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Abstract

Hypertension is a major risk factor for cardiovascular disease (CVD), which remains the lead-
ing cause of mortality worldwide. Continuous and accurate monitoring of blood pressure (BP)
plays a fundamental role not only in early diagnosis but also in patient therapeutic manage-
ment and the prevention of associated complications. However, currently used methods have
significant limitations: invasive systems, while highly accurate, can only be used in hospital
settings and involve risks and discomfort; noninvasive cuff-based systems, on the other hand,
provide only intermittent readings and do not allow dynamic BP analysis during daily activities.
To overcome these limitations, in recent years there has been growing interest in cuffless tech-
niques that exploit physiological signals easily acquired through wearable sensors. This thesis
explores a methodology for continuous and noninvasive estimation of BP based on combined
electrocardiogram (ECG) and photoplethysmogram (PPG) analysis. From these signals, two
key parameters are extracted: heart rate (HR) and pulse transit time (PTT). They are known
in the literature for their correlation with variations in blood pressure.

The work introduces several significant innovations: the use of wearable Shimmer devices
to acquire signals from subjects under controlled conditions, as an alternative to data sets
available online (MIMIC and others), and the design of a processing pipeline including signal
preprocessing, automatic peak detection, and robust extraction of HR and PTT. Subsequently,
through the application of regression techniques, a mathematical relationship was defined be-
tween these parameters and the reference BP values obtained using calibrated devices. The
expected results include the development of a reliable framework capable of estimating blood
pressure in real time with an error within the thresholds established by international guidelines
(AAMI/ISO/ESH), the validation of the method against clinical standards and the optimization
of algorithms to reduce motion artifacts.

Looking ahead, such an approach could contribute to the evolution of wearable healthcare
technologies, allowing continuous, discreet, and personalized BP monitoring even outside the
clinical setting. This would represent an important step in the treatment of hypertension and
the prevention of CVD, improving the quality of life of patients and reducing the overall social
and health impact of these diseases. Therefore, an aspect of the project intended for the
integration of this type of algorithm on wearable devices: the European Persimmon project and
shimmer3.
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Acronyms table

Acronym Description

AAMI Association for the Advancement of Medical Instrumentation

BP Blood Pressure

CcO Cardiac Output

CvD Cardiovascular Disease

DBP Diastolic Blood Pressure

ECG Electrocardiogram

ESH European Society of Hypertension

HR Heart Rate

loT Internet of Things

ISO International Organization for Standardization

LED Light Emitting Diode

MAP Mean Arterial Pressure

MAE Mean Absolute Error

MIMIC Medical Information Mart for Intensive Care

ML Machine Learning

PAT Pulse Arrival Time

PERSIMMON | Personalised Smart Patch for Multimodal Monitoring

PP Pulse Pressure

PPG Photoplethysmogram

PTT Pulse Transit Time

RMSE Root Mean Square Error

SBP Systolic Blood Pressure

SHIMMER Sensing Health with Intelligence, Modularity, Mobility and
Experimental Reusability

SVM Support Vector Machine

Table 1: List of acronyms used in the project, in alphabetical order.



1 Introduction

The Cardiovascular disease (CVD) represents a major public health challenge globally. Among
the various risk factors, hypertension stands out as the most modifiable and, at the same
time, one of the most common causes of serious complications. For this reason, accurate and
continuous blood pressure measurement plays a strategic role, both in prevention and clinical
management.

1.1 Clinic context: the problem to be addressed

CVDs are currently the leading cause of mortality and morbidity worldwide [I] [2]. According
to the World Health Organization (WHO), over 17 million people die from these diseases every
year, and epidemiological projections estimate that this number is expected to increase in the
coming decades.

The causes of this growth are multiple: the progressive aging of the population, the in-
creasing prevalence of obesity and diabetes mellitus, and the spread of sedentary lifestyles and
unhealthy eating habits. Added to this is the impact of socioeconomic inequalities, which influ-
ence access to early diagnosis, adequate treatment, and prevention programs. In this scenario,
arterial hypertension emerges as the main modifiable risk factor, with a significant epidemiolog-
ical impact. It is closely linked to the onset of acute events such as ischemic and hemorrhagic
strokes and myocardial infarction, but also to chronic complications such as heart failure and
progressive renal failure [3]. Despite being a well-known and theoretically easily measurable
risk factor, hypertension continues to pose a global public health challenge: it is estimated
that approximately one in three adults worldwide has hypertension, and less than half receive
adequate treatment. Accurate and continuous monitoring of blood pressure therefore plays a
crucial role, not only to identify abnormalities early, but also to evaluate the effectiveness of
pharmacological treatments, adapt therapies based on blood pressure trends and reduce the risk
of cardiovascular and renal complications [4] [5]. However, despite the widespread availability
of antihypertensive drugs, blood pressure control (BP monitoring) in the population remains
inadequate: a significant proportion of individuals are unaware of their condition, while among
those who have received a diagnosis, a significant portion do not adhere to treatment or are
not regularly monitored [6] [7].

This combination of late diagnosis, poor adherence, and intermittent monitoring contributes
to maintaining the high disease burden, underscoring the need for innovative solutions for blood
pressure control at the individual and population levels.



1.2 Limitations of Traditional Methods

Currently, BP measurement is performed primarily using two approaches: non-invasive, inter-
mittent methods, and invasive, continuous methods. However, both have significant limitations
that affect their applicability and effectiveness.

The cuff sphygmomanometer [8] [9], based on the auscultatory method (with a stethoscope
and detection of Korotkoff sounds) or the oscillometric method (use of electronic pressure
sensors), represents the gold standard in clinical measurement of ambulatory and home blood
pressure measurements. Although generally reliable, this method provides only intermittent
measurements, usually at intervals of several minutes or hours [I0]. This means that the
dynamics of blood pressure throughout the day, influenced by physical activity, stress, sleep, or
hormonal changes, is not fully captured. Furthermore, the need to inflate the cuff can cause
discomfort, especially in elderly or frail patients, and limits its use in continuous monitoring
settings. Figure [I]illustrates its behavior.

Figure 1: Sphygmomanometer

In the other extreme are invasive methods, such as arterial catheterization, which allow for
direct and continuous blood pressure measurement using a transducer connected to an arterial
access. These systems offer maximum accuracy and are the clinical gold standard, especially in
intensive care settings or critically ill patients. However, the invasive nature of the procedure
involves significant risks, such as infection, thrombosis, bleeding, and pain, as well as the need
for highly specialized personnel and dedicated hospital facilities [1I] [I2]. For these reasons,
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these methods cannot be applied on a large scale or adopted for daily monitoring of the general
population.

There is therefore a "technological gap” between these two approaches: on the one hand,
a non-invasive but fragmented method; on the other, an accurate but risky and impractical
method. Bridging this gap represents one of the most urgent and promising challenges in the
field of cardiovascular monitoring like the figure [2|

©

Figure 2: Difference between invasive and noninvasive method for the cardiovascular monitoring.

1.3 The Need for Cuffless Solutions

In recent years, scientific research has increasingly focused on developing alternative methods for
monitoring blood pressure, with the aim of developing non-invasive, reliable, wearable solutions
capable of providing real-time data [13] [14]. This type of technology could revolutionize the
treatment of hypertension, allowing monitoring not only in the clinical setting but also at home
and in daily life, improving the quality of patient's life and reducing healthcare costs [15].

The idea behind these approaches is to exploit physiological signals already widely used in
the medical field, which are capable of indirectly reflecting on variations in blood pressure. In
particular, parameters extracted from signals such as the electrocardiogram (ECG) and photo-
plethysmogram (PPG) have shown significant potential for cuffless BP estimation.



1.3.1 ECG and PPG for Smarter Blood Pressure Tracking

The ECG is a well-established diagnostic tool has been used for decades to assess the electrical
activity of the heart. The ECG waveform provides valuable information on heart rate and
rhythm, as well as the propagation of electrical impulses through the different cardiac chambers.
Detection of the R peak, for example, provides a stable and easily identifiable time reference,
which can be used as a starting point for temporal calculations related to the cardiac cycle [16].

PPG, on the other hand, is a signal obtained through an optical sensor that measures
volumetric variations in blood flow at the peripheral level, typically on the finger or wrist. This
signal is now widely used thanks to its integration in commonly used wearable devices, such as
smartwatches and fitness trackers, which use it to estimate heart rate and oxygen saturation
[17] [18]. Its ease of acquisition, non-invasive nature, and increasing miniaturization of sensors
make it an ideal candidate for continuous monitoring applications. The combination of ECG
and PPG allows the calculation of parameters such as heart rate (HR) and pulse transit time
(PTT), both of which correlate with blood pressure dynamics. Recent studies have shown
that changes in blood pressure are reflected in measurable changes in PTT, paving the way
for predictive models capable of estimating blood pressure values from these signals. Although
these approaches are still being validated and present significant challenges such as the need
to reduce motion artifacts and ensure accurate calibration. In fact, they represent one of the
most promising prospects for the future of cardiovascular monitoring [19] [20] [21].

1.4 Thesis Objectives

In this context, this thesis aims to explore and develop a method for the non-invasive and
continuous estimation of blood pressure, based on the combined analysis of ECG and PPG
signals recorded with the reference Shimmer devices. Using these systems allows us to work
with "real” data, and to evaluate the method's practical transferability to clinical and everyday
settings. A detailed description of the Shimmer devices' hardware and software features, as
well as their acquisition methods, will be provided in the following chapters, particularly in the
section dedicated to methodology (Chapter: The entire work has been carried out at the
LINKS Foundation. It aims to be a driver of innovation with high social and economic impact,
based on a solid integration of cutting-edge technological knowledge and a multidisciplinary
vision. Through a practical approach that extends from design to prototyping, and thanks
to a dense network of collaborations with academic institutions and industrial entities both
nationally and internationally, LINKS creates a fertile ecosystem where diverse skills meet and
interconnect. The Foundation's guiding vision recognizes the intimate connection between
technological progress, society, and the environment, aiming to address the structural challenges
of our time from a systemic perspective. This ecosystemic perspective combines technological
innovation with the principles of sustainability, equity, and territorial development, with the
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ultimate goal of generating tangible benefits for the community.

The LINKS Foundation therefore acts as a bridge between research and practical application,
transforming advanced ideas into real solutions that meet the needs of contemporary society,
always respecting a harmonious balance between humanity, technology, and nature. The Foun-
dation thus represents a model of how technical and scientific excellence can be combined with
a responsible vision of progress, where innovation becomes a tool for the shared improvement of
living conditions and the protection of the common good [22]. The main idea of the project is
the acquisition of signals via wearable sensors, processing to extract HR and PTT parameters,
and the application of regression techniques to establish a quantitative relationship with refer-
ence blood pressure values, to estimate the trend over time of diastolic and systolic pressure:
DBP and SBP values. Then, the future development is the possibility to use the algorithm on
portable devices for continuous and real-time monitoring.

The work is therefore organized as follows: Chapter [2] is dedicated to the state of the
art, describing the physiological foundations, traditional methods, and emerging techniques for
monitoring blood pressure. Chapter 3| illustrates the proposed solution, including the sensors,
acquisition, pre-processing, and parameter extraction methods. Chapter [4] presents the experi-
mental results obtained and their evaluation, while Chapter[5is dedicated to a critical discussion
of the results and future perspectives. Lastly, Chapter [f]is dedicated to the conclusions.
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2 State Of The Art: Materials and Methods

The study of blood pressure and the methodologies for its non-invasive estimation requires a
solid understanding of both basic physiological aspects and biomedical signal acquisition and
processing techniques. This chapter provides a critical and structured review of the existing
literature, with the aim of outlining the state of the art for existing blood pressure monitoring
techniques.

The chapter is organized into five main sections.

e Section 2.1 — Physiological Background: The fundamentals of the cardiovascular
system will be reviewed, with particular attention to the definition of blood pressure and
its main components: systolic blood pressure (SBP), diastolic blood pressure (DBP), and
mean arterial pressure (MAP). The relationship between blood pressure, cardiac output,
and peripheral resistance will also be discussed, highlighting how these parameters are
influenced by physiological and pathological factors.

e Section 2.2 — Biomedical Signals of Interest: This section focuses on the two key
signals used in cuffless approaches: the electrocardiogram (ECG) and the photoplethys-
mogram (PPG). The principles of signal generation, their morphology and fiducial points
of interest (e.g. the R-peak in the ECG and the foot or peak in the PPG) will be in-
troduced. The main factors that can degrade signal quality, such as physiological noise
and motion artifacts, and the strategies commonly adopted to mitigate them will also be
analyzed.

e Section 2.3 — Blood Pressure Measurement Techniques: This section presents cur-
rent blood pressure measurement methodologies. We will begin with invasive methods,
considered the gold standard for accuracy but limited by their high invasiveness, and then
analyze non-invasive techniques based on cuff-based devices (manual sphygmomanome-
ter, oscillometric). Finally, we will introduce the concept of cuffless monitoring, discussing
its advantages and challenges compared to established clinical practices.

e Section 2.4 — Innovative Approaches for Blood Pressure Estimation: This section
focuses on methods that take advantage of parameters derived from ECG and PPG signals,
specifically heart rate (HR), pulse transit time (PTT), and pulse arrival time (PAT). We
will analyze the main regression models (linear, polynomial, logarithmic) and the most
recent techniques based on machine learning and deep learning (SVM, Random Forest,
CNN, LSTM). Multimodal approaches that combine different biomedical signals will also
be described, as well as the main open issues, including the need for calibration, model
generalization, and high interindividual variability.
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e Section 2.5 — Datasets and Validation: The final section will focus on databases
available in the literature and performance evaluation criteria. The most popular public
databases, such as MIMIC, and proprietary data collections will be discussed. Commonly
used validation metrics (RMSE, MAE, Bland-Altman) and international standards (AAMI,
BHS, 1SO) will be presented. Finally, a comparison of the main published works will be
provided, accompanied by a comparative table summarizing datasets, algorithms, and
performance, with a critical discussion of the current state of research and the gaps that
remain to be filled.

2.1 Physiologic Background

This section presents the basic physiological principles necessary to understand the functioning
of the cardiovascular system and the central role of blood pressure. After a general overview
of the organization of the circulatory system and its two main components: systemic and
pulmonary circulation, fundamental concepts related to the dynamics of blood flow will be
introduced.

Particular attention will be paid to the definition and description of the main components
of blood pressure: systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial
pressure (MAP), and pulse pressure (PP). These parameters form the basis for the correct
interpretation of hemodynamic conditions and are key elements for clinical assessment.

2.1.1 Cardiovascular System

The cardiovascular system is the set of organs that allow blood to circulate within our body
to provide cells with the necessary nutrients and to eliminate carbon dioxide and other waste
products [23]. It is a closed system of blood vessels made up of arteries, capillaries, and veins.
In particular, arteries are tubes with a thick layer of elastic tissue and muscle fibers that receive
blood from the heart, a muscle that functions as a true blood pump. The arteries branch out
into thinner blood vessels until they reach arterioles, through which blood is conveyed into
capillaries, small tubes with thin walls permeable to nutrients, gases and waste products. The
capillaries carry blood to small blood vessels, the venules, which converge to form veins that
return blood to the heart [23]. The graphical representation of the system is shown in figure
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Figure 3: Representation of the Cardiovascular System

The blood circulation goes with the systemic and pulmonary circulation (figure E[) In
particular, systemic circulation, or greater circulation, begins in the left ventricle and distributes
oxygen-rich blood to all parts of the body via the aorta and its branches. In parallel, the
pulmonary circulation transports carbon dioxide-laden blood from the right ventricle to the
lungs, where gas exchange occurs [24]. These two, closely integrated, form a closed circuit that
maintains the body's homeostasis. The heart acts as a tireless pump, while the blood vessels
form an intelligent distribution network, capable of self-regulating according to the needs of the

various tissues.
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Figure 4: Difference between the Systemic circulation and Pulmonary circulation

Therefore, the cardiovascular system not only allows the distribution of nutrients to organs
and the elimination of excess substances, such as carbon dioxide, but also acts as a vehicle for
the immune system and other molecules (hormones) that, through blood vessels, are able to
reach all parts of our organism [23].

2.1.2 Meaning of MAP, DBP, SBP, PP, CO and TPR in Clinic context

Arterial pressure represents the force exerted by blood against the internal walls of the arteries,
determined by the interaction between cardiac output and vascular resistance. This fundamental
hemodynamic parameter must remain within adequate values throughout the vascular system,
from the arteries to the capillaries, to ensure appropriate blood perfusion to organs and tissues
[25] [26].

Blood pressure measurement includes four main components: systolic blood pressure (SBP),
which reflects the maximum pressure generated during cardiac contraction; diastolic blood
pressure (DBP), which represents the minimum pressure in the arteries during cardiac rest;
pulse pressure (PP), which represents the difference between SBP and DBP, which represents
the force the heart generates each time it contracts and may also reflect arterial stiffness and
mean arterial pressure (MAP), calculated using two possible formulations:

SBP — DBP
MAP = DBP + =~ (1)

MAP = CO «TPR (2)
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Cardiac output (CO), determined by the product of heart rate and stroke volume, represents
the amount of blood pumped by the heart in one minute. Similarly, Total Peripheral Resistance
(TPR) is mainly dependent on the tone of the arterioles, which are the main resistance vessels
in the circulatory system. The body maintains a delicate balance between these two factors
through complex neurohumoral regulatory mechanisms, which act on different time scales to
preserve organ perfusion [27] [29].

From a physiological perspective, MAP is the most significant parameter, as it expresses the
mean perfusion pressure that ensures blood supply to vital organs. Unlike systolic and diastolic
blood pressure values, which reflect the extreme phases of the cardiac cycle, MAP expresses
the mean perfusion pressure that ensures constant blood flow through the microcirculation.
Maintaining adequate MAP values (generally > 65 mmHg) is essential to prevent ischemic
damage to organs such as the kidneys, brain, and heart. In intensive care, this parameter guides
therapeutic decisions in critically ill patients, with particular attention to shock conditions.

In chronically hypertensive patients, the optimal MAP threshold is higher (75-85 mmHg) due
to pre-existing vascular alterations. MAP monitoring is also particularly important in surgical
and neurological settings, where inadequate values can lead to serious complications [26] [28].
MAP interpretation must always consider the overall clinical picture, integrating with other
hemodynamic and metabolic parameters, with the ultimate goal of ensuring optimal tissue
oxygenation rather than simply achieving predetermined numerical values.

2.2 Hypertension, Blood Pressure Monitoring Techniques and ECG,
PPG definition

Monitoring of blood pressure (BP) is a fundamental clinical practice for the diagnosis and treat-
ment of numerous cardiovascular diseases, with hypertension representing the most prevalent
and impactful condition worldwide. Traditional methodologies fall into two broad categories:
invasive systems (IABP), considered the gold standard for continuous measurement in intensive
care settings but associated with significant risks, and non-invasive methods, including manual
(such as auscultation of Korotkoff sounds) and automated (primarily oscillometric) techniques,
although the latter are often inconsistent and prone to error. To overcome the limitations of
these techniques, research is increasingly moving toward non-invasive and cuffless technologies.
These innovative systems are based on the combined acquisition and analysis of physiological
signals. Specifically, the electrocardiogram (ECG) and the photoplethysmogram (PPG) are
used to continuously and less intrusively estimate blood pressure. The central physiological
parameter in this approach is the Pulse Transit Time (PTT), or the related Pulse Arrival Time
(PAT), which is inversely correlated with blood pressure values.

This section illustrates the main BP monitoring techniques, starting with the standard
invasive approach and moving on to traditional non-invasive (cuff-based) methodologies, cul-
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minating in an analysis of the most promising cuffless methods, which leverage ECG and PPG
signal processing, including machine learning models, for accurate, personalized, and real-time
estimates of systolic (SBP) and diastolic (DBP) blood pressure. These innovations are par-
ticularly relevant in the context of hypertension management, where the need for continuous,
reliable, and patient-friendly monitoring solutions remains largely unmet and will be addressed
in detail in the following discussion.

2.2.1 Hypertension: definition and why it is important to be monitored

Arterial hypertension is a clinical condition characterized by persistently elevated blood pressure
values, generally defined as a systolic blood pressure (SBP) equal to or greater than 140 mmHg
and/or a diastolic blood pressure (DBP) equal to or greater than 90 mmHg [3]. This condition
represents a major modifiable risk factor for cardiovascular disease, including coronary heart
disease, stroke, heart failure, and chronic kidney disease.

According to the most recent epidemiological data, hypertension affects approximately
onethird of the adult population globally, and its prevalence is constantly increasing, driven
by demographic aging, the growing incidence of obesity and diabetes, and the spread of seden-
tary lifestyles [7]. A particularly critical aspect is that a significant proportion of hypertensive
subjects are unaware of their condition, while among those who have received a diagnosis, many
do not regularly follow pharmacological therapy or are not subjected to adequate clinical moni-
toring [6]. Blood pressure monitoring therefore plays an essential role for several reasons. First,
it allows for the early identification of at-risk individuals, reducing the likelihood that undiag-
nosed hypertension will progress to serious acute events. Second, it allows for the assessment of
the response to pharmacological and non-pharmacological treatments, optimizing therapy based
on blood pressure trends [4]. Finally, regular monitoring is essential for preventing long-term
complications, as effective blood pressure control is associated with a significant reduction in
cardiovascular mortality.

In summary, hypertension represents not only an epidemiologically relevant problem but also
a clinical challenge requiring accurate, reliable, and, if possible, continuous measurement tools
to support patients and the healthcare system in the long-term management of this condition.

2.2.2 Invasive Blood Pressure Monitoring: Indications, Technique, and Complica-
tions

Invasive blood pressure monitoring (IABP) represents the standard for continuous blood pressure
measurement in critically ill patients. This approach is used primarily in intensive care and during
highly complex surgical procedures, providing a beat-to-beat assessment of blood pressure and
allowing the analysis of cardiac output through the study of the pulsatile waveform profile [31].
The main indications include:
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e Patients with hemodynamic instability or severe hypotension

e Need for frequent blood gas analysis in respiratory failure

e Evaluation of the effects of vasoactive drugs to optimize therapy

e Inability to use noninvasive methods due to skin or joint lesions [30]

The invasive blood pressure monitoring procedure begins with the placement of a catheter in a
peripheral artery. The measurement system consists of several essential components that work
synergistically: an arterial cannula is connected to special non-compressible tubing, through
which a heparinized saline solution flows continuously (figure . This hydraulic system is
connected to a pressure transducer based on the Wheatstone bridge principle, which converts
pressure variations into electrical signals that are subsequently processed and displayed on a
dedicated monitor showing both the characteristic pulsatile wave and the numerical values of
systolic, diastolic, and mean blood pressure [31].

Figure 5: BP monitoring with Invasive method

Compared to non-invasive methods, this approach offers significant clinical advantages.
The increased measurement accuracy is particularly valuable in complex situations such as
the presence of cardiac arrhythmias or marked hypotensive states. In addition, it represents
the ideal solution for patients in whom traditional techniques are inapplicable, such as severe
obesity, multiple limb trauma, or extensive burns. A further benefit is the ability to analyze
the morphology of the pulsatile waveform in detail, providing valuable information on global
hemodynamic status and cardiovascular function [3I]. However, like any invasive procedure,
monitoring blood pressure is not without risks. Immediate complications include the possibility
of hemorrhage, vasospasm, or accidental intra-arterial drug administration. However, in the
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long term, thromboembolic events may occur, with an estimated incidence of 3.4 cases per
1000 catheters placed, or device-related infections [32].

To minimize these risks and ensure accurate measurements, rigorous safety procedures are
essential. The transducer must be positioned at the correct height, corresponding to the
midaxillary line, an anatomical landmark that approximates the level of the right atrium. The
system must be kept completely free of air bubbles and periodically calibrated using the zeroing
procedure. Careful monitoring of the insertion site, with daily evaluation for local signs of
infection or ischemia, completes the necessary precautions [30]. Despite the unquestionable
precision of this method, it is important to note that measurement errors can occur. The
main sources of inaccuracies include system under- or over-damping, incorrect positioning of
the transducer relative to the reference plane, or technical problems in the various components
of the measurement circuit. For these reasons, efforts are underway to adopt new methods
for blood pressure measurement that surpass or equal the efficacy of invasive techniques while
simultaneously ensuring patient safety.

2.2.3 Non-invasive Methods cuff based: Advantages and Disadvantages

Non-invasive blood pressure monitoring (NIBP) uses various methodologies, which can be di-
vided into manual and automated techniques. Among continuous measurement methods, two
main approaches are based on the principle of radial artery applanation tonometry and the
digital volumetric clamp method, respectively.

Applanation tonometry requires compression of a superficial artery (typically the radial
artery) against a contralateral bony structure without completely occluding it. This technique,
implemented in devices such as the T-line TL300 blood pressure monitor (figure [6)) [32], allows
direct measurement of mean arterial pressure (MAP) from the waveform, while systolic and
diastolic values are derived by proprietary algorithms. Perioperative studies have shown a good
correlation with contralateral invasive measurements, although the presence of motion artifacts
represents a significant limitation, particularly relevant in intensive care [32].

The volumetric clamp method, alternatively, initially determines the arterial volume of
the finger using infrared transmission plethysmography. By maintaining this volume constant
through rapid pressure variations in a digital cuff, the system obtains a continuous blood pressure
measurement. This technique also has limitations, particularly its dependence on the quality of
the digital signal, which may be suboptimal in critically ill patients [32].

Regarding non-continuous measurements, these can be performed manually or automatically.
The manual method, historically based on the use of mercury or aneroid sphygmomanometers,
uses a stethoscope placed on the brachial artery to identify Korotkoff sounds during gradual
deflation of the cuff [32]. However, the precision of this technique depends on the hearing
acuity of the operator, the quality of the stethoscope, and the correct application of the cuff
[31]. In contemporary clinical practice, automated oscillometric measurement represents the
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Figure 6: T-line TL300 blood pressure monitor for continuous Blood Pressure Monitoring

gold standard for non-invasive blood pressure measurement. This method involves inflating the
cuff above systolic blood pressure, followed by gradual deflation, during which the amplitudes of
the pressure oscillations are measured. The systolic, diastolic, and mean blood pressure values
are then calculated based on the variations in these pulses [32].

However, the oscillometric technique has several practical limitations. Incorrect cuff appli-
cation, both in terms of size (it should cover two thirds of the upper arm with a width equal to
40% of the brachial circumference) and position (correct alignment with the brachial artery),
can result in falsely high (cuff too small) or low (cuff too large) readings. Additional sources
of error include repeated and rapid inflation, which causes venous congestion; excessively rapid
deflation; leaks or kinks in the tubing; and the tendency to overestimate low blood pressure
and underestimate high blood pressures. Cardiac arrhythmias (such as atrial fibrillation) and
involuntary movements (tremors, shivers, convulsions) can also compromise the precision of the
measurements [32].

Due to the limitations of these techniques, efforts are underway to develop new methods that
will make measurements more accurate. An example is methods based on cuffless technologies
that use ECG and PPG signals to measure blood pressure.

2.2.4 Cuffless Methods for Blood Pressure Monitoring using ECG, PPG

Because the traditional cuff method for measuring blood pressure (BP) cannot be performed
continuously and in real time, a new, non-invasive, accurate and completely cuff-free self-
measurement method has emerged [34]. To address this gap, several alternative methods that
avoid the use of a cuff have been developed over the past two decades. The most common
and widely studied approach is based on Pulse Wave Velocity (PWV), which in turn is derived
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from Pulse Transit Time (PTT) using the equation:

D

, where D is the distance between two sensors [34]. PTT, defined as the time taken for a
blood pulse to travel between two arterial sites, is negatively correlated with blood pressure.
However, much of the research has actually relied on the measurement of Pulse Arrival Time
(PAT), which is often used interchangeably with PTT in the literature [33] [34]. PAT is easier
to measure, as it refers to the time interval between R, of the electrocardiogram (ECG) and
a specific point (Speqr) on the photoplethysmogram (PPG) waveform detected at a peripheral
location [34]:

PTT = Speak — Rpeak (4)

In addition to PTT/PAT-based models, some researchers have attempted to predict blood
pressure based on the analysis of the morphological characteristics of the PPG signal and other
physiological variables [33]. For example, a study by Wang et al. [33] used the PAT method
by testing different mathematical models (logarithmic, inverse, inverse square) to describe the
relationship between PWV and BP. The main disadvantage of approaches using PTT and PAT
is the requirement of two perfectly synchronized sensors (e.g., ECG and PPG or two PPGs),
which makes the setup more complex and increases the sensitivity to motion artifacts [34]. To
overcome these limitations and improve accuracy, recent research is increasingly moving towards
the use of machine learning and deep learning models. These methods can both extract complex
features from the signals [33] and attempt to estimate directly from the raw ECG and PPG
signals, going beyond traditional mathematical equations [34]. It is important to note that,
regardless of the method, other physiological factors such as age, body mass index (BMI), sex
and posture during measurement can significantly influence the precision of the final result [33].

Therefore, to obtain reliable measurements, it is advisable to follow these guidelines:

e Measure both sensors (ECG, PPG) to ensure the correlation between the signals.
e The patient must be seated and at rest.
e Make sure the electrodes are placed correctly.

Wearable medical sensors that use ECG and PPG signals to measure blood pressure must return
the values of diastolic blood pressure (DBP) and systolic blood pressure (SBP). The former,
also called minimum pressure, corresponds to the blood pressure when an individual’s heart is in
the relaxation phase; therefore, it represents the recorded value between one heartbeat and the
next, when the cardiac muscle is at rest [35]. In contrast, systolic (or maximum) blood pressure
is the value of blood pressure during heart contraction, that is, when it beats and pushes blood
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into the arteries [35]. These two pressures are evaluated using the PTT and The HR extraced
from the ECG and PPG signals as shown in the equation:

SBP =ag + a-PTT + B-HR

(5)
DBP =8+ v-PTT + §-HR

In Equation (5), ag, Bo, @, 3, v and 0 represent subject-specific parameters obtained through
calibration, providing a comprehensive approach to estimate BP with a more accurate and
personalized assessment.

