AT
I
al
\\\ 1859 d’

N

POLYTECHNIC UNIVERSITY OF TURIN

Master degree course in Artificial Intelligence and Data Analytics

Master Degree Thesis

Towards Artificial (General
Intelligence Through
Evolutionary Algorithms

Experimental Investigations on the ARC-AGI Benchmark

Supervisors Candidate
prof. Giovanni Squillero Riccardo Daniele TURCO
Dr. Alberto Tonda number: 328946

ACADEMIC YEAR 2024-2025

This work is subject to the Creative Commons Licence

Summary

The pursuit of Artificial General Intelligence (AGI) represents one of the most
ambitious objectives in the field of artificial intelligence research. Among the
various benchmarks proposed to evaluate progress towards this goal, the Ab-
straction and Reasoning Corpus (ARC) challenge, introduced by Frangois
Chollet, stands out as a unique and demanding test of an Al system’s ability
to perform human-like reasoning and generalization. Unlike conventional ma-
chine learning benchmarks, ARC is designed to assess an agent’s capacity to
abstract problem solving without relying on large-scale data or task-specific
training.

Benchmarks are crucial in the realm of Al research, offering objective and
standardized ways to assess and compare the abilities of various systems.
When it comes to general artificial intelligence, benchmarks like ARC stand
out because they evaluate the AI capacity to reason through analogy, cre-
ate abstract models, and generalize skills that are essential for human-like
intelligence.

This thesis is organized into four key sections. The first part provides
a thorough analysis of the ARC challenge and highlights its significance in
AT research. The study examines the conceptual foundations of ARC, its
problem structure, and the shortcomings of current Al systems when tackling
tasks that demand abstraction, analogy, and inductive reasoning.

The second part presents an overview of the most effective solutions that
emerged during the ARC-AGI 1 competition. By analyzing the design choices,
methodologies, and limitations of these high-performance systems, this sec-
tion provides information on the state of the art strategies adopted by the
Al community to address ARC tasks.

The third part describes a novel solution proposed by the author, based
on evolutionary algorithms (EA) combined with structured representations.
This approach explores the application of population-based search methods

3

for program synthesis with the goal of discovering generalizable solutions to
ARC problems.

The last section of the thesis analyzes the experimental results gathered
from the proposed system across a chosen set of ARC tasks. The perfor-
mance of the algorithm is compared to other model discussing its strengths,
weaknesses, and possible areas for improvement. The thesis wraps up with
a thoughtful reflection on the findings and suggests future research paths to
enhance the abstract reasoning abilities of artificial intelligence systems.

In conclusion, this thesis highlights the fundamental challenges that still
separate narrow Al systems from true general intelligence and outlines pos-
sible future research directions for developing systems capable of approach-
ing human-level reasoning, using the ARC framework as a benchmark for
progress.

A significant part of this thesis is the practical implementation, available at:
https://github.com/TurcoRiccardo/ARC_AGI.

https://github.com/TurcoRiccardo/ARC_AGI

Acknowledgements

This Master of Engineering degree thesis represents the culmination of many
years spent studying, learning, and growing both academically and person-
ally. For this reason, I would like to express my sincere gratitude to all those
who have supported and encouraged me throughout this journey.

I would like to thank Professor Giovanni Squillero and Engineer Alberto
Tonda for allowing me the chance to dive into such an intriguing and chal-
lenging subject. Their insightful guidance, thoughtful suggestions, and un-
wavering support have been absolutely crucial in shaping this thesis.

I am also deeply grateful to my family and friends, who have always stood
by my side during these years, offering constant encouragement and moti-
vation. Their presence has made this journey lighter and more meaningful.

Finally, I would like to thank everyone who, in one way or another, con-
tributed to my academic and personal growth during my time at the univer-
sity.

Contents

List of Tables 8
List of Figures 9
| 11
1 General introduction 13
1.1 Background and the Quest for Artificial General Intelligence . 13
1.2 The Motivation Behind ARC 14
1.3 The Problem with Current Al Evaluation Methods 15
1.4 The Design of ARC as a Benchmark 16
1.4.1 Benchmark Design 17
1.4.2 Dataset Composition 17
1.5 The Launch of ARC-AGI Competitions 19
1.6 Implications for AGI Research and the Role of ARC 20
1.7 Recent Progress in Al and the Ongoing Challenge of AGI . . . 21

2 State-of-the-Art Solutions for ARC-AGI 1 and Their Perfor-
mance on ARC-AGI 2 23
2.1 Overview of ARC-AGI 1 Competition 23
2.2 Hybrid Program-Synthesis and Neural Approaches 24
2.3 ARC Prize 2024 — Key Achievements 26
2.4 The ARC-AGI 2 Benchmark 27
2.4.1 Motivations for a New Benchmark 28
2.4.2 Key Differences from ARC-AGI'1 28
2.4.3 Task Examples 29
2.5 Transferring Solutions to ARC-AGI2 31
2.5.1 Performance Degradation on ARC-AGI 2 31

6

2.5.2 Limitations of previous solvers on ARC-AGI 2
2.6 Summary and Insights
2.6.1 Future Directions Suggested by ARC-AGI 2 Results . .

I1

3 Evolving different Geometric Representations
3.1 Overview of the Proposed Approach
3.2 Problem Representation
3.2.1 Available Actions per Representation
3.2.2 Selectors
3.3 Evolutionary Algorithm
3.3.1 Single-Example Per Representation Evolution
3.3.2 Multi-Example Per Representation Evolution
3.3.3 Mutation Operators
3.4 Single-Example vs Multi-Example Evolution
3.5 Summary of the Proposed Methodology

4 Analysis of results
4.1 Introduction
4.2 Experimental Setup oo
4.3 Results and Discussion L.
4.4 Qualitative Analysis of Individual Tasks

5 Conclusion
H.1 Limitations
5.2 Future Work

References

37

39
39
41
43
48
53
54
95
o6
57
58

61
61
61
63
65

73
74
1)

7

List of Tables

1.1
2.1
2.2
3.1
3.2

4.1
4.2

ARC-AGI-1 dataset structure
Final Kaggle private leaderboard scores (ARC Prize 2024)
Comparison of top-performing approaches on ARC-AGI 1 and
ARC-AGI 2 benchmarks.
Summary of how objects can be grouped by the selector based
on representationo L Lo
Summary of how object component can be grouped by selector
based on representation.
Overview of the selected ARC-AGI tasks
Summary of average and best-case performance for the two
evolutionary approaches over 10 ARC-AGI tasks.

28

List of Figures

1.1
1.2

1.3

2.1

2.2

2.3

24

2.5

3.1

Levels of Artificial Intelligence: ANI — AGI — ASL.
Example of an ARC task showing two training input-output
pairs followed by a test input.
Additional ARC tasks demonstrating abstraction across grid
variations. Lo
High-level pipeline of a hybrid program synthesis model com-
bining a pretrained LLM (e.g., GPT-40) for candidate gener-
ation, execution engine, and test-time program selection.
Conceptual structure of a task on the ARC-AGI 2 benchmarks
[17]. The task introduces deeper compositionality, multi-object
interactions, and reasoning patterns that requiring sequential
transformations.
Example task from ARC-AGI 2 [17]. The problem requires
reasoning about multiple object types, spatial positioning, and
applying context-dependent transformations.
Performance comparison between ARC-AGI 1 (magenta) and
ARC-AGI 2 (yellow) across different computational costs per
task and model configurations [17]. The chart highlights the
significant performance degradation when moving from ARC-
AGI1to ARC-AGI 2.
ARC-AGI public leaderboard as of July 2025 [18]. Perfor-
mance comparison of various models on both ARC-AGI 1
(circles) and ARC-AGI 2 (triangles). The chart highlights
the persistent difficulty of achieving high scores on ARC-AGI
2, with only a few models approaching the threshold for the
Grand Prize.
Single-Example Evolution: for each representation and train-
ing example, a dedicated evolutionary algorithm instance is
executed, and the best individual is selected based on scoring
across training examples.

25

3.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

Multi-Example Evolution: for each representation, a multi-
objective evolutionary algorithm is executed across all training
examples, combining fitness values into an aggregate fitness to
identify the best performing individual.
ARC task 007bbfb7. The goal is to identify a 3x3 pattern
and replicate it in a larger grid.
ARC task 00d62c1b. The objective is to detect closed green
shapes and fill them with yellow.
ARC task 017c7c7b. The transformation involves extending
a repeated pattern using a new color.
ARC task 025d127b. The transformation consists of shifting
the top part of a figure to the right.
ARC task 045e512¢c. The transformation involves duplicating
a figure in the indicated direction using a specified color.

ARC task 0520fde7. The transformation involves coloring in
red the pixels that appear in both 3x3 patterns.
ARC task 05269061. The transformation consists of repeating
colored diagonals across the grid.
ARC task 05£f2a901. The red figure must be moved toward
the blue one until they touch.
ARC task 06df4c85. The transformation consists of connect-
ing colored points with lines.
ARC task 08ed6ac7. The transformation consists of coloring
columns based on their height.

10

67

Part 1

11

Chapter 1

General introduction

1.1 Background and the Quest for Artificial
General Intelligence

The pursuit of Artificial General Intelligence (AGI)[1], systems capable of
performing any intellectual task that a human can do, has been one of the
most ambitious and long-standing goals in artificial intelligence research.
While modern Al systems have achieved remarkable results in narrow, domain-
specific tasks, such as image classification, natural language processing, and
strategic games like Go and Chess, they remain limited to contexts for which
they have been explicitly trained. These systems, often referred to as "narrow
AlL" exhibit impressive performance within their specific domains but lack
the ability to generalize to novel, unseen situations or reason abstractly in
the way humans can. Instead, AGI aspires to exhibit a broad range of cog-
nitive abilities such as reasoning, abstraction, learning from minimal data,
and adapting to novel environments [2, 3|.

Over the past ten years, we’ve seen an incredible surge in computing power,
access to vast amounts of data, and the rise of advanced deep learning mod-
els, all of which have propelled artificial intelligence forward in remarkable
ways. Yet, these advancements also bring to light some significant shortcom-
ings. Even with their impressive capabilities, many Al systems still find it
challenging to tackle tasks that involve abstraction, analogy, and reasoning
unless they’ve been specifically trained, these skills that are essential for true
general intelligence.

This limitation has fueled the growing recognition within the Al research

13

1 — General introduction

community that success in narrow tasks does not equate to progress toward
general intelligence. Although current systems can process vast amounts
of data and optimize complex functions, they often lack the flexibility to
reason abstractly or handle situations with minimal prior exposure; these
are capabilities that are hallmarks of human cognition [4].

Consequently, the need for more comprehensive benchmarks and evalua-
tion criteria has emerged. These must go beyond conventional performance
metrics, such as classification accuracy or reward maximization, and instead
assess an agent’s ability to generalize, abstract, and adapt; these are dimen-
sions that are critical for the development of AGI [1].

