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Abstract

Hypertension is a major risk factor for cardiovascular disease (CVD), which remains the lead-

ing cause of mortality worldwide. Continuous and accurate monitoring of blood pressure (BP)

plays a fundamental role not only in early diagnosis but also in patient therapeutic manage-

ment and the prevention of associated complications. However, currently used methods have

significant limitations: invasive systems, while highly accurate, can only be used in hospital

settings and involve risks and discomfort; noninvasive cuff-based systems, on the other hand,

provide only intermittent readings and do not allow dynamic BP analysis during daily activities.

To overcome these limitations, in recent years there has been growing interest in cuffless tech-

niques that exploit physiological signals easily acquired through wearable sensors. This thesis

explores a methodology for continuous and noninvasive estimation of BP based on combined

electrocardiogram (ECG) and photoplethysmogram (PPG) analysis. From these signals, two

key parameters are extracted: heart rate (HR) and pulse transit time (PTT). They are known

in the literature for their correlation with variations in blood pressure.

The work introduces several significant innovations: the use of wearable Shimmer devices

to acquire signals from subjects under controlled conditions, as an alternative to data sets

available online (MIMIC and others), and the design of a processing pipeline including signal

preprocessing, automatic peak detection, and robust extraction of HR and PTT. Subsequently,

through the application of regression techniques, a mathematical relationship was defined be-

tween these parameters and the reference BP values obtained using calibrated devices. The

expected results include the development of a reliable framework capable of estimating blood

pressure in real time with an error within the thresholds established by international guidelines

(AAMI/ISO/ESH), the validation of the method against clinical standards and the optimization

of algorithms to reduce motion artifacts.

Looking ahead, such an approach could contribute to the evolution of wearable healthcare

technologies, allowing continuous, discreet, and personalized BP monitoring even outside the

clinical setting. This would represent an important step in the treatment of hypertension and

the prevention of CVD, improving the quality of life of patients and reducing the overall social

and health impact of these diseases. Therefore, an aspect of the project intended for the

integration of this type of algorithm on wearable devices: the European Persimmon project and

shimmer3.
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Acronyms table

Acronym Description

AAMI Association for the Advancement of Medical Instrumentation

BP Blood Pressure

CO Cardiac Output

CVD Cardiovascular Disease

DBP Diastolic Blood Pressure

ECG Electrocardiogram

ESH European Society of Hypertension

HR Heart Rate

IoT Internet of Things

ISO International Organization for Standardization

LED Light Emitting Diode

MAP Mean Arterial Pressure

MAE Mean Absolute Error

MIMIC Medical Information Mart for Intensive Care

ML Machine Learning

PAT Pulse Arrival Time

PERSIMMON Personalised Smart Patch for Multimodal Monitoring

PP Pulse Pressure

PPG Photoplethysmogram

PTT Pulse Transit Time

RMSE Root Mean Square Error

SBP Systolic Blood Pressure

SHIMMER Sensing Health with Intelligence, Modularity, Mobility and

Experimental Reusability

SVM Support Vector Machine

Table 1: List of acronyms used in the project, in alphabetical order.
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1 Introduction

The Cardiovascular disease (CVD) represents a major public health challenge globally. Among

the various risk factors, hypertension stands out as the most modifiable and, at the same

time, one of the most common causes of serious complications. For this reason, accurate and

continuous blood pressure measurement plays a strategic role, both in prevention and clinical

management.

1.1 Clinic context: the problem to be addressed

CVDs are currently the leading cause of mortality and morbidity worldwide [1] [2]. According

to the World Health Organization (WHO), over 17 million people die from these diseases every

year, and epidemiological projections estimate that this number is expected to increase in the

coming decades.

The causes of this growth are multiple: the progressive aging of the population, the in-

creasing prevalence of obesity and diabetes mellitus, and the spread of sedentary lifestyles and

unhealthy eating habits. Added to this is the impact of socioeconomic inequalities, which influ-

ence access to early diagnosis, adequate treatment, and prevention programs. In this scenario,

arterial hypertension emerges as the main modifiable risk factor, with a significant epidemiolog-

ical impact. It is closely linked to the onset of acute events such as ischemic and hemorrhagic

strokes and myocardial infarction, but also to chronic complications such as heart failure and

progressive renal failure [3]. Despite being a well-known and theoretically easily measurable

risk factor, hypertension continues to pose a global public health challenge: it is estimated

that approximately one in three adults worldwide has hypertension, and less than half receive

adequate treatment. Accurate and continuous monitoring of blood pressure therefore plays a

crucial role, not only to identify abnormalities early, but also to evaluate the effectiveness of

pharmacological treatments, adapt therapies based on blood pressure trends and reduce the risk

of cardiovascular and renal complications [4] [5]. However, despite the widespread availability

of antihypertensive drugs, blood pressure control (BP monitoring) in the population remains

inadequate: a significant proportion of individuals are unaware of their condition, while among

those who have received a diagnosis, a significant portion do not adhere to treatment or are

not regularly monitored [6] [7].

This combination of late diagnosis, poor adherence, and intermittent monitoring contributes

to maintaining the high disease burden, underscoring the need for innovative solutions for blood

pressure control at the individual and population levels.
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1.2 Limitations of Traditional Methods

Currently, BP measurement is performed primarily using two approaches: non-invasive, inter-

mittent methods, and invasive, continuous methods. However, both have significant limitations

that affect their applicability and effectiveness.

The cuff sphygmomanometer [8] [9], based on the auscultatory method (with a stethoscope

and detection of Korotkoff sounds) or the oscillometric method (use of electronic pressure

sensors), represents the gold standard in clinical measurement of ambulatory and home blood

pressure measurements. Although generally reliable, this method provides only intermittent

measurements, usually at intervals of several minutes or hours [10]. This means that the

dynamics of blood pressure throughout the day, influenced by physical activity, stress, sleep, or

hormonal changes, is not fully captured. Furthermore, the need to inflate the cuff can cause

discomfort, especially in elderly or frail patients, and limits its use in continuous monitoring

settings. Figure 1 illustrates its behavior.

Figure 1: Sphygmomanometer

In the other extreme are invasive methods, such as arterial catheterization, which allow for

direct and continuous blood pressure measurement using a transducer connected to an arterial

access. These systems offer maximum accuracy and are the clinical gold standard, especially in

intensive care settings or critically ill patients. However, the invasive nature of the procedure

involves significant risks, such as infection, thrombosis, bleeding, and pain, as well as the need

for highly specialized personnel and dedicated hospital facilities [11] [12]. For these reasons,
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these methods cannot be applied on a large scale or adopted for daily monitoring of the general

population.

There is therefore a ”technological gap” between these two approaches: on the one hand,

a non-invasive but fragmented method; on the other, an accurate but risky and impractical

method. Bridging this gap represents one of the most urgent and promising challenges in the

field of cardiovascular monitoring like the figure 2.

Figure 2: Difference between invasive and noninvasive method for the cardiovascular monitoring.

1.3 The Need for Cuffless Solutions

In recent years, scientific research has increasingly focused on developing alternative methods for

monitoring blood pressure, with the aim of developing non-invasive, reliable, wearable solutions

capable of providing real-time data [13] [14]. This type of technology could revolutionize the

treatment of hypertension, allowing monitoring not only in the clinical setting but also at home

and in daily life, improving the quality of patient’s life and reducing healthcare costs [15].

The idea behind these approaches is to exploit physiological signals already widely used in

the medical field, which are capable of indirectly reflecting on variations in blood pressure. In

particular, parameters extracted from signals such as the electrocardiogram (ECG) and photo-

plethysmogram (PPG) have shown significant potential for cuffless BP estimation.
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1.3.1 ECG and PPG for Smarter Blood Pressure Tracking

The ECG is a well-established diagnostic tool has been used for decades to assess the electrical

activity of the heart. The ECG waveform provides valuable information on heart rate and

rhythm, as well as the propagation of electrical impulses through the different cardiac chambers.

Detection of the R peak, for example, provides a stable and easily identifiable time reference,

which can be used as a starting point for temporal calculations related to the cardiac cycle [16].

PPG, on the other hand, is a signal obtained through an optical sensor that measures

volumetric variations in blood flow at the peripheral level, typically on the finger or wrist. This

signal is now widely used thanks to its integration in commonly used wearable devices, such as

smartwatches and fitness trackers, which use it to estimate heart rate and oxygen saturation

[17] [18]. Its ease of acquisition, non-invasive nature, and increasing miniaturization of sensors

make it an ideal candidate for continuous monitoring applications. The combination of ECG

and PPG allows the calculation of parameters such as heart rate (HR) and pulse transit time

(PTT), both of which correlate with blood pressure dynamics. Recent studies have shown

that changes in blood pressure are reflected in measurable changes in PTT, paving the way

for predictive models capable of estimating blood pressure values from these signals. Although

these approaches are still being validated and present significant challenges such as the need

to reduce motion artifacts and ensure accurate calibration. In fact, they represent one of the

most promising prospects for the future of cardiovascular monitoring [19] [20] [21].

1.4 Thesis Objectives

In this context, this thesis aims to explore and develop a method for the non-invasive and

continuous estimation of blood pressure, based on the combined analysis of ECG and PPG

signals recorded with the reference Shimmer devices. Using these systems allows us to work

with ”real” data, and to evaluate the method’s practical transferability to clinical and everyday

settings. A detailed description of the Shimmer devices’ hardware and software features, as

well as their acquisition methods, will be provided in the following chapters, particularly in the

section dedicated to methodology (Chapter: 3) The entire work has been carried out at the

LINKS Foundation. It aims to be a driver of innovation with high social and economic impact,

based on a solid integration of cutting-edge technological knowledge and a multidisciplinary

vision. Through a practical approach that extends from design to prototyping, and thanks

to a dense network of collaborations with academic institutions and industrial entities both

nationally and internationally, LINKS creates a fertile ecosystem where diverse skills meet and

interconnect. The Foundation’s guiding vision recognizes the intimate connection between

technological progress, society, and the environment, aiming to address the structural challenges

of our time from a systemic perspective. This ecosystemic perspective combines technological

innovation with the principles of sustainability, equity, and territorial development, with the
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ultimate goal of generating tangible benefits for the community.

The LINKS Foundation therefore acts as a bridge between research and practical application,

transforming advanced ideas into real solutions that meet the needs of contemporary society,

always respecting a harmonious balance between humanity, technology, and nature. The Foun-

dation thus represents a model of how technical and scientific excellence can be combined with

a responsible vision of progress, where innovation becomes a tool for the shared improvement of

living conditions and the protection of the common good [22]. The main idea of the project is

the acquisition of signals via wearable sensors, processing to extract HR and PTT parameters,

and the application of regression techniques to establish a quantitative relationship with refer-

ence blood pressure values, to estimate the trend over time of diastolic and systolic pressure:

DBP and SBP values. Then, the future development is the possibility to use the algorithm on

portable devices for continuous and real-time monitoring.

The work is therefore organized as follows: Chapter 2 is dedicated to the state of the

art, describing the physiological foundations, traditional methods, and emerging techniques for

monitoring blood pressure. Chapter 3 illustrates the proposed solution, including the sensors,

acquisition, pre-processing, and parameter extraction methods. Chapter 4 presents the experi-

mental results obtained and their evaluation, while Chapter 5 is dedicated to a critical discussion

of the results and future perspectives. Lastly, Chapter 6 is dedicated to the conclusions.
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2 State Of The Art: Materials and Methods

The study of blood pressure and the methodologies for its non-invasive estimation requires a

solid understanding of both basic physiological aspects and biomedical signal acquisition and

processing techniques. This chapter provides a critical and structured review of the existing

literature, with the aim of outlining the state of the art for existing blood pressure monitoring

techniques.

The chapter is organized into five main sections.

• Section 2.1 – Physiological Background: The fundamentals of the cardiovascular

system will be reviewed, with particular attention to the definition of blood pressure and

its main components: systolic blood pressure (SBP), diastolic blood pressure (DBP), and

mean arterial pressure (MAP). The relationship between blood pressure, cardiac output,

and peripheral resistance will also be discussed, highlighting how these parameters are

influenced by physiological and pathological factors.

• Section 2.2 – Biomedical Signals of Interest: This section focuses on the two key

signals used in cuffless approaches: the electrocardiogram (ECG) and the photoplethys-

mogram (PPG). The principles of signal generation, their morphology and fiducial points

of interest (e.g. the R-peak in the ECG and the foot or peak in the PPG) will be in-

troduced. The main factors that can degrade signal quality, such as physiological noise

and motion artifacts, and the strategies commonly adopted to mitigate them will also be

analyzed.

• Section 2.3 – Blood Pressure Measurement Techniques: This section presents cur-

rent blood pressure measurement methodologies. We will begin with invasive methods,

considered the gold standard for accuracy but limited by their high invasiveness, and then

analyze non-invasive techniques based on cuff-based devices (manual sphygmomanome-

ter, oscillometric). Finally, we will introduce the concept of cuffless monitoring, discussing

its advantages and challenges compared to established clinical practices.

• Section 2.4 – Innovative Approaches for Blood Pressure Estimation: This section

focuses on methods that take advantage of parameters derived from ECG and PPG signals,

specifically heart rate (HR), pulse transit time (PTT), and pulse arrival time (PAT). We

will analyze the main regression models (linear, polynomial, logarithmic) and the most

recent techniques based on machine learning and deep learning (SVM, Random Forest,

CNN, LSTM). Multimodal approaches that combine different biomedical signals will also

be described, as well as the main open issues, including the need for calibration, model

generalization, and high interindividual variability.
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• Section 2.5 – Datasets and Validation: The final section will focus on databases

available in the literature and performance evaluation criteria. The most popular public

databases, such as MIMIC, and proprietary data collections will be discussed. Commonly

used validation metrics (RMSE, MAE, Bland-Altman) and international standards (AAMI,

BHS, ISO) will be presented. Finally, a comparison of the main published works will be

provided, accompanied by a comparative table summarizing datasets, algorithms, and

performance, with a critical discussion of the current state of research and the gaps that

remain to be filled.

2.1 Physiologic Background

This section presents the basic physiological principles necessary to understand the functioning

of the cardiovascular system and the central role of blood pressure. After a general overview

of the organization of the circulatory system and its two main components: systemic and

pulmonary circulation, fundamental concepts related to the dynamics of blood flow will be

introduced.

Particular attention will be paid to the definition and description of the main components

of blood pressure: systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial

pressure (MAP), and pulse pressure (PP). These parameters form the basis for the correct

interpretation of hemodynamic conditions and are key elements for clinical assessment.

2.1.1 Cardiovascular System

The cardiovascular system is the set of organs that allow blood to circulate within our body

to provide cells with the necessary nutrients and to eliminate carbon dioxide and other waste

products [23]. It is a closed system of blood vessels made up of arteries, capillaries, and veins.

In particular, arteries are tubes with a thick layer of elastic tissue and muscle fibers that receive

blood from the heart, a muscle that functions as a true blood pump. The arteries branch out

into thinner blood vessels until they reach arterioles, through which blood is conveyed into

capillaries, small tubes with thin walls permeable to nutrients, gases and waste products. The

capillaries carry blood to small blood vessels, the venules, which converge to form veins that

return blood to the heart [23]. The graphical representation of the system is shown in figure 3
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Figure 3: Representation of the Cardiovascular System

The blood circulation goes with the systemic and pulmonary circulation (figure 4). In

particular, systemic circulation, or greater circulation, begins in the left ventricle and distributes

oxygen-rich blood to all parts of the body via the aorta and its branches. In parallel, the

pulmonary circulation transports carbon dioxide-laden blood from the right ventricle to the

lungs, where gas exchange occurs [24]. These two, closely integrated, form a closed circuit that

maintains the body’s homeostasis. The heart acts as a tireless pump, while the blood vessels

form an intelligent distribution network, capable of self-regulating according to the needs of the

various tissues.
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Figure 4: Difference between the Systemic circulation and Pulmonary circulation

Therefore, the cardiovascular system not only allows the distribution of nutrients to organs

and the elimination of excess substances, such as carbon dioxide, but also acts as a vehicle for

the immune system and other molecules (hormones) that, through blood vessels, are able to

reach all parts of our organism [23].

2.1.2 Meaning of MAP, DBP, SBP, PP, CO and TPR in Clinic context

Arterial pressure represents the force exerted by blood against the internal walls of the arteries,

determined by the interaction between cardiac output and vascular resistance. This fundamental

hemodynamic parameter must remain within adequate values throughout the vascular system,

from the arteries to the capillaries, to ensure appropriate blood perfusion to organs and tissues

[25] [26].

Blood pressure measurement includes four main components: systolic blood pressure (SBP),

which reflects the maximum pressure generated during cardiac contraction; diastolic blood

pressure (DBP), which represents the minimum pressure in the arteries during cardiac rest;

pulse pressure (PP), which represents the difference between SBP and DBP, which represents

the force the heart generates each time it contracts and may also reflect arterial stiffness and

mean arterial pressure (MAP), calculated using two possible formulations:

•
MAP = DBP +

SBP −DBP

3
(1)

•
MAP = CO ∗ TPR (2)
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Cardiac output (CO), determined by the product of heart rate and stroke volume, represents

the amount of blood pumped by the heart in one minute. Similarly, Total Peripheral Resistance

(TPR) is mainly dependent on the tone of the arterioles, which are the main resistance vessels

in the circulatory system. The body maintains a delicate balance between these two factors

through complex neurohumoral regulatory mechanisms, which act on different time scales to

preserve organ perfusion [27] [29].

From a physiological perspective, MAP is the most significant parameter, as it expresses the

mean perfusion pressure that ensures blood supply to vital organs. Unlike systolic and diastolic

blood pressure values, which reflect the extreme phases of the cardiac cycle, MAP expresses

the mean perfusion pressure that ensures constant blood flow through the microcirculation.

Maintaining adequate MAP values (generally ≥ 65 mmHg) is essential to prevent ischemic

damage to organs such as the kidneys, brain, and heart. In intensive care, this parameter guides

therapeutic decisions in critically ill patients, with particular attention to shock conditions.

In chronically hypertensive patients, the optimal MAP threshold is higher (75-85 mmHg) due

to pre-existing vascular alterations. MAP monitoring is also particularly important in surgical

and neurological settings, where inadequate values can lead to serious complications [26] [28].

MAP interpretation must always consider the overall clinical picture, integrating with other

hemodynamic and metabolic parameters, with the ultimate goal of ensuring optimal tissue

oxygenation rather than simply achieving predetermined numerical values.

2.2 Hypertension, Blood Pressure Monitoring Techniques and ECG,

PPG definition

Monitoring of blood pressure (BP) is a fundamental clinical practice for the diagnosis and treat-

ment of numerous cardiovascular diseases, with hypertension representing the most prevalent

and impactful condition worldwide. Traditional methodologies fall into two broad categories:

invasive systems (IABP), considered the gold standard for continuous measurement in intensive

care settings but associated with significant risks, and non-invasive methods, including manual

(such as auscultation of Korotkoff sounds) and automated (primarily oscillometric) techniques,

although the latter are often inconsistent and prone to error. To overcome the limitations of

these techniques, research is increasingly moving toward non-invasive and cuffless technologies.

These innovative systems are based on the combined acquisition and analysis of physiological

signals. Specifically, the electrocardiogram (ECG) and the photoplethysmogram (PPG) are

used to continuously and less intrusively estimate blood pressure. The central physiological

parameter in this approach is the Pulse Transit Time (PTT), or the related Pulse Arrival Time

(PAT), which is inversely correlated with blood pressure values.

This section illustrates the main BP monitoring techniques, starting with the standard

invasive approach and moving on to traditional non-invasive (cuff-based) methodologies, cul-

16



minating in an analysis of the most promising cuffless methods, which leverage ECG and PPG

signal processing, including machine learning models, for accurate, personalized, and real-time

estimates of systolic (SBP) and diastolic (DBP) blood pressure. These innovations are par-

ticularly relevant in the context of hypertension management, where the need for continuous,

reliable, and patient-friendly monitoring solutions remains largely unmet and will be addressed

in detail in the following discussion.

2.2.1 Hypertension: definition and why it is important to be monitored

Arterial hypertension is a clinical condition characterized by persistently elevated blood pressure

values, generally defined as a systolic blood pressure (SBP) equal to or greater than 140 mmHg

and/or a diastolic blood pressure (DBP) equal to or greater than 90 mmHg [3]. This condition

represents a major modifiable risk factor for cardiovascular disease, including coronary heart

disease, stroke, heart failure, and chronic kidney disease.

According to the most recent epidemiological data, hypertension affects approximately

onethird of the adult population globally, and its prevalence is constantly increasing, driven

by demographic aging, the growing incidence of obesity and diabetes, and the spread of seden-

tary lifestyles [7]. A particularly critical aspect is that a significant proportion of hypertensive

subjects are unaware of their condition, while among those who have received a diagnosis, many

do not regularly follow pharmacological therapy or are not subjected to adequate clinical moni-

toring [6]. Blood pressure monitoring therefore plays an essential role for several reasons. First,

it allows for the early identification of at-risk individuals, reducing the likelihood that undiag-

nosed hypertension will progress to serious acute events. Second, it allows for the assessment of

the response to pharmacological and non-pharmacological treatments, optimizing therapy based

on blood pressure trends [4]. Finally, regular monitoring is essential for preventing long-term

complications, as effective blood pressure control is associated with a significant reduction in

cardiovascular mortality.

In summary, hypertension represents not only an epidemiologically relevant problem but also

a clinical challenge requiring accurate, reliable, and, if possible, continuous measurement tools

to support patients and the healthcare system in the long-term management of this condition.

2.2.2 Invasive Blood Pressure Monitoring: Indications, Technique, and Complica-

tions

Invasive blood pressure monitoring (IABP) represents the standard for continuous blood pressure

measurement in critically ill patients. This approach is used primarily in intensive care and during

highly complex surgical procedures, providing a beat-to-beat assessment of blood pressure and

allowing the analysis of cardiac output through the study of the pulsatile waveform profile [31].

The main indications include:
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• Patients with hemodynamic instability or severe hypotension

• Need for frequent blood gas analysis in respiratory failure

• Evaluation of the effects of vasoactive drugs to optimize therapy

• Inability to use noninvasive methods due to skin or joint lesions [30]

The invasive blood pressure monitoring procedure begins with the placement of a catheter in a

peripheral artery. The measurement system consists of several essential components that work

synergistically: an arterial cannula is connected to special non-compressible tubing, through

which a heparinized saline solution flows continuously (figure 5). This hydraulic system is

connected to a pressure transducer based on the Wheatstone bridge principle, which converts

pressure variations into electrical signals that are subsequently processed and displayed on a

dedicated monitor showing both the characteristic pulsatile wave and the numerical values of

systolic, diastolic, and mean blood pressure [31].

Figure 5: BP monitoring with Invasive method

Compared to non-invasive methods, this approach offers significant clinical advantages.

The increased measurement accuracy is particularly valuable in complex situations such as

the presence of cardiac arrhythmias or marked hypotensive states. In addition, it represents

the ideal solution for patients in whom traditional techniques are inapplicable, such as severe

obesity, multiple limb trauma, or extensive burns. A further benefit is the ability to analyze

the morphology of the pulsatile waveform in detail, providing valuable information on global

hemodynamic status and cardiovascular function [31]. However, like any invasive procedure,

monitoring blood pressure is not without risks. Immediate complications include the possibility

of hemorrhage, vasospasm, or accidental intra-arterial drug administration. However, in the
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long term, thromboembolic events may occur, with an estimated incidence of 3.4 cases per

1000 catheters placed, or device-related infections [32].

To minimize these risks and ensure accurate measurements, rigorous safety procedures are

essential. The transducer must be positioned at the correct height, corresponding to the

midaxillary line, an anatomical landmark that approximates the level of the right atrium. The

system must be kept completely free of air bubbles and periodically calibrated using the zeroing

procedure. Careful monitoring of the insertion site, with daily evaluation for local signs of

infection or ischemia, completes the necessary precautions [30]. Despite the unquestionable

precision of this method, it is important to note that measurement errors can occur. The

main sources of inaccuracies include system under- or over-damping, incorrect positioning of

the transducer relative to the reference plane, or technical problems in the various components

of the measurement circuit. For these reasons, efforts are underway to adopt new methods

for blood pressure measurement that surpass or equal the efficacy of invasive techniques while

simultaneously ensuring patient safety.

2.2.3 Non-invasive Methods cuff based: Advantages and Disadvantages

Non-invasive blood pressure monitoring (NIBP) uses various methodologies, which can be di-

vided into manual and automated techniques. Among continuous measurement methods, two

main approaches are based on the principle of radial artery applanation tonometry and the

digital volumetric clamp method, respectively.

Applanation tonometry requires compression of a superficial artery (typically the radial

artery) against a contralateral bony structure without completely occluding it. This technique,

implemented in devices such as the T-line TL300 blood pressure monitor (figure 6) [32], allows

direct measurement of mean arterial pressure (MAP) from the waveform, while systolic and

diastolic values are derived by proprietary algorithms. Perioperative studies have shown a good

correlation with contralateral invasive measurements, although the presence of motion artifacts

represents a significant limitation, particularly relevant in intensive care [32].

The volumetric clamp method, alternatively, initially determines the arterial volume of

the finger using infrared transmission plethysmography. By maintaining this volume constant

through rapid pressure variations in a digital cuff, the system obtains a continuous blood pressure

measurement. This technique also has limitations, particularly its dependence on the quality of

the digital signal, which may be suboptimal in critically ill patients [32].

Regarding non-continuous measurements, these can be performed manually or automatically.

The manual method, historically based on the use of mercury or aneroid sphygmomanometers,

uses a stethoscope placed on the brachial artery to identify Korotkoff sounds during gradual

deflation of the cuff [32]. However, the precision of this technique depends on the hearing

acuity of the operator, the quality of the stethoscope, and the correct application of the cuff

[31]. In contemporary clinical practice, automated oscillometric measurement represents the
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Figure 6: T-line TL300 blood pressure monitor for continuous Blood Pressure Monitoring

gold standard for non-invasive blood pressure measurement. This method involves inflating the

cuff above systolic blood pressure, followed by gradual deflation, during which the amplitudes of

the pressure oscillations are measured. The systolic, diastolic, and mean blood pressure values

are then calculated based on the variations in these pulses [32].

However, the oscillometric technique has several practical limitations. Incorrect cuff appli-

cation, both in terms of size (it should cover two thirds of the upper arm with a width equal to

40% of the brachial circumference) and position (correct alignment with the brachial artery),

can result in falsely high (cuff too small) or low (cuff too large) readings. Additional sources

of error include repeated and rapid inflation, which causes venous congestion; excessively rapid

deflation; leaks or kinks in the tubing; and the tendency to overestimate low blood pressure

and underestimate high blood pressures. Cardiac arrhythmias (such as atrial fibrillation) and

involuntary movements (tremors, shivers, convulsions) can also compromise the precision of the

measurements [32].

Due to the limitations of these techniques, efforts are underway to develop new methods that

will make measurements more accurate. An example is methods based on cuffless technologies

that use ECG and PPG signals to measure blood pressure.

2.2.4 Cuffless Methods for Blood Pressure Monitoring using ECG, PPG

Because the traditional cuff method for measuring blood pressure (BP) cannot be performed

continuously and in real time, a new, non-invasive, accurate and completely cuff-free self-

measurement method has emerged [34]. To address this gap, several alternative methods that

avoid the use of a cuff have been developed over the past two decades. The most common

and widely studied approach is based on Pulse Wave Velocity (PWV), which in turn is derived
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from Pulse Transit Time (PTT) using the equation:

PWV =
D

PTT
(3)

, where D is the distance between two sensors [34]. PTT, defined as the time taken for a

blood pulse to travel between two arterial sites, is negatively correlated with blood pressure.

However, much of the research has actually relied on the measurement of Pulse Arrival Time

(PAT), which is often used interchangeably with PTT in the literature [33] [34]. PAT is easier

to measure, as it refers to the time interval between Rpeak of the electrocardiogram (ECG) and

a specific point (Speak) on the photoplethysmogram (PPG) waveform detected at a peripheral

location [34]:

PTT = Speak −Rpeak (4)

In addition to PTT/PAT-based models, some researchers have attempted to predict blood

pressure based on the analysis of the morphological characteristics of the PPG signal and other

physiological variables [33]. For example, a study by Wang et al. [33] used the PAT method

by testing different mathematical models (logarithmic, inverse, inverse square) to describe the

relationship between PWV and BP. The main disadvantage of approaches using PTT and PAT

is the requirement of two perfectly synchronized sensors (e.g., ECG and PPG or two PPGs),

which makes the setup more complex and increases the sensitivity to motion artifacts [34]. To

overcome these limitations and improve accuracy, recent research is increasingly moving towards

the use of machine learning and deep learning models. These methods can both extract complex

features from the signals [33] and attempt to estimate directly from the raw ECG and PPG

signals, going beyond traditional mathematical equations [34]. It is important to note that,

regardless of the method, other physiological factors such as age, body mass index (BMI), sex

and posture during measurement can significantly influence the precision of the final result [33].

Therefore, to obtain reliable measurements, it is advisable to follow these guidelines:

• Measure both sensors (ECG, PPG) to ensure the correlation between the signals.

• The patient must be seated and at rest.

• Make sure the electrodes are placed correctly.

Wearable medical sensors that use ECG and PPG signals to measure blood pressure must return

the values of diastolic blood pressure (DBP) and systolic blood pressure (SBP). The former,

also called minimum pressure, corresponds to the blood pressure when an individual’s heart is in

the relaxation phase; therefore, it represents the recorded value between one heartbeat and the

next, when the cardiac muscle is at rest [35]. In contrast, systolic (or maximum) blood pressure

is the value of blood pressure during heart contraction, that is, when it beats and pushes blood
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into the arteries [35]. These two pressures are evaluated using the PTT and The HR extraced

from the ECG and PPG signals as shown in the equation:SBP =α0 + α·PTT + β·HR
DBP =β0+ γ·PTT + δ·HR

(5)

In Equation (5), α0, β0, α, β, γ and δ represent subject-specific parameters obtained through

calibration, providing a comprehensive approach to estimate BP with a more accurate and

personalized assessment.

