which intervene only once slip has occurred, the system
anticipates traction losses by modulating drive torque based on predictive informa-
tion from ADAS sensors. The system relies on a prediction model that accurately
describes the tire-road contact, including vertical load variations caused by road
surface irregularities. This allows critical situations that could compromise stability
to be prevented. Our task aims to develop a LiDAR-based perception module for
detecting and measuring speed bumps ahead of the vehicle in real time, enabling
proactive adjustment of parameters in the Active suspension systems (ASS). The
system improves vehicle ride comfort by preparing the suspension system in advance
for upcoming road irregularities.

The integration of ADAS with EMS and ASS presents a promising direction for
3
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enhancing overall vehicle efficiency, reducing fuel or electricity consumption, and
improving both ride comfort and driving safety. For instance, terrain recognition
and driving prediction provide essential information for the control algorithms
in both systems. Through the use of perception sensors such as radar, LiDAR,
and cameras, ADAS is capable of capturing comprehensive information about
the surrounding environment, including static features—such as road gradients,
curves, speed bumps, and minor obstacles—as well as dynamic objects, including
other vehicles, bicycles, and pedestrians. This information can be exploited by the
EMS to anticipate energy demands and optimize power utilization, for instance by
adapting energy consumption to varying road slopes or anticipated braking events.
Furthermore, such data can support the active suspension system in real-time
adaptation, including dynamic adjustments of damper stiffness or independent
chassis height control at each wheel, thereby enhancing vehicle stability and
passenger comfort under diverse driving conditions.

In this study, two core functional modules of ADAS were developed based on
LiDAR point cloud data: (1) multi-object tracking and trajectory management
using an Extended Kalman Filter (EKF), and (2) speed bump detection through
local height difference analysis of ground point clouds. An efficient multi-object
state estimation and tracking framework was designed to improve the accuracy of
trajectory prediction for dynamic traffic participants. Moreover, optimized point
cloud feature extraction and geometric parameter computation methods enable
precise detection and characterization of small road obstacles,[5] such as speed
bumps, with minimal height variation from the ground surface. Together, these
techniques enhance the environmental perception capability of intelligent driving
systems and provide reliable inputs for subsequent decision-making and motion
planning modules. The proposed methods possess both significant theoretical
relevance and strong potential for practical application.

1.2 Motivation

In current ADAS systems, the detection of static obstacles (such as speed bumps,
curbs, potholes, etc.) mainly relies on visual data or predefined high-definition
maps, failing to fully leverage real-time point cloud data, where ground points are
typically filtered out in the preprocessing stage. Meanwhile, dynamic multi-object
tracking predominantly focuses on vehicles and pedestrians, lacking robust handling
of concurrent multi-object scenarios in complex road structures. Furthermore, most
existing systems design static and dynamic perception modules independently,
lacking a unified framework from low-level point cloud processing to high-level
perception. This results in high system redundancy, poor real-time performance,
and limited scalability.
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With the rapid advancement of autonomous driving and ADAS technologies, a
vehicle’s environmental perception capabilities have become the core foundation for
achieving safe and efficient autonomous driving. As a key sensor in environmental
perception systems, LIDAR demonstrates unique advantages in complex traffic
scenarios due to its high-precision 3D spatial detection capabilities.[6] However,
single-sensor solutions still face limitations in real-world road environments. Cam-
eras are highly susceptible to lighting and weather conditions, while radar struggles
with target classification and geometric detail perception. Consequently, effectively
utilizing LiDAR point cloud data to achieve obstacle detection and dynamic target
tracking across diverse scenarios has become a prominent research challenge.

This thesis focuses on LiDAR point cloud data processing, addressing two
representative road perception tasks: static road feature recognition (e.g., speed
bump detection) and dynamic multi-object tracking. Although these tasks serve
different application purposes, they share a common technical foundation based on
point cloud feature extraction, clustering analysis, and state estimation. Accord-
ingly, both are developed within a unified methodological framework that leverages
LiDAR perception for comprehensive environmental understanding in intelligent
vehicles.

1.3 Research Objectives

This study aims to establish a unified perception framework based on LiDAR
point cloud data. It develops two independent yet technologically complementary
algorithmic modules: a speed bump detection system and a multi-object tracking
system. Through these modules, the study demonstrates the feasibility and effec-
tiveness of point cloud technology for detecting both static and dynamic obstacles.
The specific objectives of this work are as follows:

» Develop a high-precision static obstacle detection model capable of real-time
identification and parameter estimation of road features such as speed bumps,
based on point cloud height difference analysis, edge clustering, and geometric
feature extraction.

o Design an efficient multi-object tracking algorithm using the Extended Kalman
Filter (EKF) and the Constant Turn Rate and Velocity (CTRV) motion model
to enable continuous tracking and trajectory prediction of dynamic targets.

o Explore common point cloud processing techniques for static and dynamic
perception, including filtering, clustering, and feature representation, in order
to establish a modular technical foundation for multi-task perception systems.

5
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o Promote the embedded deployment of LiDAR perception in real-vehicle sys-
tems to improve system practicality, real-time performance, and robustness in
real-world driving environments.

1.4 Thesis Outline

This thesis work is structured as follows:

o Chapter 2 presents the theoretical background of the topics presented, with
a particular focus on LiDAR point cloud processing techniques and object
tracking algorithms.

o Chapter 3 is dedicated to the design of system architecture and the imple-
mentation of the proposed method. Starting from the hardware architecture
overview, and the development of the proposed algorithms is discussed, with
particular focus on implementation and integration of hardware and software.

o Chapter 4 presents the setup of experimental validation process and the
evaluation of the obtained results.

o Chapter 5 is the final chapter, where conclusions and future works are reported.



Chapter 2
Theoretical Background

This chapter aims to explain the core theoretical background relevant to the
work presented in this thesis. It begins by introducing fundamental concepts of
environmental perception and their significance in autonomous driving systems.
Subsequently, it focuses on reviewing the working principles of LiDAR and key
technologies for point cloud data processing. Finally, it delves into the theoretical
foundations underpinning the two core algorithmic modules: point cloud geometric
feature analysis for static obstacle detection, and state estimation algorithms for
dynamic target tracking.

2.1 Environmental perception overview

Environmental perception forms the foundation for ADAS and autonomous vehicles
to understand their surroundings and make decision-planning. Its core task lies
in accurately identifying and locating both static elements such as lane markings,
traffic signs, speed bumps and dynamic elements such as vehicles, pedestrians
within the environment, while estimating their motion states. A robust perception
system must deliver real-time performance, high accuracy, and adaptability to
complex scenarios and adverse weather conditions.|[7]

LiDAR directly acquires high-precision 3D point cloud data of the surrounding
environment by emitting laser beams and measuring their return time. Compared
to cameras, LiDAR is less susceptible to lighting variations and provides precise
distance information. Compared to radar, LIDAR offers higher angular and distance
resolution, enabling better delineation of target geometric contours. Consequently,
LiDAR has become one of the key sensors for achieving high-precision environmental
perception|8]. This study focuses on utilizing LiDAR point cloud data to address
two core challenges: static road element recognition and dynamic object tracking.

7
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2.2 Working Principles of LiDAR sensors

Light Detection and Ranging (LiDAR) is an active optical remote sensing technology
that determines the distance, bearing, and surface characteristics of target objects
by emitting laser beams and analysing their return signals. Its core principle is
the time-of-flight method, which precisely calculates the relative distance between
the sensor and the target by measuring the time taken for a laser pulse to travel
from emission to reception by the sensor, combined with the constant speed of
light. By emitting hundreds of thousands to millions of laser pulses per second and
conducting precise measurements of each returning pulse, the system constructs
high-density, high-precision three-dimensional point cloud maps of the surrounding
environment in real time. This technical capability overcomes the resolution
limitations of traditional radar and addresses the shortcomings of camera sensors in
depth perception and their dependence on ambient lighting. Consequently, LiDAR
has become an indispensable core component for achieving the environmental
perception layer in advanced autonomous driving systems. As autonomous driving
technology evolves from driver assistance towards full autonomy, the rich three-
dimensional geometric information provided by LiDAR forms the cornerstone for
achieving precise positioning, obstacle recognition, path planning, and decision
control.[9]

The performance of LiDAR systems is determined by a series of key technical
parameters, which are interrelated and mutually constraining, forming the core
considerations in system engineering design.