Whatis AI?
ANI vs. AGI vs. ASI

9 29¢
t oo @ o Lo
oo ol >3
= 000
Artificial narrow Artificial general Artificial super
intelligence (ANI) intelligence (AGI) intelligence (ASI)
Designed to perform Can behave in a human- Smarter than humans—

specific tasks like way across all tasks the stuff of sci-fi

Figure 1.1. Levels of Artificial Intelligence: ANT — AGI — ASI.

1.2 The Motivation Behind ARC

In 2019, Francois Chollet, a leading researcher in artificial intelligence, pro-
posed the Abstraction and Reasoning Corpus (ARC) [5] as a new type of
benchmark specifically designed to evaluate the general reasoning capabili-
ties of Al systems. Chollet argued that most contemporary Al benchmarks
primarily measure pattern recognition performance in narrow, well-defined
domains, offering limited view of the broader, more human-like reasoning
capabilities required for Artificial General Intelligence (AGI).

14

1.3 — The Problem with Current AI Evaluation Methods

In his seminal paper “On the Measure of Intelligence” (2019)[1], Chollet
outlined the key characteristics that a valid measure of intelligence should
possess:

e Generalization to novel situations: The ability to adapt to new,
unseen problems using prior knowledge.

« Sample efficiency: The capacity to learn and reason from very few
examples, as humans often do.

e Abstraction and analogy-making: The ability to extract basic prin-
ciples and apply them in different contexts.

Existing AI benchmarks like ImageNet, GLUE, and Atari games don’t quite
capture the full range of capabilities required for Artificial general intelli-
gence. They usually rely on large training datasets focusing on specific tasks
and have a narrow variety of problem types.

To address this, Chollet introduced ARC, a benchmark composed of few-
shot reasoning tasks. In each task, there’s a small set of input-output grid
pairs that an agent needs to analyze to figure out an abstract transformation.
The agent must then apply the deduced rule to new test inputs. This chal-
lenge is intentionally tough for traditional machine learning systems, as it’s
designed to favor architectures that can handle flexible, human-like reasoning
and abstraction.

1.3 The Problem with Current AI Evaluation
Methods

Before the introduction of ARC, most Al evaluation benchmarks fell into
categories such as:

 Supervised learning tasks (e.g., image classification, sentiment analysis),
« Reinforcement learning environments (e.g., games like Go, Dota 2),

o Natural language benchmarks (e.g., reading comprehension, machine
translation),

15

1 — General introduction

While these benchmarks have enabled remarkable achievements in Al, they
typically rely on large-scale training datasets and heavily task-specific learn-
ing. As a result, they primarily assess pattern recognition capabilities, rather
than genuine reasoning or abstraction. Their scope of generalization is often
limited to distributions similar to the training data, thus failing to capture
more general cognitive skills.

Moreover, these tasks often lack the variability and open-ended problem
structure necessary to test essential abilities such as analogical reasoning,
compositional generalization, and inductive inference. These capabilities are
considered central to human cognition and are widely regarded as prerequi-
sites for Artificial General Intelligence (AGI).

Chollet argues that we shouldn’t judge intelligence solely based on how
well a system performs tasks for which the system was extensively trained
[1]. Instead, he suggests that a better way to assess intelligence is by looking
at how efficiently an agent can learn new skills, taking into account what it
already knows and has experienced.

1.4 The Design of ARC as a Benchmark

To overcome the limitations of traditional AI benchmarks, ARC was designed
based on the following key principles:

e« Minimal prior knowledge: Tasks are presented using grids of col-
ored cells with no semantic meaning, to avoid relying on domain-specific
biases.

o Few-shot learning: Each problem provides only a small number of
input-output examples (typically 2-5).

« High problem diversity: ARC problems vary widely in terms of diffi-
culty, logic, and required transformations, forcing Al systems to demon-
strate true general reasoning rather than memorization.

» Focus on abstraction and reasoning: Solving ARC tasks requires
recognizing abstract relations such as symmetry, counting, spatial trans-
formations, and color substitutions.

16

1.4 — The Design of ARC as a Benchmark

By incorporating these designs, ARC provides a robust and demanding frame-
work for assessing the abstract reasoning skills that are crucial for achieving
Artificial General Intelligence (AGI).

1.4.1 Benchmark Design

Chollet published the Abstraction and Reasoning Corpus (ARC) benchmark
as a first concrete attempt to measure this definition of intelligence [5][6].
The benchmark is composed of independent tasks, each consisting of a cer-
tain number of demonstration pairs and one or more test inputs. Each pair
of demonstrations consists of a input grid, a rectangular grid of variable size
(up to a maximum size of 30 rows by 30 columns) where each cell can have
one of ten distinct 'values’, and an output grid that should be fully inferable
from the characteristics of the input grid. The goal is to use the demonstra-
tion pairs to understand the nature of the task, and use this understanding
to construct the output grid corresponding to each test input. Each test
input allows a maximum of two attempts. The defining characteristic of the
benchmark is that it should not be possible to prepare for any of the tasks
in advance. Every task is manually constructed by a human and follows a
unique, previously unseen logic. This design ensures a high level of nov-
elty and diversity, preventing overfitting to known patterns. ARC-AGI tasks
do not require specialized knowledge of the world or language to be solved.
The only assumed prior knowledge is Core Knowledge: concepts such as
objectness, basic topology, elementary integer arithmetic, etc. These priors
knowledge are acquired by children very early and are universally shared
by all humans. The ARC-AGI public training tasks are designed to expose
test-takers to all the Core Knowledge priors needed to solve ARC-AGI tasks.

1.4.2 Dataset Composition
ARC-AGI 1 consists of 1,000 tasks split into four subsets:

o Public training tasks (400, easy) - Intended to demonstrate the task
format and allow for learning the Core Knowledge priors.

 Public evaluation tasks (400, hard) - Intended to let researchers locally
evaluate their performance.

« Semi-private evaluation tasks (100, hard) - Intended to let us evaluate
third-party approaches that rely on publicly-available commercial APIs.

17

1 — General introduction

It is “semi-private” because while it hasn’t been publicly released, it has
been exposed to commercial APIs and thus suffers from a risk of leakage.

« Private evaluation tasks (100, hard) - Intended to let us evaluate stan-
dalone approaches. It is fully private and theoretically free of leakage.

As shown in the figures 1.2 and 1.3, each ARC tasks provide limited examples
and require the solver to generalize to previously unseen test cases.

Figure 1.2. Example of an ARC task showing two training input-output
pairs followed by a test input.

Subset No. of Tasks | Purpose

Public Training 400 Learn core knowledge priors
Public Evaluation 400 Local performance evaluation
Semi-Private Evaluation 100 Evaluation with exposed APIs
Private Evaluation 100 Evaluation without data leakage

Table 1.1. ARC-AGI-1 dataset structure

18

1.5 — The Launch of ARC-AGI Competitions

Example 1: Example 2: Example 3:

| | | |
EmmmE
Example 1: Example 2: Example 3: Test: Output
11
P |

Figure 1.3. Additional ARC tasks demonstrating abstraction
across grid variations.

1.5 The Launch of ARC-AGI Competitions

To foster progress toward artificial general intelligence and promote the de-
velopment of systems capable of solving ARC tasks, a series of competi-
tions were launched. The most notable among them was the Abstraction
and Reasoning Challenge (ARC-AGI 1), hosted on Kaggle in 2020 [7]. This
competition attracted broad participation from both academic and industry
researchers, offering a practical arena to test new ideas in program synthesis,
neuro-symbolic reasoning, meta-learning, and evolutionary algorithms.

While no system has yet achieved human-level performance on the ARC
benchmark, this competition has marked a significant milestone for the Al
community. It brought to light several important insights, such as:

o The limitations of current deep learning architectures when it comes to
general reasoning tasks.

o The potential of alternative approaches such as program synthesis, neuro-
symbolic models, and evolutionary computation.

19

1 — General introduction

o The importance of designing benchmarks that better reflect the core
challenges of AGI.

1.6 Implications for AGI Research and the
Role of ARC

The introduction of the ARC benchmark has had significant implications for
the field of Artificial General Intelligence research. By explicitly focusing
on abstraction, reasoning, and generalization, ARC has highlighted several
important limitations in contemporary Al systems and opened new avenues
for investigation.

One of the key takeaways here is that relying solely on data-driven meth-
ods isn’t enough to achieve Artificial General Intelligence (AGI). While deep
learning systems have shown remarkable success in tasks related to percep-
tion, like recognizing images and language understanding, they often fail
when it comes to challenges that demand flexible reasoning, manipulating
concepts, and making inferences from just a handful of examples. ARC
tasks really highlight these shortcomings, as they push systems to deduce
rules and concepts from very few instances and apply that knowledge to new
situations without prior exposure.

Moreover, ARC has reinvigorated interest in alternative paradigms for Al
reasoning [8][9], such as:

e Program synthesis: automatically generates programs that satisfy
input-output constraints.

e Neuro-symbolic systems: combine the pattern recognition strengths
of neural networks with the logical reasoning power of symbolic Al

o Evolutionary algorithms: using population-based, biologically in-
spired methods to evolve solutions over generations.

« Meta-learning approaches: enabling systems to learn how to learn,
by acquiring inductive biases and strategies from a distribution of prob-
lems.

20

1.7 — Recent Progress in Al and the Ongoing Challenge of AGI

These alternative methods aim to bridge the generalization gap that we often
see in traditional machine learning systems, making them more aligned with
the cognitive processes that drive human intelligence.

ARC also plays a crucial role as a reference framework for assessing progress
in AGI. Unlike narrow Al benchmarks, which typically lead to incremental
improvements within specific problem areas, ARC pushes researchers to cre-
ate systems that can engage in open-ended reasoning and abstraction. This
makes it a valuable tool for measuring the generalization and reasoning skills
of Al systems, no matter what specific applications they focus on.

Finally, the challenge posed by ARC emphasizes a broader philosophical
and practical insight: "true intelligence is not merely the ability to
recognize patterns in data, but the capacity to generate and manip-
ulate abstract representations, infer new rules, and adapt to novel
situations"[1]. Any AI system that wants to reach human-level cognitive
capabilities must demonstrate these skills.

In this sense, ARC represents not only a benchmark but also a conceptual
framework for rethinking the foundations of Al research. It encourages the
development of systems that are not overfitted to predefined tasks but capa-
ble of open-ended problem-solving, this is a critical step towards achieving
Artificial General Intelligence.

1.7 Recent Progress in AI and the Ongoing
Challenge of AGI

In the past few years, the AI research landscape has witnessed unprece-
dented progress, particularly with the advent of large-scale language models
and multimodal systems capable of tackling a wide range of tasks without
task-specific fine-tuning [10][11]. Models such as OpenAl’'s GPT-4, Google
DeepMind’s Gemini, and Anthropic’s Claude 3 [12] have demonstrated re-
markable abilities in language understanding, coding, reasoning, and even
multimodal perception.

Recent advancements have sparked some researchers to speculate about
the potential emergence of early forms of general intelligence in Al systems.