2.2.5 ECG signal

The ECG trace, acquired non-invasively, provides a graphic representation of the electrochemical
phenomena that occur in the heart muscle fibers during its cyclic functioning. The most
significant element in this context is the QRS complex, a broad oscillation of the signal caused by
the ventricular depolarization process. This complex is identified by three distinct components,
called Q, R, and S waves (Figure [36]. By measuring the time interval At (R, — Rpeak)
that separates two successive R peaks (which mark activation of the left ventricle), the Heart
Rate (HR) can be precisely determined, as illustrated in Figure and calculated with the

formula:
60

HR = (6)

R-R interval

(a) ECG signal (b) HR interval

Figure 7: lllustration of the ECG signal and the corresponded Hr interval

2.2.6 PPG signal

Photoplethysmography (PPG) is a low-cost optical method that detects changes in blood vol-
ume within the skin capillaries [37]. Its signal is characterized by a rhythmic pulsatile component
('AC’), generated by blood flow fluctuations related to each single heartbeat (Figure [8]) [37].
From the analysis of this waveform, it is possible to derive the Pulse Transit Time (PTT) by
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calculating the time difference between R, of the ECG signal and the point of maximum
slope (Spear) On the immediately following PPG wave (Figure [3)).

) Systolic Peak A Diastolic Peak W
AR R R A A s s
f \ | \ | \ ‘ !

AV AV AV AV AV AV |
\.‘i‘u}"‘i w\' AV [ A A

\ \ \ / \ I I I\
ljf \Jl \j‘ \/ \ AH N H “‘ /\
e ifNd /J\g_/\) \f/\‘ /\wv, \es

Time (s) I\

(a) PPG signal (b) PTT interval

Amplitude (v)

/

Figure 8: lllustration of the PPG signal and the evaluation of PTT

Both ECG and PPG signals are widely used in clinical practice to monitor various phys-
iological parameters (e.g., PPG for oxygen saturation and respiratory rate, ECG for cardiac
output). Blood pressure is a vital parameter of extreme importance; this study illustrates the
methodology for its estimation through the joint processing of these two physiological signals.

2.3 Innovative approaches for blood pressure estimation

In recent years, the growing availability of biomedical signals acquired through wearable devices
and non-invasive techniques has spurred the development of innovative approaches for esti-
mating blood pressure (BP). In addition to traditional direct measurement methods, research
has focused on the quantitative analysis of physiological parameters derived from signals such
as the electrocardiogram (ECG) and photoplethysmogram (PPG), exploiting their relationship
with hemodynamics. The primary goal is to obtain a continuous, accurate, and non-invasive
estimate of BP, overcoming the limitations of cuff-based or invasive techniques.

In this context, various modeling and computational approaches have been explored. Initial
attempts have relied on classical regression models, such as linear, polynomial, or logarithmic
regression, which attempt to establish simple mathematical relationships between surrogate
variables (e.g. HR, PTT) and reference blood pressure values. Although these methods have
the advantage of being interpretable and easily implementable, they often fail to capture the
complexity of physiological interactions. To address this limitation, research has introduced
traditional machine learning techniques, such as Support Vector Machines (SVM), Ridge Re-
gression, Random Forest, and Regression Trees. These algorithms are capable of modeling
non-linear relationships and managing heterogeneous datasets, offering better performance than
traditional models, especially in the presence of noise and interindividual variability.

A further step forward has been made with the application of deep learning approaches,
such as convolutional neural networks (CNN), recurrent neural networks (RNN), and their
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advanced variants (e.g., LSTM). These models allow automatic learning of complex features
from ECG and PPG signals, avoiding the need for manual feature extraction and showing
great potential, especially in continuous monitoring scenarios. At the same time, interest is
emerging in multimodal applications, which combine multiple physiological signals (ECG, PPG,
accelerometers, respiratory signals, etc.) to improve estimation accuracy and reduce sensitivity
to artifacts. The integration of different information sources represents a promising perspective
for making systems more robust and adaptable to real-world conditions.

Despite progress, some critical issues remain that hinder the widespread clinical adoption
of these approaches. These include the need for individual calibration, the poor generalizability
of models trained on limited datasets, and the high physiological variability between subjects
and conditions. Furthermore, managing motion artifacts and adapting models to uncontrolled
contexts remain challenges. This section will analyze in detail the main innovative approaches
for cuffless blood pressure estimation, assessing their potential and limitations, with the aim of
outlining the state of the art and the main research gaps.

2.3.1 Classical regression Methods: Linear Regression, Logarithmic Regression,
Polynomial regression, Gaussian Process regression (GPR)

Cuffless estimation of blood pressure (BP) was initially developed through the use of classical
regression methods, chosen for their computational simplicity, easy interpretability, and the
ability to provide a first quantitative link between physiological characteristics derived from
biomedical signals (e.g. ECG, PPG) and blood pressure values. The main classical methods
can be identified as:

1. Linear Regression: It is the simplest model and was among the first to be applied in
the cuffless study of BP. The model can be written as:

BP =0y+p1-PTT+py-HR+ ¢ (7)

where PTT (Pulse Transit Time) is the transit time of the pulsatile wave between ECG
and PPG, strongly correlated with arterial stiffness and therefore with blood pressure [38];
HR (Heart Rate) represents the heart rate, often added as a corrective variable [39]; and e
is the error term. The main advantage of this approach is linearity: the coefficients 3 have
a direct meaning and allow the influence of each physiological parameter on blood pressure
to be interpreted. For example, a reduction in PTT of a few milliseconds is associated
with a proportional increase in SBP, consistent with physiology [40]. However, linear
regression suffers from noise in the signals, which leads to unstable estimates, non-linear
relationships between PTT and BP, which are not captured, and a strong dependence
on individual calibration [41]. To improve robustness, some work has used robust linear
regression, which minimizes the impact of typical outliers of PPG signals acquired under
real-world conditions [42].
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2. Logarithmic Regression: It arises from more realistic physiological models since the
relationship between PTT and blood pressure is not linear but follows a logarithmic trend
resulting from the elastic properties of blood vessels. The most common form is:

BP =a-In(PTT)+b (8)

where the parameters a and b are experimentally estimated [43]. This model is based
on the Moens-Korteweg law, which links the velocity of the blood pressure wave to
arterial elasticity and the exponential relationship between pressure and vessel volume
[44]. In practice, logarithmic regression better describes the behavior at high blood
pressure values, where arterial stiffness increases disproportionately. The advantages
of this approach include better physiological adherence and the ability to model simple
nonlinear relationships. However, it also has limitations such as lower interpretability than
linear regression and the need for an accurate initial calibration for each subject [45].

3. Polynomial Regression: It extends the linear model by adding higher-order terms of
the form:

BP=08y+ b1 -2+ B2+ ...+ By 2"+ ¢ (9)

where x can represent PTT, HR, or other extracted characteristics from biomedical sig-
nals. The use of quadratic and cubic terms allows capturing curvatures and non-linearities
in the relationship between PTT and BP [46]. For example, a study showed that quadratic
models reduced estimation error by 2-3 mmHg compared to linear regression, especially
in subjects with high blood pressure variability [46]. However, polynomial models have
significant limitations, including the risk of overfitting, especially with small data sets,
poor generalization among different populations, and the difficulty of physiological inter-
pretation of high-order terms [47]. For this reason, polynomial regression is often used as
a benchmark or as a preliminary step to identify potential nonlinear trends before applying
more complex models.

4. Gaussian Process Regression (GPR): It represents an evolution of classical methods
towards a non-parametric and probabilistic approach. Instead of assuming a specific form
for the function, as happens in linear or logarithmic models, GPR models the distribution
of possible functions that can describe the input-output relationship through the form:

f(x) ~ GP(m(x), k(z, z")) (10)

where m(x) is the mean function and k(x, x') is the covariance function (kernel), which
defines the similarity between two points [48]. The major advantage of GPR is that, in
addition to providing a precise estimate of blood pressure, it also provides a confidence
interval, which is particularly useful in clinical settings to assess the reliability of the
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prediction. Applications to BP estimation have shown promising results: with a Matérn
5/2 kernel, RMSEs of approximately 4.3 mmHg for SBP and 2.3 mmHg for DBP are
obtained [48]; while with a Rational Quadratic kernel and optimal feature selection, the
RMSE is around 10.7 mmHg for SBP and 8.0 mmHg for DBP [49]. However, GPR has
some significant limitations, including high computational complexity, especially on large
datasets, and the need to carefully choose and calibrate the kernel [50]. Despite these
challenges, GPR is now considered a "bridge" between classical models and advanced
machine learning techniques, representing an important step forward in blood pressure
modeling.

Classical regression methods have played a fundamental role in the development of cuffless
BP estimation systems. Linear and logarithmic regression are still used as baselines due to
their simplicity and interpretability. Polynomial regression represents an improvement in the
modeling of nonlinear relationships, while GPR represents an advanced but still "classical”
approach capable of managing uncertainty and variability.

Despite their advances, these methods have limitations in terms of inter-subject generaliz-
ability and often require individual calibration.

2.3.2 Machine Learning Algorithms: SVM, Ridge Regression, Random Forest

Following traditional regression methods, the introduction of Machine Learning Algorithms has
allowed a more flexible approach to the complex relationships between biomedical signals (ECG,
PPG) and blood pressure values. Unlike linear or polynomial models, ML techniques can capture
nonlinear relationships, handle larger datasets, and incorporate a greater number of variables.
Among the most used algorithms in this field are:

1. Support Vector Machine (SVM): It represents an advanced methodology for esti-
mating blood pressure from physiological signals. This approach is based on a machine
learning framework that aims to identify a regression function capable of effectively gen-
eralizing to previously unobserved data. The strength of SVM lies in its ability to handle
non-linear relationships between input physiological variables, such as pulse transit time
(PTT) and heart rate (HR), and output blood pressure values [5I]. The core of the
SVM method is to map the data into a higher-dimensional space using kernel functions

(equation (11)). N

fl)=> (ai—af) - K(wi,z;) +b (11)

i=1
where «a; - o are Lagrangean coefficients determined during training, K (z;,z;) is the
kernel function (e.g., RBF, polynomial), b is the bias term.
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This transformation allows complex non-linear problems to be converted into linearly
separable problems. The Radial Basis Function (RBF) Kernel:

K (5, 25) = exp(—y - |lvi — 2;][*) (12)

has proven particularly effective in this context, thanks to its ability to capture com-
plex relationships between physiological parameters and blood pressure. The 7, in the
equation, represents the control of the function amplitude.

One of the main advantages of the SVM approach is its robustness to noise present
in physiological signals. This is achieved by introducing a tolerance margin € in the
loss function, which allows the model to ignore small deviations in the training data.
This feature is particularly valuable in the analysis of biomedical signals, which are often
affected by motion artifacts and interference [51]. However, the implementation of SVM
presents some significant challenges. The computational complexity of the algorithm
grows considerably with the increase in the size of the dataset, requiring non-negligible
computing resources. Furthermore, the performance of the model critically depends on
the correct selection of the regularization parameters C and the RBF kernel parameter ~.
Optimization of these parameters typically requires grid search procedures combined with
cross-validation techniques [51]. A further limitation concerns the model's interpretation.

Unlike traditional linear regression methods, where coefficients provide a direct measure
of the impact of each physiological variable, SVM operates as a "black box,” making it
difficult to understand the specific contribution of each parameter to the final estimate
of blood pressure [5I]. Despite these limitations, experimental results demonstrate that
SVM achieves competitive performance in blood pressure estimation.

. Ridge Regression: It is a penalized linear regression technique widely used to estimate
blood pressure (BP) from physiological parameters such as pulse transit time (PTT), heart
rate (HR), and photoplethysmographic signal (PPG). This method addresses the problem
of multicollinearity between predictor variables, a common phenomenon in physiological
data where parameters such as PTT and HR are often correlated [52]. Ridge regression
modifies the cost function of ordinary linear regression by adding an L2 penalty term (L2
norm of the coefficients). The objective function becomes the following:

mﬁm{z (4 — XeB) + AZB?} (13)

where y;is the blood pressure value (e.g., SBP or DBP), X is the vector of physiolog-
ical features (PTT, HR, etc.), § are the regression coefficients, A is the regularization
parameter that controls the amount of the penalty [52].
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This modification has the effect of contracting the model coefficients towards zero, thus
stabilizing the estimates and improving predictive power on new data. The parameter
A, which controls the strength of the regularization, therefore, becomes crucial to bal-
ance the trade-off between bias and forecast variance [52]. In the specific context of
blood pressure estimation, the ridge regression demonstrates a particular effectiveness in
handling individual physiological variability. Photoplethysmographic (PPG) and electro-
cardiographic (ECG) signals present intrinsically correlated characteristics, which can lead
to numerical instabilities in traditional regression models. The penalty introduced by the
ridge regression mitigates this problem, allowing for more robust and reliable estimates
[53].

However, the application of ridge regression is not without challenges. Optimal selection
of the regularization parameter \ typically requires the use of cross-validation techniques,
which can increase the computational complexity of the training process. Furthermore,
while coefficient contraction improves the stability of predictions, it complicates the phys-
iological interpretation of the specific contribution of each parameter [52]. Despite these
limitations, ridge regression remains a valuable tool in the arsenal of researchers devel-
oping systems for non-invasive blood pressure estimation. Its ability to combine relative
simplicity of implementation with robust predictive performance makes it particularly suit-
able for applications in wearable devices, where computational constraints and the variable
quality of acquired signals require approaches resilient to noise and multicollinearity [53].

. Random Forest: It has emerged as one of the most promising approaches for non-
invasive blood pressure estimation, especially when applied to complex physiological sig-
nals such as heart sounds and ballistocardiograms. This ensemble method combines
multiple decision trees, each trained on a random subset of data and characteristics, to
produce an average prediction that is more robust and accurate than individual trees [54].

The mathematical formulation of the Random Forest prediction for estimation of the
blood pressure can be expressed as:

1L

Y= E;Tb(x) (14)
where  represents the predicted blood pressure (SBP or DBP), B is the number of trees
in the forest, T,(x) is the prediction of the b-th decision tree for the input vector x and
x is the vector of features extracted from the physiological signals [54]. Each decision
tree T}, is constructed using a random subset of training data through a recursive feature
space partitioning process. The optimal splitting function for each node is determined by
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maximizing the information gain:
= |D;|
D — ; 15
G(D. [) = ; B! (15)

where D is the data set at the current node, f is the feature considered for the split, I(D)
is the impurity of the node (typically measured by the mean squared error for regression),
D; are the data subsets resulting from the split [54]. One of the main advantages of
Random Forest in this context is its ability to handle nonlinear relationships and com-
plex interactions between physiological variables. Unlike linear models, Random Forest
does not require prior assumptions about the distribution of data or the linearity of rela-
tionships, an essential feature when working with intrinsically complex biomedical signals
[54]. Random Forest, through its importance sampling approach, is able to automat-
ically identify the most relevant characteristics for blood pressure estimation, reducing
dimensionality issues and improving computational efficiency [54].

This algorithm shows remarkable performance, with systolic blood pressure estimation er-
rors that are competitive with traditional methods. In particular, Random Forest's ability
to reduce overfitting by bagging and selecting random characteristics makes it partic-
ularly suitable for clinical applications where generalization is essential [54]. However,
implementing Random Forest presents some challenges. The "black box" nature of the
algorithm makes it difficult to directly interpret causal relationships from a physiological
perspective, partially limiting the analysis of the mechanisms underlying blood pressure
estimation. Furthermore, the need for a large and representative training data set can be
a limitation in contexts with limited data availability [54]. Despite these limitations, the
results of studies demonstrate that Random Forest, combined with physiological signals
such as heart sounds, represents a solid platform for the development of continuous and
non-invasive blood pressure monitoring systems. The ability to integrate multiple pieces
of information and handle the intrinsic noise of biomedical signals makes it particularly
suitable for home and clinical applications [54].

2.3.3 Deep Learning and Neural Network methods: CNN, RNN, LSTM

Advances in noninvasive, cuff-free blood pressure (BP) estimation have recently embraced deep

learning techniques, which offer superior predictive capabilities compared to classical meth-

ods, especially when dealing with complex and non-stationary physiological signals. These

approaches, although more computationally intensive and less interpretable, are capable of cap-

turing nonlinear relationships and hidden patterns in multidimensional data, paving the way for

continuous and highly accurate monitoring systems. The main applied deep learning architec-

tures include:
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1. Convolutional Neural Network (CNN): They represent a class of deep learning mod-
els that have revolutionized the approach to estimating blood pressure from physiological
signals. Originally developed for image processing, CNNs have proven exceptionally effec-
tive in analyzing temporal biomedical signals such as the electrocardiogram (ECG) and
the photoplethysmogram (PPG), due to their ability to automatically extract relevant
features through convolution and pooling operations [55]. The fundamental architecture
of a CNN for analyzing physiological signals is composed of several feature layers.

The convolutional layers apply learnable filters to the input signals, progressively extracting
features at different levels of abstraction. This mathematical operation can be represented
as:

y(t) = ( *w)(t) = / £(r)u(t — 7)d(r) (16)

where x represents the input physiological signal, w is the learnable convolution kernel,
and y is the resulting feature map [55]. This is typically followed by a pooling layer,
termed maximum pooling, which reduces the spatial dimensionality of feature maps while
preserving the most salient information. This layer is crucial for controlling overfitting
and improving computational efficiency, particularly important in applications that require
real-time processing [55]. CNNs offer significant advantages in the estimation of blood
pressure. Their ability to learn hierarchical features directly from raw signals eliminates
the need for manual feature engineering, which is traditionally complex and error-prone
when processing physiological signals. Furthermore, weight sharing in convolution oper-
ations gives the model a certain translational invariance, making it robust to temporal
variations in physiological signals [55]. A particularly innovative aspect of applying CNNs
to the estimation of blood pressure is the ability to process multiple physiological signals
simultaneously. Through multi-input architectures, CNNs can process ECG and PPG
signals in parallel, capturing complex non-linear relationships between cardiac electrical
activity, peripheral perfusion, and blood pressure values [55].

Training CNNs for this application requires large and carefully annotated datasets. The
optimization process aims to minimize a loss function, typically the mean squared error
between predicted and actual systolic and diastolic blood pressure values. Regularization
techniques such as dropout and weight decay are commonly used to prevent overfitting
and improve model generalization [55]. Despite their effectiveness, CNNs have some
limitations. The "black-box" nature of the learned features makes a physiological in-
terpretation of the results difficult. Furthermore, the computational requirement can be
significant, especially for deep architectures, although specific optimizations can mitigate
this problem [55].

CNNs have been shown to significantly outperform traditional methods based on hand-
made characteristics in blood pressure estimation. Recent studies report average errors
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in the range of 3-5 mmHg for systolic blood pressure and 2-3 mmHg for diastolic blood
pressure, values that meet the standards of the Association for the Advancement of
Medical Instrumentation (AAMI) [55]. Integrating CNNs with other neural architectures,
such as Long Short-Term Memory (LSTM) networks, represents a promising frontier,
combining the ability of CNNs to extract spatial features with that of LSTMs to model
long-term temporal dependencies [55].

. Recurrent Neural Network (RNN): The fundamental equations of an RNN mathe-
matically describe its recursive operation in processing temporal sequences. The state
equation:

h(t) = oc(Whp - h(t — 1) + Wy - 2(t) + by, (17)

represents the heart of the recursive process [56].

The term Wy, - h(t — 1) constitutes the memory component of the network, where
the weight matrix W}, transforms the previous state h(t — 1) to preserve the historical
information of the sequence [56]. This mechanism allows the network to keep track of
past states, which is essential to model temporal dependencies in physiological signals
[56]. The term W,y - z(t) processes the current input x(t), which in the context of blood
pressure estimation represents the features extracted from the ECG and PPG signals at
time t [56]. The weight matrix W, learns which input features are most relevant to the
specific task [56]. The bias b, is an additive parameter that allows the network to shift
the output independently of the inputs, improving the model’s fitting ability [56].

The activation function o (typically tanh or ReLU) introduces non-linearity into the sys-
tem, allowing the network to learn complex relationships between inputs and hidden
states [56]. This nonlinearity is crucial to capture the complex physiological relationships
between cardiovascular signals and blood pressure [56]. The output equation:

y(t) = Why - h(t) + b, (18)

transforms the hidden state A (t) into the desired output y(¢) [56]. The weight matrix 1,
maps the network'’s internal state to the estimated blood pressure values, while the bias
b, adds an offset to improve the fit to the data [56]. For example, this mechanism can
be applied to estimate blood pressure in beats [56]. This system of equations operates
recursively, processing each new sample in the sequence while maintaining a contextual
memory of previous states [56]. The recursive nature allows the RNN to capture the
temporal dependencies between consecutive heartbeats, modeling the dynamic evolution
of hemodynamic parameters during the acquisition of physiological signals [56].

. Long Short-Term Memory (LSTM): Long Short-Term Memory (LSTM) represents an
evolution of Recurrent Neural Networks (RNN) specifically designed to solve the vanishing
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gradient problem and capture long-term dependencies in temporal sequences. Introduced
by Hochreiter and Schmidhuber in 1997, LSTMs have revolutionized the analysis of
physiological signals thanks to their ability to maintain both short-term and long-term
memory [56].

The LSTM structure is based on a system of gates that regulate the flow of information
through the memory cell. The fundamental equations that govern its operation are:

Forget Gate: f, = o(Wy - [h(t — 1), z(t)] + bf)

Input Gate: ¢, = a(W; - [h(t — 1), z(t)] + b;)

Candidate Memory:  Cy) = tanh(We - [h(t — 1), 2(t)] + be)
N (19)
Memory Update:  C(t) = f; * C(t — 1) + i x Cy

Output Gate: o = o(W, - [h(t — 1), z(t)] + b,)

Hidden State: h; = o, x tanh(C(t))

The forgot gate f; determines which information should be forgotten from long-term
memory. This gate calculates a value between 0 and 1 for each element in the cell’s state,
where 0 indicates " completely forget” and 1 indicates " completely retain.” Its equation,
fi=0c(Wy-[h(t —1),z(t)] + bs), combines the previous state h(t — 1) and the current
input z(t) through learnable weights Wy and a bias by, transforming the result through a
sigmoid function that produces values in the range [0,1] [56]. The input gate (i;) decides
what new information should be stored in the cell. Operating in parallel with the forgot
gate, this gate uses the same combination of inputs but with different parameters (W;, b;)
to produce a vector of values between 0 and 1 that indicate how much each component of
the input should be considered for memory updating [56]. The candidate memory (C'(t))
generates potential values that could be added to the memory. Using a tanh function
instead of a sigmoid, it produces values in the range [-1,1], allowing for both increases
and decreases in stored values. This component represents new candidate information for
the memory update [56]. The memory update operation (C(t)) strategically combines
information from the forgot gate and the input gate to update the memory state. The
multiplication element-by-element of f; and C(t — 1) determines which parts of the
previous memory to retain, while the product of i; and C(t) decides which new values
to add. This mechanism allows the LSTM to keep track of relevant information for long
periods [50].

The output gate (0;) regulates which parts of the memory should be read and propagated
to the output and to the next state. Calculated as o, = o(W, - [h(t — 1), z(t)] + b,),
this gate determines which information in the current memory is relevant for immediate
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output and for subsequent time steps [56]. Finally, the hidden state (h(t)) represents
the effective output of the LSTM cell for the current time step. Obtained by multiply-
ing the output gate by the hyperbolic tangent of the memory state, this value captures
relevant information from current memory while maintaining a suitable range of values
for subsequent processing [56]. LSTMs offer significant advantages for the analysis of
physiological signals, particularly in the estimation of blood pressure. Their ability to
maintain long-term memory allows the capture of temporal dependencies spanning hun-
dreds of heartbeats, essential for modeling complex hemodynamic phenomena [55] [56].
Resistance to vanishing gradient ensures stable training even for very long sequences,
while the temporal selectivity of the gates allows the network to automatically focus on
the most clinically relevant events in ECG and PPG signals [56].

Recent studies show that LSTMs achieve average errors of 3.8 to 4.2 mmHg for systolic
blood pressure and 2.5 to 3.1 mmHg for diastolic blood pressure, superior to traditional
RNNs and hand-made feature-based methods [55] [56]. This precision is particularly
valuable in continuous monitoring applications where the ability to capture temporal
trends is crucial for the diagnosis and management of hypertensive conditions. Despite
their advantages, LSTMs present significant challenges. The computational complex-
ity is significantly higher than traditional RNNs, requiring significant hardware resources
for training and real-time inference [56]. The presence of numerous learnable parame-
ters (weights and biases for each gate) increases the risk of overfitting, requiring large
annotated datasets for effective generalization [55] [56].

The black-box nature of internal mechanisms represents another additional limitation,
making the physiological interpretation of the network decisions difficult and limiting
clinical acceptance in contexts where diagnostic transparency is essential [56]. The tuning
of hyperparameters is particularly complex due to the non-linear interactions between
the various gates and components of the LSTM cell. Hybrid architectures represent
the most advanced frontier in LSTM research for biomedical applications. Bidirectional
LSTMs processes sequences in both temporal directions, capturing both past and future
information for each point in the sequence, significantly improving predictive capacity
in blood pressure estimation [55] [56]. Integration with attention mechanisms allows the
network to selectively focus on the most relevant events in physiological signals, improving
both the accuracy and the interpretation of the results [56]. CNN-LSTM architectures
combine the ability of CNNs to extract spatial features from individual heartbeats with the
ability of LSTMs to model temporal dependencies between consecutive beats, creating
an end-to-end system for the comprehensive analysis of physiological signals [55].

These hybrid architectures have shown superior performance compared to single models,
particularly in the process of ECG and PPG signals, where spatial (signal morphology) and
temporal (rhythm and variability) information are equally important for accurate blood
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pressure estimation [55] [56]. Promising research directions include the development of
more computationally efficient architectures, such as Lite-LSTM optimized for embedded
and wearable devices [56]. Customization of the model through transfer learning and
domain adaptation will allow LSTMs to be adapted to individual physiological character-
istics, improving accuracy for specific patient profiles [55] [56]. Interpretability research
focuses on the development of explainable Al techniques to make LSTM decisions trans-
parent, which is crucial for clinical acceptance [56]. Integration with domain-specific
knowledge through constraint learning mechanisms will allow the incorporation of physio-
logical principles directly into the network architecture [55]. Developments in specialized
hardware technologies for LSTM model inference in edge devices will enable efficient de-
ployment on wearable devices for continuous monitoring of blood pressure in real world
scenarios [56]. The creation of larger and more diverse datasets will be essential for
training models capable of generalizing between different populations and physiological
conditions [55] [56]. These converging research directions promise to transform LSTMs
from purely academic tools to fundamental components of cardiovascular monitoring of
clinical systems, significantly contributing to the prevention and management of cardio-
vascular diseases through more accurate and continuous blood pressure estimation [55]
[56].

2.3.4 Multimodal Techniques

Multimodal techniques represent the cutting edge of non-invasive blood pressure estimation,
overcoming the limitations of unimodal methods through the synergistic integration of multiple
sources of physiological information. These approaches combine signals such as the photo-
plethysmogram (PPG), electrocardiogram (ECG), and ballistocardiogram (BCG) with tradi-
tional clinical data, creating a holistic analysis system that captures the complexity of the
human cardiovascular system. The conceptual foundation of multimodal techniques lies in the
ability to compensate for the intrinsic limitations of each individual signal through comple-
mentary information from other sources. PPG, for example, provides detailed information on
peripheral blood perfusion but is sensitive to motion artifacts, while ECG offers precise cardiac
timing but limited hemodynamic information. The integration of these signals allows for a more
robust and accurate estimate of blood pressure (Figure [9) [57].
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Figure 9: Example of Multimodal Combination of Signals (Ref. [57])

Multimodal integration architectures typically operate at three distinct levels. Raw data
fusion directly combines signals before feature extraction, preserving maximum information
but requiring precise temporal alignment. Feature fusion extracts the features of each signal
separately and then combines them into a unified vector, allowing optimized processing for
each modality. Decision-level fusion combines the outputs of specialized models for each signal,
maximizing the specific expertise of each module [57]. The advantages of these approaches are
multiple and significant. Overall, system robustness improves substantially, as artifacts affecting
a single modality can be compensated for by the other modalities. Information completeness
increases through the capture of complementary aspects of cardiovascular physiology, from
electrical activity to cardiac mechanics to peripheral perfusion. The personalization of the
estimates becomes more effective, with the possibility of adapting models to specific patient
characteristics through the integration of demographic and clinical data [57].

Practical applications of these techniques show promising results. In the reference paper
[57], the integration of PPG with demographic and clinical data improved hypertension detec-
tion by 15% compared to unimodal methods, demonstrating the added value of the multimodal
approach. The combination of temporal and morphological signals allowed the capture of both
beat-to-beat variations and long-term hemodynamic trends. Implementation challenges remain
significant, particularly regarding precise temporal synchronization between heterogeneous sig-
nals, increased computational complexity, and the need for large and diverse training datasets.
However, ongoing advances in signal processing and machine learning effectively address these
challenges [57]. Future research directions include integration with emerging signals, such as
millimeter wave radar for contactless sensing, development of adaptive fusion architectures that
can self-optimize based on the quality of available signals, and implementation on wearable de-
vices for continuous monitoring in home and clinical settings. These developments promise to
transform multimodal techniques into routine clinical tools for the prevention and management
of cardiovascular diseases [57].
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2.4 Dataset and Validation Techniques
2.4.1 Public and Private Dataset

The availability of datasets is a key factor in the development of reliable models for non-invasive
blood pressure estimation. Among the most widely used resources is MIMIC (Multiparameter
Intelligent Monitoring in Intensive Care), a publicly accessible database that collects clinical
signals and parameters from patients admitted to intensive care [58]. This repository has
become a reference standard for the scientific community due to its vastness and variety of
available data, including electrocardiographic (ECG) signals, photoplethysmographic (PPG),
invasive blood pressure, and numerous vital signs. The use of MIMIC allows algorithms to be
trained on large and diverse samples, thus improving the robustness and generalizability of the
models. However, such data present some critical issues: being collected in complex clinical
contexts, the signals are often affected by noise and artifacts, and patients’ conditions may not
be representative of the general population.

In addition to MIMIC, other public physiology datasets have been made available in recent
years, such as those derived from experimental monitoring campaigns in healthy subjects [59].
These databases, while generally smaller in size, offer the advantage of controlled acquisition
protocols and higher quality signals, less affected by clinical factors. They are therefore partic-
ularly useful for methodological studies and for testing algorithms under laboratory conditions.
In addition to public resources, proprietary datasets, collected by research groups through wear-
able devices, are playing an increasingly important role. A significant example are the Shimmer
sensors, used in this thesis to continuously acquire ECG and PPG simultaneously [60].