Wavelength represents one of the most fundamental design parameters in Li-
DAR systems, as it directly influences eye safety, power efficiency, and detection
performance under various environmental conditions. Modern automotive LiDAR
systems primarily operate in two infrared bands: 905 nm and 1550 nm. The 905 nm
band benefits from mature and cost-effective photodetector technology. However,
its proximity to the visible spectrum means that its energy can be readily absorbed
by the human retina. As a result, the emission power must be strictly limited to
comply with eye safety standards such as IEC 60825. In contrast, light at 1550
nm is largely absorbed by the aqueous humour and lens before reaching the retina,
allowing for significantly higher permissible emission power and thus extended
detection range. Nevertheless, this same water absorption characteristic becomes a
drawback under adverse weather conditions—such as rain, fog, or snow—where
the signal attenuation of 1550 nm lasers is considerably higher than that of 905
nm lasers, severely reducing effective detection range.[10] To compensate, 1550
nm systems generally require higher power consumption. Therefore, wavelength
selection in LiDAR design entails a complex trade-off among safety, all-weather
performance, and energy efficiency.

Detection range is the most critical performance metric for LIDAR systems,

8
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though its definition requires thorough understanding. Maximum detection range
typically denotes the capability to detect highly reflective targets (such as traffic
signs with reflectivity >80%) under ideal conditions. However, the metric of greater
engineering relevance is the ranging capability based on a specific reflectivity level
(usually 10%). A 10% reflectivity level approximates the reflective characteristics
of black tyres or dark clothing. This metric more accurately reflects a LiDAR
system’s capability to detect the most hazardous, low-visibility obstacles within
complex road environments. When evaluating products, it is crucial to clearly
distinguish between these two distance definitions. A LiDAR unit claiming a
maximum detection range of 300 metres may only detect a 10% reflectivity target
at 150 metres. The latter distance is the reliable basis for ADAS functional safety
design. [11]

The next performance metric we shall discuss concerns the resolution, point
frequency, and perception accuracy of LiDAR. LiDAR resolution encompasses
angular resolution and point cloud density. Angular resolution determines the
minimum angular difference between two adjacent targets that the LiDAR can
distinguish; higher resolution yields greater capability in capturing target details.
Point cloud density is directly determined by point frequency (the number of laser
points emitted per second). A high point frequency enables the acquisition of more
data points within the same field of view, thereby generating a finer and more
precise environmental model. A high point frequency is crucial for identifying
pedestrians and small obstacles at long range, or accurately reconstructing details
such as lane markings and kerbs. It forms the foundation for enhancing the accuracy
of perception algorithms. Furthermore, the scanning frame rate (typically 10-20
Hz) impacts the system’s real-time environmental perception capabilities; a higher
frame rate facilitates the close tracking of rapidly moving objects.[11]

In addition, the field of view (FoV) and system layout strategy are crucial
factors influencing LiDAR perception performance. The FoV defines the spatial
coverage of the sensor, encompassing both horizontal and vertical directions. Me-
chanical rotating LiDAR systems can achieve a full 360° horizontal FoV, providing
comprehensive environmental perception. In contrast, solid-state LiDAR systems
are limited by their underlying optical and electronic design, typically offering a
horizontal FoV of less than 120°. Consequently, multiple solid-state LIDAR units
are often strategically mounted at the front, rear, and sides of the vehicle to ensure
complete coverage. Through sensor fusion, the data streams from these units are
integrated to construct a continuous and panoramic perception field. The vertical
FoV, typically ranging from 25° to 40°, determines the sensor’s ability to detect
objects at varying heights, such as nearby ground obstacles, distant bridges, and
overhead traffic signals..[11]

The technical classification system for LiDAR primarily categorizes it based
on beam manipulation methods, dividing it into three major types: mechanical

9
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rotating, hybrid solid-state, and fully solid-state. Each technology path exhibits
significant differences in implementation principles, performance characteristics, and
applicable scenarios, collectively forming a diverse landscape of LIDAR technological
evolution.[12]

Mechanical rotating LiDAR employs a classic rotating mirror optical structure,
where an electric motor drives an optical prism or mirror to perform continuous 360-
degree rotation, enabling panoramic scanning of the surrounding environment. The
core advantage of such systems lies in their unparalleled FOV coverage capability,
with a single sensor achieving a complete horizontal field of view of 360 degrees and
a vertical field of view ranging from 20 to 45 degrees. Performance-wise, mechanical
LiDAR typically delivers high signal-to-noise ratios and extended detection ranges
due to its independent transmit /receive channels and large-aperture optical systems.
However, its technical limitations are equally pronounced: the presence of precision
mechanical components results in bulky, high-cost designs that struggle to meet
automotive-grade vibration, shock, and durability requirements. Additionally,
mechanical wear on rotating components compromises long-term reliability, while
limited scan line counts constrain further improvements in point cloud density.
These systems are currently deployed primarily in cost-insensitive professional
applications such as autonomous vehicle testing and geographic surveying.[13]

Hybrid solid-state LiDAR, exemplified by micro-electro-mechanical systems
(MEMS) technology, strikes a balance between mechanical and fully solid-state
approaches. MEMS LiDAR achieves beam scanning by controlling the deflection
angle of microscopic mirrors, which measure only millimeters in size. These mirrors
are driven electrostatically or electromagnetically to achieve vibration frequencies
ranging from tens of thousands to hundreds of thousands of hertz. This design
ingeniously replaces macroscopic rotating structures with the limited mechanical
motion of micromirrors, preserving beam direction flexibility while significantly
reducing system size. The scanning patterns of MEMS systems can be optimized
through mirror design to enable intelligent sampling strategies like non-uniform
scanning. However, its primary technical challenge lies in the reliability of the
micromirrors under the harsh demands of automotive environments, including
temperature cycling, mechanical vibration, and shock. Simultaneously, the small
mirror size limits the optical aperture, restricting received light energy and affecting
detection range performance. Currently, MEMS technology is continuously en-
hancing its automotive-grade reliability through material innovation and structural
optimization.[14]

Pure solid-state LiDAR represents the ultimate direction of technological evolu-
tion, primarily encompassing three core technical pathways: optical phased array
(OPA), flash-based, and frequency-modulated continuous wave (FMCW) LiDAR.
The optical phased array approach emits coherent laser beams through an array
of optical antennas, precisely controlling the phase of each antenna element to

10
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synthesize directional beams, thereby enabling electronic beam steering without
any mechanical components. This technology achieves microsecond-level scan-
ning speeds with outstanding reliability and stability; however, it faces inherent
challenges such as sidelobe suppression and limited scanning angles. Flash-based
LiDAR, on the other hand, operates analogously to a camera flash, employing
a wide-area light source to illuminate the entire scene in a single pulse while a
two-dimensional detector array simultaneously captures the reflected signals. This
architecture eliminates all scanning mechanisms, offering excellent vibration resis-
tance and high frame-rate capability, but it also imposes constraints related to peak
optical power, environmental light interference, and the high cost of large-scale
detector arrays. FMCW LiDAR adopts a continuous-wave laser with frequency
modulation, determining distance by measuring the frequency difference between
transmitted and received signals and utilizing the Doppler effect to extract velocity
information. This technique provides single-photon-level sensitivity and superior
resistance to ambient light interference, yet it entails higher system complexity and
cost due to its intricate modulation and signal processing requirements.[11]

Various LiDAR technologies exhibit distinct performance gradients. In scanning
methods, mechanical systems rely on macro-scale mechanical rotation, MEMS
systems depend on micro-mirror vibration, while fully solid-state systems achieve
complete electronic operation. Regarding reliability, mechanical systems are con-
strained by wear of moving parts, MEMS must overcome durability issues in
micro-mechanical structures, while pure solid-state technology theoretically offers
the highest reliability. In scanning accuracy, mechanical systems are limited by
mechanical assembly precision, MEMS depends on micromirror control accuracy,
and pure solid-state technology enables electronic-level precision control. Cost
structures vary significantly: mechanical systems remain expensive due to precision
optics, MEMS costs are expected to decline with semiconductor process maturation,
while pure solid-state technology may ultimately achieve chip-level integration cost
advantages.

These technical differences directly dictate their respective application scenarios.
Mechanical LiDAR, leveraging its panoramic scanning capability, retains value
in robotics and intelligent transportation systems. MEMS LiDAR demonstrates
strong cost-performance advantages in the automotive OEM market, making it the
mainstream choice for current mass-production projects. While pure solid-state
technology is not yet fully mature, its significant potential in reliability, size, and
cost positions it as a key future development direction for autonomous driving
sensors. This diversification of technological pathways is driving LiDAR technology
toward continuous evolution toward higher performance, lower cost, and enhanced
reliability.