21

1 — General introduction

However, despite their remarkable versatility, these models still depend heav-
ily on vast amounts of training data and struggle with robust abstraction,
analogy, and reasoning when faced with limited information. In this light,
benchmarks like ARC are crucial for determining whether AI systems can
transcend mere statistical pattern recognition and cultivate the cognitive
flexibility necessary for genuine AGI.

The disparity between how contemporary Al models perform and human-
level abstract reasoning, as highlighted by ARC tasks, underscores the short-
comings of current methodologies. Consequently, exploring alternative ap-
proaches, such as program synthesis, neuro-symbolic reasoning, and evolu-
tionary algorithms remains a vital area of research, with the ARC serving as
a key platform for testing these innovative methods.

22

Chapter 2

State-of-the-Art Solutions
for ARC-AGI 1 and Their
Performance on ARC-AGI
2

2.1 Overview of ARC-AGI 1 Competition

The first ARC-AGI competition, launched publicly in 2021 as part of the
ARC Prize initiative on Kaggle, represented one of the earliest large-scale
attempts to benchmark machine reasoning capabilities on abstract and com-
positional tasks. The challenge was based on Francois Chollet’s Abstraction
and Reasoning Corpus (ARC) [5], a dataset consisting of grid-based prob-
lems specifically designed to evaluate core aspects of human intelligence such
as analogy-making, pattern recognition, and compositional reasoning.

The dataset posed a difficult challenge for conventional deep learning mod-
els, which struggled to generalize due to its limited data regime (few-shot
learning) and the open-ended nature of the tasks, where solution strategies
could not be learned directly from statistical correlations alone.

The most effective approaches in ARC-AGI 1 combined brute-force pro-
gram synthesis with domain-specific languages (DSL). These solvers system-
atically generated sequences of primitive operations capable of transforming
input grids into desired outputs by exhaustively searching the program space.

23

2 — State-of-the-Art Solutions for ARC-AGI 1 and Their Performance on ARC-AGI 2

According to Mike Knoop from the ARC Prize organization [13], the leading
solutions achieved between 19% and 36% accuracy on the public ARC-AGI
1 benchmark, without relying on any training phase, instead leveraging care-
fully designed program search heuristics and optimized DSL libraries.

Even though they seem straightforward, these DSL-based solutions have
shown that combining discrete and structured reasoning systems with pro-
gram induction can actually surpass traditional neural models when it comes
to tasks that require heavy reasoning. On the flip side, this method also
highlighted a significant drawback: without inductive biases or guided explo-
ration strategies, relying on brute-force search can lead to major scalability
and compositionality challenges, particularly as the complexity of the task
increases.

2.2 Hybrid Program-Synthesis and Neural Ap-
proaches

A significant breakthrough in ARC-AGI 1 came with the integration of pre-
trained large language models (LLMs) into the program synthesis pipeline.
While earlier approaches relied on brute-force search over a fixed domain-
specific language (DSL), these new hybrid models leveraged the generative ca-
pabilities of LLMs to produce candidate transformation programs in Python
or DSL-like syntax, dramatically increasing the diversity and relevance of the
candidate solutions.

Among the most notable implementations, Ryan Greenblatt (Redwood
Research) employed GPT-40 to generate thousands of Python transformation
scripts per problem instance. His system achieved between 42% and 43%
accuracy on the public test set and demonstrated a log—linear improvement
in accuracy relative to the number of generated programs, reaching its best
results around 2048 candidate solutions per task [14].

Another major milestone was established by OpenAl with its proprietary
24

2.2 — Hybrid Program-Synthesis and Neural Approaches

“03” model. This system combined LLM-driven program generation, chain-
of-thought reasoning, and a powerful test-time search strategy. In a com-
putationally efficient setup, 03 reached an impressive 75.7% success rate on
ARC-AGI 1, while under extensive computational resources it achieved a
groundbreaking 87.5%, surpassing all previous records [15]. This perfor-
mance was widely described in the Al research community as “the AlexNet
moment for program synthesis,” signaling a paradigm shift in the ability of
neural models to handle abstract reasoning benchmarks.

Al Agent

Solve

Al Agent Solution
Explained Bucosmt

Figure 2.1. High-level pipeline of a hybrid program synthesis model com-
bining a pretrained LLM (e.g., GPT-40) for candidate generation, execution
engine, and test-time program selection.

As shown in Figure 2.1, the LLM first proposes candidate programs which
are then executed and scored on the training examples.

In parallel, several research groups have explored models capable of dy-
namically adapting their parameters during inference through test-time train-
ing techniques. These approaches allowed models to specialize on individual
ARC tasks without requiring prior exposure. Best examples include:

25

2 — State-of-the-Art Solutions for ARC-AGI 1 and Their Performance on ARC-AGI 2

o CompressARC: This system train small neural networks from scratch
at test time for each puzzle, achieving 34.8% accuracy on the training
set and approximately 20% on the public evaluation set.

e Deep Learning + Test-Time Training: Methods such as Test-Time
Fine-Tuning (TTFT) and AIRV (Adaptive Inference via Reinforcement
of Variables) improved performance to around 58% on ARC’s private
test set, positioning them among the highest-performing open-source
neural solutions [15].

These hybrid and adaptive approaches demonstrated that integrating neural
models with symbolic reasoning or leveraging test-time flexibility could sig-
nificantly narrow the performance gap between program synthesis and human
reasoning on ARC benchmarks.

2.3 ARC Prize 2024 — Key Achievements

Before 2024, the ARC-AGI benchmark proved extremely challenging for both
neural and symbolic Al systems. The highest verified scores on the private
evaluation set remained around 33%, with most DSL-based program synthe-
sis approaches plateauing at 19-36% and early hybrid models only marginally
surpassing these figures. Despite the introduction of test-time training and
language-model-based code generation, no system approached a level of rea-
soning comparable to human performance.

According to the ARC Prize 2024 technical report [15], the top private
leaderboard scores submitted on Kaggle were:

the ARChitects — 53.5%

Guillermo Barbadillo — 40.0%

alijs — 40.0%

William Wu — 37.0%

Pooh AT — 37.0%

26

2.4 — The ARC-AGI 2 Benchmark

Another notable result was achieved by MindsAlI (55.5%), which, however,
did not open-source their solution and thus was not eligible for prize place-
ment.

This surge in performance was attributed to several innovations:

o Combining pretrained language models (e.g., GPT variants) with effi-
cient program synthesis pipelines.

» Utilizing advanced test-time training strategies, enabling models to adapt
their parameters or program proposals during inference.

» Implementing sophisticated candidate program selection techniques based
on scoring heuristics and meta-learning.

In parallel, the public Kaggle leaderboard for ARC-AGI 1 served as a vis-
ible competitive platform where participants submitted their systems for a
public subset of ARC problems. While open proposals dominated the Kag-
gle leaderboard with a share of approximately 43-45%, closed proprietary
systems such as OpenAl’s “03” and privates ARC Prize participants demon-
strated significantly higher performance on the private test sets, underlining
the growing gap between publicly available and proprietary AGI research.

These results confirmed that while ARC remains a formidable benchmark
for machine reasoning, hybrid methods and adaptive models are rapidly clos-
ing the gap with human-level performance on certain task categories.

2.4 The ARC-AGI 2 Benchmark

Following the promising yet limited advances of the ARC-AGI 1 challenge,
which revealed significant gaps in current Al systems’ ability to generalize
and reason compositionally, a new, more demanding benchmark was intro-
duced in May 2025: ARC-AGI 2. This second-generation evaluation suite

27

2 — State-of-the-Art Solutions for ARC-AGI 1 and Their Performance on ARC-AGI 2

Team Private Evaluation Score
the ARChitects 53.5%
Guillermo Barbadillo 40.0%
alijs 40.0%
William Wu 37.0%
PoohAI 37.0%

MindsAI reached 55.5% but was ineligible due to lack of open-source release

Table 2.1. Final Kaggle private leaderboard scores (ARC Prize 2024)

aimed to capture reasoning patterns typically exploited by humans but of-
ten missed by Al models relying on surface pattern matching or brute-force
program search [16].

2.4.1 Motivations for a New Benchmark

Despite the significant advances made with ARC-AGI 1, most systems re-
lied heavily on brute-force program synthesis, static heuristic searches, or
pretrained language models to come up with candidate programs. Unfortu-
nately, these methods often fell short when it came to tasks that demanded
deeper abstraction, contextual reasoning, and multi-step inference. That’s
why ARC-AGI 2 was created—to tackle these shortcomings by introducing
tasks that require adaptable, sequential decision-making in uncertain situa-
tions.

2.4.2 Key Differences from ARC-AGI 1

Compared to its predecessor, ARC-AGI 2 introduces several important mod-
ifications:

e Increased novelty: no direct task repetition from ARC-AGI 1; new
task families were introduced, preventing memorization-based strategies.

« Higher information density: problems feature larger grids (up to
10x10) and multiple interacting objects or agents per grid.

e Deep compositionality: tasks now require sequences of context-dependent
operations, where the outcome of one transformation influences subse-
quent decisions.

28

2.4 — The ARC-AGI 2 Benchmark

2.4.3 Task Examples

Problems in ARC-AGI 2 include:

o Sequential object transformations: e.g., transform blue squares into red
circles, then shift all shapes to the left if a green triangle is present.

o Conditional multi-object interactions: e.g., if two identical shapes are
adjacent, remove them; otherwise, duplicate the largest object.

o Multi-step reasoning: where intermediate transformations affect subse-
quent operations, requiring long-horizon planning.

These characteristics are illustrated in Figure 2.2, which shows the conceptual
structure of tasks in ARC-AGI 2.

n

T
T

T

HHH :HE #
NN IHEEEN IR NN

Figure 2.2. Conceptual structure of a task on the ARC-AGI 2 benchmarks
[17]. The task introduces deeper compositionality, multi-object interactions,
and reasoning patterns that requiring sequential transformations.

To better illustrate the increased complexity of ARC-AGI 2 tasks, Fig-
ure 2.3 shows a representative problem involving multiple object types and
spatial relationships.

29

2 — State-of-the-Art Solutions for ARC-AGI 1 and Their Performance on ARC-AGI 2

Figure 2.3. Example task from ARC-AGI 2 [17]. The problem requires
reasoning about multiple object types, spatial positioning, and applying
context-dependent transformations.

30

2.5 — Transferring Solutions to ARC-AGI 2

2.5 'Transferring Solutions to ARC-AGI 2

After the introduction of ARC-AGI 2 in May 2025, the most successful sys-
tems from the ARC-AGI 1 competition were re-evaluated on the new bench-
mark. The results revealed a dramatic performance collapse, exposing the
limitations of existing approaches when faced with problems requiring deeper
abstraction, compositional reasoning, and contextual generalization.