2.2.5 ECG signal

The ECG trace, acquired non-invasively, provides a graphic representation of the electrochemical

phenomena that occur in the heart muscle fibers during its cyclic functioning. The most

significant element in this context is the QRS complex, a broad oscillation of the signal caused by

the ventricular depolarization process. This complex is identified by three distinct components,

called Q, R, and S waves (Figure 7a)[36]. By measuring the time interval ∆t (R′
peak − Rpeak)

that separates two successive R peaks (which mark activation of the left ventricle), the Heart

Rate (HR) can be precisely determined, as illustrated in Figure 7b and calculated with the

formula:

HR =
60

∆t
(6)

(a) ECG signal (b) HR interval

Figure 7: Illustration of the ECG signal and the corresponded Hr interval

2.2.6 PPG signal

Photoplethysmography (PPG) is a low-cost optical method that detects changes in blood vol-

ume within the skin capillaries [37]. Its signal is characterized by a rhythmic pulsatile component

(’AC’), generated by blood flow fluctuations related to each single heartbeat (Figure 8) [37].

From the analysis of this waveform, it is possible to derive the Pulse Transit Time (PTT) by
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calculating the time difference between Rpeak of the ECG signal and the point of maximum

slope (Speak) on the immediately following PPG wave (Figure 8).

(a) PPG signal (b) PTT interval

Figure 8: Illustration of the PPG signal and the evaluation of PTT

Both ECG and PPG signals are widely used in clinical practice to monitor various phys-

iological parameters (e.g., PPG for oxygen saturation and respiratory rate, ECG for cardiac

output). Blood pressure is a vital parameter of extreme importance; this study illustrates the

methodology for its estimation through the joint processing of these two physiological signals.

2.3 Innovative approaches for blood pressure estimation

In recent years, the growing availability of biomedical signals acquired through wearable devices

and non-invasive techniques has spurred the development of innovative approaches for esti-

mating blood pressure (BP). In addition to traditional direct measurement methods, research

has focused on the quantitative analysis of physiological parameters derived from signals such

as the electrocardiogram (ECG) and photoplethysmogram (PPG), exploiting their relationship

with hemodynamics. The primary goal is to obtain a continuous, accurate, and non-invasive

estimate of BP, overcoming the limitations of cuff-based or invasive techniques.

In this context, various modeling and computational approaches have been explored. Initial

attempts have relied on classical regression models, such as linear, polynomial, or logarithmic

regression, which attempt to establish simple mathematical relationships between surrogate

variables (e.g. HR, PTT) and reference blood pressure values. Although these methods have

the advantage of being interpretable and easily implementable, they often fail to capture the

complexity of physiological interactions. To address this limitation, research has introduced

traditional machine learning techniques, such as Support Vector Machines (SVM), Ridge Re-

gression, Random Forest, and Regression Trees. These algorithms are capable of modeling

non-linear relationships and managing heterogeneous datasets, offering better performance than

traditional models, especially in the presence of noise and interindividual variability.

A further step forward has been made with the application of deep learning approaches,

such as convolutional neural networks (CNN), recurrent neural networks (RNN), and their
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advanced variants (e.g., LSTM). These models allow automatic learning of complex features

from ECG and PPG signals, avoiding the need for manual feature extraction and showing

great potential, especially in continuous monitoring scenarios. At the same time, interest is

emerging in multimodal applications, which combine multiple physiological signals (ECG, PPG,

accelerometers, respiratory signals, etc.) to improve estimation accuracy and reduce sensitivity

to artifacts. The integration of different information sources represents a promising perspective

for making systems more robust and adaptable to real-world conditions.

Despite progress, some critical issues remain that hinder the widespread clinical adoption

of these approaches. These include the need for individual calibration, the poor generalizability

of models trained on limited datasets, and the high physiological variability between subjects

and conditions. Furthermore, managing motion artifacts and adapting models to uncontrolled

contexts remain challenges. This section will analyze in detail the main innovative approaches

for cuffless blood pressure estimation, assessing their potential and limitations, with the aim of

outlining the state of the art and the main research gaps.

2.3.1 Classical regression Methods: Linear Regression, Logarithmic Regression,

Polynomial regression, Gaussian Process regression (GPR)

Cuffless estimation of blood pressure (BP) was initially developed through the use of classical

regression methods, chosen for their computational simplicity, easy interpretability, and the

ability to provide a first quantitative link between physiological characteristics derived from

biomedical signals (e.g. ECG, PPG) and blood pressure values. The main classical methods

can be identified as:

1. Linear Regression: It is the simplest model and was among the first to be applied in

the cuffless study of BP. The model can be written as:

BP = β0 + β1 · PTT + β2 ·HR + ϵ (7)

where PTT (Pulse Transit Time) is the transit time of the pulsatile wave between ECG

and PPG, strongly correlated with arterial stiffness and therefore with blood pressure [38];

HR (Heart Rate) represents the heart rate, often added as a corrective variable [39]; and ϵ

is the error term. The main advantage of this approach is linearity: the coefficients β have

a direct meaning and allow the influence of each physiological parameter on blood pressure

to be interpreted. For example, a reduction in PTT of a few milliseconds is associated

with a proportional increase in SBP, consistent with physiology [40]. However, linear

regression suffers from noise in the signals, which leads to unstable estimates, non-linear

relationships between PTT and BP, which are not captured, and a strong dependence

on individual calibration [41]. To improve robustness, some work has used robust linear

regression, which minimizes the impact of typical outliers of PPG signals acquired under

real-world conditions [42].
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2. Logarithmic Regression: It arises from more realistic physiological models since the

relationship between PTT and blood pressure is not linear but follows a logarithmic trend

resulting from the elastic properties of blood vessels. The most common form is:

BP = a · ln(PTT ) + b (8)

where the parameters a and b are experimentally estimated [43]. This model is based

on the Moens-Korteweg law, which links the velocity of the blood pressure wave to

arterial elasticity and the exponential relationship between pressure and vessel volume

[44]. In practice, logarithmic regression better describes the behavior at high blood

pressure values, where arterial stiffness increases disproportionately. The advantages

of this approach include better physiological adherence and the ability to model simple

nonlinear relationships. However, it also has limitations such as lower interpretability than

linear regression and the need for an accurate initial calibration for each subject [45].

3. Polynomial Regression: It extends the linear model by adding higher-order terms of

the form:

BP = β0 + β1 · x+ β2 · x2 + ...+ βn · xn + ϵ (9)

where x can represent PTT, HR, or other extracted characteristics from biomedical sig-

nals. The use of quadratic and cubic terms allows capturing curvatures and non-linearities

in the relationship between PTT and BP [46]. For example, a study showed that quadratic

models reduced estimation error by 2–3 mmHg compared to linear regression, especially

in subjects with high blood pressure variability [46]. However, polynomial models have

significant limitations, including the risk of overfitting, especially with small data sets,

poor generalization among different populations, and the difficulty of physiological inter-

pretation of high-order terms [47]. For this reason, polynomial regression is often used as

a benchmark or as a preliminary step to identify potential nonlinear trends before applying

more complex models.

4. Gaussian Process Regression (GPR): It represents an evolution of classical methods

towards a non-parametric and probabilistic approach. Instead of assuming a specific form

for the function, as happens in linear or logarithmic models, GPR models the distribution

of possible functions that can describe the input-output relationship through the form:

f(x) ∼ GP (m(x), k(x, x′)) (10)

where m(x) is the mean function and k(x, x’) is the covariance function (kernel), which

defines the similarity between two points [48]. The major advantage of GPR is that, in

addition to providing a precise estimate of blood pressure, it also provides a confidence

interval, which is particularly useful in clinical settings to assess the reliability of the
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prediction. Applications to BP estimation have shown promising results: with a Matérn

5/2 kernel, RMSEs of approximately 4.3 mmHg for SBP and 2.3 mmHg for DBP are

obtained [48]; while with a Rational Quadratic kernel and optimal feature selection, the

RMSE is around 10.7 mmHg for SBP and 8.0 mmHg for DBP [49]. However, GPR has

some significant limitations, including high computational complexity, especially on large

datasets, and the need to carefully choose and calibrate the kernel [50]. Despite these

challenges, GPR is now considered a ”bridge” between classical models and advanced

machine learning techniques, representing an important step forward in blood pressure

modeling.

Classical regression methods have played a fundamental role in the development of cuffless

BP estimation systems. Linear and logarithmic regression are still used as baselines due to

their simplicity and interpretability. Polynomial regression represents an improvement in the

modeling of nonlinear relationships, while GPR represents an advanced but still ”classical”

approach capable of managing uncertainty and variability.

Despite their advances, these methods have limitations in terms of inter-subject generaliz-

ability and often require individual calibration.

2.3.2 Machine Learning Algorithms: SVM, Ridge Regression, Random Forest

Following traditional regression methods, the introduction of Machine Learning Algorithms has

allowed a more flexible approach to the complex relationships between biomedical signals (ECG,

PPG) and blood pressure values. Unlike linear or polynomial models, ML techniques can capture

nonlinear relationships, handle larger datasets, and incorporate a greater number of variables.

Among the most used algorithms in this field are:

1. Support Vector Machine (SVM): It represents an advanced methodology for esti-

mating blood pressure from physiological signals. This approach is based on a machine

learning framework that aims to identify a regression function capable of effectively gen-

eralizing to previously unobserved data. The strength of SVM lies in its ability to handle

non-linear relationships between input physiological variables, such as pulse transit time

(PTT) and heart rate (HR), and output blood pressure values [51]. The core of the

SVM method is to map the data into a higher-dimensional space using kernel functions

(equation (11)).

f(x) =
NX
i=1

(αi − α∗
i ) ·K(xi, xj) + b (11)

where αi - α
∗
i are Lagrangean coefficients determined during training, K(xi, xj) is the

kernel function (e.g., RBF, polynomial), b is the bias term.
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This transformation allows complex non-linear problems to be converted into linearly

separable problems. The Radial Basis Function (RBF) Kernel:

K(xi, xj) = exp(−γ · ||xi − xj||2) (12)

has proven particularly effective in this context, thanks to its ability to capture com-

plex relationships between physiological parameters and blood pressure. The γ, in the

equation, represents the control of the function amplitude.

One of the main advantages of the SVM approach is its robustness to noise present

in physiological signals. This is achieved by introducing a tolerance margin ϵ in the

loss function, which allows the model to ignore small deviations in the training data.

This feature is particularly valuable in the analysis of biomedical signals, which are often

affected by motion artifacts and interference [51]. However, the implementation of SVM

presents some significant challenges. The computational complexity of the algorithm

grows considerably with the increase in the size of the dataset, requiring non-negligible

computing resources. Furthermore, the performance of the model critically depends on

the correct selection of the regularization parameters C and the RBF kernel parameter γ.

Optimization of these parameters typically requires grid search procedures combined with

cross-validation techniques [51]. A further limitation concerns the model’s interpretation.

Unlike traditional linear regression methods, where coefficients provide a direct measure

of the impact of each physiological variable, SVM operates as a ”black box,” making it

difficult to understand the specific contribution of each parameter to the final estimate

of blood pressure [51]. Despite these limitations, experimental results demonstrate that

SVM achieves competitive performance in blood pressure estimation.

2. Ridge Regression: It is a penalized linear regression technique widely used to estimate

blood pressure (BP) from physiological parameters such as pulse transit time (PTT), heart

rate (HR), and photoplethysmographic signal (PPG). This method addresses the problem

of multicollinearity between predictor variables, a common phenomenon in physiological

data where parameters such as PTT and HR are often correlated [52]. Ridge regression

modifies the cost function of ordinary linear regression by adding an L2 penalty term (L2

norm of the coefficients). The objective function becomes the following:

min
β

(
nX

i=1

(yi −Xiβ)
2 + λ

pX
j=1

β2
j

)
(13)

where yiis the blood pressure value (e.g., SBP or DBP), Xi is the vector of physiolog-

ical features (PTT, HR, etc.), β are the regression coefficients, λ is the regularization

parameter that controls the amount of the penalty [52].
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This modification has the effect of contracting the model coefficients towards zero, thus

stabilizing the estimates and improving predictive power on new data. The parameter

λ, which controls the strength of the regularization, therefore, becomes crucial to bal-

ance the trade-off between bias and forecast variance [52]. In the specific context of

blood pressure estimation, the ridge regression demonstrates a particular effectiveness in

handling individual physiological variability. Photoplethysmographic (PPG) and electro-

cardiographic (ECG) signals present intrinsically correlated characteristics, which can lead

to numerical instabilities in traditional regression models. The penalty introduced by the

ridge regression mitigates this problem, allowing for more robust and reliable estimates

[53].

However, the application of ridge regression is not without challenges. Optimal selection

of the regularization parameter λ typically requires the use of cross-validation techniques,

which can increase the computational complexity of the training process. Furthermore,

while coefficient contraction improves the stability of predictions, it complicates the phys-

iological interpretation of the specific contribution of each parameter [52]. Despite these

limitations, ridge regression remains a valuable tool in the arsenal of researchers devel-

oping systems for non-invasive blood pressure estimation. Its ability to combine relative

simplicity of implementation with robust predictive performance makes it particularly suit-

able for applications in wearable devices, where computational constraints and the variable

quality of acquired signals require approaches resilient to noise and multicollinearity [53].

3. Random Forest: It has emerged as one of the most promising approaches for non-

invasive blood pressure estimation, especially when applied to complex physiological sig-

nals such as heart sounds and ballistocardiograms. This ensemble method combines

multiple decision trees, each trained on a random subset of data and characteristics, to

produce an average prediction that is more robust and accurate than individual trees [54].

The mathematical formulation of the Random Forest prediction for estimation of the

blood pressure can be expressed as:

ŷ =
1

B

BX
b=1

Tb(x) (14)

where ŷ represents the predicted blood pressure (SBP or DBP), B is the number of trees

in the forest, Tb(x) is the prediction of the b-th decision tree for the input vector x and

x is the vector of features extracted from the physiological signals [54]. Each decision

tree Tb is constructed using a random subset of training data through a recursive feature

space partitioning process. The optimal splitting function for each node is determined by
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maximizing the information gain:

G(D, f) = I(D)−
mX
j=1

|Dj|
|D|

I(Dj) (15)

where D is the data set at the current node, f is the feature considered for the split, I(D)

is the impurity of the node (typically measured by the mean squared error for regression),

Dj are the data subsets resulting from the split [54]. One of the main advantages of

Random Forest in this context is its ability to handle nonlinear relationships and com-

plex interactions between physiological variables. Unlike linear models, Random Forest

does not require prior assumptions about the distribution of data or the linearity of rela-

tionships, an essential feature when working with intrinsically complex biomedical signals

[54]. Random Forest, through its importance sampling approach, is able to automat-

ically identify the most relevant characteristics for blood pressure estimation, reducing

dimensionality issues and improving computational efficiency [54].

This algorithm shows remarkable performance, with systolic blood pressure estimation er-

rors that are competitive with traditional methods. In particular, Random Forest’s ability

to reduce overfitting by bagging and selecting random characteristics makes it partic-

ularly suitable for clinical applications where generalization is essential [54]. However,

implementing Random Forest presents some challenges. The ”black box” nature of the

algorithm makes it difficult to directly interpret causal relationships from a physiological

perspective, partially limiting the analysis of the mechanisms underlying blood pressure

estimation. Furthermore, the need for a large and representative training data set can be

a limitation in contexts with limited data availability [54]. Despite these limitations, the

results of studies demonstrate that Random Forest, combined with physiological signals

such as heart sounds, represents a solid platform for the development of continuous and

non-invasive blood pressure monitoring systems. The ability to integrate multiple pieces

of information and handle the intrinsic noise of biomedical signals makes it particularly

suitable for home and clinical applications [54].

2.3.3 Deep Learning and Neural Network methods: CNN, RNN, LSTM

Advances in noninvasive, cuff-free blood pressure (BP) estimation have recently embraced deep

learning techniques, which offer superior predictive capabilities compared to classical meth-

ods, especially when dealing with complex and non-stationary physiological signals. These

approaches, although more computationally intensive and less interpretable, are capable of cap-

turing nonlinear relationships and hidden patterns in multidimensional data, paving the way for

continuous and highly accurate monitoring systems. The main applied deep learning architec-

tures include:
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1. Convolutional Neural Network (CNN): They represent a class of deep learning mod-

els that have revolutionized the approach to estimating blood pressure from physiological

signals. Originally developed for image processing, CNNs have proven exceptionally effec-

tive in analyzing temporal biomedical signals such as the electrocardiogram (ECG) and

the photoplethysmogram (PPG), due to their ability to automatically extract relevant

features through convolution and pooling operations [55]. The fundamental architecture

of a CNN for analyzing physiological signals is composed of several feature layers.

The convolutional layers apply learnable filters to the input signals, progressively extracting

features at different levels of abstraction. This mathematical operation can be represented

as:

y(t) = (x ∗ w)(t) =
Z

x(τ)w(t− τ)d(τ) (16)

where x represents the input physiological signal, w is the learnable convolution kernel,

and y is the resulting feature map [55]. This is typically followed by a pooling layer,

termed maximum pooling, which reduces the spatial dimensionality of feature maps while

preserving the most salient information. This layer is crucial for controlling overfitting

and improving computational efficiency, particularly important in applications that require

real-time processing [55]. CNNs offer significant advantages in the estimation of blood

pressure. Their ability to learn hierarchical features directly from raw signals eliminates

the need for manual feature engineering, which is traditionally complex and error-prone

when processing physiological signals. Furthermore, weight sharing in convolution oper-

ations gives the model a certain translational invariance, making it robust to temporal

variations in physiological signals [55]. A particularly innovative aspect of applying CNNs

to the estimation of blood pressure is the ability to process multiple physiological signals

simultaneously. Through multi-input architectures, CNNs can process ECG and PPG

signals in parallel, capturing complex non-linear relationships between cardiac electrical

activity, peripheral perfusion, and blood pressure values [55].

Training CNNs for this application requires large and carefully annotated datasets. The

optimization process aims to minimize a loss function, typically the mean squared error

between predicted and actual systolic and diastolic blood pressure values. Regularization

techniques such as dropout and weight decay are commonly used to prevent overfitting

and improve model generalization [55]. Despite their effectiveness, CNNs have some

limitations. The ”black-box” nature of the learned features makes a physiological in-

terpretation of the results difficult. Furthermore, the computational requirement can be

significant, especially for deep architectures, although specific optimizations can mitigate

this problem [55].

CNNs have been shown to significantly outperform traditional methods based on hand-

made characteristics in blood pressure estimation. Recent studies report average errors
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in the range of 3–5 mmHg for systolic blood pressure and 2–3 mmHg for diastolic blood

pressure, values that meet the standards of the Association for the Advancement of

Medical Instrumentation (AAMI) [55]. Integrating CNNs with other neural architectures,

such as Long Short-Term Memory (LSTM) networks, represents a promising frontier,

combining the ability of CNNs to extract spatial features with that of LSTMs to model

long-term temporal dependencies [55].

2. Recurrent Neural Network (RNN): The fundamental equations of an RNN mathe-

matically describe its recursive operation in processing temporal sequences. The state

equation:

h(t) = σ(Whh · h(t− 1) +Wxh · x(t) + bh (17)

represents the heart of the recursive process [56].

The term Whh · h(t − 1) constitutes the memory component of the network, where

the weight matrix Whh transforms the previous state h(t − 1) to preserve the historical

information of the sequence [56]. This mechanism allows the network to keep track of

past states, which is essential to model temporal dependencies in physiological signals

[56]. The term Wxh ·x(t) processes the current input x(t), which in the context of blood

pressure estimation represents the features extracted from the ECG and PPG signals at

time t [56]. The weight matrix Wxh learns which input features are most relevant to the

specific task [56]. The bias bh is an additive parameter that allows the network to shift

the output independently of the inputs, improving the model’s fitting ability [56].

The activation function σ (typically tanh or ReLU) introduces non-linearity into the sys-

tem, allowing the network to learn complex relationships between inputs and hidden

states [56]. This nonlinearity is crucial to capture the complex physiological relationships

between cardiovascular signals and blood pressure [56]. The output equation:

y(t) = Why · h(t) + by (18)

transforms the hidden state h(t) into the desired output y(t) [56]. The weight matrixWhy

maps the network’s internal state to the estimated blood pressure values, while the bias

by adds an offset to improve the fit to the data [56]. For example, this mechanism can

be applied to estimate blood pressure in beats [56]. This system of equations operates

recursively, processing each new sample in the sequence while maintaining a contextual

memory of previous states [56]. The recursive nature allows the RNN to capture the

temporal dependencies between consecutive heartbeats, modeling the dynamic evolution

of hemodynamic parameters during the acquisition of physiological signals [56].

3. Long Short-Term Memory (LSTM): Long Short-Term Memory (LSTM) represents an

evolution of Recurrent Neural Networks (RNN) specifically designed to solve the vanishing
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gradient problem and capture long-term dependencies in temporal sequences. Introduced

by Hochreiter and Schmidhuber in 1997, LSTMs have revolutionized the analysis of

physiological signals thanks to their ability to maintain both short-term and long-term

memory [56].

The LSTM structure is based on a system of gates that regulate the flow of information

through the memory cell. The fundamental equations that govern its operation are:

Forget Gate: ft = σ(Wf · [h(t− 1), x(t)] + bf )

Input Gate: it = σ(Wi · [h(t− 1), x(t)] + bi)

Candidate Memory: C̃(t) = tanh(WC · [h(t− 1), x(t)] + bC)

Memory Update: C(t) = ft ∗ C(t− 1) + it ∗ C̃(t)

Output Gate: ot = σ(Wo · [h(t− 1), x(t)] + bo)

Hidden State: ht = ot ∗ tanh(C(t))

(19)

The forgot gate ft determines which information should be forgotten from long-term

memory. This gate calculates a value between 0 and 1 for each element in the cell’s state,

where 0 indicates ”completely forget” and 1 indicates ”completely retain.” Its equation,

ft = σ(Wf · [h(t− 1), x(t)] + bf ), combines the previous state h(t− 1) and the current

input x(t) through learnable weights Wf and a bias bf , transforming the result through a

sigmoid function that produces values in the range [0,1] [56]. The input gate (it) decides

what new information should be stored in the cell. Operating in parallel with the forgot

gate, this gate uses the same combination of inputs but with different parameters (Wi, bi)

to produce a vector of values between 0 and 1 that indicate how much each component of

the input should be considered for memory updating [56]. The candidate memory (C(t))

generates potential values that could be added to the memory. Using a tanh function

instead of a sigmoid, it produces values in the range [-1,1], allowing for both increases

and decreases in stored values. This component represents new candidate information for

the memory update [56]. The memory update operation (C(t)) strategically combines

information from the forgot gate and the input gate to update the memory state. The

multiplication element-by-element of ft and C(t − 1) determines which parts of the

previous memory to retain, while the product of it and C(t) decides which new values

to add. This mechanism allows the LSTM to keep track of relevant information for long

periods [56].

The output gate (ot) regulates which parts of the memory should be read and propagated

to the output and to the next state. Calculated as ot = σ(Wo · [h(t− 1), x(t)] + bo),

this gate determines which information in the current memory is relevant for immediate
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output and for subsequent time steps [56]. Finally, the hidden state (h(t)) represents

the effective output of the LSTM cell for the current time step. Obtained by multiply-

ing the output gate by the hyperbolic tangent of the memory state, this value captures

relevant information from current memory while maintaining a suitable range of values

for subsequent processing [56]. LSTMs offer significant advantages for the analysis of

physiological signals, particularly in the estimation of blood pressure. Their ability to

maintain long-term memory allows the capture of temporal dependencies spanning hun-

dreds of heartbeats, essential for modeling complex hemodynamic phenomena [55] [56].

Resistance to vanishing gradient ensures stable training even for very long sequences,

while the temporal selectivity of the gates allows the network to automatically focus on

the most clinically relevant events in ECG and PPG signals [56].

Recent studies show that LSTMs achieve average errors of 3.8 to 4.2 mmHg for systolic

blood pressure and 2.5 to 3.1 mmHg for diastolic blood pressure, superior to traditional

RNNs and hand-made feature-based methods [55] [56]. This precision is particularly

valuable in continuous monitoring applications where the ability to capture temporal

trends is crucial for the diagnosis and management of hypertensive conditions. Despite

their advantages, LSTMs present significant challenges. The computational complex-

ity is significantly higher than traditional RNNs, requiring significant hardware resources

for training and real-time inference [56]. The presence of numerous learnable parame-

ters (weights and biases for each gate) increases the risk of overfitting, requiring large

annotated datasets for effective generalization [55] [56].

The black-box nature of internal mechanisms represents another additional limitation,

making the physiological interpretation of the network decisions difficult and limiting

clinical acceptance in contexts where diagnostic transparency is essential [56]. The tuning

of hyperparameters is particularly complex due to the non-linear interactions between

the various gates and components of the LSTM cell. Hybrid architectures represent

the most advanced frontier in LSTM research for biomedical applications. Bidirectional

LSTMs processes sequences in both temporal directions, capturing both past and future

information for each point in the sequence, significantly improving predictive capacity

in blood pressure estimation [55] [56]. Integration with attention mechanisms allows the

network to selectively focus on the most relevant events in physiological signals, improving

both the accuracy and the interpretation of the results [56]. CNN-LSTM architectures

combine the ability of CNNs to extract spatial features from individual heartbeats with the

ability of LSTMs to model temporal dependencies between consecutive beats, creating

an end-to-end system for the comprehensive analysis of physiological signals [55].

These hybrid architectures have shown superior performance compared to single models,

particularly in the process of ECG and PPG signals, where spatial (signal morphology) and

temporal (rhythm and variability) information are equally important for accurate blood
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pressure estimation [55] [56]. Promising research directions include the development of

more computationally efficient architectures, such as Lite-LSTM optimized for embedded

and wearable devices [56]. Customization of the model through transfer learning and

domain adaptation will allow LSTMs to be adapted to individual physiological character-

istics, improving accuracy for specific patient profiles [55] [56]. Interpretability research

focuses on the development of explainable AI techniques to make LSTM decisions trans-

parent, which is crucial for clinical acceptance [56]. Integration with domain-specific

knowledge through constraint learning mechanisms will allow the incorporation of physio-

logical principles directly into the network architecture [55]. Developments in specialized

hardware technologies for LSTM model inference in edge devices will enable efficient de-

ployment on wearable devices for continuous monitoring of blood pressure in real world

scenarios [56]. The creation of larger and more diverse datasets will be essential for

training models capable of generalizing between different populations and physiological

conditions [55] [56]. These converging research directions promise to transform LSTMs

from purely academic tools to fundamental components of cardiovascular monitoring of

clinical systems, significantly contributing to the prevention and management of cardio-

vascular diseases through more accurate and continuous blood pressure estimation [55]

[56].

2.3.4 Multimodal Techniques

Multimodal techniques represent the cutting edge of non-invasive blood pressure estimation,

overcoming the limitations of unimodal methods through the synergistic integration of multiple

sources of physiological information. These approaches combine signals such as the photo-

plethysmogram (PPG), electrocardiogram (ECG), and ballistocardiogram (BCG) with tradi-

tional clinical data, creating a holistic analysis system that captures the complexity of the

human cardiovascular system. The conceptual foundation of multimodal techniques lies in the

ability to compensate for the intrinsic limitations of each individual signal through comple-

mentary information from other sources. PPG, for example, provides detailed information on

peripheral blood perfusion but is sensitive to motion artifacts, while ECG offers precise cardiac

timing but limited hemodynamic information. The integration of these signals allows for a more

robust and accurate estimate of blood pressure (Figure 9) [57].
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Figure 9: Example of Multimodal Combination of Signals (Ref. [57])

Multimodal integration architectures typically operate at three distinct levels. Raw data

fusion directly combines signals before feature extraction, preserving maximum information

but requiring precise temporal alignment. Feature fusion extracts the features of each signal

separately and then combines them into a unified vector, allowing optimized processing for

each modality. Decision-level fusion combines the outputs of specialized models for each signal,

maximizing the specific expertise of each module [57]. The advantages of these approaches are

multiple and significant. Overall, system robustness improves substantially, as artifacts affecting

a single modality can be compensated for by the other modalities. Information completeness

increases through the capture of complementary aspects of cardiovascular physiology, from

electrical activity to cardiac mechanics to peripheral perfusion. The personalization of the

estimates becomes more effective, with the possibility of adapting models to specific patient

characteristics through the integration of demographic and clinical data [57].

Practical applications of these techniques show promising results. In the reference paper

[57], the integration of PPG with demographic and clinical data improved hypertension detec-

tion by 15% compared to unimodal methods, demonstrating the added value of the multimodal

approach. The combination of temporal and morphological signals allowed the capture of both

beat-to-beat variations and long-term hemodynamic trends. Implementation challenges remain

significant, particularly regarding precise temporal synchronization between heterogeneous sig-

nals, increased computational complexity, and the need for large and diverse training datasets.

However, ongoing advances in signal processing and machine learning effectively address these

challenges [57]. Future research directions include integration with emerging signals, such as

millimeter wave radar for contactless sensing, development of adaptive fusion architectures that

can self-optimize based on the quality of available signals, and implementation on wearable de-

vices for continuous monitoring in home and clinical settings. These developments promise to

transform multimodal techniques into routine clinical tools for the prevention and management

of cardiovascular diseases [57].
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2.4 Dataset and Validation Techniques

2.4.1 Public and Private Dataset

The availability of datasets is a key factor in the development of reliable models for non-invasive

blood pressure estimation. Among the most widely used resources is MIMIC (Multiparameter

Intelligent Monitoring in Intensive Care), a publicly accessible database that collects clinical

signals and parameters from patients admitted to intensive care [58]. This repository has

become a reference standard for the scientific community due to its vastness and variety of

available data, including electrocardiographic (ECG) signals, photoplethysmographic (PPG),

invasive blood pressure, and numerous vital signs. The use of MIMIC allows algorithms to be

trained on large and diverse samples, thus improving the robustness and generalizability of the

models. However, such data present some critical issues: being collected in complex clinical

contexts, the signals are often affected by noise and artifacts, and patients’ conditions may not

be representative of the general population.

In addition to MIMIC, other public physiology datasets have been made available in recent

years, such as those derived from experimental monitoring campaigns in healthy subjects [59].

These databases, while generally smaller in size, offer the advantage of controlled acquisition

protocols and higher quality signals, less affected by clinical factors. They are therefore partic-

ularly useful for methodological studies and for testing algorithms under laboratory conditions.

In addition to public resources, proprietary datasets, collected by research groups through wear-

able devices, are playing an increasingly important role. A significant example are the Shimmer

sensors, used in this thesis to continuously acquire ECG and PPG simultaneously [60].

These systems enable high-quality data collection in non-clinical settings, facilitating the

development of models designed for real-world home or outpatient monitoring applications.