These systems enable high-quality data collection in non-clinical settings, facilitating the
development of models designed for real-world home or outpatient monitoring applications.
The main limitation of these datasets is their small sample size, which can limit the gener-
alization of the results, but they offer precise control over acquisition conditions and greater
adherence to everyday usage scenarios. Ultimately, integrating public datasets such as MIMIC,
experimental archives, and proprietary datasets represents the most robust strategy to develop
and validate blood pressure estimation algorithms. Each type of resource offers specific advan-
tages and limitations, but only their combined use can ensure models that are simultaneously
accurate, robust, and applicable on a large scale. In the table [2| are shown the advantages and
disadvantages of using these two types of datasets.
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Database type

Advantages

Disadvantages

Public databases

- Large availability of
data (e.g., MIMIC)

- Heterogeneous and di-
verse populations

- Common benchmark
for the scientific com-
munity

- Free accessibility

- Variable signal quality
(noise, artifacts)

- Data often collected
in complex clinical set-
tings

- May not be fully rep-
resentative of the gen-
eral population

Proprietary

- High-quality signals

- Smaller sample size

databases (e.g., | acquired in controlled | - Limited generalization
Shimmer) conditions of results
- Data collected in re- | - Restricted access,
alistic scenarios (home- | only available to re-
/ambulatory monitor- | search  groups  who

ing) collect them
- Stronger adherence to
practical use of wear-

able devices

Table 2: Comparison between public and proprietary databases for blood pressure estimation

2.4.2 The Role of RMSE, MAE and STD in Evaluating the Accuracy of Blood
Pressure Estimation

In the validation of blood pressure estimation techniques, the mean absolute error (MAE),
the root mean square error (RMSE) and the standard deviation (STD) are three fundamental
statistical metrics for quantifying the precision and reliability of measurements. These indicators
are particularly crucial when evaluating medical devices according to international standards such
as the ANSI/AAMI/ISO 81060-2:2018 guidelines, as demonstrated in the validation study of
Ref. [61]. Mean absolute error (MAE) is defined as the arithmetic mean of the absolute values
of the differences between the estimated and reference values. Mathematically, for a set of n
measurements, the MAE is calculated as:

1
AE: ) i Ai
M (=)D v = 3l

where y; represents the reference value (invasive or clinically validated measurement) and ;

(20)

is the value estimated by the device under test. The MAE provides a direct measure of the
average error committed by the device, expressed in the same units of measurement as the
target variable (mmHg in the case of blood pressure). A lower MAE value indicates greater
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accuracy of the estimation system [6I]. Root Mean Square Error (RMSE) is a metric that
emphasizes larger errors by squaring the deviations. Its formula is:

RMSE = \/% : Z(yz — 0:)? (21)

Unlike MAE, RMSE assigns greater weight to larger errors, making it more sensitive to the
presence of outliers. This feature makes it particularly useful for identifying anomalous mea-
surements that could compromise the clinical reliability of the device [61]. The Standard
Deviation (STD), on the other hand, measures the variability of errors around the mean value.
Calculated as:

arp_ [l p)

(=1 (22)

where e; represents the individual error (y; - 9;) and p is the mean of the errors, STD quantifies
the spread of the errors. A low STD value indicates that errors are consistently close to the
mean value, suggesting good device stability, while a high value signals high variability and
unpredictable performance [61]. The relationship between these metrics can be expressed as:
RMSE? = MAE? + STD? This equation highlights how the RMSE combines information
on both mean error (MAE) and error variability (STD), providing a composite measure of the
device's accuracy [61]. In the study Ref. [61], these metrics were used to validate the perfor-
mance of the HUAWEI smartwatch according to the AAMI/ISO standards, which specifically
require MAE be < 5 mmHg and STD be < 8 mmHg to ensure the clinical accuracy of blood
pressure measuring devices. The combined use of MAE and STD allows for a comprehensive
evaluation: the MAE captures the overall accuracy of the device, while the STD evaluates its
reliability and consistency of measurements [61].

The importance of these metrics lies in their ability to provide an objective and quantitative
assessment of device accuracy, essential for the clinical acceptance and commercialization of
medical technologies. Specifically, for continuous blood pressure monitoring applications using
wearable devices, a low MAE ensures that estimates are clinically meaningful, while a low STD
ensures that performance is consistent across different physiological conditions and users [61].
The study demonstrates how the combined analysis of MAE and STD allows us to identify not
only the average accuracy of the device, but also its ability to maintain reliable performance in
real-world scenarios, where factors such as motion, inter-individual variability, and environmental
conditions can influence measurement quality [61].
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3 Proposed Solution

This section will illustrate the proposed solution for estimating non-invasive blood pressure from
physiological signals acquired by Shimmer devices. The entire process is organized into multiple
phases, each of which addresses a specific objective and contributes to the construction of a
coherent and reproducible flow from data acquisition to statistical and predictive modeling. We
will begin with a description of Shimmer sensors, analyzing their main characteristics and how
they are used to synchronously record ECG and PPG signals. Data acquisition methods will be
discussed, with particular attention to signal format and the initial pre-processing steps required
to ensure proper time management and preliminary noise reduction.

Subsequently, the pre-processing and feature extraction algorithms will be explored in more
detail. In this phase, the ECG and PPG signals will be subjected to specific filtering to reduce
artifacts and physiological or instrumental interference. It will be shown how R and S peaks
are identified from the ECG and PPG signals and how, from these points, it is possible to
calculate fundamental quantities such as heart rate (HR) and pulse wave transit time (PTT).
Finally, the final section will focus on building the regression model to estimate blood pres-
sure. The various strategies adopted will be illustrated, from linear regression to more complex
machine learning and deep learning models, discussing the selection criteria and optimization
parameters. The validation phase will be addressed with a methodical analysis of the tech-
niques employed, including cross-validation and train/test splitting, with the aim of assessing
the model’s robustness and reliability across different available datasets.

3.1 Devices, sensors and software

The first step was the collection of physiological signals; we relied on SHIMMER devices (Fig-
ure . SHIMMER represents an extremely versatile and modular wireless sensor platform,
specifically designed for biomedical research applications. Its main appeal lies in its intrinsically
wireless nature and its low weight, which make it particularly suitable for monitoring physiolog-
ical signals in outpatient settings or directly at home [63]. This flexibility allows studying vital
signals in conditions that are more natural and less constrained than in a hospital setting.
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Figure 10: Shimmer3 Devices

3.1.1 ECG Device

The acquisition of the ECG signal was performed using the Shimmer3 EXG Unit SR47-4-0
module (Figure [L1a)). To ensure accurate and comfortable measurement, we used Covidien
ECG electrodes (Figure . These electrodes are designed for single use and are round in
shape. The skin-contact part consists of an Ag/AgCl electrode immersed in a solid hydrogel,
secured with a gentle adhesive and connected via a convenient button system.

f - eeoee”

(a) Shimmer3 EXG Unit SR47-4-0
module (b) Shimmer3 EXG Unit electrode

Figure 11: Shimmer3 Unit for ECG evaluation

An additional foam backing helps ensure the electrode’s stability. These snap-on electrodes
use a patented pre-gelled adhesive, enriched with a non-irritating gel, specially formulated to

40



minimize the risk of allergic reactions. Furthermore, the foam electrode is completely latex-free,
making it safe for use on any skin type [64].

To better understand how the Shimmer3 EXG module works, it is helpful to look at its
block diagram (Figure . This diagram reveals the presence of integrated defibrillation pro-
tection, an electromagnetic interference (EMI) filter designed to clean the signal, a sophisticated
right-leg drive (RLD) amplifier that effectively counteracts common-mode interference, three
programmable gain amplifiers (PGAs) that increase the amplitude of the input signal for bet-
ter detection, and finally, a high-precision analog-to-digital converter (ADC) transforms the
incoming analog signal into a digital representation using a signed 24 bit integer value for each
individual sample. This digitization process is crucial for data analysis and processing on a
computer.
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Figure 12: Shimmer3 EXG Unit SR47-4-0 block diagram [65]

3.1.2 PPG Device

For recording PPG signals, we used the Shimmer3 GSR+ Unit SR48-3-0, shown in figure [13
The GSR+ (Galvanic Skin Response) unit is not limited to measuring PPG alone but also
provides the connections and preamplification needed to acquire galvanic skin response (GSR)
data.
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Figure 13: Shimmer3 GSR+ Unit SR48-3-0

This module is particularly suitable for evaluating the electrical characteristics or conduc-
tance of the skin and, at the same time, captures the PPG signal, converting it to obtain an
accurate estimate of heart rate (HR) using the Shimmer clip (Figure [66]. The integrated
optical circuit for pulse measurement includes an integrated amplifier and filter circuit, which
take care of initial signal conditioning [67]. The clip itself is equipped with a green LED and
a detector positioned next to each other, a configuration that operates in the reflection mode
("adjacent”)[62]. In this mode, the light emitted by the LED is reflected by the tissue and
detected by the adjacent sensor, allowing changes in blood flow to be measured.

Figure 14: Shimmer3 GSR+ Unit SR48-3-0 Optical pulse clip

42



3.1.3 Software

The configuration of the Shimmer devices and the export of acquired data were managed using
ConsensysPRO v1.6.0 64bit software. Before proceeding with writing the configuration via the
connection card, we carefully set the acquisition parameters. Specifically, in the Shimmer3
GSR+ module, we activated only the PPG sensor (Figure , while in the Shimmer3 EXG
module, we selected only the LA-RA lead and enabled the ECG sensor (Figure [L6b]).

e

4

\ &:_3 \//
A
Figure 15: Consensys base unit

In order to ensure precise synchronization between the two modules, we configured the EXG
module as master and set the sampling rate to 504.12 Hz (Figure. This choice is motivated
by the fact that ECG requires a minimum sampling rate of 500 Hz [68], and the ConsensysPRO
software only allows selecting predefined frequency values. On the other hand, PPG requires a
minimum sampling rate of 100 Hz [69].

To start recording signals, both Shimmer modules must be undocked from the connection
board shown in figure . Reversing this procedure, i.e., docking the modules to the board, stops
the recording. When the Shimmer modules are undocked, they automatically begin recording
signals synchronously, thanks to the Bluetooth connection (Figure .
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(a) In Shimmer3 GSR+ screen: only PPG sensor has been turned on for PPG
recordings.

(b) Shimmer3 EXG options for ECG recordings
SHIMMER NAME: | Shimmer_ 6COE « SAMPLING RATE {Hz): |504.12 « | 1l

(c) The sampling frequency has been set to 504.12 Hz for both devices.

Start/Stop Logging Method
User Button

Undock/Dock
] =0
O )

(d) The Shimmers start to record the physiological signals.

Figure 16: ConsensysPRO v1.6.0 64bit software

This wireless synchronization is essential to analyze the ECG and PPG signals in relation
to each other. Once recording is complete and the modules are docked back to the board, all
acquired data are transferred to the computer in .mat format, ready for processing and analysis.
The procedure followed these steps:

e Protocols: To ensure the quality of the acquired data, we followed a strict protocol during
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recording. Each participant in the study was asked to sit comfortably and completely relax.
As mentioned, the recordings were made at different times of the day, and each recording
session lasted approximately 20 minutes.

e ECG Recording: The correct placement of the ECG electrodes was essential to obtain
a high-quality signal. The electrode configuration is illustrated in detail in figure [I7]

Figure 17: ECG recording phase

The electrodes connected to the white and black pins were placed on the subject’s chest,
on the right and left sides, respectively. The electrode connected to the green pin was
placed on the right side of the pelvis, serving as a reference for the measurement.

e PPG Recording: The PPG Shimmer clip was gently attached to the subject’s left
index finger. To ensure optimal adherence of the clip to the finger and to prevent any
interference from external ambient light, we covered the clip with a thick black tie as
shown in figure [18|
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Figure 18: PPG recording phase

This helped improve the quality of the acquired PPG signal.

¢ Reference Signals: Blood pressure values were taken every minute for 20 minutes using
a blood pressure cuff. This allowed each patient to be assigned reference values for SBP
and DBP.

3.2 Algorithm

The algorithm used was developed in Python, a versatile high-level programming language.
To make it more manageable and clear, we divided it into seven main sections. Each of these
sections addresses a specific step in the process of estimating systolic blood pressure (SBP) and
diastolic blood pressure (DBP). In practice, the algorithm follows these steps: signal preparation,
filtering to remove noise, identifying peaks in the signals, extracting relevant features, preparing
comparison data from a reference device, feature reduction to simplify the model, and finally
regression analysis to predict blood pressure as is presented in the appendix [6.1]

3.2.1 Signals Preparation

The algorithm begins by reading the ECG and PPG signals from the files, which are loaded into
arrays using the "scipy.io.loadmat” function (Ref code . After opening the files, the data
are temporally cleaned: the first 20 seconds of each signal are removed to remove initial noise
due to the undocking from the board , and the last 30 seconds to avoid final distortions, as we

can observe in figures [19]20]
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(b) PPG Signal

Figure 19: Signals Before and After the initial 20 sec cleaning
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ECG: Raw vs Cut for patient LUCA
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(a) ECG Signal
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(b) PPG Signal

Figure 20: Signals Before and After the last 30 sec cleaning

This trimming is performed by calculating the number of samples corresponding to the
durations to be removed based on the sampling rate. Then the signals are cut to the same
length. The signals are then synchronized: the ECG and PPG data are temporally aligned
so that they have the same starting point and length (Figure . This process ensures that
subsequent analyses are performed on signal segments that perfectly overlap in time, improving
the accuracy of feature extraction.

48



Synchronized Signals for Patient LUCA

— ECG Synced — PPG Synced | 100
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ECG Amplitude (mV)

00 05 10 15 20
Time (s)

Figure 21: Signals After the Synchronization

3.2.2 Signals Filtering

After loading and initial clipping of the signals, the algorithm proceeds with a fundamental
filtering phase to improve data quality and remove unwanted components. In fact, both ECG
and PPG signals are affected by 50 Hz noise and by the power variation with respect to the
zero (baseline), so some processing is needed.

e ECG Filtering: The ECG signal is first normalized by subtracting the mean to eliminate
any offsets. Next, a fourth-order Butterworth bandpass filter is applied with a bandwidth
of 0.5-40 Hz, which allows only the physiologically relevant frequencies for cardiac analysis
to be retained, eliminating both low-frequency noise (baseline wander) and high-frequency
noise. If the sampling rate is higher than 100 Hz, a 50 Hz notch filter is also applied to
remove interference from the electrical network. Finally, the baseline is removed, bringing
the signal back to around zero (Figure .
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ECG signal LUCA
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Figure 22: ECG signal pre and post filtration

e PPG Filtering: As with the ECG, the PPG signal is first normalized to ensure a compa-
rable scale. It then undergoes a careful filtering sequence to isolate important information
and eliminate noise. First, a Butterworth high-pass filter (0.5 Hz) removes background
drift and slow variations that could distort the analysis. This cleans the signal, focus-
ing on rapid variations related to cardiac activity. Next, a Butterworth low-pass filter (8
Hz) attenuates high-frequency noise, retaining only the pulsatile component of the signal.
This makes the signal cleaner and more reliable, perfect for extracting the features needed
to estimate blood pressure (Figure [23).
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Figure 23: PPG signal pre and post filtration
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3.2.3 Peaks detection

After synchronizing and filtering the ECG and PPG signals, the algorithm proceeds to detect
the characteristic peaks of each signal, which are essential for extracting physiological features.
Regarding ECG peak detection (R-peaks), the filtered and synchronized ECG signal identifies
R-peaks, which are the local maxima corresponding to heartbeats. Detection occurs by dividing
the signal into time windows (every 0.4 seconds) and searching for the local maximum in each
window. This method allows for robust heartbeat identification even in the presence of residual
noise.

Similarly, S-peaks, which represent the maximum points of the pulsatile component of blood
flow, are identified on the PPG signal. Here too, the signal is analyzed in windows (every 0.5
seconds) to find local maxima. After the initial detection, the peaks are cleaned using two filters:
a statistical filter, which only keeps peaks within a certain number of standard deviations from
the local mean, eliminating outliers, and a minimum distance filter, which, in the case of peaks
that are too close, only keeps the one with the largest value to avoid duplications due to noise.

The detected peaks are displayed overlaid on the filtered signals (Figure , allowing verifi-
cation of the accuracy of the detection and its correspondence with the expected physiological

components.

ECG Signal with Detected Peaks - Patient: LUCA PPG Signal with Detected Peaks - Patient; LUCA

(a) Rpeak (b) Speak

Figure 24: Rpeqr and Speqr, superimposed on the signals

This process ensures that the extracted features (such as heart rate and pulse transit time)
are calculated on reliable, artifact-free data that represent the patient’s actual physiological
activity.

3.2.4 Features Extraction

After synchronizing and filtering the ECG and PPG signals, the code proceeds with the ex-
traction of the main physiological features: Heart Rate (HR) and Pulse Transit Time (PTT).
The feature extraction process in the code consists of detecting peaks in the signals, calcu-
lating HR and PTT, cleaning outliers data, and interpolating the features onto the reference
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times, thus obtaining reliable and synchronized time series for subsequent regression analyses
and comparison with clinical data.

Regarding HR and PTT calculations, the peak detection is identified by R,c.xs on the ECG
and Speqrs on the PPG using peak detection and cleaning functions. For PTT (Pulse Transit
Time), for each heartbeat (R,cqs), the first subsequent Sy is searched. The time difference
between these two peaks represents the PTT: PTT = Spcqrs — Rpeaks OF the time taken for the
pressure wave to propagate from the heart to the peripheral measurement point. For HR (Heart
Rate), the heart rate is calculated as the inverse of the time distance between two consecutive

Rears according to the formula:
60

HR= —— (23)
th.\ —tR,
where the result is expressed in beats per minute (bpm).

After computation, the features are cleaned to eliminate outliers due to detection errors
or artifacts: the mean and standard deviation of HR and PTT are calculated, values that
deviate by more than one standard deviation from the mean are removed, and the arrays are
reduced to the same length to ensure temporal correspondence between HR, PTT, and the
timetable. To compare the extracted features with the reference blood pressure values (SBP
and DBP), it is necessary to interpolate HR and PTT over the blood pressure measurement
times: Interpolation functions (np.interp and CubicSpline) are used to reconcile HR and PTT
to the same time points as the reference data (Figure [25).

Heart Rate and Pulse Transit Time patient: LUCA
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Figure 25: HR and PTT signals after the features extraction
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3.2.5 Reference Values Preparation

After extracting features from physiological signals, the code prepares reference systolic (SBP)
and diastolic (DBP) blood pressure values for comparison and regression. SBP and DBP values
are read from patient-specific CSV files, where each line of the file contains the UNIX times-
tamp in milliseconds, the SBP values in mmHg, and the DBP values in mmHg. For temporal
correction, timestamps are converted from milliseconds to seconds and aligned by subtracting
the initial value, resulting in a relative time scale. A 60 ms offset is also subtracted from
each timestamp to correct for the instrumental delay between the blood pressure measurement
and the physiological signals. For interpolation, SBP and DBP values are interpolated over
signal analysis times, such as time points in the timetable of the extracted features, using the
np.interp function to obtain blood pressure values corresponding to the same time points as the
physiological features. This process ensures that the comparison between signals and references
is accurate and synchronized, allowing a reliable evaluation of the regression models.

3.2.6 Features reduction

After extracting and interpolating the physiological features (HR, PTT) and the baseline values
(SBP, DBP), the code applies two additional steps to simplify and smooth the data. For
feature reduction, features and baseline values are reduced by averaging them over 10-second
time windows (feat.reduction). This process divides the time series into 10-second intervals
and replaces the values within each window with their average. The goal is to reduce noise,
local variability, and dimensionality in the data, making the time series more stable and suitable
for regression.

Subsequently, after reduction, the resulting (reduced) time series are resampled via interpo-
lation (np.interp) to bring them back to the same instants in the physiological feature timetable.
This ensures that all features and reference values are temporally aligned and have the same
length, a necessary condition for training and evaluating regression models. These steps are
essential to obtain robust and comparable data suitable for statistical analysis and predictive
modeling.

3.2.7 Regression Methods

The final step of the algorithm involves defining and using regression techniques to estimate SBP
and DBP. The implemented methodology involves a structured process that begins with the
preparation of the database and concludes with a robust evaluation of predictive performance.

The process begins with loading data from databases (LUCA and SHIMMER), which can
be selected based on specific research needs through a configuration parameter. The analyzes
are performed on two different databases:
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e LUCA'’s database: This database represents the data taken on myself, using the Shim-
mer devices.

e Shimmer’s Database: It represents the data coming from the shimmer patients.

For each patient, essential physiological features are extracted, including Pulse Transit Time
(PTT) and Heart Rate (HR), along with reference values for systolic (SBP) and diastolic
(DBP) blood pressure using the extract featuresreg function (Appendix ??). All data are
then concatenated into unified arrays, thus preparing the data set for subsequent regression
analyzes.

Several regression approaches have been implemented to model the relationship between
physiological features and blood pressure parameters:

1. Linear Regression: It is one of the simplest and most widely used statistical models
for estimating the relationship between one or more independent variables (in this case,
physiological parameters such as PTT and HR) and a dependent variable, which in our
study corresponds to values of systolic blood pressure (SBP) or diastolic blood pressure
(DBP). The idea behind this approach is that blood pressure can be approximated as a
linear combination of available features, weighted by appropriate coefficients.

Mathematically, the model can be expressed as:

J=Bo+Bri-x1+Ba-x2+ ...+ By - Ty (24)

where ¢ represents the estimated value of the target variable (e.g., SBP), z1, 29, ..., x,
are the independent features (such as PTT and HR), while 31, fs, .., 3, are the model
coefficients. These coefficients are determined to minimize the mean squared error, which
is the sum of the squared differences between the predicted and observed values [70].

2. Least Mean Squares (LMS): It represents an algorithmic extension of linear regres-
sion. The goal is to minimize the mean squared error between the predicted and actual
values using an iterative optimization process. Unlike classical linear regression, which
directly calculates the coefficients through an analytical solution, LMS uses a gradient
descent approach: the model’s weights are initialized arbitrarily and then updated step
by step, based on the error in predicting each sample and its derivative with respect to
the parameters.

The update rule is given by:
Wiy = Wg +17) - € - Ty (25)

where w, represents the weights at step t, 7 is the learning rate, e, = d; — vy, represents
the error between the actual value d; and the predicted value 3; and x; is the feature
vector. This mechanism allows the model to adapt progressively to the data, correcting
the parameters as a function of the residual error [71].
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3. Ridge Regression: It is a variant of linear regression that introduces an L2 regularization
term into the cost function, with the aim of controlling model complexity and avoiding
overfitting. While in classical linear regression, coefficient estimation is based exclusively
on minimizing the sum of the squared errors between actual and predicted values, in this
case a penalty proportional to the sum of the squares of the coefficients is added.

The Ridge objective function can be expressed as:

n p

Jw) = (=9 + A= w? (26)
i=1 j=1

where g; represents the predicted value, y; the actual value, w; is the model coefficients,
and A is the regularization parameter that controls the weight of the penalty. If A = 0, the
Ridge coincides with classical linear regression; higher values of A reduce the amplitude
of the coefficients, leading the model to simpler and more stable solutions [52].

4. Support Vector Machine (SVM): The central idea is to identify a function that ap-
proximates the data so that prediction errors remain within a certain tolerance threshold,
indicated by the parameter €. Unlike classical linear regression, which directly minimizes
the mean squared error, SVM defines an acceptability range: all points falling within this
range are not penalized, while those falling outside it contribute to the cost of the model.

Mathematically, the objective function seeks to minimize the model’s complexity, repre-
sented by the norm of the coefficients w, while balancing out the largest deviations of «.
This leads to a model that is more robust to outliers and capable of generalizing better.
Furthermore, SVM relies on the use of support vectors, a subset of the data that actually
determines the shape of the regression function: only the points closest to the margins
or those that violate the tolerance band affect the final model. A particularly relevant
aspect of SVM is the ability to model nonlinear relationships thanks to the introduction of
kernel functions. For example, with the Radial Basis Function (RBF) kernel, it is possible
to transform the original feature space into a higher-dimensional space, making it easier
to construct a regression function that captures the complexity of the data. In this way,
SVM combines predictive capability and flexibility, making it suitable for contexts where
relationships between variables cannot be described by a simple linear model [51] .

The regression models used within the algorithm are applied after the dataset has been split
into a Train and Test set: Classic Train/Test Split and K-Fold Cross-Validation.

e Classic Train/Test Split: This approach adopts a 70/30 split of the data, selecting the
top 70% of the indices for the training set and the remaining 30% for the test set (Figure

26).
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DATASET DIVISION
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Figure 26: Train and Test Set Split

This approach is simple and computationally efficient, allowing for a quick evaluation of
the model’s performance on unseen data. However, it has the limitation of being heavily
dependent on a single data split, which can lead to unrepresentative results if the data
are inadequately shuffled or have non-uniform distributions.

e K-Fold Cross-validation: This method divides the dataset into K partitions (folds) of
approximately equal size. The iterative process involves using K-1 partitions for each fold
to train the model, while the remaining partition is used for testing (Figure .
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Figure 27: K-Fold Cross Validation

This operation is repeated K times, ensuring that each partition serves as a test set
exactly once. The code typically uses scikit-learn’s KFold with 3 folds [72].

The main advantages of cross-validation lie in its robustness and statistical reliability, since
the model is evaluated on all possible subdivisions of the dataset, reducing the variance
of performance estimates. This approach provides a more complete understanding of the
generalizability of the model. The main limitation is the increased computational cost
due to the need to train and test the model multiple times, with a runtime proportional
to the number of folds selected.
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The integration of these two methodologies therefore allows for both a rapid initial evaluation
through the train/test split and an in-depth and statistically robust analysis through cross-
validation, ensuring a complete understanding of the model’s predictive performance in different
application scenarios. The results of the algorithm are shown in Section [4]

4 Results

This section illustrates the experimental results emerging from the validation of the different
blood pressure estimation methods applied to patient LUCA 1. The objective of the compar-
ative analysis is to evaluate the performance of the various approaches in terms of accuracy
and reliability, measured by the metrics of Mean Absolute Error (MAE) and standard deviation
(STD). The overall performance of the noninvasive estimation methods will be examined in
depth, with particular attention to the differences between the models before and after cross-
coordination. In fact, a sensitivity analysis will be performed on several datasets to evaluate
the robustness of the methods in the presence of variable physiological conditions. The results
for all patients are shown in the Appendix [6.1]

4.1 Results Validation

To determine how many estimated blood pressure values can be considered valid, it is necessary
to refer to the AAMI/ESH/ISO guidelines. These provide an acceptance criterion valid for
both 85 and 20 measurements samples: the mean difference between the values measured by
the device under test and the reference values must be less than or equal to 5 mmHg, with a
standard deviation not exceeding 8 mmHg, for both systolic blood pressure (SBP) and diastolic
blood pressure (DBP) [61].

It should also be noted that the reference values were measured using a cuff (sphygmo-
manometer), whose accuracy is approximately =3 mmHg. Therefore, after considering every-
thing, the predicted values can only be considered valid if they satisfy the following conditions:

Mean absolute error (MAE) <= 5 mmHg

(27)
Standard Deviation (STD) <= 8 mmHg

4.2 Algorithm Results

The results are displayed as functions of the regression model and the database used. In fact,
the various models exhibit different behaviors based on the subdivision of the dataset.
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4.2.1 Standard 70-30 Database division

In the initial configuration, the dataset was split according to the classic 70-30 split, maintaining
chronological order to ensure temporal consistency and prevent data leakage. The results are

shown based on the regression model used:

1. Linear Regression: The Linear Regression algorithm was evaluated on four different
dataset configurations to analyze its adaptability to contexts with varying levels of com-
plexity and physiological variability. The results show a clear relationship between the size
and composition of the training samples and the quality of the estimates produced.

e Using only the data contained in the patient Luca database, the model is able to
capture the relationship between the extracted features (PPG, ECG, etc.) and blood
pressure values with good fidelity, thanks to the high coherence and homogeneity
of the signals. Under this condition, the estimates are stable and aligned well with
the reference values. The quantitative results are reported in Table[3]and in Figures

(28).

Average MAE (mmHg) + Average STD (mmHg)
Patient SBP DBP
Lucal | 5.32 + 5.52 194 £ 231

Table 3: Average MAE and STD (mmHg) for Patient Luca 1 using Linear Regression.

Linear Reg DBP: Real vs Predicted (LUCA Reference Instants)

Linear Reg SBP: Real vs Predicted (LUCA Reference Instants)
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Figure 28: Real Reference Values vs Predicted Vaules of SBP and DBP using the Linear

Regression on Luca’s Database

e The introduction of 22 Shimmer patients, from patient 20 to patient 42, causes an
initial drop in performance. Despite the increased data volume, Linear Regression
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struggles to generalize correctly, as the new subjects present physiological dynamics
and instrumental noise characteristics different from those of Luca. The model,
trained on a heterogeneous mixture, loses the ability to optimally adapt to the
specific behavior of the target. Details are available in Table [4] and the figures (29).

Average MAE (mmHg) £ Average STD (mmHg)
Patient SBP DBP
Lucal | 8.91 £+ 9.68 3.65 £ 4.10

Table 4: Average MAE and STD (mmHg) for Patient Luca 1 using Linear Regression.

Linear Reg SBP: Real vs Predicted (LUCA Reference Instants) Linear Reg DBP: Real vs Predicted (LUCA Reference Instants)
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Figure 29: Real Reference Values vs Predicted Vaules of SBP and DBP using the Linear
Regression on Luca's Database + Last 22 Shimmer Patients

e However, if we consider Luca's database combined with the first 20 shimmer patients
(excluding the 15th, which is an outlier for the SBP signal), the performance reaches
the lowest level. Again, no advantage is observed from the larger sample size; in
contrast, the introduction of additional variability that is not consistent with the
target (blood pressure levels too low compared to the reference patient) introduces
confusion into the model, increasing both the mean error and its variability. The
results are reported in Table 5 and in the figures (30)).