2.5.1 Performance Degradation on ARC-AGI 2

When evaluated on the private ARC-AGI 2 leaderboard, leading models ex-
perienced sharp drops in accuracy:

e 03 model: from 75-87% on ARC-AGI 1 to just 4%.
o The ARChitects team: from 53.5% to 3%.

o Frontier models: generally achieving between 0-20% under the com-
petition’s cost constraints.

This notable drop in performance really highlighted how effective ARC-AGI 2
is at uncovering structural flaws in architectures focused on program synthesis
and test-time training methods. This is especially true when it comes to
handling multi-object, sequential, and context-dependent reasoning.

31

2 — State-of-the-Art Solutions for ARC-AGI 1 and Their Performance on ARC-AGI 2

ARC-AGI-2

COT + SYNTHESIS
(01 PRO, 03)

COT (@3-MINI)

Figure 2.4. Performance comparison between ARC-AGI 1 (magenta) and
ARC-AGI 2 (yellow) across different computational costs per task and model
configurations [17]. The chart highlights the significant performance degra-
dation when moving from ARC-AGI 1 to ARC-AGI 2.

2.5.2 Limitations of previous solvers on ARC-AGI 2

Several key factors contributed to this collapse in performance:

« Overfitting to shallow patterns: Many ARC-AGI 1 systems relied on
superficial pattern matching or brute-force program enumeration with-
out generalizable reasoning.

e Lack of context-dependent reasoning: Most models lacked mecha-
nisms for multi-step reasoning where the result of one operation affects
subsequent decisions.

« Inability to handle deep compositionality: ARC-AGI 2 has brought
in tasks that demand long-term reasoning and sequential transforma-
tions, which go beyond what fixed program templates or simple greedy
heuristics can handle.

e Poor generalization to unseen task types: The increased novelty
and information density of ARC-AGI 2 rendered memorization-based
and DSL-specific approaches ineffective.

32

2.6 — Summary and Insights

These results confirmed that while ARC-AGI 1 solvers achieved competitive
performance through scalable program search and prompt-based code gen-
eration, they lacked the kind of adaptive, context-sensitive reasoning that
characterizes human problem-solving abilities.

2.6 Summary and Insights

The ARC-AGI 1 competition revealed that program synthesis combined
with test-time adaptation could substantially outperform purely neural ap-
proaches on symbolic reasoning tasks. However, these solutions remained
limited in their ability to perform human-like, abstract reasoning and often
relied on superficial pattern-matching or brute-force enumeration.

The introduction of ARC-AGI 2 exposed these weaknesses: models that
had previously achieved state-of-the-art performance struggled with problems
requiring flexible, multi-step, compositional reasoning over abstract symbolic
spaces. As a result, even highly optimized systems like OpenAl’s 03 experi-
enced severe performance drops.

These findings highlight the shortcomings of the current architectures fo-
cused on program synthesis and encourage us to look into different reasoning
frameworks. Representation-driven evolutionary algorithms present an ex-
citing avenue, merging structured program induction with adaptive search
strategies. In Chapter 3, this thesis introduces such an approach, utilizing
evolutionary search over static geometric representations to improve gener-
alization in symbolic reasoning benchmarks such as ARC-AGI.

As shown in Table 2.2, none of the leading ARC-AGI 1 solutions sustained
competitive performance on ARC-AGI 2. This reinforces the importance of
developing new reasoning paradigms capable of dynamic, context-sensitive
compositional problem solving.

33

2 — State-of-the-Art Solutions for ARC-AGI 1 and Their Performance on ARC-AGI 2

Table 2.2. Comparison of top-performing approaches on ARC-AGI 1
and ARC-AGI 2 benchmarks.
Approach | ARC- | ARC- | Characteristics | Limitations
AGI 1| AGI 2
Score | Score
Brute-force |~ 36% |~ 0% | Simple, no train- | Non-scalable,
DSL Search ing required poor generaliza-
tion

Grammar- ~T% |~ 0% | Evolves programs | Ineffective on

Guided EA using grammar | complex composi-

+ DSL rules tional tasks

GPT-40 + | 42-43% | =~ 0% | Strong program | Costly, brittle

LLM-driven priors combined | generalization

synthesis with search

OpenAl 03 | 75-87% | ~ 4% Program syn- | Fails on deep
thesis, chain- | multi-step reason-
of-thought, ing
test-time search

Test-time ~58% | ~ Adaptive infer- | Limited symbolic

Training 0-20% | ence, pattern | reasoning

Neural Mod- learning

els

34

2.6 — Summary and Insights

ARC-AGI LEADERBOARD

A
® Hurman Pane

MODEL PROVIDER: MODEL TYPE:
[ArC PRIZE 2024 B BASE LLM
MODEL PROVIDER ANTHROPIC B coT

) ¥
MODEL TYPE B8 COT + SYNTHESIS

. MISTRAL
OPENAL

XAL

Figure 2.5. ARC-AGI public leaderboard as of July 2025 [18]. Perfor-
mance comparison of various models on both ARC-AGI 1 (circles) and
ARC-AGI 2 (triangles). The chart highlights the persistent difficulty of
achieving high scores on ARC-AGI 2, with only a few models approaching
the threshold for the Grand Prize.

2.6.1 Future Directions Suggested by ARC-AGI 2 Re-
sults

The results of ARC-AGI 2 revealed structural limitations in existing program
synthesis and neural-based approaches, particularly in handling multi-step,
compositional reasoning tasks. As highlighted in the ARC Prize 2024 tech-
nical report [16], even high-performing models like OpenAl’s 08 exhibited
performance drops when facing tasks involving deeply nested transforma-
tions, variable-length sequences, or context-dependent rule applications.

35

2 — State-of-the-Art Solutions for ARC-AGI 1 and Their Performance on ARC-AGI 2

These findings suggest several promising directions for future research:

e Neuro-symbolic architectures: combining symbolic program induc-
tion with neural modules capable of learning abstract representations
and relational reasoning.

o Adaptive program synthesis: blend test-time search with meta-
learning techniques to flexibly modify search strategies according to the
task’s structure.

e Programmatic reinforcement learning: evolving reasoning policies
in discrete program spaces guided by performance feedback.

e Evolutionary algorithms for program induction: leveraging evo-
lutionary search over compositional program representations to improve
generalization and flexibility, as explored in this thesis.

These directions highlight the importance of hybrid and representation-based
methods for reduce the disparity between narrow Al systems and human-level
general reasoning abilities.

36

Part 11

37

Chapter 3

Evolving different
Geometric
Representations

3.1 Overview of the Proposed Approach

The ARC-AGI challenge has highlighted how conventional approaches to ab-
stract reasoning tasks such as brute-force program synthesis, large language
models (LLMs) and test-time training still struggle to perform flexible, multi-
step reasoning over symbolic domains. While recent breakthroughs like Ope-
nAT’s 03 model demonstrated the potential of combining program synthesis
with language priors and chain-of-thought reasoning, these systems remain
limited in scalability, interpretability, and compositional generalization, es-
pecially when applied to unseen tasks in the more demanding ARC-AGI 2
benchmark.

The method proposed in this thesis aims to explore a complementary re-
search direction based on evolutionary algorithms (EAs) and geometric rep-
resentations of ARC grids. The key idea is to convert the raw grid-based
input into multiple abstract representations, each capturing different struc-
tural and geometrical properties of the problem. For instance, an ARC grid
can be represented as:

o A list of individual pixels with their absolute positions and colors.

39

3 — Evolving different Geometric Representations

o A set of segments connecting neighboring pixels.

o A list of higher-level objects like figures, square; each characterized by
properties such as shape, color, size, position, and relative relationships.

Each representation is associated with a dedicated set of primitive geometric
actions, such as moving objects, changing their color, rotating them, or com-
bining adjacent shapes. The aim of the system is to automatically synthesize
a sequence of actions that transforms the input grid into the desired output
configuration.

Crucially, every action is paired with a selector, a parameterized configu-
ration that defines Which elements to act upon (e.g., all red pixels, a specific
object, or on group of object), How the action should be applied (e.g., move
up by one cell, recolor to blue, rotate by 90°) and possible grouping or order-
ing constraints, such as selecting elements based on position, color, or order.
This mechanism of selectors associated with actions introduces an additional
abstraction layer, enabling the system to compose flexible, context-aware
transformations.

The list of available actions for each representation is defined through an
initial analysis of the ARC task. In some cases, this preliminary inspection
allows excluding certain actions that are not relevant for the specific task,
effectively reducing the search space for the evolutionary algorithm and im-
proving its convergence speed. An evolutionary algorithm is then used to
evolve sequences of these action-selector pairs. The EA maintains a popu-
lation of individuals, each representing a candidate sequence of transforma-
tions, and iteratively refines this population through variation operators and
fitness-based selection. Two variants of the algorithm were designed:

» A single-example approach, where one evolutionary run is performed
for each example within a task, and the best-performing solution is se-
lected individually.

« A multi-example (multi-objective) approach, where a single evo-
lutionary run attempts to find a program that performs well across all
examples simultaneously, it can employ strategies like NSGA-II [19] and
lexicase selection [20] for balancing trade-offs between multiple objec-
tives.

40

3.2 — Problem Representation

The search process integrates various evolutionary operators. Parent selec-
tion is performed using strategies such as tournament selection and lexicase
selection. The system applies mutation operators to the action sequences, in-
cluding add, tweak, and swap mutations. Finally, survival selection is carried
out by either retaining the top-N individuals based on fitness or, in the second
variant of the system, by employing multi-objective sorting to balance differ-
ent optimization criteria. This approach aims to combine symbolic program
induction over structured representations with adaptive evolutionary search
mechanisms, offering a novel alternative for tackling the complex reasoning
problems posed by the ARC-AGI framework.

All the code used to implement the proposed system is available at the fol-
lowing GitHub repository: https://github.com/TurcoRiccardo/ARC_AGI.

3.2 Problem Representation

One of the standout features of the proposed system is its use of multiple
structured geometric representations for each ARC grid. The concept here is
to move beyond the raw grid and visualize it from different angles, with each
perspective shining a light on particular structural or spatial characteristics.
This approach enables us to tackle the problem at various levels of abstraction
and detail.

Some representations, such as the Color Layer representation and Border
representation, were initially considered but later discarded due to redun-
dancy with other structures or limited effectiveness in problem-solving. For
completeness, their associated selectors are still reported. The following rep-
resentations have been designed and implemented:

« Pixel Representation: The simplest form of a representation, where
the grid is seen as a list of individual pixels, each defined by its position
(x, y) and color.

« Row Representation: The grid is interpreted as a sequence of hori-
zontal rows. Each row is treated as a unit, enabling actions that operate

41

https://github.com/TurcoRiccardo/ARC_AGI

3 — Evolving different Geometric Representations

at the row level, such as shifting, recoloring, or modifying individual
pixels in a row.

Column Representation: Similar to Row Representation, but the grid
is decomposed into vertical columns, facilitating column-wise operations.

Color Layer Representation: Each color in the grid is isolated into a
separate binary grid (layer), where pixels of the target color are marked
and others are ignored. (Note: this idea was explored in early prototypes
but later discarded due to limited performance improvements.)