In practical autonomous driving applications, the integration of LiDAR sen-
sors requires a comprehensive evaluation of multiple interrelated factors. Among
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these, environmental adaptability constitutes the foremost challenge. Under ad-
verse weather conditions—such as rain, fog, or snow—Ilaser signal attenuation
substantially reduces the effective detection range, thereby demanding greater
robustness from perception algorithms. To address these limitations, the deep
integration of LiDAR with millimeter-wave radar and vision sensors has become
an inevitable trend, exploiting the complementary characteristics of multi-source
data to construct redundant and reliable perception systems. Millimeter-wave
radar, known for its stability in velocity measurement and resilience under poor
weather conditions, effectively complements the high-resolution spatial perception
provided by LiDAR point clouds. Meanwhile, vision sensors contribute rich tex-
ture and semantic information, compensating for LIDAR’s inherent limitations in
object classification and scene interpretation. Furthermore, industrialization of
LiDAR technology must also satisfy stringent automotive-grade requirements while
maintaining cost efficiency. The sensors are required to meet rigorous standards
in temperature tolerance, vibration resistance, and long-term durability, while
continual technological innovation is essential to further reduce production costs
and enable large-scale deployment in mass-produced vehicles.[15]

As autonomous driving technology advances to higher levels, LIDAR will continue
to play a central role in environmental perception. Its technological evolution
focuses on continuous improvements in performance, cost optimization, and system
integration. The maturation of solid-state technology will drive LiDAR toward
smaller form factors, lower power consumption, and higher reliability, while deep
integration with artificial intelligence algorithms will further enhance its ability to
understand complex scenarios. Within future intelligent transportation systems,
LiDAR—as a key sensor—will deeply integrate with technologies like high-precision
positioning and vehicle-infrastructure coordination to jointly build a safe and
efficient mobility ecosystem.[12]

2.3 LiDAR point cloud processing principles

2.3.1 LiDAR Point Cloud Characteristics and Preprocess-
ing

Raw LiDAR point cloud data typically contains numerous noise points (e.g., reflec-

tions from airborne dust) and points from regions of no interest (e.g., the ground).

Therefore, point cloud preprocessing serves as the initial step for subsequent analysis,
primarily encompassing:

o Filtering: Employing statistical filtering or radius filtering methods to remove
outlier noise points.
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o Ground Segmentation: Separating ground points from non-ground points
(obstacle points) through grid-based or planar model fitting (e.g., RANSAC),
significantly reducing data volume and focusing on potential targets.

o Downsampling: Employing methods like voxel grid filtering to reduce point
density while preserving the overall shape of the point cloud, thereby enhancing
subsequent processing efficiency.[16]

2.3.2 Point Cloud Clustering and Feature Extraction

The preprocessed point cloud must be segmented into distinct object instances.
Euclidean clustering is one of the most commonly used unsupervised clustering
methods. It groups points within a specified distance threshold into the same object
based on their spatial proximity. This method is simple and efficient, suitable for
separating discrete obstacles in a scene. Following clustering, geometric features
must be extracted from each point cloud cluster to identify its category (e.g.,
vehicle, pedestrian, speed bump). For static obstacle detection, key geometric
features include:

o Size features: Extracting the length, width, and height of the captured point
cloud cluster in three-dimensional space.

o Shape features: Eigenvalues calculated via Principal Component Analysis
(PCA) or similar methods reflect object geometry (e.g., linear, planar, volu-
metric).

o Height features: Local point cloud elevation differences relative to the ground
surface and slope gradients serve as critical indicators for identifying road
surface protrusions like speed bumps.

2.3.3 Static Obstacle Detection

Static obstacle detection in environmental perception is one of the critical tasks for
ensuring the safe operation of autonomous vehicles. These obstacles include, but
are not limited to, curbs, guardrails, construction cones, and speed bumps—the
primary focus of this paper. Object detection algorithms can be broadly categorized
into two main types based on the data modality they process: image-based methods
and point cloud-based methods. An effective detection approach must accurately
identify the geometric properties of these targets and determine their precise
locations.

1. Image-Based Object Detection: These methods leverage mature 2D convolu-
tional neural networks (CNNs), such as the YOLO series [17] and Faster R-CNN
[18], to directly predict object bounding boxes and categories from camera images.
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Their advantage lies in utilizing rich texture and color information. However, this
approach heavily relies on lighting and weather conditions. Moreover, accurately
recovering an object’s 3D position and scale from monocular images is an ill-posed
problem, resulting in limited depth estimation accuracy.

2. Point Cloud-Based Object Detection: The three-dimensional point cloud
data provided by LiDAR inherently contains geometric and spatial information
about objects, enabling precise 3D detection. Current mainstream approaches can
be further categorized into:

« Voxel-based methods: Examples include VoxelNet[19], which converts irregular
point clouds into regular voxel grids before applying 3D CNNs for feature ex-
traction and detection. These methods effectively handle point cloud disorder,
but voxelization introduces quantization errors and incurs high computational
costs for 3D convolutions.

 Point-based methods: Examples like PointRCNN[20] operate directly on
irregular point clouds, utilizing networks such as PointNet++[21] to extract
point features. These methods maximize preservation of the original point
cloud’s geometric information but are sensitive to point cloud irregularities
and sparsity.

» Projection-based methods: Project the point cloud onto a 2D plane (e.g.,
front view, bird’s-eye view), then apply efficient 2D CNNs for detection,
such as PIXOR[6]. This approach strikes a good balance between speed and
performance, though the projection process inevitably results in some loss of
3D information.[22]

Although the aforementioned general-purpose 3D detectors have achieved signifi-
cant success on common targets like vehicles and pedestrians, they still face specific
challenges when applied to specialized static road elements like speed bumps:

o Unique geometric characteristics: Speed bumps appear in point clouds as
elongated, raised regions with specific height and width, rather than enclosed
3D objects. General-purpose 3D detectors, typically designed for cuboid or
vehicle-shaped targets, may struggle to optimally capture their flat, elongated
geometry.

» Point cloud sparsity: Due to their relatively small size and proximity to the
ground, LiDAR scans often yield highly sparse point clouds for speed bumps,
particularly at long distances. This poses feature extraction difficulties for
deep learning-based detectors.

o Data annotation and model dependency: Deep learning methods typically
require large volumes of precisely annotated data for training. For long-tail
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distribution targets like speed bumps, annotated data scarcity limits model
generalization capabilities.[23, 24]

To address these challenges, some studies have begun exploring model-free
or lightweight approaches based on geometric features, directly leveraging the
inherent geometric properties of point clouds for recognition.[25] proposed a road
obstacle detection method based on point cloud height maps and multi-scale feature
fusion. [26]employed point cloud clustering and regular shape fitting to detect
curbs and potholes. These studies demonstrate that for specific targets with
distinct geometric features, rule-based approaches can serve as an efficient, highly
interpretable complement to data-driven methods. Inspired by the aforementioned
geometry-based approaches and considering the specificity of speed bumps, this
paper proposes a lightweight detection algorithm specifically designed for speed
bumps, independent of complex deep learning models. The core idea is that the
most prominent feature of speed bumps in point clouds is their local height abrupt
changes relative to the flat road surface. The algorithm flow is illustrated as follows:
figure added

It primarily consists of the following three steps:

1. Height Difference Edge Point Detection: First, perform radius-based nearest
neighbor search on the preprocessed point cloud (e.g., after ground segmen-
tation). For each point, calculate the maximum height difference among its
neighboring points. If this height difference exceeds a preset threshold, the
point is identified as located within a region of abrupt height change and
marked as a candidate edge point. This step effectively captures the front and
rear edges of speed bumps.

2. Edge Point Clustering and Analysis: Subsequently, spatially adjacent edge
points are grouped using Euclidean clustering to form candidate speed bump
instances. For each cluster, geometric properties are calculated, including
length, width, average height difference, and dominant orientation.

3. Classification Based on Geometric Rules: Finally, clusters are filtered and
classified according to predefined geometric rules. For example, a genuine
speed bump should satisfy: length significantly greater than width (elongated
shape), average height difference within a specified range, and its primary
direction should be roughly parallel to the road direction. Clusters meeting
these conditions are ultimately confirmed as speed bumps.

Compared to existing approaches, the speed bump detection algorithm proposed
in this paper exhibits the following distinctive features: Designed specifically for the
geometric characteristics of speed bumps, it detects them based on the core feature
of height difference. The algorithm features clear logic and strong interpretability,
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facilitating debugging and optimization. As a model-free method, it does not rely
on large amounts of labeled data for training, thereby avoiding the costs associated
with data collection and annotation while addressing the scarcity of long-tail
target data. It demonstrates excellent generalization capabilities. Furthermore,
the algorithm’s workflow is based on classical point cloud processing operations
(neighborhood search, clustering), resulting in low computational complexity. This
makes it highly suitable for real-time operation on embedded platforms with
limited computational power, such as in-vehicle computing units. Additionally,
the algorithm not only determines the presence of speed bumps but also outputs
detailed geometric parameters including precise 3D position, length, width, and
height. This information is crucial for vehicle comfort control, such as anticipatory
deceleration. In summary, the speed bump detection algorithm presented herein
offers an efficient and practical solution distinct from general-purpose deep learning
detectors. It is particularly well-suited for stable and reliable detection of specific
types of static obstacles in real-world automotive environments.