The main limitation of these datasets is their small sample size, which can limit the gener-

alization of the results, but they offer precise control over acquisition conditions and greater

adherence to everyday usage scenarios. Ultimately, integrating public datasets such as MIMIC,

experimental archives, and proprietary datasets represents the most robust strategy to develop

and validate blood pressure estimation algorithms. Each type of resource offers specific advan-

tages and limitations, but only their combined use can ensure models that are simultaneously

accurate, robust, and applicable on a large scale. In the table 2 are shown the advantages and

disadvantages of using these two types of datasets.
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Database type Advantages Disadvantages

Public databases - Large availability of

data (e.g., MIMIC)

- Heterogeneous and di-

verse populations

- Common benchmark

for the scientific com-

munity

- Free accessibility

- Variable signal quality

(noise, artifacts)

- Data often collected

in complex clinical set-

tings

- May not be fully rep-

resentative of the gen-

eral population

Proprietary

databases (e.g.,

Shimmer)

- High-quality signals

acquired in controlled

conditions

- Data collected in re-

alistic scenarios (home-

/ambulatory monitor-

ing)

- Stronger adherence to

practical use of wear-

able devices

- Smaller sample size

- Limited generalization

of results

- Restricted access,

only available to re-

search groups who

collect them

Table 2: Comparison between public and proprietary databases for blood pressure estimation

2.4.2 The Role of RMSE, MAE and STD in Evaluating the Accuracy of Blood

Pressure Estimation

In the validation of blood pressure estimation techniques, the mean absolute error (MAE),

the root mean square error (RMSE) and the standard deviation (STD) are three fundamental

statistical metrics for quantifying the precision and reliability of measurements. These indicators

are particularly crucial when evaluating medical devices according to international standards such

as the ANSI/AAMI/ISO 81060-2:2018 guidelines, as demonstrated in the validation study of

Ref. [61]. Mean absolute error (MAE) is defined as the arithmetic mean of the absolute values

of the differences between the estimated and reference values. Mathematically, for a set of n

measurements, the MAE is calculated as:

MAE = (
1

n
) ·

X
|yi − ŷi| (20)

where yi represents the reference value (invasive or clinically validated measurement) and ŷi
is the value estimated by the device under test. The MAE provides a direct measure of the

average error committed by the device, expressed in the same units of measurement as the

target variable (mmHg in the case of blood pressure). A lower MAE value indicates greater
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accuracy of the estimation system [61]. Root Mean Square Error (RMSE) is a metric that

emphasizes larger errors by squaring the deviations. Its formula is:

RMSE =

r
1

n
·
X

(yi − ŷi)2 (21)

Unlike MAE, RMSE assigns greater weight to larger errors, making it more sensitive to the

presence of outliers. This feature makes it particularly useful for identifying anomalous mea-

surements that could compromise the clinical reliability of the device [61]. The Standard

Deviation (STD), on the other hand, measures the variability of errors around the mean value.

Calculated as:

STD =

sP
(ei − µ)2

(n− 1)
(22)

where ei represents the individual error (yi - ŷi) and µ is the mean of the errors, STD quantifies

the spread of the errors. A low STD value indicates that errors are consistently close to the

mean value, suggesting good device stability, while a high value signals high variability and

unpredictable performance [61]. The relationship between these metrics can be expressed as:

RMSE2 = MAE2 + STD2 This equation highlights how the RMSE combines information

on both mean error (MAE) and error variability (STD), providing a composite measure of the

device’s accuracy [61]. In the study Ref. [61], these metrics were used to validate the perfor-

mance of the HUAWEI smartwatch according to the AAMI/ISO standards, which specifically

require MAE be ≤ 5 mmHg and STD be ≤ 8 mmHg to ensure the clinical accuracy of blood

pressure measuring devices. The combined use of MAE and STD allows for a comprehensive

evaluation: the MAE captures the overall accuracy of the device, while the STD evaluates its

reliability and consistency of measurements [61].

The importance of these metrics lies in their ability to provide an objective and quantitative

assessment of device accuracy, essential for the clinical acceptance and commercialization of

medical technologies. Specifically, for continuous blood pressure monitoring applications using

wearable devices, a low MAE ensures that estimates are clinically meaningful, while a low STD

ensures that performance is consistent across different physiological conditions and users [61].

The study demonstrates how the combined analysis of MAE and STD allows us to identify not

only the average accuracy of the device, but also its ability to maintain reliable performance in

real-world scenarios, where factors such as motion, inter-individual variability, and environmental

conditions can influence measurement quality [61].
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3 Proposed Solution

This section will illustrate the proposed solution for estimating non-invasive blood pressure from

physiological signals acquired by Shimmer devices. The entire process is organized into multiple

phases, each of which addresses a specific objective and contributes to the construction of a

coherent and reproducible flow from data acquisition to statistical and predictive modeling. We

will begin with a description of Shimmer sensors, analyzing their main characteristics and how

they are used to synchronously record ECG and PPG signals. Data acquisition methods will be

discussed, with particular attention to signal format and the initial pre-processing steps required

to ensure proper time management and preliminary noise reduction.

Subsequently, the pre-processing and feature extraction algorithms will be explored in more

detail. In this phase, the ECG and PPG signals will be subjected to specific filtering to reduce

artifacts and physiological or instrumental interference. It will be shown how R and S peaks

are identified from the ECG and PPG signals and how, from these points, it is possible to

calculate fundamental quantities such as heart rate (HR) and pulse wave transit time (PTT).

Finally, the final section will focus on building the regression model to estimate blood pres-

sure. The various strategies adopted will be illustrated, from linear regression to more complex

machine learning and deep learning models, discussing the selection criteria and optimization

parameters. The validation phase will be addressed with a methodical analysis of the tech-

niques employed, including cross-validation and train/test splitting, with the aim of assessing

the model’s robustness and reliability across different available datasets.

3.1 Devices, sensors and software

The first step was the collection of physiological signals; we relied on SHIMMER devices (Fig-

ure 10). SHIMMER represents an extremely versatile and modular wireless sensor platform,

specifically designed for biomedical research applications. Its main appeal lies in its intrinsically

wireless nature and its low weight, which make it particularly suitable for monitoring physiolog-

ical signals in outpatient settings or directly at home [63]. This flexibility allows studying vital

signals in conditions that are more natural and less constrained than in a hospital setting.
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Figure 10: Shimmer3 Devices

3.1.1 ECG Device

The acquisition of the ECG signal was performed using the Shimmer3 EXG Unit SR47-4-0

module (Figure 11a). To ensure accurate and comfortable measurement, we used Covidien

ECG electrodes (Figure 11b). These electrodes are designed for single use and are round in

shape. The skin-contact part consists of an Ag/AgCl electrode immersed in a solid hydrogel,

secured with a gentle adhesive and connected via a convenient button system.

(a) Shimmer3 EXG Unit SR47-4-0

module (b) Shimmer3 EXG Unit electrode

Figure 11: Shimmer3 Unit for ECG evaluation

An additional foam backing helps ensure the electrode’s stability. These snap-on electrodes

use a patented pre-gelled adhesive, enriched with a non-irritating gel, specially formulated to
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minimize the risk of allergic reactions. Furthermore, the foam electrode is completely latex-free,

making it safe for use on any skin type [64].

To better understand how the Shimmer3 EXG module works, it is helpful to look at its

block diagram (Figure 12). This diagram reveals the presence of integrated defibrillation pro-

tection, an electromagnetic interference (EMI) filter designed to clean the signal, a sophisticated

right-leg drive (RLD) amplifier that effectively counteracts common-mode interference, three

programmable gain amplifiers (PGAs) that increase the amplitude of the input signal for bet-

ter detection, and finally, a high-precision analog-to-digital converter (ADC) transforms the

incoming analog signal into a digital representation using a signed 24 bit integer value for each

individual sample. This digitization process is crucial for data analysis and processing on a

computer.

Figure 12: Shimmer3 EXG Unit SR47-4-0 block diagram [65]

3.1.2 PPG Device

For recording PPG signals, we used the Shimmer3 GSR+ Unit SR48-3-0, shown in figure 13.

The GSR+ (Galvanic Skin Response) unit is not limited to measuring PPG alone but also

provides the connections and preamplification needed to acquire galvanic skin response (GSR)

data.
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Figure 13: Shimmer3 GSR+ Unit SR48-3-0

This module is particularly suitable for evaluating the electrical characteristics or conduc-

tance of the skin and, at the same time, captures the PPG signal, converting it to obtain an

accurate estimate of heart rate (HR) using the Shimmer clip (Figure 14) [66]. The integrated

optical circuit for pulse measurement includes an integrated amplifier and filter circuit, which

take care of initial signal conditioning [67]. The clip itself is equipped with a green LED and

a detector positioned next to each other, a configuration that operates in the reflection mode

(”adjacent”)[62]. In this mode, the light emitted by the LED is reflected by the tissue and

detected by the adjacent sensor, allowing changes in blood flow to be measured.

Figure 14: Shimmer3 GSR+ Unit SR48-3-0 Optical pulse clip
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3.1.3 Software

The configuration of the Shimmer devices and the export of acquired data were managed using

ConsensysPRO v1.6.0 64bit software. Before proceeding with writing the configuration via the

connection card, we carefully set the acquisition parameters. Specifically, in the Shimmer3

GSR+ module, we activated only the PPG sensor (Figure 16a), while in the Shimmer3 EXG

module, we selected only the LA-RA lead and enabled the ECG sensor (Figure 16b).

Figure 15: Consensys base unit

In order to ensure precise synchronization between the two modules, we configured the EXG

module as master and set the sampling rate to 504.12 Hz (Figure 16c). This choice is motivated

by the fact that ECG requires a minimum sampling rate of 500 Hz [68], and the ConsensysPRO

software only allows selecting predefined frequency values. On the other hand, PPG requires a

minimum sampling rate of 100 Hz [69].

To start recording signals, both Shimmer modules must be undocked from the connection

board shown in figure 15. Reversing this procedure, i.e., docking the modules to the board, stops

the recording. When the Shimmer modules are undocked, they automatically begin recording

signals synchronously, thanks to the Bluetooth connection (Figure 16d).
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(a) In Shimmer3 GSR+ screen: only PPG sensor has been turned on for PPG

recordings.

(b) Shimmer3 EXG options for ECG recordings

(c) The sampling frequency has been set to 504.12 Hz for both devices.

(d) The Shimmers start to record the physiological signals.

Figure 16: ConsensysPRO v1.6.0 64bit software

This wireless synchronization is essential to analyze the ECG and PPG signals in relation

to each other. Once recording is complete and the modules are docked back to the board, all

acquired data are transferred to the computer in .mat format, ready for processing and analysis.

The procedure followed these steps:

• Protocols: To ensure the quality of the acquired data, we followed a strict protocol during
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recording. Each participant in the study was asked to sit comfortably and completely relax.

As mentioned, the recordings were made at different times of the day, and each recording

session lasted approximately 20 minutes.

• ECG Recording: The correct placement of the ECG electrodes was essential to obtain

a high-quality signal. The electrode configuration is illustrated in detail in figure 17.

Figure 17: ECG recording phase

The electrodes connected to the white and black pins were placed on the subject’s chest,

on the right and left sides, respectively. The electrode connected to the green pin was

placed on the right side of the pelvis, serving as a reference for the measurement.

• PPG Recording: The PPG Shimmer clip was gently attached to the subject’s left

index finger. To ensure optimal adherence of the clip to the finger and to prevent any

interference from external ambient light, we covered the clip with a thick black tie as

shown in figure 18.
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Figure 18: PPG recording phase

This helped improve the quality of the acquired PPG signal.

• Reference Signals: Blood pressure values were taken every minute for 20 minutes using

a blood pressure cuff. This allowed each patient to be assigned reference values for SBP

and DBP.

3.2 Algorithm

The algorithm used was developed in Python, a versatile high-level programming language.

To make it more manageable and clear, we divided it into seven main sections. Each of these

sections addresses a specific step in the process of estimating systolic blood pressure (SBP) and

diastolic blood pressure (DBP). In practice, the algorithm follows these steps: signal preparation,

filtering to remove noise, identifying peaks in the signals, extracting relevant features, preparing

comparison data from a reference device, feature reduction to simplify the model, and finally

regression analysis to predict blood pressure as is presented in the appendix 6.1.

3.2.1 Signals Preparation

The algorithm begins by reading the ECG and PPG signals from the files, which are loaded into

arrays using the ”scipy.io.loadmat” function (Ref code 6.1). After opening the files, the data

are temporally cleaned: the first 20 seconds of each signal are removed to remove initial noise

due to the undocking from the board , and the last 30 seconds to avoid final distortions, as we

can observe in figures 19,20.
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(a) ECG Signal

(b) PPG Signal

Figure 19: Signals Before and After the initial 20 sec cleaning
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(a) ECG Signal

(b) PPG Signal

Figure 20: Signals Before and After the last 30 sec cleaning

This trimming is performed by calculating the number of samples corresponding to the

durations to be removed based on the sampling rate. Then the signals are cut to the same

length. The signals are then synchronized: the ECG and PPG data are temporally aligned

so that they have the same starting point and length (Figure 21). This process ensures that

subsequent analyses are performed on signal segments that perfectly overlap in time, improving

the accuracy of feature extraction.
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Figure 21: Signals After the Synchronization

3.2.2 Signals Filtering

After loading and initial clipping of the signals, the algorithm proceeds with a fundamental

filtering phase to improve data quality and remove unwanted components. In fact, both ECG

and PPG signals are affected by 50 Hz noise and by the power variation with respect to the

zero (baseline), so some processing is needed.

• ECG Filtering: The ECG signal is first normalized by subtracting the mean to eliminate

any offsets. Next, a fourth-order Butterworth bandpass filter is applied with a bandwidth

of 0.5–40 Hz, which allows only the physiologically relevant frequencies for cardiac analysis

to be retained, eliminating both low-frequency noise (baseline wander) and high-frequency

noise. If the sampling rate is higher than 100 Hz, a 50 Hz notch filter is also applied to

remove interference from the electrical network. Finally, the baseline is removed, bringing

the signal back to around zero (Figure 22).
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Figure 22: ECG signal pre and post filtration

• PPG Filtering: As with the ECG, the PPG signal is first normalized to ensure a compa-

rable scale. It then undergoes a careful filtering sequence to isolate important information

and eliminate noise. First, a Butterworth high-pass filter (0.5 Hz) removes background

drift and slow variations that could distort the analysis. This cleans the signal, focus-

ing on rapid variations related to cardiac activity. Next, a Butterworth low-pass filter (8

Hz) attenuates high-frequency noise, retaining only the pulsatile component of the signal.

This makes the signal cleaner and more reliable, perfect for extracting the features needed

to estimate blood pressure (Figure 23).

Figure 23: PPG signal pre and post filtration
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3.2.3 Peaks detection

After synchronizing and filtering the ECG and PPG signals, the algorithm proceeds to detect

the characteristic peaks of each signal, which are essential for extracting physiological features.

Regarding ECG peak detection (R-peaks), the filtered and synchronized ECG signal identifies

R-peaks, which are the local maxima corresponding to heartbeats. Detection occurs by dividing

the signal into time windows (every 0.4 seconds) and searching for the local maximum in each

window. This method allows for robust heartbeat identification even in the presence of residual

noise.

Similarly, S-peaks, which represent the maximum points of the pulsatile component of blood

flow, are identified on the PPG signal. Here too, the signal is analyzed in windows (every 0.5

seconds) to find local maxima. After the initial detection, the peaks are cleaned using two filters:

a statistical filter, which only keeps peaks within a certain number of standard deviations from

the local mean, eliminating outliers, and a minimum distance filter, which, in the case of peaks

that are too close, only keeps the one with the largest value to avoid duplications due to noise.

The detected peaks are displayed overlaid on the filtered signals (Figure 24), allowing verifi-

cation of the accuracy of the detection and its correspondence with the expected physiological

components.

(a) Rpeak (b) Speak

Figure 24: Rpeak and Speak superimposed on the signals

This process ensures that the extracted features (such as heart rate and pulse transit time)

are calculated on reliable, artifact-free data that represent the patient’s actual physiological

activity.

3.2.4 Features Extraction

After synchronizing and filtering the ECG and PPG signals, the code proceeds with the ex-

traction of the main physiological features: Heart Rate (HR) and Pulse Transit Time (PTT).

The feature extraction process in the code consists of detecting peaks in the signals, calcu-

lating HR and PTT, cleaning outliers data, and interpolating the features onto the reference
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times, thus obtaining reliable and synchronized time series for subsequent regression analyses

and comparison with clinical data.

Regarding HR and PTT calculations, the peak detection is identified by Rpeaks on the ECG

and Speaks on the PPG using peak detection and cleaning functions. For PTT (Pulse Transit

Time), for each heartbeat (Rpeaks), the first subsequent Speaks is searched. The time difference

between these two peaks represents the PTT: PTT = Speaks−Rpeaks or the time taken for the

pressure wave to propagate from the heart to the peripheral measurement point. For HR (Heart

Rate), the heart rate is calculated as the inverse of the time distance between two consecutive

Rpeaks according to the formula:

HR =
60

tRi+1
− tRi

(23)

where the result is expressed in beats per minute (bpm).

After computation, the features are cleaned to eliminate outliers due to detection errors

or artifacts: the mean and standard deviation of HR and PTT are calculated, values that

deviate by more than one standard deviation from the mean are removed, and the arrays are

reduced to the same length to ensure temporal correspondence between HR, PTT, and the

timetable. To compare the extracted features with the reference blood pressure values (SBP

and DBP), it is necessary to interpolate HR and PTT over the blood pressure measurement

times: Interpolation functions (np.interp and CubicSpline) are used to reconcile HR and PTT

to the same time points as the reference data (Figure 25).

Figure 25: HR and PTT signals after the features extraction
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3.2.5 Reference Values Preparation

After extracting features from physiological signals, the code prepares reference systolic (SBP)

and diastolic (DBP) blood pressure values for comparison and regression. SBP and DBP values

are read from patient-specific CSV files, where each line of the file contains the UNIX times-

tamp in milliseconds, the SBP values in mmHg, and the DBP values in mmHg. For temporal

correction, timestamps are converted from milliseconds to seconds and aligned by subtracting

the initial value, resulting in a relative time scale. A 60 ms offset is also subtracted from

each timestamp to correct for the instrumental delay between the blood pressure measurement

and the physiological signals. For interpolation, SBP and DBP values are interpolated over

signal analysis times, such as time points in the timetable of the extracted features, using the

np.interp function to obtain blood pressure values corresponding to the same time points as the

physiological features. This process ensures that the comparison between signals and references

is accurate and synchronized, allowing a reliable evaluation of the regression models.

3.2.6 Features reduction

After extracting and interpolating the physiological features (HR, PTT) and the baseline values

(SBP, DBP), the code applies two additional steps to simplify and smooth the data. For

feature reduction, features and baseline values are reduced by averaging them over 10-second

time windows (feat.reduction). This process divides the time series into 10-second intervals

and replaces the values within each window with their average. The goal is to reduce noise,

local variability, and dimensionality in the data, making the time series more stable and suitable

for regression.

Subsequently, after reduction, the resulting (reduced) time series are resampled via interpo-

lation (np.interp) to bring them back to the same instants in the physiological feature timetable.

This ensures that all features and reference values are temporally aligned and have the same

length, a necessary condition for training and evaluating regression models. These steps are

essential to obtain robust and comparable data suitable for statistical analysis and predictive

modeling.

3.2.7 Regression Methods

The final step of the algorithm involves defining and using regression techniques to estimate SBP

and DBP. The implemented methodology involves a structured process that begins with the

preparation of the database and concludes with a robust evaluation of predictive performance.

The process begins with loading data from databases (LUCA and SHIMMER), which can

be selected based on specific research needs through a configuration parameter. The analyzes

are performed on two different databases:
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• LUCA’s database: This database represents the data taken on myself, using the Shim-

mer devices.

• Shimmer’s Database: It represents the data coming from the shimmer patients.

For each patient, essential physiological features are extracted, including Pulse Transit Time

(PTT) and Heart Rate (HR), along with reference values for systolic (SBP) and diastolic

(DBP) blood pressure using the extractfeaturesreg function (Appendix ??). All data are

then concatenated into unified arrays, thus preparing the data set for subsequent regression

analyzes.

Several regression approaches have been implemented to model the relationship between

physiological features and blood pressure parameters:

1. Linear Regression: It is one of the simplest and most widely used statistical models

for estimating the relationship between one or more independent variables (in this case,

physiological parameters such as PTT and HR) and a dependent variable, which in our

study corresponds to values of systolic blood pressure (SBP) or diastolic blood pressure

(DBP). The idea behind this approach is that blood pressure can be approximated as a

linear combination of available features, weighted by appropriate coefficients.

Mathematically, the model can be expressed as:

ŷ = β0 + β1 · x1 + β2 · x2 + ...+ βn · xn (24)

where ŷ represents the estimated value of the target variable (e.g., SBP), x1, x2, ..., xn

are the independent features (such as PTT and HR), while β1, β2, .., βn are the model

coefficients. These coefficients are determined to minimize the mean squared error, which

is the sum of the squared differences between the predicted and observed values [70].

2. Least Mean Squares (LMS): It represents an algorithmic extension of linear regres-

sion. The goal is to minimize the mean squared error between the predicted and actual

values using an iterative optimization process. Unlike classical linear regression, which

directly calculates the coefficients through an analytical solution, LMS uses a gradient

descent approach: the model’s weights are initialized arbitrarily and then updated step

by step, based on the error in predicting each sample and its derivative with respect to

the parameters.

The update rule is given by:

wt+1 = wt + η · et · xt (25)

where wt represents the weights at step t, η is the learning rate, et = dt − yt represents

the error between the actual value dt and the predicted value yt and xt is the feature

vector. This mechanism allows the model to adapt progressively to the data, correcting

the parameters as a function of the residual error [71].
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3. Ridge Regression: It is a variant of linear regression that introduces an L2 regularization

term into the cost function, with the aim of controlling model complexity and avoiding

overfitting. While in classical linear regression, coefficient estimation is based exclusively

on minimizing the sum of the squared errors between actual and predicted values, in this

case a penalty proportional to the sum of the squares of the coefficients is added.

The Ridge objective function can be expressed as:

J(w) =
nX

i=1

(yi − ŷi)
2 + λ ·

pX
j=1

w2
j (26)

where ŷi represents the predicted value, yi the actual value, wj is the model coefficients,

and λ is the regularization parameter that controls the weight of the penalty. If λ = 0, the

Ridge coincides with classical linear regression; higher values of λ reduce the amplitude

of the coefficients, leading the model to simpler and more stable solutions [52].

4. Support Vector Machine (SVM): The central idea is to identify a function that ap-

proximates the data so that prediction errors remain within a certain tolerance threshold,

indicated by the parameter ϵ. Unlike classical linear regression, which directly minimizes

the mean squared error, SVM defines an acceptability range: all points falling within this

range are not penalized, while those falling outside it contribute to the cost of the model.

Mathematically, the objective function seeks to minimize the model’s complexity, repre-

sented by the norm of the coefficients w, while balancing out the largest deviations of ϵ.

This leads to a model that is more robust to outliers and capable of generalizing better.

Furthermore, SVM relies on the use of support vectors, a subset of the data that actually

determines the shape of the regression function: only the points closest to the margins

or those that violate the tolerance band affect the final model. A particularly relevant

aspect of SVM is the ability to model nonlinear relationships thanks to the introduction of

kernel functions. For example, with the Radial Basis Function (RBF) kernel, it is possible

to transform the original feature space into a higher-dimensional space, making it easier

to construct a regression function that captures the complexity of the data. In this way,

SVM combines predictive capability and flexibility, making it suitable for contexts where

relationships between variables cannot be described by a simple linear model [51] .

The regression models used within the algorithm are applied after the dataset has been split

into a Train and Test set: Classic Train/Test Split and K-Fold Cross-Validation.

• Classic Train/Test Split: This approach adopts a 70/30 split of the data, selecting the

top 70% of the indices for the training set and the remaining 30% for the test set (Figure

26).
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Figure 26: Train and Test Set Split

This approach is simple and computationally efficient, allowing for a quick evaluation of

the model’s performance on unseen data. However, it has the limitation of being heavily

dependent on a single data split, which can lead to unrepresentative results if the data

are inadequately shuffled or have non-uniform distributions.

• K-Fold Cross-validation: This method divides the dataset into K partitions (folds) of

approximately equal size. The iterative process involves using K-1 partitions for each fold

to train the model, while the remaining partition is used for testing (Figure 27).

Figure 27: K-Fold Cross Validation

This operation is repeated K times, ensuring that each partition serves as a test set

exactly once. The code typically uses scikit-learn’s KFold with 3 folds [72].

The main advantages of cross-validation lie in its robustness and statistical reliability, since

the model is evaluated on all possible subdivisions of the dataset, reducing the variance

of performance estimates. This approach provides a more complete understanding of the

generalizability of the model. The main limitation is the increased computational cost

due to the need to train and test the model multiple times, with a runtime proportional

to the number of folds selected.
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The integration of these two methodologies therefore allows for both a rapid initial evaluation

through the train/test split and an in-depth and statistically robust analysis through cross-

validation, ensuring a complete understanding of the model’s predictive performance in different

application scenarios. The results of the algorithm are shown in Section 4.

4 Results

This section illustrates the experimental results emerging from the validation of the different

blood pressure estimation methods applied to patient LUCA 1. The objective of the compar-

ative analysis is to evaluate the performance of the various approaches in terms of accuracy

and reliability, measured by the metrics of Mean Absolute Error (MAE) and standard deviation

(STD). The overall performance of the noninvasive estimation methods will be examined in

depth, with particular attention to the differences between the models before and after cross-

coordination. In fact, a sensitivity analysis will be performed on several datasets to evaluate

the robustness of the methods in the presence of variable physiological conditions. The results

for all patients are shown in the Appendix 6.1.

4.1 Results Validation

To determine how many estimated blood pressure values can be considered valid, it is necessary

to refer to the AAMI/ESH/ISO guidelines. These provide an acceptance criterion valid for

both 85 and 20 measurements samples: the mean difference between the values measured by

the device under test and the reference values must be less than or equal to 5 mmHg, with a

standard deviation not exceeding 8 mmHg, for both systolic blood pressure (SBP) and diastolic

blood pressure (DBP) [61].

It should also be noted that the reference values were measured using a cuff (sphygmo-

manometer), whose accuracy is approximately ±3 mmHg. Therefore, after considering every-

thing, the predicted values can only be considered valid if they satisfy the following conditions:Mean absolute error (MAE) <= 5 mmHg

Standard Deviation (STD) <= 8 mmHg
(27)

4.2 Algorithm Results

The results are displayed as functions of the regression model and the database used. In fact,

the various models exhibit different behaviors based on the subdivision of the dataset.
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4.2.1 Standard 70-30 Database division

In the initial configuration, the dataset was split according to the classic 70-30 split, maintaining

chronological order to ensure temporal consistency and prevent data leakage. The results are

shown based on the regression model used:

1. Linear Regression: The Linear Regression algorithm was evaluated on four different

dataset configurations to analyze its adaptability to contexts with varying levels of com-

plexity and physiological variability. The results show a clear relationship between the size

and composition of the training samples and the quality of the estimates produced.

• Using only the data contained in the patient Luca database, the model is able to

capture the relationship between the extracted features (PPG, ECG, etc.) and blood

pressure values with good fidelity, thanks to the high coherence and homogeneity

of the signals. Under this condition, the estimates are stable and aligned well with

the reference values. The quantitative results are reported in Table 3 and in Figures

(28).

Average MAE (mmHg) ± Average STD (mmHg)

Patient SBP DBP

Luca 1 5.32 ± 5.52 1.94 ± 2.31

Table 3: Average MAE and STD (mmHg) for Patient Luca 1 using Linear Regression.

(a) SBP (b) DBP

Figure 28: Real Reference Values vs Predicted Vaules of SBP and DBP using the Linear

Regression on Luca’s Database

• The introduction of 22 Shimmer patients, from patient 20 to patient 42, causes an

initial drop in performance. Despite the increased data volume, Linear Regression
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struggles to generalize correctly, as the new subjects present physiological dynamics

and instrumental noise characteristics different from those of Luca. The model,

trained on a heterogeneous mixture, loses the ability to optimally adapt to the

specific behavior of the target. Details are available in Table 4 and the figures (29).

Average MAE (mmHg) ± Average STD (mmHg)

Patient SBP DBP

Luca 1 8.91 ± 9.68 3.65 ± 4.10

Table 4: Average MAE and STD (mmHg) for Patient Luca 1 using Linear Regression.

(a) SBP (b) DBP

Figure 29: Real Reference Values vs Predicted Vaules of SBP and DBP using the Linear

Regression on Luca’s Database + Last 22 Shimmer Patients

• However, if we consider Luca’s database combined with the first 20 shimmer patients

(excluding the 15th, which is an outlier for the SBP signal), the performance reaches

the lowest level. Again, no advantage is observed from the larger sample size; in

contrast, the introduction of additional variability that is not consistent with the

target (blood pressure levels too low compared to the reference patient) introduces

confusion into the model, increasing both the mean error and its variability. The

results are reported in Table 5 and in the figures (30).

Average MAE (mmHg) ± Average STD (mmHg)

Patient SBP DBP

Luca 1 15.78 ± 12.15 11.11 ± 6.74

Table 5: Average MAE and STD (mmHg) for Patient Luca 1 using Linear Regression.
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(a) SBP (b) DBP

Figure 30: Real Reference Values vs Predicted Vaules of SBP and DBP using the Linear

Regression on Luca’s Database + Initial 20 Shimmer Patients

• In the largest configuration, the performance of Linear Regression degradation is

further accentuated. The high heterogeneity of the dataset, combined with the

lack of physiological similarity between Luca and the Shimmer subjects, leads the

model to produce unreliable estimates. The results can be found in the table 6.

Furthermore, the strange behavior is also observed in the figures (31).

Average MAE (mmHg) ± Average STD (mmHg)

Patient SBP DBP

Luca 1 14.21 ± 5,28 12.04 ± 4.06

Table 6: Average MAE and STD (mmHg) for Patient Luca 1 using Linear Regression.
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(a) SBP (b) DBP

Figure 31: Real Reference Values vs Predicted Vaules of SBP and DBP using the Linear

Regression on Luca’s Database + All Shimmer Patients

2. LMS: Also in this case, the LMS (Least Mean Squares) algorithm, known for its computa-

tional simplicity and adaptability to online contexts, was evaluated on four configurations

of the dataset, in order to analyze its behavior in the presence of data with different

physiological and instrumental characteristics.

• In the most focused configuration: training and testing exclusively on Luca’s data.

The LMS algorithm shows the best overall performance. Due to the high temporal

and physiological coherence of the signal, the filter is able to adapt its weights stably

and precisely, producing estimates well aligned with the reference blood pressure

values. Under this condition, the error is low and the variability is minimal. The

quantitative results are shown in Table 7 and figures (32).