Rectangle Representation: The grid is parsed into rectangles, con-
tiguous blocks of pixels of the same color. Each rectangle is characterized
by its color, width, height, and absolute position relative to the top-left
corner of the grid.

Figure Representation: Connected groups of pixels (regardless of
shape) are clustered into figures. Each figure is associated with a color,
a shape pattern, and an absolute position. This abstraction allows rea-
soning about multi-pixel objects as single entities.

Color Figure Representation: An extension of Figure Representa-
tion where figures can be composed of multiple colors and are further
split into inner regions and borders. This enables actions that selectively
manipulate the borders or the central part of a figure.

Border Representation: The grid is analyzed to detect and represent
open and closed borders formed by contiguous pixels. (Note: this con-
cept was initially considered but was not further developed in the final
implementation.)

First Diagonal Representation: The grid is decomposed into diag-
onals running from the top-left to the bottom-right. Each diagonal can
be manipulated as a sequence.

Second Diagonal Representation: Similar to the First Diagonal
Representation, but the diagonals run from the top-right to the bottom-
left.

42

3.2 — Problem Representation

3.2.1 Available Actions per Representation

Each problem representation is associated with a set of basic actions, designed
to manipulate the elements of the representation according to geometric and
structural transformations. These actions constitute the atomic operators
used by the evolutionary algorithm to generate candidate solutions. Below
is the list of available actions for each representation:

Pixel Representation
e movePixel: moves the selected pixels by one unit in a specified direction.
o changeColorPixel: changes the color of selected pixels.
e removePixel: removes selected pixels.
o duplicatePixel: duplicates selected pixels.
o expandGrid: expands the grid size.

e reduceGrid: reduces the size of the grid.

Row Representation
e moveRow: moves a selected row by one unit.
o changeColorRow: changes the color of pixels in the selected row.
o changeColorRowPixel: changes the color of selected pixels within a row.
e modifyRowAdd: add pixels in a row.
o modifyRowDel: delete pixels in a row.
» modifyRowMove: swap pixels in a row.
o expandGrid: expands the grid size.

o reduceGrid: reduces the size of the grid.

43

3 — Evolving different Geometric Representations

Column Representation

moveColumn: moves a selected column by one unit.
changeColorColumn: changes the color of pixels in the selected column.

changeColorColumnPixel: changes the color of selected pixels within a
column.

modifyColumnAdd: add pixels in a column.
modifyColumnDel: delete pixels in a column.
modifyColumnMove: swap pixels in a column.
expandGrid: expands the grid size.

reduceGrid: reduces the size of the grid.

Color Layer Representation (discarded)

moveLayer: moves a selected layer by one unit.
moveLayerPixel: moves a selected pixel in a layer by one unit.
layerUnion: performs a union operation between 2 layers
delPixelLayer: delete pixels in a layer.

addPixelLayer: add pixels in a layer.

expandGrid: expands the grid size.

reduceGrid: reduces the size of the grid.

Rectangle Representation

moveRectangle: moves a selected rectangle by one unit.

changeColorRectangle: slightly changes the color of the selected rect-
angle.

removeRectangle: remove the selected rectangle from the rectangle list.

duplicateRectangle: duplicate the selected rectangle.
44

3.2 — Problem Representation

changeOrder: change the display order of the rectangles.
scaleUpRectangle: scale up the selected rectangle.
scaleDownRectangle: scale down the selected rectangle.
expandGrid: expands the grid size.

reduceGrid: reduces the size of the grid.

Figure Representation

moveFigure: moves a selected figure by one unit.
changeColorFigure: slightly changes the color of the selected figure.
addElementFigure_row: add a element in the figure in the selected row.

addElementFigure_column: add a element in the figure in the selected
column.

moveElementFigure row: move the selected row in the figure.
moveElementFigure column: move the selected column in the figure.

removeElementFigure row: remove the element in the selected figure
row.

removeElementFigure column: remove the element in the selected fig-
ure column.

duplicateFigure: duplicate the selected figure.

removeFigure: remove a figure from the figure list.

rotateFigure: rotate the selected figure.

mergeFigure: merge two figures that are next to each other.
divideFigure_row: divide the selected figure based on the selected row.

divideFigure_column: divide the selected figure based on the selected
column.

changeOrder: change the display order of the figures.
expandGrid: expands the grid size.

reduceGrid: reduces the size of the grid.

45

3 — Evolving different Geometric Representations

Color Figure Representation

moveFigure: moves a selected figure by one unit.

changeColorFigureBorder: changes the color of the border of the figure
index based on color.

changeColorFigureCenter: changes the color of the center of the figure
index according to the color.

changeColorFigure row_column: changes the color of a pixel in the
figure index based on color.

fillFigureCenter: fill the center of the figure index based on color.
expandFigure: expand the figure in the direction.
reduceFigure: reduce the figure in the direction.

addElementFigure_row_column: add a element in the figure in the se-
lected row and column.

moveElementFigure row_column: move a pixel in the figure based on
the direction.

removeElementFigure row_column: remove the element in the figure
in the selected row and column.

duplicateFigure: duplicate the selected figure from the figure list.
removeFigure: remove a figure from the figure list based on the index.

rotateFigure: rotate the selected figure from the figure list to the right
or to the left.

mergeFigure: merge two figures that are next to each other of the same
color.

divideFigure_row: divide the selected figure based on the selected row.

divideFigure_column: divide the selected figure based on the selected
column.

changeOrder: change the display order of the figures.
expandGrid: expands the grid size.

reduceGrid: reduces the size of the grid.

46

3.2 — Problem Representation

Border Representation (discarded)
e moveBorder: moves a selected border by one unit.
o changeColorBorder: slightly changes the color of the selected border.

o changeColorCenter2: slightly changes the color of the central colored
pixel of the selected border.

o changeColorCenter3: slightly changes the color of the central area of
the selected border.

o modifyBorderFigure: slightly changes the dimension of the selected
border.

o expandGrid: expands the grid size.

e reduceGrid: reduces the size of the grid.

First Diagonal Representation
» moveDiagonal: moves a selected diagonal by one unit.

o changeColorDiagonal: slightly changes the color of the pixel in the
selected diagonal.

o changeColorDiagonalPixel: changes the color of the selected pixel in
the diagonal index based on color.

» modifyDiagonalAdd: add a new colored pixel in the selected diagonal.
» modifyDiagonalDel: delete a colored pixel in the selected diagonal.

o modifyDiagonalMove: modify the selected diagonal by swapping two
pixels.

o expandGrid: expands the grid size.

o reduceGrid: reduces the size of the grid.

47

3 — Evolving different Geometric Representations

Second Diagonal Representation
» moveDiagonal: moves a selected diagonal by one unit.

o changeColorDiagonal: slightly changes the color of the pixel in the
selected diagonal.

o changeColorDiagonalPixel: changes the color of the selected pixel in
the diagonal index based on color.

o modifyDiagonalAdd: add a new colored pixel in the selected diagonal.
» modifyDiagonalDel: delete a colored pixel in the selected diagonal.

» modifyDiagonalMove: modify the selected diagonal by swapping two
pixels.

e expandGrid: expands the grid size.

e reduceGrid: reduces the size of the grid.

3.2.2 Selectors

In addition to the actions associated with each representation, the proposed
system employs a set of selectors. Selectors are responsible for providing the
parameters required by the actions and for specifying selection or grouping
criteria over the elements of a given representation. Essentially, a selector
determines:

o Which objects within a representation should be selected for manipula-
tion.

e How the selected objects should be grouped, ordered, or prioritized.

» The specific parameters to be used by an action (such as a target color,
a movement direction, or a shape property).

The meaning and usage of selector parameters are representation-dependent.
Each representation interprets selectors according to the structural charac-
teristics of its elements and the type of operations available. Some represen-
tations, such as the Color Layer and Border, were initially considered but
later discarded due to redundancy with other structures or limited effective-
ness in problem-solving. For completeness, their associated selectors are still
reported here.

48

3.2 — Problem Representation

Pixel Representation
We can select or group pixels in various ways:

based on the order of the pixel list

based on the reverse order of the pixel list

based on the central pixel in the pixel list

based on the color of the pixel

selecting all the pixels

Row Representation
We can select or group rows in various ways:

based on the order of the row list

based on the reverse order of the row list

based on the central row in the row list

based on whether the row contains a certain color

selecting all the rows

We can also select or group the components within a row:

based on the order of the components

based on the reverse order of the components

based on the central component in the row

based on the color of the components in the row

selecting all the components in the row

Column Representation
We can select or group columns in various ways:

¢ based on the order of the column list
¢ based on the reverse order of the column list

e based on the central column in the column list

49

3 — Evolving different Geometric Representations

e based on whether the column contains a certain color
o selecting all the columns
We can also select or group the components within a column:

e based on the order of the components

based on the reverse order of the components

based on the central component in the column

based on the color of the components in the column

selecting all the components in the column

Color Layer Representation (discarded)
We can select or group layers in various ways:

e based on the order of the color associated with each layer
 selecting all the layers
And select or group the components of a layer:
e based on the order of the pixels in the layer
o based on the reverse order of the pixels in the layer
e based on the central pixel in the layer

 selecting all the pixels in the layer

Rectangle Representation
We can select or group rectangles in various ways:

based on the order of the rectangle list

based on the reverse order of the rectangle list

based on the central rectangle in the rectangle list

based on the color of the rectangle

selecting all the rectangles

50

3.2 — Problem Representation

Figure Representation
We can select or group figures in various ways:

based on the order of the figure list

based on the reverse order of the figure list

based on the central figure in the figure list

based on the color of the figure

selecting all the figures

We can also select or group the components of a figure:

based on the order, reverse order, or central row within the figure

selecting all the rows

based on the order, reverse order, or central column within the figure

selecting all the columns

Color Figure Representation
We can select or group figures in various ways:

based on the order of the figure list

based on the reverse order of the figure list

based on the central figure in the figure list

based on whether a figure contains a certain color

selecting all the figures

We can also select or group the components of a figure:

based on the order, reverse order, or central row within the figure

selecting all the rows

based on the order, reverse order, or central column within the figure

selecting all the columns

o1

3 — Evolving different Geometric Representations

Border Representation (discarded)
We can select or group borders in various ways:

» based on the order of the border list

o based on the reverse order of the border list
» based on the central border in the border list
o based on the color of the center area

 selecting all the borders
We can also select or group the components within a border:

e based on the order, reverse order, or central pixel within the border

« selecting all the pixels in the border

First and Second Diagonal Representation
We can select or group diagonals in various ways:

e based on the order of the diagonal list

based on the reverse order of the diagonal list

based on the central diagonal in the list

based on whether the diagonal contains a certain color

selecting all the diagonals
We can also select or group the components of a diagonal:

e based on the order, reverse order, or central component within the di-
agonal

e based on the color of the components

« selecting all the components in the diagonal

Overall, selectors play a crucial role in determining how actions are applied
within each representation. By providing a flexible and configurable mecha-
nism for selecting and grouping elements, they allow the system to adapt to
a wide variety of transformation tasks in ARC.