2.4 Introduction to the Extended Kalman Filter
(EKF)

2.4.1 Extended Kalman Filter (EKF) basic introduction

The Extended Kalman Filter (EKF) is an extension of the Kalman Filter (KF),
designed to handle nonlinear systems.The standard Kalman Filter assumes that
both the state transition model and the observation model are linear.However, in
most real-world systems (like robotics, target tracking, or vehicle navigation), the
system dynamics are nonlinear.The EKF solves this by linearizing the nonlinear
functions around the current estimate using first-order Taylor expansion.So, the
EKF is basically a linearized version of the Kalman Filter that can handle nonlinear
motion and measurement models.[27]

2.4.2 EKF System Model
A general discrete-time nonlinear system can be described as:
T = f(Tr1, up—1) + wp1 (2.1)
2z, = h(zk) + vy (2.2)
where:
e I} is the state vector at time step k.

e wuj_1 is the control input.
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21, 18 the measurement vector.

f(+) is the nonlinear state transition function.

h(-) is the nonlinear measurement function.

Gaussian:

Wr—1 ~ N<07 Qk)? Vg ~ N(()? Rk)

2.4.3 EKF Algorithm

The EKF operates in two main stages: prediction and update.|28§]

Prediction Step

Trp—1 = f(@r—1jk—1, Up—1)
Pypo1 = B P FYY + Qu

where F}, is the Jacobian of f with respect to the state:

g

B 1|k—1:Uk—1

Update Step
When a new measurement z;, is available:

Ze = M @pjp—1)

=2

k-1

Ky = Pk|k—1H];r(HkPk|k—1HkT + Ri)7!

Tpe = Thjp—1 + Ki(zn — 23)
Py = (I — KiHy,) Pyji—1

2.4.4 Discussion

wi_1 and v, are process and measurement noise, assumed to be zero-mean

(2.5)

The EKF approximates the nonlinear system by linearizing it locally around
the current estimate. This allows it to apply Kalman Filter mathematics to
nonlinear systems. However, the approximation accuracy depends on the degree of

nonlinearity and the quality of the initial estimate.
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2.4.5 Applications
Typical EKF applications include:
o Mobile robot localization and SLAM.
o Target tracking and sensor fusion in autonomous vehicles.

» Navigation in aerospace systems.

2.4.6 Limitations

o Accuracy degrades for highly nonlinear systems due to linearization.
o Requires analytical computation of Jacobians.

e Sensitive to incorrect noise covariance estimates.

2.5 Constant Turn Rate and Velocity (CTRV)
Model

2.5.1 Overview

The Constant Turn Rate and Velocity (CTRV) model is a nonlinear kinematic model
commonly used to describe the motion of an object that moves with approximately
constant speed and constant turn rate. It is particularly suitable for tracking vehicles
or moving targets that follow curved trajectories, such as cars in autonomous driving
scenarios or aircraft performing coordinated turns.[29]

2.5.2 State Vector
The CTRV model defines the system state vector as:

Dz
Dy
XxX=|v (2.11)
(0
(0

where:
* Dz, Dy: position in Cartesian coordinates,

o v: linear velocity (speed along the heading direction),
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7. heading (yaw) angle,

e 1): yaw rate (turn rate).

2.5.3 Motion Model

Assuming a time step At, the motion model without process noise can be expressed
as: i v ‘ i
Pz + ) [sin(z/J + YPAt) — sin(w)}

Py + v {— cos(y) + gZ}At) + COS(ZZJ)}

Xpp1 = (8 (2.12)

U.
Y+ AL
I (0 1

for 1) # 0. '
When 1) — 0 (straight-line motion), the model simplifies to:

Pz + v cos(v) At
py +vsin(y)At
Xpi1 = v (2.13)

(8
0

2.5.4 Process Noise

To account for system uncertainty such as acceleration and small steering variations,
process noise wy, is added to the velocity and yaw rate:

X1 = f(Xk, Wi) (2.14)
where wy, = [a, u¢]T represents the process noise:
e a: linear acceleration noise,

* Uy yaw acceleration noise.

2.5.5 Applications

The CTRV model is widely used in nonlinear state estimation frameworks such as
the Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and Particle
Filter (PF), particularly in:

o Vehicle and pedestrian tracking,
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o Autonomous driving and robotics,

o Air and ground target surveillance.
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Chapter 3

System Architecture Design
and Methodology

This chapter details the overall architecture and implementation of the perception
module designed for ADAS. The perception system comprises two core, independent
functional modules: the dynamic multi-target tracking module and the static road
element (speed bump) detection module. Together, these modules provide the
vehicle with comprehensive environmental awareness capabilities. This chapter
begins with a system requirements analysis, followed by separate introductions to
the hardware and software architectures. It then delves into the design and imple-
mentation details of the two core algorithms. Finally, it presents the deployment
and integration solution for the system within the Autoware framework.

This research project is dedicated to developing an integrated environmental
perception system as a critical component of a comprehensive advanced driver
assistance system. Therefore, at the outset of system design, we first focus on
requirements analysis. This study does not aim to propose a generic perception
solution but rather requires precisely defining task objectives tailored to this specific
application scenario. This is achieved by considering the upstream and downstream
constraints and specific requirements of the project within the complete workflow,
ensuring its outputs seamlessly interface with upper-level decision-making and
control modules.

Following the clarification of system requirements, we systematically present
the overall system architecture design. The hardware architecture design forms
the physical foundation for the entire system’s implementation. While ensuring
compliance with core project requirements, we thoroughly weighed the system’s
feasibility, processing efficiency, scalability, and the differences between laboratory
environments and real industrial application scenarios. Based on these consider-
ations, we selected the most suitable hardware devices from available resources.
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This chapter will focus on detailing the core parameters, operating environments,
dependency libraries, and workflow of the selected key hardware components within
the system.

Software architecture design and algorithm development form the core of this
project and constitute the primary focus of this chapter. First, we will briefly
introduce the Robot Operating System (ROS) framework—the foundational sys-
tem—along with the creation and management of its software packages. Subse-
quently, we will delve into the design and implementation of two core perception
algorithms: the first is a dynamic multi-target real-time tracking algorithm based
on , detailing its core workflow encompassing point cloud processing, target clus-
tering, extended Kalman filtering, and data association; the second is a speed
bump detection algorithm specifically designed for static road element recognition,
illustrating its integrated design for autonomous driving open-source frameworks.

Building upon the completed hardware and software designs, this chapter will
further elaborate on the deployment plan for the entire system on the test vehicle,
the rationale for selecting the testing environment, and the key data acquisition
process. Finally, we will provide an overview of the integrated pipeline for the entire
system, clearly illustrating how this perception system functions as a modular
component that integrates and collaborates with a complete advanced driver
assistance system.

3.1 Requirement Analysis

Requirements analysis is the process of defining the functional and non-functional
requirements of a software system. It is a critical step in the software development
lifecycle, laying the foundation for all subsequent development activities, includ-
ing design, implementation, and testing. This process encompasses requirement
gathering and documentation, analysis, and prioritization, ultimately clarifying the
system’s scope and objectives. This ensures the system meets stakeholder needs
and expectations while providing a clear definition of its required functionality and
expected performance.

As a core component of the Advanced Driver Assistance System’s environmental
perception module, this system is designed to provide vehicles with comprehensive,
real-time, and reliable perception capabilities of their surroundings. Based on
upstream sensor data and specific requirements from downstream decision-planning
modules, we defined the system’s core mission objectives: the system must process
real-time point cloud data streams from LiDAR, accurately detect and contin-
uously track dynamic targets in the surrounding environment while identifying
specific static road elements; all perception results must be output stably in a
structured format, providing timely and accurate basis for upper-level control
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strategy formulation.

To ensure the system’s effectiveness in practical applications, we have established
key performance indicators it must meet. The system must possess real-time
processing capabilities for data streams, synchronized with the sensor’s frame rate.
Additionally, the algorithms must demonstrate sufficient robustness against point
cloud noise, target occlusion, and complex urban environments. Furthermore, the
entire software architecture should adhere to modular design principles, enabling
independent development, testing, and integration of the two major functional
modules: dynamic target tracking and static element detection. Compatibility
between the speed bump detection module and open-source autonomous driving
frameworks must be ensured to guarantee the system’s feasibility and deployability
on real vehicle platforms.

3.2 Hardware and Software Environment

3.2.1 NVIDIA® Jetson AGX Orin™

The AI Rugged Computer RML A4AGX is based on the NVIDIA® Jetson AGX
Orin™ System-on-Module (SoM), as shown in Figure 3.1. The latest member of
NVIDIA’s Jetson family features up to 275 TOPS of Al processing power and
starts at 32 GB of RAM. The system-on-module (SoM) consumes between 15
and 75 watts of power. This unique combination of form factor, performance,
power efficiency and ruggedness opens the door to a new generation of autonomous
machines and vehicles.

The fanless Al edge computers from Syslogic’s rugged series are among the most
robust embedded systems in the world. They are perfectly suited for tough 24/7 use
in off-highway, mobile machinery and agriculture. The RPC RML A4AGX comes
with eight camera inputs (GMSL2) with PoC. Accordingly, the rugged computer is
suitable for inference, edge Al and intelligent vision tasks.