Average MAE (mmHg) ± Average STD (mmHg)

Patient SBP DBP

Luca 1 1.92 ± 1.01 1.40 ± 1.17

Table 7: Average MAE and STD (mmHg) for Patient Luca 1 using LMS Regression.
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(a) SBP (b) DBP

Figure 32: Real Reference Values vs Predicted Vaules of SBP and DBP using the LMS Regres-

sion on Luca’s Database

• With the introduction of Shimmer patients 20 to 42, a first significant drop in accu-

racy was observed. Despite the increased size of training set, the presence of signals

with different dynamics (different PPG response, different signal-to-noise ratio, mor-

phological variability of the ECG) prevented the LMS filter from converging on an

optimal solution for the target Luca. The model, averaging across heterogeneous

patterns, lost the ability to fine-tune to individual behavior. Details are available in

Table 8 and figures (33).

Average MAE (mmHg) ± Average STD (mmHg)

Patient SBP DBP

Luca 1 2.57 ± 1.54 2.45 ± 1.94

Table 8: Average MAE and STD (mmHg) for Patient Luca 1 using LMS Regression.
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(a) SBP (b) DBP

Figure 33: Real Reference Values vs Predicted Vaules of SBP and DBP using the LMS Regres-

sion on Luca’s Database + Last 22 Shimmer Patients

• The addition of the first 20 (excluding, also in this case, the patient 15) Shimmer

patients further exacerbates the situation that reach lowest level. The algorithm,

already destabilized by the first wave of heterogeneous data, now struggles even

more to maintain consistency in its estimates. An increase in both the mean error

and its fluctuation is observed, indicating poor filter stability in the presence of

non-stationary and non-homogeneous inputs. The results are shown in Table 9 and

figures (34).

Average MAE (mmHg) ± Average STD (mmHg)

Patient SBP DBP

Luca 1 4.28 ± 4.50 3.54 ± 3.31

Table 9: Average MAE and STD (mmHg) for Patient Luca 1 using LMS Regression.
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(a) SBP (b) DBP

Figure 34: Real Reference Values vs Predicted Vaules of SBP and DBP using the LMS Regres-

sion on Luca’s Database + Initial 20 Shimmer Patients

• In the broadest configuration (LUCA + whole Shimmer data), the LMS’s perfor-

mance improve a little. The high inter-subject variability, combined with the lack

of physiological similarity with the target Luca, leads the filter to produce unreliable

and often systematically biased estimates. The lack of a weighting mechanism or

selection of the most relevant data makes the LMS particularly vulnerable in this

context. The complete results are available in Table 10 and figures (35).

Average MAE (mmHg) ± Average STD (mmHg)

Patient SBP DBP

Luca 1 2.00 ± 1.25 1.96 ± 1.26

Table 10: Average MAE and STD (mmHg) for Patient Luca 1 using LMS Regression.
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(a) SBP (b) DBP

Figure 35: Real Reference Values vs Predicted Vaules of SBP and DBP using the LMS Regres-

sion on Luca’s Database + All Shimmer Patients

3. Ridge Regression:Also in this case, Ridge Regression, known for its ability to regularize

coefficients and mitigate the effects of multicollinearity, was evaluated on four different

configurations of the dataset, in order to analyze its behavior in the presence of data with

different physiological and instrumental characteristics.

• In the most focused configuration: training and testing done exclusively on Luca’s

data. Ridge Regression shows the best overall performance. Thanks to the high

physiological and temporal coherence of the signals, the model is able to estimate the

coefficients in a stable and precise way, producing predictions well aligned with the

reference values of the target patient LUCA 1. In this condition, the mean absolute

error (MAE) is minimal and the standard deviation of the estimates is particularly

low, indicating high predictive reliability. The quantitative results are reported in

Table 11 and Figures (36).

Average MAE (mmHg) ± Average STD (mmHg)

Patient SBP DBP

Luca 1 1.17 ± 1.01 0.97 ± 1.09

Table 11: Average MAE and STD (mmHg) for Patient Luca 1 using Ridge Regression.
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(a) SBP (b) DBP

Figure 36: Real Reference Values vs Predicted Vaules of SBP and DBP using the Ridge Re-

gression on Luca’s Database

• With the introduction of the last 22 Shimmer patients, a first significant drop in

accuracy is observed. Despite the increase in the size of the training set, the pres-

ence of signals with different dynamics such as: different PPG response, variable

signal-to-noise ratio, non-homogeneous signal morphology, prevents the model from

optimizing the coefficients optimally for the target Luca. The L2 regularization,

while stabilizing the system, is unable to compensate for the loss of coherence in

the data, and the model, averaging on heterogeneous patterns, loses the ability to

fine-tune to individual behavior. Details are available in Table 12 and Figures (37).

Average MAE (mmHg) ± Average STD (mmHg)

Patient SBP DBP

Luca 1 2.28 ± 2.25 2.08 ± 2.14

Table 12: Average MAE and STD (mmHg) for Patient Luca 1 using Ridge Regression.
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(a) SBP (b) DBP

Figure 37: Real Reference Values vs Predicted Vaules of SBP and DBP using the Ridge Re-

gression on Luca’s Database + Last 22 Shimmer Patients

• The addition of the first 20 Shimmer patients (excluding, again, patient 15) further

exacerbates the situation. The model, already destabilized by the first wave of het-

erogeneous data, now struggles even more to maintain consistency in its estimates.

An increase in both the mean error and its fluctuation is observed, indicating poor

model stability when faced with non-stationary and non-homogeneous inputs. The

results are shown in Table13 and Figures (38).

Average MAE (mmHg) ± Average STD (mmHg)

Patient SBP DBP

Luca 1 7.33 ± 4.92 7.09 ± 3.66

Table 13: Average MAE and STD (mmHg) for Patient Luca 1 using Ridge Regression.
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(a) SBP (b) DBP

Figure 38: Real Reference Values vs Predicted Vaules of SBP and DBP using the Ridge Re-

gression on Luca’s Database + Initial 20 Shimmer Patients

• In the largest configuration (LUCA + entire Shimmer dataset), contrary to what

one might expect, Ridge Regression partially recovers performance, achieving the

highest MAE and standard deviation values among all the tested configurations.

The complete results are available in Table 14 and Figures (39).

Average MAE (mmHg) ± Average STD (mmHg)

Patient SBP DBP

Luca 1 9.19 ± 1.72 9.60 ± 1.54

Table 14: Average MAE and STD (mmHg) for Patient Luca 1 using Ridge Regression.
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(a) SBP (b) DBP

Figure 39: Real Reference Values vs Predicted Vaules of SBP and DBP using the Linear

Regression on Luca’s Database + All Shimmer Patients

4. Support Vector Machine (SVM): Also, the Support Vector Machine (SVM), known

for its robustness in managing high-dimensional spaces and for its ability to maximize the

separation margin even in non-perfectly linear contexts (thanks to the use of kernels), was

evaluated on four different configurations of the dataset, in order to analyze its behavior

in the presence of data with different physiological and instrumental characteristics.

• In the most focused configuration representing the use of Luca’s database, the

SVM reaches its peak performance. Thanks to the high temporal and physiological

coherence of the signals, the algorithm is able to construct a separation hyperplane

(or a decision surface in the case of nonlinear kernels) that is extremely close to the

distribution of the target data, producing estimates that are almost perfectly aligned

with the reference values of patient LUCA 1. The mean absolute error (MAE) is

minimal and the standard deviation of the predictions is negligible, indicating a

very high reliability and repeatability of the estimates. The quantitative results are

reported in Table 15 and Figures (40).

Average MAE (mmHg) ± Average STD (mmHg)

Patient SBP DBP

Luca 1 1.19 ± 1.44 0.88 ± 1.06

Table 15: Average MAE and STD (mmHg) for Patient Luca 1 using SVM Regression.
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(a) SBP (b) DBP

Figure 40: Real Reference Values vs Predicted Vaules of SBP and DBP using the SVM Regres-

sion on Luca’s Database

• With the introduction of the last 22 Shimmer patients, although a slight drop in

performance was observed (inevitable given the introduced heterogeneity), the SVM

still maintained a level of accuracy significantly higher than all the other tested

models. Even in the presence of signals with different PPG responses, morphological

variability of the ECG, or non-uniform SNR, the SVM managed to maintain good

predictive capacity, avoiding the performance collapse observed in other approaches.

Details are available in Table 16 and Figures (41).

Average MAE (mmHg) ± Average STD (mmHg)

Patient SBP DBP

Luca 1 1.12 ± 1.49 0.99 ± 1.14

Table 16: Average MAE and STD (mmHg) for Patient Luca 1 using SVM Regression.
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(a) SBP (b) DBP

Figure 41: Real Reference Values vs Predicted Vaules of SBP and DBP using the SVM Regres-

sion on Luca’s Database + Last 22 Shimmer Patients

• The addition of the first 20 Shimmer patients (again excluding patient 15) fails to

significantly destabilize the SVM. In fact, even in this case, the accuracy of the

results deteriorates further. The results are shown in Table 17 and Figures (42).

Average MAE (mmHg) ± Average STD (mmHg)

Patient SBP DBP

Luca 1 2.71 ± 2.97 2.42 ± 3.85

Table 17: Average MAE and STD (mmHg) for Patient Luca 1 using SVM Regression.

(a) SBP (b) DBP

Figure 42: Real Reference Values vs Predicted Vaules of SBP and DBP using the SVM Regres-

sion on Luca’s Database + Initial 20 Shimmer Patients
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• In the larger configuration (LUCA + entire Shimmer dataset), a deterioration in

performance is observed, due to the high inter-subject variability and the presence

of physiological patterns not aligned with the LUCA 1 target. However, even in

this scenario, the SVM continues to perform best among all the models tested.

Although the mean error increases and the standard deviation amplifies, the SVM

still manages to produce more stable and less biased estimates than Ridge, LMS,

or other linear approaches. The complete results, which unequivocally confirm the

relative superiority of the SVM, are available in Table 18 and Figures (43).

Average MAE (mmHg) ± Average STD (mmHg)

Patient SBP DBP

Luca 1 3.33 ± 2.69 4.04 ± 2.02

Table 18: Average MAE and STD (mmHg) for Patient Luca 1 using SVM Regression.

(a) SBP (b) DBP

Figure 43: Real Reference Values vs Predicted Vaules of SBP and DBP using the SVM Regres-

sion on Luca’s Database + All Shimmer Patients

4.2.2 K-fold Cross-Correlation Dataset Division

As described in section 3, K-Fold Cross-Validation is a more robust and reliable machine learning

model evaluation technique than the simple 70-30 train/test split. The method works by dividing

the dataset into K parts (called ”folds”) of similar size. In each iteration, the model is trained

in K-1 folds and validated on the remaining fold. This process is repeated K times, so that

each fold serves as the test set exactly once. The final performance of the model is given by

the average performance achieved in each of the K iterations.
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Looking at the results, reported in the tables and figures, the comparison between a metric

(e.g., MAE - Mean Absolute Error and STD - Standard Deviation) obtained with a 70-30

split and that obtained with Cross-Validation is not to be understood as an ”improvement” or

”worsening” of the model itself, but rather as a correction or refinement of the estimate of its

actual performance. In fact, we obtained two cases:

1. Result 70-30 ”Bad” (high MAE and STD) that ”improves” with CV: A 70-30

split is strongly influenced by the randomness of the split. It is possible that 30% of the

data reserved for testing contains many examples that are particularly difficult to predict

(outliers, unusual patterns or, as in this case, data not consistent with the reference

patient), while the training set is ”easier.” This leads to a pessimistic and biased estimate

of performance (high MAE and STD). K-Fold CV, by averaging performance across all

possible splits, mitigates this risk. If each fold provides a decent MAE, the average will

be good, revealing that the model is actually more capable than it appeared from the

single unfavorable test set. CV therefore provides a more optimistic and realistic estimate

of the model’s generalization.

2. Result 70-30 ”Good” (low MAE and STD) which ”worsens” with CV: In contrast,

the 70-30 split may be highly favorable. The test set may consist of examples very similar

to the training set and particularly easy to predict, the training set may be statistically

unrepresentative of the entire dataset, or, as in this case, the data are similar to the

reference patient. This leads to an overly optimistic estimate of performance (low MAE).

K-Fold CV, by testing the model on all data subsets, unmasks this excessive optimization

(overfitting) or fortuitous split. If the model performs poorly in some folds because it

was tested on different data, the average MAE will increase. CV therefore provides a

more pessimistic, but much more reliable estimate, highlighting the model’s potential

vulnerability.

The numerical results (MAE) and their variability (std) demonstrating this behavior for the

different datasets analyzed are reported in detail in the attached Tables and Figures. The anal-

ysis of the standard deviation is particularly important: a high value indicates that the model’s

performance is very sensitive to the choice of training/test data, confirming the usefulness of

CV for obtaining a more stable judgment.

• LUCA Database:
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Avg MAE (mmHg) ± Avg STD (mmHg)

Linear LMS Ridge SVM

SBP DBP SBP DBP SBP DBP SBP DBP

Luca 1 3.15±0.01 2.45±0.01 3.39±0.02 2.59±0.01 3.15±0.03 2.45±0.01 2.84±0.03 2.22±0.02

Table 19: Average MAE (mmHg) ± Average STD (mmHg) for different models using Luca’s

database post k-fold cross-validation.

(a) Linear SBP (b) Linear DBP

(c) LMS SBP (d) LMS DBP

Figure 44: Relation between Reference Values and Predicted Values of SBP, DBP for Linear

and LMS Regression Models, post K-fold cross-correlation on Luca’s database.
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(a) Ridge SBP (b) Ridge DBP

(c) SVM SBP (d) SVM DBP

Figure 45: Relation between Reference Values and Predicted Values of SBP, DBP for Ridge

and SVM Regression Models, post K-fold cross-correlation on Luca’s database.

• LUCA Database + Last 22 Shimmer Patients

Avg MAE (mmHg) ± Avg STD (mmHg)

Linear LMS Ridge SVM

SBP DBP SBP DBP SBP DBP SBP DBP

Luca 1 4.39±0.04 2.25±0.03 4.39±0.08 2.99±0.04 4.39±0.04 2.92±0.03 3.81±0.04 2.61±0.06

Table 20: Average MAE (mmHg) ± Average STD (mmHg) for different models using Luca’s

database + Last 22 Shimmer Patients, post k-fold cross-validation.
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(a) Linear SBP (b) Linear DBP

(c) LMS SBP (d) LMS DBP

(e) Ridge SBP (f) Ridge DBP

(g) SVM SBP (h) SVM DBP

Figure 46: Relation between Reference Values and Predicted Values of SBP, DBP for the

all Regression Models, post K-fold cross-correlation on Luca’s database + Last 22 Shimmer

Patients. 76



• LUCA Database + Initial 20 Shimmer Patients

Avg MAE (mmHg) ± Avg STD (mmHg)

Linear LMS Ridge SVM

SBP DBP SBP DBP SBP DBP SBP DBP

Luca 1 9.80±0.04 8.72±0.02 10.63±0.12 8.73±0.08 9.80±0.04 8.72±0.02 7.83±0.11 6.45±0.08

Table 21: Average MAE (mmHg) ± Average STD (mmHg) for different models using Luca’s

database + Initial 20 Shimmer Patients, post k-fold cross-validation.

(a) Linear SBP (b) Linear DBP

(c) LMS SBP (d) LMS DBP

Figure 47: Relation between Reference Values and Predicted Values of SBP, DBP for Linear and

LMS Regression Models, post K-fold cross-correlation on Luca’s database + Initial 20 Shimmer

Patients.
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(a) Ridge SBP (b) Ridge DBP

(c) SVM SBP (d) SVM DBP

Figure 48: Relation between Reference Values and Predicted Values of SBP, DBP for Ridge and

SVM Regression Models, post K-fold cross-correlation on Luca’s database + Initial 20 Shimmer

Patients.

• LUCA Database + all Shimmer Patients

Avg MAE (mmHg) ± Avg STD (mmHg)

Linear LMS Ridge SVM

SBP DBP SBP DBP SBP DBP SBP DBP

Luca 1 10.88±0.02 8.52±0.02 11.23±0.07 8.19±0.03 10.88±0.02 8.52±0.02 9.17±0.04 6.93±0.03

Table 22: Average MAE (mmHg) ± Average STD (mmHg) for different models using Luca’s

database + All Shimmer Patients, post k-fold cross-validation.
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(a) Linear SBP (b) Linear DBP

(c) LMS SBP (d) LMS DBP

(e) Ridge SBP (f) Ridge DBP

(g) SVM SBP (h) SVM DBP

Figure 49: Relation between Reference Values and Predicted Values of SBP, DBP for the all

Regression Models, post K-fold cross-correlation on Luca’s database + All Shimmer Patients.
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5 Discussion

5.1 Algorithm results Discussion

The results obtained in this thesis, analyzed in light of the physiological variability of the

patients and the robustness of the algorithms, lead to an unequivocal conclusion: of all the

models tested (Linear Regression, LMS, Ridge Regression, and Support Vector Machine), SVM

stands out for its absolute superiority, not only in terms of point by point accuracy, but above all

in terms of robustness, stability, and generalization ability across real world and heterogeneous

contexts. This statement does not arise from a simple comparison of numbers, but from an

in depth analysis that links quantitative performance to the intrinsic characteristics of the data

and the theoretical principles of the algorithms. This analyzes are made even more evident

and convincing by examining the graphs illustrating the distribution of blood pressure values in

different patients (Figures: 50a,50c,51a,51c).

(a) SBP reference values (b) SBP Bar Graph of refrence values

(c) DBP reference values (d) DBP Bar Graph of refrence values

Figure 50: Figures of Shimmer Patients representing the behavior of the SBP, DBP reference

values with repect the LUCA 1 mean values.
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(a) SBP reference values (b) SBP Bar Graph of refrence values

(c) DBP reference values (d) DBP Bar Graph of refrence values

Figure 51: Figures of Luca’s database Patients representing the behavior of the SBP, DBP

reference values with repect the LUCA 1 mean values.

From the graphs we can visualize that, when the models are trained and tested exclusively

on homogeneous data from patient Luke 1, they all achieve excellent results, with Ridge and

SVM competing for the top spot. However, this scenario is artificial: in clinical practice, a

cuffless blood pressure measurement device must work on a heterogeneous population, with

patients presenting with profoundly different blood pressure values, signal morphologies, and

physiological conditions. And this is where the real competition comes in, and where basic

data analysis, made visible by the bar graphs of the average SBP and DBP values, highlighting

outliers and the mean value for Luke 1, becomes crucial to interpreting the results.

In fact, the statistical analysis of Shimmer patients’ baseline values reveals that: Luca 1 is

a specific case with blood pressure values in the mid to high range of the Shimmer distribution.

The graphs (50d,50b) clearly show that most Shimmer patients have significantly lower SBP and

DBP values . Some can even be classified as statistical outliers, identified by the interquartile

range (IQR) method and marked in red in the graphs. These patients have mean diastolic

blood pressure values below 60 mmHg, and mean systolic blood pressure values ranging from

less than 100 mmHg to over 140 mmHg, representing a high level of variability that is directly

reflected in the models’ performance. The dashed purple line, representing the mean for Luca

1, appears isolated in this context, almost an exception compared to the norm for the Shimmer

sample. This heterogeneity is not noise to be eliminated, but the reality that a clinical model

must deal with, and it perfectly explains the behavior observed in the results in Chapter 4. In
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contrast, when we used the LUCA patient database, which shows an average trend in line with

the values of patient LUCA 1 (Figures 51d,51b), the results are highly accurate.

We can observe, from the results, that when the high variability is introduced into the

training set by the Shimmer patients, Linear Regression collapses inexorably. Its errors skyrocket

to clinically unacceptable values, well above 10 mmHg, demonstrating extreme fragility when

faced with data that do not follow the same distribution as the target. Ridge Regression, despite

starting from a solid foundation, also shows a surprising vulnerability: its L2 regularization,

so effective on homogeneous data, becomes a limitation when it has to handle irreconcilable

physiological patterns, ”crushing” the coefficients to the point of rendering the model incapable

of adapting (results above the limits set by the international guidelines (AAMI/ISO/ESH)).

LMS, thanks to its iterative adaptive approach, shows remarkable resilience, maintaining

relatively low errors even in the presence of heterogeneity. However, its performance is unsta-

ble: it deteriorates dramatically with the first 20 Shimmer patients (those with lower blood

pressures), then paradoxically ”improve” with the entire dataset, suggesting that its behavior is

more reactive than proactive, and dependent on the fortuitous composition of the training set.

SVM, on the other hand, maintains remarkably consistent and robust behavior. From the first

impact with heterogeneous data (the addition of the last 22 Shimmer patients), SVM shows

minimal performance degradation, always remaining below 2 mmHg error for both blood pres-

sures. Even in the most extreme configuration, with the entire Shimmer dataset, SVM is the

only model that keeps diastolic blood pressure (DBP) within clinical limits (4.04 ± 2.02 mmHg)

and systolic blood pressure (SBP) at a reasonable level (3.33 ± 2.69 mmHg), significantly lower

than all the others. This superiority is not accidental, but is rooted in the very nature of the

algorithm. SVM does not attempt to fit a mean hyperplane to the data, but rather constructs a

decision surface that maximizes the separation margin, making it intrinsically robust to outliers

and noise. Furthermore, thanks to the use of nonlinear kernels (such as RBF), SVM is able

to model complex and nonlinear relationships between features (HR, PTT) and blood pressure

values, capturing physiological nuances that linear models ignore.

Validation with K-Fold Cross-Validation confirms and amplifies this superiority. While CV

”corrects” the estimates for other models, revealing overfitting or underfitting hidden by the 70-

30 split, for SVM the correction is minimal, indicating that its estimates are already intrinsically

stable and reliable. Importantly, on the full dataset, SVM is the only model that, with CV,

maintains an error for DBP (6.93 ± 0.03 mmHg) close to the clinical threshold, while all the

others significantly exceed 8 mmHg.

In conclusion, although Ridge and LMS can compete on homogeneous data, SVM is the

only algorithm that demonstrates a systematic, robust, and clinically valid ability to generalize

to a heterogeneous population. Its architecture, based on margins and kernels, makes it the

ideal tool for addressing the complexity and variability of the real world.
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5.2 Errors and strategies

However, it is important to note that the relatively high MAE and STD values found in some

scenarios, especially in heterogeneous contexts, can be attributed to different sources of error

and the strategies adopted to mitigate them:

1. Intrinsic Physiological Variability: The high heterogeneity of Shimmer data, with

patients presenting blood pressure values across a very wide range, represents the main

challenge. Linear models, by their nature, attempt to approximate an average relationship,

failing when they must adapt to radically different physiological regimes. Even the SVM,

although more robust, must contend with this variability, which physiologically translates

into a lower limit on achievable accuracy.

2. PPG and ECG intersubject variability: This is due to the subject’s physiology [74].

In particular for PPG, whose recording is influenced by the subject’s skin conductivity,

sometimes the peaks are so low that it is difficult to establish a threshold value to

detect them optimally [75]. At the same time, ECG signal variability is also affected

by similar problems, particularly when the electrodes are positioned in a non-correct

anatomical configuration, leading to potential artifacts and reduced wave amplitude. The

sensor, developed by Persimmon, was designed to address these critical issues. It improves

detection of PPG Speaks while simultaneously reducing errors resulting from improper

Shimmer clip placement and light interference, thanks to the use of a black adhesive patch

(Figures: 52). This integrated solution therefore aims to ensure greater reliability of the

acquired PPG and ECG signals, under varying physiological and operational conditions.
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(a) Persimmon Sensor with diode for the PPG

signal (b) Electrodes

Figure 52: Persimmon Sensor and the Electrodes for The ECG signals .

3. Instrumental error: The technical documentation of the EXG module does not specify

error margins, since this device allows the recording of the ECG trace without introducing

evident alterations due to noise. Consequently, the instrumental uncertainty associated

with this module is insignificant. On the contrary, the PPG signal, due to its intrinsic

characteristics and acquisition method, is affected by disturbances which also include a

systematic measurement error, documented in the literature as an average value calibrated

over the entire measurement range [76]. The bias voltage is set to 0.5 V and, considering

a typical ”low” skin impedance (120 kΩ corresponding to 8 µS), the bias current is

approximately 5 µA; this current value decreases proportionally with the increase in skin

conductance [76]. The latest generation Persimmon sensors show the ability to reduce

instrumental uncertainty for both signal types, ECG and PPG.

4. Motion Artifacts: Although the experimental protocol required subjects to be seated

and relaxed, involuntary micro-movements may have introduced artifacts into the signals,

especially in the PPG (which is more susceptible) but also in the ECG. Such interfer-

ence is difficult to completely eliminate through filtering and contributes significantly to

increased variability (STD) of the estimates. This issue is particularly relevant with Shim-

mer devices, where the cables connecting the electrodes to the acquisition module can

create additional sources of mechanical disturbance due to accidental displacement of the

conductors. In contrast, Persimmon sensors are designed to mitigate these issues through

the use of a dedicated adhesive that ensures stable and uniform attachment to the skin,
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minimizing both relative sensor movement and cable traction artifacts. This integrated

solution improves immunity to mechanical disturbances, preserving signal quality even in

the presence of small subject movements.

5. Synchronization and Time Alignment: Even a small misalignment between the ECG

and PPG signals can cause an incorrect PTT calculation. The 60 ms offset applied to

correct for instrument delay is an estimate that may not be perfect for all subjects or

hardware configurations, introducing systematic bias.

6. Cleaning the HR and PTT arrays: The heart rate (HR) and pulse transit time (PTT)

array cleaning phase involves eliminating outliers that exceed the mean ± standard devia-

tion range. While this process helps improve the accuracy of blood pressure predictions, it

inevitably results in the loss of potentially relevant information. Although several strate-

gies have been tested to mitigate this information loss, none have yet been shown to

significantly improve the model’s predictive performance. To address this issue, Per-

simmon is developing more advanced signal acquisition technologies that aim to obtain

cleaner and more reliable physiological data already during the detection phase.

7. Calibration and Personalization: The model was trained on a collective dataset. The

lack of specific calibration for the individual patient (LUCA 1) explains part of the residual

error. Linear models, lacking intrinsic mechanisms to handle inter-individual differences,

suffer dramatically. The SVM, with its RBF kernel, handles these differences better, but

the best results would likely be achieved with training or fine-tuning on data specific to

the target patient.

5.3 Persimmon Devices

Persimmon devices are conceived as multimodal, personalized, and biodegradable smart patches

designed for decentralized personal health monitoring (DPHM). The project’s goal is to produce

soft, skin-conformable sensory patches capable of detecting relevant physiological parameters

(including cardiac parameters) and transferring data to cloud/edge infrastructures for sensor

fusion and estimation of parameters such as blood pressure and body temperature. The patches

will be produced using additive manufacturing and digital surface mount technology (SMT),

using innovative materials such as water-soluble biopolymers and liquid metal interconnects to

increase sustainability and conformability [77].

From a mechatronics perspective, a Persimmon device is designed as a multilayer platform

composed of: a soft and biodegradable substrate (biopolymer) that adheres to the skin; printed

conductive layers (possibly liquid metal) for the electrical traces; digitally positioned SMT com-

ponents (low-power microcontrollers, ADCs, LEDs, photodiodes for PPGs, front-end amplifiers

for ECGs, motion sensors, accelerometers and nano MOS for specific signals); and a wireless
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interface to a gateway (with a view to 5G/IoT) or directly to a smartphone. The choice of liq-

uid metals and biodegradable materials is designed to reduce environmental impact and enable

multi-use or single-use modules with recycling of active components [77].

5.3.1 ECG and PPG: sensors and detection

For ECG signal detection, the patch integrates skin-contact electrodes, which can be made of

printed conductive pads or soft metal films. The analog interface includes a front-end with a

low-noise amplifier, a band-pass filter to isolate the useful cardiac frequency range (typically

0.5–40 Hz), and a low-power A/D converter that samples the signal. To maintain a good

signal-to-noise ratio on a soft substrate, electrode geometry optimization techniques, surface

treatment, and gain adaptation algorithms are employed [77]. While the PPG is acquired via

an integrated optical module (LED and photodiode), as shown in figure 53.

Figure 53: Acquisition of PPG signal through the photodiode

The patch can include LEDs at different wavelengths (e.g., green/red/IR) to improve pen-

etration and sensitivity at different tissue levels; PPG is read via a dedicated analog front-end

(photodetector, transimpedance amplifier, low-pass filter) before digitization. Some Persimmon

projects also include modules for temperature sensors and gas sensors integrated into the same

”multimodal” platform [77].

A key aspect of cuffless pressure estimation is time synchronization between signals. Per-

simmon patches are designed to operate in multi-nodal networks on the skin: multiple nodes

positioned at different points can enable relative measurements (e.g., measuring PTT between

two patches) or provide redundancy to reduce artifacts. Synchronization can be managed lo-

cally (common clock between modules or gateway synchronization) or at the cloud level after

86



upload, but the project emphasizes edge AI and the automatic selection of time slots with good

signal conditions to reduce the amount of unnecessary data sent over the network [77].

5.3.2 Software and Edge-AI

Persimmon integrates edge-AI solutions directly onto the patch or body gateway for key tasks:

selecting ”clean” signal windows, reducing motion artifacts (using an accelerometer as a refer-

ence and lightweight neural networks to classify signal conditions), intelligent compression and

filtering, and local decision-making on when to send data to the cloud. At the cloud level, mul-

timodal sensor fusion (fusion of ECG, PPG, temperature, and motion data) is performed using

more computationally intensive algorithms that estimate complex clinical variables, including

blood pressure. This hybrid architecture (edge + cloud) is explicitly designed to reduce energy

consumption, improve privacy, and reduce operational latency. At the software level, edge-AI

intervenes in the quality evaluation and selection phase, while the final pressure estimation can

be performed with models calibrated on the cloud or, when required, with lightweight versions

directly on the device.

Specifically, SBP and DBP pressures can be precisely calculated by setting the device’s

characteristics. This allows the specifics to be adjusted based on the patient being examined.