52

3.3 — Evolutionary Algorithm

Table 3.1. Summary of how objects can be grouped by the selector
based on representation

Representation Order | Reverse | Center | By Color | All
Pixel

Row

Column

Rectangle

Figure

Color Figure
First/Second Diagonal
Color Layer (discarded)
Border (discarded)

SRR Rl Rl
SRR sRals
SRR eR el eRals

SRR R e e
R Rl e e

>~
>~
>~

Table 3.2. Summary of how object component can be grouped by
selector based on representation

Representation Order | Reverse | Center | By Color | All
Pixel - - - - -
Row X X X X X
Column X X X X X
Rectangle - - - - -
Figure X X X - X
Color Figure X X X - X
First/Second Diagonal X X X X X
Color Layer (discarded) X X X - X
Border (discarded) X X X - X

3.3 Evolutionary Algorithm

Once the problem has been represented through one or more geometric ab-
stractions, and a set of available actions and selectors has been defined for
each, the core of the proposed system consists of an evolutionary algorithm
designed to automatically synthesize a sequence of action-selector pairs ca-
pable of transforming an input grid into its corresponding output.

Two different evolutionary strategies have been developed that differ in
how they manage the training examples within a task. Specifically, a first
variant performs a separate evolutionary run for each training example and

53

3 — Evolving different Geometric Representations

representation, while a second variant operates across all training examples
simultaneously for each representation.

3.3.1 Single-Example Per Representation Evolution

In the first approach, for each representation and each training example, an
independent evolutionary run is performed. This procedure begins by gener-
ating an initial population of candidate solutions using a simplified version
of the evolutionary algorithm, which only applies the add mutation opera-
tor. This ensures that the initial population contains not empty individuals
with at least one action-selector pair, and also to promote diversity, a small
number of empty individuals are also added.

Once the initial population is prepared, the evolutionary process itera-
tively applies selection, mutation, and survival steps:

1. Tournament selection is used to choose individuals for mutation.

2. Selected individuals undergo mutation operations (described in the next
section) according to predefined probabilities.

3. A fitness function tailored for each specific representation to assesses how
good each individual is, usually by looking at the spatial or structural
differences between what’s produced and the desired target.

4. Survival selection retains the top-performing individuals in the pop-
ulation.

After the evolutionary run has ended, the best individual is applied to all
other training examples within the task. A score is then computed for this
individual based on the average error rate (ratio of incorrect to correct pixels)
across all other training examples. In addition, a penalty is added if the
program does not produce a solution equal to the training output result, also
another penalty proportional to the number of actions in the individual is
added, favoring simpler solutions.

This procedure is repeated for all available representations, and the action-
selector sequence with the highest score is ultimately applied to the test input
grid to generate the final output.

54

3.3 — Evolutionary Algorithm

rappresentation 1

[]
i best individual across

. training example \

individual

\ | rappresentation N /

Figure 3.1. Single-Example Evolution: for each representation and training
example, a dedicated evolutionary algorithm instance is executed, and the
best individual is selected based on scoring across training examples.

3.3.2 Multi-Example Per Representation Evolution

The second evolutionary strategy operates differently: for each representa-
tion, a single evolutionary run is performed using the entire set of training
examples simultaneously. This variant is designed as a multi-objective evolu-
tionary algorithm, seeking programs capable of generalizing across multiple
examples.

As in the previous approach, the initial population is generated using a
simplified evolutionary algorithm that use only the add_mutation operator,
with a small number of empty individuals included to increase population
diversity. During evolution:

1. Two parent selection methods are available:

o Tournament Selection, as in the first variant.

« Lexicase Selection [20], which tends to perform better in multi-
objective contexts by preserving individuals that excel in different
specific cases.

2. The mutation operators described in the next section are applied ac-
cording to predefined probabilities.

3. Each individual is evaluated by applying it to all training examples,
using the same fitness criteria as in the first variant.

4. Fitness values are then aggregated using one of two strategies:

95

3 — Evolving different Geometric Representations

o Aggregated Fitness, computed as the sum of fitness scores across
all examples.

o NSGA-II [19], an elitist Pareto-based sorting method that main-
tains a diverse set of non-dominated solutions, promoting trade-offs
between competing objectives.

5. Survival selection preserves the best individuals according to the se-
lected multi-objective strategy.

At the end of the evolutionary run, the best individual for each representation
is selected based on the aggregated fitness, and the final program to be
applied to the test input grid is chosen by comparing these best individuals.

rappresentation 1

best performing
individual

\ ‘ rappresentation N /

Figure 3.2. Multi-Example Evolution: for each representation, a multi-
objective evolutionary algorithm is executed across all training exam-
ples, combining fitness values into an aggregate fitness to identify the
best performing individual.

3.3.3 Mutation Operators

Both evolutionary strategies described above rely on the same set of mu-
tation operators to introduce variations in the candidate solutions. These
operators modify individuals by altering the sequence of action-selector pairs
in different ways:

e add_mutation: Adds a new action-selector pair to the individual’s pro-
gram, expanding its behavior.

o6

3.4 — Single-Example vs Multi-Example Evolution

o tweak mutation: Modifies the selector associated with a specific action,
typically by altering its parameters or replacing it with a slightly different
one.

e swap_mutation: Swaps the positions of two pairs of action-selectors in
the program, which can change the order of operations and ultimately
affect the final outcome.

These mutation operators are applied based on specific probabilities to strike
a balance between exploring new possibilities and exploiting known ones
during the evolutionary process.

3.4 Single-Example vs Multi-Example Evolu-
tion

The two evolutionary strategies described in the previous sections present
complementary advantages and limitations, which primarily depend on how
the training examples are processed and how the evolutionary algorithm (EA)
is guided toward a solution.

The Single-Example Evolution approach makes things a bit easier for
the EA by focusing on just one training example at a time. By narrowing
its goal also the complexity decrease allowing the evolutionary process to
focus exclusively on the patterns and transformations present within a single
specific example, making it generally easier for the algorithm to discover a
valid solution. Plus, this method usually needs fewer generations to reach a
conclusion since the search space is more limited.

On the flip side, a major drawback of this method is the inability to cap-
ture rules or transformations that are distributed across multiple training
examples. For example, if one training example demonstrates a rule that
changes blue pixels into yellow, while another example has a different rule
that turns orange pixels to red, the Single-Example Evolution strategy can-
not produce a single solution capable of applying both transformations unless
those rules can be clearly identified within the same training grid. Conse-
quently, this approach tends to overfit to individual examples, limiting its
capacity to generalize to unseen grids.

57

3 — Evolving different Geometric Representations

On the other hand, the Multi-Example Evolution approach addresses
this limitation by evolving programs across all training examples of a task si-
multaneously. This design enables the algorithm to synthesize programs that
aggregate transformations from different grids, making it possible to capture
more complex and general rules that are distributed across the training grids.
In principle, this allows for greater generalization capability and a more faith-
ful modeling of the underlying task logic.

Evolving programs in a multi-objective setting comes with its fair share of
challenges. One of the biggest hurdles is figuring out how to combine fitness
values from various training examples. Often, an action that improves the
fitness on some grids may simultaneously worsen it on others. This conflict
makes the search process tricky, often preventing the EA from effectively
converging toward a globally satisfactory solution. While there are sophisti-
cated methods like Lezicase Selection and NSGA-II that aim to mitigate this
issue, the difficulty in balancing competing objectives remains a significant
limitation of this approach.

In summary, the choice between Single-Example and Multi-Example Evo-
lution involves a trade-off between ease of optimization and the ability to
generalize across different training examples. The former makes the search
simpler but limits expressiveness, while the latter enhances modeling capa-
bilities but complicates convergence due to those conflicting fitness goals.

3.5 Summary of the Proposed Methodology

This section summarizes the proposed approach for solving the ARC tasks
using evolutionary algorithms applied to multiple geometric representations
on the grids. The methodology can be divided into the following main steps:

1. Geometric Representations: Each ARC grid is transformed into one
or more alternative geometric representations. These representations
capture the different spatial and structural properties of objects, the
correlations between them and their relationships within the grid.

2. Initial Analysis: An initial analysis of the ARC task is also performed
58

3.5 — Summary of the Proposed Methodology

to identify the most relevant actions for each representation. This pre-
liminary inspection allows excluding unnecessary actions that are un-
likely to be useful for the specific task, reducing the search space for
the evolutionary algorithm and potentially improving its efficiency and
convergence.

. Initial Population Generation: For each representation, the program
generate an initial population of individuals using a simplified evolution-
ary algorithm. This preliminary step, based solely on the add_mutation
operation, guarantees the creation of non-empty individuals, then to
increase diversity we add some empty individuals to the population.

. Evolutionary Algorithm Execution: Two alternative strategies are
applied:

« Single-Example Evolution: An evolutionary algorithm is exe-
cuted independently for each training example and representation.
The best individual is selected and evaluated across the other train-
ing examples, scoring its performance based on error rate and solu-
tion quality. The best-performing individual among all representa-
tions is then applied to the test grid.

o Multi-Example Evolution: A single evolutionary algorithm is ex-
ecuted for each representation across all training examples simulta-
neously. The fitness function aggregates the performance on multiple
examples and the representation whose best individual achieves the
highest aggregated fitness is applied to the test grid.

. Mutation Operators: The evolutionary process uses on three muta-
tion operators:

e add_mutation: adds a new action-selector pair to an individual.

o tweak__mutation: modifies the selector of a specific action in the
individual.

o swap_mutation: swaps the positions of two action-selector pairs
within the individual.

. Parent Selection Individuals are selected for mutation using tourna-
ment selection (or lexicase selection in the multi-example case).

. Survival Selection Survival selection retains the top-performing indi-
viduals based on either individual fitness values or aggregated multi-
objective performance.

99

3 — Evolving different Geometric Representations

8. Solution Generation: The best individual from the selected represen-
tation is applied to the test grid to generate the final predicted solution.

This methodology allows the system to dynamically exploit different repre-
sentations of the grid while adapting the evolutionary search process to either
single-example or multi-example optimization scenarios.

60

Chapter 4

Analysis of results

4.1 Introduction

This chapter presents a detailed analysis of the results obtained by applying
the two evolutionary approaches described in Chapter 3 to a set of selected
ARC-AGI tasks. The goal of this analysis is to evaluate the effectiveness,
robustness, and limitations of both the Single-FExample Fvolution and the
Multi- Example Evolution strategies, highlighting the impact of different se-
lection methods, fitness aggregation techniques, and grid representations on
the overall performance.

In particular, we compare the two methods in terms of training and test
performance, number of actions used in the generated solutions, and con-
vergence speed. Additionally, we investigate how different representations of
the grids influence the evolutionary process and assess the effect of various
selection and survival strategies in multi-objective scenarios.

