
POLITECNICO DI TORINO
Master’s Degree in Quantum Engineering

Master’s Degree Thesis

FPGA Implementation of High-Rate
Randomness Extraction for Quantum

Random Number Generators

Supervisors

Prof. Roberto PROIETTI

Dott. Ing. Giuseppe DE FALCO

Dott. Ric. Carlo LIORNI

Candidate

Emanuele ZITOLI

Academic Year 2024/2025

Abstract

Random number generators are fundamental in several real-world applications,
like cryptography and simulations techniques, such as Monte Carlo methods. This
need for randomness is commonly bridged using pseudo-random number generators,
which rely on deterministic mathematical algorithms to produce uniform random
sequences. It is not rare to find situations in which the deterministic aspect of these
tools is not acceptable. To make up for this need, true random number generators
can be used, in particular Quantum Random Number Generators (QRNGs), that
exploit the inherently random nature of quantum mechanical phenomena to generate
numbers.

Several paradigms of QRNGs are possible, regarding the elements of the system
that can be considered as trusted. Semi-device-independent schemes offer a trade-
off between the speed of trusted-devices and the security assurances of device-
independent generators.

Multiple possibilities are available also concerning the physical phenomenon
exploited to produce the numbers. Optical QRNGs, that use continuous variables
of the electromagnetic field, have proven to be cost-efficient solutions that support
very high generation rates.

Real implementations of QRNGs are always affected by noise, because of the
imperfections that characterize the experimental apparata. This aspect reduces
the quality of the randomness in the numbers produced, therefore post-processing
and in particular randomness extraction, is needed to eliminate the unwanted
correlations. Multiple strategies are possible for this kind of post-processing in
real time, including Central Processing Unit (CPU) and Graphics Processing Unit
(GPU) implementations. With these, the generation rate does not meet the demand
set by real high-speed systems, such as those for encryption of communication links.
A possibility that has proven to be fast enough is a hardware-based approach with
a Field Programmable Gate Array (FPGA). This device combines the flexibility of
a re-programmable component with the efficiency of a hardware implementation
and its concurrent computation capabilities.

This work reports on the randomness extraction from two QRNG implementa-
tions: a trusted QRNG, based on the fluctuations of the phase of a laser diode and
a source device-independent QRNG, based on the fluctuations of the vacuum state.

The post-processing is realized on a System on Chip (SoC), including a CPU and
a FPGA. The circuit on the programmable logic has been designed to efficiently
execute randomness extraction, based on Toeplitz hashing. It consists in a three-
stage pipeline, instantiated multiple times, to allow for parallel computation of
multiple data blocks. Both an online and an offline design have been implemented.

The former demonstrates the possibility of high-rate randomness extraction, by
processing the data coming from the QRNG in real time. The latter has been
implemented to conveniently read raw data batches from an SD card and save the
processed numbers on this same storage device.

The bit strings obtained from randomness extraction have been tested using
the autocorrelation function and the NIST test suite, that certify the quality of
the randomness of the produced numbers. The analysis has been carried for both
the QRNGs and the results satisfy the NIST requirements, showing uniformly
distributed P − values and an acceptable proportion of successful sequences.

These results reinforce the applicability of programmable logic to quantum
communication applications, representing a powerful and convenient solution to
real-time data processing.

ii

Table of Contents

List of Figures iii

1 Introduction 1
1.1 Random Number Generators . 2

1.1.1 Pseudo-Random Number Generators 2
1.1.2 Classical True Random Number Generators 3
1.1.3 Quantum Random Number Generators 4
1.1.4 QRNG Applications . 7

1.2 FPGA and QRNGs . 8

2 Quantum Random Number Generator Models and Experimental
Setups 9
2.1 Phase Fluctuations-Based QRNG 9

2.1.1 Spontaneous Emission and Stimulated Emission in a Laser
Diode . 10

2.1.2 Phase Fluctuations-Based QRNG Model 11
2.1.3 Implementation . 12

2.2 Vacuum State Heterodyne
Measurement-Based QRNG . 15
2.2.1 Vacuum State . 15
2.2.2 Homodyne and Heterodyne Detection 16
2.2.3 Vacuum State Heterodyne Measurement-Based

QRNG Model . 17
2.2.4 Implementation . 20

3 High-Rate Randomness Extraction Using a FPGA 22
3.1 FPGA: Overview and Design . 22

3.1.1 FPGA Structure . 23
3.1.2 FPGA Circuit Design Workflow 24

3.2 Randomness Extraction . 26
3.2.1 Binary Distributions and Security Parameter 26

i

3.2.2 Extractors . 27
3.2.3 Universal Hash Functions 28

3.3 Toeplitz Randomness Extractor . 29
3.3.1 Matrices Multiplication Strategy 29
3.3.2 Data Extraction Algorithm 31
3.3.3 Circuit Design Strategy . 33
3.3.4 Circuit Implementation: Functional Blocks 36

3.4 Integration of the Randomness Extractor Circuit into the SoC . . . 45
3.4.1 Online implementation . 46
3.4.2 Offline implementation . 48

4 Results 51
4.1 Phase Fluctuations-Based QRNG 51

4.1.1 Experimental Setup Analysis 51
4.1.2 Raw Data Analysis . 52
4.1.3 Extracted Data Analysis . 54

4.2 Vacuum State Heterodyne
Measurement-Based QRNG . 57
4.2.1 Experimental Setup Analysis and Calibration 57
4.2.2 Raw Data Analysis . 59
4.2.3 Extracted Data Analysis . 62

4.3 Circuit Performance . 66
4.3.1 Slice Occupation and Security Parameter 66
4.3.2 Throughput . 69

5 Conclusions and Future Developments 72

A Randomness Testing 75
A.1 Statistical Testing Concept . 75
A.2 Test Battery . 76
A.3 Results Interpretation . 78

Bibliography 79

ii

List of Figures

1.1 4-bit LFSR with primitive polynomial x4 + x + 1. Data Flip-Flops
(DFFs) implement a shift register and a feedback network is composed
of an XOR operation between the outputs of DFF-0 and DFF-1,
which will feed the input of DFF-3. 3

1.2 Single photon detector based QRNG. Single photons produced by
the source are prepared with diagonal polarization with a polarizer
and, based on the port of the Polarization Beam Splitter (PBS)
they exit, it is possible to state that either vertical or horizontal
polarization has been measured for that state. This measurement
has to be performed with Single Photon Detectors (SPDs). Adapted
from [20]. 5

2.1 Schematics of spontaneous emission (a) and stimulated emission
(b). Consider an atom with excited state of energy E2 and ground
state of energy E1. In (a) the atom in the excited state decays
spontaneously, emitting a photon with energy hν = E2 − E1. In (b)
an incoming photon with energy hν = E2 − E1, interacts with the
system, composed of an atom in the excited state, inducing a relax-
ation with consequent emission of a photon with the characteristics
explained in the main text. 10

2.2 Optical setup for phase fluctuation-based QRNG. It is composed of
a laser diode, biased at a current around its threshold value. The
emitted light enters port 1 of a Beam Splitter (BS). The beams exit
through port 3 and 4. Photons coming out from port 4 are directly
collected by a photodetector (PD), while the ones coming out from
port 3 go through the Delay Line (DL) and will be fed back to the
BS through port 2. Adapted from [27]. 11

iii

2.3 Phase fluctuation-based QRNG implementation. The components
with a dashed outline are only present in the online implementation.
TEC: Thermo-Electric Cooler; DL: Delay Line; BS: Beam Splitter;
PD: Photodetector; AWG: Arbitrary Waveform Generator; ADC:
Analog to Digital Converter. 13

2.4 Vacuum field. Adapted from [19]. 16
2.5 Heterodyne detection scheme: a Local Oscillator (LO) and the

randomness source signal (in this case a closed optical fiber, to
realize the vacuum state) are connected to a 90° optical hybrid. This
component gives 4 outputs, which are the sum and the difference
between the signal and the LO as well as the sum and difference
between the signal and a 90° phase shifted version of the LO. The
outputs are then sent to two balanced photodetectors (D1 and D2).
Adapted from [30]. 18

2.6 Vacuum State Heterodyne Measurement-Based QRNG implemen-
tation. The components with a dashed outline are only present in
the online implementation. TEC: Thermo-Electric Cooler; VOA:
Variable Optical Attenuator; PD: Photodetector; AWG: Arbitrary
Waveform Generator; ADC: Analog To Digital Converter. 21

3.1 Example of the FPGA architecture schematic. Adapted from [33]. . 24
3.2 FPGA circuit design flow. Adapted from [35]. 25
3.3 Data extraction algorithm flow chart. Adapted from [25]. 32
3.4 Three stage pipeline scheme. Adapted from [11]. 33
3.5 Parallel implementation of randomness extractor. Adapted from [11]. 35
3.6 Circuit hierarchy scheme. 37
3.7 Sub-matrix multiplier circuit. Adapted from [9]. 39
3.8 Accumulator circuit. Adapted from [9]. 40
3.9 Computational module FSM flow chart. 41
3.10 Extractor FSM flow chart. States represented by a rectangle with a

dashed outline are present only in the offline configuration. 43
3.11 Online configuration Vivado block design. 47
3.12 Offline configuration Vivado block design. 49

4.1 Probability distribution of the digitally converted voltage values
measured from the phase fluctuations-based QRNG. 52

iv

4.2 Autocorrelation function of 105 raw data bits acquired from the
phase fluctuations-based QRNG. The dashed and full horizontal
lines respectively represent the 99% and 95% confidence bands.
These are the ranges in which the the values are expected to fall, if
the sequence is uncorrelated with a confidence equal to the respective
percentage. 53

4.3 Autocorrelation function of 105 extracted data bits from the phase
fluctuation-based QRNG. 54

4.4 Proportion of passed test of the NIST statistical test suite for phase
fluctuations-based QRNG after randomness extraction. 55

4.5 P −values distribution for uniformity analysis for phase fluctuations-
based QRNG after randomness extraction. 56

4.6 P −values for the phase fluctuations-based QRNG after randomness
extraction, obtained with the Kolmogorov-Smirnov test. 56

4.7 Linear fit of the signal variance as a function of the optical power for
the two photodetectors for the vacuum state heterodyne measurement-
based QRNG. 58

4.8 Probability distribution of the voltage values measured on photode-
tector 1 in the vacuum state heterodyne-measurement based QRNG. 60

4.9 Probability distribution of the voltage values measured on photode-
tector 2 in the vacuum state heterodyne-measurement based QRNG. 60

4.10 Autocorrelation function of 105 raw data bits acquired from the
vacuum state heterodyne-measurement based QRNG. 61

4.11 Autocorrelation function of 105 extracted bits from the vacuum state
heterodyne-measurement based QRNG. 62

4.12 Proportion of passed test of the NIST statistical test suite for the
vacuum state heterodyne-measurement based QRNG. 63

4.13 P − values distribution for uniformity analysis for vacuum state
heterodyne-measurement based QRNG. 64

4.14 P − values for vacuum state heterodyne-measurement based QRNG
after randomness extraction, obtained with the Kolmogorov-Smirnov
test. 65

4.15 Slice occupation rate for two randomness extraction blocks instanti-
ated in parallel and G = 10, the number of sub-matrices used for
the multiplication in each block. 67

4.16 Security parameter as a function of the Toeplitz matrix dimensions,
when the extractable randomness percentage of the input raw data
is 74.9%. 68

4.17 Slice occupation rate for a Toeplitz matrix of dimensions m = 192
and n = 390 with G = 10 the number of sub-matrices used for the
multiplication in each block. 68

v

Chapter 1

Introduction

The generation of random numbers is fundamental in numerous domains, from
simulations to secure communications. Nowadays classical random number gener-
ation methods based on Pseudo-Random Number Generators (PRNGs) provide
a cheap yet still effective solution. However for advanced applications, requiring
true randomness, the deterministic behavior of such systems does not represent a
valid solution. In particular, due to the continuously growing interest in Quantum
Key Distribution (QKD) protocols, like BB84 [1], the generation of cryptographic
keys requires trusted randomness to avoid potential safety issues. At the fore-
front of meeting these demands are optical Quantum Random Number Generators
(QRNGs), in which true randomness is guaranteed by fundamental quantum me-
chanical processes [2], [3].

These kinds of apparata can be realized in many ways, with some of the most
relevant being vacuum fluctuation-based [4] and phase fluctuation-based [5]. The
obtained bits, being extrapolated from actual imperfect devices, will inevitably be
correlated with classical noise, reducing the security of the system [6].

To prevent an opponent from launching an attack using this classical and
quantum side-information, universal hashing functions are used, with Trevisan
extractor [7] and Toeplitz-hash extractor [8] being the most relevant options, as
they are often used in privacy amplification schemes [9].

Efficient software-based algorithms are available for this kind of post-processing,
like those involving Fast Fourier Transform (FFT) [10], but the bit-rate requirements
for actual applications are hardly met. A solution could lie in the parallel processing
capabilities of the Field Programmable Gate Array (FPGA), providing a hardware-
based alternative that supports real-time post-processing [11].

This chapter provides an overview on Random Number Generators (RNGs) in
Sec. 1.1, with a focus on QRNGs and their possible applications. Additionally an
explanation on the importance of FPGAs in this context is given in Sec. 1.2.

1

Introduction

1.1 Random Number Generators
The need for random numbers is a problem that spans a wide range of fields,
from aspects that are closer to every-day life, like weather forecast and lottery, to
more technical ones, like simulations and cryptography related tasks. The latter
field has the primary objective of securely exchanging information between parties.
This requires the use of cryptographic keys to hide the content of communications
or to authenticate a user trying to access, for example, a banking account. The
possibility that a malicious entity could be able to predict the generation outcome
of such cryptographic keys, has brought a lot of attention on the mechanisms used
to produce random numbers [2].

1.1.1 Pseudo-Random Number Generators
Most of existing random number generators are based on mathematical functions
that, given an initial seed, deterministically produce an output string. An example
is the Linear-Feedback Shift Register (LFSR), which is defined by a primitive
polynomial. Based on its degree and structure, a shift register and a proper
feedback network are constructed to produce an output string. However, the
sequence of random numbers produced has a periodicity that depends on the degree
of the primitive polynomial. Periodicity is a characteristic that implies a recurring
pattern inside the generated string. Moreover, it is evident that knowing the initial
seed and the primitive polynomial, one is able to reconstruct the exact sequence.
This is the critical aspect present in every deterministic source of randomness [12].

Some variations on this simple structure are present to increase the unpre-
dictability of the output sequence [13].

Another popular PRNG is based on linear recursion in modular arithmetic and
it is referred to as Linear Congruential Generator (LCG). It is able to generate a
random sequence by exploiting a simple equation, that includes several parameters
and a starting seed. Again it is evident that knowing this first element of the
sequence and the parameters involved, it is possible to reproduce the entire sequence.
One more possibility for a PRNG is based on Cellular Automata (CA). This model
of computation uses a grid of cells, each characterized by a particular state. This
state depends on the one of the neighboring cells and on a particular rule. The state
evolution of the system may be used to generate a sequence of random numbers
with excellent characteristics [14].

It is evident how these generators can be beneficial in many use cases, providing
random sequences with a uniform distribution by starting from a certain set of
determined parameters. Notice that by knowing these, it is possible to reproduce a
result, which may prove useful in some simulation scenario. Moreover they are the
simplest and fastest RNGs with respect to the alternatives that are described in

2

Introduction

XOR

DFF-3 DFF-2 DFF-1 DFF-0

Output

Figure 1.1: 4-bit LFSR with primitive polynomial x4 +x+1. Data Flip-Flops (DFFs) implement
a shift register and a feedback network is composed of an XOR operation between the outputs of
DFF-0 and DFF-1, which will feed the input of DFF-3.

the following sections. However the deterministic behavior that characterizes them
is something that cannot be always overlooked. Therefore other technologies may
be necessary [15].

1.1.2 Classical True Random Number Generators

As said, for many scenarios the deterministic behavior of PRNGs is not acceptable.
Therefore it is necessary to obtain a random number generator that does not rely on
mathematical functions but rather on the unpredictability of some physical process.
This is what is done with Classical True Random Number Generators (CTRNG),
which use phenomena like atmospheric noise, cosmic background radiation, thermal
noise, noises in electronic circuits and chaotic systems. The numbers obtained
from these systems, however, appear random because the model that describes
them is too complex for a machine to make any predictions on the state of the
system at a given time. Therefore, the randomness is not certified by the nature
of the phenomenon itself, but rather by the complexity of the problem. In the
future, thanks to the technological improvements or the development of a more
mature theory, such complexity could be overcome. Moreover there are limitations
regarding the generation rate, which is generally slower compared to that of PRNGs
[2].