Average MAE (mmHg) + Average STD (mmHg)
Patient SBP DBP
Luca 1l | 15.78 4+ 12.15 11.11 + 6.74

Table 5: Average MAE and STD (mmHg) for Patient Luca 1 using Linear Regression.
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Linear Reg SBP: Real vs Predicted (LUCA Reference Instants) Linear Reg DBP: Real vs Predicted (LUCA Reference Instants)
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Figure 30: Real Reference Values vs Predicted Vaules of SBP and DBP using the Linear
Regression on Luca's Database + Initial 20 Shimmer Patients

e In the largest configuration, the performance of Linear Regression degradation is
further accentuated. The high heterogeneity of the dataset, combined with the
lack of physiological similarity between Luca and the Shimmer subjects, leads the
model to produce unreliable estimates. The results can be found in the table [6]
Furthermore, the strange behavior is also observed in the figures (31)).

Average MAE (mmHg) + Average STD (mmHg)
Patient SBP DBP
Lucal | 14.21 4+ 5,28 12.04 4+ 4.06

Table 6: Average MAE and STD (mmHg) for Patient Luca 1 using Linear Regression.
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Linear Reg SBP: Real vs Predicted (LUCA Reference Instants) Linear Reg DBP: Real vs Predicted (LUCA Reference Instants)
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Figure 31: Real Reference Values vs Predicted Vaules of SBP and DBP using the Linear
Regression on Luca's Database + All Shimmer Patients

2. LMS: Also in this case, the LMS (Least Mean Squares) algorithm, known for its computa-
tional simplicity and adaptability to online contexts, was evaluated on four configurations
of the dataset, in order to analyze its behavior in the presence of data with different

physiological and instrumental characteristics.

e In the most focused configuration: training and testing exclusively on Luca's data.
The LMS algorithm shows the best overall performance. Due to the high temporal
and physiological coherence of the signal, the filter is able to adapt its weights stably
and precisely, producing estimates well aligned with the reference blood pressure
values. Under this condition, the error is low and the variability is minimal. The
quantitative results are shown in Table [7] and figures (32)).

Average MAE (mmHg) + Average STD (mmHg)
Patient SBP DBP
Lucal | 1.92 + 1.01 1.40 + 1.17

Table 7: Average MAE and STD (mmHg) for Patient Luca 1 using LMS Regression.
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LMS DBP: Real vs Predicted (LUCA Reference Instants)
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Figure 32: Real Reference Values vs Predicted Vaules of SBP and DBP using the LMS Regres-
sion on Luca's Database

e With the introduction of Shimmer patients 20 to 42, a first significant drop in accu-
racy was observed. Despite the increased size of training set, the presence of signals
with different dynamics (different PPG response, different signal-to-noise ratio, mor-
phological variability of the ECG) prevented the LMS filter from converging on an
optimal solution for the target Luca. The model, averaging across heterogeneous
patterns, lost the ability to fine-tune to individual behavior. Details are available in

Table [8] and figures (33)).

Average MAE (mmHg) £ Average STD (mmHg)
Patient SBP DBP
Luca 1 | 2.57 £+ 1.54 245 £1.94

Table 8: Average MAE and STD (mmHg) for Patient Luca 1 using LMS Regression.
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LMS SBP: Real vs Predicted (LUCA Reference Instants)
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Figure 33: Real Reference Values vs Predicted Vaules of SBP and DBP using the LMS Regres-
sion on Luca's Database + Last 22 Shimmer Patients

e The addition of the first 20 (excluding, also in this case, the patient 15) Shimmer
patients further exacerbates the situation that reach lowest level. The algorithm,
already destabilized by the first wave of heterogeneous data, now struggles even
more to maintain consistency in its estimates. An increase in both the mean error
and its fluctuation is observed, indicating poor filter stability in the presence of
non-stationary and non-homogeneous inputs. The results are shown in Table [9] and

figures (134).

Average MAE (mmHg) £ Average STD (mmHg)
Patient SBP DBP
Luca 1l | 4.28 £+ 4.50 3.54 £ 331

Table 9: Average MAE and STD (mmHg) for Patient Luca 1 using LMS Regression.
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LMS SBP: Real vs Predicted (LUCA Reference Instants) LMS DBP: Real vs Predicted (LUCA Reference Instants)
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Figure 34: Real Reference Values vs Predicted Vaules of SBP and DBP using the LMS Regres-
sion on Luca’'s Database + Initial 20 Shimmer Patients

e In the broadest configuration (LUCA + whole Shimmer data), the LMS’s perfor-
mance improve a little. The high inter-subject variability, combined with the lack
of physiological similarity with the target Luca, leads the filter to produce unreliable
and often systematically biased estimates. The lack of a weighting mechanism or
selection of the most relevant data makes the LMS particularly vulnerable in this
context. The complete results are available in Table |10 and figures (35)).

Average MAE (mmHg) £ Average STD (mmHg)
Patient SBP DBP
Lucal | 2.00 £ 1.25 1.96 = 1.26

Table 10: Average MAE and STD (mmHg) for Patient Luca 1 using LMS Regression.
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LMS SBP: Real vs Predicted (LUCA Reference Instants) LMS DBP: Real vs Predicted (LUCA Reference Instants)
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Figure 35: Real Reference Values vs Predicted Vaules of SBP and DBP using the LMS Regres-
sion on Luca's Database + All Shimmer Patients

3. Ridge Regression:Also in this case, Ridge Regression, known for its ability to regularize
coefficients and mitigate the effects of multicollinearity, was evaluated on four different
configurations of the dataset, in order to analyze its behavior in the presence of data with
different physiological and instrumental characteristics.

e In the most focused configuration: training and testing done exclusively on Luca's
data. Ridge Regression shows the best overall performance. Thanks to the high
physiological and temporal coherence of the signals, the model is able to estimate the
coefficients in a stable and precise way, producing predictions well aligned with the
reference values of the target patient LUCA 1. In this condition, the mean absolute
error (MAE) is minimal and the standard deviation of the estimates is particularly
low, indicating high predictive reliability. The quantitative results are reported in

Table [11] and Figures (36)).

Average MAE (mmHg) £+ Average STD (mmHg)
Patient SBP DBP
Lucal | 1.17 £ 1.01 0.97 + 1.09

Table 11: Average MAE and STD (mmHg) for Patient Luca 1 using Ridge Regression.
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Ridge DBP: Real vs Predicted (LUCA Reference Instants)
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Figure 36: Real Reference Values vs Predicted Vaules of SBP and DBP using the Ridge Re-
gression on Luca's Database

e With the introduction of the last 22 Shimmer patients, a first significant drop in
accuracy is observed. Despite the increase in the size of the training set, the pres-
ence of signals with different dynamics such as: different PPG response, variable
signal-to-noise ratio, non-homogeneous signal morphology, prevents the model from
optimizing the coefficients optimally for the target Luca. The L2 regularization,
while stabilizing the system, is unable to compensate for the loss of coherence in
the data, and the model, averaging on heterogeneous patterns, loses the ability to
fine-tune to individual behavior. Details are available in Table [12| and Figures (37)).

Average MAE (mmHg) + Average STD (mmHg)
Patient SBP DBP
Lucal | 2.28 £ 2.25 2.08 £ 2.14

Table 12: Average MAE and STD (mmHg) for Patient Luca 1 using Ridge Regression.
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Figure 37: Real Reference Values vs Predicted Vaules of SBP and DBP using the Ridge Re-
gression on Luca's Database + Last 22 Shimmer Patients

e The addition of the first 20 Shimmer patients (excluding, again, patient 15) further
exacerbates the situation. The model, already destabilized by the first wave of het-
erogeneous data, now struggles even more to maintain consistency in its estimates.
An increase in both the mean error and its fluctuation is observed, indicating poor
model stability when faced with non-stationary and non-homogeneous inputs. The

results are shown in Tabld13|and Figures ([38).

Average MAE (mmHg) + Average STD (mmHg)

Table 13: Average MAE and STD (mmHg) for Patient Luca 1 using Ridge Regression.

Patient

SBP

DBP

Luca 1l

7.33 £ 4.92

7.09 £+ 3.66
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Figure 38: Real Reference Values vs Predicted Vaules of SBP and DBP using the Ridge Re-
gression on Luca's Database + Initial 20 Shimmer Patients

e In the largest configuration (LUCA + entire Shimmer dataset), contrary to what
one might expect, Ridge Regression partially recovers performance, achieving the
highest MAE and standard deviation values among all the tested configurations.
The complete results are available in Table [L4] and Figures ([39)).

Average MAE (mmHg) + Average STD (mmHg)
Patient SBP DBP
Lucal | 9.19 + 1.72 9.60 + 1.54

Table 14: Average MAE and STD (mmHg) for Patient Luca 1 using Ridge Regression.
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Ridge SBP: Real vs Predicted (LUCA Reference Instants) Ridge DBP: Real vs Predicted (LUCA Reference Instants)

120

80
118

78 1

116

—— DBP Reference
—— DBP Predicted (Ridge)

,_.

=]

s
L

—— SBP Reference
—— SBP Predicted (Ridge)

DBP (mmHg)
=

SBP (mmHg)
=
=
¥
|

~
~N
L

110 +

701
108 4
68 4

106 -

tl) 260 460 660 860 10‘00 tI] 2[‘)0 460 660 860 10:30
Time (s) Time (s)
(a) SBP (b) DBP

Figure 39: Real Reference Values vs Predicted Vaules of SBP and DBP using the Linear
Regression on Luca's Database + All Shimmer Patients

4. Support Vector Machine (SVM): Also, the Support Vector Machine (SVM), known
for its robustness in managing high-dimensional spaces and for its ability to maximize the
separation margin even in non-perfectly linear contexts (thanks to the use of kernels), was
evaluated on four different configurations of the dataset, in order to analyze its behavior
in the presence of data with different physiological and instrumental characteristics.

e In the most focused configuration representing the use of Luca's database, the
SVM reaches its peak performance. Thanks to the high temporal and physiological
coherence of the signals, the algorithm is able to construct a separation hyperplane
(or a decision surface in the case of nonlinear kernels) that is extremely close to the
distribution of the target data, producing estimates that are almost perfectly aligned
with the reference values of patient LUCA 1. The mean absolute error (MAE) is
minimal and the standard deviation of the predictions is negligible, indicating a
very high reliability and repeatability of the estimates. The quantitative results are
reported in Table[15] and Figures ([40)).

Average MAE (mmHg) £+ Average STD (mmHg)
Patient SBP DBP
Lucal | 1.19 + 1.44 0.88 £+ 1.06

Table 15: Average MAE and STD (mmHg) for Patient Luca 1 using SVM Regression.
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SVM SBP: Real vs Predicted (LUCA Reference Instants) SVM DBP: Real vs Predicted (LUCA Reference Instants)

120.0 4 —— SBP Reference 810 — DBP Refe.rence
—— SBP Predicted (SVM) —— DBP Predicted (SVM)
119.5 4 80.5
119.0 - 80.0
2 uss 2
£ E 795
E E
Y 118.0 P
] 9 79.0
117.5
78.5
117.0
116.5 78.0
0 200 400 600 800 1000 0 200 400 600 800 1000
Time (s) Time (s)
(a) SBP (b) DBP

Figure 40: Real Reference Values vs Predicted Vaules of SBP and DBP using the SVM Regres-

sion on Luca's Database

e With the introduction of the last 22 Shimmer patients, although a slight drop in
performance was observed (inevitable given the introduced heterogeneity), the SVM
still maintained a level of accuracy significantly higher than all the other tested
models. Even in the presence of signals with different PPG responses, morphological
variability of the ECG, or non-uniform SNR, the SVM managed to maintain good
predictive capacity, avoiding the performance collapse observed in other approaches.
Details are available in Table [16| and Figures (41)).

Average MAE (mmHg) + Average STD (mmHg)
Patient SBP DBP
Lucal | 1.12 + 1.49 0.99 + 1.14

Table 16: Average MAE and STD (mmHg) for Patient Luca 1 using SVM Regression.
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SVM SBP: Real vs Predicted (LUCA Reference Instants) SVM DBP: Real vs Predicted (LUCA Reference Instants)
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Figure 41: Real Reference Values vs Predicted Vaules of SBP and DBP using the SVM Regres-
sion on Luca’s Database + Last 22 Shimmer Patients

e The addition of the first 20 Shimmer patients (again excluding patient 15) fails to
significantly destabilize the SVM. In fact, even in this case, the accuracy of the
results deteriorates further. The results are shown in Table 17| and Figures (42)).

Average MAE (mmHg) + Average STD (mmHg)
Patient SBP DBP
Lucal | 2.71 £ 2.97 2.42 4+ 3.85

Table 17: Average MAE and STD (mmHg) for Patient Luca 1 using SVM Regression.
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Figure 42: Real Reference Values vs Predicted Vaules of SBP and DBP using the SVM Regres-
sion on Luca's Database + Initial 20 Shimmer Patients
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e In the larger configuration (LUCA + entire Shimmer dataset), a deterioration in

performance is observed, due to the high inter-subject variability and the presence
of physiological patterns not aligned with the LUCA 1 target. However, even in
this scenario, the SVM continues to perform best among all the models tested.
Although the mean error increases and the standard deviation amplifies, the SVM
still manages to produce more stable and less biased estimates than Ridge, LMS,
or other linear approaches. The complete results, which unequivocally confirm the
relative superiority of the SVM, are available in Table {18/ and Figures (43)).

Average MAE (mmHg) £ Average STD (mmHg)
Patient SBP DBP
Lucal | 3.33 £ 2.69 4.04 £ 2.02

Table 18: Average MAE and STD (mmHg) for Patient Luca 1 using SVM Regression.

DBP (mmHg)

@
=]

~
@

~
o
L

~
B
L

724

70

SVM DBP: Real vs Predicted (LUCA Reference Instants) SVM SBP: Real vs Predicted (LUCA Reference Instants)

S AW\

-
~
=}

-
=
o

-
=
=3

114

SBP (mmHg)

-
=
N

110

108 -

—— DBP Reference —— SBP Reference
—— DBP Predicted (SVM) —— SBP Predicted (SVM)
106 -
T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Time (s) Time (s)
(a) SBP (b) DBP

Figure 43: Real Reference Values vs Predicted Vaules of SBP and DBP using the SVM Regres-
sion on Luca's Database + All Shimmer Patients

4.2.2 K-fold Cross-Correlation Dataset Division

As described in section , K-Fold Cross-Validation is a more robust and reliable machine learning
model evaluation technique than the simple 70-30 train/test split. The method works by dividing
the dataset into K parts (called "folds") of similar size. In each iteration, the model is trained
in K-1 folds and validated on the remaining fold. This process is repeated K times, so that
each fold serves as the test set exactly once. The final performance of the model is given by
the average performance achieved in each of the K iterations.

72



Looking at the results, reported in the tables and figures, the comparison between a metric
(e.g., MAE - Mean Absolute Error and STD - Standard Deviation) obtained with a 70-30
split and that obtained with Cross-Validation is not to be understood as an "improvement” or
"worsening” of the model itself, but rather as a correction or refinement of the estimate of its
actual performance. In fact, we obtained two cases:

1. Result 70-30 "Bad” (high MAE and STD) that "improves” with CV: A 70-30
split is strongly influenced by the randomness of the split. It is possible that 30% of the
data reserved for testing contains many examples that are particularly difficult to predict
(outliers, unusual patterns or, as in this case, data not consistent with the reference
patient), while the training set is "easier.” This leads to a pessimistic and biased estimate
of performance (high MAE and STD). K-Fold CV, by averaging performance across all
possible splits, mitigates this risk. If each fold provides a decent MAE, the average will
be good, revealing that the model is actually more capable than it appeared from the
single unfavorable test set. CV therefore provides a more optimistic and realistic estimate
of the model’s generalization.

2. Result 70-30 " Good” (low MAE and STD) which ”worsens” with CV: In contrast,
the 70-30 split may be highly favorable. The test set may consist of examples very similar
to the training set and particularly easy to predict, the training set may be statistically
unrepresentative of the entire dataset, or, as in this case, the data are similar to the
reference patient. This leads to an overly optimistic estimate of performance (low MAE).
K-Fold CV, by testing the model on all data subsets, unmasks this excessive optimization
(overfitting) or fortuitous split. If the model performs poorly in some folds because it
was tested on different data, the average MAE will increase. CV therefore provides a
more pessimistic, but much more reliable estimate, highlighting the model’s potential
vulnerability.

The numerical results (MAE) and their variability (std) demonstrating this behavior for the
different datasets analyzed are reported in detail in the attached Tables and Figures. The anal-
ysis of the standard deviation is particularly important: a high value indicates that the model's
performance is very sensitive to the choice of training/test data, confirming the usefulness of
CV for obtaining a more stable judgment.

e LUCA Database:
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Avg MAE (mmHg) + Avg STD (mmHg)
Linear LMS Ridge SVM
SBP DBP SBP DBP SBP DBP SBP DBP
Luca 1|3.1540.01 | 2.45+0.01 | 3.39+0.02 | 2.594-0.01 | 3.15+0.03 | 2.454+-0.01 | 2.84+0.03 | 2.22+0.02

Table 19: Average MAE (mmHg) + Average STD (mmHg) for different models using Luca’s
database post k-fold cross-validation.
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Figure 44: Relation between Reference Values and Predicted Values of SBP, DBP for Linear
and LMS Regression Models, post K-fold cross-correlation on Luca's database.
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Figure 45: Relation between Reference Values and Predicted Values of SBP, DBP for Ridge

and SVM Regression Models, post K-fold cross-correlation on Luca’s database.

e LUCA Database + Last 22 Shimmer Patients

Avg MAE (mmHg) + Avg STD (mmHg)

Linear

LMS

Ridge

SVM

SBP

DBP

SBP

DBP

SBP

DBP

SBP

DBP

Luca 1

4.39+£0.04

2.25+0.03

4.39+0.08

2.99+0.04

4.39+0.04

2.924+0.03

3.81+0.04

2.61+0.06

Table 20: Average MAE (mmHg) £ Average STD (mmHg) for different models using Luca's
database + Last 22 Shimmer Patients, post k-fold cross-validation.
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Linear Regression SBP: Real vs Predicted (LUCA Reference Instants)
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Figure 46: Relation between Reference Values and Predicted Values of SBP, DBP for the
all Regression Models, post K-fold cross-correlation on Luca's database + Last 22 Shimmer
Patients.



e LUCA Database + Initial 20 Shimmer Patients

Avg MAE (mmHg) + Avg STD (mmHg)

Linear

LMS

Ridge

SVM

SBP

DBP

SBP

DBP

SBP

DBP

SBP

DBP

Luca l

9.80+0.04

8.72+0.02

10.63+0.12

8.73+0.08

9.80+0.04

8.72+0.02

7.83+0.11

6.45+0.08

Table 21: Average MAE (mmHg) + Average STD (mmHg) for different models using Luca’s
database + Initial 20 Shimmer Patients, post k-fold cross-validation.
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Figure 47: Relation between Reference Values and Predicted Values of SBP, DBP for Linear and
LMS Regression Models, post K-fold cross-correlation on Luca's database + Initial 20 Shimmer

Patients.
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Figure 48: Relation between Reference Values and Predicted Values of SBP, DBP for Ridge and
SVM Regression Models, post K-fold cross-correlation on Luca's database + Initial 20 Shimmer
Patients.

e LUCA Database + all Shimmer Patients

Avg MAE (mmHg) + Avg STD (mmHg)
Linear LMS Ridge SVM
SBP DBP SBP DBP SBP DBP SBP DBP
Luca 1|10.88+0.02 | 8.52+0.02 | 11.234+0.07 | 8.19+0.03 | 10.88+0.02 | 8.52+0.02 | 9.17+0.04 | 6.93+0.03

Table 22: Average MAE (mmHg) + Average STD (mmHg) for different models using Luca’s
database + All Shimmer Patients, post k-fold cross-validation.

78



Linear Regression SBP: Real vs Predicted (LUCA Reference Instants)
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Figure 49: Relation between Reference Values and Predicted Values of SBP, DBP for the all
Regression Models, post K-fold cross-correlation on Luca’s database + All Shimmer Patients.
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5 Discussion

5.1 Algorithm results Discussion

The results obtained in this thesis, analyzed in light of the physiological variability of the
patients and the robustness of the algorithms, lead to an unequivocal conclusion: of all the
models tested (Linear Regression, LMS, Ridge Regression, and Support Vector Machine), SVM
stands out for its absolute superiority, not only in terms of point by point accuracy, but above all
in terms of robustness, stability, and generalization ability across real world and heterogeneous
contexts. This statement does not arise from a simple comparison of numbers, but from an
in depth analysis that links quantitative performance to the intrinsic characteristics of the data
and the theoretical principles of the algorithms. This analyzes are made even more evident
and convincing by examining the graphs illustrating the distribution of blood pressure values in
different patients (Figures: 50a}50c)51a}/51c]).

SBP Signals for All Shimmer Patients Mean SBP per Shimmer Patient (Outliers in Red, LUCA in Purple)

H

IQR (25°-75° percentile)
== LUCA Mean SBP
Mean SBP

g
g

Mean Systolic BP (mmHg)
@
8

o 10 20 30 40
Patient ID

(a) SBP reference values (b) SBP Bar Graph of refrence values

DBP Signals for All Shimmer Patients Mean DBP per Shimmer Patient (Outliers in Red, LUCA in Purple)

IQR (25°-75° percentile)
—— LUCA Mean DBP

ssure (mmkHg)

Mean Diastolic BP (mmHg)

o 10 20 40

20
Patient ID

(c) DBP reference values (d) DBP Bar Graph of refrence values

Figure 50: Figures of Shimmer Patients representing the behavior of the SBP, DBP reference
values with repect the LUCA 1 mean values.
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Figure 51: Figures of Luca's database Patients representing the behavior of the SBP, DBP
reference values with repect the LUCA 1 mean values.

From the graphs we can visualize that, when the models are trained and tested exclusively
on homogeneous data from patient Luke 1, they all achieve excellent results, with Ridge and
SVM competing for the top spot. However, this scenario is artificial: in clinical practice, a
cuffless blood pressure measurement device must work on a heterogeneous population, with
patients presenting with profoundly different blood pressure values, signal morphologies, and
physiological conditions. And this is where the real competition comes in, and where basic
data analysis, made visible by the bar graphs of the average SBP and DBP values, highlighting
outliers and the mean value for Luke 1, becomes crucial to interpreting the results.

In fact, the statistical analysis of Shimmer patients’ baseline values reveals that: Luca 1 is
a specific case with blood pressure values in the mid to high range of the Shimmer distribution.
The graphs clearly show that most Shimmer patients have significantly lower SBP and
DBP values . Some can even be classified as statistical outliers, identified by the interquartile
range (IQR) method and marked in red in the graphs. These patients have mean diastolic
blood pressure values below 60 mmHg, and mean systolic blood pressure values ranging from
less than 100 mmHg to over 140 mmHg, representing a high level of variability that is directly
reflected in the models’ performance. The dashed purple line, representing the mean for Luca
1, appears isolated in this context, almost an exception compared to the norm for the Shimmer
sample. This heterogeneity is not noise to be eliminated, but the reality that a clinical model
must deal with, and it perfectly explains the behavior observed in the results in Chapter [4 In
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contrast, when we used the LUCA patient database, which shows an average trend in line with
the values of patient LUCA 1 (Figures ,, the results are highly accurate.

We can observe, from the results, that when the high variability is introduced into the
training set by the Shimmer patients, Linear Regression collapses inexorably. Its errors skyrocket
to clinically unacceptable values, well above 10 mmHg, demonstrating extreme fragility when
faced with data that do not follow the same distribution as the target. Ridge Regression, despite
starting from a solid foundation, also shows a surprising vulnerability: its L2 regularization,
so effective on homogeneous data, becomes a limitation when it has to handle irreconcilable
physiological patterns, " crushing” the coefficients to the point of rendering the model incapable
of adapting (results above the limits set by the international guidelines (AAMI/ISO/ESH)).

LMS, thanks to its iterative adaptive approach, shows remarkable resilience, maintaining
relatively low errors even in the presence of heterogeneity. However, its performance is unsta-
ble: it deteriorates dramatically with the first 20 Shimmer patients (those with lower blood
pressures), then paradoxically "improve” with the entire dataset, suggesting that its behavior is
more reactive than proactive, and dependent on the fortuitous composition of the training set.
SVM, on the other hand, maintains remarkably consistent and robust behavior. From the first
impact with heterogeneous data (the addition of the last 22 Shimmer patients), SVM shows
minimal performance degradation, always remaining below 2 mmHg error for both blood pres-
sures. Even in the most extreme configuration, with the entire Shimmer dataset, SVM is the
only model that keeps diastolic blood pressure (DBP) within clinical limits (4.04 + 2.02 mmHg)
and systolic blood pressure (SBP) at a reasonable level (3.33 £+ 2.69 mmHg), significantly lower
than all the others. This superiority is not accidental, but is rooted in the very nature of the
algorithm. SVM does not attempt to fit a mean hyperplane to the data, but rather constructs a
decision surface that maximizes the separation margin, making it intrinsically robust to outliers
and noise. Furthermore, thanks to the use of nonlinear kernels (such as RBF), SVM is able
to model complex and nonlinear relationships between features (HR, PTT) and blood pressure
values, capturing physiological nuances that linear models ignore.

Validation with K-Fold Cross-Validation confirms and amplifies this superiority. While CV
"corrects” the estimates for other models, revealing overfitting or underfitting hidden by the 70-
30 split, for SVM the correction is minimal, indicating that its estimates are already intrinsically
stable and reliable. Importantly, on the full dataset, SVM is the only model that, with CV,
maintains an error for DBP (6.93 £ 0.03 mmHg) close to the clinical threshold, while all the
others significantly exceed 8 mmHg.

In conclusion, although Ridge and LMS can compete on homogeneous data, SVM is the
only algorithm that demonstrates a systematic, robust, and clinically valid ability to generalize
to a heterogeneous population. Its architecture, based on margins and kernels, makes it the
ideal tool for addressing the complexity and variability of the real world.
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5.2 Errors and strategies

However, it is important to note that the relatively high MAE and STD values found in some
scenarios, especially in heterogeneous contexts, can be attributed to different sources of error
and the strategies adopted to mitigate them:

1. Intrinsic Physiological Variability: The high heterogeneity of Shimmer data, with
patients presenting blood pressure values across a very wide range, represents the main
challenge. Linear models, by their nature, attempt to approximate an average relationship,
failing when they must adapt to radically different physiological regimes. Even the SVM,
although more robust, must contend with this variability, which physiologically translates
into a lower limit on achievable accuracy.

2. PPG and ECG intersubject variability: This is due to the subject’s physiology [74].
In particular for PPG, whose recording is influenced by the subject’s skin conductivity,
sometimes the peaks are so low that it is difficult to establish a threshold value to
detect them optimally [75]. At the same time, ECG signal variability is also affected
by similar problems, particularly when the electrodes are positioned in a non-correct
anatomical configuration, leading to potential artifacts and reduced wave amplitude. The
sensor, developed by Persimmon, was designed to address these critical issues. It improves
detection of PPG Spcqrs While simultaneously reducing errors resulting from improper
Shimmer clip placement and light interference, thanks to the use of a black adhesive patch
(Figures: [2)). This integrated solution therefore aims to ensure greater reliability of the
acquired PPG and ECG signals, under varying physiological and operational conditions.
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(a) Persimmon Sensor with diode for the PPG

signal

3.

(b) Electrodes

Figure 52: Persimmon Sensor and the Electrodes for The ECG signals .

Instrumental error: The technical documentation of the EXG module does not specify
error margins, since this device allows the recording of the ECG trace without introducing
evident alterations due to noise. Consequently, the instrumental uncertainty associated
with this module is insignificant. On the contrary, the PPG signal, due to its intrinsic
characteristics and acquisition method, is affected by disturbances which also include a
systematic measurement error, documented in the literature as an average value calibrated
over the entire measurement range [76]. The bias voltage is set to 0.5 V and, considering
a typical "low" skin impedance (120 k{2 corresponding to 8 wS), the bias current is
approximately 5 ptA; this current value decreases proportionally with the increase in skin
conductance [76]. The latest generation Persimmon sensors show the ability to reduce
instrumental uncertainty for both signal types, ECG and PPG.

Motion Artifacts: Although the experimental protocol required subjects to be seated
and relaxed, involuntary micro-movements may have introduced artifacts into the signals,
especially in the PPG (which is more susceptible) but also in the ECG. Such interfer-
ence is difficult to completely eliminate through filtering and contributes significantly to
increased variability (STD) of the estimates. This issue is particularly relevant with Shim-
mer devices, where the cables connecting the electrodes to the acquisition module can
create additional sources of mechanical disturbance due to accidental displacement of the
conductors. In contrast, Persimmon sensors are designed to mitigate these issues through
the use of a dedicated adhesive that ensures stable and uniform attachment to the skin,
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minimizing both relative sensor movement and cable traction artifacts. This integrated
solution improves immunity to mechanical disturbances, preserving signal quality even in
the presence of small subject movements.

5. Synchronization and Time Alignment: Even a small misalignment between the ECG
and PPG signals can cause an incorrect PTT calculation. The 60 ms offset applied to
correct for instrument delay is an estimate that may not be perfect for all subjects or
hardware configurations, introducing systematic bias.

6. Cleaning the HR and PTT arrays: The heart rate (HR) and pulse transit time (PTT)
array cleaning phase involves eliminating outliers that exceed the mean 4 standard devia-
tion range. While this process helps improve the accuracy of blood pressure predictions, it
inevitably results in the loss of potentially relevant information. Although several strate-
gies have been tested to mitigate this information loss, none have yet been shown to
significantly improve the model’s predictive performance. To address this issue, Per-
simmon is developing more advanced signal acquisition technologies that aim to obtain
cleaner and more reliable physiological data already during the detection phase.

7. Calibration and Personalization: The model was trained on a collective dataset. The
lack of specific calibration for the individual patient (LUCA 1) explains part of the residual
error. Linear models, lacking intrinsic mechanisms to handle inter-individual differences,
suffer dramatically. The SVM, with its RBF kernel, handles these differences better, but
the best results would likely be achieved with training or fine-tuning on data specific to
the target patient.

5.3 Persimmon Devices

Persimmon devices are conceived as multimodal, personalized, and biodegradable smart patches
designed for decentralized personal health monitoring (DPHM). The project’s goal is to produce
soft, skin-conformable sensory patches capable of detecting relevant physiological parameters
(including cardiac parameters) and transferring data to cloud/edge infrastructures for sensor
fusion and estimation of parameters such as blood pressure and body temperature. The patches
will be produced using additive manufacturing and digital surface mount technology (SMT),
using innovative materials such as water-soluble biopolymers and liquid metal interconnects to
increase sustainability and conformability [77].