4.2 Experimental Setup

The experiments were conducted on a standard hardware setup, and all al-
gorithms were implemented in Python. A set of 10 tasks from the public
ARC-AGI training set was selected for evaluation, covering different types of
grid transformations and varying numbers of training examples. Table 4.1
summarizes the selected tasks:

61

4 — Analysis of results

Table 4.1. Overview of the selected ARC-AGI tasks

Task ID | Description Training Examples

007bbfb7 | Pattern repetition

00d62c1b | Fill the central part of a random figure

017c7c7b | Pattern repetition

025d127b | Figure transformation based on translation

045e512¢ | Figure duplication and pattern repetition

0520fde7 | Color pixels on condition

05269061 | Pattern repetition

0522901 | Unify two random figures

06df4c85 | Connect dots within a noisy grid

DO Q| W[W W W N W Ot Ot

08ed6ac7 | Color columns based on height

A task is considered correctly solved when the predicted output grid matches
the expected output for all testing examples.

For both evolutionary approaches, the following parameters were kept con-
stant:

e Population size: 50 individuals

e« Mutation probabilities: add mutation = 0.2, tweak mutation =
0.4, swap_mutation = 0.4

o Initial population: generated by a simplified EA using only add _mutation
and some empty individuals.

e Termination criteria: Each run continues until the maximum number
of generations per task is reached. Even if a valid solution was found
before these limits, the algorithm continued evolving the population in
an attempt to discover more optimized solutions with a reduced number
of actions.

Specific parameters for each approach:
» Single-Example Evolution:

— Maximum number of generations: 2500

— Selection method: Tournament Selection with a tournament size of
2

62

4.3 — Results and Discussion

— Survival strategy: Top-N individuals, with N = 50
— Fitness function: representation-specific fitness based on distances
between objects and color values
e Multi-Example Evolution:
— Maximum number of generations: depending on the problem size
(from 1000 to 8000)
— Selection method: Lexicase Selection

— Survival strategy: either based on Aggregate Fitness or using
NSGA-II

— Fitness aggregation: sum of fitness values computed across all train-
ing examples

To account for the stochastic nature of the evolutionary algorithms, each
experiment was repeated 10 times, and the final results were averaged.

4.3 Results and Discussion

The performance of the proposed evolutionary approaches was evaluated on
the 10 ARC-AGI tasks shown in the experimental setup. Each configuration
was run 10 times to account for the stochastic nature of the algorithms, and
the average number of correctly solved tasks per run was recorded.

The results can be summarized as follows:

e The Single-Example Evolution approach successfully solved up to 3
out of 10 tasks in the best run, with an average of 2 out of 10 tasks
correctly solved across the 10 iterations.

e The Multi-Example Evolution approach achieved an average of only
1 out of 10 tasks correctly solved per run and can successfully solved
up to 3 out of 10 tasks in the best run.

The results showed a moderate variance across different runs, with the single-
example evolution showing relatively stable performance and the multi-example

63

4 — Analysis of results

evolution occasionally producing higher-performing solutions but with less
consistency.

Although the Multi-Example algorithm is conceptually more powerful, be-
ing capable of capturing rules shared across different training examples, its
search space is significantly larger, which negatively affects its convergence
speed and overall performance within the limited computational resources.
The combination of Lexicase Selection and NSGA-II was employed to mit-
igate this issue by improving selective pressure and maintaining diversity,
but this was not sufficient to fully overcome the difficulty introduced by the
expanded search space.

In contrast, the Single-Example approach simplifies the problem for the
evolutionary algorithm by focusing on one training example at a time. This
reduces the complexity of the search space and allows the algorithm to con-
verge more easily to a valid solution. However, this method cannot capture
rules that are expressed across multiple grids, limiting its generalization abil-
ity, tasks where different rules appear in separate training examples can’t be
solved.

These results highlight the tradeoff between search space complexity and
rule generalization capability. The Multi-Example strategy is definitely an
exciting avenue to explore, thanks to its theoretical benefits. However, we
still need to make some strides in refining evolutionary search operators,
fitness aggregation methods, and selection mechanisms to effectively tackle
the growing complexity of multi-objective optimization in this area.

Table 4.2. Summary of average and best-case performance for the two
evolutionary approaches over 10 ARC-AGI tasks.

Approach Best Case (tasks solved) | Average (tasks solved)
Single-Example 3/10 2/10
Multi-Example 3/10 1/10

In conclusion, while the Multi-Example strategy remains promising, fur-
ther work is required to improve evolutionary search techniques and aggre-
gation mechanisms in order to fully exploit its capabilities.

64

4.4 — Qualitative Analysis of Individual Tasks

4.4 Qualitative Analysis of Individual Tasks

This section presents a qualitative, task-by-task analysis of how the proposed
algorithms perform on the test cases introduced in the experimental setup.
Rather than focusing solely on aggregate performance metrics, we examine
the specific behaviors exhibited by the system for each task, highlighting
both effective strategies and recurring failure modes.

For every task, we break down the problem, explore potential solutions,
and highlight the types of errors observed. This detailed analysis not only
sheds light on the strengths and weaknesses of our approach across various
contexts but also offers valuable insights that can steer future enhancements.

Task 007bbfb7
This task involves identifying a 3x3 pattern of colored blocks and reproduce
the same structure multiple times within a larger 9x9 grid based on the
position of a reference colored pixel.

The current algorithms fail to solve this task, as they lack a representation
capable of treating a sub-grid as a compositional unit and capturing spatial
correlations between such units.

Task demonstration Testinput grid 1/1 [Nex tes Load task JSON: [Browse. Random.

aaaaaaa 007bbfb7.json

Show symbol number:

Change grid size: (33 |[Resize
Copy from input | [Resetgrid | (EZED

ect Flood fill

Figure 4.1. ARC task 007bbfb7. The goal is to identify a 3x3 pattern and
replicate it in a larger grid.

65

4 — Analysis of results

Task 00d62c1b
In this task, the system must detect green polygonal structures in the input
grid and determine whether they are fully enclosed. If a closed shape is
detected, its interior must be filled with yellow; otherwise, no modification
is made.

Both the single-example and multi-example algorithms are able to solve
this task, the geometric representations used are effective at distinguishing
between interior and exterior regions.

Testinput grid 1/1 | Next testinput Load task JSON: | Browse... | [Random
Task name: 00dé2c1b.json

Show symbol numbers:

EEEEE EEE Change grid size: (323
=III -

® Edit Select Flood fill

Figure 4.2. ARC task 00d62c1b. The objective is to detect closed green
shapes and fill them with yellow.

Task 017c7c7b
This task involves swapping out all the blue cells for red ones while keeping
the original layout intact and expanding the pattern into a larger dimensional
grid.

The current algorithms are unable to solve this task. A better representa-
tion is needed—one that can model repetition and continuation of patterns
in space.

66

4.4 — Qualitative Analysis of Individual Tasks

Task demonstration Testinput grid 1/1 | Next test input Load task JSON: | Browse. Random
Task name: 017c7c7b.json

Show symbol numbers:

Change grid size: [33 Resize

Copy from input | [Reset grid

Edit Select Flood fill

Figure 4.3. ARC task 017c7c7b. The transformation involves extending a
repeated pattern using a new color.

Task 025d127b
This task requires shifting the upper part of a figure to the right while keeping
the base fixed. The color of the figures and dimensions of the grid remain
unchanged.

Both algorithms can solve this task, but it’s not without its challenges.
The real trick is figuring out how to isolate and transform just a part of the
figure while keeping the rest unchanged for the subsequent translation.

Task demonstration Testinput grid 1/1 | Next test input Load task JSON: | Browse Random.

Figure 4.4. ARC task 025d127b. The transformation consists of shifting the
top part of a figure to the right.

Task name: 025d127b.json

Show symbol numbers:

Change grid size: [3x3__|[Resize

Copy from input | [Resetgrid | (X

® Edit Select Flood fill

HEE .

67

4 — Analysis of results

Task 045e512c
This task requires duplicating a figure in a specified direction and color, while
keeping the overall grid size unchanged.

The current algorithms are unable to solve this task. Despite having
some mechanisms for duplication and translation, they fail to generalize the
repetition of patterns in spatial directions.

Task demonstration Testinput grid 1/1 [Next test input Load task JSON: [Browse. | [Random... |

Figure 4.5. ARC task 045e512c. The transformation involves duplicating a
figure in the indicated direction using a specified color.

Task name: 045e512cjson

Show symbol numbers: [J

[Copy from input | [Resetgrid | ([ETEIN

@ Edit O Select O Flood fill

Task 0520fde7

In this task, the input grid contains two 3x3 patterns separated by a gray

line. The goal is to color in red the pixels that are present in both patterns.
The current algorithms are not able to solve this task. A more advanced

representation is required, capable of identifying distinct subregions and eval-

uating logical conditions between them.

68

4.4 — Qualitative Analysis of Individual Tasks

Task demonstration Testinput grid 1/1 [Next test input | Load task JSON: [Browse... | [Random... |

Task name: 0520fde7.json

Show symbol numbers: [

Change grid size: [3x3__|[Resize]
] EXZE

| Copy from input | [Rese

© Edit O Select O Floodfill

Figure 4.6. ARC task 0520fde7. The transformation involves coloring in
red the pixels that appear in both 3x3 patterns.

Task 05269061
This task is all about spreading diagonals of various colors throughout the
entire grid, starting from a given diagonal setup. The size of the grid stays
the same.

The current algorithms are unable to solve this task due to the lack of
pattern generalization, recognition and repetition mechanisms in oblique di-
rections.

Task demonstration Testinput grid 1/1 [Nexttest input Load task JSON: [Browse. | [Random... |

s
v

Task name: 05269061 json

Show symbol numbers: [

Change grid size: [33 |[Resize]
(Cony frominput | (Resetoid] (SN

@© Edit O Select O Flood fill

Figure 4.7. ARC task 05269061. The transformation consists of repeating
colored diagonals across the grid.

69

4 — Analysis of results

Task 05f2a901
The objective of this task is to move the red figure toward the blue one until
they make contact. The size of the grid remains unchanged.

Although the algorithms can recognize and move shapes, they are not
equipped with the concept of movement driven by goal satisfaction or termi-
nation upon contact.

Task demonstration Testinput grid 1/1 [Next test input | Load task JSON: [Browse... | [Random

Task name: 05f2a901.json

Show symbol numbers: [

Change grid size: [3x3 | [Resize |
[Copy frominput | [Resetgrid | ([ETEIN

® Edit O Select O Flood fill

Figure 4.8. ARC task 056£2a901. The red figure must be moved toward the
blue one until they touch.

Task 06df4c85

This task requires connecting pairs of points with lines of the same color but

with a virtual grid overlays the canvas that defines the connection points.
The current algorithms cannot solve this task due to the absence of a

mechanism for connecting points via lines. Additionally, the task is compu-

tationally expensive because of the large grid size and the number of objects

created by certain representations.