3

Introduction

1.1.3 Quantum Random Number Generators

The search for random numbers inevitably leads to quantum mechanics, which
is an inherently non-deterministic theory, that describes peculiar phenomena like
superposition states and non-local correlations between particles. These phenomena
can be used to provide novel sources of true randomness [16].

Some examples reported in literature include non-optical randomness generation
processes like radioactive decays, which are only explainable using the uncertainty
principle of quantum mechanics. It is possible to use the arrival times of the pulses
produced by a Geiger counter, to generate random numbers. Such systems are
obviously to be used with particular care, due to the dangerous nature of the
randomness source, and do not offer a high generation rate [17].

Other non-optical sources are atomic systems, like trapped ions, which require
very complex setups and do not give particularly high generation rates [18].

Systems that appear to be more suited for randomness generation are the ones
based on optical phenomena, thanks to their simpler setups and faster generation
rates [2].

Single Photon Detector-Based Optical QRNGs

One of the possible approaches to optical QRNGs relies on single-photon detection
and generation, which are realized using expensive instrumentation and inherently
restrict the generation rate [19]. Specifically, the response time of single photon
detectors severely limits the achievable throughput. However, this type of QRNG
gives some insights on the possibility of using quantum mechanics to generate
randomness. An interesting strategy relies on the superposition principle and
the collapse of a qubit state upon measurement. For example take a setup like
in Fig. 1.2: it is possible to encode the quantum state of a single photon in its
polarization. Such state can be represented using the basis |H⟩ and |V ⟩, which
indicate respectively horizontal and vertical polarization. Let’s suppose that the
single photon source is able to produce exactly a single photon in the diagonal
polarization state using a polarizer at 45 degrees. In the Dirac notation, this
photon can be represented as (|H⟩ + |V ⟩)/

√
2. When the photon reaches the

Polarization Beam Splitter (PBS) it will exit through one of its output ports, based
on the photon collapsing to the |H⟩ or |V ⟩ quantum state. This happens with
probability 1/2 for each of the two states. To which state the system collapses, can
be understood by determining which of the two single photon detectors has clicked
[20].

4

Introduction

Single photon

source
1

2
PBS

SPD-1

SPD-2

Pol. 45°

Figure 1.2: Single photon detector based QRNG. Single photons produced by the source are
prepared with diagonal polarization with a polarizer and, based on the port of the Polarization
Beam Splitter (PBS) they exit, it is possible to state that either vertical or horizontal polarization
has been measured for that state. This measurement has to be performed with Single Photon
Detectors (SPDs). Adapted from [20].

Macro-Scopic Photo Detection

In order to circumvent the major limitation of using single photon detectors, it
is possible to measure quantities like amplitudes of an electromagnetic field to
generate random numbers, while still exploiting quantum mechanical phenomena.
Notable examples use vacuum noise, which will be explained in depth in Sec. 2.2,
phase noise of spontaneous emission, in which a possible implementation will be
explained in Sec. 2.1, and randomized phase and amplitude of an electromagnetic
field due to Raman scattering [2].

Trusted, Self-Testing and Semi-Self-Testing QRNGs

A further distinction can be made on the possible implementations of a QRNG,
based on which part of the device is considered as trusted. A trusted QRNG means
that its behavior is sufficiently well characterized and verified, that its outputs can
be assumed to follow the intended theoretical model and not depend on uncontrolled
classical variables or imperfections. However it is not possible to determine if the
generated numbers are truly random or if they have been manipulated to be highly
predictable for an adversary, since the QRNG behavior depends on the entire device
implementation and an external user may take control of it. Generally trusted

5

Introduction

implementations have the simplest setups and can achieve high generation rates at
the cost of having no security assurances [21].

In contexts like cryptography, this is hardly acceptable. For this reason self-
testing QRNGs can be used, in which the randomness of the output is certified
to be independent of the device implementation. In fact they are also known
as Device-Independent (DI). For the no-signalling condition in the Bell tests,
it said that an output cannot be random or it may be predetermined by local
hidden variables, if it does not violate the Bell inequalities. Under this assumption
several randomness expansion schemes have been proposed against both classical
and quantum adversaries. In the first case the malicious entity has information
about the classical noise affecting the system, while in the second they might
get information by entangling with the quantum memories of the device. These
protocols require perfect random input seeds in order for the Bell inequality violation
to hold. To obtain these, randomness amplification can be used, starting from a
state of partial initial randomness. QRNGs based on these principles are still very
demanding in terms of implementation complexity and are poor in performance
[21].

A tradeoff between the high generation rate of trusted solutions and the security
assurances of self-testing implementations is possible and it is referred to as semi-
self-testing. QRNGs in general are composed of a source, that emits quantum
states, and a measurement device, that detects such states. Instead of having both
these modules perfectly characterized, like in the trusted scenario, there are some
realizations in which only one of the two respects this requirement. Instead the
other can be considered untrusted [2]. The possibilities are:

• Source-device-independent QRNG (SDI-QRNG), in which the source is con-
sidered untrusted and the measurement device is well characterized. They
are usually based on the switching between different measurement settings,
so that the adversary is not able to make any predictions about the output
random sequence [22]. While this is a possibility, some other configurations
exist, in which, by characterizing the measurement device, it is possible to
lower bound the conditional min-entropy of the produced numbers. This is
done without an active base measurement switch and still considering the
source as untrusted. This case will be thoroughly analyzed in Sec. 2.2.

• Measurement-device-independent QRNG (MDI-QRNG), in which the mea-
surement device is considered untrusted while the source is well characterized.
The idea here is to check the measurement device by using randomly chosen
states [23].

• Other configurations are possible for semi-self-testing. Notably there is one
in which the source and the device are considered to occupy independent

6

Introduction

two-dimensional quantum subspaces and the randomness of the process is
certified using a dimension witness. Still the performance of these alternatives
does not match the one of the two configurations mentioned above [21].

In conclusion, experiments show that semi-device-independent systems are a
valid solution, allowing for generation rates close to those in the fully trusted case,
while guaranteeing security properties that may be compliant with the requirements
of critical applications, like cryptography [21].

1.1.4 QRNG Applications
There are several applications in which true randomness is needed. In this section
some of the most relevant are described.

• Quantum key distribution protocols, are theoretically secure cryptographic
mechanisms to exchange keys between parties. It is evident that the protocols
become useless if the securely exchanged information can be predicted during
the generation phase. It is also important to underline that these protocols are
composed by more steps than the actual key exchange itself. These include
phases like error correction and privacy amplification, which are fundamental
to have an identical key between the parties, about which a possible adversary
has no information. These additional steps also require randomness to be
realized [24].

• Deterministic cryptographic protocols are nowadays at the core of crypto-
graphic systems. They are based on the complexity of resolution of a discrete
logarithm problem in Galois or elliptic curve groups. Some notable examples
are Diffie-Hellman key establishment protocol and Rivest–Shamir–Adleman
(RSA). Since the nature of the problem is deterministic, a great part of the
security comes from the randomness of the numbers involved in such protocols.
Moreover, an attack on a partial-PRNG of an Advanced Encryption Standard
(AES) based commercial cryptographic system has been proven. Therefore,
even though the cryptographic system is not based on any quantum mechanical
principle, it may still be useful that the source of randomness does [24].

• Simulations are a fundamental aspect in many fields of science. To study a
phenomenon it may be important to analyze many cases chosen uniformly at
random. The most prominent example are Monte Carlo simulations, in which
the solution of a complex problem is obtained by averaging many random
instances. It is evident that in this field the focus is on obtaining a uniformly
distributed sequence. PRNGs seem the best solution for the high generation
rate and output string randomness, however there are several instances in

7

Introduction

which long distance correlations are present inside their produced sequences.
Therefore QRNGs should be considered also for simulations [15].

1.2 FPGA and QRNGs
As already mentioned, due to the imperfections in the realization of any of the
possible QRNGs, it is mandatory to apply some kind of post-processing on the
sequences produced. This is done to eliminate the classical correlations present,
which pose an issue both on the uniformity and the security of the numbers obtained.
This post-processing consists in a series of computationally heavy mathematical
operations [24].

Several solutions have been proposed to tackle the complexity of these algorithms,
starting from software based ones. A simple strategy would be to store the raw
data inside a hard disk and implement the post-processing algorithm with a script
written with some high-level programming language. In this case the speed at
which random numbers are generated, refers to the speed that the software is able
to generate random bits by processing the pre-loaded data batch. It is reported
that this approach can reach rates of 100 Gbps. This method is referred to as
offline and it is hardly practical in a system that continuously needs to be supplied
with numbers. Moreover this definition of generation rate has to be taken with care.
Even though the numbers seem high, it is not the rate at which it is actually possible
to feed data in a free-running system that requires random number generation. In
fact it is referred to as offline generation rate [9].

Online software implementations exist and notable examples are present in
which the Toeplitz hashing (the post-processing technique that is used also in this
work and that is explained in Sec. 3.2) is transformed into a FFT algorithm. This
is done in order to increase the computational efficiency. This strategy has been
applied with a Central Processing Unit (CPU), reaching generation rates of some
Mbps, which is evidently not enough for most applications. Another possibility
includes the execution of this type of algorithm with a Graphics Processing Unit
(GPU), that exploits many parallel FFT threads to increase the generation rate.
Even though the performance improvement is remarkable, reaching some Gbps,
this may still not be enough [25].

Building on the idea of exploiting parallel computation, it is possible to adopt a
hardware-based approach rather than a software-based one. In this field, FPGAs
stand as the most flexible solution, allowing for easy prototyping while still main-
taining hardware level performances. Therefore these systems are at the forefront of
real-time randomness extraction for QRNGs, reaching generation rates compatible
with the needs of applications like quantum cryptography, which are now in the
order of some Mbps but are expected to increase considerably in the future [25].

8

Chapter 2

Quantum Random Number
Generator Models and
Experimental Setups

This chapter presents the mathematical model and the implementation of the
QRNGs realized in this work, including a phase fluctuation-based approach in
Sec. 2.1 and a source-device-independent-vacuum state-based solution in Sec 2.2.
For the two technologies, both an online and an offline configuration are described.
This has been done because the ADC available, compatible for direct connection
to the evaluation board containing the FPGA, has a very low sampling rate. This
leads to a drastic reduction of the useful bits of the converted voltage values, due to
the inherent averaging performed on the signal during conversion. For this reason
the online configuration has been implemented only to demonstrate a possible
implementation. However the result discussion in Ch. 4 is based on data acquired
with the offline configuration. This one is based on saving the data acquired from
a high sampling rate ADC on a SD card. The storage device is then inserted in
the evaluation board to perform the post processing.

2.1 Phase Fluctuations-Based QRNG

One of the paradigms of QRNG that has received more attention is the one based
on the phase fluctuations of a laser emission. It can be demonstrated that the
output field of a laser is influenced by the randomness of spontaneous emission
photons and conforms a Gaussian distribution [26].

9

Quantum Random Number Generator Models and Experimental Setups

2.1.1 Spontaneous Emission and Stimulated Emission in a
Laser Diode

Spontaneous and stimulated emission are processes in which a quantum mechanical
system, composed of a ground and an excited state, performs an energetic transition
that involves the emission of a photon. The former phenomenon implies the presence
of an atom in the excited state that spontaneously decays to the ground state, due
to the instability of the higher energy level. As a result a photon is emitted with
the following characteristics: random polarization, random direction and random
phase. Instead, stimulated emission involves the presence of an atom in the excited
state, that decays to the ground state due to the interaction with an incoming
photon. This one has the same energy as the separation between the ground and
the excited states. The resulting emitted photon will have the same polarization,
direction and phase as the one that has interacted with the system [19].

E1

E2

Spontaneous

hν

(a) Spontaneous Emission

E1

E2

hν

Stimulated

hν

hν

(b) Stimulated Emission

Figure 2.1: Schematics of spontaneous emission (a) and stimulated emission (b). Consider
an atom with excited state of energy E2 and ground state of energy E1. In (a) the atom in
the excited state decays spontaneously, emitting a photon with energy hν = E2 − E1. In (b)
an incoming photon with energy hν = E2 − E1, interacts with the system, composed of an
atom in the excited state, inducing a relaxation with consequent emission of a photon with the
characteristics explained in the main text.

Stimulated emission is the fundamental process underlying the operation of a
laser diode. In fact, by considering N1 the number of atoms in the ground state
and N2 the number of atoms in the excited state, it is possible to achieve, with
this process, the emission of a coherent and collimated beam of light by electrically
pumping the diode, which means biasing it with a certain amount of electrical
current, in order to achieve the so called population inversion (N2 > N1) [19].

However, as cited above, the focus of the QRNGs discussed in this section, is on
the detection of phase fluctuations due to spontaneous emission. This is an hint on
the fact that the laser diode used, must be operated near the threshold current in

10

Quantum Random Number Generator Models and Experimental Setups

order to produce a detectable optical signal but still obtaining mostly incoherent
light, since the main mechanism involved in the photon production is spontaneous
emission [27].

2.1.2 Phase Fluctuations-Based QRNG Model
In order to convert phase fluctuations into intensity fluctuations, which is the
quantity that is actually measured, an interferometer is usually built. Notable
examples include the use of a Mach-Zender Interferometer (MZI) [3] as well as
more sophisticated strategies, such as phase-reconstruction [28]. The focus of this
section will be centered around the mathematical model behind the architecture
shown in Fig. 2.2 that allows for a simple and compact implementation of a QRNG
[27].

Laser

DL

1

2

3

4
BS

PD

Figure 2.2: Optical setup for phase fluctuation-based QRNG. It is composed of a laser diode,
biased at a current around its threshold value. The emitted light enters port 1 of a Beam Splitter
(BS). The beams exit through port 3 and 4. Photons coming out from port 4 are directly collected
by a photodetector (PD), while the ones coming out from port 3 go through the Delay Line (DL)
and will be fed back to the BS through port 2. Adapted from [27].

The optical field that enters port 1 of the beam splitter can be written as:

Eport1(t) = Aei[ωt+φ(t)] (2.1)

with A the amplitude of the optical field, ω the optical center angular frequency
and φ(t) the phase fluctuation of the laser. The field entering port 2 of the beam
splitter, is instead the sum of all the contributions coming from the circulations
inside the delay line. In fact, light beams that exit from port 3 and enter the delay
line, when they reach port 2, may get transmitted to the photodetector at port 4,

11

Quantum Random Number Generator Models and Experimental Setups

or may be injected again in the delay line by reflection to port 3. This behavior
can be modeled by considering N circulations in the delay line and N −→ ∞:

Eport2 = A
NØ

k=1

A
1√
2

Bk

βk/2ei[ω(t−k∆t)+ϕ(t−k∆t)] (2.2)

where k ∈ [1, N] is an integer, β is the overall effective gain induced by the
components in the fiber loop and ∆t is the time delay induced by the delay line.
The intensity of the field resulting from the interference of Eport1 and Eport2, that
is detected by the photodetector, is given by the following expression:

I = 1
2A2

NØ
k=0

A
β

2

B2

+ A2
NØ

k=1

A
β

2

Bk/2

[− cos(kω∆t + ∆φk
0)]+

+A2
NØ

k=1

A
β

2

Bk/2
k−1Ø

j=1

A
β

2

Bj/2

cos[(k − j)ω∆t + ∆φk
j]
 (2.3)

with k ∈ [0, N] and j ∈ [1, k) integers, ∆φk
j = φ[(N − j)∆t] − φ[(N − k)∆t] the

phase fluctuation between the circulation number (N − j) and the circulation
number (N − k). This ∆φk

j is the Gaussian quantity due to spontaneous emission
and by Eq. 2.3 the optical intensity is a superposition of this quantity; so, neglecting
the DC component and measuring the fluctuations in the intensity, it is possible to
conclude that a QRNG is being realized [27].

2.1.3 Implementation
The optical setup used for the realization of the phase fluctuation-based QRNG
obviously replicates the structure around which the mathematical model explained
above is built.

The schematics of the actual implementation are reported in Fig. 2.3 and are
explained in depth below.

12

Quantum Random Number Generator Models and Experimental Setups

D
L

1 2
34

5
0

:5
0
 B

S

P
D

L
a
se

r

d
io

d
e

T
E

C
C

u
rr

en
t

d
ri

v
er

B
ia

s

te
e

A
m

p
li

fi
e
r

V
o
lt

a
g

e

su
p

p
ly

A
W

G

A
D

C

F
P

G
A

P
C

Figure 2.3: Phase fluctuation-based QRNG implementation. The components with a dashed
outline are only present in the online implementation. TEC: Thermo-Electric Cooler; DL: Delay
Line; BS: Beam Splitter; PD: Photodetector; AWG: Arbitrary Waveform Generator; ADC: Analog
to Digital Converter.