From a mechatronics perspective, a Persimmon device is designed as a multilayer platform
composed of: a soft and biodegradable substrate (biopolymer) that adheres to the skin; printed
conductive layers (possibly liquid metal) for the electrical traces; digitally positioned SMT com-
ponents (low-power microcontrollers, ADCs, LEDs, photodiodes for PPGs, front-end amplifiers
for ECGs, motion sensors, accelerometers and nano MOS for specific signals); and a wireless
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interface to a gateway (with a view to 5G/loT) or directly to a smartphone. The choice of lig-
uid metals and biodegradable materials is designed to reduce environmental impact and enable
multi-use or single-use modules with recycling of active components [77].

5.3.1 ECG and PPG: sensors and detection

For ECG signal detection, the patch integrates skin-contact electrodes, which can be made of
printed conductive pads or soft metal films. The analog interface includes a front-end with a
low-noise amplifier, a band-pass filter to isolate the useful cardiac frequency range (typically
0.5-40 Hz), and a low-power A/D converter that samples the signal. To maintain a good
signal-to-noise ratio on a soft substrate, electrode geometry optimization techniques, surface
treatment, and gain adaptation algorithms are employed [77]. While the PPG is acquired via
an integrated optical module (LED and photodiode), as shown in figure [53]

)

Figure 53: Acquisition of PPG signal through the photodiode

The patch can include LEDs at different wavelengths (e.g., green/red/IR) to improve pen-
etration and sensitivity at different tissue levels; PPG is read via a dedicated analog front-end
(photodetector, transimpedance amplifier, low-pass filter) before digitization. Some Persimmon
projects also include modules for temperature sensors and gas sensors integrated into the same
"multimodal” platform [77].

A key aspect of cuffless pressure estimation is time synchronization between signals. Per-
simmon patches are designed to operate in multi-nodal networks on the skin: multiple nodes
positioned at different points can enable relative measurements (e.g., measuring PTT between
two patches) or provide redundancy to reduce artifacts. Synchronization can be managed lo-
cally (common clock between modules or gateway synchronization) or at the cloud level after
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upload, but the project emphasizes edge Al and the automatic selection of time slots with good
signal conditions to reduce the amount of unnecessary data sent over the network [77].

5.3.2 Software and Edge-Al

Persimmon integrates edge-Al solutions directly onto the patch or body gateway for key tasks:
selecting " clean” signal windows, reducing motion artifacts (using an accelerometer as a refer-
ence and lightweight neural networks to classify signal conditions), intelligent compression and
filtering, and local decision-making on when to send data to the cloud. At the cloud level, mul-
timodal sensor fusion (fusion of ECG, PPG, temperature, and motion data) is performed using
more computationally intensive algorithms that estimate complex clinical variables, including
blood pressure. This hybrid architecture (edge + cloud) is explicitly designed to reduce energy
consumption, improve privacy, and reduce operational latency. At the software level, edge-Al
intervenes in the quality evaluation and selection phase, while the final pressure estimation can
be performed with models calibrated on the cloud or, when required, with lightweight versions
directly on the device.

Specifically, SBP and DBP pressures can be precisely calculated by setting the device's
characteristics. This allows the specifics to be adjusted based on the patient being examined.

5.3.3 Persimmon Device Manufacturing, Sustainability, Use Cases, and Challenges

Persimmon devices stand out for their focus on sustainability and a circular economy design
approach. They are produced using additive manufacturing, which enables flexible electronic
circuits to be created on soft substrates, reducing waste. Component assembly is handled by
digital surface mount technology (SMT), a cost-effective and precise technique. The use of
water-soluble biopolymers makes the patches biodegradable and facilitates the separation of
reusable components, thus limiting plastic waste (Figures . Liquid metal interconnects, de-
signed to facilitate metal recovery and reuse, further strengthen this approach, enabling devices
suitable for both single use and partially reusable use, while keeping costs and environmental
impact low [77].
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Figure 54: Structure of Persimmon device for the acquisition of the ECG, PPG signals

This technology platform was designed to be tested in particularly demanding real-world
scenarios, such as extreme sports like ski mountaineering and swimming (video: [78]), which
require high water resistance, tolerance to temperature changes, and signal reliability in critical
environmental conditions. At the same time, Persimmon patches are designed for the continu-
ous monitoring of chronic patients on a daily basis, a context that requires stable and secure
connectivity. To this end, the system integrates 5G gateways for wearable loT networks, ca-
pable of transmitting physiological data in real time to cloud platforms for signal analysis and
fusion. Clinical validation involves campaigns on diverse populations, necessary to calibrate the
blood pressure estimation models and ensure compliance with international accuracy and safety
standards [77].

Despite promising application prospects, Persimmon devices face several technical challenges
to ensure reliable reading of ECG and PPG signals. These include managing motion artifacts,
maintaining stable electrode-to-skin contact for ECG, and reducing optical noise for PPG in
environments with variable lighting. Added to this are the module's battery life, which must
ensure prolonged operation without frequent recharging, and the subject-specific calibration
required to accurately estimate blood pressure [77] [78].

So, Persimmon’s ECG and PPG reading devices represent an integrated and sustainable
platform that combines advanced materials, additive manufacturing, low-power electronics,
edge-Al, and sensor fusion cloud to achieve multimodal measurements useful for monitoring
blood pressure and other vital signs in the clinical and sports fields.
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6 Conclusion

Hypertension is therefore a major risk factor for cardiovascular disease, the leading cause of
mortality globally. Continuous and accurate blood pressure (BP) monitoring is therefore essen-
tial not only for early diagnosis but also for patient therapeutic management and the prevention
of complications.

This thesis addressed the limitations of traditional methods, the invasiveness of clinical sys-
tems, and the intermittent nature of noninvasive cuff-based devices, subsequently exploring a
"cuffless” methodology for continuous and noninvasive blood pressure estimation. The core of
the work was the development of a framework based on the combined analysis of electrocar-
diogram (ECG) and photoplethysmogram (PPG) signals, acquired through Shimmer3 wearable
devices, from which the key physiological parameters of heart rate (HR) and pulse transit
time (PTT) were extracted. The approach incorporated several innovations: the acquisition of
signals under controlled conditions as an alternative to online datasets, the design of a com-
prehensive signal processing pipeline, and the application of regression techniques to model the
relationship between these parameters and reference blood pressure values. The results showed
that the Support Vector Machine (SVM) algorithm stands out for its robustness and general-
isation capacity, keeping the error (MAE) within clinically acceptable thresholds for diastolic
blood pressure (DBP), in line with international AAMI/ISO/ESH guidelines [61].

This confirms the potential of the proposed approach for the development of a reliable
system for real-time estimation.

6.1 Future prospects

Looking ahead, research is evolving along two main lines: hardware integration and software
refinement. From a hardware perspective, the goal is to implement the algorithm on nextgen-
eration wearable platforms that are more compact and comfortable for prolonged use, such
as those developed in the European Persimmon project. Although these sensors have differ-
ent technical specifications from Shimmer, they have demonstrated encouraging performance
and greater adaptability to everyday life, paving the way for large-scale, long-term monitoring
outside the clinical setting [77].

On the software side, despite the excellent performance of SVM, there is ample room
for improvement by exploring more complex algorithmic architectures. The use of recursive
algorithms (such as Kalman filters) and neural networks (RNN/LSTM) appears particularly
promising for more effectively capturing the dynamic and temporal nature of blood pressure.
This would not only improve the accuracy of systolic (SBP) and diastolic (DBP) estimates, but
also lay the foundations for increasingly personalised, predictive and integrated monitoring in
patients’ lives. In conclusion, the experimental results and development prospects paint a solid
picture for the clinical and commercial adoption of cuffless blood pressure monitoring systems.
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Integration with projects such as Persimmon represents the natural evolution of this re-
search, with the aim of bringing continuous blood pressure measurement beyond the hospital
environment and directly into patients’ daily lives, contributing significantly to improving their
quality of life and reducing the social impact of cardiovascular disease.
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Appendix A: Additional Results

Results of All patients pre and post K-Fold cross correlation considering both Shim-
mer and Luca Dataset

Table 23: Metrics Pre K- Fold Cross-Correlation (MAE and STD)

Model Linear LMS Ridge SVM

Signal DBP SBP DBP SBP DBP SBP DBP SBP

Metric MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD
SHIMMER-1 10.70 14.07 17.86 21.66 10.39 13.91 16.09 20.56 10.70 14.07 17.86 21.66 9.69 13.14 18.26 22.55
SHIMMER_2 11.16 14.32 16.88 19.95 10.86 14.14 15.01 18.57 11.16 14.32 16.88 19.95 9.88 12.98 16.97 20.45
SHIMMER_:3 10.59 13.55 12.01 13.44 10.30 13.38 10.24 11.94 10.59 13.55 12.01 13.43 9.47 12.42 12.38 14.48
SHIMMER_4 9.31 11.43 15.30 17.71 9.02 11.24 13.46 16.21 9.31 11.43 15.30 17.71 8.04 10.01 15.30 18.15
SHIMMER_5 27.58 248.99 33.50 275.49 26.00 231.69 23.35 163.96 27.58 248.97 33.49 275.45 8.16 10.64 13.44 15.78
SHIMMER_6 11.15 14.87 19.98 24.94 10.82 14.70 18.21 23.95 11.15 14.87 19.98 24.94 10.13 13.94 20.50 25.95
SHIMMER_7 10.08 13.01 15.22 17.77 9.78 12.83 13.42 16.47 10.08 13.01 15.22 17.77 8.97 11.92 15.52 18.58
SHIMMER_8 9.75 12.70 16.89 20.29 9.42 12.53 15.11 19.17 9.75 12.70 16.89 20.29 8.77 11.82 17.39 21.33
SHIMMER_9 9.78 12.57 14.93 17.35 9.47 12.38 13.12 16.05 9.78 12.57 14.93 17.35 8.63 11.40 15.24 18.20
SHIMMER_11 98.92 1551.51 114.05 1715.58 92.44 1444.11 72.03 1015.63 98.91 1551.33 114.04 1715.38 8.86 11.83 15.96 19.26
SHIMMER_13 9.63 12.56 15.60 18.42 9.29 12.39 13.85 17.31 9.63 12.56 15.60 18.42 8.70 11.78 16.08 19.49

SHIMMER_14 46.13 640.70 57.59 710.45 43.19 593.09 39.84 418.94 46.12 640.63 57.58 710.36 10.12 13.95 19.29 24.16
SHIMMER_16 36.11 484.46 41.45 536.76 33.92 448.45 28.19 315.51 36.11 484.40 41.45 536.69 10.17 14.01 14.16 16.79

SHIMMER_17 10.17 13.14 12.64 14.25 9.89 12.99 10.79 12.71 10.17 13.14 12.64 14.25 8.96 11.85 12.87 15.06
SHIMMER_18 20.36 107.30 25.14 118.94 19.51 99.69 20.13 71.98 20.36 107.29 25.14 118.93 12.47 17.56 17.90 22.08
SHIMMER_19 3.58 3.94 13.61 15.61 3.02 3.71 11.80 14.33 3.58 3.94 13.61 15.61 233 3.12 14.07 16.69
SHIMMER_20 3.60 4.14 13.31 15.14 3.21 3.93 11.52 13.78 3.60 4.14 13.31 15.14 2.44 3.01 13.71 16.15
SHIMMER_21 10.24 13.31 15.09 17.61 9.95 13.16 13.29 16.34 10.24 13.31 15.09 17.61 9.16 12.26 15.46 18.52
SHIMMER_22 11.86 15.74 14.64 17.07 11.54 15.52 12.74 15.50 11.86 15.74 14.64 17.07 10.46 14.09 14.65 17.39

SHIMMER_23 19.27 216.94 27.68 241.86 18.02 201.14 19.75 144.45 19.27 216.92 27.68 241.83 4.68 5.55 12.99 15.22
SHIMMER_ 24 3231 369.85 41.06 417.59 30.26 340.48 29.88 254.67 3231 369.81 41.06 417.54 9.62 12.14 16.96 20.27

SHIMMER_25 8.72 11.11 12.14 13.59 8.39 10.91 10.36 12.15 8.72 11.11 12.14 13.59 7.58 9.95 12.59 14.70
SHIMMER_26 7.44 8.80 10.70 12.07 7.15 8.56 9.13 10.57 7.44 8.80 10.70 12.07 6.43 7.63 11.17 13.26
SHIMMER_27 5.56 6.55 10.69 11.64 5.19 6.33 8.86 10.06 5.56 6.55 10.69 11.64 4.48 5.50 11.08 12.74
SHIMMER_28 5.00 5.84 8.92 8.49 4.67 5.59 6.05 6.60 5.00 5.84 8.92 8.49 3.91 4.62 8.78 9.69
SHIMMER_29 4.88 5.75 9.14 10.04 4.58 5.52 7.41 8.35 4.88 5.75 9.14 10.04 3.85 4.54 9.63 11.29
SHIMMER_30 7.11 8.77 9.10 9.97 6.79 8.54 7.23 8.15 7.11 8.77 9.10 9.97 5.94 7.41 9.40 10.98
SHIMMER_31 7.36 8.99 9.22 10.07 7.06 8.80 7.46 8.38 7.36 8.99 9.22 10.07 6.31 7.93 9.62 11.28
SHIMMER_32 6.39 7.66 11.49 12.86 6.06 7.38 9.74 11.30 6.39 7.66 11.49 12.86 5.19 6.23 11.74 13.74
SHIMMER_33 5.52 6.48 9.78 7.84 5.19 6.24 6.73 5.92 5.52 6.48 9.78 7.84 4.47 5.35 9.66 9.10
SHIMMER_34 4.70 5.45 13.40 7.67 4.38 5.16 10.22 6.20 4.70 5.45 13.40 7.67 3.70 4.25 13.08 8.60
SHIMMER_35 6.68 7.97 8.44 9.05 6.35 7.73 6.49 7.35 6.68 7.97 8.44 9.05 5.73 7.04 8.76 10.42
SHIMMER_36 4.18 4.81 10.17 11.11 3.87 4.60 8.49 9.63 4.18 4.81 10.17 11.11 3.25 3.84 10.89 12.63
SHIMMER_37 3.55 4.14 10.24 7.58 3.17 3.86 7.13 5.70 3.55 4.14 10.24 7.58 2.48 3.05 10.13 8.78
SHIMMER_38 3.38 3.75 10.81 7.41 2.80 3.51 7.69 5.53 3.38 3.75 10.81 7.41 2.16 2.79 10.53 8.72
SHIMMER_39 8.19 9.97 12.91 14.61 7.88 9.75 11.25 13.26 8.19 9.97 12.91 14.61 7.15 8.88 13.35 15.71
SHIMMER_40 5.42 6.28 10.76 12.05 5.13 6.05 8.92 10.29 5.42 6.28 10.76 12.05 4.15 4.80 10.77 12.71
SHIMMER 41 514 6.00 15.66 18.35 4.85 5.79 13.82 17.00 5.14 6.00 15.66 18.35 3.96 4.66 15.89 19.07
SHIMMER_42 6.16 7.37 11.94 7.53 5.73 7.14 9.19 5.92 6.16 7.37 11.94 7.53 4.88 6.14 12.33 8.70
LUCA_1 3.63 4.05 8.71 9.18 3.14 3.80 6.53 7.17 3.63 4.05 8.71 9.18 2.39 3.26 8.73 10.02
LUCA2 3.46 3.86 8.65 9.39 2.95 3.66 6.59 7.57 3.46 3.86 8.65 9.39 2.29 2.85 8.83 10.49
LUCA3 3.60 3.98 8.70 9.35 3.07 3.79 6.61 7.50 3.60 3.98 8.70 9.35 2.27 2.85 8.80 10.47
LUCA 4 3.51 3.82 8.87 8.85 2.87 3.62 6.33 7.07 3.51 3.82 8.87 8.85 223 2.80 8.81 10.29
LUCA5 3.55 4.12 8.75 9.86 3.15 3.89 6.71 7.82 3.55 4.12 8.75 9.86 217 2.73 8.49 10.45
LUCA6 3.64 4.23 8.80 9.79 3.20 3.96 6.72 7.79 3.64 4.23 8.80 9.79 218 2.80 8.59 10.35
LUCA7 3.60 4.16 8.69 9.66 3.20 3.93 6.63 7.69 3.60 4.16 8.69 9.66 2.24 2.85 8.57 10.37
LUCA8 3.78 4.41 8.89 10.04 3.45 4.18 6.88 8.01 3.78 4.41 8.89 10.04 2.30 2.93 8.65 10.61
LUCA9 3.72 3.97 8.71 9.33 3.10 3.77 6.32 7.28 3.72 3.97 8.71 9.33 2.46 2.84 8.68 10.07
LUCA_10 3.79 3.64 9.00 8.60 2.99 3.44 6.19 6.69 3.79 3.64 9.00 8.60 241 2.68 8.77 9.80
LUCA_11 3.80 4.05 10.18 7.71 3.19 3.85 7.24 5.75 3.80 4.05 10.18 7.71 2.54 3.01 10.19 8.88
LUCA_12 3.82 3.94 10.13 7.84 3.17 3.74 7.13 5.91 3.82 3.94 10.13 7.84 2.58 3.01 9.92 9.02
LUCA_13 3.69 4.25 9.76 7.99 3.30 4.04 6.97 5.99 3.69 4.25 9.76 7.99 2.34 2.89 10.05 8.97
LUCA_14 6.51 4.82 9.27 8.21 5.51 4.81 6.57 6.19 6.51 4.82 9.27 8.21 5.75 5.76 9.70 9.09
LUCA_15 4.01 3.90 9.79 7.92 3.27 3.69 6.96 5.92 4.01 3.90 9.79 7.92 291 3.18 10.23 8.84
LUCA_16 3.85 3.68 10.14 7.78 3.05 3.51 7.15 5.85 3.85 3.68 10.14 7.78 2.53 2.86 10.02 8.95
LUCA_17 3.88 3.80 9.75 7.93 3.13 3.61 6.76 5.98 3.88 3.80 9.75 7.93 2.45 2.82 9.63 9.12
LUCA_18 3.38 3.75 10.81 7.41 2.80 3.51 7.69 5.53 3.38 3.75 10.81 7.41 2.16 2.79 10.53 8.72
LUCA_19 4.70 5.45 13.40 7.67 4.38 5.16 10.22 6.20 4.70 5.45 13.40 7.67 3.70 4.25 13.08 8.60
LUCA_20 3.55 4.14 10.24 7.58 3.17 3.86 7.13 5.70 3.55 4.14 10.24 7.58 2.48 3.05 10.13 8.78

91



Model

Signal

Metric
SHIMMER-1
SHIMMER_2
SHIMMER_3
SHIMMER_4
SHIMMER_5
SHIMMER_6
SHIMMER_7
SHIMMER_8
SHIMMER_9
SHIMMER_11
SHIMMER_13
SHIMMER_14
SHIMMER_16
SHIMMER_17
SHIMMER_18
SHIMMER_19
SHIMMER_20
SHIMMER_21
SHIMMER_22
SHIMMER_23
SHIMMER_24
SHIMMER_25
SHIMMER_26
SHIMMER_27
SHIMMER_28
SHIMMER_29
SHIMMER_30
SHIMMER_ 31
SHIMMER_32
SHIMMER_33
SHIMMER_34
SHIMMER_35
SHIMMER_36
SHIMMER_37
SHIMMER_38
SHIMMER_39
SHIMMER_40
SHIMMER_41
SHIMMER_42
LUCA1
LUCA2
LUCA3
LUCA 4
LUCA5
LUCA6
LUCA7
LUCA8
LUCA9
LUCA_10
LUCA_11
LUCA_12
LUCA_13
LUCA 14
LUCA_15
LUCA_16
LUCA_17
LUCA_18
LUCA_19
LUCA_20

Table 24: Metrics Post K-Fold Cross-Correlation (MAE and STD)

Linear

DBP

MAE
5.54
5.60
5.44
4.74
4.89
5.79
5.23
5.14
5.11
5.25
5.10
5.81
5.78
5.19
6.89
2.94
2.99
531
5.95
3.55
5.42
4.67
4.15
3.50
331
3.32
3.99
4.15
3.72
3.48
3.25
3.88
3.18
2.95
2.90
4.44
3.41
3.38
3.58
2.94
2.95
2.96
2.93
2.92
2.92
2.95
2.97
3.00
2.98
3.02
3.04
2.96
4.11
3.12
3.03
3.02
2.90
3.25
2.95

STD
0.04
0.06
0.03
0.05
0.02
0.08
0.02
0.08
0.01
0.05
0.05
0.03
0.02
0.07
0.08
0.04
0.04
0.04
0.04
0.06
0.03
0.03
0.01
0.03
0.05
0.03
0.06
0.04
0.05
0.02
0.04
0.03
0.04
0.05
0.05
0.05
0.06
0.06
0.02
0.03
0.04
0.05
0.05
0.05
0.03
0.05
0.03
0.05
0.06
0.05
0.05
0.05
0.02
0.03
0.05
0.04
0.05
0.04
0.05

SBP
MAE
7.89
7.30
5.54
6.63
5.93
8.89
6.69
7.46
6.57
6.89
6.95
8.24
8.24
5.71
7.67
6.11
6.00
6.68
6.32
5.78
7.25
5.54
5.19
5.08
4.29
4.69
4.60
4.70
5.28
4.38
5.39
4.46
5.03
4.51
4.55
5.87
5.05
6.84
5.38
4.39
4.47
4.47
4.41
4.38
4.39
4.40
4.42
4.37
4.33
4.63
4.58
4.69
4.60
4.66
4.59
4.49
4.55
5.39
4.51

STD
0.06
0.02
0.02
0.05
0.03
0.15
0.03
0.12
0.02
0.06
0.07
0.12
0.12
0.04
0.11
0.07
0.05
0.04
0.04
0.00
0.09
0.03
0.02
0.03
0.03
0.01
0.01
0.03
0.04
0.07
0.02
0.02
0.03
0.03
0.06
0.03
0.00
0.08
0.01
0.04
0.04
0.05
0.04
0.03
0.03
0.03
0.03
0.05
0.03
0.07
0.03
0.03
0.02
0.04
0.03
0.04
0.06
0.02
0.03

LMS
DBP
MAE
6.43
6.56
6.27
5.29
5.48
6.72
5.93
5.81
5.74
5.95
5.76
6.72
6.76
5.98
8.20
3.01
3.04
6.11
6.90
3.61
6.00
512
4.38
3.55
3.35
3.35
4.19
4.43
3.86
3.55
3.28
4.06
3.22
3.01
2.99
4.79
3.35
3.35
3.52
3.01
3.01
3.02
3.01
2.96
2.95
2.98
2.98
3.07
3.06
3.09
3.13
3.00
4.67
3.24
3.13
3.12
2.99
3.28
3.01

STD
0.04
0.06
0.02
0.04
0.06
0.09
0.03
0.07
0.01
0.08
0.04
0.08
0.06
0.10
0.07
0.05
0.05
0.02
0.05
0.07
0.02
0.03
0.02
0.04
0.04
0.04
0.04
0.06
0.03
0.02
0.05
0.02
0.05
0.06
0.07
0.02
0.06
0.06
0.03
0.05
0.05
0.06
0.07
0.06
0.06
0.06
0.05
0.06
0.07
0.05
0.07
0.06
0.06
0.06
0.07
0.06
0.07
0.05
0.06

SBP

MAE
8.69
7.90
5.45
6.94
5.92

10.02
7.00
8.07
6.85
7.21
7.35
9.01
9.01
5.62
8.21
6.26
6.06
6.98
6.46
5.74
7.62
5.52
5.08
4.94
4.25
4.58
4.50
4.55
5.20
4.28
5.63
4.37
4.92
4.43
4.47
5.92
4.86
7.21
5.74
4.39
4.39
4.49
4.36
4.37
4.28
4.32
4.40
4.38
4.29
4.62
4.57
4.79
4.68
4.69
4.62
4.50
4.47
5.63
4.43
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STD
0.03
0.07
0.03
0.09
0.03
0.13
0.04
0.07
0.05
0.04
0.06
0.17
0.17
0.04
0.13
0.04
0.03
0.04
0.05
0.01
0.06
0.01
0.03
0.01
0.07
0.04
0.04
0.05
0.05
0.10
0.07
0.06
0.03
0.09
0.11
0.01
0.05
0.04
0.08
0.09
0.08
0.08
0.07
0.08
0.08
0.08
0.08
0.10
0.09
0.10
0.10
0.09
0.07
0.10
0.09
0.10
0.11
0.07
0.09

Ridge
DBP
MAE
5.54
5.60
5.44
4.74
4.89
5.79
5.23
5.14
5.11
5.25
5.10
5.81
5.78
5.19
6.89
2.94
2.99
531
5.95
3.55
5.42
4.67
4.15
3.50
331
3.32
3.99
4.15
3.72
3.48
3.25
3.88
3.18
2.95
2.90
4.44
3.41
3.38
3.58
2.94
2.95
2.96
2.93
2.92
2.92
2.95
2.97
3.00
2.98
3.02
3.04
2.96
4.11
3.12
3.03
3.02
2.90
3.25
2.95

STD
0.04
0.06
0.03
0.05
0.02
0.08
0.02
0.08
0.01
0.05
0.05
0.03
0.02
0.07
0.08
0.04
0.04
0.04
0.04
0.06
0.03
0.03
0.01
0.03
0.05
0.03
0.06
0.04
0.05
0.02
0.04
0.03
0.04
0.05
0.05
0.05
0.06
0.06
0.02
0.03
0.04
0.05
0.05
0.05
0.03
0.05
0.03
0.05
0.06
0.05
0.05
0.05
0.02
0.03
0.05
0.04
0.05
0.04
0.05

SBP
MAE
7.89
7.30
5.54
6.63
5.93
8.89
6.69
7.46
6.57
6.89
6.95
8.24
8.24
5.71
7.67
6.11
6.00
6.68
6.32
5.78
7.25
5.54
5.19
5.08
4.29
4.69
4.60
4.70
5.28
4.38
5.39
4.46
5.03
4.51
4.55
5.87
5.05
6.84
5.38
4.39
4.47
4.47
4.41
4.38
4.39
4.40
4.42
4.37
4.33
4.63
4.58
4.69
4.60
4.66
4.59
4.49
4.55
5.39
4.51

STD
0.06
0.02
0.02
0.05
0.03
0.15
0.03
0.12
0.02
0.06
0.07
0.12
0.12
0.04
0.11
0.07
0.05
0.04
0.04
0.00
0.09
0.03
0.02
0.03
0.03
0.01
0.01
0.03
0.04
0.07
0.02
0.02
0.03
0.03
0.06
0.03
0.00
0.08
0.01
0.04
0.04
0.05
0.04
0.03
0.03
0.03
0.03
0.05
0.03
0.07
0.03
0.03
0.02
0.04
0.03
0.04
0.06
0.02
0.03

SVM
DBP
MAE
4.65
4.90
4.56
4.24
4.44
4.60
4.27
4.23
4.23
4.67
4.17
5.03
5.05
4.47
5.56
2.61
2.68
4.61
4.76
3.42
4.59
3.78
3.50
3.14
2.88
2.93
3.38
3.64
3.16
3.01
2.87
3.19
2.83
2.62
2.57
3.67
3.13
3.11
3.36
2.62
2.66
2.66
2.65
2.62
2.62
2.64
2.66
271
2.66
2.74
2.74
2.67
3.65
2.83
2.72
271
2.57
2.87
2.62

STD
0.02
0.12
0.05
0.00
0.04
0.06
0.05
0.06
0.05
0.03
0.06
0.10
0.01
0.04
0.05
0.07
0.07
0.02
0.02
0.05
0.06
0.05
0.07
0.04
0.08
0.07
0.06
0.04
0.08
0.05
0.07
0.07
0.05
0.09
0.08
0.05
0.06
0.07
0.02
0.06
0.07
0.07
0.07
0.09
0.07
0.07
0.08
0.07
0.07
0.07
0.08
0.07
0.07
0.07
0.07
0.06
0.08
0.07
0.09

SBP
MAE
6.52
6.41
4.89
5.86
5.70
6.87
5.60
6.08
5.55
6.58
5.68
7.55
6.01
5.07
6.94
5.18
5.27
5.87
5.48
5.53
6.66
4.72
4.43
4.47
3.83
4.07
4.03
4.14
4.47
3.95
4.64
3.88
4.37
4.02
4.00
4.91
4.55
6.00
4.90
3.90
4.02
4.06
3.96
3.92
3.93
3.91
3.97
3.93
3.91
4.20
4.13
4.22
4.18
4.23
4.12
4.02
4.00
4.64
4.02

STD
0.06
0.08
0.02
0.07
0.02
0.09
0.02
0.11
0.03
0.06
0.09
0.13
0.02
0.04
0.06
0.04
0.04
0.05
0.02
0.02
0.10
0.03
0.03
0.01
0.03
0.04
0.00
0.05
0.05
0.05
0.02
0.06
0.03
0.04
0.06
0.05
0.01
0.07
0.02
0.03
0.04
0.04
0.04
0.03
0.02
0.04
0.03
0.04
0.04
0.03
0.04
0.03
0.02
0.04
0.03
0.05
0.06
0.02
0.04



Patients with their corresponding Database Pre and Post K-Fold Cross-Correlation

Model
Signal
Metric
LUCA1
LUCA2
LUCA3
LUCA4
LUCAS
LUCAL6
LUCA7
LUCA8
LUCA9
LUCA_10
LUCA_11
LUCA_12
LUCA_13
LUCA_14
LUCA_15
LUCA_16
LUCA_17
LUCA_18
LUCA_19
LUCA_20

Model

Signal

Metric

SHIMMER_1
SHIMMER_2
SHIMMER_3
SHIMMER_4
SHIMMER_5
SHIMMER_6
SHIMMER_7
SHIMMER_8
SHIMMER_9
SHIMMER_11
SHIMMER_13
SHIMMER_14
SHIMMER_16
SHIMMER_17
SHIMMER_18
SHIMMER_19
SHIMMER_20
SHIMMER_21
SHIMMER_22
SHIMMER_23
SHIMMER_24
SHIMMER_25
SHIMMER_26
SHIMMER_27
SHIMMER_28
SHIMMER_29
SHIMMER_30
SHIMMER_31
SHIMMER_32
SHIMMER_ 33
SHIMMER_34
SHIMMER_35
SHIMMER_36
SHIMMER_37
SHIMMER_38
SHIMMER_39
SHIMMER_40
SHIMMER_41
SHIMMER_42