5.3.3 Persimmon Device Manufacturing, Sustainability, Use Cases, and Challenges

Persimmon devices stand out for their focus on sustainability and a circular economy design

approach. They are produced using additive manufacturing, which enables flexible electronic

circuits to be created on soft substrates, reducing waste. Component assembly is handled by

digital surface mount technology (SMT), a cost-effective and precise technique. The use of

water-soluble biopolymers makes the patches biodegradable and facilitates the separation of

reusable components, thus limiting plastic waste (Figures 54). Liquid metal interconnects, de-

signed to facilitate metal recovery and reuse, further strengthen this approach, enabling devices

suitable for both single use and partially reusable use, while keeping costs and environmental

impact low [77].
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Figure 54: Structure of Persimmon device for the acquisition of the ECG, PPG signals

This technology platform was designed to be tested in particularly demanding real-world

scenarios, such as extreme sports like ski mountaineering and swimming (video: [78]), which

require high water resistance, tolerance to temperature changes, and signal reliability in critical

environmental conditions. At the same time, Persimmon patches are designed for the continu-

ous monitoring of chronic patients on a daily basis, a context that requires stable and secure

connectivity. To this end, the system integrates 5G gateways for wearable IoT networks, ca-

pable of transmitting physiological data in real time to cloud platforms for signal analysis and

fusion. Clinical validation involves campaigns on diverse populations, necessary to calibrate the

blood pressure estimation models and ensure compliance with international accuracy and safety

standards [77].

Despite promising application prospects, Persimmon devices face several technical challenges

to ensure reliable reading of ECG and PPG signals. These include managing motion artifacts,

maintaining stable electrode-to-skin contact for ECG, and reducing optical noise for PPG in

environments with variable lighting. Added to this are the module’s battery life, which must

ensure prolonged operation without frequent recharging, and the subject-specific calibration

required to accurately estimate blood pressure [77] [78].

So, Persimmon’s ECG and PPG reading devices represent an integrated and sustainable

platform that combines advanced materials, additive manufacturing, low-power electronics,

edge-AI, and sensor fusion cloud to achieve multimodal measurements useful for monitoring

blood pressure and other vital signs in the clinical and sports fields.
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6 Conclusion

Hypertension is therefore a major risk factor for cardiovascular disease, the leading cause of

mortality globally. Continuous and accurate blood pressure (BP) monitoring is therefore essen-

tial not only for early diagnosis but also for patient therapeutic management and the prevention

of complications.

This thesis addressed the limitations of traditional methods, the invasiveness of clinical sys-

tems, and the intermittent nature of noninvasive cuff-based devices, subsequently exploring a

”cuffless” methodology for continuous and noninvasive blood pressure estimation. The core of

the work was the development of a framework based on the combined analysis of electrocar-

diogram (ECG) and photoplethysmogram (PPG) signals, acquired through Shimmer3 wearable

devices, from which the key physiological parameters of heart rate (HR) and pulse transit

time (PTT) were extracted. The approach incorporated several innovations: the acquisition of

signals under controlled conditions as an alternative to online datasets, the design of a com-

prehensive signal processing pipeline, and the application of regression techniques to model the

relationship between these parameters and reference blood pressure values. The results showed

that the Support Vector Machine (SVM) algorithm stands out for its robustness and general-

isation capacity, keeping the error (MAE) within clinically acceptable thresholds for diastolic

blood pressure (DBP), in line with international AAMI/ISO/ESH guidelines [61].

This confirms the potential of the proposed approach for the development of a reliable

system for real-time estimation.

6.1 Future prospects

Looking ahead, research is evolving along two main lines: hardware integration and software

refinement. From a hardware perspective, the goal is to implement the algorithm on nextgen-

eration wearable platforms that are more compact and comfortable for prolonged use, such

as those developed in the European Persimmon project. Although these sensors have differ-

ent technical specifications from Shimmer, they have demonstrated encouraging performance

and greater adaptability to everyday life, paving the way for large-scale, long-term monitoring

outside the clinical setting [77].

On the software side, despite the excellent performance of SVM, there is ample room

for improvement by exploring more complex algorithmic architectures. The use of recursive

algorithms (such as Kalman filters) and neural networks (RNN/LSTM) appears particularly

promising for more effectively capturing the dynamic and temporal nature of blood pressure.

This would not only improve the accuracy of systolic (SBP) and diastolic (DBP) estimates, but

also lay the foundations for increasingly personalised, predictive and integrated monitoring in

patients’ lives. In conclusion, the experimental results and development prospects paint a solid

picture for the clinical and commercial adoption of cuffless blood pressure monitoring systems.
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Integration with projects such as Persimmon represents the natural evolution of this re-

search, with the aim of bringing continuous blood pressure measurement beyond the hospital

environment and directly into patients’ daily lives, contributing significantly to improving their

quality of life and reducing the social impact of cardiovascular disease.
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Appendix A: Additional Results

Results of All patients pre and post K-Fold cross correlation considering both Shim-

mer and Luca Dataset

Table 23: Metrics Pre K- Fold Cross-Correlation (MAE and STD)

Model Linear LMS Ridge SVM

Signal DBP SBP DBP SBP DBP SBP DBP SBP

Metric MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD

SHIMMER 1 10.70 14.07 17.86 21.66 10.39 13.91 16.09 20.56 10.70 14.07 17.86 21.66 9.69 13.14 18.26 22.55

SHIMMER 2 11.16 14.32 16.88 19.95 10.86 14.14 15.01 18.57 11.16 14.32 16.88 19.95 9.88 12.98 16.97 20.45

SHIMMER 3 10.59 13.55 12.01 13.44 10.30 13.38 10.24 11.94 10.59 13.55 12.01 13.43 9.47 12.42 12.38 14.48

SHIMMER 4 9.31 11.43 15.30 17.71 9.02 11.24 13.46 16.21 9.31 11.43 15.30 17.71 8.04 10.01 15.30 18.15

SHIMMER 5 27.58 248.99 33.50 275.49 26.00 231.69 23.35 163.96 27.58 248.97 33.49 275.45 8.16 10.64 13.44 15.78

SHIMMER 6 11.15 14.87 19.98 24.94 10.82 14.70 18.21 23.95 11.15 14.87 19.98 24.94 10.13 13.94 20.50 25.95

SHIMMER 7 10.08 13.01 15.22 17.77 9.78 12.83 13.42 16.47 10.08 13.01 15.22 17.77 8.97 11.92 15.52 18.58

SHIMMER 8 9.75 12.70 16.89 20.29 9.42 12.53 15.11 19.17 9.75 12.70 16.89 20.29 8.77 11.82 17.39 21.33

SHIMMER 9 9.78 12.57 14.93 17.35 9.47 12.38 13.12 16.05 9.78 12.57 14.93 17.35 8.63 11.40 15.24 18.20

SHIMMER 11 98.92 1551.51 114.05 1715.58 92.44 1444.11 72.03 1015.63 98.91 1551.33 114.04 1715.38 8.86 11.83 15.96 19.26

SHIMMER 13 9.63 12.56 15.60 18.42 9.29 12.39 13.85 17.31 9.63 12.56 15.60 18.42 8.70 11.78 16.08 19.49

SHIMMER 14 46.13 640.70 57.59 710.45 43.19 593.09 39.84 418.94 46.12 640.63 57.58 710.36 10.12 13.95 19.29 24.16

SHIMMER 16 36.11 484.46 41.45 536.76 33.92 448.45 28.19 315.51 36.11 484.40 41.45 536.69 10.17 14.01 14.16 16.79

SHIMMER 17 10.17 13.14 12.64 14.25 9.89 12.99 10.79 12.71 10.17 13.14 12.64 14.25 8.96 11.85 12.87 15.06

SHIMMER 18 20.36 107.30 25.14 118.94 19.51 99.69 20.13 71.98 20.36 107.29 25.14 118.93 12.47 17.56 17.90 22.08

SHIMMER 19 3.58 3.94 13.61 15.61 3.02 3.71 11.80 14.33 3.58 3.94 13.61 15.61 2.33 3.12 14.07 16.69

SHIMMER 20 3.60 4.14 13.31 15.14 3.21 3.93 11.52 13.78 3.60 4.14 13.31 15.14 2.44 3.01 13.71 16.15

SHIMMER 21 10.24 13.31 15.09 17.61 9.95 13.16 13.29 16.34 10.24 13.31 15.09 17.61 9.16 12.26 15.46 18.52

SHIMMER 22 11.86 15.74 14.64 17.07 11.54 15.52 12.74 15.50 11.86 15.74 14.64 17.07 10.46 14.09 14.65 17.39

SHIMMER 23 19.27 216.94 27.68 241.86 18.02 201.14 19.75 144.45 19.27 216.92 27.68 241.83 4.68 5.55 12.99 15.22

SHIMMER 24 32.31 369.85 41.06 417.59 30.26 340.48 29.88 254.67 32.31 369.81 41.06 417.54 9.62 12.14 16.96 20.27

SHIMMER 25 8.72 11.11 12.14 13.59 8.39 10.91 10.36 12.15 8.72 11.11 12.14 13.59 7.58 9.95 12.59 14.70

SHIMMER 26 7.44 8.80 10.70 12.07 7.15 8.56 9.13 10.57 7.44 8.80 10.70 12.07 6.43 7.63 11.17 13.26

SHIMMER 27 5.56 6.55 10.69 11.64 5.19 6.33 8.86 10.06 5.56 6.55 10.69 11.64 4.48 5.50 11.08 12.74

SHIMMER 28 5.00 5.84 8.92 8.49 4.67 5.59 6.05 6.60 5.00 5.84 8.92 8.49 3.91 4.62 8.78 9.69

SHIMMER 29 4.88 5.75 9.14 10.04 4.58 5.52 7.41 8.35 4.88 5.75 9.14 10.04 3.85 4.54 9.63 11.29

SHIMMER 30 7.11 8.77 9.10 9.97 6.79 8.54 7.23 8.15 7.11 8.77 9.10 9.97 5.94 7.41 9.40 10.98

SHIMMER 31 7.36 8.99 9.22 10.07 7.06 8.80 7.46 8.38 7.36 8.99 9.22 10.07 6.31 7.93 9.62 11.28

SHIMMER 32 6.39 7.66 11.49 12.86 6.06 7.38 9.74 11.30 6.39 7.66 11.49 12.86 5.19 6.23 11.74 13.74

SHIMMER 33 5.52 6.48 9.78 7.84 5.19 6.24 6.73 5.92 5.52 6.48 9.78 7.84 4.47 5.35 9.66 9.10

SHIMMER 34 4.70 5.45 13.40 7.67 4.38 5.16 10.22 6.20 4.70 5.45 13.40 7.67 3.70 4.25 13.08 8.60

SHIMMER 35 6.68 7.97 8.44 9.05 6.35 7.73 6.49 7.35 6.68 7.97 8.44 9.05 5.73 7.04 8.76 10.42

SHIMMER 36 4.18 4.81 10.17 11.11 3.87 4.60 8.49 9.63 4.18 4.81 10.17 11.11 3.25 3.84 10.89 12.63

SHIMMER 37 3.55 4.14 10.24 7.58 3.17 3.86 7.13 5.70 3.55 4.14 10.24 7.58 2.48 3.05 10.13 8.78

SHIMMER 38 3.38 3.75 10.81 7.41 2.80 3.51 7.69 5.53 3.38 3.75 10.81 7.41 2.16 2.79 10.53 8.72

SHIMMER 39 8.19 9.97 12.91 14.61 7.88 9.75 11.25 13.26 8.19 9.97 12.91 14.61 7.15 8.88 13.35 15.71

SHIMMER 40 5.42 6.28 10.76 12.05 5.13 6.05 8.92 10.29 5.42 6.28 10.76 12.05 4.15 4.80 10.77 12.71

SHIMMER 41 5.14 6.00 15.66 18.35 4.85 5.79 13.82 17.00 5.14 6.00 15.66 18.35 3.96 4.66 15.89 19.07

SHIMMER 42 6.16 7.37 11.94 7.53 5.73 7.14 9.19 5.92 6.16 7.37 11.94 7.53 4.88 6.14 12.33 8.70

LUCA 1 3.63 4.05 8.71 9.18 3.14 3.80 6.53 7.17 3.63 4.05 8.71 9.18 2.39 3.26 8.73 10.02

LUCA 2 3.46 3.86 8.65 9.39 2.95 3.66 6.59 7.57 3.46 3.86 8.65 9.39 2.29 2.85 8.83 10.49

LUCA 3 3.60 3.98 8.70 9.35 3.07 3.79 6.61 7.50 3.60 3.98 8.70 9.35 2.27 2.85 8.80 10.47

LUCA 4 3.51 3.82 8.87 8.85 2.87 3.62 6.33 7.07 3.51 3.82 8.87 8.85 2.23 2.80 8.81 10.29

LUCA 5 3.55 4.12 8.75 9.86 3.15 3.89 6.71 7.82 3.55 4.12 8.75 9.86 2.17 2.73 8.49 10.45

LUCA 6 3.64 4.23 8.80 9.79 3.20 3.96 6.72 7.79 3.64 4.23 8.80 9.79 2.18 2.80 8.59 10.35

LUCA 7 3.60 4.16 8.69 9.66 3.20 3.93 6.63 7.69 3.60 4.16 8.69 9.66 2.24 2.85 8.57 10.37

LUCA 8 3.78 4.41 8.89 10.04 3.45 4.18 6.88 8.01 3.78 4.41 8.89 10.04 2.30 2.93 8.65 10.61

LUCA 9 3.72 3.97 8.71 9.33 3.10 3.77 6.32 7.28 3.72 3.97 8.71 9.33 2.46 2.84 8.68 10.07

LUCA 10 3.79 3.64 9.00 8.60 2.99 3.44 6.19 6.69 3.79 3.64 9.00 8.60 2.41 2.68 8.77 9.80

LUCA 11 3.80 4.05 10.18 7.71 3.19 3.85 7.24 5.75 3.80 4.05 10.18 7.71 2.54 3.01 10.19 8.88

LUCA 12 3.82 3.94 10.13 7.84 3.17 3.74 7.13 5.91 3.82 3.94 10.13 7.84 2.58 3.01 9.92 9.02

LUCA 13 3.69 4.25 9.76 7.99 3.30 4.04 6.97 5.99 3.69 4.25 9.76 7.99 2.34 2.89 10.05 8.97

LUCA 14 6.51 4.82 9.27 8.21 5.51 4.81 6.57 6.19 6.51 4.82 9.27 8.21 5.75 5.76 9.70 9.09

LUCA 15 4.01 3.90 9.79 7.92 3.27 3.69 6.96 5.92 4.01 3.90 9.79 7.92 2.91 3.18 10.23 8.84

LUCA 16 3.85 3.68 10.14 7.78 3.05 3.51 7.15 5.85 3.85 3.68 10.14 7.78 2.53 2.86 10.02 8.95

LUCA 17 3.88 3.80 9.75 7.93 3.13 3.61 6.76 5.98 3.88 3.80 9.75 7.93 2.45 2.82 9.63 9.12

LUCA 18 3.38 3.75 10.81 7.41 2.80 3.51 7.69 5.53 3.38 3.75 10.81 7.41 2.16 2.79 10.53 8.72

LUCA 19 4.70 5.45 13.40 7.67 4.38 5.16 10.22 6.20 4.70 5.45 13.40 7.67 3.70 4.25 13.08 8.60

LUCA 20 3.55 4.14 10.24 7.58 3.17 3.86 7.13 5.70 3.55 4.14 10.24 7.58 2.48 3.05 10.13 8.78
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Table 24: Metrics Post K-Fold Cross-Correlation (MAE and STD)

Model Linear LMS Ridge SVM

Signal DBP SBP DBP SBP DBP SBP DBP SBP

Metric MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD

SHIMMER 1 5.54 0.04 7.89 0.06 6.43 0.04 8.69 0.03 5.54 0.04 7.89 0.06 4.65 0.02 6.52 0.06

SHIMMER 2 5.60 0.06 7.30 0.02 6.56 0.06 7.90 0.07 5.60 0.06 7.30 0.02 4.90 0.12 6.41 0.08

SHIMMER 3 5.44 0.03 5.54 0.02 6.27 0.02 5.45 0.03 5.44 0.03 5.54 0.02 4.56 0.05 4.89 0.02

SHIMMER 4 4.74 0.05 6.63 0.05 5.29 0.04 6.94 0.09 4.74 0.05 6.63 0.05 4.24 0.00 5.86 0.07

SHIMMER 5 4.89 0.02 5.93 0.03 5.48 0.06 5.92 0.03 4.89 0.02 5.93 0.03 4.44 0.04 5.70 0.02

SHIMMER 6 5.79 0.08 8.89 0.15 6.72 0.09 10.02 0.13 5.79 0.08 8.89 0.15 4.60 0.06 6.87 0.09

SHIMMER 7 5.23 0.02 6.69 0.03 5.93 0.03 7.00 0.04 5.23 0.02 6.69 0.03 4.27 0.05 5.60 0.02

SHIMMER 8 5.14 0.08 7.46 0.12 5.81 0.07 8.07 0.07 5.14 0.08 7.46 0.12 4.23 0.06 6.08 0.11

SHIMMER 9 5.11 0.01 6.57 0.02 5.74 0.01 6.85 0.05 5.11 0.01 6.57 0.02 4.23 0.05 5.55 0.03

SHIMMER 11 5.25 0.05 6.89 0.06 5.95 0.08 7.21 0.04 5.25 0.05 6.89 0.06 4.67 0.03 6.58 0.06

SHIMMER 13 5.10 0.05 6.95 0.07 5.76 0.04 7.35 0.06 5.10 0.05 6.95 0.07 4.17 0.06 5.68 0.09

SHIMMER 14 5.81 0.03 8.24 0.12 6.72 0.08 9.01 0.17 5.81 0.03 8.24 0.12 5.03 0.10 7.55 0.13

SHIMMER 16 5.78 0.02 8.24 0.12 6.76 0.06 9.01 0.17 5.78 0.02 8.24 0.12 5.05 0.01 6.01 0.02

SHIMMER 17 5.19 0.07 5.71 0.04 5.98 0.10 5.62 0.04 5.19 0.07 5.71 0.04 4.47 0.04 5.07 0.04

SHIMMER 18 6.89 0.08 7.67 0.11 8.20 0.07 8.21 0.13 6.89 0.08 7.67 0.11 5.56 0.05 6.94 0.06

SHIMMER 19 2.94 0.04 6.11 0.07 3.01 0.05 6.26 0.04 2.94 0.04 6.11 0.07 2.61 0.07 5.18 0.04

SHIMMER 20 2.99 0.04 6.00 0.05 3.04 0.05 6.06 0.03 2.99 0.04 6.00 0.05 2.68 0.07 5.27 0.04

SHIMMER 21 5.31 0.04 6.68 0.04 6.11 0.02 6.98 0.04 5.31 0.04 6.68 0.04 4.61 0.02 5.87 0.05

SHIMMER 22 5.95 0.04 6.32 0.04 6.90 0.05 6.46 0.05 5.95 0.04 6.32 0.04 4.76 0.02 5.48 0.02

SHIMMER 23 3.55 0.06 5.78 0.00 3.61 0.07 5.74 0.01 3.55 0.06 5.78 0.00 3.42 0.05 5.53 0.02

SHIMMER 24 5.42 0.03 7.25 0.09 6.00 0.02 7.62 0.06 5.42 0.03 7.25 0.09 4.59 0.06 6.66 0.10

SHIMMER 25 4.67 0.03 5.54 0.03 5.12 0.03 5.52 0.01 4.67 0.03 5.54 0.03 3.78 0.05 4.72 0.03

SHIMMER 26 4.15 0.01 5.19 0.02 4.38 0.02 5.08 0.03 4.15 0.01 5.19 0.02 3.50 0.07 4.43 0.03

SHIMMER 27 3.50 0.03 5.08 0.03 3.55 0.04 4.94 0.01 3.50 0.03 5.08 0.03 3.14 0.04 4.47 0.01

SHIMMER 28 3.31 0.05 4.29 0.03 3.35 0.04 4.25 0.07 3.31 0.05 4.29 0.03 2.88 0.08 3.83 0.03

SHIMMER 29 3.32 0.03 4.69 0.01 3.35 0.04 4.58 0.04 3.32 0.03 4.69 0.01 2.93 0.07 4.07 0.04

SHIMMER 30 3.99 0.06 4.60 0.01 4.19 0.04 4.50 0.04 3.99 0.06 4.60 0.01 3.38 0.06 4.03 0.00

SHIMMER 31 4.15 0.04 4.70 0.03 4.43 0.06 4.55 0.05 4.15 0.04 4.70 0.03 3.64 0.04 4.14 0.05

SHIMMER 32 3.72 0.05 5.28 0.04 3.86 0.03 5.20 0.05 3.72 0.05 5.28 0.04 3.16 0.08 4.47 0.05

SHIMMER 33 3.48 0.02 4.38 0.07 3.55 0.02 4.28 0.10 3.48 0.02 4.38 0.07 3.01 0.05 3.95 0.05

SHIMMER 34 3.25 0.04 5.39 0.02 3.28 0.05 5.63 0.07 3.25 0.04 5.39 0.02 2.87 0.07 4.64 0.02

SHIMMER 35 3.88 0.03 4.46 0.02 4.06 0.02 4.37 0.06 3.88 0.03 4.46 0.02 3.19 0.07 3.88 0.06

SHIMMER 36 3.18 0.04 5.03 0.03 3.22 0.05 4.92 0.03 3.18 0.04 5.03 0.03 2.83 0.05 4.37 0.03

SHIMMER 37 2.95 0.05 4.51 0.03 3.01 0.06 4.43 0.09 2.95 0.05 4.51 0.03 2.62 0.09 4.02 0.04

SHIMMER 38 2.90 0.05 4.55 0.06 2.99 0.07 4.47 0.11 2.90 0.05 4.55 0.06 2.57 0.08 4.00 0.06

SHIMMER 39 4.44 0.05 5.87 0.03 4.79 0.02 5.92 0.01 4.44 0.05 5.87 0.03 3.67 0.05 4.91 0.05

SHIMMER 40 3.41 0.06 5.05 0.00 3.35 0.06 4.86 0.05 3.41 0.06 5.05 0.00 3.13 0.06 4.55 0.01

SHIMMER 41 3.38 0.06 6.84 0.08 3.35 0.06 7.21 0.04 3.38 0.06 6.84 0.08 3.11 0.07 6.00 0.07

SHIMMER 42 3.58 0.02 5.38 0.01 3.52 0.03 5.74 0.08 3.58 0.02 5.38 0.01 3.36 0.02 4.90 0.02

LUCA 1 2.94 0.03 4.39 0.04 3.01 0.05 4.39 0.09 2.94 0.03 4.39 0.04 2.62 0.06 3.90 0.03

LUCA 2 2.95 0.04 4.47 0.04 3.01 0.05 4.39 0.08 2.95 0.04 4.47 0.04 2.66 0.07 4.02 0.04

LUCA 3 2.96 0.05 4.47 0.05 3.02 0.06 4.49 0.08 2.96 0.05 4.47 0.05 2.66 0.07 4.06 0.04

LUCA 4 2.93 0.05 4.41 0.04 3.01 0.07 4.36 0.07 2.93 0.05 4.41 0.04 2.65 0.07 3.96 0.04

LUCA 5 2.92 0.05 4.38 0.03 2.96 0.06 4.37 0.08 2.92 0.05 4.38 0.03 2.62 0.09 3.92 0.03

LUCA 6 2.92 0.03 4.39 0.03 2.95 0.06 4.28 0.08 2.92 0.03 4.39 0.03 2.62 0.07 3.93 0.02

LUCA 7 2.95 0.05 4.40 0.03 2.98 0.06 4.32 0.08 2.95 0.05 4.40 0.03 2.64 0.07 3.91 0.04

LUCA 8 2.97 0.03 4.42 0.03 2.98 0.05 4.40 0.08 2.97 0.03 4.42 0.03 2.66 0.08 3.97 0.03

LUCA 9 3.00 0.05 4.37 0.05 3.07 0.06 4.38 0.10 3.00 0.05 4.37 0.05 2.71 0.07 3.93 0.04

LUCA 10 2.98 0.06 4.33 0.03 3.06 0.07 4.29 0.09 2.98 0.06 4.33 0.03 2.66 0.07 3.91 0.04

LUCA 11 3.02 0.05 4.63 0.07 3.09 0.05 4.62 0.10 3.02 0.05 4.63 0.07 2.74 0.07 4.20 0.03

LUCA 12 3.04 0.05 4.58 0.03 3.13 0.07 4.57 0.10 3.04 0.05 4.58 0.03 2.74 0.08 4.13 0.04

LUCA 13 2.96 0.05 4.69 0.03 3.00 0.06 4.79 0.09 2.96 0.05 4.69 0.03 2.67 0.07 4.22 0.03

LUCA 14 4.11 0.02 4.60 0.02 4.67 0.06 4.68 0.07 4.11 0.02 4.60 0.02 3.65 0.07 4.18 0.02

LUCA 15 3.12 0.03 4.66 0.04 3.24 0.06 4.69 0.10 3.12 0.03 4.66 0.04 2.83 0.07 4.23 0.04

LUCA 16 3.03 0.05 4.59 0.03 3.13 0.07 4.62 0.09 3.03 0.05 4.59 0.03 2.72 0.07 4.12 0.03

LUCA 17 3.02 0.04 4.49 0.04 3.12 0.06 4.50 0.10 3.02 0.04 4.49 0.04 2.71 0.06 4.02 0.05

LUCA 18 2.90 0.05 4.55 0.06 2.99 0.07 4.47 0.11 2.90 0.05 4.55 0.06 2.57 0.08 4.00 0.06

LUCA 19 3.25 0.04 5.39 0.02 3.28 0.05 5.63 0.07 3.25 0.04 5.39 0.02 2.87 0.07 4.64 0.02

LUCA 20 2.95 0.05 4.51 0.03 3.01 0.06 4.43 0.09 2.95 0.05 4.51 0.03 2.62 0.09 4.02 0.04
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Patients with their corresponding Database Pre and Post K-Fold Cross-Correlation