13

Quantum Random Number Generator Models and Experimental Setups

The laser source is realized using a pigtailed butterfly packaged Distributed
Feedback (DFB) laser diode, emitting at around 1539.7 nm, while operated around
its threshold current of about 13.5 mA at 24°C, resulting in a linewidth of about
0.0653 nm. The device is specifically chosen to have the largest linewidth possible
between the available laser diodes, in order for the photons to lose coherence in the
least amount of time and space. For this reason an External Cavity Laser (ECL)
has been initially considered but later discarded after characterization, since this
type of lasers generally have a narrower emission spectrum. The diode is mounted
on an ad-hoc component with an embedded Thermo-Electric Cooler (TEC), to
regulate the temperature and the possibility to set the bias current.

The laser is coupled with an optical fiber and is connected to, referencing
Fig. 2.3, port 1 of a 50:50 fiber coupler, that works as the beam splitter. The other
input port (port 2), is connected to the delay line, implemented with a simple
optical fiber wounded on a reel. It has been estimated that 5 m of delay line
are enough for the experiment. The other side of this optical fiber is connected
to port 3 of the coupler. The last output port is instead connected to an AC
coupled photodetector, providing a RF output. It is useful for the evaluation of
the fluctuations of the obtained electromagnetic field, without measuring the DC
component, that provides no information to the purpose of the experiment. The
signal is sent to an Analog to Digital Converter (ADC), to obtain the results in
digital form. Based on the necessities set by the particular ADC used, the signal
goes before through an amplifier and then either goes through a biasing stage or it
is directly sent to the digital conversion component.

As previously mentioned, a free running configuration (online) has been imple-
mented, in which the ADC is directly connected to the evaluation board containing
the FPGA. This conversion stage is characterized by a low sampling rate of 1 MHz
and unipolar input range. This means that the voltages obtained need to be within
a positive range of values between 0 V and 3.3 V, which is the maximum possible
convertible voltage. For this purpose a bias tee has been employed to set the
average value of the signal at the midpoint of the detectable range. The amount of
bias is set with an Arbitrary Waveform Generator (AWG) outputting a DC signal
at the desired voltage. The AWG connects to the bias tee via an RF coaxial cable.

The offline configuration is based instead on the acquisition of a batch of data,
that is later sent to the FPGA via a SD card to be processed. In this case the ADC
is much more performant, reaching sampling rates of 100 MHz and supporting
bipolar inputs. For this reason the bias tee is not necessary in this configuration.

In any case, with the signal either biased or directly coming from the photode-
tector, an amplification stage is needed to have the signal occupying most of the
resolution range of the ADC used. To obtain this, a coaxial amplifier is employed,
connected to a voltage supply of 15 V and providing about 10 dB of amplification.

Finally, the signal reaches the conversion stage, which uses either a low or high

14

Quantum Random Number Generator Models and Experimental Setups

sampling rate ADC, depending on the configuration.
The last stage is composed of a PC: in the online configuration the data is

processed in real-time by the FPGA and the generated numbers are displayed on
the PC using a serial communication. This is established through a simple USB
connection between the evaluation board and the computer. In the other case the
data converted by the ADC are directly stored inside the computer hard disk using
a LabView script to set the data acquisition configurations.

2.2 Vacuum State Heterodyne
Measurement-Based QRNG

Another way to implement a QRNG is based on the uncertainty of continuous quan-
tum observables, that are the amplitudes of the quadratures of the vacuum state.
Many implementations of QRNGs based on this phenomenon exploit homodyne
measurements [4], [22].

2.2.1 Vacuum State
The vacuum state is the quantum state associated with the lowest possible energy
and generally contains no particles. This particular system has interesting charac-
teristics that are at the core of the working principles of the QRNG. In this section
they will be briefly outlined.

It can be demonstrated that there is an equivalence between an harmonic
oscillator and a light wave, so it is possible to associate some known properties to
a quantized electromagnetic field, including:

1. The energy of the electromagnetic wave is quantized, according to the relation:

En = (n + 1
2)ℏω (2.4)

With n the index of the energy level and ℏω the energy quantum.

2. The position and momentum variables satisfy the Heisenberg uncertainty
principle:

∆x∆px ≥ ℏ
2 (2.5)

By defining the dimensionless quadratures:

X1(t) =
3

ω

2ℏ

41/2
x(t) (2.6)

15

Quantum Random Number Generator Models and Experimental Setups

X2(t) =
3 1

2ℏω

41/2
px(t) (2.7)

It can be seen how these depend to the generalized position and momentum
coordinates. Therefore, it is possible to relate the Heisenberg uncertainty principle
to the quadrature uncertainties, as follows:

∆X1∆X2 = 1
2ℏ∆x∆px ≥ 1

4 (2.8)

it can be concluded that the energy associated with the vacuum state is the zero-
point energy ℏω/2 and that the vacuum field is characterized by an amplitude
equal to zero but non-zero field quadratures uncertainty, which are the fluctuations
measured in the QRNG implementation [19].

X2

X1

ΔX2

ΔX1

Figure 2.4: Vacuum field. Adapted from [19].

2.2.2 Homodyne and Heterodyne Detection
Homodyne detection is a common strategy for continuous variable quantum systems
measurements. It is based on measurement operators, that are projectors over one
of the two quadrature bases of the signal, which in Dirac notation are |I⟩ ⟨I| and
|Q⟩ ⟨Q|. This allows to measure one of two quadratures with complete precision
[29].

Heterodyne detection, instead, consists of projection onto coherent states. This
means that the measurement operator is |α⟩ ⟨α|, allowing for the simultaneous

16

Quantum Random Number Generator Models and Experimental Setups

measurement of both the quadratures of the signal, with the consequent doubling
of the mutual information. This comes at the cost of the introduction of noise,
given by the non-commuting nature of the quadratures in question, as explained in
Sec. 2.2.1 [29].

The way the two quadratures are extracted from the signal is no different to
that used in any coherent detection scheme for optical communications. Consider
the vacuum state signal and a local oscillator (LO) and consider the scheme in
Fig. 2.5. It is possible to express the vacuum field with its two quadratures as:

Evac(t) = EI(t) + iEQ(t) (2.9)

It is fundamental to underline that the signal obtained by any photodetector is
a current that gets transformed into a voltage using a transimpedance amplifier.
This current is proportional to the optical power of the signal entering the detector,
which can be expressed as P (t) = E(t)2. It is easy to compute the optical power
of each signal impinging on the photodetectors, since the fields values are known.
Considering detector D1 in Fig. 2.5 and considering ij as the current obtained from
the signal on port j = 1,2:

i1(t) ∝ |E⃗vac + E⃗LO|2 = |E⃗vac|2 + |E⃗LO|2 + 2Re
î
E⃗vac · E⃗∗

LO

ï
=

= Pvac + PLO + 2
ñ

PLO · EI(t)
(2.10)

i2(t) ∝ |E⃗vac − E⃗LO|2 = |E⃗vac|2 + |E⃗LO|2 − 2Re
î
E⃗vac · E⃗∗

LO

ï
=

= Pvac + PLO − 2
ñ

PLO · EI(t)
(2.11)

Thanks to the balanced photodetector that computes the difference between
the two currents, the output current is proportional to one of the quadratures of
the vacuum [30]. The expression is:

i(t) = i1(t) − i2(t) ∝ 4
ñ

PLOEI(t) (2.12)

For what concerns EQ(t) the computations are analogous, so they will not be
reported.

2.2.3 Vacuum State Heterodyne Measurement-Based
QRNG Model

The model for the quantum random number generator based on vacuum state
fluctuations is now discussed. It is important to underline that the main purpose
of this implementation is to design a system, using simple optical components, that
can be categorized as source-device-independent [31].

17

Quantum Random Number Generator Models and Experimental Setups

LO

Evac

Evac - iELO

D1

D2

90° Hybrid

ELO

Evac + iELO

Evac - ELO

Evac + ELO

Figure 2.5: Heterodyne detection scheme: a Local Oscillator (LO) and the randomness source
signal (in this case a closed optical fiber, to realize the vacuum state) are connected to a 90°
optical hybrid. This component gives 4 outputs, which are the sum and the difference between
the signal and the LO as well as the sum and difference between the signal and a 90° phase
shifted version of the LO. The outputs are then sent to two balanced photodetectors (D1 and
D2). Adapted from [30].

In a context in which the possibility of an attacker to exploit the imperfections
in the physical realization of systems, that are used to produce numbers for
cryptographic keys, is crucial, it is fundamental to be able to estimate the maximum
amount of randomness that can be extracted, in the presence of these imperfections
(generally referred to as side-information). This quantity is called conditional
min-entropy and a more rigorous mathematical description of it as well as its
consequences in the context of randomness extraction will be given in Sec. 3.2.

This QRNG implementation allows for the lower-bounding of the conditional-min
entropy. So, there is the possibility of having an attacker controlling the device’s
source and manipulating it with the most favorable strategy for them to be able
to predict the random numbers produced, while still being able to obtain a fast
generation rate of secure numbers. As previously mentioned the model is based on
a heterodyne measurement of both the quadratures of the vacuum state [31].

18

Quantum Random Number Generator Models and Experimental Setups

The heterodyne measurement corresponds to the following Positive Operator-
Valued Measurement (POVM):

Π̂α = 1
π

|α⟩ ⟨α| (2.13)

where |α⟩ is a coherent state with complex amplitude α.
Calling ρA the density matrix of the field, the output of the heterodyne mea-

surement is given by the random variable X:

X = {q, p} (2.14)

with q = Re(α) the real part and p = Im(α) the imaginary part of the coherent
state, which are distributed according to the Husimi function:

QρA
(α) = Tr[Π̂αρA] = 1

π
⟨α| ρA |α⟩ (2.15)

which gives a probability distribution that represents the quantum state in the
space of quadratures [31].

However, in a real scenario, measurements done with the heterodyne detection
are discrete and depend on the resolutions δq and δp of the measurement apparatus,
that is used to acquire the quadrature values. For this reason the POVM has to be
expressed in its discretized form:

Π̂δ
m,n =

Ú (m+1)δq

mδq

dq
Ú (n+1)δp

nδp

dpΠ̂q+ip (2.16)

which can be substituted inside the Husimi function formula to obtain the discretized
version of the probability distribution:

Qδ
ρA

(m, n) = Tr[Π̂δ
m,nρA] =

Ú (m+1)δq

mδq

dq
Ú (n+1)δp

nδp

dpQρA
(q + ip) (2.17)

From this quantity it is possible to extract the classical min-entropy:

Hmin(Xδ) = − log2

5
max
m,n

Qδ
ρA

(m, n)
6

(2.18)

However this quantity serves a purpose only in a fully-trusted scenario. In case the
side-information has to be taken into account it is necessary to use the conditional
min-entropy Hmin(X|E). It is possible to demonstrate that for any POVM {Π̂x}x∈X

and for a quantum state τA in the Hilbert space HA, the quantum conditional
min-entropy is lower bounded by the quantity:

Hmin = − max
x∈X,τA∈HA

log2

1
Tr
è
Π̂xτA

é2
(2.19)

19

Quantum Random Number Generator Models and Experimental Setups

In the case of a heterodyne measurement, this lower bound becomes:

Hmin(Xδ|E) ≥ − max
{m,n,τA}

log2

1
Tr
è
Π̂δ

m,nτA

é2
= log2

π

δqδp

(2.20)

Therefore, it is possible to conclude that even if an adversary forges the optimal
side information E , they are not enable to guess the heterodyne outcome with a
probability larger than (δqδp)/π. So the scheme allows for a theoretically proven
secure generation of random numbers by the simple computation of a quantity,
that depends only on the resolution of the measurement devices and that does not
change as long as the measurement apparatus is considered trusted.

2.2.4 Implementation
The optical setup for the realization of the vacuum fluctuation-based QRNG is
implemented for a typical heterodyne measurement configuration together with
elements useful for the calibration part as it is shown in [31].

The schematics of the actual implementation are reported in Fig. 2.6 and
explained in detail below.

The local oscillator is realized using a pigtailed ECL butterfly packaged laser
diode, emitting at 1550 nm with current bias of 300 mA and 25 °C of temperature.
These values are set with an external TEC and current generator. The laser is
fiber coupled to an electronic Variable Optical Attenuator (VOA), which has the
purpose of modifying the optical power of the local oscillator during the calibration
phase. This component is piloted with an external electronic driver, using Labview
scripts to control the calibration phase workflow.

The VOA is connected on the other side with the 90° hybrid, to implement
the heterodyne measurement configuration. The other input port of the optical
hybrid consists of a fiber connector, kept close with a dust cap. The output ports
of the hybrid are connected to two different balanced AC coupled photodetectors,
characterized by a 100 MHz bandwidth. In the online configuration a bias tee
might be needed before the ADC, that is directly connected to the FPGA, for both
the outputs of the balanced photodetectors. The processed numbers are shown on
the PC thanks to the serial connection with the board.

In the offline case the RF outputs are connected each to a channel of the high-
sampling-rate ADC. In order to save the files relative to the two different data
batches, again a Labview script has been implemented, to select the total amount
of data needed and the desired range of voltages to consider for data conversion.

20

Quantum Random Number Generator Models and Experimental Setups

1 2

3

P
D

1

L
a
se

r

d
io

d
e

T
E

C
C

u
rr

en
t

d
ri

v
er

B
ia

s

te
e

A
W

G

A
D

C

F
P

G
A

P
C

V
O

A

9
0
°

h
y

b
ri

d

P
D

2

B
ia

s

te
e

E
le

ct
r
o

n
ic

 d
ri

v
e
r

4 5 6

Figure 2.6: Vacuum State Heterodyne Measurement-Based QRNG implementation. The compo-
nents with a dashed outline are only present in the online implementation. TEC: Thermo-Electric
Cooler; VOA: Variable Optical Attenuator; PD: Photodetector; AWG: Arbitrary Waveform
Generator; ADC: Analog To Digital Converter.

21

Chapter 3

High-Rate Randomness
Extraction Using a FPGA

In this chapter an overview on FPGAs and a description of the circuit design
workflow on them is presented in Sec. 3.1. Next, a mathematical description
of randomness extraction is in Sec. 3.2. Finally, an analysis on the extraction
algorithm on FPGA and a description of the circuit realizing it are reported in
Sec. 3.3, while the complete circuit for both the offline and the online configuration
is described in Sec. 3.4.

3.1 FPGA: Overview and Design
FPGAs are a type of programmable logic device whose internal logic and intercon-
nections can be reconfigured by the user. This flexibility makes them especially well
suited for prototyping and niche applications, while still delivering hardware-level
performance. They are field-programmable, meaning that they can be programmed
by the user, after they have been manufactured by the producer. This is the great
advantage with respect to Application Specific Integrated Circuits (ASICs), that
instead are produced in large volumes but cannot be modified once completed.
Moreover FPGAs are reprogrammable, meaning that any error present in the design
can be corrected and any update can be implemented in the circuit, without any
cost, allowing for easy reuse of a single system. For these reasons FPGAs are used
in various fields, like signal and image processing. In addition, the possibility to
design circuits to be able to perform certain algorithms much faster and much
more efficiently than any software counterpart, is present. This is possible because
of the hardware-level parallelism, achievable by accurate design of the circuit for
the needed application. By hardware-level parallelism it is meant that a circuit
can be designed, in order for it to execute mathematical operations, by dividing

22

High-Rate Randomness Extraction Using a FPGA

the computational workload between different parts of the circuit. Consequently a
speedup of time execution with respect to a serial and software-based solution is
obtained [32].

3.1.1 FPGA Structure
In principle, programmable logic is obtained by the decision to wether or not
close a switch that connects some input data and a wired-OR line. In fact, by
complementing the data line, it is easy to see that AND and OR logic functions
can be implemented and are enough to realize any possible algorithm. This is how
some programmable logic devices are implemented (like PROM, PAL and PLA)
[33].

On the other hand, an FPGA is a much more sophisticated device, as it can
be seen in Fig. 3.1. It leverages particular components in order to realize the
characteristic functionalities. The main ones that can be found are [33]:

• Look-Up Tables (LUTs): the basic logic elements. They consist of blocks that
realize the truth tables that are mapped onto them.

• Configurable Logic Blocks (CLBs): they are generally composed of LUTs, Flip
Flops (FFs) and interconnection resources. This composition of elements allows
for the realization of logical operations and data flow. They are configured
based on the need of the implemented circuit.

• Input/Output Blocks (IOBs): this is the way the FPGA communicates with
the external world. In fact they are the core components that allow for
the processing of data, which might come from the environment, as well as
utilization of external clock signals and acquisition, from the external, of the
data processed by the FPGA.

• Routing resources: fundamental for the efficient propagation of signals between
the different blocks. Routing or switch matrices are used for this purpose.

• Clock networks: Dedicated resources for the propagation of clock signals.