The operating system of the platform is NVIDIA Linux for Tegra (L4T 36.4.3)
Ubuntu 22.04 NVIDIA JetPack 6.2 , and ROS2 Humble, The software environment
has been meticulously configured over an extended period to ensure operational sta-
bility and robust hardware compatibility. Building upon the previously integrated
work environment, all necessary dependencies remain fully compatible. [30]
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Figure 3.1: Rugged Edge Al Computer RPC RML A4AGX

3.2.2 Falcon K1 LiDAR

The Seyond Falcon K1 LiDAR is a high-performance automotive-grade LiDAR
specifically designed for autonomous driving and advanced driver assistance sce-
narios, as shown in Figure 3.2. This device employs advanced image-level ultra-
long-range detection technology to deliver stable and reliable 3D environmental
perception data in complex road conditions. Its unique optical system design
and signal processing architecture enable outstanding performance in detection
accuracy, range, and resolution. [31]

In terms of technical specifications, the Falcon K1 delivers high-resolution point
cloud output at 1200x128 resolution, with a maximum detection range of 250
meters under 10% reflectivity conditions. Utilizing a 1550nm laser wavelength, it
not only enhances detection range and point cloud quality but also ensures eye
safety. With a horizontal field of view of 120 degrees and a vertical field of view
of 30 degrees, it effectively covers critical perception areas in front of the vehicle,
providing comprehensive environmental information for dynamic target tracking
and static obstacle detection.

The device operates at a standard sampling frequency of 10 Hz, meaning the
sensor generates and outputs 10 complete frames of point cloud data per second.
At the communication protocol level, the Falcon K1 LiDAR employs an optimized
User Datagram Protocol (UDP) as the foundation for data transmission. This
protocol is encapsulated based on the standard UDP/IP protocol stack. Each data
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Figure 3.2: Seyond Falcon K1

packet contains complete point cloud information, including the three-dimensional
coordinates of each detected point, reflection intensity data, and precise timestamps.
This lightweight protocol design minimizes protocol overhead, ensuring real-time
and efficient data transmission that fully meets the stringent real-time requirements
for perception data in autonomous driving systems.

To guarantee data communication reliability and integrity, the LIDAR imple-
ments multiple safeguards at the application layer. The device incorporates a
precision clock synchronization module supporting IEEE 1588-compliant precision
timing protocols, ensuring microsecond-level timestamp accuracy for point cloud
data. Additionally, the system employs error detection mechanisms such as cyclic
redundancy checks (CRC) to effectively safeguard data integrity and accuracy
during transmission. These designs enable the Falcon K1 LiDAR to deliver a
stable, reliable, and temporally precise point cloud data stream for environmental
perception systems.

3.2.3 OQOuster LiDAR

Ouster OS1 is a high-resolution, medium-range mechanical LiDAR sensor, as
shown in 3.3. Designed for autonomous vehicles, mobile robots, drones, and
smart infrastructure applications, it delivers a comprehensive advantage in price,
performance, size, weight, and power consumption, operating reliably in indoor
and outdoor environments around the clock. Its core feature lies in providing
image-level near-infrared intensity and point cloud data, achieving highly reliable
perception capabilities within a compact form factor.[32]

Under 80% reflectivity conditions, the maximum detection range reaches 100
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Figure 3.3: Ouster OS1

meters (detection rate >90%); under 10% reflectivity conditions, the maximum
detection range is 45 meters (detection rate >90%). The minimum detection
distance is 0.3 meters. Distance measurement accuracy for standard Lambertian
targets is 3 cm, with a resolution as high as 0.3 cm, ensuring distinguishability of
minute objects. It offers three vertical resolution configurations: 32-line, 64-line,
or 128-line. The horizontal azimuth resolution can be configured at 512, 1024, or
2048, enabling a fixed and uniform point cloud distribution per frame.

The radar features a 360° horizontal field of view and a 45° vertical field of
view (-22.5° to +22.5°), enabling comprehensive environmental perception. Its
angular sampling accuracy reaches +0.01° in both vertical and horizontal directions,
guaranteeing precise point cloud orientation. The scanning rotation frequency
supports configurable modes of 10 Hz or 20 Hz to accommodate varying application
speed requirements.

For data transmission, the OS1 outputs data via Gigabit Ethernet using the
UDP protocol. At maximum configuration (128 lines, 2048 horizontal resolution),
the data output rate reaches 2.62 million points per second, with a data bandwidth
of approximately 254 Mbps. Each data point contains rich information including
distance, signal strength, reflectivity, near-infrared light, channel number, azimuth,
and timestamp. Additionally, the device integrates an IMU (ICM-20948) that
outputs triaxial gyroscope and accelerometer data at 100 Hz to assist with motion
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compensation.

The sensor features an extremely compact design with a diameter of just 85 mm,
a height (without heat sink cover) of 58.35 mm, and a weight of only 377 grams,
facilitating easy integration. It demonstrates robust environmental adaptability
with an operating temperature range of -40°C to +60°C and an IP68/IP69K
protection rating, resisting dust ingress and high-pressure water jets. The product
has also passed rigorous shock and vibration testing, ensuring stable operation in
harsh mechanical environments.

3.2.4 PIX-KIT 2.0 Drive-by-wire Chassis

PIX-KIT 2.0 Drive-by-wire Chassis is a one-stop integrated development platform
designed for autonomous driving research and education. By offering highly
integrated hardware configurations and an open-source software ecosystem, this
kit aims to establish a comprehensive autonomous driving algorithm verification
environment for university, research institute, and corporate R&D teams. This
significantly lowers the technical development threshold, making it suitable for
diverse applications including algorithm development, prototype validation, and
teaching practice. As shown in Figure 3.4, its core hardware architecture adopts a
modular design philosophy, integrating a pure-electric open-source drive-by-wire
chassis, a multi-sensor system, and an industrial-grade remote controller. The
drive-by-wire chassis features an independent four-wheel hub motor drive system,
enabling precise control over steering, braking, and acceleration. It provides a
standard CAN bus interface for upper-level algorithms to directly drive actuators,
laying a solid foundation for vehicle control algorithm research.[33]

Figure 3.4: PIX-KIT 2.0 Drive-by-wire Chassis

27



System Architecture Design and Methodology

Regarding software and development environments, the platform is tightly
integrated with mainstream Robot Operating System (ROS) and open-source
autonomous driving frameworks. The platform comes pre-installed with complete
drivers and development interfaces, ensuring seamless compatibility with open-
source systems like Autoware and Apollo. Users can directly develop and test core
algorithms such as perception, planning, and control based on this foundation.
Additionally, the kit provides a comprehensive development toolchain and detailed
technical documentation covering sensor calibration, map building, and simulation
testing. This forms a complete technical support system spanning hardware
operation to software deployment, effectively ensuring the smooth progress of
research work.[33]

The PIX-KIT 2.0 platform delivers performance parameters tailored for research
applications: a maximum speed of 30 km/h, a maximum climbing gradient of 30%,
and a standard range between 90 and 120 kilometers. With a standard payload
capacity of 500 kg and an optional upgrade to 800 kg, it provides ample space for
mounting various computing devices and customized functional modules. Regarding
control precision, its steering accuracy is better than 1 degree, achieving a minimum
turning radius of 3 meters in four-wheel steering mode. This provides excellent
hardware conditions for precise path tracking and maneuver control research.
Since its launch, this development kit has been deployed globally in autonomous
driving curricula at universities, SLAM and multi-sensor fusion research at scientific
institutions, and rapid prototyping projects at enterprises. Its proven value as an
efficient and reliable research and teaching platform is well-established.[33]

3.2.5 ROS2 environment

ROS 2 (Robot Operating System 2) represents a major architectural overhaul of
the robot operating system, designed to address core challenges faced by ROS 1 in
production-level and commercial applications. The ROS 2 project was formally
launched around 2015, led by Open Robotics. Its design goal is to provide a reliable
and secure software framework for robots, applicable throughout the entire lifecy-
cle from research prototypes to product deployment. Unlike a simple functional
upgrade over ROS 1, ROS 2 represents a fundamental restructuring. Its most
significant change lies in replacing the underlying communication middleware, de-
livering exceptional real-time performance, cross-platform support, robust network
communication, and industrial-grade safety. This enables it to thrive in complex
scenarios demanding extreme reliability and performance, such as autonomous
driving and industrial automation.