Table 25: Metrics Pre Cross-Correlation (MAE and STD) - Luca

Model Linear LMS Ridge SVM

Signal DBP SBP DBP SBP DBP SBP DBP SBP

Metric MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD

LUCA 1 1.94 2.30 5.12 5.31 2.16 2.47 5.08 5.74 1.94 2.30 5.12 5.31 2.05 2.85 4.61 3.93

LUCA 2 2.04 2.40 5.34 5.91 2.15 2.53 5.24 6.23 2.04 2.40 5.34 5.91 2.19 2.87 4.70 4.33

LUCA 3 2.10 2.46 5.46 5.97 2.25 2.63 5.45 6.32 2.10 2.46 5.46 5.97 2.20 2.88 4.70 4.52

LUCA 4 1.96 2.35 5.22 5.57 2.05 2.45 5.06 5.90 1.96 2.35 5.22 5.57 2.17 2.88 4.86 4.32

LUCA 5 1.98 2.34 5.06 5.74 2.24 2.55 5.10 6.12 1.98 2.34 5.06 5.74 2.02 2.71 4.50 4.52

LUCA 6 2.01 2.38 5.09 5.72 2.24 2.57 5.06 6.07 2.01 2.38 5.09 5.72 2.03 2.76 4.54 4.44

LUCA 7 2.12 2.45 5.10 5.71 2.33 2.65 5.07 6.07 2.12 2.45 5.10 5.71 2.11 2.80 4.52 4.36

LUCA 8 2.26 2.57 5.27 5.94 2.60 2.82 5.32 6.32 2.26 2.57 5.27 5.94 2.16 2.79 4.68 4.74

LUCA 9 2.19 2.51 4.95 5.29 2.25 2.64 4.69 5.66 2.19 2.51 4.95 5.29 2.40 3.03 4.64 4.12

LUCA 10 2.01 2.25 4.99 4.93 1.98 2.31 4.60 5.29 2.01 2.25 4.99 4.93 2.41 2.97 4.92 3.69

LUCA 11 2.27 2.64 6.51 3.95 2.32 2.74 5.80 4.29 2.27 2.64 6.51 3.95 2.51 3.16 6.38 2.74

LUCA 12 2.31 2.66 6.23 4.13 2.32 2.72 5.53 4.45 2.31 2.66 6.23 4.13 2.58 3.24 6.16 3.01

LUCA 13 2.23 2.54 6.25 4.11 2.50 2.79 5.41 4.40 2.23 2.54 6.25 4.11 2.23 2.87 6.06 2.99

LUCA 14 5.58 5.70 5.85 4.17 5.22 5.35 5.05 4.48 5.58 5.70 5.85 4.17 6.14 6.62 5.77 3.01

LUCA 15 2.56 2.90 6.37 3.95 2.49 2.87 5.54 4.24 2.56 2.90 6.37 3.95 2.88 3.54 6.30 2.81

LUCA 16 2.19 2.46 6.21 4.08 2.14 2.50 5.48 4.41 2.19 2.46 6.21 4.08 2.53 3.14 6.29 2.96

LUCA 17 2.19 2.50 5.76 4.20 2.19 2.56 5.03 4.55 2.19 2.50 5.76 4.20 2.47 3.10 5.83 2.86

LUCA 18 1.84 2.22 6.86 3.77 1.90 2.27 6.22 4.08 1.84 2.22 6.86 3.77 2.15 2.83 6.39 2.56

LUCA 19 3.81 3.83 9.73 5.22 3.96 3.97 8.93 5.30 3.81 3.83 9.73 5.22 3.79 3.77 9.51 4.99

LUCA 20 2.30 2.46 6.30 3.68 2.45 2.58 5.52 3.97 2.30 2.46 6.30 3.68 2.37 2.82 6.19 2.52

Table 26: Metrics Pre Cross-Correlation (MAE and STD) - Shimmer

Model Linear LMS Ridge SVM

Signal DBP SBP DBP SBP DBP SBP DBP SBP

Metric MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD

SHIMMER 1 9.38 7.90 12.76 10.59 9.65 7.78 13.31 10.11 9.38 7.90 12.76 10.59 6.76 6.38 11.71 8.25

SHIMMER 2 9.09 7.28 8.73 7.03 9.40 7.17 9.32 6.52 9.09 7.28 8.73 7.03 7.30 6.58 8.33 5.32

SHIMMER 3 8.45 6.87 2.80 2.20 8.77 6.77 2.30 2.50 8.45 6.87 2.80 2.20 6.25 5.91 4.34 4.13

SHIMMER 4 4.43 4.02 4.56 3.94 4.79 3.93 5.22 3.53 4.43 4.02 4.56 3.94 5.35 5.58 4.94 3.27

SHIMMER 5 11.48 54.98 19.19 161.24 10.77 46.01 24.28 204.44 11.48 54.98 19.19 161.24 5.44 5.47 2.56 3.18

SHIMMER 6 10.67 9.03 17.74 14.68 10.92 8.89 18.31 14.22 10.67 9.03 17.74 14.68 7.74 7.05 16.45 12.01

SHIMMER 7 7.73 6.56 6.41 5.78 8.01 6.44 7.01 5.36 7.73 6.56 6.41 5.78 5.79 5.79 5.67 4.23

SHIMMER 8 7.55 6.61 10.91 9.38 7.80 6.48 11.46 8.94 7.55 6.61 10.91 9.38 5.50 5.62 9.91 7.15

SHIMMER 9 7.15 6.13 5.82 5.39 7.42 6.01 6.42 5.00 7.15 6.13 5.82 5.39 5.23 5.36 5.03 3.91

SHIMMER 11 36.60 343.66 92.43 1001.34 31.68 282.52 116.23 1275.70 36.60 343.66 92.43 1001.34 5.67 5.59 6.99 5.03

SHIMMER 13 7.49 6.63 8.52 7.68 7.73 6.50 9.07 7.27 7.49 6.63 8.52 7.68 5.27 5.54 7.29 5.55

SHIMMER 14 22.29 145.15 47.80 407.06 20.43 119.19 57.51 520.31 22.29 145.15 47.80 407.06 7.78 7.04 14.12 10.33

SHIMMER 16 18.60 109.15 27.43 310.56 17.33 89.58 34.42 396.51 18.60 109.15 27.43 310.56 8.93 7.75 3.58 3.48

SHIMMER 17 7.44 6.33 1.98 2.53 7.73 6.22 1.99 2.68 7.44 6.33 1.98 2.53 6.08 5.96 2.90 3.52

SHIMMER 18 17.71 27.20 18.81 68.18 17.53 23.49 21.24 86.59 17.71 27.20 18.81 68.18 12.99 10.64 11.23 8.14

SHIMMER 19 8.51 4.93 4.29 4.73 7.67 5.07 4.76 4.43 8.51 4.93 4.29 4.73 10.59 9.06 3.29 3.50

SHIMMER 20 8.52 4.50 2.63 3.39 7.66 4.62 3.19 3.14 8.52 4.50 2.63 3.39 10.76 8.77 2.65 3.22

SHIMMER 21 8.11 6.87 6.36 5.81 8.39 6.75 6.91 5.37 8.11 6.87 6.36 5.81 5.50 5.83 5.24 4.16

SHIMMER 22 11.09 8.99 4.38 4.48 11.37 8.86 4.99 4.24 11.09 8.99 4.38 4.48 8.99 7.75 4.03 3.62

SHIMMER 23 8.80 47.16 15.06 143.97 7.29 40.15 18.32 181.09 8.80 47.16 15.06 143.97 4.55 5.10 2.55 3.33

SHIMMER 24 15.40 79.10 30.33 251.77 14.90 68.82 36.68 314.29 15.40 79.10 30.33 251.77 6.17 5.61 8.19 4.72

SHIMMER 25 5.30 4.85 2.15 2.54 5.55 4.72 1.97 2.64 5.30 4.85 2.15 2.54 3.82 4.26 3.47 3.70

SHIMMER 26 1.74 2.19 5.16 2.94 1.84 2.14 4.57 3.48 1.74 2.19 5.16 2.94 3.76 4.46 7.01 5.56

SHIMMER 27 3.80 1.69 5.33 2.90 2.96 1.75 4.62 3.35 3.80 1.69 5.33 2.90 5.84 5.88 6.67 5.44

SHIMMER 28 4.85 2.00 12.12 7.27 3.99 2.08 11.38 7.76 4.85 2.00 12.12 7.27 6.72 5.91 13.54 10.03

SHIMMER 29 5.06 2.20 8.27 4.67 4.19 2.27 7.54 5.19 5.06 2.20 8.27 4.67 7.07 6.24 9.68 7.40

SHIMMER 30 1.78 2.32 9.05 5.22 1.91 2.21 8.36 5.78 1.78 2.32 9.05 5.22 3.52 4.42 10.43 7.94

SHIMMER 31 2.01 2.49 8.52 4.75 2.27 2.39 7.87 5.27 2.01 2.49 8.52 4.75 3.90 4.67 10.45 7.85

SHIMMER 32 2.46 1.46 3.86 2.39 1.65 1.41 3.20 2.79 2.46 1.46 3.86 2.39 4.47 4.65 5.28 4.64

SHIMMER 33 3.58 1.55 13.92 8.59 2.73 1.57 13.16 9.06 3.58 1.55 13.92 8.59 5.87 5.45 15.47 11.48

SHIMMER 34 6.15 2.19 22.87 13.58 5.23 2.25 22.21 14.02 6.15 2.19 22.87 13.58 8.87 6.40 24.93 16.36

SHIMMER 35 1.71 2.06 10.09 5.80 1.58 1.98 9.31 6.23 1.71 2.06 10.09 5.80 3.90 4.42 11.99 8.88

SHIMMER 36 6.43 3.08 5.68 3.05 5.57 3.18 4.94 3.49 6.43 3.08 5.68 3.05 9.20 7.62 7.65 6.08

SHIMMER 37 8.72 3.84 16.24 9.62 7.81 3.92 15.57 10.08 8.72 3.84 16.24 9.62 11.06 7.74 18.04 12.37

SHIMMER 38 8.49 4.46 15.53 9.79 7.63 4.57 14.69 10.19 8.49 4.46 15.53 9.79 10.54 8.02 17.02 12.61

SHIMMER 39 3.47 3.44 1.52 2.42 3.81 3.35 2.17 2.42 3.47 3.44 1.52 2.42 2.99 3.89 2.43 3.19

SHIMMER 40 5.88 2.26 6.53 3.59 4.99 2.33 6.13 4.22 5.88 2.26 6.53 3.59 5.89 5.98 7.17 5.65

SHIMMER 41 5.47 2.32 6.86 6.04 4.61 2.41 7.42 5.59 5.47 2.32 6.86 6.04 6.63 6.23 6.45 4.59

SHIMMER 42 3.55 1.61 19.80 14.05 2.73 1.67 19.28 14.81 3.55 1.61 19.80 14.05 3.47 4.30 19.72 15.93
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Table 27: Metrics Post K-fold Cross-Correlation (MAE and STD) - Luca

Model Linear LMS Ridge SVM

Signal DBP SBP DBP SBP DBP SBP DBP SBP

Metric MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD

LUCA 1 2.45 0.00 3.15 0.01 2.59 0.00 3.39 0.01 2.45 0.00 3.15 0.01 2.22 0.02 2.84 0.03

LUCA 2 2.47 0.01 3.28 0.02 2.61 0.00 3.43 0.01 2.47 0.01 3.28 0.02 2.27 0.01 2.97 0.03

LUCA 3 2.47 0.00 3.33 0.02 2.61 0.01 3.50 0.02 2.47 0.00 3.33 0.02 2.27 0.01 3.00 0.03

LUCA 4 2.45 0.01 3.24 0.02 2.63 0.01 3.40 0.02 2.45 0.01 3.24 0.02 2.25 0.02 2.92 0.03

LUCA 5 2.43 0.02 3.17 0.01 2.54 0.03 3.37 0.00 2.43 0.02 3.17 0.01 2.23 0.02 2.89 0.02

LUCA 6 2.43 0.01 3.17 0.01 2.57 0.01 3.35 0.01 2.43 0.01 3.17 0.01 2.23 0.01 2.89 0.00

LUCA 7 2.46 0.00 3.18 0.01 2.58 0.01 3.37 0.02 2.46 0.00 3.18 0.01 2.25 0.01 2.88 0.01

LUCA 8 2.48 0.03 3.22 0.00 2.56 0.03 3.41 0.01 2.48 0.03 3.22 0.00 2.27 0.02 2.94 0.03

LUCA 9 2.53 0.01 3.16 0.01 2.67 0.01 3.38 0.02 2.53 0.01 3.16 0.01 2.33 0.00 2.92 0.00

LUCA 10 2.49 0.01 3.12 0.01 2.68 0.01 3.34 0.03 2.49 0.01 3.12 0.01 2.27 0.01 2.90 0.00

LUCA 11 2.55 0.02 3.47 0.00 2.71 0.02 3.73 0.04 2.55 0.02 3.47 0.00 2.36 0.03 3.22 0.03

LUCA 12 2.57 0.00 3.42 0.01 2.76 0.02 3.67 0.04 2.57 0.00 3.42 0.01 2.37 0.01 3.16 0.02

LUCA 13 2.49 0.01 3.56 0.01 2.58 0.01 3.87 0.04 2.49 0.01 3.56 0.01 2.28 0.01 3.24 0.01

LUCA 14 3.91 0.02 3.47 0.01 4.49 0.02 3.77 0.03 3.91 0.02 3.47 0.01 3.42 0.04 3.20 0.01

LUCA 15 2.69 0.02 3.57 0.01 2.91 0.01 3.85 0.04 2.69 0.02 3.57 0.01 2.47 0.02 3.25 0.01

LUCA 16 2.55 0.00 3.38 0.01 2.74 0.00 3.66 0.04 2.55 0.00 3.38 0.01 2.34 0.01 3.14 0.01

LUCA 17 2.54 0.00 3.25 0.01 2.73 0.00 3.52 0.04 2.54 0.00 3.25 0.01 2.33 0.01 3.01 0.01

LUCA 18 2.40 0.02 3.38 0.00 2.60 0.02 3.59 0.04 2.40 0.02 3.38 0.00 2.16 0.02 2.97 0.02

LUCA 19 2.80 0.02 4.45 0.01 2.89 0.03 4.89 0.04 2.80 0.02 4.45 0.01 2.49 0.01 3.69 0.05

LUCA 20 2.46 0.01 3.36 0.02 2.61 0.02 3.56 0.03 2.46 0.01 3.36 0.02 2.20 0.01 3.03 0.01

Table 28: Metrics Post Cross-Correlation (MAE and STD) - Shimmer

Model Linear LMS Ridge SVM

Signal DBP SBP DBP SBP DBP SBP DBP SBP

Metric MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD

SHIMMER 1 7.70 0.20 8.66 0.16 7.50 0.25 8.44 0.20 7.70 0.20 8.66 0.16 5.86 0.17 6.93 0.19

SHIMMER 2 7.35 0.21 7.46 0.14 7.12 0.24 7.21 0.17 7.35 0.21 7.46 0.14 5.85 0.22 6.30 0.21

SHIMMER 3 7.33 0.15 6.13 0.21 7.13 0.20 5.92 0.22 7.33 0.15 6.13 0.21 5.76 0.22 5.71 0.24

SHIMMER 4 6.35 0.14 6.60 0.20 6.19 0.17 6.41 0.20 6.35 0.14 6.60 0.20 5.63 0.16 5.89 0.18

SHIMMER 5 7.22 0.17 7.17 0.23 7.20 0.18 7.21 0.23 7.22 0.17 7.17 0.23 6.82 0.20 6.75 0.25

SHIMMER 6 8.00 0.22 9.88 0.19 7.80 0.27 9.71 0.24 8.00 0.22 9.88 0.19 5.89 0.23 7.46 0.18

SHIMMER 7 7.20 0.12 7.05 0.22 7.01 0.18 6.84 0.24 7.20 0.12 7.05 0.22 5.70 0.18 5.98 0.24

SHIMMER 8 7.28 0.23 8.15 0.14 7.09 0.29 7.93 0.17 7.28 0.23 8.15 0.14 5.65 0.26 6.55 0.21

SHIMMER 9 7.06 0.19 6.91 0.24 6.88 0.24 6.70 0.25 7.06 0.19 6.91 0.24 5.64 0.22 5.90 0.26

SHIMMER 11 7.96 0.13 8.96 0.18 7.97 0.14 8.98 0.19 7.96 0.13 8.96 0.18 7.57 0.19 8.88 0.18

SHIMMER 13 7.32 0.24 7.64 0.12 7.14 0.27 7.42 0.14 7.32 0.24 7.64 0.12 5.60 0.22 6.19 0.16

SHIMMER 14 9.03 0.13 11.43 0.13 9.08 0.14 11.53 0.11 9.03 0.13 11.43 0.13 8.39 0.19 10.95 0.15

SHIMMER 16 9.03 0.15 7.79 0.13 9.11 0.14 7.82 0.14 9.03 0.15 7.79 0.13 8.42 0.27 7.60 0.12

SHIMMER 17 7.17 0.17 6.12 0.20 6.98 0.20 5.97 0.23 7.17 0.17 6.12 0.20 5.82 0.19 5.63 0.24

SHIMMER 18 10.80 0.09 10.40 0.09 10.97 0.10 10.46 0.09 10.80 0.09 10.40 0.09 9.53 0.19 9.18 0.18

SHIMMER 19 7.09 0.15 6.67 0.18 6.84 0.20 6.50 0.22 7.09 0.15 6.67 0.18 6.08 0.22 5.80 0.20

SHIMMER 20 7.00 0.12 6.34 0.25 6.76 0.18 6.20 0.27 7.00 0.12 6.34 0.25 6.02 0.19 5.69 0.24

SHIMMER 21 7.37 0.22 7.11 0.24 7.17 0.27 6.90 0.26 7.37 0.22 7.11 0.24 5.74 0.27 5.96 0.28

SHIMMER 22 7.92 0.15 6.79 0.22 7.76 0.18 6.64 0.24 7.92 0.15 6.79 0.22 6.10 0.14 5.83 0.23

SHIMMER 23 6.56 0.22 6.70 0.24 6.38 0.22 6.75 0.24 6.56 0.22 6.70 0.24 5.66 0.23 6.22 0.27

SHIMMER 24 7.88 0.16 9.18 0.10 7.82 0.17 9.17 0.09 7.88 0.16 9.18 0.10 7.37 0.22 8.70 0.15

SHIMMER 25 6.70 0.16 6.16 0.21 6.54 0.22 5.97 0.24 6.70 0.16 6.16 0.21 5.51 0.20 5.71 0.23

SHIMMER 26 5.85 0.10 6.52 0.14 5.67 0.15 6.29 0.17 5.85 0.10 6.52 0.14 5.29 0.13 5.96 0.16

SHIMMER 27 6.26 0.19 6.70 0.13 5.97 0.22 6.49 0.18 6.26 0.19 6.70 0.13 5.47 0.23 6.17 0.19

SHIMMER 28 6.27 0.16 8.16 0.20 5.97 0.19 7.96 0.23 6.27 0.16 8.16 0.20 5.48 0.22 6.80 0.23

SHIMMER 29 6.33 0.16 7.36 0.18 6.04 0.19 7.16 0.21 6.33 0.16 7.36 0.18 5.57 0.22 6.54 0.19

SHIMMER 30 6.01 0.17 7.49 0.22 5.82 0.22 7.30 0.25 6.01 0.17 7.49 0.22 5.38 0.21 6.57 0.25

SHIMMER 31 6.05 0.15 7.44 0.18 5.89 0.21 7.23 0.21 6.05 0.15 7.44 0.18 5.36 0.18 6.42 0.23

SHIMMER 32 6.01 0.16 6.28 0.20 5.77 0.19 6.05 0.22 6.01 0.16 6.28 0.20 5.32 0.18 5.82 0.23

SHIMMER 33 6.17 0.20 8.67 0.25 5.89 0.25 8.49 0.30 6.17 0.20 8.67 0.25 5.39 0.27 7.03 0.22

SHIMMER 34 6.30 0.16 10.80 0.17 6.00 0.19 10.62 0.23 6.30 0.16 10.80 0.17 5.47 0.21 8.23 0.24

SHIMMER 35 5.97 0.16 7.68 0.17 5.76 0.21 7.50 0.21 5.97 0.16 7.68 0.17 5.30 0.19 6.46 0.21

SHIMMER 36 6.57 0.20 6.77 0.19 6.30 0.23 6.56 0.22 6.57 0.20 6.77 0.19 5.72 0.25 6.13 0.22

SHIMMER 37 6.74 0.09 9.04 0.15 6.46 0.14 8.81 0.19 6.74 0.09 9.04 0.15 5.74 0.16 7.14 0.17

SHIMMER 38 6.87 0.14 8.96 0.20 6.60 0.18 8.78 0.25 6.87 0.14 8.96 0.20 5.81 0.22 6.90 0.19

SHIMMER 39 6.21 0.21 6.10 0.21 6.06 0.24 5.96 0.22 6.21 0.21 6.10 0.21 5.34 0.18 5.54 0.22

SHIMMER 40 6.22 0.12 6.83 0.20 5.93 0.15 6.59 0.22 6.22 0.12 6.83 0.20 5.48 0.18 6.23 0.22

SHIMMER 41 6.32 0.17 7.15 0.26 6.02 0.21 6.93 0.29 6.32 0.17 7.15 0.26 5.55 0.24 6.19 0.26

SHIMMER 42 6.24 0.16 10.62 0.12 5.96 0.21 10.46 0.22 6.24 0.16 10.62 0.12 5.48 0.20 8.85 0.39
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Appendix B: Python Code

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import scipy.signal as sig

4 import scipy.io

5 from scipy.signal import savgol_filter

6 import os

7 import pandas as pd

8 import csv

9 import math

10 from scipy.interpolate import interp1d

11 from scipy.interpolate import CubicSpline

12 from sklearn.model_selection import train_test_split

13 from sklearn.linear_model import LinearRegression

14 from sklearn.metrics import mean_absolute_error

15 from sklearn.svm import SVR

16 from sklearn.linear_model import Ridge

17 from sklearn.preprocessing import StandardScaler

18 from sklearn.model_selection import KFold

19

20

21

22 def hl_envelopes_idx(s, dmin=1, dmax=1, split=False):

23 """

24 Calculates the upper and lower envelope of the signal based on local

maxima and minima.

25 Returns:

26 np.array: Signal filtered with the envelope removed.

27 """

28 # Find local maxima

29 lmax = (np.diff(np.sign(np.diff(s))) < 0).nonzero ()[0] + 1

30

31 if split:

32 # Calculate the mean of the signal

33 s_mid = np.mean(s)

34 # Consider only maxima above the mean

35 lmax = lmax[s[lmax] > s_mid]

36

37 # Filter local maxima based on dmax

38 lmax = lmax[[i + np.argmax(s[lmax[i:i + dmax ]]) for i in range(0, len(

lmax), dmax)]]

39

40 # Remove the envelope based on local maxima

41 s_filt = np.zeros(len(s))

42 n = 0
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43 for i in range(len(s)):

44 if i == lmax[n]:

45 s_filt[i] = s[i] - s[lmax[n]]

46 if n < len(lmax) - 1:

47 n += 1

48 else:

49 s_filt[i] = s[i] - s[lmax[n]]

50

51 return s_filt

52

53 def filter_ecg_signal(ecg_head , fs_ecg , window_size):

54 # mean -remove

55 ecg_head = ecg_head - np.mean(ecg_head)

56 fNy = fs_ecg / 2

57

58 # pass -band 0.5 40 Hz

59 b_band , a_band = sig.butter(4, [0.5 / fNy , 40 / fNy], btype=’band’)

60 ecg_filtered = sig.filtfilt(b_band , a_band , ecg_head)

61

62 # Notch 50 Hz (if fs_ecg > 100 Hz)

63 if fs_ecg > 100:

64 b_notch , a_notch = sig.iirnotch (50 / fNy , Q=30)

65 ecg_filtered = sig.filtfilt(b_notch , a_notch , ecg_filtered)

66

67 ecg_filtered = hl_envelopes_idx(ecg_filtered , dmin=1, dmax=1, split=

False)

68 return ecg_filtered

69

70 def filter_ppg_signal(ppg_head , fs, window_size):

71 window_size_samples = int(window_size * fs)

72 ppg_head = ppg_head - np.mean(ppg_head)

73 fNy = fs / 2

74

75 # --- Step 1: High -pass filter to remove baseline wander ---

76 cutoff_high = 0.5 # Cutoff frequency for high -pass filter (Hz)

77 b_high , a_high = sig.butter(4, cutoff_high / fNy , btype=’high’)

78 ppg_high_passed = sig.filtfilt(b_high , a_high , ppg_head)

79

80 # --- Step 2: Low -pass filter to remove high -frequency noise ---

81 cutoff_low = 8 # Cutoff frequency for low -pass filter (Hz)

82 b_low , a_low = sig.butter(4, cutoff_low / fNy , btype=’low’)

83 ppg_low_passed = sig.filtfilt(b_low , a_low , ppg_high_passed)

84

85

86 return ppg_low_passed

87
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88 def synchronize_signals(ecg_filtered , ppg_filtered , t_ecg , t_ppg):

89 """

90 Synchronizes ECG and PPG signals based on their time arrays.

91 """

92 # Align the start of the signals

93 if t_ecg [0] < t_ppg [0]:

94 for i in range(len(t_ecg)):

95 if t_ecg[i] > t_ppg [0]:

96 ind = np.arange(0, i - 1)

97 ecg_filtered = np.delete(ecg_filtered , ind)

98 t_ecg = np.delete(t_ecg , ind)

99 break

100 else:

101 for i in range(len(t_ppg)):

102 if t_ppg[i] > t_ecg [0]:

103 ind = np.arange(0, i - 1)

104 ppg_filtered = np.delete(ppg_filtered , ind)

105 t_ppg = np.delete(t_ppg , ind)

106 break

107

108

109 # Bring signals to the same length

110 if len(t_ecg) > len(t_ppg):

111 t = t_ppg

112 ind = np.arange(0, len(t_ppg))

113 ecg_filtered = ecg_filtered[ind]

114 t_ecg = t_ecg[ind]

115 else:

116 t = t_ecg

117 ind = np.arange(0, len(t_ecg))

118 ppg_filtered = ppg_filtered[ind]

119 t_ppg = t_ppg[ind]

120

121 return ecg_filtered , ppg_filtered , t_ecg , t_ppg , t

122

123 def peaks_detection(s_filt , ts, time , window_sec =0.2):

124 """

125 Detects local maxima every window_sec seconds.

126 Args:

127 s_filt (np.array): Filtered signal.

128 ts (np.array): Time array corresponding to the signal.

129 time (np.array): Full time array for the signal.

130 window_sec (float): Window size in seconds for local maxima search.

131 Returns:

132 np.array: Detected peak values.

133 np.array: Corresponding timestamps of the peaks.
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134 """

135 peaks = []

136 peak_times = []

137 start_idx = 0

138 n = len(s_filt)

139 while start_idx < n:

140 # find the end of the current window

141 end_time = ts[start_idx] + window_sec

142 end_idx = start_idx

143 while end_idx < n and ts[end_idx] < end_time:

144 end_idx += 1

145 # find the local maximum in the current window

146 if end_idx > start_idx:

147 local_max_idx = np.argmax(s_filt[start_idx:end_idx ]) + start_idx

148 peaks.append(s_filt[local_max_idx ])

149 peak_times.append(ts[local_max_idx ])

150 start_idx = end_idx

151 return np.array(peaks), np.array(peak_times)

152

153 def clean_peaks(peaks , times , n_std=2, min_distance =0.8):

154

155 stats_window = 1 # seconds

156 peaks = np.array(peaks)

157 times = np.array(times)

158 mask = np.ones(len(peaks), dtype=bool)

159

160 # Static filter: the peak must be within n_std of the local mean

161 for i in range(len(peaks)):

162 t0 = times[i] - stats_window /2

163 t1 = times[i] + stats_window /2

164 idx = np.where((times >= t0) & (times <= t1))[0]

165 if len(idx) < 2:

166 continue

167 local_mean = np.mean(peaks[idx])

168 local_std = np.std(peaks[idx])

169 if not (local_mean - n_std*local_std < peaks[i] < local_mean + n_std

*local_std):

170 mask[i] = False

171

172

173 peaks = peaks[mask]

174 times = times[mask]

175

176 # second filter: minimum distance between peaks

177 if len(peaks) > 1: # Check if there are enough peaks to filter

178 keep = []
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179 i = 0

180 while i < len(peaks):

181 #if the peaks are too close , keep the one with the highest value

and remove the other

182 close_idx = np.where((times > times[i]) & (times - times[i] <

min_distance))[0]

183 if close_idx.size > 0:

184 group_idx = np.concatenate (([i], close_idx))

185 max_idx = group_idx[np.argmax(peaks[group_idx ])]

186 keep.append(max_idx)

187 i = close_idx [-1] + 1

188 else:

189 keep.append(i)

190 i += 1

191 peaks = peaks[keep]

192 times = times[keep]

193

194 return peaks , times

195

196 def feat_reduction(feat , t_fitted):

197

198 row = np.zeros(len(t_fitted)) # Initialize the reduced feature array

199 T = 0 # Initialize the time window tracker

200

201 # Loop through the time array

202 for i in range(len(t_fitted) - 1):

203 if i >= T:

204 for j in range(i + 1, len(t_fitted)):

205 # Check if the time difference is at least 10 seconds

206 if t_fitted[j] - t_fitted[i] >= 10:

207 ind1 = np.arange(i, j) # Indices within the 10-second

window

208 vect_feat = feat[ind1] # Extract feature values within

the window

209 val_feat = np.mean(vect_feat) # Calculate the mean of

the feature values

210 row[ind1] = val_feat # Assign the mean value to the

corresponding indices

211 T = j # Update the time window tracker

212 break

213

214 # Handle the last window if it’s smaller than 10 seconds

215 for i in range(len(row)):

216 if row[i] == 0:

217 ind1 = np.arange(i, len(row)) # Indices for the remaining

values
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218 val_feat = np.mean(feat[ind1]) # Calculate the mean of the

remaining values

219 row[ind1] = val_feat # Assign the mean value to the remaining

indices

220 break

221

222 return row

223

224 def get_at_ref_times(signal , t_uniform , ref_times):

225 vals = []

226 for t in ref_times:

227 idx = np.argmin(np.abs(t_uniform - t))

228 vals.append(signal[idx])

229 return np.array(vals)

230

231 def extract_features_reg(ecg , ppg , t_ecg , t_ppg , ref_file ,fs_ecg , fs_ppg):

232 # Preprocess

233 ecg = ecg[round (20 * fs_ecg):-round (30 * fs_ecg)]

234 t_ecg = t_ecg[round (20 * fs_ecg):-round (30 * fs_ecg)]

235 ppg = ppg[round (20 * fs_ppg):-round (30 * fs_ppg)]

236 t_ppg = t_ppg[round (20 * fs_ppg):-round (30 * fs_ppg)]

237

238 ecg_filtered = filter_ecg_signal(ecg , fs_ecg ,window_size =0.5)

239 ppg_filtered = filter_ppg_signal(ppg , fs_ppg , window_size =0.5)

240

241 t_ecg = np.linspace(0, len(ecg_filtered)/fs_ecg , len(ecg_filtered))

242 t_ppg = np.linspace(0, len(ppg_filtered)/fs_ppg , len(ppg_filtered))

243 ecg_synced , ppg_synced , _, _, t_synced = synchronize_signals(

244 ecg_filtered , ppg_filtered , t_ecg , t_ppg

245 )

246

247 r_peaks , r_times = peaks_detection(ecg_synced , t_synced , t_synced ,

window_sec =1)

248 s_peaks , s_times = peaks_detection(ppg_synced , t_synced , t_synced ,

window_sec =0.5)

249 r_peaks , r_times = clean_peaks(r_peaks , r_times , n_std =2)

250 s_peaks , s_times = clean_peaks(s_peaks , s_times , n_std =2)

251

252

253 ptt , hr, timetable = [], [], []

254 T = 0

255 for i in range(len(r_peaks)):

256 if i >= T:

257 for j in range(len(s_peaks)):

258 if s_times[j] > r_times[i]:

259 ptt.append(s_times[j] - r_times[i])
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260 for k in range(i + 1, len(r_peaks)):

261 if r_peaks[k] > 0:

262 hr.append (60 / (r_times[k] - r_times[i]))

263 timetable.append(r_times[i])

264 T = k

265 break

266 break

267

268 ptt , hr, timetable = np.array(ptt), np.array(hr), np.array(timetable)

269 # Zero elements deletion and arrays cut at the same length

270 ind = np.array(np.where(ptt == 0))

271 ptt = np.delete(ptt , ind)

272 ind = np.array(np.where(hr == 0))

273 hr = np.delete(hr, ind)

274 ind = np.array(np.where(timetable == 0))

275 timetable = np.delete(timetable , ind)

276

277 if len(ptt) > len(hr):

278 ind = np.arange(0, len(hr))

279 ptt = ptt[ind]

280 timetable = timetable[ind]

281 else:

282 ind = np.arange(0, len(ptt))

283 hr = hr[ind]

284 timetable = timetable[ind]

285

286 #clean the data

287 mean_PTT = np.mean(ptt) #cleaning the data

288 dev_PTT = np.std(ptt)

289 mean_HR = np.mean(hr)

290 dev_HR = np.std(hr)

291

292 for i in range(len(timetable)):

293 if (

294 ptt[i] > mean_PTT + dev_PTT

295 or ptt[i] < mean_PTT - dev_PTT

296 or hr[i] > mean_HR + dev_HR

297 or hr[i] < mean_HR - dev_HR

298 ):

299 ptt[i] = 0

300 hr[i] = 0

301 timetable[i] = 0

302

303 ind = np.array(np.where(ptt == 0))

304 ptt = np.delete(ptt , ind)

305 ind = np.array(np.where(hr == 0))
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306 hr = np.delete(hr, ind)

307 ind = np.array(np.where(timetable == 0))

308 timetable = np.delete(timetable , ind)

309

310 ref_df = pd.read_csv(ref_file , delimiter=’;’, header=None)

311 ref_time = (ref_df.iloc[:, 0]. values - ref_df.iloc[0, 0]) / 1000

312 sbp , dbp = ref_df.iloc[:, 1].values , ref_df.iloc[:, 2]. values

313 timetable_min = timetable / 60

314

315 SBP_fit = np.interp(timetable_min , ref_time /60, sbp)

316 DBP_fit = np.interp(timetable_min , ref_time /60, dbp)

317

318 interp_time = timetable

319

320 SBP_fit = np.interp(interp_time , timetable , SBP_fit)

321 DBP_fit = np.interp(interp_time , timetable , DBP_fit)

322 HR_fit = np.interp(interp_time , timetable , hr)

323 PTT_fit = np.interp(interp_time , timetable , ptt)

324

325 sbp_reduced = feat_reduction(SBP_fit , interp_time)

326 dbp_reduced = feat_reduction(DBP_fit , interp_time)

327 hr_reduced = feat_reduction(HR_fit , interp_time)

328 ptt_reduced = feat_reduction(PTT_fit , interp_time)

329

330 sbp_resampled = np.interp(timetable , interp_time , sbp_reduced)

331 dbp_resampled = np.interp(timetable , interp_time , dbp_reduced)

332 hr_resampled = np.interp(timetable , interp_time , hr_reduced)

333 ptt_resampled = np.interp(timetable , interp_time , ptt_reduced)

334

335 min_len = min(len(ptt_resampled), len(hr_resampled), len(sbp_resampled),

len(dbp_resampled))

336 return ptt_resampled [: min_len], hr_resampled [: min_len], sbp_resampled [:

min_len], dbp_resampled [: min_len]

337

338 def lms(X, y, mu=0.001 , epochs =1):