• Clock Management Module (CMM): handles distribution, synchronization
and control of the clock signal.

• Memory elements: necessary for data storing inside the FPGA, including FFs,
registers and ultimately Block RAM (BRAM) and ROMs.

• Secondary elements: like power supply circuits, I/O buffers and memory
management circuits.

23

High-Rate Randomness Extraction Using a FPGA

x1

x2
f1

0
0
0
1

x2

x3
f2

0
0
1
0

f1
f2

f

0
1
1
1

.

.

.

.

.

.

x1

x2

...

...

f
x3

Figure 3.1: Example of the FPGA architecture schematic. Adapted from [33].

Obviously these resources are not unlimited in an actual FPGA device and
how the utilization of these is usually addressed, is by means of slices. These are
composed of LUTs and FFs, and are one of the resources contained in a CLB [34].
The number of the two composing elements inside a single slice is determined by
the family and the producer of the FPGA device.

3.1.2 FPGA Circuit Design Workflow
Circuits that are used on FPGAs are conveniently described using Hardware
Description Languages (HDLs), with the most used being VHDL and Verilog.
However these languages have to be translated in the actual circuit that gets loaded
on the FPGA [33]. This operation is done with software programs such as Quartus
Prime (for Intel devices) and Vivado (for AMD devices).

In this work, the latter has been used. The specific workflow of Vivado for a
FPGA project can be seen in Fig. 3.2, but generally the main steps are the same
for any software.

Going in detail on the most relevant [35]:

1. The project starts from the design sources. In the simplest case it is VHDL
code describing the circuit, which will eventually be converted to a Register

24

High-Rate Randomness Extraction Using a FPGA

Design entry

Design sources

RTL Block diagrams IP Netlists

Block Design Constraints

Simulation and Verification

Synthesis

Complete Design Constraints

Implementation

Logic/Physical Optimization, Place, Route

PDI Generation

Hardware Design Completion

Export Hardware Hardware Debug

Vitis and/or acceleration blocks Hardware Manager

Next steps

Figure 3.2: FPGA circuit design flow. Adapted from [35].

Transfer Level (RTL) model. This is a logical and hierarchical representation,
including logical blocks interconnected and connected with the input and
output interfaces. Notice that this model is still far from the actual physical
representation of the circuit. As it can be seen by Fig. 3.2, this is not the only
possible design source.

25

High-Rate Randomness Extraction Using a FPGA

2. The design sources are associated with a constraint file, which determines
aspects like pin assignment (decision of which of the actual pin of the FPGA, a
signal in the circuit design is connected to), clock definitions, timing constraints,
I/O standards (like the voltage level at which the assigned pin operates), etc.
These properties are fundamental for the actual implementation of the circuit
on the physical chip and its correct functioning.

3. Simulations can be run from a logical level directly on the provided VHDL
code as well as after RTL elaboration, synthesis and implementation. These
simulations consist in design methodology checks, logic simulation, timing and
power analysis.

4. Synthesis of the RTL design, which consists in the translation from the logical
abstract representation, to the gate-level representation and the consequent
interconnections, under the form of a netlist. Also optimizations are performed
in order to have the most efficient result.

5. Implementation (place and route) which maps the netlist onto the available
resources on the specific target FPGA device and determines the routing
between the placed elements, in order for the signals functionalities to be
compliant with the VHDL design.

6. The bitstream is generated, which is a file containing all the information
needed to configure the FPGA device and that will be loaded into it. At this
point the device can be directly programmed. Another possibility is to export
the hardware platform, in order for it to be used on other software programs
(like Vitis, which allows for CPU programming of System on Chip devices
containing a processor and an FPGA).

3.2 Randomness Extraction
The following section focuses on the mathematical aspects concerning randomness
extraction, which is the procedure needed to obtain information-theoretically
provable random bits [6].

3.2.1 Binary Distributions and Security Parameter
Consider a binary distribution, which is a statistical characterization of the values 0
and 1 within a binary sequence, that describes how frequently each bit value occurs.
The ideal distribution to obtain in any application that requires a RNG is the
discrete uniform distribution. Considering a binary string of length p, denoted by
{0,1}p, the discrete uniform distribution is referred to as Up. It defines a sequence

26

High-Rate Randomness Extraction Using a FPGA

X ∈ {x1, x2, . . . , xn} for which the probability P (X = xi) of the sequence being
equal to any possible sequence in the set is:

P (X = xi) = 1
n

, ∀i = 1,2, . . . , n (3.1)

Therefore each sequence is equiprobable. This behavior is ideal and no RNG can
achieve this distribution, however it is possible to define some metrics to compare
how close a sequence is to this uniform distribution [36].

Let’s consider two probability distributions X and Y , over the same domain T,
it is possible to say that these are ε − close if the statistical distance between them
is bounded by ε:

||X − Y || = max
V ⊆T

|
Ø
v∈V

(Prob[X = v] − Prob[Y = v]) | =

= 1
2
Ø
v∈T

|Prob[X = v] − Prob[Y = v]| ≤ ε
(3.2)

with the factor 1/2 to normalize the statistical value so that it falls into [0,1].
Notice that this quantity is composable and it is of particular interest, because it
states that the probability distributions X and Y are indistinguishable except for
a small probability factor ε [6].

3.2.2 Extractors
Before defining the extractors, it is critical to first define the min-entropy of a
probability distribution.

Consider a probability distribution X on {0,1}n, the min-entropy is defined as:

H∞(X) = − log2

A
max

v∈{0,1}n
Prob[X = v]

B
(3.3)

This quantity represents the maximum possible amount of randomness that is
present in a probability distribution and it is of fundamental importance in the
following definition of the extractor. A (k, ε, n, d, m)-extractor is a function defined
as:

Ext : {0,1}n × {0,1}d → {0,1}m (3.4)
such that for every probability distribution X on {0,1}n, with min-entropy
H∞(X) ≥ k, the probability distribution of the extracted string Ext(X, Ud) is ε-close
to the uniform distribution on {0,1}m. In other words a nearly uniform distribution
of length m can be obtained from a certain random string of length n by employing
a seed of length d. A much handier function can be used for the purposes of this
work and it is called strong-extractor. A (k, ε, n, d, m)-strong-extractor Ext(X, Ud)

27

High-Rate Randomness Extraction Using a FPGA

is an extractor such that the probability distribution Ext(X, Ud) ◦ Ud is ε-close to
the uniform distribution on {0, 1}m+d. Its key advantage is that the seed can be
reused for new extractions, with a penalty of ε on the security parameter [6].

3.2.3 Universal Hash Functions
Hash functions map a certain set A into a set B and it is generally assumed that the
dimension of the starting set is larger than that of the final set, meaning |A| > |B|.

A family of hash functions H, mapping A to B, is said to be universal2 when:

Probh∈H {h(x) = h(y)} ≤ 1
|B|

(3.5)

for all x /= y ∈ A. The subscript "2" in universal2 is present to underline that the
behavior of H is constrained to only pairs of elements of A [37].

Toeplitz Hashing

Now consider a certain family of hashing methods that uses random binary matrices.
Consider a m × n Booelan matrix, called T and consider a message of n bits, called
M ; the hashing algorithm is the Boolean multiplication between the matrix and
the column vector composed of the bits of the message:

h : T · M (3.6)

where the result is a binary string of m bits. It can be demonstrated that this type
of hashing function h, is of the universal2 class [8].

Now consider that the matrix T is the Toeplitz matrix, which is characterized
by having each left-to-right diagonal fixed. This means that if k − i = l − j for any
indices 1 ≤ i, k ≤ m, 1 ≤ j, l ≤ n, then Ti,j = Tk,l. An example of a 6 × 8 Toeplitz
matrix can be seen in Eq.(3.7), where each entry ti is a binary number.

T =



t0 t1 t2 t3 t4 t5 t6 t7
t−1 t0 t1 t2 t3 t4 t5 t6
t−2 t−1 t0 t1 t2 t3 t4 t5
t−3 t−2 t−1 t0 t1 t2 t3 t4
t−4 t−3 t−2 t−1 t0 t1 t2 t3
t−5 t−4 t−3 t−2 t−1 t0 t1 t2


(3.7)

This kind of matrices does not have any particular advantages for what concerns
the hashing algorithms itself, but rather it is very convenient to use them because
they can be constructed simply by knowing the first row and the first column of
the matrix. It comes immediately that to construct a m × n matrix, it is only
necessary to know m + n − 1 bits [8].

28

High-Rate Randomness Extraction Using a FPGA

However one might argue that the amount of bits needed for a single hashing
computation is still higher than the length of the output string. This means that
no net randomness can be extracted if the universal hashing is directly used for
randomness extraction. To overcome this problem it is necessary to demonstrate
that the scheme constructs a strong extractor. Conveniently, it can be demonstrated
that any extractor constructed from a universal hash function is a strong extractor,
with the Leftover Hash Lemma [6].

It states that, given H = {h1, h2, ..., h2d}, a universal2 hash family, mapping
from {0,1}n to {0,1}m and X a probability distribution on {0,1}n with H∞(X) ≥ k,
it follows that for x ∈ X and hy ∈ H where y ∈ Ud, the probability distribution
formed by hy(x) ◦ y is ε-close to Um+d, with ε = 2(m−k)/2. Therefore, it forms a
(k,2(m−k)/2, n, d, m)-strong-extractor. It can be said that, given some raw data of
size n, a min-entropy of k and a security parameter of ε, the length of the extracted
string will be m = k − 2 log2(1

ε
) [6].

In other words, if it is possible to estimate the min-entropy of the QRNG system,
it is easy to set the proportion between the rows and the columns of the Toeplitz
matrix and to perform randomness extraction to obtain a theoretically-proven
secure binary string.

3.3 Toeplitz Randomness Extractor
As already mentioned, the post-processing section is based on the binary multiplica-
tion between a Toeplitz matrix and a vector of raw data. To efficiently implement
this mathematical operation, a three-stage pipeline circuit has been implemented,
following the scheme proposed in [11]. Before delving in the explanation of the
stages of the pipeline and their composing elements, the section below describes
the computational strategy used to efficiently produce a dot product of a row and
a column.

3.3.1 Matrices Multiplication Strategy
Let T be an m × n Toeplitz matrix. As mentioned before, such matrices have fixed
left-to-right diagonals. Consequently, its structure is the following:

T =



tm tm+1 · · · tm+n−2 tm+n−1
tm−1 tm · · · tm+n−3 tm+n−2

...
t2

... . . . tn tn+1
t1 t2 · · · tn−1 tn

 (3.8)

29

High-Rate Randomness Extraction Using a FPGA

Consider also a binary vector of n bits D:

D =



d1
d2
...

dn−1
dn

 (3.9)

The extraction process consists in the dot product of each of the rows of T with
the vector D. Consider the resulting vector R, of dimension m:

R =


r1
r2
...

rm

 =


tm tm+1 · · · tm+n−1

tm−1 tm · · · tm+n−2
...
t1 t2 · · · tn




d1
d2
...

dn

 (3.10)

Each of the elements ri, with i = 1,2, . . . , m of R, has the following expression:

ri =
nØ

j=1
tm−i+j dj, i = 1, . . . , m (3.11)

which is the typical expression of any matrices product. By defining an integer
number G and choosing it in such a way that the ratio n/G is an integer, it is
possible to divide the m × n Toeplitz matrix in n/G sub-matrices of dimension
m × G. Each of these are multiplied by sub-vectors of D, composed of G bits. The
partial results coming from these sub-operations are then accumulated to obtain
the final result:

tm tm+1 · · · tm+G−1
tm−1 tm · · · tm+G−2

...
t2 t3 · · · tG+1
t1 t2 · · · tG





d1
d2
...

dG−1
dG

+



tm+G tm+G+1 · · · tm+2G−1
tm+G−1 tm+G · · · tm+2G−2

...
tG+2 tG+3 · · · t2G+1
tG+1 tG+2 · · · t2G





dG+1
dG+2

...
d2G−1
d2G

+

+ · · · +



tm+n−G tm+n−G+1 · · · tm+n−1
tm+n−G−1 tm+n−G · · · tm+n−2

...
tn−G+2 tn−G+3 · · · tn+1
tn−G+1 tn−G+2 · · · tn





dn−G+1
dn−G+2

...
dn−1
dn

 =



r1
r2
...

rm−1
rm


(3.12)

It is easy to verify that this equality holds, since, considering the first element
of the resulting vector r1:

r1 =
nØ

j=1
tm−1+jdj (3.13)

30

High-Rate Randomness Extraction Using a FPGA

the same expression is obtained by summing each partial result:

r1 =
GØ

j=1
tm−1+jdj +

2GØ
j=G+1

tm−1+jdj + · · · +
nØ

j=n−G+1
tm−1+jdj (3.14)

since the overall sum spans again from 1 to n. This result holds for every element
of R.

The idea is to have a circuit that is able to compute the result of each sub-matrix
and sub-vector in a single clock cycle and so to compute the final result in n/G
clock cycles. Moreover, notice that up to now the fact that the matrix employed is
a Toeplitz one has no advantage.

The complete algorithm together with a clear explanation on the benefits
obtained using a Toeplitz matrix are explained in the following section.

3.3.2 Data Extraction Algorithm
A flow chart of the data extraction algorithm implemented is shown in Fig. 3.3

It works as follows:

1. m + n − 1 random bits are given. They represent the constructing elements of
the Toeplitz matrix and are saved in an array called t. Two numbers are set to
zero, with i representing the current computational cycle and Z0 representing
the first partial result that is accumulated in the successive cycles. Obviously,
it has to be set to 0 at the start of the algorithm.

2. A total of G sub-vectors of length m are obtained from t by considering
m + G − 1 bits of the said vector. As already mentioned, this amount of
numbers is enough to represent a sub-matrix of dimensions m × G. By
extrapolating G sub-vectors from it in a sliding window fashion, it can be
easily seen that each element Ti,g is a column of the Toeplitz sub-matrix. This
happens because of the peculiar structure of the Toeplitz matrix.
To further emphasize this concept, refer again to Eq. 3.8 and notice how
successive columns change only by one element.

3. Now the gth column of the sub-matrix is multiplied with the gth bit of the
raw data vector that is being processed and the result is saved in the element
Ui,g. Again notice that each computation cycle a sub-vector of length G of
raw data is being processed.

4. To effectively complete the row-by-column sub-matrix multiplication, each of
the G partial results are summed with a bit-by-bit XOR operation and the
result is saved as Ui.

31

High-Rate Randomness Extraction Using a FPGA

t: m + n - 1 random numbers, i=0, Z0=0

Ti,g=t[m-1+g:g], (g=0,1,...,G-1)

Ui,g= Ti,g·Di,g

Ui= Ui,0⊕Ui,1⊕· · ·⊕Ui,G-1

Di= Di,0||Di,1||· · ·||Di,G-1=1

1

NO

Zi+1= Ui⊕Zi Zi+1= Zi

i=i+1

i=n/G

YES

NO

R = Zn/G-1 t >>G

YES

2

3

4

5

6

7

8

9

Figure 3.3: Data extraction algorithm flow chart. Adapted from [25].

5. A check on the raw data sub-vector is made to assert if at least one of the
elements to be processed is equal to 1.

6. Based on the previous check the following actions are done:

• If at least one element is 1, the partial result is updated with a bit-by-bit
XOR operation between Ui and Zi, which corresponds to the partial result
of the previous cycle.

• If Ui is composed of only 0’s, the partial result remains the same as the
previous cycle. This is because the accumulation would produce no effect.

7. The i index updates, stating that a computation cycle has been completed.

32

High-Rate Randomness Extraction Using a FPGA

8. A check is made on the current computation cycle index to understand if the
algorithm is completed.

9. Based on the algorithm being completed or not the following actions are done:

• If i = n/G then the last partial result corresponds to the final one.
• If the algorithm is not complete the bit array containing the Toeplitz

matrix is shifted by G bits to the right. This way in the next cycle a new
sub-matrix is considered.

3.3.3 Circuit Design Strategy
Now that the algorithm behind the matrix multiplication has been explained, it
is interesting to understand the circuit design strategy used to implement it. As
already mentioned, the circuit is composed of a three-stage pipeline and a schematic
representation can be seen in Fig. 3.4.

Matrix building

Sub-matrix multiplication

Vector accumulation

m+G-1 bits sub-
matrix building seed G raw bits

m-bit intermediate
column vector

m extracted bits

clock

Figure 3.4: Three stage pipeline scheme. Adapted from [11].

Each stage performs a certain phase of the overall computation:

1. The first stage uses the m + n − 1 bits that construct the Toeplitz matrix and
output the m + G − 1 bits necessary to construct the sub-matrix. With the
same concept, G bits are taken from the n bit array of raw data.