The cornerstone of the ROS 2 architecture is the Data Distribution Service (DDS).
DDS itself is a mature industrial standard defined by the Object Management Group
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(OMG), specifically designed for distributed systems demanding high reliability, real-
time performance, and scalability. ROS 2 does not define its own communication
layer but acts as a higher-level abstraction over DDS, leveraging it to handle
discovery, connection, and messaging between all nodes. This design allows ROS 2 to
inherently inherit all advanced features of DDS, including anonymous, asynchronous
communication based on the publish/subscribe pattern and fine-grained control
over Quality of Service (QoS) policies. Developers can configure distinct QoS
policies for each topic or service based on application requirements. For instance,
they can specify whether messages should be transmitted “best effort” or must be
delivered “reliably,” and whether data should be persistently retained or only made
available to current subscribers. This capability is crucial for ensuring critical data
integrity in unreliable network environments.

In terms of node models and communication mechanisms, ROS 2 inherits core
concepts from ROS 1—nodes, topics, services, and actions—while significantly
enhancing implementation details and functionality. Nodes remain the fundamental
computational units, communicating asynchronously via topics for publish/sub-
scribe interactions, synchronously via services for request/response calls, and
utilizing the Action Library (ActionLib) to handle long-running, preemptible tasks.
However, leveraging DDS’s robust capabilities, ROS 2 communication no longer
relies on a single centralized ROS Master node. In ROS 2, node discovery and
connection are fully distributed, accomplished through DDS’s built-in discovery
mechanism. This critical improvement eliminates the single point of failure risk
present in ROS 1. Even if some nodes crash or network partitions occur, commu-
nication between other nodes continues, greatly enhancing the system’s overall
robustness and fault tolerance.

To address the complexity of modern robotics software development, ROS 2
also achieves significant advancements in system design and cross-platform support.
It is designed from the ground up to support real-time operating systems (such
as VxWorks and NuttX) and microcontrollers (MCUs), enabling developers to
run ROS 2 nodes directly on resource-constrained embedded devices. For process
lifecycle management, ROS 2 introduces the concepts of Executables, Components,
and Containers. A Component is a node designed to be dynamically loaded into a
Container process at runtime. This model reduces system memory footprint and
inter-process communication overhead, making it highly suitable for deployment in
large-scale systems. Furthermore, ROS 2 natively supports multiple programming
languages, including C++ and Python, and provides a consistent experience for
type systems and threading models through its Client Libraries.

Another core strength of ROS 2 lies in its robust security features. It integrates
modern cybersecurity standards, supporting Transport Layer Security (TLS) and
Data Link Layer Security (DDS-Security). Through DDS-Security, ROS 2 enables
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communication authentication (ensuring trusted node identities), encryption (pre-
venting data eavesdropping), and access control (restricting node access to specific
topics or services). These capabilities are crucial for protecting robotic systems
from malicious attacks and preventing sensitive data leaks, particularly when robots
connect to public networks or perform safety-critical tasks.

In summary, ROS 2 represents a new phase in the evolution of robotic software
frameworks. By embracing the mature industrial standard DDS, it builds a decen-
tralized, secure, reliable, and high-performance distributed computing platform.
Not only does it seamlessly inherit ROS 1’s flexibility and rich ecosystem for
research applications, but more importantly, it overcomes numerous limitations of
ROS 1. This provides a robust technical foundation for advancing robotics from the
laboratory to real-world deployment and enabling large-scale commercial product
implementation. With ROS 1 officially reaching its end-of-life in May 2022, ROS 2
has become the undisputed mainstream choice and de facto standard for current
and future robotics development.[34]

This chapter presents the design and implementation of two core perception
modules based on 3D LiDAR point clouds: (i) a multi-object tracking framework
powered by an Extended Kalman Filter (EKF) under a Constant Turn Rate
and Velocity (CTRV) motion model, and (ii) a speed bump detection framework
based on local height discontinuities and geometric reasoning. Both systems are
implemented as ROS 2 nodes with real-time performance on embedded hardware
platforms.

3.3 Multi-Object Tracking Algorithm

3.3.1 Overview

This work develops a real-time object tracking and track management framework
based on clustered LiDAR point clouds. The proposed system integrates spatial
clustering, sensor fusion, and probabilistic motion estimation through an EKF.
The entire algorithm is implemented as a ROS2 node that receives synchronized
LiDAR point clouds, camera detections, and image data, and outputs tracked
objects with continuous IDs, semantic labels, and estimated motion states. The
system is designed for use in intelligent vehicles and advanced driver-assistance
systems (ADAS), where stable and reliable perception of surrounding objects is
crucial.

3.3.2 System Architecture

The architecture of the proposed tracking system is composed of four main stages:
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1. LIDAR Point Cloud Preprocessing: The raw LiDAR data is filtered,
downsampled, and spatially segmented to obtain individual object candidates.

2. Camera-LiDAR Fusion: The segmented clusters are projected onto the
image plane using calibrated extrinsic and intrinsic parameters and associated
with 2D detections from a YOLO network.

3. Multi-target Tracking: The resulting fused detections are passed to a
multi-target tracker, which applies the EKF for state estimation and uses
Mahalanobis distance for data association.

4. Track Management and Visualization: Targets are dynamically created,
updated, or removed based on state transitions, and the tracking results are
visualized and logged for evaluation.
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Figure 3.5: System Architecture of Multi-Object Tracking

As illustrated in Figure 3.5, each stage is modularly integrated within the ROS2
node, ensuring synchronization, scalability, and compatibility with other perception
modules.

3.3.3 LiDAR Point Cloud Preprocessing
Coordinate Transformation

Upon receiving the point cloud message (sensor_msgs: :PointCloud2), the raw
LiDAR points are transformed to align with the camera coordinate system. The
axes are rearranged to match the conventional camera frame, facilitating projection
and data fusion.
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Region Filtering

Passthrough filters are applied along the x and z axes to retain points within a
predefined spatial region, removing irrelevant sky points and low ground reflections.
This reduces computational load and improves clustering robustness.

Adaptive Downsampling

A voxel grid filter is employed to reduce the number of points while preserving
structural features. The voxel size ¢ is determined dynamically based on the average
nearest-neighbor distance d,,4 in the filtered cloud:

0=k - dg, (3.1)

where k is an empirical scaling factor (typically & = 3.5).This adaptive strategy
ensures consistent clustering behavior across varying point densities.

3.3.4 Object Clustering and Feature Extraction

The filtered cloud is segmented into object clusters using Euclidean Cluster
Extraction. Two points are grouped into the same cluster if their Euclidean
distance is below a threshold e:

Ipi = psll <€ (3.2)

where ¢ is proportional to the voxel size.
For each detected cluster C),, the centroid is computed as:

Zn,
1 _
’ n piecn 5

Other attributes such as bounding limits (Zmin, Tmaz, Ymin) and RGB color are also
recorded. The centroids are projected to the 2D image plane via:

X

— K[R|t] (3.4)

»
— e 2
=N

where K is the intrinsic matrix, and [R|t] represents the camera’s rotation and
translation with respect to the LiDAR frame.

32



System Architecture Design and Methodology

3.3.5 Sensor Fusion and Class Assignment

After projection, each LiDAR centroid is checked for overlap with YOLO bounding
boxes in the image plane. If the centroid (u,v) lies within the bounding box
[Umin, Umaz] X [Umin, Umaz), the cluster inherits the associated class label ¢ and
confidence score s.:

(u,v) € B. = cluster.class_id = ¢, cluster.score = s, (3.5)
This step assigns semantic meaning to spatially precise LIDAR clusters, producing
a set of labeled 3D measurements for the tracking module.
3.3.6 Multi-target Tracking Framework
Each tracked object is represented by a state vector:
X = [po, Py, v, 0, )T (3.6)

where p,, p, denote the 2D position, v the linear velocity, ¢ the yaw angle, and ¥
the yaw rate.

Motion Model: CTRV (Constant Turn Rate and Velocity)

The motion model assumes a constant turn rate and velocity between consecutive
frames. The predicted state x;_; is given by:

b S(sin(w + GAL) — sin(®)) |
py + 7 (—cos(y + DAL) + cos(1))) .
v , if ] > €
¥+ YAt
e :px +v cos(w)At_w _ (37)
py + vsin(y)At
v , otherwise
(4
Y
The corresponding Jacobian matrix Fj = % is derived from the nonlinear

motion function f(x,At) and used for covariance propagation:
Po, =P FI+Q (3.8)
where () is the process noise covariance.
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Measurement Model and Update

The measurement vector consists of 2D planar positions derived from LiDAR
centroids:

Zp = [pampy]T (39)

and the observation model is linear:
7z, = Hxy, + vy, (310)
with

10000
H_[o1ooo

] . vi~N(0,R) (3.11)

The Kalman gain and updated state are computed as:

Ky=P ,H (HP H" + R)™* (3.12)
xp = X, + Ki(z, — Hx},) (3.13)
P, = (I — K.H)P; (3.14)

3.3.7 Data Association

For multiple objects, data association is performed using the Mahalanobis dis-
tance, which measures how well a measurement matches a predicted track given
the covariance of uncertainty:

dy = /(2 —2)TSY(z — 2) (3.15)

where S = HPH” + R is the innovation covariance. The measurement with the
smallest Mahalanobis distance below a predefined threshold is associated with the
corresponding track; otherwise, a new track is initialized.