339 """

340 LMS algorithm for linear regression.

341 X: input features (n_samples , n_features)

342 y: target (n_samples ,)

343 mu: learning rate

344 epochs: number of passes over the data

345 Returns: weights , bias , prediction history

346 """

347 n_samples , n_features = X.shape

348 w = np.zeros(n_features)

349 b = 0
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350 y_pred_hist = []

351

352 for epoch in range(epochs):

353 for i in range(n_samples):

354 y_pred = np.dot(w, X[i]) + b

355 error = y[i] - y_pred

356 w += 2 * mu * error * X[i]

357 b += 2 * mu * error

358 y_pred_hist.append(y_pred)

359 return w, b, np.array(y_pred_hist)

360

361 class Patient:

362 def __init__(self , pid ,dataset , fs_ecg =504.12 , fs_ppg =504.12):

363 self.dataset = dataset

364 self.pid = pid

365 self.fs_ecg = fs_ecg

366 self.fs_ppg = fs_ppg

367 self.ecg = None

368 self.ppg = None

369 self.t_ecg = None

370 self.t_ppg = None

371 self.ecg_filtered = None

372 self.ppg_filtered = None

373 self.ecg_synced = None

374 self.ppg_synced = None

375 self.t_synced = None

376 self.r_peaks = None

377 self.r_times = None

378 self.s_peaks = None

379 self.s_times = None

380 self.ptt = None

381 self.hr = None

382 self.timetable = None

383 self.sbp = None

384 self.dbp = None

385

386

387 def load_signals(self):

388

389 if self.pid == "LUCA":

390 ecg_mat = scipy.io.loadmat(f"{self.pid}_1_ECG.mat")

391 self.ecg = ecg_mat[’ECG_signal ’]. flatten ()

392 self.t_ecg = ecg_mat[’ECG_ts ’]. flatten () / 1000

393

394 ppg_mat = scipy.io.loadmat(f"{self.pid}_1_PPG.mat")

395 self.ppg = ppg_mat[’PPG_signal ’]. flatten ()
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396 self.t_ppg = ppg_mat[’PPG_ts ’]. flatten () / 1000

397 else:

398 ecg_mat = scipy.io.loadmat(f"SHIMMER_{self.pid}_ECG.mat")

399 self.ecg = ecg_mat[’signal ’]. flatten ()

400 self.t_ecg = ecg_mat[’ts’]. flatten () / 1000

401

402 ppg_mat = scipy.io.loadmat(f"SHIMMER_{self.pid}_PPG.mat")

403 self.ppg = ppg_mat[’signal ’]. flatten ()

404 self.t_ppg = ppg_mat[’ts’]. flatten () / 1000

405

406 self.ecg_head = self.ecg.copy()

407 self.ts_ecg = self.t_ecg.copy()

408 self.ppg_head = self.ppg.copy()

409 self.ts_ppg = self.t_ppg.copy()

410 # samples frequencies

411 fs_ecg = self.fs_ecg

412 fs_ppg = self.fs_ppg

413

414

415 # Remove the first 20 seconds (noise)

416 cut_int_ecg = round (20 * fs_ecg)

417 cut_int_ppg = round (20 * fs_ppg)

418 self.ecg_head = self.ecg_head[cut_int_ecg :]

419 self.ts_ecg = self.ts_ecg[cut_int_ecg :]

420 self.ppg_head = self.ppg_head[cut_int_ppg :]

421 self.ts_ppg = self.ts_ppg[cut_int_ppg :]

422

423 # Remove last 30 seconds (noise)

424 cut_end_ecg = round (30 * fs_ecg)

425 cut_end_ppg = round (30 * fs_ppg)

426 if cut_end_ecg < len(self.ecg_head):

427 self.ecg_head = self.ecg_head[:- cut_end_ecg]

428 self.ts_ecg = self.ts_ecg[:- cut_end_ecg]

429 if cut_end_ppg < len(self.ppg_head):

430 self.ppg_head = self.ppg_head[:- cut_end_ppg]

431 self.ts_ppg = self.ts_ppg[:- cut_end_ppg]

432

433 self.t_ecg = self.ts_ecg

434 self.t_ppg = self.ts_ppg

435

436 def preprocess(self):

437

438 self.ecg_filtered = filter_ecg_signal(self.ecg_head , self.fs_ecg ,

window_size =0.2)

439 self.ppg_filtered = filter_ppg_signal(self.ppg_head , self.fs_ppg ,

window_size =0.5)
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440

441 ts_ecg = np.arange(len(self.ecg_head)) / self.fs_ecg

442 ts_ppg = np.arange(len(self.ppg_head)) / self.fs_ppg

443 self.t_ecg = np.linspace(0, len(self.ecg_filtered) / self.fs_ecg ,

len(self.ecg_filtered))

444 self.t_ppg = np.linspace(0, len(self.ppg_filtered) / self.fs_ppg ,

len(self.ppg_filtered))

445

446 plt.figure ()

447 plt.plot(ts_ecg , self.ecg_head , ’b-’, label=’ECG’)

448 plt.plot(self.t_ecg , self.ecg_filtered , ’r-’, label=’ECG filtered ’)

449 plt.xlabel(’Time (s)’)

450 plt.ylabel(’ECG Amplitude (mV)’)

451 plt.legend ()

452 plt.grid(True)

453 plt.title(f’ECG signal {self.pid}’)

454

455 plt.figure ()

456 plt.plot(ts_ppg , self.ppg_head , ’b-’, label=’PPG’)

457 plt.plot(self.t_ppg , self.ppg_filtered , ’r-’, label=’PPG filtered ’)

458 plt.xlabel(’Time (s)’)

459 plt.ylabel(’PPG Amplitude (mV)’)

460 plt.legend ()

461 plt.grid(True)

462 plt.title(f’PPG signal {self.pid}’)

463 plt.show()

464

465 def synchronize(self):

466 t_ecg = np.linspace(0, len(self.ecg_filtered) / self.fs_ecg , len(

self.ecg_filtered))

467 t_ppg = np.linspace(0, len(self.ppg_filtered) / self.fs_ppg , len(

self.ppg_filtered))

468 self.ecg_synced , self.ppg_synced , _, _, self.t_synced =

synchronize_signals(

469 self.ecg_filtered , self.ppg_filtered , t_ecg , t_ppg

470 )

471

472 plt.figure ()

473 fig , ax1 = plt.subplots ()

474 ax1.plot(self.t_synced , self.ecg_synced , ’b-’, label=’ECG Synced ’)

475 ax1.set_xlabel(’Time (s)’)

476 ax1.set_ylabel(’ECG Amplitude (mV)’, color=’b’)

477 ax1.tick_params(axis=’y’, labelcolor=’b’)

478 ax1.grid(True)

479

480 ax2 = ax1.twinx()
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481 ax2.plot(self.t_synced , self.ppg_synced , ’r-’, label=’PPG Synced ’)

482 ax2.set_ylabel(’PPG Amplitude (mV)’, color=’r’)

483 ax2.tick_params(axis=’y’, labelcolor=’r’)

484

485 fig.suptitle(f’Synchronized Signals for Patient {self.pid}’)

486 fig.tight_layout ()

487 plt.legend(loc=’upper right’)

488 ax1.legend(loc=’upper left’)

489 plt.show()

490

491 def detect_peaks(self):

492 self.r_peaks , self.r_times = peaks_detection(self.ecg_synced , self.

t_synced , self.t_synced , window_sec =0.4)

493 self.s_peaks , self.s_times = peaks_detection(self.ppg_synced , self.

t_synced , self.t_synced , window_sec =0.5)

494 self.r_peaks , self.r_times = clean_peaks(self.r_peaks , self.r_times ,

n_std =2)

495 self.s_peaks , self.s_times = clean_peaks(self.s_peaks , self.s_times ,

n_std =2)

496

497 plt.figure ()

498 plt.plot(self.t_synced , self.ecg_synced , label="Filtered ECG (synced

)")

499 plt.plot(self.r_times , self.r_peaks , ’o’, label="R-peaks")

500 plt.xlabel("Time (s)")

501 plt.ylabel("ECG Amplitude (mV)")

502 plt.title(f"ECG Signal with Detected Peaks - Patient: {self.pid}")

503 plt.legend ()

504 plt.grid()

505 plt.show()

506

507 plt.figure ()

508 plt.plot(self.t_synced , self.ppg_synced , label="Filtered PPG")

509 plt.plot(self.s_times , self.s_peaks , ’o’, label="S-peaks")

510 plt.xlabel("Time (s)")

511 plt.ylabel("PPG Amplitude (mV)")

512 plt.title(f"PPG Signal with Detected Peaks - Patient: {self.pid}")

513 plt.legend ()

514 plt.grid()

515 plt.show()

516

517 def extract_features(self):

518 n = 0

519 T = 0

520 found = 0

521 ptt = np.zeros(len(self.ecg_synced))
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522 hr = np.zeros(len(self.ecg_synced))

523 timetable = np.zeros(len(self.ecg_synced))

524 for i in range(len(self.r_peaks)):

525 if i >= T:

526 if self.r_peaks[i] > 0:

527 found = 0

528 for j in range(len(self.s_peaks)):

529 if self.s_peaks[j] > 0 and self.s_times[j] > self.

r_times[i]:

530 ptt[n] = self.s_times[j] - self.r_times[i]

531 for k in range(i + 1, len(self.r_peaks)):

532 if self.r_peaks[k] > 0:

533 hr[n] = 60 / (self.r_times[k] - self.

r_times[i])

534 timetable[n] = self.r_times[i]

535 n += 1

536 T = k

537 found = 1

538 break

539 break

540 # Clean arrays

541 ind = np.where(ptt == 0)

542 ptt = np.delete(ptt , ind)

543 ind = np.where(hr == 0)

544 hr = np.delete(hr, ind)

545 ind = np.where(timetable == 0)

546 timetable = np.delete(timetable , ind)

547 if len(ptt) > len(hr):

548 ind = np.arange(0, len(hr))

549 ptt = ptt[ind]

550 timetable = timetable[ind]

551 else:

552 ind = np.arange(0, len(ptt))

553 hr = hr[ind]

554 timetable = timetable[ind]

555 self.ptt = ptt

556 self.hr = hr

557 self.timetable = timetable

558

559 plt.figure ()

560 ax1 = plt.gca() # Get the current axis

561 ax1.plot(self.timetable , self.hr, ’b-’, label=’Heart Rate’)

562 ax1.set_xlabel(’Time (s)’)

563 ax1.set_ylabel(’Heart Rate (bpm)’, color=’b’)

564 ax1.tick_params(axis=’y’, labelcolor=’b’)

565
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566 ax2 = ax1.twinx() # Create a twin y-axis sharing the same x-axis

567 ax2.plot(self.timetable , self.ptt , ’r-’, label=’Pulse Transit Time’)

568 ax2.set_ylabel(’Pulse Transit Time (s)’, color=’r’)

569 ax2.tick_params(axis=’y’, labelcolor=’r’)

570

571 plt.title(f’Heart Rate and Pulse Transit Time patient: {self.pid}’)

572 plt.legend(loc=’upper right’)

573 ax1.legend(loc=’upper left’)

574 plt.grid()

575 plt.show()

576

577 def load_reference_bp(self):

578 #interpolation of the signals to the same sampling frequency

579 self.time_ref_device = []

580 self.sbp = [] # Systolic Blood Pressure

581 self.dbp = [] # Diastolic Blood Pressure

582 if self.pid == "LUCA":

583 with open(f"./{ self.pid}_ref_1.csv", ’r’) as filecsv:

584 reader = csv.reader(filecsv , delimiter=";")

585 for row in reader:

586 self.time_ref_device.append(int(row [0])) # First column

: Time in ms

587 self.sbp.append(int(row [1])) # Second column:

Systolic BP

588 self.dbp.append(int(row [2])) # Third column: Diastolic

BP

589 else:

590 with open(f"./ SHIMMER_{self.pid}.csv", ’r’) as filecsv:

591 reader = csv.reader(filecsv , delimiter=";")

592 for row in reader:

593 self.time_ref_device.append(int(row [0])) # First column

: Time in ms

594 self.sbp.append(int(row [1])) # Second column:

Systolic BP

595 self.dbp.append(int(row [2])) # Third column: Diastolic

BP

596

597

598 print("Systolic Blood Pressure:", self.sbp)

599 print("Diastolic Blood Pressure:", self.dbp)

600 self.time_ref_device = np.array(self.time_ref_device) # Convert to

seconds

601 self.time_ref_device= self.time_ref_device - 60*np.ones(len(self.

time_ref_device)) # Remove 60ms delay

602 self.time_ref_device = (self.time_ref_device - self.time_ref_device

[0]) /1000
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603 print("Time Reference Device:", self.time_ref_device)

604

605 # Generate an interpolating time array from ECG and PPG timestamps

606 n = np.where(self.t_ecg >= self.timetable [0]) [0][0] # Find the

index of the first timestamp in timetable

607 m = np.where(self.t_ecg <= self.timetable [-1])[0][ -1] # Find the

index of the last timestamp in timetable

608 ind = np.arange(n, m + 1) # Create an index range from n to m

609 interp_time = self.t_ecg[ind] # Interpolating time array based on

ECG timestamps

610

611 # Interpolate SBP and DBP values

612 SBP_fit = np.interp(interp_time , self.time_ref_device , self.sbp) #

Interpolate SBP

613 DBP_fit = np.interp(interp_time , self.time_ref_device , self.dbp) #

Interpolate DBP

614

615 # Interpolate HR and PTT values using cubic splines

616 HR_fit = CubicSpline(self.timetable , self.hr)(interp_time)

617 PTT_fit = CubicSpline(self.timetable , self.ptt)(interp_time)

618

619 # Reduce dimensionality (10- second intervals)

620 sbp_reduced = feat_reduction(SBP_fit , interp_time)

621 dbp_reduced = feat_reduction(DBP_fit , interp_time)

622 hr_reduced = feat_reduction(HR_fit , interp_time)

623 ptt_reduced = feat_reduction(PTT_fit , interp_time)

624

625 # Resample reduced arrays back to the timetable

626 self.sbp_resampled_p = np.interp(self.timetable , interp_time ,

sbp_reduced) # Resample SBP

627 self.dbp_resampled_p = np.interp(self.timetable , interp_time ,

dbp_reduced) # Resample DBP

628 self.hr_resampled_p = np.interp(self.timetable , interp_time ,

hr_reduced) # Resample HR

629 self.ptt_resampled_p = np.interp(self.timetable , interp_time ,

ptt_reduced) # Resample PTT

630

631

632

633 def get_features(self):

634 return self.ptt_resampled_p , self.hr_resampled_p , self.

sbp_resampled_p , self.dbp_resampled_p , self.timetable

635

636 def regression_methods(self , fs_ecg =504.12 , fs_ppg =504.12):

637 NUM_PATIENTS = 20

638 NUM_SHIMMER = 20
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639 all_ptt , all_hr , all_sbp , all_dbp , groups = [], [], [], [], []

640

641 try:

642 if self.dataset == 1:

643 for pid in range(20, NUM_SHIMMER + 2 ):

644 # SHIMMER

645 ecg_mat = scipy.io.loadmat(f"SHIMMER_{pid}_ECG.mat")

646 ecg = ecg_mat[’signal ’]. flatten ()

647 t_ecg = ecg_mat[’ts’]. flatten () / 1000

648

649 ppg_mat = scipy.io.loadmat(f"SHIMMER_{pid}_PPG.mat")

650 ppg = ppg_mat[’signal ’]. flatten ()

651 t_ppg = ppg_mat[’ts’]. flatten () / 1000

652

653 ref_file = f"SHIMMER_{pid}.csv"

654 ptt , hr, sbp , dbp = extract_features_reg(ecg , ppg , t_ecg

, t_ppg , ref_file , fs_ecg , fs_ppg)

655 all_ptt.append(ptt)

656 all_hr.append(hr)

657 all_sbp.append(sbp)

658 all_dbp.append(dbp)

659 groups.append(np.full(len(ptt), pid))

660

661 for pid in range(1, NUM_PATIENTS ):

662 # LUCA

663 ecg_mat = scipy.io.loadmat(f"LUCA_{pid}_ECG.mat")

664 ecg = ecg_mat[’ECG_signal ’]. flatten ()

665 t_ecg = ecg_mat[’ECG_ts ’]. flatten () / 1000

666

667 ppg_mat = scipy.io.loadmat(f"LUCA_{pid}_PPG.mat")

668 ppg = ppg_mat[’PPG_signal ’]. flatten ()

669 t_ppg = ppg_mat[’PPG_ts ’]. flatten () / 1000

670

671 ref_file = f"LUCA_ref_{pid}.csv"

672 ptt , hr, sbp , dbp = extract_features_reg(ecg , ppg , t_ecg

, t_ppg , ref_file , fs_ecg , fs_ppg)

673 all_ptt.append(ptt)

674 all_hr.append(hr)

675 all_sbp.append(sbp)

676 all_dbp.append(dbp)

677 groups.append(np.full(len(ptt), 43 + pid)) # 99 for

LUCA

678

679 elif self.dataset == 2:

680 for pid in range(18, NUM_PATIENTS + 13 ):

681 if pid == 10 or pid == 12 or pid == 21 or pid == 20:

110



682 continue

683 ecg_mat = scipy.io.loadmat(f"SHIMMER_{pid}_ECG.mat")

684 ecg = ecg_mat[’signal ’]. flatten ()

685 t_ecg = ecg_mat[’ts’]. flatten () / 1000

686

687 ppg_mat = scipy.io.loadmat(f"SHIMMER_{pid}_PPG.mat")

688 ppg = ppg_mat[’signal ’]. flatten ()

689 t_ppg = ppg_mat[’ts’]. flatten () / 1000

690

691 ref_file = f"SHIMMER_{pid}.csv"

692 ptt , hr, sbp , dbp = extract_features_reg(ecg , ppg , t_ecg

, t_ppg , ref_file , fs_ecg , fs_ppg)

693 all_ptt.append(ptt)

694 all_hr.append(hr)

695 all_sbp.append(sbp)

696 all_dbp.append(dbp)

697 groups.append(np.full(len(ptt), pid))

698

699 elif self.dataset == 3:

700 for pid in range(1, NUM_PATIENTS ):

701 if pid == 10 or pid == 12 or pid == 21 or pid == 20:

702 continue

703 ecg_mat = scipy.io.loadmat(f"LUCA_{pid}_ECG.mat")

704 ecg = ecg_mat[’ECG_signal ’]. flatten ()

705 t_ecg = ecg_mat[’ECG_ts ’]. flatten () / 1000

706

707 ppg_mat = scipy.io.loadmat(f"LUCA_{pid}_PPG.mat")

708 ppg = ppg_mat[’PPG_signal ’]. flatten ()

709 t_ppg = ppg_mat[’PPG_ts ’]. flatten () / 1000

710

711 ref_file = f"LUCA_ref_{pid}.csv"

712 ptt , hr, sbp , dbp = extract_features_reg(ecg , ppg , t_ecg

, t_ppg , ref_file , fs_ecg , fs_ppg)

713 all_ptt.append(ptt)

714 all_hr.append(hr)

715 all_sbp.append(sbp)

716 all_dbp.append(dbp)

717 groups.append(np.full(len(ptt), 43 + pid)) # 99 for

LUCA

718 else:

719 raise ValueError("Invalid dataset option. Choose 1, 2, or 3.

")

720 except Exception as e:

721 print(f"Error with patient {pid}: {e}")

722

723 # add patient Luca
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724 try:

725 ptt_luca = self.ptt_resampled_p

726 hr_luca = self.hr_resampled_p

727 sbp_luca = self.sbp_resampled_p

728 dbp_luca = self.dbp_resampled_p

729 all_ptt.append(ptt_luca)

730 all_hr.append(hr_luca)

731 all_sbp.append(sbp_luca)

732 all_dbp.append(dbp_luca)

733 groups.append(np.full(len(ptt_luca), 99)) # 99 luca id

734

735 except Exception as e:

736 print(f"Error with patient LUCA: {e}")

737

738 # Concatenate all data

739 features = np.column_stack ((np.concatenate(all_ptt), np.concatenate(

all_hr)))

740 targets_sbp = np.concatenate(all_sbp)

741 targets_dbp = np.concatenate(all_dbp)

742 groups = np.concatenate(groups)

743

744 # division 70% -30% ---

745 sz_train = round (0.7 * len(features))

746 ind_train = np.arange(0, sz_train)

747 ind_test = np.arange(sz_train , len(features))

748

749 X_train = features[ind_train]

750 X_test = features[ind_test]

751 y_sbp_train = targets_sbp[ind_train]

752 y_sbp_test = targets_sbp[ind_test]

753 y_dbp_train = targets_dbp[ind_train]

754 y_dbp_test = targets_dbp[ind_test]

755

756 # Standardization

757 scaler = StandardScaler ()

758 X_train = scaler.fit_transform(X_train)

759 X_test = scaler.transform(X_test)

760

761 # REGRESSION METHODS

762 regr = LinearRegression ()

763 regr.fit(X_train , y_sbp_train)

764 sbp_pred = regr.predict(X_test)

765 mae_sbp = mean_absolute_error(y_sbp_test , sbp_pred)

766 sd_sbp = np.std(sbp_pred - y_sbp_test)

767

768 regr.fit(X_train , y_dbp_train)
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769 dbp_pred = regr.predict(X_test)

770 mae_dbp = mean_absolute_error(y_dbp_test , dbp_pred)

771 sd_dbp = np.std(dbp_pred - y_dbp_test)

772

773 print(f"Linear Reg SBP MAE: {mae_sbp :.2f} +- {sd_sbp :.2f} mmHg")

774 print(f"Linear Reg DBP MAE: {mae_dbp :.2f} +- {sd_dbp :.2f} mmHg")

775

776 # take the first patient for plotting (LUCA)

777 sbp = self.sbp_resampled_p

778 dbp = self.dbp_resampled_p

779 t_x = self.t_synced [:len(sbp)]

780

781 # Reshape predictions to match the length of the reference signals

782 sbp_pred_full = sbp_pred [:len(sbp)]

783 dbp_pred_full = dbp_pred [:len(dbp)]

784

785 # Resample to a uniform time grid

786 num_points = len(t_x)

787 t_uniform = np.linspace(0, 1200, num_points)

788

789 sbp_resampled = np.interp(t_uniform , np.linspace(0, 1200, len(sbp)),

sbp)

790 sbp_pred_resampled = np.interp(t_uniform , np.linspace(0, 1200, len(

sbp_pred_full)), sbp_pred_full)

791 dbp_resampled = np.interp(t_uniform , np.linspace(0, 1200, len(dbp)),

dbp)

792 dbp_pred_resampled = np.interp(t_uniform , np.linspace(0, 1200, len(

dbp_pred_full)), dbp_pred_full)

793

794 # Plot Linear Regression

795 sbp_pred_at_ref = get_at_ref_times(sbp_pred_resampled , t_uniform ,

self.time_ref_device)

796 dbp_pred_at_ref = get_at_ref_times(dbp_pred_resampled , t_uniform ,

self.time_ref_device)

797

798 plt.figure ()

799 plt.plot(self.time_ref_device , self.sbp , label=’SBP Reference ’,

color=’b’)

800 plt.plot(self.time_ref_device , sbp_pred_at_ref , label=’SBP

Predicted ’, color=’r’)

801 plt.xlabel(’Time (s)’)

802 plt.ylabel(’SBP (mmHg)’)

803 plt.title(’Linear Reg SBP: Real vs Predicted (Reference Instants)’)

804 plt.legend ()

805 plt.grid(True)

806 plt.show()
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807

808 plt.figure ()

809 plt.plot(self.time_ref_device , self.dbp , label=’DBP Reference ’,

color=’b’)

810 plt.plot(self.time_ref_device , dbp_pred_at_ref , label=’DBP

Predicted ’, color=’r’)

811 plt.xlabel(’Time (s)’)

812 plt.ylabel(’DBP (mmHg)’)

813 plt.title(’Linear Reg DBP: Real vs Predicted (Reference Instants)’)

814 plt.legend ()

815 plt.grid(True)

816 plt.show()

817

818 # --- LMS ---

819 w, b, _ = lms(X_train , y_sbp_train , mu=0.0001 , epochs =10)

820 sbp_pred_lms = np.dot(X_test , w) + b

821 w, b, _ = lms(X_train , y_dbp_train , mu=0.0001 , epochs =10)

822 dbp_pred_lms = np.dot(X_test , w) + b

823

824 sbp_pred_lms_full = sbp_pred_lms [:len(sbp)]

825 dbp_pred_lms_full = dbp_pred_lms [:len(dbp)]

826

827 sbp_pred_lms_resampled = np.interp(t_uniform , np.linspace(0, 1200,

len(sbp_pred_lms_full)), sbp_pred_lms_full)

828 dbp_pred_lms_resampled = np.interp(t_uniform , np.linspace(0, 1200,

len(dbp_pred_lms_full)), dbp_pred_lms_full)

829

830 sbp_pred_lms_at_ref = get_at_ref_times(sbp_pred_lms_resampled ,

t_uniform , self.time_ref_device)

831 dbp_pred_lms_at_ref = get_at_ref_times(dbp_pred_lms_resampled ,

t_uniform , self.time_ref_device)

832

833 mae_sbp_lms = mean_absolute_error(self.sbp , sbp_pred_lms_at_ref)

834 std_sbp_lms = np.std(self.sbp - sbp_pred_lms_at_ref)

835 mae_dbp_lms = mean_absolute_error(self.dbp , dbp_pred_lms_at_ref)

836 std_dbp_lms = np.std(self.dbp - dbp_pred_lms_at_ref)

837

838 print(f"LMS SBP MAE: {mae_sbp_lms :.2f} +- {std_sbp_lms :.2f} mmHg")

839 print(f"LMS DBP MAE: {mae_dbp_lms :.2f} +- {std_dbp_lms :.2f} mmHg")

840

841 plt.figure ()

842 plt.plot(self.time_ref_device , self.sbp , label=’SBP Reference ’,

color=’b’)

843 plt.plot(self.time_ref_device , sbp_pred_lms_at_ref , label=’SBP

Predicted (LMS)’, color=’r’)

844 plt.xlabel(’Time (s)’)
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845 plt.ylabel(’SBP (mmHg)’)

846 plt.title(’LMS SBP: Real vs Predicted (Reference Instants)’)

847 plt.legend ()

848 plt.grid(True)

849 plt.show()

850

851 plt.figure ()

852 plt.plot(self.time_ref_device , self.dbp , label=’DBP Reference ’,

color=’b’)

853 plt.plot(self.time_ref_device , dbp_pred_lms_at_ref , label=’DBP

Predicted (LMS)’, color=’r’)

854 plt.xlabel(’Time (s)’)

855 plt.ylabel(’DBP (mmHg)’)

856 plt.title(’LMS DBP: Real vs Predicted (Reference Instants)’)

857 plt.legend ()

858 plt.grid(True)

859 plt.show()

860

861 # --- Ridge ---

862 ridge = Ridge(alpha =1.0)

863 ridge.fit(X_train , y_sbp_train)

864 sbp_pred_ridge = ridge.predict(X_test)

865 ridge.fit(X_train , y_dbp_train)

866 dbp_pred_ridge = ridge.predict(X_test)

867

868 sbp_pred_ridge_full = sbp_pred_ridge [:len(sbp)]

869 dbp_pred_ridge_full = dbp_pred_ridge [:len(dbp)]

870

871 sbp_pred_ridge_resampled = np.interp(t_uniform , np.linspace(0, 1200,

len(sbp_pred_ridge_full)), sbp_pred_ridge_full)

872 dbp_pred_ridge_resampled = np.interp(t_uniform , np.linspace(0, 1200,

len(dbp_pred_ridge_full)), dbp_pred_ridge_full)

873

874 sbp_pred_ridge_at_ref = get_at_ref_times(sbp_pred_ridge_resampled ,

t_uniform , self.time_ref_device)

875 dbp_pred_ridge_at_ref = get_at_ref_times(dbp_pred_ridge_resampled ,

t_uniform , self.time_ref_device)

876

877 mae_sbp_ridge = mean_absolute_error(self.sbp , sbp_pred_ridge_at_ref)

878 std_sbp_ridge = np.std(self.sbp - sbp_pred_ridge_at_ref)

879 mae_dbp_ridge = mean_absolute_error(self.dbp , dbp_pred_ridge_at_ref)

880 std_dbp_ridge = np.std(self.dbp - dbp_pred_ridge_at_ref)

881

882 print(f"Ridge SBP MAE: {mae_sbp_ridge :.2f} +- {std_sbp_ridge :.2f}

mmHg")

115



883 print(f"Ridge DBP MAE: {mae_dbp_ridge :.2f} +- {std_dbp_ridge :.2f}

mmHg")

884

885 plt.figure ()

886 plt.plot(self.time_ref_device , self.sbp , label=’SBP Reference ’,

color=’b’)

887 plt.plot(self.time_ref_device , sbp_pred_ridge_at_ref , label=’SBP

Predicted (Ridge)’, color=’r’)

888 plt.xlabel(’Time (s)’)

889 plt.ylabel(’SBP (mmHg)’)

890 plt.title(’Ridge SBP: Real vs Predicted (Reference Instants)’)

891 plt.legend ()

892 plt.grid(True)

893 plt.show()

894

895 plt.figure ()

896 plt.plot(self.time_ref_device , self.dbp , label=’DBP Reference ’,

color=’b’)

897 plt.plot(self.time_ref_device , dbp_pred_ridge_at_ref , label=’DBP

Predicted (Ridge)’, color=’r’)

898 plt.xlabel(’Time (s)’)

899 plt.ylabel(’DBP (mmHg)’)

900 plt.title(’Ridge DBP: Real vs Predicted (Reference Instants)’)

901 plt.legend ()

902 plt.grid(True)

903 plt.show()

904

905 # --- SVM Regression ---

906 svm = SVR(kernel=’rbf’, C=1.0, epsilon =0.2)

907 svm.fit(X_train , y_sbp_train)

908 sbp_pred_svm = svm.predict(X_test)

909 svm.fit(X_train , y_dbp_train)

910 dbp_pred_svm = svm.predict(X_test)

911

912 sbp_pred_svm_full = sbp_pred_svm [:len(sbp)]

913 dbp_pred_svm_full = dbp_pred_svm [:len(dbp)]

914

915 sbp_pred_svm_resampled = np.interp(t_uniform , np.linspace(0, 1200,

len(sbp_pred_svm_full)), sbp_pred_svm_full)

916 dbp_pred_svm_resampled = np.interp(t_uniform , np.linspace(0, 1200,

len(dbp_pred_svm_full)), dbp_pred_svm_full)