33

High-Rate Randomness Extraction Using a FPGA

2. The second stage computes the row by column dot product of the sub-matrix
and the sub-vector obtained by the previous stage. In principle, as it will be
thoroughly analyzed in the later sections, this stage can be implemented with
a fully combinatorial circuit. In other words this stage can be absorbed in one
of the other two. However for practically meaningful implementations of this
circuit, the depth gets significant and to comply with the timing requirements,
it is necessary to insert a data register also in this stage.

3. The last stage accumulates the products obtained by the sub-blocks in the
previous stage, in order to obtain the final result.

This circuit alone can carry out real-time randomness extraction but given certain
operational circumstances, it is possible to have a further degree of parallelization
by instantiating the just described circuit multiple times [11].

In particular, this strategy is useful in case the sampling frequency of the ADC,
which can be called S, is higher than the frequency of the clock available on
the FPGA, called C. In order to avoid having significant dead time, because the
amount of data coming from the high speed ADC is too much for the FPGA to
be processed, it is possible to instantiate copies of the circuit of the randomness
extractor. As soon as one of them has been replenished with all the data needed,
it starts computing and in the meantime the other incoming data is redirected to
the successive parallel block.

34

High-Rate Randomness Extraction Using a FPGA

As
yn

ch
ro

no
us

FI

FO
AD

C
j-b

its

Sa
m

pl
in

g
fr

eq
ue

nc
y

S

Sj
/C

-b
its

C
om

pu
ta

tio
na

l f
re

qu
en

cy
 C

R
aw

 d
at

a
re

gi
st

er
 0

R
aw

 d
at

a
re

gi
st

er

(S
j)/

(C
G

)-1

...

D
: n

 b
its

t:
(m

 +
 n

 -1
)-

bi
ts

R
an

do
m

ne
ss

ex

tr
ac

tio
n

m
 b

its

D
: n

 b
its

t:
(m

 +
 n

 -1
)-

bi
ts

R
an

do
m

ne
ss

ex

tr
ac

tio
n

m
 b

its

. . .

Bl
oc

k
0

Bl
oc

k
(S

j/C
G

)-
1

Figure 3.5: Parallel implementation of randomness extractor. Adapted from [11].

35

High-Rate Randomness Extraction Using a FPGA

A scheme of the described design is shown in Fig. 3.5. It is possible to observe
that the speed gap between the ADC and the FPGA’s clock is bridged by a
sophisticated memory element called asynchronous First In First Out (FIFO).
Consider that the resolution of the ADC is j, this memory element is written by
j-bits at the frequency S and it is read by Sj/C-bits at the frequency of C. The
bit rate on the randomness extraction circuit side is Sj. This amount of data is
distributed between Sj/CG parallel blocks. The raw data registers containing the
bits to be extracted are filled in nC/jS clock cycles, since they have a width of
n-bits. Once a register has been filled, the randomness extraction starts, and the
FIFO starts sending data to the register contained in the successive block in a
cyclic manner.

3.3.4 Circuit Implementation: Functional Blocks
Now that the idea behind the algorithm and the circuit have been explained, it is
possible to analyze how everything has been actually implemented on the FPGA.

The randomness extractor is composed of several functional blocks that have
been described using VHDL. The hierarchy of the blocks is depicted in Fig. 3.6.
Notice that, as explained in the previous sections, both a free-running and an
offline configuration have been implemented. Therefore, minor differences will be
present but only in the top-level architecture, here called extractor Finite State
Machine (FSM).

Below, the building blocks of the circuit are described following a bottom up
approach with respect to the hierarchy.

36

High-Rate Randomness Extraction Using a FPGA

Asynchronous
FIFO

j-bits

Extractor FSM

Toeplitz sub-matrix
shift register

.

.

.
Computational FSM-(Sj/CG)-1

Extractor-(Sj/CG)-1

Computational frequency C

Computational FSM-0

Extractor-0

Raw data
shift

register

1st pipeline stage

Sub-matrix
multiplier

2nd pipeline stage

Accumulator

3rd pipeline stage

Raw data
shift

register

1st pipeline stage

Sub-matrix
multiplier

2nd pipeline stage

Accumulator

3rd pipeline stage

Figure 3.6: Circuit hierarchy scheme.

37

High-Rate Randomness Extraction Using a FPGA

Toeplitz Sub-Matrix and Raw Data Shift Registers

The Toeplitz sub-matrix register and the raw data registers are core components
that represent the first stage of the pipeline. They get filled with data in blocks,
since it is supposed to come from the ADC, which likely has a resolution in bits,
lower than the dimensions that will be set for these components (n for the raw
data register and n + m − 1 for the Toeplitz sub-matrix one). Even in the offline
configuration, it is supposed that the input data comes from a memory cell in the
BRAM of the FPGA, whose width can be expected to be lower than the one of
the registers.

To be compliant with the requirements, the incoming data is saved in the
least relevant positions of the registers and then a shifting operation to the left is
performed.

For what concerns the reading of these registers the concept is similar, with a
block of data being read and a rotation operation being performed. This means
that the data just read is saved back at the opposite end of the register, with
respect to the shifting direction.

Notice that the Toeplitz sub-matrix register is instantiated as a component
of the top-level architecture and not of the extractor component as it would be
expected. This is because there is no need for the parallel computational modules
to use different Toeplitz matrices. Therefore, to save some slice occupation on the
FPGA, it has been instantiated a single time and it is routed to each of the parallel
extractors.

Sub-Matrix Multiplier

This is the second stage of the pipeline. It is composed of a combinatorial circuit
that performs the binary multiplication and a simple register. It is shown in Fig. 3.7,
in a one bit example for simplicity. It is composed of G AND gates instantiated
in parallel and fed to a cascade of G − 1 XOR gates. One input port of the AND
gates is connected to one of the bits of the raw data register, while the other port
is connected to a Toeplitz sub-matrix register portion representing a column of the
sub-matrix. The last XOR gate, containing the final result of the multiplication is
connected to the register that feeds the result to the last pipeline stage.

As mentioned, this last memory element has no function for the algorithm, but
the depth of this circuit may be significant and not inserting a pipelining register
may lead to failed timing constraints and consequent errors during the execution.

Accumulator

This is the last stage of the pipeline and its scheme can be seen in Fig. 3.8. It is
composed of a XOR gate, that takes as input on one of the two ports, the result of

38

High-Rate Randomness Extraction Using a FPGA

AND-1

AND-0

XOR-0

AND-2

.

.

.

.

.

.

AND-
(G-2)

AND-
(G-1)

XOR-1

XOR-
(G-3)

XOR-
(G-2)

Register

Clock

D Q

Figure 3.7: Sub-matrix multiplier circuit. Adapted from [9].

the multiplication. This product comes from the register of the previous pipeline
stage. On the other input port, the output of the accumulator register is connected.
This combination of connections allows to sum the partial result on the previous
cycle of the algorithm with the new partial product. Referring again to the flow
chart in Fig. 3.3, it is not always true that the new partial result is the result of
a sum. In fact, in case the raw data vector is composed of all 0’s, the new value
has to be equal to the one of the previous cycle. For this reason, a two-to-one
multiplexer (MUX) is present with input port 1 connected to the XOR gate output
and input port 0 to the output of the accumulator register. The selection signal
decides which of the two inputs is fed to the register and it simply goes high in
case a bit of the raw data string processed is equal to 1.

Extractor

This is the component of higher hierarchy, containing the three pipeline stages and
connecting them as described. Notice that its input ports, besides the obvious clock,
synchronous reset, input data (coming from the ADC or the BRAM) and output
data port, are also the three write-enable and the three read-enable signals. These
are needed for the management of the pipeline. Obviously for the first stage, only
the raw data register is piloted, since the Toeplitz sub-matrix register is external
to this component. This last aspect is taken into account with the higher-hierarchy
architectures that are promptly described below.

39

High-Rate Randomness Extraction Using a FPGA

Register

Clock

D Q

XOR

MUX

1

0

Selection

Figure 3.8: Accumulator circuit. Adapted from [9].

Computational Module FSM

This module manages the pipeline, using a Finite State Machine (FSM) type of
circuit. The flow chart of the states is shown in Fig. 3.9 and these are now briefly
explained:

40

High-Rate Randomness Extraction Using a FPGA

IDLE
S1

Write enable
signal for data

register=1?

NO

YES

data register
full?

YES

NO

Enable raw data register read
S2

Enable sub-matrix multiplier register read
S3

Enable accumulator register read
S4

Multiplication
computation

done?

NO

YES

Data out valid
S5

Write enable
signal for data

register=0?

YES

NO

Figure 3.9: Computational module FSM flow chart.

41

High-Rate Randomness Extraction Using a FPGA

S1) The idle state in which the registers of the pipeline are reset. The system
waits for the write enable signal of the raw data register to be high. If it is
active, it means that valid data is sent and the register is being filled. As
mentioned, the number of clock cycles needed to fill it are nC/jS. Therefore
a counter is used to understand at which clock cycle the register is full and it
is possible to start the multiplication process.

S2) In this state the read enable signal is activated for the raw data register and
the multiplier register is ready to be written.

S3) In this state the read enable signal for the multiplier register is activated and
the accumulator register is ready to be written.

S4) In this state the read enable signal for the accumulator register is activated
and the accumulation process is started. As mentioned previously, this process
lasts for n/G clock cycles. Again a counter is used to keep track on the amount
of accumulations already performed and if the correct amount is reached, the
next state is asserted.

S5) In this state the output data is considered valid, since the accumulation process
is done. Therefore a data-valid signal is asserted. The state returns to the
idle one in case the write enable signal for the data register is 0. If this is not
the case, the state remains S5.

Extractor FSM

This architecture manages the parallel execution of the computational modules using
a FSM type of circuit. A total number Sj/CG of parallel modules is instantiated
together with a single Toeplitz sub-matrix register. The purpose of this FSM is to
decide the correct raw data register to write in order to obtain an efficient parallel
execution. The flow chart of the states is shown in Fig. 3.10. As mentioned before,
this module is slightly different in the free-running configuration with respect to
the offline one. This minor change is in the fact that, if data is coming from the
BRAM, there is an extra clock cycle delay before the data is valid for reading.
For this reason, additional states are present but the core functionality remains
unchanged.

42

High-Rate Randomness Extraction Using a FPGA

IDLE
S1

start=1?
NO

YES

Write Toeplitz sub-matrix register
S3

Write raw data register

S4

Clock cycle delay for BRAM reading
S2

Toeplitz sub-
matrix register

full?

NO

YES

Enable writing signal for the next parallel
non-busy block

S5

end=1?
YES

NO

Raw data
register full?

NO

YES

All parallel raw
data registers have

been written?

First block has
terminated
extraction?

YES

NOYES

Clock cycle delay for BRAM reading

S6

NO

Figure 3.10: Extractor FSM flow chart. States represented by a rectangle with a dashed outline
are present only in the offline configuration.

43

High-Rate Randomness Extraction Using a FPGA

The states work as follows:

S1) In the idle state the circuit does not perform any action and waits for the
start signal to be asserted.

S2) This state is present only in the offline configuration. A BRAM read enable
signal is asserted and notifies the BRAM controller that the extractor wants
to receive data. Since a one clock delay is present before any valid data can
be read from the memory element, this state is necessary to request data from
the BRAM a clock cycle before anything is actually written on the extractor
registers.

S3) The write enable signal is activated for the Toeplitz sub-matrix register, in
order for it to be filled. This operation requires ⌈(n + m − 1)C/Sj⌉ clock
cycles. As usual the track of the number of writings performed is kept by a
counter.

S4) One of the parallel raw data registers is now written. The operation takes
⌈nC/Sj⌉ clock cycles, computed again with a counter.

S5) This state is reached once one of the parallel raw data registers has been
written. It is now necessary to start filling with data the register relative to
the successive block. In order to do this, the write enable signal to the new
register is set high, while the one to the previous goes to 0. This mechanism
proceeds in a loop to have the most amount of data processed at the same
time, up until a end signal is activated. Once this happens, it means that the
circuit has to return to the idle state.
Some care has to be taken in the management of the write enable signals for
the raw data registers. In fact, it is possible that every block has been filled
with raw data but the first block has not finished yet computing the result
of the randomness extraction. To take into account this issue some controls
are present: initially a check is made to understand if the next block to be
written is the first one. If this is not the case, the algorithm proceeds by simply
writing the next block. If instead the loop has to restart, a further control is
present. This one checks if the first block has completed the computation by
analyzing the state of the output data-valid signal of the first computational
module block. If this signal is active it means that the loop can start over,
otherwise the system remains idle.

S6) Like S2, this state i present to account for the clock delay in the BRAM
reading, before starting to write the new raw data register.

In addition to the just described processes, this module has the function to
communicate to the blocks external to the extractor, the instant in which a valid

44

High-Rate Randomness Extraction Using a FPGA

result is given as output. To do so, a data-valid-toggle signal is present, that reads
the data-valid signals coming from the computational modules, and toggles as soon
as one of them is set to high. This type of control is useful also to determine
which of the output strings of the computational modules can be considered a
valid and fresh output to the extractor top-level architecture, in order for it to be
communicated to the external world.

3.4 Integration of the Randomness Extractor Cir-
cuit into the SoC

Now that the circuit for randomness extraction has been described, it is possible to
delve into the complete system that is loaded on the System on Chip (SoC). The
board supplied for the realization of this work is mounted with a SoC containing
both a FPGA and a CPU. Therefore, the complete systems are realized by exporting
the hardware platform designed on Vivado on the Vitis software. This application
is used to program the CPU with C scripts.

Moreover, it is important to mention, that every component written in VHDL
has been defined with the "generic" directive, meaning that each parameter is
customizable. This allows for easy testing and flexibility on the realization of a
system that is compliant with the user requirements. Before starting to describe
the two different configurations implemented, a brief description of the important
components that are present in both of them is given:

• Processing system: the component representing the CPU of the SoC available
in the Xilinx’s Intellectual Property (IP) catalog. Its instantiation is necessary
to allow the correct communication between the processor and the FPGA. It
is performed using the Advanced eXtensible Interface (AXI) protocol, that
will be obviously used in all the other Xilinx’s IPs present in the design. For
a easier management of the communications a AXI Smart Connect is used.

• Processor System Reset: present to centrally manage the synchronous reset
signals across the design. It has to be instantiated for each of the different
clock domains present.

• AXI GPIO: these components manage the correct use of the General Purpose
Input/Output (GPIO) ports of the processing system. They are the principal
way in which the CPU sends and receives signals with the FPGA domain.

• AXI BRAM Controller: allows for easy customization of the BRAM, in terms
of width and depth of the memory block instantiated. Uses the AXI protocol
to communicate with the CPU, consequently allowing it to write and read
data.

45

High-Rate Randomness Extraction Using a FPGA

• Block Memory Generator: represents the BRAM in the design. This IP
permits easy customization on the type of memory needed (RAM, ROM,
single port, dual port,...)

• BRAM writer: this custom sequential block is described in VHDL and handles
the writing of the data processed by the randomness extractor onto the BRAM.
It works by being sensible to the data-valid-toggle signal of the extractor FSM.
When a change in the logical value of this signal is registered, the write enable
signal for the BRAM is set high. The processed bits are forwarded as output
and the correct address of the memory is computed, to cyclically write each
cell with a new value. Both a full and a half-full flags are set high, respectively
when the last and the middle addresses have been written.

• Bits selector: a simple custom combinatorial block, that takes as input a bit
array of a certain length and gives as output a shorter array containing the
lest significant bits of the original data.

3.4.1 Online implementation
The Vivado block design is shown in Fig. 3.11. This configuration has been
implemented to give proof of the possibility of having an online randomness
extraction. However, given the unavailability of a high performance ADC to
interface with the FPGA, it is not used in the result analysis, however the correct
functioning has been tested.