3.3.8 Track Management and State Transitions

As illustrated in Figure 3.6 [35], The tracking framework employs a state-machine-
based management strategy with four discrete states:

o« ACTIVE: Represents a newly initialized track created from an unassociated
LiDAR measurement. The track awaits confirmation from future detections
to verify its validity.

« TRACKED: Denotes a confirmed and continuously updated track. Measure-
ments are successfully associated across frames, and the EKF correction step
refines its state estimate.
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fused
proposals

Figure 3.6: Target state transitions based on Markov Decision Process

o LOST: Indicates a temporarily unmatched track. The EKF prediction contin-
ues without measurement correction to preserve trajectory continuity during
short-term occlusions or detection gaps.

« INACTIVE: Marks a track that has remained unmatched for longer than a
predefined threshold. It is removed from active tracking to prevent resource
waste and false positives.

This finite-state logic ensures temporal continuity of object trajectories and
suppresses false positives caused by noise or occlusion.

3.3.9 Data Output and Visualization

All intermediate and final results are published through dedicated ROS2 topics,
including:

e /pcl_points for clustered clouds
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e /pcl_centroids for object centroids
e /pcl_targets for tracked objects
o /projectedImg for fused 2D-3D visualization

Additionally, CSV logs are generated for both YOLO detections and tracker
outputs, containing timestamps, class IDs, confidence scores, estimated positions,
and tracking states. These files serve as the basis for offline evaluation and
quantitative analysis.

3.3.10 Summary

In summary, the developed methodology combines 3D geometric reasoning, 2D
visual classification, and probabilistic motion estimation within a unified ROS2
framework. The system effectively bridges raw sensor data and semantic perception,
enabling robust object tracking in dynamic environments with variable visibility
and partial occlusions. The EKF-based CTRV model ensures smooth trajectory
estimation, while the Markov-style track management guarantees reliable target
lifecycle control.

3.4 Speed Bump Detection Algorithm

3.4.1 Overview

This research develops a speed bump detection framework based on 3D LiDAR
point clouds, implemented as a ROS2 node named speed_bump_detector. The
system identifies speed bumps by analyzing local height discontinuities on the
road surface, distinguishing raised regions from flat ground through geometric
and spatial analysis. The proposed node integrates feature extraction, clustering,
geometric reasoning, and multi-channel output publishing to achieve real-time
detection performance suitable for advanced driver-assistance systems (ADAS) and
autonomous vehicles.

3.4.2 System Architecture

The speed_bump_detector node subscribes to the ground point cloud topic
(/ground_points), which represents the filtered surface layer obtained from LiDAR
data. It processes each frame in real time and publishes the following outputs:

e /perception/speed_bump_detector/edge_points — edge points indicating
abrupt height changes for debugging and visualization.
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o /perception/speed_bump_detector/markers — visual markers representing
detected bumps in 3D space.

e /perception/speed _bump_detector/objects — standardized detection mes-
sages compatible with the Autoware Perception framework.

e can_tx —encoded CAN messages conveying detection and position information
for vehicle-level decision-making.

The node’s internal structure is composed of five key modules:
1. Edge point detection — identifies local height discontinuities.

2. Feature clustering — groups adjacent edge points belonging to the same struc-
ture.

3. Geometric feature extraction — computes width, length, height, and slope
parameters.

4. Bump validation and classification — applies threshold-based criteria to confirm
valid bumps.

5. Data publishing and CAN communication — outputs the results to visualization
and control interfaces.

3.4.3 Edge Point Detection

The core idea of the detection framework is that speed bumps create local height
discontinuities in the ground surface, which can be detected through elevation
changes within a small neighborhood.

For each point in the ground point cloud, its neighboring points within a given
radius are retrieved using a Kd-tree search. The algorithm then evaluates the local
vertical variation:

Az; = (max zj> - (min zj> (3.16)
JEN; JEN;
If Az > threshold, the point is marked as an edge point, signifying a potential
boundary of an elevated structure.

This procedure, implemented in the function detectEdgePointsByHeightRange ()]
operates using two configurable parameters:

 radius: neighborhood search radius (default 0.3 m);
e min_height_diff: minimum required height difference (default 0.05 m).

The resulting edge points capture all areas exhibiting significant elevation
changes, including potential speed bump boundaries.
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3.4.4 Feature Clustering and Geometric Analysis

Detected edge points are spatially grouped into clusters using a radius-based region

growing algorithm (extractSpeedBumpFeatures()). Each cluster is analyzed to

extract characteristic geometric features that describe the potential bump.
Within each cluster, five representative points are determined:

Closest point — nearest to the vehicle.

Highest point — maximum elevation within the cluster.

Leftmost and rightmost points — lateral boundaries.

Centroid — geometric center of all cluster points.

From these key points, several geometric descriptors are computed:

Width = ‘yrightmost - yleftmost’ (317)
Length = 2 x |xhighest - xclosest' (318)
Height difference = Zhighest — Zelosest (3.19)

The length estimation is adaptively refined based on the range of x-coordinates
in the cluster to ensure consistent measurements across different bump sizes. Each
cluster with a sufficient number of points and a height difference exceeding the
predefined threshold is retained as a speed bump candidate.

3.4.5 Speed Bump Characterization

Each confirmed cluster is encapsulated in a BumpDetection data structure that
summarizes its geometric and spatial attributes:

Center coordinates (z,y, 2);

Dimensions (width, length, height);

Height variance (represented by height difference);

Type (fixed as “speedbump”);
« Confidence score (default value 1.0 for confirmed detections).

These parameters are used both for visualization and downstream control tasks.
Detections failing to meet the confidence or geometric constraints are filtered out
to reduce false positives caused by uneven ground or curbs.
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3.4.6 Data Publishing and Integration

The detection results are distributed through multiple data channels to ensure
compatibility with visualization, perception, and control systems.

3.4.7 Visualization

Each detected bump is visualized using 3D markers (visualization_msgs: :MarkerArray)
published to /perception/speed_bump_detector/markers. Markers are repre-
sented as cuboids centered at the bump’s estimated position, with dimensions scaled
according to measured width, length, and height. Color intensity corresponds to
detection confidence, allowing quick qualitative assessment in RViz.

3.4.8 CAN Bus Communication

For direct interaction with vehicle electronic control units (ECUs), detection results
are encoded into CAN messages. Two message types are defined:

 Detection message (SPEED_BUMP_DETECTION_ID): includes width, length, height]
difference, and slope information.

 Position message (SPEED_BUMP_POSITION_ID): encodes the detected bump’s
position relative to the vehicle coordinate frame.

If no bumps are detected, a default “no-detection” CAN message is sent to
maintain communication consistency. This interface supports real-time alerts or
automatic suspension adjustments in intelligent vehicles.

3.4.9 Data Logging and Evaluation Support

To facilitate offline analysis and system validation, all detections are automatically
recorded in CSV format.Each log entry contains timestamps, coordinates of the
key points, geometric dimensions, and detection confidence. The log files are time-
stamped and stored in a designated directory for later processing. This structured
data enables evaluation of detection stability, repeatability, and environmental
robustness under different road conditions.

3.4.10 Summary

The proposed ROS2-based Speed Bump Detection Node applies a height-difference-
driven geometric analysis to identify raised road structures from LiDAR point
clouds.By combining edge detection, feature clustering, and rule-based validation,
the system achieves accurate and interpretable detection of speed bumps.Its modular
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design allows seamless integration into the proposed ADAS perception stacks,
providing reliable geometric cues for navigation safety and vehicle dynamics control.
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Chapter 4

Experiments and Results

This chapter outlines the complete execution process of the test plan and the
evaluation of the results. To validate the effectiveness and robustness of the
proposed LiDAR-based perception framework, a series of real-world experiments
were conducted focusing on two representative perception tasks: multi-object
tracking and speed bump detection. All experimental data were collected using the
integrated perception platform equipped with a high-precision LiDAR sensor and
stored in ROS bag format for offline analysis. The results presented in the following
sections demonstrate the feasibility, reliability, and real-world applicability of the
proposed perception algorithms.

4.1 Testing Plan

The primary objective of this study is to verify the feasibility of the two proposed
LiDAR-based perception functions. Each function corresponds to an individ-
ual project with its own deployment plan and testing scenarios. Therefore, the
algorithms were evaluated using real-world data collected from actual sensor de-
ployments, ensuring that the results reflect both algorithmic performance and the
potential for integration into the overall system.

For the multi-object tracking algorithm, the goal of the test is to assess the
stability of the tracking process and the functionality of the track management
system. To achieve this, experiments were conducted in a controlled environment
using real vehicles as dynamic targets. The test platform consists of our research
vehicle equipped with the LiDAR sensor suite, as shown in Figure 4.1, while
surrounding vehicles serve as tracked objects. The experiment was carried out in a
parking lot, providing a safe and structured environment that allows precise control
of the experimental variables and accurate ground-truth measurement.