Linear

DBP

MAE
1.94
2.04
2.10
1.96
1.98
2.01
2.12
2.26
2.19
2.01
2.27
231
2.23
5.58
2.56
2.19
2.19
1.84
3.81
2.30

Table 26: Metrics Pre Cross-Correlation (MAE and STD) - Shimmer

Linear
DBP
MAE
9.38
9.09
8.45
4.43
11.48
10.67
7.73
7.55
7.15
36.60
7.49
22.29
18.60
7.44
17.71
8.51
8.52
8.11
11.09
8.80
15.40
5.30
1.74
3.80
4.85
5.06
1.78
2.01
2.46
3.58
6.15
1.71
6.43
8.72
8.49
3.47
5.88
5.47
3.55

STD
2.30
2.40
2.46
2.35
2.34
2.38
2.45
2.57
251
2.25
2.64
2.66
2.54
5.70
2.90
2.46
2.50
2.22
3.83
2.46

STD
7.90
7.28
6.87
4.02
54.98
9.03
6.56
6.61
6.13
343.66

6.63
145.15
109.15

6.33

27.20

4.93
4.50
6.87
8.99

47.16

79.10

4.85
2.19
1.69
2.00
2.20
2.32
2.49
1.46
1.55
2.19
2.06
3.08
3.84
4.46
3.44
2.26
2.32
1.61

SBP
MAE
5.12
5.34
5.46
5.22
5.06
5.09
5.10
5.27
4.95
4.99
6.51
6.23
6.25
5.85
6.37
6.21
5.76
6.86
9.73
6.30

SBP
MAE
12.76
8.73
2.80
4.56
19.19
17.74
6.41
10.91
5.82
92.43
8.52
47.80
27.43
1.98
18.81
4.29
2.63
6.36
4.38
15.06
30.33
2.15
5.16
5.33
12.12
8.27
9.05
8.52
3.86
13.92
22.87
10.09
5.68
16.24
15.53
1.52
6.53
6.86
19.80

STD
531
5.91
5.97
5.57
5.74
5.72
5.71
5.94
5.29
4.93
3.95
4.13
4.11
4.17
3.95
4.08
4.20
3.77
5.22
3.68

LMS

DBP

MAE
2.16
2.15
2.25
2.05
2.24
2.24
2.33
2.60
2.25
1.98
2.32
2.32
2.50
5.22
2.49
2.14
2.19
1.90
3.96
2.45

STD
10.59
7.03
2.20
3.94
161.24
14.68
5.78
9.38
5.39

1001.34

7.68
407.06
310.56

253

68.18

4.73

3.39

5.81

4.48
143.97
251.77

2.54

2.94

2.90

7.27

4.67

5.22

4.75

2.39

8.59

13.58

5.80

3.05

9.62

9.79

2.42

3.59

6.04

14.05

STD
2.47
2.53
2.63
2.45
2.55
2.57
2.65
2.82
2.64
231
2.74
2.72
2.79
5.35
2.87
2.50
2.56
2.27
3.97
2.58

LMS

DBP
MAE
9.65
9.40
8.77
4.79
10.77
10.92
8.01
7.80
7.42
31.68
7.73
20.43
17.33
7.73
17.53
7.67
7.66
8.39
11.37
7.29
14.90
5.55
1.84
2.96
3.99
4.19
191
2.27
1.65
2.73
5.23
1.58
5.57
7.81
7.63
3.81
4.99
4.61
2.73

SBP
MAE
5.08
5.24
5.45
5.06
5.10
5.06
5.07
5.32
4.69
4.60
5.80
5.53
5.41
5.05
5.54
5.48
5.03
6.22
8.93
5.52

STD
7.78
7.17
6.77
3.93
46.01
8.89
6.44
6.48
6.01
282.52
6.50
119.19
89.58
6.22
23.49
5.07
4.62
6.75
8.86
40.15
68.82
4.72
2.14
1.75
2.08
2.27
221
2.39
1.41
1.57
2.25
1.98
3.18
3.92
4.57
3.35
2.33
241
1.67

STD
5.74
6.23
6.32
5.90
6.12
6.07
6.07
6.32
5.66
5.29
4.29
4.45
4.40
4.48
4.24
4.41
4.55
4.08
5.30
3.97

SBP
MAE
13.31
9.32
2.30
5.22
24.28
18.31
7.01
11.46
6.42
116.23
9.07
57.51
34.42
1.99
21.24
4.76
3.19
6.91
4.99
18.32
36.68
1.97
4.57
4.62
11.38
7.54
8.36
7.87
3.20
13.16
2221
9.31
4.94
15.57
14.69
2.17
6.13
7.42
19.28

93

Ridge

DBP

MAE
1.94
2.04
2.10
1.96
1.98
2.01
2.12
2.26
2.19
2.01
2.27
231
2.23
5.58
2.56
2.19
2.19
1.84
3.81
2.30

STD
10.11
6.52
2.50
3.53
204.44
14.22
5.36
8.94
5.00
1275.70
7.27
520.31
396.51
2.68
86.59
4.43
3.14
5.37
4.24
181.09
314.29
2.64
3.48
3.35
7.76
5.19
5.78
5.27
2.79
9.06
14.02
6.23
3.49
10.08
10.19
2.42
4.22
5.59
14.81

STD
2.30
2.40
2.46
2.35
2.34
2.38
2.45
2.57
2.51
2.25
2.64
2.66
2.54
5.70
2.90
2.46
2.50
2.22
3.83
2.46

SBP
MAE
5.12
5.34
5.46
5.22
5.06
5.09
5.10
5.27
4.95
4.99
6.51
6.23
6.25
5.85
6.37
6.21
5.76
6.86
9.73
6.30

STD
531
5901
5.97
5.57
5.74
5.72
5.71
5.94
5.29
4.93
3.95
4.13
4.11
4.17
3.95
4.08
4.20
3.77
5.22
3.68

Ridge
DBP
MAE STD
9.38 7.90
9.09 7.28
8.45 6.87
4.43 4.02
11.48 54.98
10.67 9.03
7.73 6.56
7.55 6.61
7.15 6.13
36.60 343.66
7.49 6.63
22.29 145.15
18.60 109.15
7.44 6.33
17.71 27.20
8.51 4.93
8.52 4.50
8.11 6.87
11.09 8.99
8.80 47.16
15.40 79.10
5.30 4.85
1.74 2.19
3.80 1.69
4.85 2.00
5.06 2.20
1.78 2.32
2.01 2.49
2.46 1.46
3.58 1.55
6.15 2.19
1.71 2.06
6.43 3.08
8.72 3.84
8.49 4.46
3.47 3.44
5.88 2.26
5.47 2.32
3.55 1.61

SVM
DBP
MAE
2.05
2.19
2.20
217
2.02
2.03
211
2.16
2.40
2.41
251
2.58
223
6.14
2.88
2.53
2.47
215
3.79
2.37

SBP
MAE
12.76
8.73
2.80
4.56
19.19
17.74
6.41
10.91
5.82
92.43
8.52
47.80
27.43
1.98
18.81
4.29
2.63
6.36
4.38
15.06
30.33
2.15
5.16
5.33
12.12
8.27
9.05
8.52
3.86
13.92
22.87
10.09
5.68
16.24
15.53
1.52
6.53
6.86
19.80

Table 25: Metrics Pre Cross-Correlation (MAE and STD) - Luca

STD
2.85
2.87
2.88
2.88
271
2.76
2.80
2.79
3.03
2.97
3.16
3.24
2.87
6.62
3.54
3.14
3.10
2.83
3.77
2.82

STD
10.59
7.03
2.20
3.94
161.24
14.68
5.78
9.38
5.39
1001.34
7.68
407.06
310.56
2.53
68.18
4.73
3.39
5.81
4.48
143.97
251.77
2.54
2.94
2.90
7.27
4.67
5.22
4.75
2.39
8.59
13.58
5.80
3.05
9.62
9.79
2.42
3.59
6.04
14.05

SBP
MAE
4.61
4.70
4.70
4.86
4.50
4.54
4.52
4.68
4.64
4.92
6.38
6.16
6.06
5.77
6.30
6.29
5.83
6.39
9.51
6.19

SVM

DBP
MAE
6.76
7.30
6.25
5.35
5.44
7.74
5.79
5.50
5.23
5.67
5.27
7.78
8.93
6.08
12.99
10.59
10.76
5.50
8.99
4.55
6.17
3.82
3.76
5.84
6.72
7.07
3.52
3.90
4.47
5.87
8.87
3.90
9.20
11.06
10.54
2.99
5.89
6.63
3.47

STD
3.93
4.33
4.52
4.32
4.52
4.44
4.36
4.74
4.12
3.69
274
3.01
2.99
3.01
2.81
2.96
2.86
2.56
4.99
2.52

STD
6.38
6.58
5.91
5.58
5.47
7.05
5.79
5.62
5.36
5.59
5.54
7.04
7.75
5.96
10.64
9.06
8.77
5.83
7.75
5.10
5.61
4.26
4.46
5.88
591
6.24
4.42
4.67
4.65
5.45
6.40
4.42
7.62
7.74
8.02
3.89
5.98
6.23
4.30

SBP
MAE
11.71
8.33
4.34
4.94
2.56
16.45
5.67
9.91
5.03
6.99
7.29
14.12
3.58
2.90
11.23
3.29
2.65
5.24
4.03
2.55
8.19
3.47
7.01
6.67
13.54
9.68
10.43
10.45
5.28
15.47
24.93
11.99
7.65
18.04
17.02
2.43
7.17
6.45
19.72

STD
8.25
5.32
4.13
3.27
3.18
12.01
4.23
7.15
3.91
5.03
5.55
10.33
3.48
3.52
8.14
3.50
3.22
4.16
3.62
3.33
4.72
3.70
5.56
5.44
10.03
7.40
7.94
7.85
4.64
11.48
16.36
8.88
6.08
12.37
12.61
3.19
5.65
4.59
15.93



Model
Signal
Metric
LUCA1
LUCA2
LUCA3
LUCA 4
LUCAS
LUCA6
LUCA7
LUCA8
LUCA9
LUCA_10
LUCA_11
LUCA_12
LUCA_13
LUCA_14
LUCA_15
LUCA_16
LUCA_17
LUCA_18
LUCA_19
LUCA20

Model

Signal

Metric
SHIMMER_1
SHIMMER_.2
SHIMMER_3
SHIMMER_4
SHIMMER_5
SHIMMER_6
SHIMMER_7
SHIMMER_8
SHIMMER_9
SHIMMER_-11
SHIMMER_13
SHIMMER_14
SHIMMER_16
SHIMMER_17
SHIMMER_18
SHIMMER_19
SHIMMER_20
SHIMMER_21
SHIMMER_22
SHIMMER_23
SHIMMER_24
SHIMMER_25
SHIMMER_26
SHIMMER_27
SHIMMER_28
SHIMMER-29
SHIMMER_30
SHIMMER_31
SHIMMER_32
SHIMMER_33
SHIMMER_34
SHIMMER_35
SHIMMER_36
SHIMMER_37
SHIMMER_38
SHIMMER_39
SHIMMER_40
SHIMMER_41
SHIMMER_42

Table 27:
Linear
DBP
MAE STD
2.45 0.00
2.47 0.01
2.47 0.00
2.45 0.01
2.43 0.02
2.43 0.01
2.46 0.00
2.48 0.03
2.53 0.01
2.49 0.01
2.55 0.02
2.57 0.00
2.49 0.01
3.91 0.02
2.69 0.02
2.55 0.00
2.54 0.00
2.40 0.02
2.80 0.02
2.46 0.01

Metrics Post K-fold Cross-Correlation (MAE and STD) - Luca

SBP
MAE
3.15
3.28
3.33
3.24
3.17
3.17
3.18
3.22
3.16
3.12
3.47
3.42
3.56
3.47
3.57
3.38
3.25
3.38
4.45
3.36

STD
0.01
0.02
0.02
0.02
0.01
0.01
0.01
0.00
0.01
0.01
0.00
0.01
0.01
0.01
0.01
0.01
0.01
0.00
0.01
0.02

LMS
DBP
MAE
2.59
2.61
2.61
2.63
2.54
2.57
2.58
2.56
2.67
2.68
271
2.76
2.58
4.49
291
2.74
2.73
2.60
2.89
2.61

STD
0.00
0.00
0.01
0.01
0.03
0.01
0.01
0.03
0.01
0.01
0.02
0.02
0.01
0.02
0.01
0.00
0.00
0.02
0.03
0.02

SBP
MAE
3.39
3.43
3.50
3.40
3.37
3.35
3.37
3.41
3.38
3.34
3.73
3.67
3.87
3.77
3.85
3.66
3.52
3.59
4.89
3.56

STD
0.01
0.01
0.02
0.02
0.00
0.01
0.02
0.01
0.02
0.03
0.04
0.04
0.04
0.03
0.04
0.04
0.04
0.04
0.04
0.03

Ridge

DBP

MAE
2.45
2.47
2.47
2.45
2.43
2.43
2.46
2.48
2.53
2.49
2.55
2.57
2.49
3.91
2.69
2.55
2.54
2.40
2.80
2.46

STD
0.00
0.01
0.00
0.01
0.02
0.01
0.00
0.03
0.01
0.01
0.02
0.00
0.01
0.02
0.02
0.00
0.00
0.02
0.02
0.01

SBP
MAE
3.15
3.28
3.33
3.24
3.17
3.17
3.18
3.22
3.16
3.12
3.47
3.42
3.56
3.47
3.57
3.38
3.25
3.38
4.45
3.36

STD
0.01
0.02
0.02
0.02
0.01
0.01
0.01
0.00
0.01
0.01
0.00
0.01
0.01
0.01
0.01
0.01
0.01
0.00
0.01
0.02

SVM
DBP
MAE
2.22
2.27
2.27
2.25
2.23
223
2.25
2.27
2.33
2.27
2.36
2.37
2.28
3.42
2.47
2.34
2.33
2.16
2.49
2.20

STD
0.02
0.01
0.01
0.02
0.02
0.01
0.01
0.02
0.00
0.01
0.03
0.01
0.01
0.04
0.02
0.01
0.01
0.02
0.01
0.01

Table 28: Metrics Post Cross-Correlation (MAE and STD) - Shimmer

Linear
DBP
MAE
7.70
7.35
7.33
6.35
7.22
8.00
7.20
7.28
7.06
7.96
7.32
9.03
9.03
7.17
10.80
7.09
7.00
7.37
7.92
6.56
7.88
6.70
5.85
6.26
6.27
6.33
6.01
6.05
6.01
6.17
6.30
5.97
6.57
6.74
6.87
6.21
6.22
6.32
6.24

STD
0.20
0.21
0.15
0.14
0.17
0.22
0.12
0.23
0.19
0.13
0.24
0.13
0.15
0.17
0.09
0.15
0.12
0.22
0.15
0.22
0.16
0.16
0.10
0.19
0.16
0.16
0.17
0.15
0.16
0.20
0.16
0.16
0.20
0.09
0.14
0.21
0.12
0.17
0.16

SBP
MAE
8.66
7.46
6.13
6.60
7.17
9.88
7.05
8.15
6.91
8.96
7.64
11.43
7.79
6.12
10.40
6.67
6.34
7.11
6.79
6.70
9.18
6.16
6.52
6.70
8.16
7.36
7.49
7.44
6.28
8.67
10.80
7.68
6.77
9.04
8.96
6.10
6.83
7.15
10.62

STD
0.16
0.14
0.21
0.20
0.23
0.19
0.22
0.14
0.24
0.18
0.12
0.13
0.13
0.20
0.09
0.18
0.25
0.24
0.22
0.24
0.10
0.21
0.14
0.13
0.20
0.18
0.22
0.18
0.20
0.25
0.17
0.17
0.19
0.15
0.20
0.21
0.20
0.26
0.12

LMS
DBP
MAE
7.50
7.12
7.13
6.19
7.20
7.80
7.01
7.09
6.88
7.97
7.14
9.08
9.11
6.98
10.97
6.84
6.76
7.17
7.76
6.38
7.82
6.54
5.67
5.97
5.97
6.04
5.82
5.89
5.77
5.89
6.00
5.76
6.30
6.46
6.60
6.06
5.93
6.02
5.96

STD
0.25
0.24
0.20
0.17
0.18
0.27
0.18
0.29
0.24
0.14
0.27
0.14
0.14
0.20
0.10
0.20
0.18
0.27
0.18
0.22
0.17
0.22
0.15
0.22
0.19
0.19
0.22
0.21
0.19
0.25
0.19
0.21
0.23
0.14
0.18
0.24
0.15
0.21
0.21

SBP
MAE
8.44
7.21
5.92
6.41
7.21
9.71
6.84
7.93
6.70
8.98
7.42
11.53
7.82
5.97
10.46
6.50
6.20
6.90
6.64
6.75
9.17
5.97
6.29
6.49
7.96
7.16
7.30
7.23
6.05
8.49
10.62
7.50
6.56
8.81
8.78
5.96
6.59
6.93
10.46

STD
0.20
0.17
0.22
0.20
0.23
0.24
0.24
0.17
0.25
0.19
0.14
0.11
0.14
0.23
0.09
0.22
0.27
0.26
0.24
0.24
0.09
0.24
0.17
0.18
0.23
0.21
0.25
0.21
0.22
0.30
0.23
0.21
0.22
0.19
0.25
0.22
0.22
0.29
0.22
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Ridge
DBP
MAE
7.70
7.35
7.33
6.35
7.22
8.00
7.20
7.28
7.06
7.96
7.32
9.03
9.03
7.17
10.80
7.09
7.00
7.37
7.92
6.56
7.88
6.70
5.85
6.26
6.27
6.33
6.01
6.05
6.01
6.17
6.30
5.97
6.57
6.74
6.87
6.21
6.22
6.32
6.24

STD
0.20
0.21
0.15
0.14
0.17
0.22
0.12
0.23
0.19
0.13
0.24
0.13
0.15
0.17
0.09
0.15
0.12
0.22
0.15
0.22
0.16
0.16
0.10
0.19
0.16
0.16
0.17
0.15
0.16
0.20
0.16
0.16
0.20
0.09
0.14
0.21
0.12
0.17
0.16

SBP
MAE
8.66
7.46
6.13
6.60
7.17
9.88
7.05
8.15
6.91
8.96
7.64
11.43
7.79
6.12
10.40
6.67
6.34
7.11
6.79
6.70
9.18
6.16
6.52
6.70
8.16
7.36
7.49
7.44
6.28
8.67
10.80
7.68
6.77
9.04
8.96
6.10
6.83
7.15
10.62

STD
0.16
0.14
0.21
0.20
0.23
0.19
0.22
0.14
0.24
0.18
0.12
0.13
0.13
0.20
0.09
0.18
0.25
0.24
0.22
0.24
0.10
0.21
0.14
0.13
0.20
0.18
0.22
0.18
0.20
0.25
0.17
0.17
0.19
0.15
0.20
0.21
0.20
0.26
0.12

SVM
DBP
MAE
5.86
5.85
5.76
5.63
6.82
5.89
5.70
5.65
5.64
7.57
5.60
8.39
8.42
5.82
9.53
6.08
6.02
5.74
6.10
5.66
7.37
5.51
5.29
5.47
5.48
5.57
5.38
5.36
5.32
5.39
5.47
5.30
5.72
5.74
5.81
5.34
5.48
5.55
5.48

STD
0.17
0.22
0.22
0.16
0.20
0.23
0.18
0.26
0.22
0.19
0.22
0.19
0.27
0.19
0.19
0.22
0.19
0.27
0.14
0.23
0.22
0.20
0.13
0.23
0.22
0.22
0.21
0.18
0.18
0.27
0.21
0.19
0.25
0.16
0.22
0.18
0.18
0.24
0.20

SBP
MAE
2.84
2.97
3.00
2.92
2.89
2.89
2.88
2.94
2.92
2.90
3.22
3.16
3.24
3.20
3.25
3.14
3.01
2.97
3.69
3.03

SBP

MAE
6.93
6.30
5.71
5.89
6.75
7.46
5.98
6.55
5.90
8.88
6.19

10.95
7.60
5.63
9.18
5.80
5.69
5.96
5.83
6.22
8.70
5.71
5.96
6.17
6.80
6.54
6.57
6.42
5.82
7.03
8.23
6.46
6.13
7.14
6.90
5.54
6.23
6.19
8.85

STD
0.03
0.03
0.03
0.03
0.02
0.00
0.01
0.03
0.00
0.00
0.03
0.02
0.01
0.01
0.01
0.01
0.01
0.02
0.05
0.01

STD
0.19
0.21
0.24
0.18
0.25
0.18
0.24
0.21
0.26
0.18
0.16
0.15
0.12
0.24
0.18
0.20
0.24
0.28
0.23
0.27
0.15
0.23
0.16
0.19
0.23
0.19
0.25
0.23
0.23
0.22
0.24
0.21
0.22
0.17
0.19
0.22
0.22
0.26
0.39
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18
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33

34

35

36

37

38

39

40

41

42

Appendix B: Python Code

import numpy as np

import matplotlib.pyplot as plt

import scipy.signal as sig

import scipy.io

from scipy.signal import savgol_filter

import os

import pandas as pd

import csv

import math

from scipy.interpolate import interpld

from scipy.interpolate import CubicSpline

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error
from sklearn.svm import SVR

from sklearn.linear_model import Ridge

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import KFold

def hl_envelopes_idx (s, dmin=1, dmax=1, split=False):
Calculates the upper and lower envelope of the signal based on local
maxima and minima.
Returns:
np.array: Signal filtered with the envelope removed.
# Find local maxima
Imax = (np.diff(np.sign(np.diff(s))) < @).nonzero()[0] + 1

if split:
# Calculate the mean of the signal
s_mid = np.mean(s)
# Consider only maxima above the mean
Imax = Imax[s[lmax] > s_mid]

# Filter local maxima based on dmax
Imax = Imax[[i + np.argmax(s[lmax[i:i + dmax]]) for i in range(@, len(
lmax), dmax)]]

# Remove the envelope based on local maxima

s_filt = np.zeros(len(s))
n =20
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84
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for i in range(len(s)):
if i == lmax[n]:
s_filt[i] = s[i] - s[lmax[n]l]
if n < len(lmax) - 1:
n += 1
else:
s_filt[i] = s[i] - s[lmax[n]]

return s_filt

def filter_ecg_signal(ecg_head, fs_ecg, window_size):
# mean-remove
ecg_head = ecg_head - np.mean(ecg_head)
fNy = fs_ecg / 2

# pass-band 0.5 40 Hz
b_band, a_band = sig.butter(4, [0.5 / fNy, 40 / fNyl, btype=’band’)
ecg_filtered = sig.filtfilt(b_band, a_band, ecg_head)

# Notch 50 Hz (if fs_ecg > 100 Hz)

if fs_ecg > 100:
b_notch, a_notch = sig.iirnotch(50 / fNy, Q=30)
ecg_filtered = sig.filtfilt(b_notch, a_notch, ecg_filtered)

ecg_filtered = hl_envelopes_idx(ecg_filtered, dmin=1, dmax=1, split=
False)
return ecg_filtered

def filter_ppg_signal (ppg_head, fs, window_size):
window_size_samples = int(window_size * fs)
ppg_head = ppg_head - np.mean(ppg_head)
fNy = fs / 2

# --- Step 1: High-pass filter to remove baseline wander ---
cutoff_high = 0.5 # Cutoff frequency for high-pass filter (Hz)
b_high, a_high = sig.butter (4, cutoff_high / fNy, btype=’high’)
ppg_high_passed = sig.filtfilt(b_high, a_high, ppg_head)

# --- Step 2: Low-pass filter to remove high-frequency noise ---
cutoff_low = 8 # Cutoff frequency for low-pass filter (Hz)

b_low, a_low = sig.butter (4, cutoff_low / fNy, btype="low’)
ppg_low_passed = sig.filtfilt(b_low, a_low, ppg_high_passed)

return ppg_low_passed
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106
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114

115

116

117
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119

120
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123

124

125
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127

128

129

131

132

133

def synchronize_signals(ecg_filtered, ppg_filtered, t_ecg, t_ppg):

nann

Synchronizes ECG and PPG signals based on their time arrays.
# Align the start of the signals
if t_ecglo0]l < t_ppglol:
for i in range(len(t_ecg)):
if t_ecglil > t_ppgl0o]:
ind = np.arange(@Q, i - 1)
ecg_filtered = np.delete(ecg_filtered, ind)
t_ecg = np.delete(t_ecg, ind)
break
else:
for i in range(len(t_ppg)):
if t_ppglil > t_ecgl[0]:
ind = np.arange(0Q, i - 1)
ppg_filtered = np.delete(ppg_filtered, ind)
t_ppg = np.delete(t_ppg, ind)
break

# Bring signals to the same length
if len(t_ecg) > len(t_ppg):
t = t_ppg
ind = np.arange(@, len(t_ppg))
ecg_filtered = ecg_filtered[ind]
t_ecg = t_ecglind]
else:
t = t_ecg
ind = np.arange (@, len(t_ecg))
ppg_filtered = ppg_filtered[ind]
t_ppg = t_ppglind]

return ecg_filtered, ppg_filtered, t_ecg, t_ppg, t

def peaks_detection(s_filt, ts, time, window_sec=0.2):
Detects local maxima every window_sec seconds.
Args:
s_filt (np.array): Filtered signal.
ts (np.array): Time array corresponding to the signal.
time (np.array): Full time array for the signal.
window_sec (float): Window size in seconds for local maxima search.
Returns:
np.array: Detected peak values.
np.array: Corresponding timestamps of the peaks.
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134

135

136

137

138

139

140

141

143

144

145

146

147

148

149

150

151

153

154

156

157

158

159

160

161

162

166

167

168

169

170

171

173

174

176

177

178

def

nnn

peak
peak
star
n =

whil

retu

clea

stat
peak
time
mask

# St
for

s = []
_times = []
t_idx = @
len(s_filt)

e start_idx < n:

# find the end of the current window

end_time = ts[start_idx] + window_sec

end_idx = start_idx

while end_idx < n and ts[end_idx] < end_time:
end_idx += 1

# find the local maximum in the current window

if end_idx > start_idx:
local_max_idx = np.argmax(s_filt[start_idx:end_idx]) + start_idx
peaks.append(s_filt[local_max_idx1])
peak_times.append(ts[local_max_idx])

start_idx = end_idx

rn np.array(peaks), np.array(peak_times)

n_peaks (peaks, times, n_std=2, min_distance=0.8):

s_window = 1 # seconds
s = np.array(peaks)
s = np.array(times)
= np.ones(len(peaks), dtype=hbool)
atic filter: the peak must be within n_std of the local mean

i in range(len(peaks)):

t0 = times[i] - stats_window/2

t1 = times[i] + stats_window/2

idx = np.where((times >= t@) & (times <= t1))[0]
if len(idx) < 2:

*local_std):

peak
time

# se
if 1

continue

local_mean = np.mean(peaks[idx])

local_std = np.std(peaks[idx])

if not (local_mean - n_stdxlocal_std < peaks[i] < local_mean + n_std
mask[i] = False

s = peaks[mask]

s = times[mask]

cond filter: minimum distance between peaks
en(peaks) > 1: # Check if there are enough peaks to filter
keep = []
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180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

i =
whi

0
le i < len(peaks):
#if the peaks are too close, keep the one with the highest value

and remove the other

close_idx = np.where((times > times[i]) & (times - times[i] <

min_distance))[0]

pea
tim

return

def feat_re

row = n
T =20

# Loop

for i i
if

window

if close_idx.size > @:
group_idx = np.concatenate(([i], close_idx))
max_idx = group_idx[np.argmax(peaks[group_idx1]1)]
keep.append(max_idx)
i = close_idx[-1] + 1

else:
keep . append (i)
i += 1

ks peaks[keep]
es = times[keep]

peaks, times

duction(feat, t_fitted):

p.zeros(len(t_fitted)) # Initialize the reduced feature array
# Initialize the time window tracker

through the time array
n range(len(t_fitted) - 1):
i > T:
for j in range(i + 1, len(t_fitted)):
# Check if the time difference is at least 10 seconds
if t_fitted[j] - t_fitted[i] >= 10:

the window

ind1 = np.arange(i, j) # Indices within the 10-second
vect_feat = feat[ind1] # Extract feature values within
val_feat = np.mean(vect_feat) # Calculate the mean of

the feature values

row[ind1] = val_feat # Assign the mean value to the

corresponding indices

# Handl
for i i
if

values

T = j # Update the time window tracker
break

e the last window if it’s smaller than 10 seconds
n range(len(row)):
row[i] == o:
ind1 = np.arange(i, len(row)) # Indices for the remaining
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def

def

val_feat = np.mean(feat[ind1]) # Calculate the mean of the
remaining values

row[ind1] = val_feat # Assign the mean value to the remaining
indices

break

return row

get_at_ref_times(signal, t_uniform, ref_times):
vals = []
for t in ref_times:
idx = np.argmin(np.abs(t_uniform - t))
vals.append(signall[idx])
return np.array(vals)

extract_features_reg(ecg, ppg, t_ecg, t_ppg, ref_file,fs_ecg, fs_ppg):
# Preprocess

ecg = ecgl[round(20 x fs_ecg):-round(30 x fs_ecg)]

t_ecg = t_ecglround(20 * fs_ecg):-round(30 * fs_ecg)]

ppg = ppglround(20 *x fs_ppg):-round(30 * fs_ppg)]

t_ppg = t_ppglround(20 * fs_ppg):-round(30 * fs_ppg)]

ecg_filtered = filter_ecg_signal (ecg, fs_ecg,window_size=0.5)

ppg_filtered = filter_ppg_signal (ppg, fs_ppg, window_size=0.5)

t_ecg = np.linspace(@, len(ecg_filtered)/fs_ecg, len(ecg_filtered))

t_ppg = np.linspace(@, len(ppg_filtered)/fs_ppg, len(ppg_filtered))

ecg_synced, ppg_synced, _, _, t_synced = synchronize_signals(
ecg_filtered, ppg_filtered, t_ecg, t_ppg

)
r_peaks, r_times = peaks_detection(ecg_synced, t_synced, t_synced,
window_sec=1)
s_peaks, s_times = peaks_detection(ppg_synced, t_synced, t_synced,
window_sec=0.5)
r_peaks, r_times = clean_peaks(r_peaks, r_times, n_std=2)
s_peaks, s_times = clean_peaks(s_peaks, s_times, n_std=2)

ptt, hr, timetable = []1, [1, []