46

High-Rate Randomness Extraction Using a FPGA

SW0

SW1

ja_pin2_io

ja_pin3_io
processing_system7_0

ZYNQ7 Processing System

DDR

FIXED_IO

USBIND_0

M_AXI_GP0

TTC0_WAVE0_OUT

TTC0_WAVE1_OUT

TTC0_WAVE2_OUT

M_AXI_GP0_ACLK

FCLK_CLK0

FCLK_CLK1

FCLK_CLK2

FCLK_RESET0_N

rst_ps7_0_0M

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

proc_sys_reset_0

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

axi_gpio_0

AXI GPIO

S_AXI
GPIO

gpio_io_i[0:0]
s_axi_aclk

s_axi_aresetn

axi_gpio_1

AXI GPIO

S_AXI
GPIO

gpio_io_o[0:0]
s_axi_aclk

s_axi_aresetn

axi_smc

AXI SmartConnect

S00_AXI M00_AXI

M01_AXI

M02_AXI

aclk

aresetn

axi_bram_ctrl_0

AXI BRAM Controller

S_AXI

BRAM_PORTAs_axi_aclk

s_axi_aresetn

pmod_adc_ad7476a_0

pmod_adc_ad7476a_v1_0

clk

reset_n
data_in_0

data_in_1

sck

cs_n[0:0]
adc_0_data[11:0]

adc_1_data[11:0]

ADC_bits_selector_0

ADC_bits_selector_v1_0

i_data_in[11:0] o_data_out[9:0]

xlconstant_0

Constant

dout[0:0]

fifo_generator_0

FIFO Generator

FIFO_WRITE

din[9:0]

wr_en

FIFO_READ
dout[19:0]

rd_en

wr_clk

rd_clk

Toeplitz_extractor_F_0

Toeplitz_extractor_FSM_v1_0

i_clk

i_rst

i_start

i_end

i_data_in[19:0]

o_data_valid_toggle
o_data_out_definitive[189:0]

bram_writer_0

bram_writer_v1_0

i_clk

i_rst

i_data_valid

i_data_in[2047:0]

i_clear_flags

o_addrb[31:0]

o_dinb[2047:0]

o_web[255:0]

o_enb
o_rstb

o_clkb

o_flag_half

o_flag_full

axi_bram_ctrl_0_bram

Block Memory Generator

BRAM_PORTA

BRAM_PORTB

addrb[31:0]

clkb
dinb[1023:0]

enb

rstb

web[127:0]

rsta_busy
rstb_busy

FIXED_IO

DDR

ja_pin4_io

ja_pin1_io[0:0]

Figure 3.11: Online configuration Vivado block design.

47

High-Rate Randomness Extraction Using a FPGA

As it can be seen in Fig. 3.11, there are several IPs that have yet to be described.

• ADC compatibility module: the module is connected to the pin bank of the
board, in which the ADC is plugged in. The block, either with a AXI interface
or not, is supposed to read the digitally converted voltages and giving it to
the output port. The block shown in the Vivado design refers to the specific
slow ADC module available. In general it is necessary to configure it correctly,
depending on the board and the ADC used.

• FIFO generator: a Xilinx IP allowing to customize a FIFO and easily imple-
ment the asynchronous version to bridge the fast clock domain of the ADC
and the slow one of the FPGA. Since this implementation is a proof of concept,
the clock signals are both provided by the processing system.

The system works by having the ADC continuously acquiring data from the
QRNG. The bit selector is present in case the whole ADC resolution range is
not filled. The converted values are then stored in the FIFO and read from the
extractor block. The process of extraction, in this case, starts by flipping a switch
on the board but, if it is possible to use more slices of the FPGA, this can be done
with a GPIO port of the processing system as well. The same principle holds for
the end signal.

The system begins the processing of data and a flag of the BRAM writer is set
high once the BRAM has been completely written with data (full flag). At this
point the system starts printing the extracted random numbers. It is possible to
read these on the PC, by plugging it to the serial communication port of the board
and using software such as PuTTY [38]. Once this procedure has been terminated
the flags on the BRAM writer are cleared, by sending a signal from the processing
system through the GPIO1 port. The signal is then cleared and the process can
start again. This particular configuration has been implemented in order for the
user to easily read separate data batches of a fixed dimensions. The system can be
easily converted to support a continuous stream of precessed data.

Notice that printing on a video terminal millions of characters is the most
straightforward but least efficient way to read the processed data. This is because
the serial port does not support particularly fast communications and the printing
itself is very slow. However, with some modifications on the CPU script, it is
possible to send the read data from the BRAM through a faster connection, like
Ethernet or even saving it in a file on a SD card.

3.4.2 Offline implementation
The Vivado block design is shown in Fig. 3.12.

48

High-Rate Randomness Extraction Using a FPGA

processing_system7_0

ZYNQ7 Processing System

DDR

FIXED_IO
USBIND_0

M_AXI_GP0
TTC0_WAVE0_OUT
TTC0_WAVE1_OUT

TTC0_WAVE2_OUT

M_AXI_GP0_ACLK

FCLK_CLK0

FCLK_RESET0_N

rst_ps7_0_100M

Processor System Reset

slowest_sync_clk

ext_reset_in
aux_reset_in
mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]
peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

axi_gpio_0

AXI GPIO

S_AXI
GPIO

gpio_io_o[0:0]
s_axi_aclk
s_axi_aresetn

axi_gpio_1

AXI GPIO

S_AXI
GPIO

gpio_io_i[0:0]
s_axi_aclk
s_axi_aresetn

axi_smc

AXI SmartConnect

S00_AXI
M00_AXI
M01_AXI

M02_AXI
M03_AXI

aclk
aresetn

axi_bram_ctrl_0

AXI BRAM Controller

S_AXI
BRAM_PORTAs_axi_aclk

s_axi_aresetn

axi_bram_ctrl_1

AXI BRAM Controller

S_AXI
BRAM_PORTAs_axi_aclk

s_axi_aresetn

ADC_bits_selector_0

ADC_bits_selector_v1_0

i_data_in[31:0] o_data_out[10:0]

Toeplitz_extractor_F_0

Toeplitz_extractor_FSM_v1_0

i_clk

i_rst
i_start
i_end

i_data_in[19:0]

o_data_valid_toggle
o_bram_reader_en

o_data_out_definitive[2047:0]

bram_reader_0

bram_reader_v1_0

i_clk
i_rst

i_enable

o_addra[31:0]

i_douta[31:0]

o_ena

o_rsta
o_clka

o_data_out[31:0]

o_data_valid
o_flag_full

axi_bram_ctrl_0_bram

Block Memory Generator

BRAM_PORTA
BRAM_PORTB

addrb[31:0]
clkb
doutb[31:0]

enb
rstb

rsta_busy

rstb_busy

bram_writer_0

bram_writer_v1_0

i_clk
i_rst

i_data_valid
i_data_in[1023:0]

o_addrb[31:0]

o_dinb[1023:0]
o_web[127:0]

o_enb

o_rstb
o_clkb

o_flag_half

o_flag_full

axi_bram_ctrl_1_bram

Block Memory Generator

BRAM_PORTA

BRAM_PORTB
addrb[31:0]
clkb

dinb[1023:0]
enb
rstb

web[127:0]

rsta_busy

rstb_busy

LD2

LD1

DDR

LD[0:0]

FIXED_IO

LD3

Figure 3.12: Offline configuration Vivado block design.

49

High-Rate Randomness Extraction Using a FPGA

Besides the already described blocks, another component is present:

• BRAM reader: a custom sequential block that has the complementary function
with respect to the writer component. In other words, it is able to read each
cell of the memory element and give their content as input to the extractor.

The working principle is having the CPU reading the text file containing the
QRNG voltage values. This is done using the AMD Fat File System (FFS) library
called XilFFS. These numbers are then written on the BRAM0 in 32 bit binary
format. Once each cell of the memory has been written, a high logical level is
set for the bit correspondent to GPIO0. This port is connected to work as the
start signal of the extractor FSM. At this point BRAM0 is read. Notice that a bit
selector is used, since the values saved are not big enough to be represented in 32
bits. Therefore a smaller portion of the least significant bits is considered as input
data for the extractor. The system then waits for the GPIO1 to go to 1. This port
is connected to the full-flag of the BRAM writer module. In the instant in which
this event happens, the entire content of BRAM1 is written on a text file on the
SD card.

In simpler terms, the system reads the data batch of QRNG voltage values from
the SD card and saves it on a portion of the BRAM. At this point the processing
starts and the extracted random values are saved on another portion of the BRAM.
When the memory is full, the random numbers are saved back on the SD card.

50

Chapter 4

Results

This chapter presents the results obtained from the QRNGs. Sec. 4.1 discusses the
phase fluctuations-based QRNG, Sec. 4.2 examines the vacuum state heterodyne
measurement-based QRNG, and Sec. 4.3 provides an overview of the performance
of the FPGA implementation.

4.1 Phase Fluctuations-Based QRNG

4.1.1 Experimental Setup Analysis

The value regarding the bias current of the laser diode as well as its temperature,
have been set after careful analysis of the optical spectrum of the emission. As
expected, the spectrum widens with a lower bias current. However, a tradeoff
has to be made between having a poorly correlated emission and a signal on the
photodetectors that is high enough to be detected. As mentioned, the working
point has been set at 13.5 mA of bias current, with a temperature of 24°C.

Another free parameter is the length of the delay line. It has been explained
how it has to be long enough to have no correlation between the photons reaching
the beam splitter. The experiment has been carried out with 2 m, 5 m and 7 m of
delay line. The intermediate length has proven to be sufficient.

The absence of correlation can be verified simply by moving the optical fiber:
in case there is still significant coherence in the electromagnetic radiation coming
to the beam splitter, it is possible to observe and abrupt change in the optical
power measured. This is because a movement of the optical fiber changes the
phase at which the electromagnetic waves arrive at the beam splitter, therefore the
interference produces a change in the instantaneous optical power. On the other
hand, if coherence has been lost, no change is observed.

51

Results

4.1.2 Raw Data Analysis
Using the offline configuration a total of 16 M voltage values have been saved on
the hard disk. These values are signed integers on 12 bits, which is the resolution
of the ADC. This means that the data batch is composed of 192 Mb.

The probability distribution of the digitally converted voltage values measured
are plotted in Fig. 4.1.

1000 500 0 500 1000 1500 2000
Interference intensity quantified by a 12-bit ADC

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

Pr
ob

ab
ilit

y
de

ns
ity

Average = -15.82
+1
-1

Figure 4.1: Probability distribution of the digitally converted voltage values measured from the
phase fluctuations-based QRNG.

What is expected is a Gaussian distribution of values. In fact, in the mathe-
matical model explanation, it has been said that the phase term relative to the
spontaneous emission has a Gaussian distribution. This behavior appears to be
respected for the positive voltage values but the same cannot be said for the
negative ones. The negative tail of the Gaussian appears to be compressed in a
certain range of values. In order to investigate the origin of this phenomenon, an
oscilloscope has been used to observe the photodetector’s signal. This behavior
has still been observed, even when varying parameters like the bias current of the
laser diode. It has been concluded that the reason the negative values are squeezed
is the AC coupling of the photodetector. This element, by eliminating the DC
component, is probably distorting the negative valued voltages.

The autocorrelation function of the obtained bit sequence, can be seen in Fig. 4.2.
It can be observed that numerous peaks are present and that they appear with

a certain periodicity. This is a hint on the presence of a fairly high degree of

52

Results

0 20 40 60 80 100
Lag (bits)

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Au
to

co
rre

la
tio

n

Figure 4.2: Autocorrelation function of 105 raw data bits acquired from the phase fluctuations-
based QRNG. The dashed and full horizontal lines respectively represent the 99% and 95%
confidence bands. These are the ranges in which the the values are expected to fall, if the sequence
is uncorrelated with a confidence equal to the respective percentage.

correlation between the bits of the sequence and a periodic recurrence of certain
patterns. It is also evident that the values fall outside of the confidence bands.
This is due to the imperfections in the experimental apparatus, as well as the
behavior previously described of negative voltage values. It also possible that these
phenomena are imputable to the presence of some degree of residual correlation
between the photons.

These characteristics are supposed to be fixed thanks to the post-processing
implemented on the FPGA. In order to perform it, it is necessary to know the min-
entropy related to the sequences produced by the QRNG. In this case, this value has
to be estimated directly on the raw data. The min-entropy on sequences of 12 bits
of the entire data batch under test is 9.928. This value has been computed using
Eq. 3.3. The length of the sequences considered for the min-entropy computation
is the effective number of bits of the digital conversion, which in this case equals
the ADC resolution. It can be concluded that the percentage of bits that can be
extracted is (9.928/12) · 100 ≈ 82.68%. This value sets a higher bound on the ratio
between rows and columns of the Toeplitz matrix during the post-processing.

53

Results

4.1.3 Extracted Data Analysis
The raw data just described has been processed with the FPGA. Even though the
estimated min-entropy indicates that it is technically possible to extract about
80% of the bits, it has been decided to extract 50% of them with the algorithm
explained in Sec. 3.3. This is because this type of statistical characterization of raw
data is unreliable, since the data batch is not infinite in dimension. By considering
half of the bits as extractable, it is safer to say that the resulting random numbers
have good characteristics.

The autocorrelation has been plotted in Fig. 4.3.

0 20 40 60 80 100
Lag (bits)

0.04

0.02

0.00

0.02

0.04

Au
to

co
rre

la
tio

n

Figure 4.3: Autocorrelation function of 105 extracted data bits from the phase fluctuation-based
QRNG.

It is possible to observe that the correlation between the bits has significantly
decreased and the function’s values lie inside the 99% confidence interval. While this
is a good measure of the effect of randomness extraction, it is also a good practice
to submit the sequence to a test battery. For this reason the NIST statistical test
suite, which is described in Appendix A, has been used.

The test has been carried out on 80 sequences of 1 M bits each, with a level of
significance α = 0.01. According to the documentation the portion of times each
test should be passed with these conditions is at least 0.99 − 3

ñ
0.99 · 0.01/80 ≈

0.99 − 0.033 = 0.957, therefore with a minimum of 96% of sequences that passed
each test, there is no evidence to assert the extracted bit string is not random.

54

Results

The results are shown in Fig. 4.4.

Fre
qu

en
cy

Bloc
kFr

eq
ue

ncy Ru
n

Lon
ge

st
Ru

n

Bina
ry

Matr
ix R

an
k

DFT

Non
-ov

erl
ap

pin
g

Ove
rla

pp
ing

Univ
ers

al

Lin
ea

r C
om

ple
xit

y

Se
ria

l(1
)

Se
ria

l(2
)

App
rox

im
ate

 en
tro

py

Cum
ula

tiv
e s

um
s (

f)

Cum
ula

tiv
e s

um
s (

b)

Ra
nd

om
Ex

cur
sio

ns

RE-V
ari

an
t

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n

of
 P

as
sin

g

Threshold (96%)

Figure 4.4: Proportion of passed test of the NIST statistical test suite for phase fluctuations-
based QRNG after randomness extraction.

It can be observed that each of the 15 tests of the suite has been passed at least
96% of times.

According to the NIST guidelines, it is also necessary to make a check on the
uniformity of the P − values obtained by every test. The distribution is plotted in
Fig. 4.5.

In this graph it can be seen that the Random Excursion Test and the Random
Excursion Tariant Test present many more P − values, this is because they are
composed of multiple sub-tests and here they are all plotted at the same time.
It appears that the P − values are uniformly distributed. However, this type of
analysis is not rigorous. Then the Kolmogorov-Smirnov test is applied to have a
further proof of uniformity. As a result, a final P − value is obtained for each test,
by aggregating the multiple ones present. The result can be seen in Fig. 4.6.

The P − values lie between the level of significance α = 0.01 and 1. It can be
concluded that the extracted dataset obtained with the phase fluctuations-based
QRNG appears to be random.

55

Results

Fre
qu

en
cy

Bloc
kFr

eq
ue

ncy Ru
n

Lon
ge

st
Ru

n

Bina
ry

Matr
ix R

an
k

DFT

Non
-ov

erl
ap

pin
g

Ove
rla

pp
ing

Univ
ers

al

Lin
ea

r C
om

ple
xit

y

Se
ria

l(1
)

Se
ria

l(2
)

App
rox

im
ate

 en
tro

py

Cum
ula

tiv
e s

um
s (

f)

Cum
ula

tiv
e s

um
s (

b)

Ra
nd

om
Ex

cur
sio

ns

RE-V
ari

an
t

0.0

0.2

0.4

0.6

0.8

1.0

P-
Va

lu
e

20

40

60

80

100

P-
va

lu
es

 n
um

be
r

Figure 4.5: P − values distribution for uniformity analysis for phase fluctuations-based QRNG
after randomness extraction.

Fre
qu

en
cy

Bloc
kFr

eq
ue

ncy Ru
n

Lon
ge

st
Ru

n

Bina
ry

Matr
ix R

an
k

DFT

Non
-ov

erl
ap

pin
g

Ove
rla

pp
ing

Univ
ers

al

Lin
ea

r C
om

ple
xit

y

Se
ria

l(1
)

Se
ria

l(2
)

App
rox

im
ate

 en
tro

py

Cum
ula

tiv
e s

um
s (

f)

Cum
ula

tiv
e s

um
s (

b)

Ra
nd

om
Ex

cur
sio

ns

RE-V
ari

an
t

10 2

10 1

100

p-
va

lu
e

 = 0.01

Figure 4.6: P − values for the phase fluctuations-based QRNG after randomness extraction,
obtained with the Kolmogorov-Smirnov test.

56

Results

4.2 Vacuum State Heterodyne
Measurement-Based QRNG

4.2.1 Experimental Setup Analysis and Calibration
The values regarding the bias current and the temperature of the local oscillator
have been set to the typical operational regime. The optical power is set with the
VOA at 20.1 mW.