For the speed bump detection algorithm, the objective is to evaluate whether
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Mechanical LiDAR

RADAR 4D

Figure 4.1: Test vehicle for Multi-object tracking

the proposed method can successfully detect road speed bumps and measure their
distance in real time. The experiment was conducted on a closed testing ground,
where a LiDAR sensor was mounted on the front platform of the PIXKIT 2.0
drive-by-wire chassis, and a standard speed bump was fixed on the ground, as
shown in Figure 4.2. This setup reflects the intended application scenario of the
overall system and allows a deeper understanding of the algorithm performance,
guiding future optimization for system-level integration.

4.2 Data collection

4.2.1 Multi-object Tracking

According to the testing plan, raw data were collected from the LiDAR and camera
sensor suite, which had been precisely calibrated within the project’s perception
pipeline. To support subsequent analysis and processing, all acquired sensor data
were recorded and stored in ROS bag files. Although the multi-object tracking
algorithm is designed for real-time execution, offline validation was performed to
systematically evaluate different parameter configurations and conduct detailed
data analysis. This approach enables fine-tuning of the algorithm and optimization
of its overall performance.

As illustrated in Figure 4.3, the experimental setup for testing the multi-object
tracking algorithm involved a stationary target vehicle positioned in a parking space,
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Figure 4.2: PIXKIT 2.0 drive-by-wire chassis

with several other vehicles parked on its right side. The test vehicle, equipped
with the LiDAR-camera sensor set, was parked three spaces away from the target
vehicle, facing its left side at an initial distance of approximately 8.5 meters. In this
configuration, the LIDAR maintained a clear and stable view of the main target
while also capturing the two vehicles located behind it. This arrangement not
only facilitated a multi-object tracking scenario, but also simulated typical driving
conditions where targets in the same lane may become temporarily occluded by
preceding vehicles, yet still remain relevant to the perception system.

During the experiment, the ego vehicle slowly reversed, gradually increasing the
distance from the target vehicle until it reached the end of the parking lot, with a
final distance of approximately 21 meters. By progressively increasing the distance
and analyzing the corresponding tracking results, we evaluated the stability of the
tracking algorithm and the performance of the track management module.

4.2.2 Speed Bump Detection

The experimental data used to evaluate the speed bump detection algorithm were
collected using the PIXKIT 2.0 drive-by-wire chassis, which serves as the primary
test platform in this study. To ensure high-quality LiDAR point cloud acquisition,
the LiDAR sensor was mounted on the front platform of the vehicle, as shown in
Figure 4.4. This configuration enables more effective capture of ground-level point
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Figure 4.3: Test scenario for multi-object tracking

cloud data. The LiDAR was positioned 0.59 m above the ground, with a horizontal
distance of 0.41 m between the sensor’s center and the front bumper of the vehicle.

The experiment was conducted in an enclosed test yard at the Aero Club Torino.
During testing, the vehicle was remotely controlled to move forward from an
initial distance of 9 m and stop approximately 1 m before the speed bump. This
scenario simulates a typical driving situation in which the vehicle must adjust
parameters of the active suspension and traction control systems based on the
distance information of an upcoming speed bump. The LiDAR point cloud data
were recorded and stored in ROS bag files for offline processing. The collected data
were then used to fine-tune algorithm parameters and to validate the detection
accuracy, measurement stability, and real-time distance estimation capability of
the proposed method.

4.3 Result Evaluation

In this section, the results of the offline validation for the two tested functions are
presented and discussed. For each function, specific evaluation criteria have been
developed to assess the algorithm’s capability and performance.
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Figure 4.4: Test scenario for speed bump detection

4.3.1 Multi-object Tracking

In this scenario, the evaluation focuses on the stability of the tracking algorithm
and the effectiveness of the track management module. Figure 4.5 illustrates the
visualization of the sensor fusion and multi-object tracking process, providing an
intuitive understanding of the working principles of the algorithm.

From the visualized point cloud, it can be observed that Vehicle 1, the primary
target, is clearly segmented as a vehicle-shaped point cloud cluster. Its centroid
trajectory maintains a consistent color, as do the trajectories of the two following
vehicles. This indicates that the same targets are correctly identified across
consecutive frames and are stably tracked, even though a few frames were lost at
the beginning of the test due to minor data jitter. These results demonstrate the
robustness of the track management module.
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Figure 4.5: Visualization of multi-object tracking data
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Figure 4.6: Distance measurement of multi-object tracking

Furthermore, as shown in Figure 4.6, the distances between the ego vehicle and
the three tracked targets are accurately measured. The three vehicles were parked
in alternating parking spaces, leaving approximately 7 meters between each other,
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which aligns well with the measured distances.

4.3.2 Speed Bump Detection

In this scenario, the evaluation focuses on assessing the functionality of the proposed
speed bump detection algorithm, as well as the accuracy and stability of the distance
measurements.

Figure 4.7: Visualization of speed bump detection

Figure 4.7 illustrates the identified and segmented speed bump within the LiDAR
point cloud, offering an intuitive visualization of the algorithm’s operating principles
and confirming its effectiveness in feature recognition. As shown in Figure 4.8, the
yellow points representing the speed bump are clearly separated from the ground
points rendered in white, demonstrating the algorithm’s capability to accurately
distinguish subtle height variations between road surfaces and elevated structures.
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Figure 4.8: Detected speed bump in yellow points
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Figure 4.9: Distance measurement of detected speed bump

Figure 4.9 illustrates the experimental results obtained during the validation
test. In this experiment, the vehicle started from rest at approximately 9 meters
from the speed bump and gradually accelerated forward. As it approached the
obstacle, the vehicle decelerated and eventually stopped immediately in front of
the bump. This motion pattern is clearly reflected in the detection results, where
the measured distance shows a smooth and continuous decrease corresponding to
the vehicle’s approach trajectory.

A short discontinuity is observed in the mid-range portion of the curve, mainly
caused by temporary sparsity of LIDAR returns near the surface of the ground. This
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phenomenon typically occurs when the scanning angle becomes shallow, resulting
in a reduced number of valid reflections. Despite this brief absence of data, the
algorithm quickly recovered detection once sufficient surface points were captured
again, maintaining a coherent and physically consistent trend.

These results demonstrate the strong capability of the proposed algorithm to
accurately identify and localize the speed bump, even under partially missing
or noisy point cloud conditions. The estimated distances remain stable across
consecutive frames, showing high temporal consistency and robustness against
random measurement noise.

Overall, the experiment confirms that the LiDAR-based detection method
can robustly capture the geometric characteristics of speed bumps and provide
continuous, stable measurements during vehicle approach. Even without any
external correction or reference data, the system exhibits strong resilience to
real-world imperfections such as point sparsity and partial occlusion.
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Chapter 5

Conclusions and Future
Works

This paper presented two LiDAR-based perception algorithms designed for ADAS:
a multi-object tracking algorithm based on the Extended Kalman Filter (EKF)
with a Constant Turn Rate and Velocity (CTRV) motion model, and a speed bump
detection algorithm based on ground point cloud analysis. Although these two
functions serve distinct perception purposes, both share a unified methodological
framework built upon feature extraction, cluster segmentation, and state estimation
from LiDAR point clouds.

For multi-object tracking, the proposed algorithm effectively maintains track
continuity and demonstrates robust performance of the track management module,
even in scenarios with partial occlusion or temporary measurement loss. The
tracking results show that targets are stably and consistently associated across
consecutive frames, confirming the reliability and temporal stability of the developed
approach.

For static road feature detection, the speed bump detection algorithm successfully
identifies and localizes the bump structure in real driving environments. The
experimental results verify its ability to provide smooth, continuous, and stable
distance measurements during vehicle motion, even in the presence of sparse or
noisy point cloud data. The algorithm shows strong resilience to common LiDAR
sensing imperfections, confirming its robustness and applicability in real-world
ADAS applications.

In summary, the proposed framework demonstrates that the perception system
based on LiDAR point cloud can effectively support both dynamic and static
environmental understanding in ADAS systems, contributing to safer and more
intelligent vehicle operation.
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Future Works

Future work will focus on the following directions:

« Real-time deployment and integration: implementing the algorithms in
the onboard perception pipeline to validate performance under real driving
conditions.

e Sensor fusion: integrating LIDAR with camera and radar data to enhance
perception accuracy and robustness under various environmental conditions.

o Complex road scenarios: extending the methods to handle irregular road
geometries and unstructured environments to improve generalization capability.

» Adaptive optimization: applying learning-based or data-driven techniques
for automatic parameter tuning across different driving contexts.

These directions will further advance the practical applicability of LiDAR-
based perception algorithms and contribute to the development of more reliable
autonomous and assisted driving systems.
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