917

918 sbp_pred_svm_at_ref = get_at_ref_times(sbp_pred_svm_resampled ,

t_uniform , self.time_ref_device)

919 dbp_pred_svm_at_ref = get_at_ref_times(dbp_pred_svm_resampled ,

t_uniform , self.time_ref_device)
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920

921 mae_sbp_svm = mean_absolute_error(self.sbp , sbp_pred_svm_at_ref)

922 std_sbp_svm = np.std(self.sbp - sbp_pred_svm_at_ref)

923 mae_dbp_svm = mean_absolute_error(self.dbp , dbp_pred_svm_at_ref)

924 std_dbp_svm = np.std(self.dbp - dbp_pred_svm_at_ref)

925

926 print(f"SVM SBP MAE: {mae_sbp_svm :.2f} +- {std_sbp_svm :.2f} mmHg")

927 print(f"SVM DBP MAE: {mae_dbp_svm :.2f} +- {std_dbp_svm :.2f} mmHg")

928

929 # Plot for SVM

930 plt.figure ()

931 plt.plot(self.time_ref_device , self.sbp , label=’SBP Reference ’,

color=’b’)

932 plt.plot(self.time_ref_device , sbp_pred_svm_at_ref , label=’SBP

Predicted (SVM)’, color=’r’)

933 plt.xlabel(’Time (s)’)

934 plt.ylabel(’SBP (mmHg)’)

935 plt.title(’SVM SBP: Real vs Predicted (Reference Instants)’)

936 plt.legend ()

937 plt.grid(True)

938 plt.show()

939

940 plt.figure ()

941 plt.plot(self.time_ref_device , self.dbp , label=’DBP Reference ’,

color=’b’)

942 plt.plot(self.time_ref_device , dbp_pred_svm_at_ref , label=’DBP

Predicted (SVM)’, color=’r’)

943 plt.xlabel(’Time (s)’)

944 plt.ylabel(’DBP (mmHg)’)

945 plt.title(’SVM DBP: Real vs Predicted (Reference Instants)’)

946 plt.legend ()

947 plt.grid(True)

948 plt.show()

949

950 #cross -correlation for the train and test sets

951

952 kf = KFold(n_splits=3, shuffle=True , random_state =42)

953 mae_sbp_list , mae_dbp_list = [], []

954 mae_sbp_lms_list , mae_dbp_lms_list = [], []

955 mae_sbp_ridge_list , mae_dbp_ridge_list = [], []

956 mae_sbp_svm_list , mae_dbp_svm_list = [], []

957

958

959 for train_index , test_index in kf.split(features):

960 X_train , X_test = features[train_index], features[test_index]
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961 y_sbp_train , y_sbp_test = targets_sbp[train_index], targets_sbp[

test_index]

962 y_dbp_train , y_dbp_test = targets_dbp[train_index], targets_dbp[

test_index]

963

964 scaler = StandardScaler ()

965 X_train = scaler.fit_transform(X_train)

966 X_test = scaler.transform(X_test)

967

968 # Linear Regression

969 regr = LinearRegression ()

970 regr.fit(X_train , y_sbp_train)

971 sbp_pred = regr.predict(X_test)

972 mae_sbp = mean_absolute_error(y_sbp_test , sbp_pred)

973 mae_sbp_list.append(mae_sbp)

974

975 regr.fit(X_train , y_dbp_train)

976 dbp_pred = regr.predict(X_test)

977 mae_dbp = mean_absolute_error(y_dbp_test , dbp_pred)

978 mae_dbp_list.append(mae_dbp)

979

980 # LMS Regression

981 w, b, _ = lms(X_train , y_sbp_train , mu=0.0001 , epochs =10)

982 sbp_pred_lms = np.dot(X_test , w) + b

983 mae_sbp_lms = mean_absolute_error(y_sbp_test , sbp_pred_lms)

984 mae_sbp_lms_list.append(mae_sbp_lms)

985

986 w, b, _ = lms(X_train , y_dbp_train , mu=0.0001 , epochs =10)

987 dbp_pred_lms = np.dot(X_test , w) + b

988 mae_dbp_lms = mean_absolute_error(y_dbp_test , dbp_pred_lms)

989 mae_dbp_lms_list.append(mae_dbp_lms)

990

991 # Ridge Regression

992 ridge = Ridge(alpha =1.0)

993 ridge.fit(X_train , y_sbp_train)

994 sbp_pred_ridge = ridge.predict(X_test)

995 mae_sbp_ridge = mean_absolute_error(y_sbp_test , sbp_pred_ridge)

996 mae_sbp_ridge_list.append(mae_sbp_ridge)

997

998 ridge.fit(X_train , y_dbp_train)

999 dbp_pred_ridge = ridge.predict(X_test)

1000 mae_dbp_ridge = mean_absolute_error(y_dbp_test , dbp_pred_ridge)

1001 mae_dbp_ridge_list.append(mae_dbp_ridge)

1002

1003 # SVM Regression

1004 svm = SVR(kernel=’rbf’, C=1.0, epsilon =0.2)
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1005 svm.fit(X_train , y_sbp_train)

1006 sbp_pred_svm = svm.predict(X_test)

1007 mae_sbp_svm = mean_absolute_error(y_sbp_test , sbp_pred_svm)

1008 mae_sbp_svm_list.append(mae_sbp_svm)

1009

1010 svm.fit(X_train , y_dbp_train)

1011 dbp_pred_svm = svm.predict(X_test)

1012 mae_dbp_svm = mean_absolute_error(y_dbp_test , dbp_pred_svm)

1013 mae_dbp_svm_list.append(mae_dbp_svm)

1014

1015 print(f"Linear Reg SBP MAE (CV): {np.mean(mae_sbp_list):.2f} +- {np.

std(mae_sbp_list):.2f} mmHg")

1016 print(f"Linear Reg DBP MAE (CV): {np.mean(mae_dbp_list):.2f} +- {np.

std(mae_dbp_list):.2f} mmHg")

1017 print(f"LMS SBP MAE (CV): {np.mean(mae_sbp_lms_list):.2f} +- {np.std

(mae_sbp_lms_list):.2f} mmHg")

1018 print(f"LMS DBP MAE (CV): {np.mean(mae_dbp_lms_list):.2f} +- {np.std

(mae_dbp_lms_list):.2f} mmHg")

1019 print(f"Ridge SBP MAE (CV): {np.mean(mae_sbp_ridge_list):.2f} +- {np

.std(mae_sbp_ridge_list):.2f} mmHg")

1020 print(f"Ridge DBP MAE (CV): {np.mean(mae_dbp_ridge_list):.2f} +- {np

.std(mae_dbp_ridge_list):.2f} mmHg")

1021 print(f"SVM SBP MAE (CV): {np.mean(mae_sbp_svm_list):.2f} +- {np.std

(mae_sbp_svm_list):.2f} mmHg")

1022 print(f"SVM DBP MAE (CV): {np.mean(mae_dbp_svm_list):.2f} +- {np.std

(mae_dbp_svm_list):.2f} mmHg")

1023

1024 # Interpolate predictions to the reference time points

1025 sbp_pred_at_ref = np.interp(self.time_ref_device , np.linspace(self.

time_ref_device [0], self.time_ref_device [-1], len(sbp_pred)), sbp_pred)

1026 dbp_pred_at_ref = np.interp(self.time_ref_device , np.linspace(self.

time_ref_device [0], self.time_ref_device [-1], len(dbp_pred)), dbp_pred)

1027

1028 sbp_pred_lms_at_ref = np.interp(self.time_ref_device , np.linspace(

self.time_ref_device [0], self.time_ref_device [-1], len(sbp_pred_lms)),

sbp_pred_lms)

1029 dbp_pred_lms_at_ref = np.interp(self.time_ref_device , np.linspace(

self.time_ref_device [0], self.time_ref_device [-1], len(dbp_pred_lms)),

dbp_pred_lms)

1030

1031 sbp_pred_ridge_at_ref = np.interp(self.time_ref_device , np.linspace(

self.time_ref_device [0], self.time_ref_device [-1], len(sbp_pred_ridge)),

sbp_pred_ridge)

1032 dbp_pred_ridge_at_ref = np.interp(self.time_ref_device , np.linspace(

self.time_ref_device [0], self.time_ref_device [-1], len(dbp_pred_ridge)),

dbp_pred_ridge)
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1033

1034 sbp_pred_svm_at_ref = np.interp(self.time_ref_device , np.linspace(

self.time_ref_device [0], self.time_ref_device [-1], len(sbp_pred_svm)),

sbp_pred_svm)

1035 dbp_pred_svm_at_ref = np.interp(self.time_ref_device , np.linspace(

self.time_ref_device [0], self.time_ref_device [-1], len(dbp_pred_svm)),

dbp_pred_svm)

1036

1037 # Plot for Linear Regression

1038 plt.figure ()

1039 plt.plot(self.time_ref_device , self.sbp , label=’SBP Reference ’,

color=’b’)

1040 plt.plot(self.time_ref_device , sbp_pred_at_ref , label=’SBP Predicted

(Linear)’, color=’r’)

1041 plt.xlabel(’Time (s)’)

1042 plt.ylabel(’SBP (mmHg)’)

1043 plt.title(’Linear Regression SBP: Real vs Predicted (Reference

Instants)’)

1044 plt.legend ()

1045 plt.grid(True)

1046 plt.show()

1047

1048 plt.figure ()

1049 plt.plot(self.time_ref_device , self.dbp , label=’DBP Reference ’,

color=’b’)

1050 plt.plot(self.time_ref_device , dbp_pred_at_ref , label=’DBP Predicted

(Linear)’, color=’r’)

1051 plt.xlabel(’Time (s)’)

1052 plt.ylabel(’DBP (mmHg)’)

1053 plt.title(’Linear Regression DBP: Real vs Predicted (Reference

Instants)’)

1054 plt.legend ()

1055 plt.grid(True)

1056 plt.show()

1057

1058 # Plot for LMS

1059 plt.figure ()

1060 plt.plot(self.time_ref_device , self.sbp , label=’SBP Reference ’,

color=’b’)

1061 plt.plot(self.time_ref_device , sbp_pred_lms_at_ref , label=’SBP

Predicted (LMS)’, color=’r’)

1062 plt.xlabel(’Time (s)’)

1063 plt.ylabel(’SBP (mmHg)’)

1064 plt.title(’LMS SBP: Real vs Predicted (Reference Instants)’)

1065 plt.legend ()

1066 plt.grid(True)
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1067 plt.show()

1068

1069 plt.figure ()

1070 plt.plot(self.time_ref_device , self.dbp , label=’DBP Reference ’,

color=’b’)

1071 plt.plot(self.time_ref_device , dbp_pred_lms_at_ref , label=’DBP

Predicted (LMS)’, color=’r’)

1072 plt.xlabel(’Time (s)’)

1073 plt.ylabel(’DBP (mmHg)’)

1074 plt.title(’LMS DBP: Real vs Predicted (Reference Instants)’)

1075 plt.legend ()

1076 plt.grid(True)

1077 plt.show()

1078

1079 # Plot for Ridge

1080 plt.figure ()

1081 plt.plot(self.time_ref_device , self.sbp , label=’SBP Reference ’,

color=’b’)

1082 plt.plot(self.time_ref_device , sbp_pred_ridge_at_ref , label=’SBP

Predicted (Ridge)’, color=’r’)

1083 plt.xlabel(’Time (s)’)

1084 plt.ylabel(’SBP (mmHg)’)

1085 plt.title(’Ridge SBP: Real vs Predicted (Reference Instants)’)

1086 plt.legend ()

1087 plt.grid(True)

1088 plt.show()

1089

1090 plt.figure ()

1091 plt.plot(self.time_ref_device , self.dbp , label=’DBP Reference ’,

color=’b’)

1092 plt.plot(self.time_ref_device , dbp_pred_ridge_at_ref , label=’DBP

Predicted (Ridge)’, color=’r’)

1093 plt.xlabel(’Time (s)’)

1094 plt.ylabel(’DBP (mmHg)’)

1095 plt.title(’Ridge DBP: Real vs Predicted (Reference Instants)’)

1096 plt.legend ()

1097 plt.grid(True)

1098 plt.show()

1099

1100 #plot for svm

1101 plt.figure ()

1102 plt.plot(self.time_ref_device , self.sbp , label=’SBP Reference ’,

color=’b’)

1103 plt.plot(self.time_ref_device , sbp_pred_svm_at_ref , label=’SBP

Predicted (SVM)’, color=’r’)

1104 plt.xlabel(’Time (s)’)
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1105 plt.ylabel(’SBP (mmHg)’)

1106 plt.title(’SVM SBP: Real vs Predicted (Reference Instants)’)

1107 plt.legend ()

1108 plt.grid(True)

1109 plt.show()

1110

1111 plt.figure ()

1112 plt.plot(self.time_ref_device , self.dbp , label=’DBP Reference ’,

color=’b’)

1113 plt.plot(self.time_ref_device , dbp_pred_svm_at_ref , label=’DBP

Predicted (SVM)’, color=’r’)

1114 plt.xlabel(’Time (s)’)

1115 plt.ylabel(’DBP (mmHg)’)

1116 plt.title(’SVM DBP: Real vs Predicted (Reference Instants)’)

1117 plt.legend ()

1118 plt.grid(True)

1119 plt.show()

1120

1121 if __name__ == ’__main__ ’:

1122 patient_id = "LUCA" #"LUCA" or patient_id = 1.. for "SHIMMER_1" # or "

SHIMMER_2", etc.

1123 dataset = 3 # 1 for both datasets SHIMMER , 2 for SMIMMER , 3 for LUCA

1124 p = Patient(patient_id ,dataset)

1125 p.load_signals ()

1126 p.preprocess ()

1127 p.synchronize ()

1128 p.detect_peaks ()

1129 p.extract_features ()

1130 p.load_reference_bp ()

1131 p.regression_methods ()

Listing 1: Main Code
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1 import scipy.io

2 import matplotlib.pyplot as plt

3 import numpy as np

4 from ex import filter_ecg_signal , filter_ppg_signal

5 # --- Load signals ---

6 pid = "LUCA"

7 ecg_mat = scipy.io.loadmat(f"{pid}_1_ECG.mat")

8 ecg = ecg_mat[’ECG_signal ’]. flatten ()

9 t_ecg = ecg_mat[’ECG_ts ’]. flatten () / 1000 #bring to seconds

10

11 ppg_mat = scipy.io.loadmat(f"SHIMMER_42_PPG.mat")

12 ppg = ppg_mat[’signal ’]. flatten ()

13 t_ppg = ppg_mat[’ts’]. flatten () / 1000 #bring to seconds

14

15 fs_ecg = 504.12

16 fs_ppg = 504.12

17

18 # --- CUT signals: remove first 20s and last 30s ---

19 cut_int_ecg = round (20 * fs_ecg)

20 cut_int_ppg = round (20 * fs_ppg)

21 ecg_cut = ecg[cut_int_ecg :]

22 t_ecg_cut = t_ecg[cut_int_ecg :]

23 ppg_cut = ppg[cut_int_ppg :]

24 t_ppg_cut = t_ppg[cut_int_ppg :]

25

26 cut_end_ecg = round (30 * fs_ecg)

27 cut_end_ppg = round (30 * fs_ppg)

28 if cut_end_ecg < len(ecg_cut):

29 ecg_cut = ecg_cut[:- cut_end_ecg]

30 t_ecg_cut = t_ecg_cut[:- cut_end_ecg]

31 if cut_end_ppg < len(ppg_cut):

32 ppg_cut = ppg_cut[:- cut_end_ppg]

33 t_ppg_cut = t_ppg_cut[:- cut_end_ppg]

34

35 # --- Plot raw and cut ECG together ---

36 plt.figure ()

37 plt.plot(t_ecg , ecg , color=’b’, alpha =0.5, label=’Raw ECG’)

38 plt.plot(t_ecg_cut , ecg_cut , color=’r’, alpha =0.8, label=’ECG after cut’

)

39 plt.title(’ECG: Raw vs Cut for patient LUCA’)

40 plt.xlabel(’Time Unix’)

41 plt.ylabel(’ECG Amplitude (mV)’)

42 plt.legend ()

43 plt.grid(True)

44 plt.show()
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45

46 # --- Plot raw and cut PPG together ---

47 plt.figure ()

48 plt.plot(t_ppg , ppg , color=’b’, alpha =0.5, label=’Raw PPG’)

49 plt.plot(t_ppg_cut , ppg_cut , color=’r’, alpha =0.8, label=’PPG after cut’

)

50 plt.title(’PPG: Raw vs Cut for patient LUCA’)

51 plt.xlabel(’Time Unix’)

52 plt.ylabel(’PPG Amplitude (mV)’)

53 plt.legend ()

54 plt.grid(True)

55 plt.show()

56

57 # --- Apply filters to cut signals ---

58 ecg_filtered = filter_ecg_signal(ecg_cut , fs_ecg , window_size =0.2)

59 ppg_filtered = filter_ppg_signal(ppg_cut , fs_ppg , window_size =0.5)

60

61 # --- Plot filtered signals together (pre -synchronization , after cut)

---

62 plt.figure ()

63 plt.plot(t_ecg_cut , ecg_cut , ’b-’, alpha =0.5, label=’ECG after cut’)

64 plt.plot(t_ecg_cut , ecg_filtered , ’g-’, alpha =0.8, label=’ECG filtered ’)

65 plt.title(’ECG: Cut vs Filtered (seconds , pre -sync)’)

66 plt.xlabel(’Time (s)’)

67 plt.ylabel(’ECG Amplitude (mV)’)

68 plt.legend ()

69 plt.grid(True)

70 plt.show()

71

72 plt.figure ()

73 plt.plot(t_ppg_cut , ppg_cut , ’b-’, alpha =0.5, label=’PPG after cut’)

74 plt.plot(t_ppg_cut , ppg_filtered , ’g-’, alpha =0.8, label=’PPG filtered ’)

75 plt.title(’PPG: Cut vs Filtered (seconds , pre -sync)’)

76 plt.xlabel(’Time (s)’)

77 plt.ylabel(’PPG Amplitude (mV)’)

78 plt.legend ()

79 plt.grid(True)

80 plt.show()

Listing 2: Code to generate graph of ECG and PPG signals pre vs post reduction
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1

2 import scipy.io

3 import matplotlib.pyplot as plt

4 import numpy as np

5 import csv

6

7 NUM_PATIENT = 42

8 SBP_signals = []

9 DBP_signals = []

10 time = []

11 patient_ids = []

12

13 for i in range(1, NUM_PATIENT + 1):

14 if i == 10 or i == 12:

15 continue

16 sbp = []

17 dbp = []

18 timestamp = []

19 with open(f"./ SHIMMER_{i}.csv", ’r’) as filecsv:

20 reader = csv.reader(filecsv , delimiter=";")

21 for row in reader:

22 timestamp.append(int(row [0])) # First column: Time in ms

23 sbp.append(float(row [1])) # Second column: Systolic BP

24 dbp.append(float(row [2])) # Third column: Diastolic BP

25 time_s = [(ts - timestamp [0]) / 1 for ts in timestamp] # Convert ms

to seconds

26 SBP_signals.append(sbp)

27 DBP_signals.append(dbp)

28 time.append(time_s)

29 patient_ids.append(i)

30

31

32 # Plot all patients ’ SBP and DBP signals

33 plt.figure(figsize =(12, 6))

34 for idx , (t, sbp , dbp , patient_id) in enumerate(zip(time , SBP_signals ,

DBP_signals , patient_ids), start =1):

35 if idx == 10 or idx == 12:

36 idx +=1

37 continue

38 plt.plot(t, dbp , label=f’Patient {patient_id} DBP’, alpha =0.6)

39 plt.title(’DBP Signals for All Shimmer Patients ’)

40 plt.xlabel(’Time (s)’)

41 plt.ylabel(’Diastolic Blood Pressure (mmHg)’)

42 plt.legend(fontsize=6, loc=’upper left’, bbox_to_anchor =(1, 1))

43 plt.grid(True)
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44 plt.show()

45

46 plt.figure(figsize =(12, 6))

47 for idx , (t, sbp , dbp , patient_id) in enumerate(zip(time , SBP_signals ,

DBP_signals , patient_ids), start =1):

48 if idx == 10 or idx == 12:

49 idx +=1

50 continue

51 plt.plot(t, sbp , label=f’Patient {patient_id} SBP’, alpha =0.6)

52 plt.title(’SBP Signals for All Shimmer Patients ’)

53 plt.xlabel(’Time (s)’)

54 plt.ylabel(’Systolic Blood Pressure (mmHg)’)

55 plt.legend(fontsize=6, loc=’upper left’, bbox_to_anchor =(1, 1))

56 plt.grid(True)

57 plt.show()

58

59 # mean values

60 mean_sbp = [np.mean(sbp) for sbp in SBP_signals]

61 mean_dbp = [np.mean(dbp) for dbp in DBP_signals]

62 patient_ids = [i for i in range(1, NUM_PATIENT + 1) if i != 10 and i !=

12]

63

64 with open(f"./ LUCA_ref_1.csv", ’r’) as filecsv:

65 reader = csv.reader(filecsv , delimiter=";")

66 for row in reader:

67 timestamp.append(int(row [0])) # First column: Time in ms

68 sbp.append(float(row [1])) # Second column: Systolic BP

69 dbp.append(float(row [2])) # Third column: Diastolic BP

70 time_s = [(ts - timestamp [0]) / 1 for ts in timestamp]

71 mean_Luca_dbp = np.mean(dbp)

72 mean_Luca_sbp = np.mean(sbp)

73 # Histogram with quartiles and outliers

74 q25_dbp = np.percentile(mean_dbp , 25)

75 q75_dbp = np.percentile(mean_dbp , 75)

76

77 # Limits for outliers

78 iqr_dbp = q75_dbp - q25_dbp

79 lower_dbp = q25_dbp - 1.5 * iqr_dbp

80 upper_dbp = q75_dbp + 1.5 * iqr_dbp

81

82 outlier_dbp_idx = [i for i, val in enumerate(mean_dbp) if val <

lower_dbp or val > upper_dbp]

83

84 plt.figure(figsize =(10, 5))

85 bars = plt.bar(patient_ids , mean_dbp , color=’skyblue ’, label=’Mean DBP’)

86 plt.axhspan(q25_dbp , q75_dbp , color=’orange ’, alpha =0.2, label=’IQR (25
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-75 percentile)’)

87 for idx in outlier_dbp_idx:

88 bars[idx]. set_color(’red’)

89 plt.text(patient_ids[idx], mean_dbp[idx]+1, ’OUT’, color=’red’, ha=’

center ’, fontsize =8)

90 plt.axhline(mean_Luca_dbp , color=’purple ’, linestyle=’--’, linewidth=2,

label=’LUCA Mean DBP’)

91 plt.xlabel(’Patient ID’)

92 plt.ylabel(’Mean Diastolic BP (mmHg)’)

93 plt.title(’Mean DBP per Shimmer Patient (Outliers in Red , LUCA in Purple

)’)

94 plt.legend ()

95 plt.grid(True)

96 plt.show()

97

98

99 q25_sbp = np.percentile(mean_sbp , 25)

100 q75_sbp = np.percentile(mean_sbp , 75)

101

102 iqr_sbp = q75_sbp - q25_sbp

103 lower_sbp = q25_sbp - 1.5 * iqr_sbp

104 upper_sbp = q75_sbp + 1.5 * iqr_sbp

105

106 outlier_sbp_idx = [i for i, val in enumerate(mean_sbp) if val <

lower_sbp or val > upper_sbp]

107

108 plt.figure(figsize =(10, 5))

109 bars = plt.bar(patient_ids , mean_sbp , color=’salmon ’, label=’Mean SBP’)

110 plt.axhspan(q25_sbp , q75_sbp , color=’orange ’, alpha =0.2, label=’IQR (25

-75 percentile)’)

111

112 for idx in outlier_sbp_idx:

113 bars[idx]. set_color(’red’)

114 plt.text(patient_ids[idx], mean_sbp[idx]+1, ’OUT’, color=’red’, ha=’

center ’, fontsize =8)

115 plt.axhline(mean_Luca_sbp , color=’purple ’, linestyle=’--’, linewidth=2,

label=’LUCA Mean SBP’)

116 plt.xlabel(’Patient ID’)

117 plt.ylabel(’Mean Systolic BP (mmHg)’)

118 plt.title(’Mean SBP per Shimmer Patient (Outliers in Red , LUCA in Purple

)’)

119 plt.legend ()

120 plt.grid(True)

121 plt.show()

122

123 # --- LUCA Database ---
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124 NUM_LUCA = 20

125 LUCA_SBP_signals = []

126 LUCA_DBP_signals = []

127 LUCA_time = []

128 LUCA_ids = []

129

130 for i in range(1, NUM_LUCA + 1):

131 sbp = []

132 dbp = []

133 timestamp = []

134 try:

135 with open(f"./ LUCA_ref_{i}.csv", ’r’) as filecsv:

136 reader = csv.reader(filecsv , delimiter=";")

137 for row in reader:

138 timestamp.append(int(row [0]))

139 sbp.append(float(row [1]))

140 dbp.append(float(row [2]))

141 time_s = [(ts - timestamp [0]) / 1000 for ts in timestamp] # ms

-> s

142 LUCA_SBP_signals.append(sbp)

143 LUCA_DBP_signals.append(dbp)

144 LUCA_time.append(time_s)

145 LUCA_ids.append(i)

146 except FileNotFoundError:

147 print(f"LUCA_ref_{i}.csv not found , skipping.")

148

149 # Plot all LUCA DBP signals

150 plt.figure(figsize =(12, 6))

151 for t, dbp , pid in zip(LUCA_time , LUCA_DBP_signals , LUCA_ids):

152 plt.plot(t, dbp , label=f’LUCA {pid} DBP’, alpha =0.6)

153 plt.title(’DBP Signals for All LUCA Patients ’)

154 plt.xlabel(’Time (s)’)

155 plt.ylabel(’Diastolic Blood Pressure (mmHg)’)

156 plt.legend(fontsize=6, loc=’upper left’, bbox_to_anchor =(1, 1))

157 plt.grid(True)

158 plt.show()

159

160 # Plot all LUCA SBP signals

161 plt.figure(figsize =(12, 6))

162 for t, sbp , pid in zip(LUCA_time , LUCA_SBP_signals , LUCA_ids):

163 plt.plot(t, sbp , label=f’LUCA {pid} SBP’, alpha =0.6)

164 plt.title(’SBP Signals for All LUCA Patients ’)

165 plt.xlabel(’Time (s)’)

166 plt.ylabel(’Systolic Blood Pressure (mmHg)’)

167 plt.legend(fontsize=6, loc=’upper left’, bbox_to_anchor =(1, 1))

168 plt.grid(True)
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169 plt.show()

170

171 # LUCA

172 mean_luca_sbp = [np.mean(sbp) for sbp in LUCA_SBP_signals]

173 mean_luca_dbp = [np.mean(dbp) for dbp in LUCA_DBP_signals]

174

175 # DBP LUCA

176 q25_luca_dbp = np.percentile(mean_luca_dbp , 25)

177 q75_luca_dbp = np.percentile(mean_luca_dbp , 75)

178 iqr_luca_dbp = q75_luca_dbp - q25_luca_dbp

179 lower_luca_dbp = q25_luca_dbp - 1.5 * iqr_luca_dbp

180 upper_luca_dbp = q75_luca_dbp + 1.5 * iqr_luca_dbp

181 outlier_luca_dbp_idx = [i for i, val in enumerate(mean_luca_dbp) if val

< lower_luca_dbp or val > upper_luca_dbp]

182

183

184

185 # SBP LUCA

186 q25_luca_sbp = np.percentile(mean_luca_sbp , 25)

187 q75_luca_sbp = np.percentile(mean_luca_sbp , 75)

188 iqr_luca_sbp = q75_luca_sbp - q25_luca_sbp

189 lower_luca_sbp = q25_luca_sbp - 1.5 * iqr_luca_sbp

190 upper_luca_sbp = q75_luca_sbp + 1.5 * iqr_luca_sbp

191 outlier_luca_sbp_idx = [i for i, val in enumerate(mean_luca_sbp) if val

< lower_luca_sbp or val > upper_luca_sbp]

192

193

194 luca_labels = []

195 for pid in LUCA_ids:

196 if 1 <= pid <= 15:

197 luca_labels.append(f’LUCA {pid}’)

198 elif 16 <= pid <= 18:

199 luca_labels.append(f’Massimo {pid}’)

200 elif 19 <= pid <= 20:

201 luca_labels.append(f’Clelia {pid}’)

202 else:

203 luca_labels.append(f’LUCA {pid}’)

204

205

206 plt.figure(figsize =(12, 5))

207 bars = plt.bar(LUCA_ids , mean_luca_dbp , color=’violet ’, label=’Mean LUCA

DBP’)

208 plt.axhspan(q25_luca_dbp , q75_luca_dbp , color=’orange ’, alpha =0.2, label

=’IQR (25 -75 percentile)’)

209 for idx in outlier_luca_dbp_idx:

210 bars[idx]. set_color(’red’)
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211 plt.text(LUCA_ids[idx], mean_luca_dbp[idx]+1, ’OUT’, color=’red’, ha

=’center ’, fontsize =8)

212 plt.xlabel(’LUCA Patient ID’)

213 plt.ylabel(’Mean Diastolic BP (mmHg)’)

214 plt.title(’Mean DBP per LUCA Patient (Outliers in Red)’)

215 plt.xticks(LUCA_ids , luca_labels , rotation =45, ha=’right’)

216 plt.legend ()

217 plt.grid(True)

218 plt.tight_layout ()

219 plt.show()

220

221

222 plt.figure(figsize =(12, 5))

223 bars = plt.bar(LUCA_ids , mean_luca_sbp , color=’limegreen ’, label=’Mean

LUCA SBP’)

224 plt.axhspan(q25_luca_sbp , q75_luca_sbp , color=’orange ’, alpha =0.2, label

=’IQR (25 -75 percentile)’)

225 for idx in outlier_luca_sbp_idx:

226 bars[idx]. set_color(’red’)

227 plt.text(LUCA_ids[idx], mean_luca_sbp[idx]+1, ’OUT’, color=’red’, ha

=’center ’, fontsize =8)

228 plt.xlabel(’LUCA Patient ID’)

229 plt.ylabel(’Mean Systolic BP (mmHg)’)

230 plt.title(’Mean SBP per LUCA Patient (Outliers in Red)’)

231 plt.xticks(LUCA_ids , luca_labels , rotation =45, ha=’right’)

232 plt.legend ()

233 plt.grid(True)

234 plt.tight_layout ()

235 plt.show()

Listing 3: Code to visualize the different behavior of all patients
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