For what concerns the data acquisition, since the photodetectors used work with
100 MHz of bandwidth, a Butterworth band-pass filter has been digitally applied
to eliminate the frequencies outside the 1 MHz to 100 MHz window. Moreover, to
avoid oversampling, decimation has been used.

In the previous chapters, it has been said that it is necessary to estimate the
resolution of the two photodetectors. This is done to compute the lower bound of the
conditional min-entropy and be able to extract a sufficient amount of randomness.
For this reason a calibration phase is done before the detection stage: the optical
power of the local oscillator is swept from a few mW to around 23 mW. The signal
of the photodetectors is sampled for certain values of optical powers in this range.
It is then possible to compute the variance of the signal in these points and plot it
against the optical power.

The power sweep is performed with the VOA, by piloting it with the electronic
driver. These actions are programmed with a Labview script that sets up the
whole calibration stage, including the data acquisition and the signal variance
computation.

The calibration curve can be seen in Fig. 4.7.

57

Results

0 5 10 15 20
Optical power [mW]

0

20

40

60

80

100

120

140

160

Si
gn

al
 v

ar
ia

nc
e

[m
V2]

Photodetector 1
Photodetector 2

Figure 4.7: Linear fit of the signal variance as a function of the optical power for the two
photodetectors for the vacuum state heterodyne measurement-based QRNG.

58

Results

Since the relationship between the two variables is linear, a linear fit has been
performed. Notice that if the sweep had been performed on a wider range of optical
powers, the variance would saturate at a certain level.

The fit is fundamental for the characterization of the measurement device. In
fact, two important parameters are extracted, namely the slope and the intercept
of the fits, respectively called si and qi, with i = 1,2 to distinguish between the two
photodetectors. According to the heterodyne scheme, each photodetector measures
a different quadrature of the electromagnetic field. The results are s1 = 6.833
mV2/mW, q1 = 5.178 mV2, s2 = 7.021 mV2/mW and q2 = 4.878 mV2.

The slope is useful to convert variances in the physical regime (measured in V)
to variances in shot noise units: the conversion factor is 2siPLO, with PLO = 0.0201
W being the optical power of the local oscillator. Since it is necessary to compute
the resolution of the measurement apparatus in shot noise units, its resolution has
to be converted from the physical units. In order to do so, the scale of the ADC,
which is equal to 200 mV, has to be divided by the amount of numbers that can be
represented with the effective bits available. Since in this case the effective bits are
11, this quantity is equal to 211.

The result is δV = (0.2 V)/211 = 9.766 · 10−5 V. Now that the resolution in
physical units has been computed, it is possible to obtain the one in shot noise
units:

δ1,2 = δVñ
2s1,2PLO

(4.1)

The results are δ1 = 5.891 · 10−3 and δ2 = 5.812 · 10−3. Finally it is possible to
compute the lower bound of the conditional min-entropy:

Hmin(Xδ|E) ≥ log2

3
π

δ1δ2

4
= 16.485 (4.2)

This is the lowest number of bits that can be extracted from double the amount
of effective bits of the ADC (the double has to be considered because the measure
is made contemporarily on the two quadratures). This means that the percentage
of extractable bits is 16.485/(2 · 11) · 100 = 74.9%

4.2.2 Raw Data Analysis
Using the offline configuration, a total amount of 10 M of values per photodetector
has been saved on the hard disk. Each number is a signed float and gets later
converted to a signed integer on 11 bits, in a single file containing both the
photodetectors measurements. The total amount of data is then 220 Mb.

The fluctuations are reported in Fig. 4.8 and Fig. 4.9.

59

Results

0.06 0.04 0.02 0.00 0.02 0.04 0.06
Voltage [V]

0

5

10

15

20

25

30

Pr
ob

ab
ilit

y
de

ns
ity

Average = -0.00
+1
-1

Figure 4.8: Probability distribution of the voltage values measured on photodetector 1 in the
vacuum state heterodyne-measurement based QRNG.

0.06 0.04 0.02 0.00 0.02 0.04 0.06
Voltage [V]

0

5

10

15

20

25

30

Pr
ob

ab
ilit

y
de

ns
ity

Average = 0.00
+1
-1

Figure 4.9: Probability distribution of the voltage values measured on photodetector 2 in the
vacuum state heterodyne-measurement based QRNG.

60

Results

These plots represent the quadratures distributions in physical units, which
are quantities proportional to the Husimi function projected onto the respective
electromagnetic field quadratures. By extrapolating the variances from the plots,
the values obtained are σV

1 = 0.0015 mV2 and σV
2 = 0.0014 mV2, which converted

in shot noise units become σ1 = 0.516 and σ2 = 0.522. The expected value for the
variance of the vacuum state is 1/2 but it can be seen that the measured ones are
greater. This happens because of the electronic noise that widens the distribution.

The autocorrelation is plotted in Fig. 4.10.

0 20 40 60 80 100
Lag (bits)

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Au
to

co
rre

la
tio

n

Figure 4.10: Autocorrelation function of 105 raw data bits acquired from the vacuum state
heterodyne-measurement based QRNG.

61

Results

The function lies mostly inside the 99% confidence band, expect for an accen-
tuated initial peak and some other minor ones. This behavior shows that the
data presents correlation only with the immediately subsequent bits and that it
is quickly lost. Differently from the phase-fluctuations based QRNG the periodic
behavior in the sequences appears to be absent but this does not mean that a
bias in the appearance of certain numbers is not present. Anyway, randomness
extraction is always necessary to eliminate any possible correlation, due to the
experimental apparatus imperfections.

Before proceeding with the analysis of the processed data, it is interesting to
evaluate the min-entropy of the acquired data and compare it to the lower bound
set during the calibration phase. This value has been computed using Eq. 3.3. The
result is Hmin = 16.553 > Hmin(Xδ|E) = 16,485, which reveals that the bound is
tightly respected.

4.2.3 Extracted Data Analysis
The raw data has been processed with the FPGA, by considering a ratio between
the rows and the columns of the Toeplitz matrix of 70%.

The autocorrelation function is plotted in Fig. 4.11.

0 20 40 60 80 100
Lag (bits)

0.04

0.02

0.00

0.02

0.04

Au
to

co
rre

la
tio

n

Figure 4.11: Autocorrelation function of 105 extracted bits from the vacuum state heterodyne-
measurement based QRNG.

62

Results

It can be observed that now the function lies entirely inside the 99% confidence
interval and that the initial peak has been eliminated.

The bit string can now be submitted to the NIST test battery, described in
Appendix A . The tests have been carried out on 150 sequences of 1 M bits. Again
the level of significance has been considered to be α = 0.01 , therefore the proportion
of the times in which each test should be passed is 0.99 − 3

ñ
0.99 · 0.01/150 ≈

0.99 − 0.024 = 0.966. Consequently with at least 97% of correct tests, there is no
evidence to conclude that the sequence is not random.

The results are shown in Fig. 4.12

Fre
qu

en
cy

Bloc
kFr

eq
ue

ncy Ru
n

Lon
ge

st
Ru

n

Bina
ry

Matr
ix R

an
k

DFT

Non
-ov

erl
ap

pin
g

Ove
rla

pp
ing

Univ
ers

al

Lin
ea

r C
om

ple
xit

y

Se
ria

l(1
)

Se
ria

l(2
)

App
rox

im
ate

 en
tro

py

Cum
ula

tiv
e s

um
s (

f)

Cum
ula

tiv
e s

um
s (

b)

Ra
nd

om
Ex

cur
sio

ns

RE-V
ari

an
t

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 P
as

sin
g

Threshold (97%)

Figure 4.12: Proportion of passed test of the NIST statistical test suite for the vacuum state
heterodyne-measurement based QRNG.

It is possible to observe that for every test of the suite the proportion of passing
is at least 97%. Like in the result discussion for the phase fluctuations-based
QRNG, it is good practice to estimate the uniformity of the P − values obtained
from the tests. A diagram, containing the distributions is shown in Fig. 4.13.

The histogram shows a good degree of uniformity in the distribution of P −values.
Again here it is evident the higher number of P − values obtained with certain
tests.

Also in this case it has been decided to submit the P −values to the Kolmogorov-
Smirnov test to further verify the uniformity and obtain a final aggregated P −value
for each case. The results are shown in Fig. 4.14.

63

Results

Fre
qu

en
cy

Bloc
kFr

eq
ue

ncy Ru
n

Lon
ge

st
Ru

n

Bina
ry

Matr
ix R

an
k

DFT

Non
-ov

erl
ap

pin
g

Ove
rla

pp
ing

Univ
ers

al

Lin
ea

r C
om

ple
xit

y

Se
ria

l(1
)

Se
ria

l(2
)

App
rox

im
ate

 en
tro

py

Cum
ula

tiv
e s

um
s (

f)

Cum
ula

tiv
e s

um
s (

b)

Ra
nd

om
Ex

cur
sio

ns

RE-V
ari

an
t

0.0

0.2

0.4

0.6

0.8

1.0

P-
Va

lu
e

20

40

60

80

100

120

140

P-
va

lu
es

 n
um

be
r

Figure 4.13: P − values distribution for uniformity analysis for vacuum state heterodyne-
measurement based QRNG.

The resulting P − values are between α = 0.01 and 1, therefore it can be
concluded that there is no evidence to state that the numbers produced are not
random.

64

Results

Fre
qu

en
cy

Bloc
kFr

eq
ue

ncy Ru
n

Lon
ge

st
Ru

n

Bina
ry

Matr
ix R

an
k

DFT

Non
-ov

erl
ap

pin
g

Ove
rla

pp
ing

Univ
ers

al

Lin
ea

r C
om

ple
xit

y

Se
ria

l(1
)

Se
ria

l(2
)

App
rox

im
ate

 en
tro

py

Cum
ula

tiv
e s

um
s (

f)

Cum
ula

tiv
e s

um
s (

b)

Ra
nd

om
Ex

cur
sio

ns

RE-V
ari

an
t

10 2

10 1

100

p-
va

lu
e

 = 0.01

Figure 4.14: P − values for vacuum state heterodyne-measurement based QRNG after random-
ness extraction, obtained with the Kolmogorov-Smirnov test.

65

Results

4.3 Circuit Performance
The target of the circuit implementation is to provide a solution that is efficient from
the computational standpoint, providing high-rate randomness extraction, and that
occupies the least amount of slices on the FPGA device. The first point is tackled
intrinsically by the algorithm that the circuit performs, which computes the matrix
multiplication in a fixed amount of clock cycles (provided that the dimensions of
the matrix and the number of sub-blocks instantiated has been decided). The
occupation of FPGA resources, instead, is completely up to the definition of the
blocks of the circuit and requires a careful analysis of the operations that have to
be performed.

4.3.1 Slice Occupation and Security Parameter
A particular attention has to be paid for the first pipeline stage. In fact the
implementation of its functionality, by means of registers that are written and
read in a sliding window manner, produces a deep level of logic. After synthesis, a
significant occupation of the FPGA slices is obtained. It has been estimated that,
compared to the shifting register, this type of implementation occupies about triple
the amount of slices.

As mentioned in the previous chapter, another optimization factor has been found
in the instantiation of a single shifting register for the pipeline stage containing the
bits for the Toeplitz matrix.

The most optimal version found for the circuit, which is the one described in the
previous chapter, has been synthesized with different dimensions of the Toeplitz
matrix, to test the slice occupation. Notice that these results are strictly bound to
the FPGA used, since the number of slices available changes with different devices.
Moreover a more capacious device may allow for a more efficient synthesis strategy,
given the higher number of resources available, that further reduces the occupation
rate. The results for the FPGA used in this work can be observed in Fig. 4.15.

It is possible to see that in the conditions described, the FPGA used is capable
of synthesizing a circuit for the multiplication of a Toeplitz matrix of dimensions
n = 2920 and m = 2048, with two parallel blocks and an occupation around 53%.
Notice that the dimension of the Toeplitz matrix has important consequences
in the randomness extraction. In fact, the Leftover Hash Lemma explained in
Sec. 3.2 says that the length of the extracted string can be computed as m =
n ·Hmin/j −2 log2(1/ε), where j is the resolution in bits of the ADC, Hmin the min-
entropy and ε is the security parameter. Therefore, by considering an extraction
ratio around 70%, like in the data reported in Fig. 4.15 and by considering a
min-entropy equal to the lower bound found in the vacuum state heterodyne-
measurement-based QRNG (74.9%), it is possible to compute for each case the

66

Results

n=190
m=128

n=370
m=256

n=740
m=512

n=1460
m=1024

n=2920
m=2048

Size of Toeplitz matrix

0.1

0.2

0.3

0.4

0.5
Sl

ice
 o

cc
up

at
io

n
ra

te

0.0672 0.0826

0.1707

0.2938

0.5321

Figure 4.15: Slice occupation rate for two randomness extraction blocks instantiated in parallel
and G = 10, the number of sub-matrices used for the multiplication in each block.

security parameter as
ε = 2(m−n·Hmin/j)/2 (4.3)

The results can be seen in Fig. 4.16.
The security parameter is an important variable to consider during randomness

extraction, since at each extraction cycle it increases. This means that it is more
convenient to use higher dimensions matrices.

An analysis on the slices occupation has been carried out also by varying the
amount of parallel blocks instantiated and maintaining fixed the Toeplitz matrix
dimensions. The results can be seen in Fig. 4.17. It can be observed that when the
number of parallel blocks is doubled, the slice occupation increases by slightly less
than a factor of two.

67

Results

n=190
m=128

n=370
m=256

n=740
m=512

n=1460
m=1024

n=2920
m=2048

Size of Toeplitz matrix

10 19

10 16

10 13

10 10

10 7

10 4
Se

cu
rit

y
pa

ra
m

et
er

7.0167e-03
6.6011e-04

4.3575e-07

3.4134e-11

1.1651e-21

Figure 4.16: Security parameter as a function of the Toeplitz matrix dimensions, when the
extractable randomness percentage of the input raw data is 74.9%.

2 4 8 16
Number of parallel randomness extraction blocks

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Sl
ice

 o
cc

up
at

io
n

ra
te

0.0592

0.1129

0.2267

0.4289

Figure 4.17: Slice occupation rate for a Toeplitz matrix of dimensions m = 192 and n = 390
with G = 10 the number of sub-matrices used for the multiplication in each block.

68

Results

4.3.2 Throughput
In this section the circuit performance is analyzed, in terms of rate of extracted
bits. In order to do so, the number of clock cycles elapsed in each state of the
FSMs are analyzed.

Notice that this analysis refers to the online implementation, as throughput
loses its meaning in an offline configuration.

The first action that is done by the circuit, after the start signal has been
asserted, is to write the register containing the Toeplitz matrix. Consider that
the amount of bits written at every clock cycle is (Sj)/C, with S the sampling
frequency, C the FPGA clock frequency and j the ADC resolution in terms of bits.
Since the Toeplitz matrix register has a width of m + n − 1 bits, the amount of
clock cycles needed is: G

C(n + m − 1)
Sj

H
(4.4)

with ⌈x⌉ the smallest integer greater or equal to the number x. Next, the extractor
FSM is designed to immediately write the raw data registers of the parallel blocks
instantiated. Recall that the system is designed to implement a total of (Sj)/(CG)
parallel extractors. The amount of clock cycles needed for each register is equal to:G

Cn

Sj

H
(4.5)

Once a block has been written, the write-enable signal has to be routed to the
successive module. This operation requires one clock cycle. Therefore considering
as a computational cycle a period in which every parallel module has computed a
result, a total of Sj/CG clock cycles are used to change the write-enable signal.
The last missing stage for the extractor FSM is the one in which the machine waits
for the first computational module to produce a result, before starting again to
write the raw data registers. The amount of clock cycles that this waiting stage
lasts, strictly depends on the time needed for the computational module to produce
a result.

As mentioned in the previous chapter, the computational module starts working
as soon as the raw data register is filled. Once this happens, the registers relative
to the other two stages of the pipeline are activated. Therefore two clock cycles
are employed before starting the computation.

The multiplication lasts a total of n/G clock periods. After this amount of time,
one clock cycle is employed to assert the data valid signal. As a consequence, the
result of the multiplication is available after n/G + 3 clock periods subsequent to
the raw data register filling. However, before starting again to write the first block
data register, the data valid signal has to be sampled, therefore an extra clock cycle
is necessary.