70

4.4 — Qualitative Analysis of Individual Tasks

Task demonstration Testinput grid 1/1 | Nexttestinput | Load task JSON: |[Browse... | [Random... |
Task name: 06df4c85.json

Show symbol numbers: [J

Change grid size: [33 | [Resize |

[Copy from input | [Resetgrid | ([EXEED

® Edit O Select O Floodfill

Figure 4.9. ARC task 06df4c85. The transformation consists of con-
necting colored points with lines.

Task 08ed6ac7

In this task the represented gray columns must be colored based on their

height, from tallest to shortest, using the colors blue, red, green, and yellow.
Both algorithms are able to solve this task. The system successfully corre-

lates color assignments with column height to generalize the transformation

rule.

Task demonstration Testinput grid 171 [Next Load task JSON: [Browse | [Random__]

Figure 4.10. ARC task 08ed6ac7. The transformation consists of coloring
columns based on their height.

Task name: 08ed6ac7.json

Show symbol numbers: [

[Copy frominput | [Resetgrid | ([ETI

@ Edit O Select O Flood fill

71

72

Chapter 5

Conclusion

This thesis presented an evolutionary framework for solving tasks from the
ARC-AGI challenge, leveraging multiple geometric representations of the in-
put grids and evolutionary algorithms tailored for both single-example and
multi-example optimization scenarios.

The proposed methodology leverages the flexibility of viewing grid-based
problems from various geometric angles, paired with an evolutionary process
that can uncover sequences of actions to transform input grids into desired
outputs. A crucial part of this framework is the initial task analysis phase,
which identifies the best set of actions to use for each representation. This
step helps narrow down the search space and boosts the efficiency of the
evolutionary search.

Two different evolutionary strategies were compared:

e Single-Example Evolution: where an independent evolutionary al-
gorithm is executed for each training example and representation, sim-
plifying the search objective but limiting the ability to generalize rules
across multiple grids.

e Multi-Example Evolution: where a single evolutionary process op-
erates on all training examples simultaneously for each representation,
enabling the discovery of more generalizable transformations but increas-
ing the complexity of the search space.

The experimental evaluation, conducted on a set of 10 ARC-AGI tasks,
showed that the single-example evolution strategy achieved better average

73

5 — Conclusion

and best-case performance compared to the multi-example strategy. Specifi-
cally, the single-example approach successfully solved up to 3 out of 10 tasks
in the best run, with an average of 2 tasks per run, while the multi-example
approach achieved a lower average performance, solving approximately 1 task
per run. Despite its conceptual advantages, the multi-example algorithm
struggled with the large and complex search space, and current selection and
survival strategies such as Lexicase Selection and NSGA-II, while helpful,
were not sufficient to overcome this limitation.

5.1 Limitations

Despite the initial promising results and the flexibility of the proposed frame-
work, several limitations emerged during the experimental evaluation:

e Limited Task Set: The evaluation was conducted on a relatively small
subset of 10 ARC-AGI training examples. Although these tasks were
chosen to cover different types of transformations, a larger and more
varied evaluation would provide a more reliable assessment of the frame-
work’s generalization capabilities.

o Fixed Algorithm Parameters: The parameters of the evolutionary
algorithm, like mutation probabilities and the number of generations,
were kept the same for all tasks and representations. While this approach
simplifies the experimental setup, it might not be the best fit for every
example and could have affected performance on certain tasks.

e Search Space Complexity: The search space remains very large, es-
pecially in the multi-example setting, where the algorithm must simulta-
neously discover solutions compatible with multiple training examples.
Although selection strategies such as Lexicase Selection and NSGA-II
were employed to address this issue, they were not sufficient to fully
overcome the difficulties posed by the high dimensionality and complex-
ity of the search space.

e Termination Criteria: The evolutionary algorithms were designed to
continue evolving until the maximum number of generations was reached
or the time limit expired. Even when a correct solution was found,
the search continued in order to potentially discover more optimized
solutions with a lower number of actions. While this allows for solution

74

5.2 — Future Work

refinement, it can also result in unnecessary computational effort once a
satisfactory solution is already available.

« Dependence on Predefined Representations: The performance of
the framework depends on how good and expressive the chosen geometric
representations are. If there are tasks that need reasoning methods that
the current representations just can’t handle, those might end up being
left unsolved or only poorly approximated.

These limitations suggest several possibilities for future work, including au-
tomatic parameter tuning, dynamic representation selection, and the devel-
opment of advanced evolutionary operators in line with the specific structure

of the ARC-AGI problems.

5.2 Future Work

Several directions for future improvements and extensions of this work can

be identified:

« Enhancing the initial task analysis phase to automatically infer suitable
action sets and reduce the search space even further.

e Develop new actions that cover basic geometry and topology concept
not covered by current actions in each representation.

e Develop new representations that cover logical and geometric concepts
not covered by current representations.

o Improving fitness functions to try to increase convergence speed.

o Investigating more advanced evolutionary techniques, such as adaptive
mutation rates or hybrid methods combining evolutionary algorithms
with program synthesis approaches and neural networks, aiming to im-
prove generalization capabilities and convergence speed.

» Expanding the evaluation to a larger and more diverse subset of ARC-
AGI tasks to assess the generality and robustness of the proposed frame-
work.

75

5 — Conclusion

Overall, this work demonstrates the potential of evolutionary algorithms
combined with geometric representations for solving complex grid-based rea-
soning tasks, while highlighting the challenges associated with multi-example
optimization in such domains.

76

References

[1] Chollet, F. (2019). On the measure of intelligence. arXiv preprint
arXiv:1911.01547.

[2] Goertzel, B. (2014). Artificial general intelligence: Concept, state of the
art, and future prospects. Journal of Artificial General Intelligence, 5(1),
1.

(3] Legg, S., & Hutter, M. (2007). Universal intelligence: A definition of
machine intelligence. Minds and machines, 17(4), 391-444.

[4] Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017).
Building machines that learn and think like people. Behavioral and brain
sciences, 40, e253.

[5] Chollet, F. (2019). The abstraction and reasoning corpus (ARC). Unpub-
lished manuscript.

[6] Chollet, F., Knoop, M., Kamradt, G., & Landers, B. (2024). Arc prize
2024: Technical report. arXiv preprint arXiv:2412.04604.

[7] Chollet, F., Tong, K., Reade, W., & Elliott, J. (2020). Abstrac-
tion and reasoning challenge. Retrieved from https://kaggle.com/
competitions/abstraction-and-reasoning-challenge

[8] Besold, T. R., Bader, S., Bowman, H., Domingos, P., Hitzler, P., Kiihn-
berger, K. U., ... & Zaverucha, G. (2021). Neural-symbolic learning and
reasoning: A survey and interpretation. In Neuro-symbolic artificial intel-
ligence: The state of the art (pp. 1-51). IOS Press.

[9] Kalyan, A., Mohta, A., Polozov, O., Batra, D., Jain, P., & Gulwani,
S. (2018). Neural-guided deductive search for real-time program synthesis
from examples. arXiv preprint arXiv:1804.01186.

[10] Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, 1., Aleman,
F. L., ... & Anadkat, S. (2023). GPT-4 technical report. arXiv preprint
arXiv:2303.08774.

[11] Anil, R., Borgeaud, S., Alayrac, J. B., Yu, J., Soricut, R., ... & Blanco,
L. (2023). Gemini: A family of highly capable multimodal models. arXiv
preprint arXiv:2312.11805.

77

https://kaggle.com/competitions/abstraction-and-reasoning-challenge
https://kaggle.com/competitions/abstraction-and-reasoning-challenge

References

[12] Introducing Claude 3, Anthropic 2024 https://www-cdn.anthropic.
com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model Card_
Claude_3.pdf

[13] ARC Prize (2024). Abstraction and reasoning chal-
lenge: Blog. Retrieved from https://arcprize.org/blog/
beat-arc-agi-deep-learning-and-program-synthesis

[14] Greenblatt, R. (2024, July). Getting 50% (SoTA) on ARC-AGI with
GPT-40. Blog post.

[15] Chollet, F., Knoop, M., Kamradt, G., & Landers, B. (2024). ARC Prize
2024: Technical report. arXiv preprint arXiv:2412.04604.

[16] Chollet, F., Knoop, M., Kamradt, G., Landers, B., & Pinkard, H. (2025).
ARC-AGI-2: A new challenge for frontier Al reasoning systems. arXiv
preprint arXiv:2505.11831.

[17] ARC Prize (2024). Abstraction and reasoning challenge. Retrieved from
https://arcprize.org/

[18] ARC Prize (2024). Leaderboard. Retrieved from https://arcprize.
org/leaderboard

[19] Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans-
actions on Evolutionary Computation, 6(2), 182-197.

[20] La Cava, W., Helmuth, T., Spector, L., & Moore, J. H. (2019). A prob-
abilistic and multi-objective analysis of lexicase selection and E-lexicase
selection. Evolutionary Computation, 27(3), 377-402.

The implementation supporting this research is available online: https://
github.com/TurcoRiccardo/ARC_AGI.

78

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://arcprize.org/blog/beat-arc-agi-deep-learning-and-program-synthesis
https://arcprize.org/blog/beat-arc-agi-deep-learning-and-program-synthesis
https://arcprize.org/
https://arcprize.org/leaderboard
https://arcprize.org/leaderboard
https://github.com/TurcoRiccardo/ARC_AGI
https://github.com/TurcoRiccardo/ARC_AGI

	List of Tables
	List of Figures
	I
	General introduction
	Background and the Quest for Artificial General Intelligence
	The Motivation Behind ARC
	The Problem with Current AI Evaluation Methods
	The Design of ARC as a Benchmark
	Benchmark Design
	Dataset Composition

	The Launch of ARC-AGI Competitions
	Implications for AGI Research and the Role of ARC
	Recent Progress in AI and the Ongoing Challenge of AGI

	State-of-the-Art Solutions for ARC-AGI 1 and Their Performance on ARC-AGI 2
	Overview of ARC‑AGI 1 Competition
	Hybrid Program-Synthesis and Neural Approaches
	ARC Prize 2024 – Key Achievements
	The ARC-AGI 2 Benchmark
	Motivations for a New Benchmark
	Key Differences from ARC-AGI 1
	Task Examples

	Transferring Solutions to ARC‑AGI 2
	Performance Degradation on ARC‑AGI 2
	Limitations of previous solvers on ARC‑AGI 2

	Summary and Insights
	Future Directions Suggested by ARC-AGI 2 Results

	II
	Evolving different Geometric Representations
	Overview of the Proposed Approach
	Problem Representation
	Available Actions per Representation
	Selectors

	Evolutionary Algorithm
	Single-Example Per Representation Evolution
	Multi-Example Per Representation Evolution
	Mutation Operators

	Single-Example vs Multi-Example Evolution
	Summary of the Proposed Methodology

	Analysis of results
	Introduction
	Experimental Setup
	Results and Discussion
	Qualitative Analysis of Individual Tasks

	Conclusion
	Limitations
	Future Work

	References