T =20
for i in range(len(r_peaks)):
if 1 >= T:

for j in range(len(s_peaks)):
if s_times[j] > r_times[i]:
ptt.append(s_times[j] - r_times[il])
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296

298

299

300

301

303

304

305

for k in range(i + 1, len(r_peaks)):

if r_peaks[k] > 0:

hr.append (60 / (r_times[k]

- r_times[i]))

timetable.append(r_times[i])

T =k
break
break

ptt, hr, timetable = np.array(ptt), np.arrayc(hr),

np.array(timetable)

# Zero elements deletion and arrays cut at the same length

ind = np.array(np.where(ptt == 0))

ptt = np.delete(ptt, ind)

ind = np.array(np.where(hr == 0))

hr = np.delete(hr, ind)

ind = np.array(np.where(timetable == 0))

timetable = np.delete(timetable, ind)

if len(ptt) > lenc(hr):
ind = np.arange(@, len(hr))
ptt = pttlind]
timetable = timetable[ind]
else:
ind = np.arange(@, len(ptt))
hr = hr[ind]
timetable = timetable[ind]

#clean the data

mean_PTT = np.mean(ptt) #cleaning the data
dev_PTT = np.std(ptt)

mean_HR = np.mean(hr)

dev_HR = np.std(hr)

for i in range(len(timetable)):
if (
ptt[i] > mean_PTT + dev_PTT
or ptt[i]l < mean_PTT - dev_PTT
or hr[i] > mean_HR + dev_HR
or hr[i] < mean_HR - dev_HR

DE
ptt[i] = @
hr[i]l = @
timetable[i] = 0
ind = np.array(np.where(ptt == 0))
ptt = np.delete(ptt, ind)
ind = np.array(np.whereChr == 0))
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306

307

308

309

311

312

314

336

337

33

o

339

340

341

344

345

346

347

348

349

hr = np.delete(hr, ind)
ind = np.array(np.where(timetable == 0))
timetable = np.delete(timetable, ind)

ref_df = pd.read_csv(ref_file, delimiter=’;’, header=None)
ref_time = (ref_df.iloc[:, @].values - ref_df.iloc[@, 0]) / 1000
sbp, dbp = ref_df.iloc[:, 1].values, ref_df.iloc[:, 2].values

timetable_min = timetable / 60

SBP_fit = np.interp(timetable_min, ref_time/60, sbp)
DBP_fit = np.interp(timetable_min, ref_time/60, dbp)
interp_time = timetable

SBP_fit = np.interp(interp_time, timetable, SBP_fit)
DBP_fit
HR_fit = np.interp(interp_time, timetable, hr)

np.interp(interp_time, timetable, DBP_fit)

PTT_fit = np.interp(interp_time, timetable, ptt)

sbp_reduced feat_reduction(SBP_fit, interp_time)
dbp_reduced
hr_reduced = feat_reduction(HR_fit, interp_time)

ptt_reduced = feat_reduction(PTT_fit, interp_time)

feat_reduction(DBP_fit, interp_time)

sbp_resampled
dbp_resampled

np.interp(timetable, interp_time, sbp_reduced)
np.interp(timetable, interp_time, dbp_reduced)

hr_resampled = np.interp(timetable, interp_time, hr_reduced)

ptt_resampled = np.interp(timetable, interp_time, ptt_reduced)

min_len = min(len(ptt_resampled), len(hr_resampled), len(sbp_resampled),

len(dbp_resampled))
return ptt_resampled[:min_len], hr_resampled[:min_len],
min_len], dbp_resampled[:min_len]

def lIms(X, y, mu=0.001, epochs=1):
LMS algorithm for linear regression.
X: input features (n_samples, n_features)
y: target (n_samples,)
mu: learning rate
epochs: number of passes over the data
Returns: weights, bias, prediction history
n_samples, n_features = X.shape
w = np.zeros(n_features)
b =0
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350 y_pred_hist = []

351

352 for epoch in range(epochs):

353 for i in range(n_samples):

354 y_pred = np.dot(w, X[i]) + b

355 error = y[i] - y_pred

356 W += 2 * mu * error * X[i]

357 b += 2 * mu * error

358 y_pred_hist.append(y_pred)

359 return w, b, np.array(y_pred_hist)

360

1| class Patient:

362 def __init__(self, pid,dataset, fs_ecg=504.12, fs_ppg=504.12):
363 self.dataset = dataset

364 self.pid = pid

365 self.fs_ecg = fs_ecg

366 self.fs_ppg = fs_ppg

367 self.ecg = None

368 self.ppg = None

369 self.t_ecg = None

370 self.t_ppg = None

371 self.ecg_filtered = None

372 self.ppg_filtered = None

373 self.ecg_synced = None

374 self.ppg_synced = None

375 self.t_synced = None

376 self.r_peaks = None

377 self.r_times = None

378 self.s_peaks = None

379 self.s_times = None

380 self.ptt = None

381 self.hr = None

382 self.timetable = None

383 self.sbp = None

384 self.dbp = None

385

386

387 def load_signals(self):

388

389 if self.pid == "LUCA":

390 ecg_mat = scipy.io.loadmat(f"{self.pid}_1_ECG.mat")
391 self.ecg = ecg_mat[’ECG_signal’].flatten()
392 self.t_ecg = ecg_mat[’ECG_ts’].flatten() / 1000
393

394 ppg_mat = scipy.io.loadmat(f"{self.pid}_1_PPG.mat")
395 self.ppg = ppg_mat[’PPG_signal’].flatten()
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396

397

398

399

400

401

402

403

404

405

416

429

430

431

432

433

434

439

self.t_p
else:
ecg_mat
self.ecg
self.t_e

ppg_mat
self.ppg
self.t_p

self.ecg_hea
self.ts_ecg

self.ppg_hea
self.ts_ppg

# samples fr
fs_ecg = sel
fs_ppg = sel

# Remove the
cut_int_ecg
cut_int_ppg
self.ecg_hea
self.ts_ecg
self.ppg_hea
self.ts_ppg

# Remove las
cut_end_ecg
cut_end_ppg
if cut_end_e

pg = ppg_mat[’PPG_ts’].flatten() / 1000

= scipy.io.loadmat (f”"SHIMMER_{self.pid}_ECG.mat")
= ecg_mat[’signal’].flatten()
cg = ecg_mat[’ts’].flatten() / 1000

= scipy.io.loadmat (f"SHIMMER_{self.pid}_PPG.mat")
= ppg_mat[’signal’].flatten()
pg = ppg_mat[’ts’].flatten() / 1000

d = self.ecg.copy()
= self.t_ecg.copy()
d = self.ppg.copy()
= self.t_ppg.copy()
equencies
f.fs_ecg
f.fs_ppg

first 20 seconds (noise)
round (20 * fs_ecg)

round (20 * fs_ppg)

d = self.ecg_head[cut_int_ecg:]
= self.ts_ecglcut_int_ecg:]

d = self.ppg_head[cut_int_ppg:]
= self.ts_ppglcut_int_ppg:]

t 30 seconds (noise)
round (30 * fs_ecg)
round (30 * fs_ppg)

cg < len(self.ecg_head):

self.ecg_head = self.ecg_head[:-cut_end_ecg]

self.ts_
if cut_end_p

ecg = self.ts_ecgl[:-cut_end_ecg]
pg < len(self.ppg_head):

self.ppg_head = self.ppg_head[:-cut_end_ppg]l

self.ts_

self.t_ecg

self.t_ppg

def preprocess(s

self.ecg_fil
window_size=0.2)

self.ppg_fil
window_size=0.5)

ppg = self.ts_ppgl:-cut_end_ppg]

self.ts_ecg

self.ts_ppg
elf):
tered = filter_ecg_signal(self.ecg_head, self.fs_ecg,

tered
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440

441

442

443

444

445

446

447

448

449

451

452

453

454

460

461

462

463

464

465

466

467

469

470

471

472

473

474

476

477

478

479

480

ts_ecg = np.arange(len(self.ecg_head)) / self.fs_ecg

ts_ppg = np.arange(len(self.ppg_head)) / self.fs_ppg
self.t_ecg = np.linspace(@, len(self.ecg_filtered) / self.fs_ecg,

len(self.

ecg_filtered))

self.t_ppg = np.linspace(@, len(self.ppg_filtered) / self.fs_ppg,

len(self.

plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.

plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.

ppg_filtered))

figure ()
plot(ts_ecg, self.ecg_head, ’'b-’, label="ECG’)
plot(self.t_ecg, self.ecg_filtered, ’r-’, label="ECG filtered’)

xlabel (’Time (s)’)

ylabel (’ECG Amplitude (mV)’)
legend ()

grid(True)

title(f’ECG signal {self.pid}’)

figure ()
plot(ts_ppg, self.ppg_head, ’b-’, label="PPG’)
plot(self.t_ppg, self.ppg_filtered, ’r-’, label="PPG filtered’)

xlabel (’Time (s)’)

ylabel (’PPG Amplitude (mV)’)
legend ()

grid(True)

title(f’PPG signal {self.pid}’)
show ()

def synchronize(self):

t_ecg = np.linspace(@, len(self.ecg_filtered) / self.fs_ecg, len(
self.ecg_filtered))

t_ppg = np.linspace(@, len(self.ppg_filtered) / self.fs_ppg, len(
self.ppg_filtered))

self.ecg_synced, self.ppg_synced,

_, _, self.t_synced =

synchronize_signals(

plt.
fig,
ax1
ax1
ax1
ax1
ax1

ax2

self.ecg_filtered, self.ppg_filtered, t_ecg, t_ppg

figure ()
ax1 = plt.subplots()

.plot(self.t_synced, self.ecg_synced, ’b-’, label="ECG Synced’)
.set_xlabel (’Time (s)’)

.set_ylabel (’ECG Amplitude (mV)’, color=’b’)

.tick_params (axis=’y’, labelcolor=’b’)

.grid(True)

= axl.twinx()
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481 ax2.plot(self.t_synced, self.ppg_synced, ’r-’, label="PPG Synced’)

482 ax2.set_ylabel (’PPG Amplitude (mV)’, color=’r’)

483 ax2.tick_params(axis='y’, labelcolor=’r’)

484

485 fig.suptitle(f’Synchronized Signals for Patient {self.pid}’)

486 fig.tight_layout ()

487 plt.legend(loc="upper right’)

488 ax1.legend(loc="upper left’)

489 plt.show()

490

491 def detect_peaks(self):

492 self.r_peaks, self.r_times = peaks_detection(self.ecg_synced, self.
t_synced, self.t_synced, window_sec=0.4)

493 self.s_peaks, self.s_times = peaks_detection(self.ppg_synced, self.
t_synced, self.t_synced, window_sec=0.5)

494 self.r_peaks, self.r_times = clean_peaks(self.r_peaks, self.r_times,

n_std=2)
495 self.s_peaks, self.s_times = clean_peaks(self.s_peaks, self.s_times,
n_std=2)

496

497 plt.figure()

498 plt.plot(self.t_synced, self.ecg_synced, label="Filtered ECG (synced
)"

499 plt.plot(self.r_times, self.r_peaks, ’o’, label="R-peaks")

500 plt.xlabel("Time (s)")

501 plt.ylabel ("ECG Amplitude (mV)")

502 plt.title(f"ECG Signal with Detected Peaks - Patient: {self.pid}")

503 plt.legend()

504 plt.grid()

505 plt.show()

506

507 plt.figure()

508 plt.plot(self.t_synced, self.ppg_synced, label="Filtered PPG")

509 plt.plot(self.s_times, self.s_peaks, ’o’, label="S-peaks")

510 plt.xlabel("Time (s)")

511 plt.ylabel ("PPG Amplitude (mV)")

512 plt.title(f"PPG Signal with Detected Peaks - Patient: {self.pid}")

513 plt.legend()

514 plt.grid()

515 plt.show()

516

517 def extract_features(self):

518 n =0

519 T =20

520 found = @

521 ptt = np.zeros(len(self.ecg_synced))
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531

532

533

539

540

542

543

544

545

546

547

549

556

557

558

559

560

561

563

564

565

hr = np.zeros(len(self.ecg_synced))
timetable = np.zeros(len(self.ecg_synced))
for i in range(len(self.r_peaks)):
if 1 >= T:
if self.r_peaks[i] > 0:
found = 0@
for j in range(len(self.s_peaks)):
if self.s_peaks[j] > @ and self.s_times[j] > self.
r_times[i]:
pttln] = self.s_times[j] - self.r_times[i]
for k in range(i + 1, len(self.r_peaks)):
if self.r_peaks[k] > 0:
hr[n] = 60 / (self.r_times[k] - self.
r_times[il])
timetable[n] = self.r_times[i]

n += 1
T =k
found = 1
break
break

# Clean arrays

ind = np.where(ptt == 0)

ptt = np.delete(ptt, ind)

ind = np.where(hr == 0)

hr = np.delete(hr, ind)

ind = np.where(timetable == 0)

timetable = np.delete(timetable, ind)
if len(ptt) > len(hr):
ind = np.arange(@, len(hr))
ptt = pttlind]
timetable = timetable[ind]
else:
ind = np.arange(@, len(ptt))
hr = hr[ind]
timetable = timetable[ind]
self.ptt = ptt
self.hr = hr
self.timetable = timetable

plt.figure()

ax1 = plt.gca() # Get the current axis
ax1.plot(self.timetable, self.hr, ’'b-’, label=’Heart Rate’)
ax1l.set_xlabel (’Time (s)’)

ax1.set_ylabel (’Heart Rate (bpm)’, color="b’)

)

axl.tick_params(axis='y’, labelcolor=’b’)
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566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

593

594

595

596

597

598

599

600

601

602

ax2 = axl.twinx() # Create a twin y-axis sharing the same x-axis

ax2.plot(self.timetable, self.ptt, ’'r-’, label=’Pulse Transit Time’)
ax2.set_ylabel (’Pulse Transit Time (s)’, color=’r’)
ax2.tick_params(axis=’y’, labelcolor=’r’)

plt.title(f’Heart Rate and Pulse Transit Time patient: {self.pid}’)
plt.legend(loc="upper right’)

ax1.legend(loc="upper left’)

plt.grid()

plt.show()

def load_reference_bp(self):
#interpolation of the signals to the same sampling frequency
self.time_ref_device = []
self.sbp = [1 # Systolic Blood Pressure
self.dbp = [] # Diastolic Blood Pressure

if self.pid == "LUCA":
with open(f"./{self.pid}_ref_1.csv", ’r’) as filecsv:
reader = csv.reader(filecsv, delimiter=";")

for row in reader:
self.time_ref_device.append(int(row[@])) # First column
Time in ms
self.sbp.append(int(row[1])) # Second column:
Systolic BP
self.dbp.append(int(row[2])) # Third column: Diastolic
BP
else:
with open(f"”./SHIMMER_{self.pid}.csv"”, ’r’) as filecsv:
reader = csv.reader(filecsv, delimiter=";")
for row in reader:
self.time_ref_device.append(int(row[@])) # First column
Time in ms
self.sbp.append(int(row[1])) # Second column:
Systolic BP
self.dbp.append(int(row[2])) # Third column: Diastolic

BP

print("Systolic Blood Pressure:"”, self.sbp)

print("Diastolic Blood Pressure:", self.dbp)

self.time_ref_device = np.array(self.time_ref_device) # Convert to
seconds

self.time_ref_device= self.time_ref_device - 60*np.ones(len(self.
time_ref_device)) # Remove 60ms delay

self.time_ref_device = (self.time_ref_device - self.time_ref_device
[0]) /1000
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603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

621

622

623

625

626

627

628

629

630

631

632

633

634

635

636

637

638

print("Time Reference Device:", self.time_ref_device)

# Generate an interpolating time array from ECG and PPG timestamps

n = np.where(self.t_ecg >= self.timetable[@])[0]J[0] # Find the
index of the first timestamp in timetable

m = np.where(self.t_ecg <= self.timetable[-1])[@][-1] # Find the
index of the last timestamp in timetable

ind = np.arange(n, m + 1) # Create an index range from n to m

interp_time = self.t_ecglind] # Interpolating time array based on
ECG timestamps

# Interpolate SBP and DBP values

SBP_fit = np.interp(interp_time, self.time_ref_device, self.sbp)
Interpolate SBP

DBP_fit = np.interp(interp_time, self.time_ref_device, self.dbp)
Interpolate DBP

# Interpolate HR and PTT values using cubic splines
HR_fit = CubicSpline(self.timetable, self.hr)(interp_time)
PTT_fit = CubicSpline(self.timetable, self.ptt)(interp_time)

# Reduce dimensionality (10-second intervals)
sbp_reduced = feat_reduction(SBP_fit, interp_time)

dbp_reduced = feat_reduction(DBP_fit, interp_time)
hr_reduced = feat_reduction(HR_fit, interp_time)
ptt_reduced = feat_reduction(PTT_fit, interp_time)

# Resample reduced arrays back to the timetable

self.sbp_resampled_p = np.interp(self.timetable, interp_time,
sbp_reduced) # Resample SBP

self.dbp_resampled_p = np.interp(self.timetable, interp_time,
dbp_reduced) # Resample DBP

self.hr_resampled_p = np.interp(self.timetable, interp_time,
hr_reduced) # Resample HR

self.ptt_resampled_p = np.interp(self.timetable, interp_time,
ptt_reduced) # Resample PTT

def get_features(self):
return self.ptt_resampled_p, self.hr_resampled_p, self.
sbp_resampled_p, self.dbp_resampled_p, self.timetable

def regression_methods(self, fs_ecg=504.12, fs_ppg=504.12):

NUM_PATIENTS = 20
NUM_SHIMMER = 20
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639 all_ptt, all_hr, all_sbp, all_dbp, groups = [1, [1, [1, [1, []

640

641 try:

642 if self.dataset == 1:

643 for pid in range (20, NUM_SHIMMER + 2 ):

644 # SHIMMER

645 ecg_mat = scipy.io.loadmat (f"SHIMMER_{pid}_ECG.mat")

646 ecg = ecg_mat[’signal’].flatten()

647 t_ecg = ecg_mat[’ts’].flatten() / 1000

648

649 ppg_mat = scipy.io.loadmat (f"SHIMMER_{pid}_PPG.mat")

650 ppg = ppg_mat[’signal’].flatten()

651 t_ppg = ppg_mat[’ts’].flatten() / 1000

652

653 ref_file = f"SHIMMER_{pid}.csv"

654 ptt, hr, sbp, dbp = extract_features_reg(ecg, ppg, t_ecg
, t_ppg, ref_file, fs_ecg, fs_ppg)

655 all_ptt.append(ptt)

656 all_hr.append(hr)

657 all_sbp.append(sbp)

658 all_dbp.append(dbp)

659 groups.append(np.full(len(ptt), pid))

660

661 for pid in range (1, NUM_PATIENTS ):

662 # LUCA

663 ecg_mat = scipy.io.loadmat (f"LUCA_{pid}_ECG.mat")

664 ecg = ecg_mat[’ECG_signal’].flatten()

665 t_ecg = ecg_mat[’ECG_ts’].flatten() / 1000

666

667 ppg_mat = scipy.io.loadmat(f"LUCA_{pid}_PPG.mat")

668 ppg = ppg_mat[’PPG_signal’].flatten()

669 t_ppg = ppg_mat[’PPG_ts’].flatten() / 1000

670

671 ref_file = f"LUCA_ref_{pid}.csv"

672 ptt, hr, sbp, dbp = extract_features_reg(ecg, ppg, t_ecg
, t_ppg, ref_file, fs_ecg, fs_ppg)

673 all_ptt.append(ptt)

674 all_hr.append(hr)

675 all_sbp.append(sbp)

676 all_dbp.append(dbp)

677 groups.append(np.full(len(ptt), 43 + pid)) # 99 for
LUCA

678

679 elif self.dataset == 2:

680 for pid in range (18, NUM_PATIENTS + 13 ):

681 if pid == 10 or pid == 12 or pid == 21 or pid == 20:
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682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

715

716

717

718

719

LUCA

")

continue
ecg_mat = scipy.io.loadmat (f"”SHIMMER_{pid}_ECG.mat")
ecg = ecg_mat[’signal’].flatten()
t_ecg = ecg_mat[’ts’].flatten() / 1000

ppg_mat = scipy.io.loadmat (f"”SHIMMER_{pid}_PPG.mat")
ppg = ppg_mat[’signal’].flatten()
t_ppg = ppg_mat[’ts’].flatten() / 1000

ref_file = f"SHIMMER_{pid}.csv"

ptt, hr, sbp, dbp = extract_features_reg(ecg, ppg, t_ecg
, t_ppg, ref_file, fs_ecg, fs_ppg)

all_ptt.append(ptt)

all_hr.append(hr)

all_sbp.append(sbp)
all_dbp.append(dbp)
groups.append(np.full(len(ptt), pid))

elif self.dataset == 3:
for pid in range(1, NUM_PATIENTS ):
if pid == 10 or pid == 12 or pid == 21 or pid == 20:
continue

ecg_mat = scipy.io.loadmat(f"LUCA_{pid}_ECG.mat")
ecg = ecg_mat[’ECG_signal’].flatten()
t_ecg = ecg_mat[’ECG_ts’].flatten() / 1000

ppg_mat = scipy.io.loadmat(f"LUCA_{pid}_PPG.mat")
ppg = ppg_mat[’PPG_signal’].flatten()
t_ppg = ppg_mat[’PPG_ts’].flatten() / 1000

ref_file = f"LUCA_ref_{pid}.csv"

ptt, hr, sbp, dbp = extract_features_reg(ecg, ppg, t_ecg
, t_ppg, ref_file, fs_ecg, fs_ppg)

all_ptt.append(ptt)

all_hr.append(hr)

all_sbp.append(sbp)

all_dbp.append(dbp)

groups.append(np.full(len(ptt), 43 + pid)) # 99 for

else:
raise ValueError("Invalid dataset option. Choose 1, 2, or

except Exception as e:
print(f"Error with patient {pid}: {e}")

# add patient Luca
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724 try:

725 ptt_luca = self.ptt_resampled_p

726 hr_luca = self.hr_resampled_p

727 sbp_luca = self.sbp_resampled_p

728 dbp_luca = self.dbp_resampled_p

729 all_ptt.append(ptt_luca)

730 all_hr.append(hr_luca)

731 all_sbp.append(sbp_luca)

732 all_dbp.append(dbp_luca)

733 groups.append(np.full(len(ptt_luca), 99)) # 99 luca id

734

735 except Exception as e:

736 print(f"Error with patient LUCA: {el}")

737

738 # Concatenate all data

739 features = np.column_stack ((np.concatenate(all_ptt), np.concatenate(
all_hr)))

740 targets_sbp = np.concatenate(all_sbp)

741 targets_dbp = np.concatenate(all_dbp)

742 groups = np.concatenate(groups)

743

744 # division 70%-30% ---

745 sz_train = round(@.7 * len(features))

746 ind_train = np.arange(@, sz_train)

747 ind_test = np.arange(sz_train, len(features))

748

749 X_train = features[ind_train]

750 X_test = features[ind_test]

751 y_sbp_train = targets_sbpl[ind_train]

752 y_sbp_test = targets_sbp[ind_test]

753 y_dbp_train = targets_dbp[ind_train]

754 y_dbp_test = targets_dbp[ind_test]

755

756 # Standardization

757 scaler = StandardScaler ()

758 X_train = scaler.fit_transform(X_train)

759 X_test = scaler.transform(X_test)

760

761 # REGRESSION METHODS

762 regr = LinearRegression()

763 regr.fit(X_train, y_sbp_train)

764 sbp_pred = regr.predict(X_test)

765 mae_sbp = mean_absolute_error(y_sbp_test, sbp_pred)

766 sd_sbp = np.std(sbp_pred - y_sbp_test)

767

768 regr.fit(X_train, y_dbp_train)
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769 dbp_pred = regr.predict(X_test)

770 mae_dbp = mean_absolute_error(y_dbp_test, dbp_pred)

771 sd_dbp = np.std(dbp_pred - y_dbp_test)

772

773 print(f"Linear Reg SBP MAE: {mae_sbp:.2f} +- {sd_sbp:.2f} mmHg")

774 print(f”"Linear Reg DBP MAE: {mae_dbp:.2f} +- {sd_dbp:.2f} mmHg")

775

776 # take the first patient for plotting (LUCA)

777 sbp = self.sbp_resampled_p

778 dbp = self.dbp_resampled_p

779 t_x = self.t_synced[:len(sbp)]

780

781 # Reshape predictions to match the length of the reference signals

782 sbp_pred_full = sbp_pred[:len(sbp)]

783 dbp_pred_full = dbp_pred[:1len(dbp)]

784

785 # Resample to a uniform time grid

786 num_points = len(t_x)

787 t_uniform = np.linspace(@, 1200, num_points)

788

789 sbp_resampled = np.interp(t_uniform, np.linspace(@, 1200, len(sbp)),
sbp)

790 sbp_pred_resampled = np.interp(t_uniform, np.linspace(@, 1200, len(
sbp_pred_full)), sbp_pred_full)

791 dbp_resampled = np.interp(t_uniform, np.linspace(@, 1200, len(dbp)),
dbp)

792 dbp_pred_resampled = np.interp(t_uniform, np.linspace(@, 1200, len(

dbp_pred_full)), dbp_pred_full)
793
794 # Plot Linear Regression

795 sbp_pred_at_ref = get_at_ref_times(sbp_pred_resampled, t_uniform,
self.time_ref_device)

796 dbp_pred_at_ref = get_at_ref_times(dbp_pred_resampled, t_uniform,
self.time_ref_device)

798 plt.figure()

799 plt.plot(self.time_ref_device, self.sbp, 1label=’SBP Reference’,
color="b")

800 plt.plot(self.time_ref_device, sbp_pred_at_ref, label=’SBP
Predicted’, color="r"’)

801 plt.xlabel(’Time (s)’)

802 plt.ylabel (’SBP (mmHg)’)

803 plt.title(’Linear Reg SBP: Real vs Predicted (Reference Instants)’)

804 plt.legend()

805 plt.grid(True)

806 plt.show()
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829

830

831

843

844

plt.figure()

plt.plot(self.time_ref_device, self.dbp, label='DBP Reference’,
color="h")

plt.plot(self.time_ref_device, dbp_pred_at_ref, label=’DBP
Predicted’, color=’r’)

plt.xlabel(’Time (s)’)

plt.ylabel (’DBP (mmHg)’)

plt.title(’Linear Reg DBP: Real vs Predicted (Reference Instants)’)

plt.legend()

plt.grid(True)

plt.show()

# --- LMS ---

w, b, _ = lIms(X_train, y_sbp_train, mu=0.0001, epochs=10)
sbp_pred_lms = np.dot(X_test, w) + b

w, b, _ = Ims(X_train, y_dbp_train, mu=0.0001, epochs=10)

dbp_pred_lms = np.dot(X_test, w) + b

sbp_pred_lms_full
dbp_pred_lms_full

sbp_pred_Ims[:len(sbp)]
dbp_pred_lms[:1len(dbp)]

sbp_pred_lms_resampled = np.interp(t_uniform, np.linspace(@, 1200,
len(sbp_pred_lms_full)), sbp_pred_lms_full)

dbp_pred_lms_resampled = np.interp(t_uniform, np.linspace(0, 1200,
len(dbp_pred_lms_full)), dbp_pred_lms_full)

sbp_pred_lms_at_ref = get_at_ref_times(sbp_pred_lms_resampled,
t_uniform, self.time_ref_device)

dbp_pred_lms_at_ref = get_at_ref_times(dbp_pred_lms_resampled,
t_uniform, self.time_ref_device)

mae_sbp_1ms
std_sbp_1lms
mae_dbp_1lms

= mean_absolute_error(self.sbp,

sbp_pred_lms_at_ref)

= np.std(self.sbp - sbp_pred_lms_at_ref)

= mean_absolute_error(self.dbp,

dbp_pred_lms_at_ref)

std_dbp_lms = np.std(self.dbp - dbp_pred_lms_at_ref)

print (f"LMS SBP MAE: {mae_sbp_lms:.2f} +- {std_sbp_lms:.2f} mmHg")
print (f"LMS DBP MAE: {mae_dbp_lms:.2f} +- {std_dbp_lms:.2f3} mmHg")

plt.figure()

plt.plot(self.time_ref_device, self.sbp, label=’SBP Reference’,
color="h")

plt.plot(self.time_ref_device, sbp_pred_lms_at_ref, label=’SBP
Predicted (LMS)’, color=’r’)

plt.xlabel(’Time (s)’)
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plt.ylabel (’SBP (mmHg)’)

plt.title(’LMS SBP: Real vs Predicted (Reference Instants)’)
plt.legend()

plt.grid(True)

plt.show()

plt.figure()

plt.plot(self.time_ref_device, self.dbp, label="DBP Reference’,
color="hb")

plt.plot(self.time_ref_device, dbp_pred_lms_at_ref, label=’DBP
Predicted (LMS)’, color=’r’)

plt.xlabel(’Time (s)’)

plt.ylabel (’DBP (mmHg)’)

plt.title(’LMS DBP: Real vs Predicted (Reference Instants)’)

plt.legend()

plt.grid(True)

plt.show()

# --- Ridge ---

ridge = Ridge(alpha=1.0)
ridge.fit(X_train, y_sbp_train)
sbp_pred_ridge = ridge.predict(X_test)
ridge.fit(X_train, y_dbp_train)
dbp_pred_ridge = ridge.predict(X_test)

sbp_pred_ridge_full
dbp_pred_ridge_full

sbp_pred_ridge[:len(sbp)]
dbp_pred_ridge[:len(dbp)]

sbp_pred_ridge_resampled = np.interp(t_uniform, np.linspace(@, 1200,
len(sbp_pred_ridge_full)), sbp_pred_ridge_full)

dbp_pred_ridge_resampled = np.interp(t_uniform, np.linspace(0, 1200,
len(dbp_pred_ridge_full)), dbp_pred_ridge_full)

sbp_pred_ridge_at_ref = get_at_ref_times(sbp_pred_ridge_resampled,
t_uniform, self.time_ref_device)

dbp_pred_ridge_at_ref = get_at_ref_times(dbp_pred_ridge_resampled,
t_uniform, self.time_ref_device)

mae_sbp_ridge = mean_absolute_error(self.sbp, sbp_pred_ridge_at_ref)
std_sbp_ridge np.std(self.sbp - sbp_pred_ridge_at_ref)

mean_absolute_error (self.dbp, dbp_pred_ridge_at_ref)
np.std(self.dbp - dbp_pred_ridge_at_ref)

mae_dbp_ridge
std_dbp_ridge

print(f"Ridge SBP MAE: {mae_sbp_ridge:.2f} +- {std_sbp_ridge:.2f}
mmHg ")
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print (f"Ridge DBP MAE:
mmHg ")

plt.figure()
plt.plot(self.time_ref_device,

color="h")
plt.plot(self.time_ref_device,

Predicted (Ridge)’, color=’r’)
plt.xlabel(’Time (s)’)
plt.ylabel (’SBP (mmHg)’)
plt.title(’Ridge SBP:
plt.legend()
plt.grid(True)
plt.show()

plt.figure()
plt.plot(self.time_ref_device,

color="h")
plt.plot(self.time_ref_device,

Predicted (Ridge)’, color=’r’)
plt.xlabel(’Time (s)’)
plt.ylabel (’DBP (mmHg)’)
plt.title(’Ridge DBP:
plt.legend()
plt.grid(True)
plt.show()

# --- SVM Regression ---
svm = SVR(kernel=’rbf’,
svm.fit(X_train,

C=1.0,
y_sbp_train)

{mae_dbp_ridge:.2f} +- {std_dbp_ridge:.2f}

self.sbp, label=’SBP Reference’,

sbp_pred_ridge_at_ref, label=’SBP

Real vs Predicted (Reference Instants)’)

self.dbp, 1label="DBP Reference’,

dbp_pred_ridge_at_ref, 1label=’DBP

Real vs Predicted (Reference Instants)’)

epsilon=0.2)

sbp_pred_svm = svm.predict(X_test)

svm. fit(X_train, y_dbp_train)

dbp_pred_svm = svm.predict(X_test)

sbp_pred_svm_full = sbp_pred_svm[:len(sbp)]
dbp_pred_svm_full = dbp_pred_svm[:1len(dbp)]

sbp_pred_svm_resampled = np.interp(t_uniform,

len(sbp_pred_svm_full)),

len(dbp_pred_svm_full)),

np.linspace (0, 1200,

sbp_pred_svm_full)
dbp_pred_svm_resampled = np.interp(t_uniform,
dbp_pred_svm_full)

np.linspace (0, 1200,

sbp_pred_svm_at_ref = get_at_ref_times(sbp_pred_svm_resampled,

t_uniform, self.time_ref_device)

dbp_pred_svm_at_ref = get_at_ref_times(dbp_pred_svm_resampled,

t_uniform, self.time_ref_device)
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mae_sbp_svm = mean_absolute_error(self.sbp, sbp_pred_svm_at_ref)
std_sbp_svm = np.std(self.sbp - sbp_pred_svm_at_ref)
mae_dbp_svm = mean_absolute_error(self.dbp, dbp_pred_svm_at_ref)
std_dbp_svm = np.std(self.dbp - dbp_pred_svm_at_ref)

print (f"SVM SBP MAE: {mae_sbp_svm:.2f} +- {std_sbp_svm:.2f} mmHg")
print (f"SVM DBP MAE: {mae_dbp_svm:.2f} +- {std_dbp_svm:.2f} mmHg")

# Plot for SVM

plt.figure()

plt.plot(self.time_ref_device, self.sbp, label=’"SBP Reference’,
color="Dh")

plt.plot(self.time_ref_device, sbp_pred_svm_at_ref, label=’SBP
Predicted (SVM)’, color=’r’)

plt.xlabel(’Time (s)’)

plt.ylabel (’SBP (mmHg)’)

plt.title(’SVM SBP: Real vs Predicted (Reference Instants)’)

plt.legend()

plt.grid(True)

plt.show()

plt.figure()

plt.plot(self.time_ref_device, self.dbp, label='DBP Reference’,
color="h")

plt.plot(self.time_ref_device, dbp_pred_svm_at_ref, label=’DBP
Predicted (SVM)’, color='r’)

plt.xlabel(’Time (s)’)

plt.ylabel (’DBP (mmHg)’)

plt.title(’SVM DBP: Real vs Predicted (Reference Instants)’)

plt.legend()

plt.grid(True)

plt.show()

#cross-correlation for the train and test sets

kf = KFold(n_splits=3, shuffle=True, random_state=42)
mae_sbp_list, mae_dbp_list = [], []

mae_sbp_lms_list, mae_dbp_lms_list = [1, []
mae_sbp_ridge_list, mae_dbp_ridge_list = []1, []
mae_sbp_svm_list, mae_dbp_svm_list = [], []

for train_index, test_index in kf.split(features):
X_train, X_test = features[train_index], features[test_index]
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y_sbp_train, y_sbp_test = targets_sbp[train_index], targets_sbpl

test_index]

y_dbp_train, y_dbp_test = targets_dbp[train_index], targets_dbpl[

test_index]

scaler = StandardScaler ()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# Linear Regression

regr = LinearRegression()
regr.fit(X_train, y_sbp_train)
sbp_pred = regr.predict(X_test)

mae_sbp = mean_absolute_error(y_sbp_test, sbp_pred)

mae_sbp_list.append(mae_sbp)

regr.fit(X_train, y_dbp_train)
dbp_pred = regr.predict(X_test)

mae_dbp = mean_absolute_error(y_dbp_test, dbp_pred)

mae_dbp_list.append(mae_dbp)

# LMS Regression

w, b, _ = lIms(X_train, y_sbp_train, mu=0.0001, epochs=10)
sbp_pred_Ims = np.dot(X_test, w) + b

mae_sbp_lms = mean_absolute_error(y_sbp_test, sbp_pred_1lms)
mae_sbp_lms_list.append(mae_sbp_1lms)

w, b, _ = Ims(X_train, y_dbp_train, mu=0.0001, epochs=10)

dbp_pred_Ims = np.dot(X_test, w) + b

mae_dbp_lms = mean_absolute_error(y_dbp_test, dbp_pred_1lms)

mae_dbp_lms_list.append(mae_dbp_1lms)

# Ridge Regression

ridge = Ridge(alpha=1.0)

ridge.fit(X_train, y_sbp_train)

sbp_pred_ridge = ridge.predict(X_test)
mae_sbp_ridge = mean_absolute_error(y_sbp_test,
mae_sbp_ridge_list.append(mae_sbp_ridge)

ridge.fit(X_train, y_dbp_train)

dbp_pred_ridge = ridge.predict(X_test)
mae_dbp_ridge = mean_absolute_error(y_dbp_test,
mae_dbp_ridge_list.append(mae_dbp_ridge)

# SVM Regression
svm = SVR(kernel=’rbf’, C=1.0, epsilon=0.2)
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svm.fit(X_train, y_sbp_train)

sbp_pred_svm = svm.predict(X_test)

mae_sbp_svm = mean_absolute_error(y_sbp_test, sbp_pred_svm)
mae_sbp_svm_list.append(mae_sbp_svm)

svm.fit(X_train, y_dbp_train)

dbp_pred_svm = svm.predict(X_test)

mae_dbp_svm = mean_absolute_error(y_dbp_test, dbp_pred_svm)
mae_dbp_svm_list.append(mae_dbp_svm)

print(f"Linear Reg SBP MAE (CV): {np.mean(mae_sbp_list):.2f} +- {np.
std(mae_sbp_list):.2f} mmHg")

print(f"Linear Reg DBP MAE (CV): {np.mean(mae_dbp_list):.2f} +- {np.
std(mae_dbp_list):.2f} mmHg")

print (f"LMS SBP MAE (CV): {np.mean(mae_sbp_lms_list):.2f} +- {np.std
(mae_sbp_lms_list):.2f} mmHg")

print(f"LMS DBP MAE (CV): {np.mean(mae_dbp_lms_list):.2f} +- {np.std
(mae_dbp_lms_list):.2f} mmHg")

print(f"Ridge SBP MAE (CV): {np.mean(mae_sbp_ridge_list):.2f} +- {np
.std(mae_sbp_ridge_list):.2f} mmHg")

print(f"Ridge DBP MAE (CV): {np.mean(mae_dbp_ridge_list):.2f} +- {np
.std(mae_dbp_ridge_list):.2f} mmHg")

print(f"SVM SBP MAE (CV): {np.mean(mae_sbp_svm_list):.2f} +- {np.std
(mae_sbp_svm_list):.2f} mmHg")

print(f"SVM DBP MAE (CV): {np.mean(mae_dbp_svm_list):.2f} +- {np.std
(mae_dbp_svm_list):.2f} mmHg")

# Interpolate predictions to the reference time points

sbp_pred_at_ref = np.interp(self.time_ref_device, np.linspace(self.
time_ref_device[@0], self.time_ref_devicel[-1], len(sbp_pred)), sbp_pred)

dbp_pred_at_ref = np.interp(self.time_ref_device, np.linspace(self.

time_ref_device[@], self.time_ref_devicel[-1], len(dbp_pred)), dbp_pred)

sbp_pred_lms_at_ref

np.interp(self.time_ref_device, np.linspace(

self.time_ref_device[@], self.time_ref_devicel[-1], len(sbp_pred_1lms)),

sbp_pred_1lms)

dbp_pred_lms_at_ref = np.interp(self.time_ref_device, np.linspace(
self.time_ref_device[@], self.time_ref_devicel[-1]1, len(dbp_pred_1lms)),

dbp_pred_1lms)

sbp_pred_ridge_at_ref = np.interp(self.time_ref_device, np.linspace(

self.time_ref_devicel[0], self.time_ref_device[-1], len(sbp_pred_ridge)),

sbp_pred_ridge)

dbp_pred_ridge_at_ref = np.interp(self.time_ref_device, np.linspace(
self.time_ref_device[@], self.time_ref_devicel[-1], len(dbp_pred_ridge)),

dbp_pred_ridge)
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sbp_pred_svm_at_ref = np.interp(self.time_ref_device, np.linspace(

self.time_ref_device[0], self.time_ref_device[-1], len(sbp_pred_svm)),
sbp_pred_svm)

dbp_pred_svm_at_ref = np.interp(self.time_ref_device, np.linspace(
self.time_ref_device[0], self.time_ref_device[-1], len(dbp_pred_svm)),
dbp_pred_svm)

# Plot for Linear Regression

plt.figure()

plt.plot(self.time_ref_device, self.sbp, label="SBP Reference’,
color="h")

plt.plot(self.time_ref_device, sbp_pred_at_ref, label=’SBP Predicted

(Linear)’, color=’r’)

plt.xlabel(’Time (s)’)

plt.ylabel (’SBP (mmHg)’)

plt.title(’Linear Regression SBP: Real vs Predicted (Reference
Instants)’)

plt.legend()

plt.grid(True)

plt.show()

plt.figure()

plt.plot(self.time_ref_device, self.dbp, label='DBP Reference’,
color="h")

plt.plot(self.time_ref_device, dbp_pred_at_ref, label=’DBP Predicted

(Linear)’, color=’'r’)

plt.xlabel(’Time (s)’)

plt.ylabel (’DBP (mmHg)’)

plt.title(’Linear Regression DBP: Real vs Predicted (Reference
Instants)’)

plt.legend()

plt.grid(True)

plt.show()

# Plot for LMS

plt.figure()

plt.plot(self.time_ref_device, self.sbp, label=’SBP Reference’,
color="h")

plt.plot(self.time_ref_device, sbp_pred_lms_at_ref, label=’SBP
Predicted (LMS)’, color=’r’)

plt.xlabel(’Time (s)’)

plt.ylabel (’SBP (mmHg)’)

plt.title(’LMS SBP: Real vs Predicted (Reference Instants)’)

plt.legend()

plt.grid(True)
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1067 plt.show()

1068

1069 plt.figure()

1070 plt.plot(self.time_ref_device, self.dbp, label="DBP Reference’,
color="h")

1071 plt.plot(self.time_ref_device, dbp_pred_lms_at_ref, label=’DBP
Predicted (LMS)’, color=’r’)

1072 plt.xlabel(’Time (s)’)

1073 plt.ylabel (’DBP (mmHg)’)

1074 plt.title(’LMS DBP: Real vs Predicted (Reference Instants)’)

1075 plt.legend()

1076 plt.grid(True)

1077 plt.show()

1078

1079 # Plot for Ridge

1080 plt.figure()

1081 plt.plot(self.time_ref_device, self.sbp, label=’SBP Reference’,
color="h")

1082 plt.plot(self.time_ref_device, sbp_pred_ridge_at_ref, label=’SBP
Predicted (Ridge)’, color=’r’)

1083 plt.xlabel(’Time (s)’)

1084 plt.ylabel (’SBP (mmHg)’)

1085 plt.title(’Ridge SBP: Real vs Predicted (Reference Instants)’)

1086 plt.legend()

1087 plt.grid(True)

1088 plt.show()

1089

1090 plt.figure()

1001 plt.plot(self.time_ref_device, self.dbp, label="DBP Reference’,
color="hb")

1092 plt.plot(self.time_ref_device, dbp_pred_ridge_at_ref, label=’DBP
Predicted (Ridge)’, color=’r’)

1093 plt.xlabel(’Time (s)’)

1004 plt.ylabel (’DBP (mmHg)’)

1095 plt.title(’Ridge DBP: Real vs Predicted (Reference Instants)’)

1096 plt.legend()

1097 plt.grid(True)

1098 plt.show()

1099

1100 #plot for svm

1101 plt.figure()

1102 plt.plot(self.time_ref_device, self.sbp, label=’SBP Reference’,
color="h")

1103 plt.plot(self.time_ref_device, sbp_pred_svm_at_ref, label=’SBP
Predicted (SVM)’, color=’r’)

1104 plt.xlabel(’Time (s)’)
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1105 plt.ylabel (’SBP (mmHg)’)

1106 plt.title(’SVM SBP: Real vs Predicted (Reference Instants)’)

1107 plt.legend()

1108 plt.grid(True)

1109 plt.show()

1110

1111 plt.figure()

1112 plt.plot(self.time_ref_device, self.dbp, label="DBP Reference’,
color="Dh")

1113 plt.plot(self.time_ref_device, dbp_pred_svm_at_ref, label=’DBP
Predicted (SVM)’, color=’r’)

1114 plt.xlabel(’Time (s)’)

1115 plt.ylabel (’DBP (mmHg)’)

1116 plt.title(’SVM DBP: Real vs Predicted (Reference Instants)’)

1117 plt.legend()

1118 plt.grid(True)

1119 plt.show()

1120

21| if __name__ == ’__main__":

1122 patient_id = "LUCA"” #"LUCA" or patient_id = 1.. for "SHIMMER_1" # or "
SHIMMER_2", etc.

1123 dataset = 3 # 1 for both datasets SHIMMER, 2 for SMIMMER, 3 for LUCA

1124 p = Patient(patient_id, dataset)

1125 p.load_signals ()

1126 p.preprocess ()

1127 p.synchronize ()

1128 p.detect_peaks ()

1129 p.extract_features ()

1130 p.load_reference_bp ()

1131 p.regression_methods ()

Listing 1: Main Code
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import scipy.io

import matplotlib.pyplot as plt

import numpy as np

from ex import filter_ecg_signal, filter_ppg_signal

# --- Load signals ---

pid = "LUCA"

ecg_mat = scipy.io.loadmat(f"{pid}_1_ECG.mat")

ecg = ecg_mat[’ECG_signal’].flatten()

t_ecg = ecg_mat[’ECG_ts’].flatten() / 1000 #bring to seconds

ppg_mat = scipy.io.loadmat(f”"SHIMMER_42_PPG.mat")
ppg = ppg_mat[’signal’].flatten()
t_ppg = ppg_mat[’ts’].flatten() / 1000 #bring to seconds

fs_ecg = 504.12
fs_ppg 504.12

# --- CUT signals: remove first 20s and last 30s ---
cut_int_ecg = round(20 * fs_ecg)

cut_int_ppg = round(20 * fs_ppg)
ecg_cut = ecglcut_int_ecg:]
t_ecg_cut = t_ecglcut_int_ecg:]
ppg_cut = ppglcut_int_ppg:]
t_ppg_cut = t_ppglcut_int_ppg:]

cut_end_ecg = round(30 * fs_ecg)

cut_end_ppg round (30 * fs_ppg)
if cut_end_ecg < len(ecg_cut):
ecg_cut = ecg_cut[:-cut_end_ecg]
t_ecg_cut = t_ecg_cut[:-cut_end_ecg]
if cut_end_ppg < len(ppg_cut):
ppg_cut = ppg_cutl:-cut_end_ppg]
t_ppg_cut = t_ppg_cutl[:-cut_end_ppgl

# --- Plot raw and cut ECG together ---
plt.figure()
plt.plot(t_ecg, ecg, color="b’, alpha=0.5, label="Raw ECG’)

plt.plot(t_ecg_cut, ecg_cut, color=’r’, alpha=0.8, label="ECG after cut’

plt.title(’ECG: Raw vs Cut for patient LUCA’)
plt.xlabel(’Time Unix’)

plt.ylabel (’ECG Amplitude (mV)’)

plt.legend()

plt.grid(True)

plt.show()
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# --- Plot raw and cut PPG together ---

plt.figure()

plt.plot(t_ppg, ppg, color="b’, alpha=0.5, label="Raw PPG’)
plt.plot(t_ppg_cut, ppg_cut, color=’r’, alpha=0.8, label="PPG after cut’

plt.title(’PPG: Raw vs Cut for patient LUCA’)
plt.xlabel(’Time Unix’)

plt.ylabel (’PPG Amplitude (mV)’)

plt.legend()

plt.grid(True)

plt.show()
# --- Apply filters to cut signals ---
ecg_filtered = filter_ecg_signal (ecg_cut, fs_ecg, window_size=0.2)

ppg_filtered = filter_ppg_signal (ppg_cut, fs_ppg, window_size=0.5)

# --- Plot filtered signals together (pre-synchronization, after cut)

plt.figure()

plt.plot(t_ecg_cut, ecg_cut, ’'b-’, alpha=0.5, label="ECG after cut’)
plt.plot(t_ecg_cut, ecg_filtered, ’g-’, alpha=0.8, label="ECG filtered’)
plt.title(’ECG: Cut vs Filtered (seconds, pre-sync)’)

plt.xlabel(’Time (s)’)

plt.ylabel (’ECG Amplitude (mV)’)

plt.legend()

plt.grid(True)

plt.show()

plt.figure()

plt.plot(t_ppg_cut, ppg_cut, ’'b-’, alpha=0.5, label='PPG after cut’)
plt.plot(t_ppg_cut, ppg_filtered, ’g-’, alpha=0.8, label=’PPG filtered’)
plt.title(’PPG: Cut vs Filtered (seconds, pre-sync)’)

plt.xlabel(’Time (s)’)

plt.ylabel (’PPG Amplitude (mV)’)

plt.legend()

plt.grid(True)

plt.show()

Listing 2: Code to generate graph of ECG and PPG signals pre vs post reduction
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34

35

36

37

38

39

40

41

42

43

import scipy.io

import matplotlib.pyplot as plt
import numpy as np

import csv

NUM_PATIENT = 42
L]
L]

SBP_signals
DBP_signals
time = []

patient_ids = []

for i in range(1, NUM_PATIENT + 1):

if i == 10 or i == 12:
continue

sbp = []

dbp = []

timestamp = []

with open(f”./SHIMMER_{i}.csv", ’'r’) as filecsv:
reader = csv.reader(filecsv, delimiter=";")

for row in reader:
timestamp.append(int(row[@])) # First column: Time in ms

sbp.append(float(rowl[1])) # Second column: Systolic BP
dbp . append(float(rowl[2])) # Third column: Diastolic BP
time_s = [(ts - timestamp[@]) / 1 for ts in timestamp] # Convert ms

to seconds
SBP_signals.append(sbp)
DBP_signals.append(dbp)
time.append(time_s)
patient_ids.append(i)

# Plot all patients’ SBP and DBP signals
plt.figure(figsize=(12, 6))
for idx, (t, sbp, dbp, patient_id) in enumerate(zip(time, SBP_signals,
DBP_signals, patient_ids), start=1):
if idx == 10 or idx == 12:
idx +=1
continue
plt.plot(t, dbp, label=f’Patient {patient_id} DBP’, alpha=0.6)
plt.title(’DBP Signals for All Shimmer Patients’)
plt.xlabel(’Time (s)’)
plt.ylabel(’Diastolic Blood Pressure (mmHg)’)
plt.legend(fontsize=6, loc=’upper left’, bbox_to_anchor=(1, 1))
plt.grid(True)
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plt.show()

plt.figure(figsize=(12, 6))

for idx, (t, sbp, dbp, patient_id) in enumerate(zip(time, SBP_signals,

DBP_signals, patient_ids), start=1):
if idx == 10 or idx == 12:
idx +=1
continue
plt.plot(t, sbp, label=f’Patient {patient_id} SBP’,
plt.title(’SBP Signals for All Shimmer Patients’)
plt.xlabel(’Time (s)’)
plt.ylabel (’Systolic Blood Pressure (mmHg)’)

plt.legend(fontsize=6, loc='upper left’, bbox_to_anchor=

plt.grid(True)
plt.show()

# mean values
mean_sbp = [np.mean(sbp) for sbp in SBP_signals]
mean_dbp = [np.mean(dbp) for dbp in DBP_signals]

patient_ids = [i for i in range(1, NUM_PATIENT + 1) if i
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with open(f”./LUCA_ref_1.csv", ’'r’) as filecsv:
reader = csv.reader(filecsv, delimiter=";")
for row in reader:

alpha=0.6)

a, 1)

= 10 and i !=

timestamp.append(int(row[@])) # First column: Time in ms
sbp.append(float(rowl[1])) # Second column: Systolic BP
dbp . append(float(rowl[2]1)) # Third column: Diastolic BP

time_s = [(ts - timestamp[@]) / 1 for ts in timestamp]
mean_Luca_dbp = np.mean(dbp)

mean_Luca_sbp = np.mean(sbp)

# Histogram with quartiles and outliers

g25_dbp = np.percentile(mean_dbp, 25)

g75_dbp = np.percentile(mean_dbp, 75)

# Limits for outliers

iqr_dbp = g75_dbp - q25_dbp
lower_dbp = q25_dbp - 1.5 * iqr_dbp
upper_dbp = q75_dbp + 1.5 * iqr_dbp

outlier_dbp_idx = [i for i, val in enumerate(mean_dbp) if val <

lower_dbp or val > upper_dbp]

plt.figure(figsize=(10, 5))

bars = plt.bar(patient_ids, mean_dbp, color=’skyblue’, label=’Mean DBP’)

plt.axhspan(qg25_dbp, q75_dbp, color=’orange’, alpha=0.2,
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=75 percentile)’)
for idx in outlier_dbp_idx:
bars[idx].set_color(’red’)
plt.text(patient_ids[idx], mean_dbp[idx]+1, ’0OUT’, color=’red’, ha=’
center’, fontsize=8)
plt.axhline(mean_Luca_dbp, color=’purple’, linestyle=’--’, linewidth=2,
label="LUCA Mean DBP’)
plt.xlabel (’Patient ID’)
plt.ylabel (’Mean Diastolic BP (mmHg)’)
plt.title(’Mean DBP per Shimmer Patient (Outliers in Red, LUCA in Purple
)7)
plt.legend()
plt.grid(True)

plt.show()

g25_sbp = np.percentile(mean_sbp, 25)
gq75_sbp = np.percentile(mean_sbp, 75)
iqr_sbp = g75_sbp - q25_sbp

lower_sbp = q25_sbp - 1.5 * iqr_sbp
gq75_sbp + 1.5 * iqr_sbp

upper_sbp

outlier_sbp_idx = [i for i, val in enumerate(mean_sbp) if val <
lower_sbp or val > upper_sbp]

plt.figure(figsize=(10, 5))

bars = plt.bar(patient_ids, mean_sbp, color=’salmon’, label=’Mean SBP’)

plt.axhspan(q25_sbp, q75_sbp, color=’orange’, alpha=0.2, label="IQR (25
=75 percentile)’)

for idx in outlier_sbp_idx:
bars[idx].set_color(’red’)
plt.text(patient_ids[idx], mean_sbp[idx]+1, ’0OUT’, color=’red’, ha=’
center’, fontsize=8)
plt.axhline(mean_Luca_sbp, color=’purple’, linestyle=’--’, linewidth=2,
label="LUCA Mean SBP’)
plt.xlabel(’Patient ID’)
plt.ylabel (’Mean Systolic BP (mmHg)’)
plt.title(’Mean SBP per Shimmer Patient (Outliers in Red, LUCA in Purple
)7
plt.legend()
plt.grid(True)
plt.show()

# --- LUCA Database ---
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NUM_LUCA = 20
LUCA_SBP_signals = []

LUCA_DBP_signals

L]

LUCA_time = []
LUCA_ids = []

for

i in range(1, NUM_LUCA + 1):

sbp = [1]
dbp = []
timestamp = []
try:
with open(f”./LUCA_ref_{i}.csv"”, ’r’) as filecsv:
reader = csv.reader(filecsv, delimiter=";")

for row in reader:
timestamp.append(int(row[@]))
sbp.append(float(row[1]))
dbp.append(float(rowl[2]))

time_s = [(ts - timestamp[@]) / 1000 for ts in timestamp]

LUCA_SBP_signals.append(sbp)
LUCA_DBP_signals.append(dbp)
LUCA_time.append(time_s)
LUCA_ids.append (i)

except FileNotFoundError:
print (f"LUCA_ref_{i}.csv not found, skipping.")

# Plot all LUCA DBP signals

plt.

for

plt.
plt.
plt.
plt.
plt.
plt.

figure(figsize=(12, 6))

t, dbp, pid in zip(LUCA_time, LUCA_DBP_signals, LUCA_ids):

plt.plot(t, dbp, label=f’LUCA {pid} DBP’, alpha=0.6)
title(’DBP Signals for All LUCA Patients’)

xlabel (’Time (s)’)

ylabel (’Diastolic Blood Pressure (mmHg)’)
legend(fontsize=6, loc='upper left’, bbox_to_anchor=(1,
grid(True)

show ()

# Plot all LUCA SBP signals

plt.

for

plt.
plt.
plt.
plt.
plt.

figure(figsize=(12, 6))

)

t, sbp, pid in zip(LUCA_time, LUCA_SBP_signals, LUCA_ids):

plt.plot(t, sbp, label=f’LUCA {pid} SBP’, alpha=0.6)
title(’SBP Signals for All LUCA Patients’)

xlabel (’Time (s)’)

ylabel (’Systolic Blood Pressure (mmHg)’)
legend(fontsize=6, loc=’upper left’, bbox_to_anchor=(1,
grid(True)
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176

177

178

179
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plt.show()

# LUCA
mean_luca_sbp [np.mean(sbp) for sbp in LUCA_SBP_signals]
mean_luca_dbp = [np.mean(dbp) for dbp in LUCA_DBP_signals]

# DBP LUCA
g25_luca_dbp
g75_luca_dbp np.percentile(mean_luca_dbp, 75)

igr_luca_dbp gq75_luca_dbp - g25_luca_dbp

lower_luca_dbp = g25_luca_dbp - 1.5 * iqr_luca_dbp

upper_luca_dbp q75_luca_dbp + 1.5 * iqr_luca_dbp

outlier_luca_dbp_idx = [i for i, val in enumerate(mean_luca_dbp) if val

np.percentile(mean_luca_dbp, 25)

< lower_luca_dbp or val > upper_luca_dbpl]

# SBP LUCA
g25_luca_sbp

np.percentile(mean_luca_sbp, 25)

gq75_luca_sbp np.percentile(mean_luca_sbp, 75)
igr_luca_sbp gq75_luca_sbp - g25_luca_sbp

lower_luca_sbp = qg25_luca_sbp - 1.5 * iqr_luca_sbp

upper_luca_sbp q75_luca_sbp + 1.5 * iqr_luca_sbp
outlier_luca_sbp_idx = [i for i, val in enumerate(mean_luca_sbp) if val

< lower_luca_sbp or val > upper_luca_sbp]

luca_labels = []
for pid in LUCA_ids:
if 1 <= pid <= 15:
luca_labels.append (f’LUCA {pid}’)
elif 16 <= pid <= 18:
luca_labels.append(f’Massimo {pid}’)
elif 19 <= pid <= 20:
luca_labels.append(f’Clelia {pid}’)
else:
luca_labels.append (f’LUCA {pid}’)

plt.figure(figsize=(12, 5))
bars = plt.bar(LUCA_ids, mean_luca_dbp, color=’violet’, label=’Mean LUCA
DBP )
plt.axhspan(q25_luca_dbp, q75_luca_dbp, color="orange’, alpha=0.2, label
=’IQR (25 -75 percentile)’)
for idx in outlier_luca_dbp_idx:
bars[idx].set_color(’red’)
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plt.text(LUCA_ids[idx], mean_luca_dbp[idx]+1, ’0OUT’, color="red’, ha

=’center’, fontsize=8)

plt.xlabel (’LUCA Patient ID’)

plt.ylabel (’Mean Diastolic BP (mmHg)’)

plt.title(’Mean DBP per LUCA Patient (Outliers in Red)’)
plt.xticks(LUCA_ids, luca_labels, rotation=45, ha=’right’)
plt.legend()

plt.grid(True)

plt.tight_layout ()

plt.show()

plt.figure(figsize=(12, 5))

bars = plt.bar(LUCA_ids, mean_luca_sbp, color=’limegreen’, label=’Mean
LUCA SBP?)

plt.axhspan(qg25_luca_sbp, q75_luca_sbp, color=’orange’, alpha=0.2, label

=’IQR (25 ~-75 percentile)’)

for idx in outlier_luca_sbp_idx:
bars[idx].set_color(’red’)
plt.text(LUCA_ids[idx], mean_luca_sbp[idx]+1, ’'0OUT’, color=’red’, ha
=’center’, fontsize=8)
plt.xlabel (’LUCA Patient ID’)
plt.ylabel (’Mean Systolic BP (mmHg)’)
plt.title(’Mean SBP per LUCA Patient (Outliers in Red)’)
plt.xticks(LUCA_ids, luca_labels, rotation=45, ha=’right’)
plt.legend()
plt.grid(True)
plt.tight_layout ()
plt.show()

Listing 3: Code to visualize the different behavior of all patients
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