69

Results

Now that these durations are known, it is possible to compute the amount of
clock periods the circuit waits before starting over a computation cycle. It will be
equal to:

n

G
+ 3 + 1 −

C3
Sj

CG
− 1

4G
Cn

Sj

H
+ Sj

CG

D
(4.6)

At this point every element to compute the throughput is present: let’s not consider
the period in which the Toeplitz matrix register is written, since it is a procedure
performed one time at the start, and consider that a computation cycle has been
already done once. This last aspect is relevant because in the first cycle, while the
first block is being written, the others are idle so the parallelization is not being
exploited. In normal operational conditions, the other blocks are performing the
multiplication. Anyway, with these conditions a total of:

Sj

CG
m (4.7)

bits are given as output in a period of:

I
n

G
+ 3 + 1 −

C3
Sj

CG
− 1

4G
Cn

Sj

H
+ Sj

CG

DJ
+
3

Sj

CG

4AG
Cn

Sj

H
+ 1

B
≃

≃
I

n

G
+ 3 + 1 −

C3
Sj

CG
− 1

4G
Cn

Sj

H
+ Sj

CG

DJ
+ n

G
(4.8)

corresponding to the time in which the circuit waits before starting the new
computational cycle summed to the time needed to fill every data register and
change the write-enable signal. The approximation considers ⌈(Cn)/(Sj)⌉ an
integer number much greater than 1.

This complicated formula can be simplified if a large enough number of parallel
blocks is instantiated. If this is the case, the waiting period between computational
cycles can be neglected and the final formula for the throughput becomes:

Sj

CG
m · G

n
· C = Sj

m

n
(4.9)

It is possible to observe that, with these appropriate parameters, the throughput
depends only on the characteristics of the ADC and the ratio of extracted bits.

While on one hand this result proves the possibility of using the FPGA to build
a high-rate randomness extraction system, on the other hand it has to be taken
with care. This is because the amount of parallel blocks instantiated is directly
proportional to the ratio between the sampling frequency of the ADC and the clock
frequency of the FPGA. This last variable cannot be increased indefinitely. In
fact a very fast clock, if available, may induce a failing in the timing requirements

70

Results

of the circuit. Given this fact, the solution may seem to instantiate the largest
amount possible of parallel blocks. However the FPGA capacity, in terms of slices,
is limited and the occupation of them becomes greater both with an increase of
the parallel blocks and with an increase of the dimensions of the Toeplitz matrix
(refer to the plots in the previous discussion).

It can also be noticed that the throughput increases with the ADC resolution.
An increase of this parameter also implies a larger number of instantiated parallel
blocks. The choice of an ADC with a larger resolution may be more convenient
than one with a higher sampling rate, as a large S/C ratio requires the instantiation
of cascaded asynchronous FIFOs to bridge the high speed gap.

As an example, consider a scenario in which high-end hardware is used, including
an FPGA that is able to instantiate a circuit that performs randomness extraction
with Toeplitz matrices of dimensions m × n, with m = 2048 and n = 4096.
The amount of sub-matrices used for the computation is G = 12, and the clock
frequency is C = 100 MHz. Consider also that this FPGA is interfaced with an
ADC that samples at S = 1 GHz with a resolution of j = 12 bits. According
to the implementation of this work, the number of instantiated parallel blocks is
Sj/CG = 10 and the real-time generation rate is Sjm/n = 6 Gbps.

It can be concluded that the system has to be carefully designed but makes
it possible to obtain high randomness extraction rates that are compliant with
real-world application requirements.

71

Chapter 5

Conclusions and Future
Developments

This work aimed to design a high-rate randomness extraction circuit with an FPGA
and to validate the results using a trusted-device phase fluctuations-based QRNG
and a source-device-independent vacuum state heterodyne measurement-based
QRNG. The two implementations have been designed to produce bit sequences,
consistently with the mathematical models describing them.

The first one exploits the interaction of photons emitted with spontaneous
emission in a laser diode, that are recombined in an incoherent manner through
a beam splitter and a delay line. The resulting numbers appear to be compliant
with the Gaussian distribution expected from the mathematical model but are
affected by a compression of the negative voltage values in a limited range of values.
Moreover, the autocorrelation function reveals a high degree of correlation between
the bits and the occurrence of periodic patterns.

The second implementation uses a heterodyne measurement scheme to sense the
fluctuations of the vacuum state, where a closed fiber cable and a local oscillator
are connected to a 90° optical hybrid. Two balanced photodetectors are used for
the measurement of each of the quadratures of the electromagnetic field. This type
of implementation allows to set a lower bound in the conditional min-entropy, by a
simple estimation of the variance of the signal as a function of the optical power of
the local oscillator. The autocorrelation function on the data obtained with this
implementation has shown a high degree of short-term correlations between the
bits.

The negative characteristics present in the sequences produced by the two
QRNGs are mainly caused by imperfections in the experimental setups, which
induce correlations between the bits generated by the actual quantum mechanical
phenomenon and classical noise. For this reason, randomness extraction is required,

72

Conclusions and Future Developments

which is a mathematical operation that takes a bit string and yields a shorter
sequence with a higher degree of randomness. In this work, Toeplitz hashing has
been chosen as the extractor, for its efficient hardware implementation. It consists
of a matrix-vector product between the raw data and a Toeplitz matrix, whose
ratio of rows to columns is determined by the min-entropy of the starting sequence.

This type of post-processing has been implemented on an FPGA. This device,
together with a CPU, is included in a SoC, which is mounted on an evaluation board.
The circuit for the randomness extraction is composed of a three-stage pipeline that
allows for the efficient computation of the matrix-vector product between a Toeplitz
matrix and a raw data bit string. This architecture is instantiated multiple times
to deliver the parallel processing of multiple data blocks, achieving higher rates of
extracted bits. FSMs are used to manage both the pipeline and the operation of
the parallel blocks.

This circuit is used in two different implementations, supporting an online and
an offline functionality. The first demonstrates the feasibility of using the circuit as
high-rate and real-time randomness extractor. In fact, the throughput computation
has shown that with an efficient ADC, the system is capable of reaching bit rates
of the order of Gbps, which are compatible with real-world applications. In the
second implementation, the system processes data stored on an SD card, which
were previously acquired from the QRNG, using a high-sampling-rate ADC. After
randomness extraction, the results are saved on a file on the same storage device.

In order to estimate the quality of randomness of the extracted bits, the autocor-
relation function has been computed, showing the reduction of previously present
correlations or recurring patterns in the sequences produced by both QRNGs.
Moreover the bit strings have been analyzed with the NIST test suite and the
results show uniformly distributed P − values and an acceptable proportion of
passed tests. This means that no claim can be made on the fact that the numbers
produced are not random. These tests do not certify the true randomness of the
generated bits, since they can also be passed by PRNGs. However, such conclusion
cannot be drawn by any type of analysis, therefore they still provide a good mea-
sure of the statistical behavior of the sequences and represent a first step to the
evaluation of their randomness.

Future developments of this work may include improvements in the management
of the FSM, to reduce the use of clock cycles that are not directly employed for
the computation algorithm. Another possibility would be to design a different
and more efficient algorithm for randomness extraction, which would increase even
more the bit rate capabilities.

From the security point of view an improvement can be made by adding a
real-time seed updating functionality. The idea would be to change the seed that
generates the Toeplitz matrix at each successive post-processing operation, in order
for them to be considered as independent and thereby addressing a possible security

73

Conclusions and Future Developments

vulnerability.
An interesting future development would be also the integration of a QRNG

and the post-processing stage described in this work with a QKD system. FPGAs
are a powerful tool also for high-speed generation of signals for QKD protocols.
Integrating such devices with the randomness extraction circuit, either on the
same or a different FPGA, would allow for the realization of a theoretically proven
communication protocol for key exchange, where the keys are generated in real
time by a QRNG with all the security implications it guarantees.

It would also be interesting the employment of this system for simulations and
in particular in the context of entropy generation for supercomputers or virtual
machines, where the need for a high bit-rate of truly random numbers is crucial.
With its use, the absence of correlations may produce more reliable simulation
outcomes.

In conclusion, it is important to mention that the use of the circuit for randomness
extraction is not limited to the field of QNRGs but it may find space in cryptographic
applications that require high-rate hashing . In fact, hash functions are fundamental
to ensure information integrity in authenticated channels and an efficient hardware-
based solution may be crucial in critical contexts.

74

Appendix A

Randomness Testing

In the context of random number generation, several test batteries are present to
evaluate the quality of the produced sequences and some of the most common, as
can be seen for instance in [27] and [39], are NIST, Diehard and ENT.

In this work the former has been considered and in this section a brief explanation
on each test will be given but before a general context on randomness testing is
provided.

A.1 Statistical Testing Concept
Testing a sequence of random numbers is a matter to be taken with care, as
obviously, the assertion of randomness is given by the absence of recurring patterns
inside the numbers. However, the number of possible recurring sequences is infinite,
meaning that a test battery can never be considered complete but it is still a good
metric for the quality of a RNG [40].

A certain statistical test is formulated to evaluate a null hypothesis, which in
this case is if the sequence is random, and it is associated with an alternative
hypothesis, which states that the sequence is not random. Then, for each of the
tests, a relevant statistics is determined to assert if the null hypothesis is rejected or
not. This relevant statistic has a certain distribution of values that can be compared
with a theoretical distribution (for instance standard normal or χ2 distribution),
from which a critical value is extracted. If the test statistics fall outside of the
bounds set by this critical value, then the null hypothesis is rejected. The rejection
of the null hypothesis for a sequence which was truly random is referred to as a
type I error, while the acceptance of the null hypothesis when the sequence was in
reality non-random, is called a type II error. The probability that a type I error
occurs is called level of significance of the test, it is usually referred to as α and has
commonly a value of 0.01. Notice that this parameter is set by the user and takes

75

Randomness Testing

values based on the level of confidence needed to state that the sequence under
test is random. On the other hand, the probability that a type II error occurs is
usually referred to as β but its value is often obtained by fixing the length of the
sequence under test and its level of significance. This is because it is hard to fix this
parameter, since there are infinite ways in which a sequence can be non-random
[40].

After the test, a parameter called P -value is extracted based on the resulting
statistical values of the test and it is defined as the probability that a perfect
random number generator would produce a sequence that is less random than the
one under test. What is done to state if the null hypothesis is confirmed or not, is
to compare this P -value with the level of significance of the test: if P -value ≥ α
then the null hypothesis is accepted and viceversa. In other words, the P -value
measures how anomalous the observed data is under the assumption that the
sequence is random, while α quantifies the tolerance for mistakenly rejecting a
truly random sequence (so the probability of a type I error). Therefore, a sequence
is rejected if the P -value indicates that the data are more extreme than what it is
accepted as likely under randomness, which is instead determined by α [40].

A.2 Test Battery
The NIST test suite is composed of 15 tests, which are briefly described below [40]:

1. Frequency (Monobit) Test: this test focuses on the proportion of zeros and
ones in the sequence. The theoretical distribution of reference is composed of
an almost equal number of zeros and ones, as they have the same probabilities
of being generated. For this reason the closeness of the fraction of ones present
should be close to 1/2 in the tested sequence.

2. Frequency Test Within a Block: this test focuses on the proportion of ones in
M -bit blocks. The test is analogous to the Monobit one but considering bit
blocks, instead of the entire sequence.

3. Runs Test: this test focuses on the number of runs in the sequence, with
runs being an uninterrupted sequence of identical bits, and this number is
compared with the theoretical value expected for a random sequence.

4. Test for the Longest Run of Ones in a Block: this test focuses, as the name
says, on the identification of the longest run of ones within M-bit blocks and
consequent comparison with the expected theoretical case.

5. Binary Matrix Rank Test: this test focuses on the rank of disjoint sub-matrices
of the entire sequence, which falls to an identification of a linear dependence
between sub-strings of the sequence.

76

Randomness Testing

6. Discrete Fourier Transform (Spectral) Test: this test focuses in the iden-
tification of periodic patterns inside the Discrete Fourier Transform of the
sequence.

7. Non-Overlapping Template Matching Test: this test focuses in the number
of occurrences of pre-specified strings. By analysis of blocks of bits, corre-
spondence with the searched pattern is investigated. In case a match occurs
the search starts again from the first bit after the found pattern (that is the
reason why it is deemed as non-overlapping)

8. Overlapping Template Matching Test: this test has the same purpose as the
Non-Overlapping Template Matching Test, with the difference that whether a
match has occurred or not, the search always happens by shifting a window,
of length in bits equal to the length of the target string, by one bit (that is
the reason why it is deemed as overlapping).

9. Maurer’s "Universal Statistical" Test: this test focuses on the number of bits
present between matching patterns. The objective is to state if the sequence
can be compressed without losing much information, which in information
theory means that the sequence is non-random, since its content is highly
predictable.

10. Linear Complexity Test: this test focuses on the length of a LFSR. What this
means is that, given the sequence under test, the length of the shortest LFSR
needed to reproduce such sequence is computed and this parameter is referred
to as linear complexity. A longer LFSR means that the sequence appears to
be more random than one with a shorter LFSR.

11. Serial Test: this test focuses on computing the number of occurrences of
overlapping patterns of a fixed length and stating if that number is in line
with what would be expected in a random sequence, which is uniformity or in
other words that each pattern should appear with the same frequency as any
other.

12. Approximate Entropy Test: this test still focuses on the number of occurrences
of overlapping patterns but now blocks whose lengths varies of one bit are
considered and are compared with the theoretical random sequence.

13. Cumulative Sums Test: This test focuses on the maximal excursion from zero
of a random walk defined by cumulatively summing the digits in the sequence,
which, instead of being zeros and ones, are now (–1, +1) respectively. By
cumulative sum random walk, in this context, it is meant the random process
in which the decision to either add +1 or –1 to the current state is made with

77

Randomness Testing

probability 1/2 [41]. A random sequence should have the excursion of the
random walk around zero.

14. Random Excursion Test: this test still focuses on a cumulative sum random
walk. Now cycles are considered, which are defined as sequences of steps that
start and return to the origin, and the number of visits to certain states are
counted within a cycle and are compared to the theoretical expected value.
The test consists in eight tests, one for each state from -4 to 4 (excluding 0).

15. Random Excursions Variant Test: this test focuses on the amount of times a
state is visited in a cumulative sum random walk. It is composed of eighteen
tests, one for each state from -9 to 9 (excluding 0).

A.3 Results Interpretation
According to the NIST documentation, it is necessary to analyze a certain amount
of sequences with the test battery. As a consequence, numerous P − values are
obtained for each test. In order to understand if claims can be made on the fact
that the bits produced are not random, it is necessary to understand the ratio of
sequences that passed each test. It is indicated that such ratio should be at least:

(1 − α) − 3
ó

α(1 − α)
m

(A.1)

where α is the level of significance and m is the number of sequences.
It is also necessary that the P − values obtained for each test are distributed

uniformly between [0,1]. In order to verify it, these P − values can be plotted with
an histogram of 10 bins across that range or they can be tested with a χ2 test [40].
An alternative can also be the Kolmogorov-Smirnov test [25].

78

Bibliography

[1] Charles H. Bennett and Gilles Brassard. «Quantum cryptography: Public key
distribution and coin tossing». In: Theoretical Computer Science 560 (Dec.
2014), pp. 7–11. issn: 0304-3975. doi: 10.1016/j.tcs.2014.05.025. url:
http://dx.doi.org/10.1016/j.tcs.2014.05.025 (cit. on p. 1).

[2] Vaisakh Mannalatha, Sandeep Mishra, and Anirban Pathak. «A comprehen-
sive review of quantum random number generators: concepts, classification
and the origin of randomness». In: Quantum Information Processing 22.12
(Dec. 2023). issn: 1573-1332. doi: 10.1007/s11128-023-04175-y. url:
http://dx.doi.org/10.1007/s11128-023-04175-y (cit. on pp. 1–6).

[3] Bing Qi, Yue-Meng Chi, Hoi-Kwong Lo, and Li Qian. «High-speed quantum
random number generation by measuring phase noise of a single-mode laser».
In: Optics Letters 35 (Jan. 2010), pp. 312–314. doi: 10.1364/OL.35.000312
(cit. on pp. 1, 11).

[4] Christian Gabriel, Christoffer Wittmann, Denis Sych, Ruifang Dong, Wolfgang
Mauerer, Ulrik L. Andersen, Christoph Marquardt, and Gerd Leuchs. «A
generator for unique quantum random numbers based on vacuum states».
In: Nature Photonics 4.10 (Oct. 2010), pp. 711–715. doi: 10.1038/nphoton.
2010.197 (cit. on pp. 1, 15).

[5] Bing Qi, Yue-Meng Chi, Hoi-Kwong Lo, and Li Qian. «High-speed quantum
random number generation by measuring phase noise of a single-mode laser».
In: Opt. Lett. 35.3 (Feb. 2010), pp. 312–314. doi: 10.1364/OL.35.000312.
url: https://opg.optica.org/ol/abstract.cfm?URI=ol-35-3-312
(cit. on p. 1).

[6] Xiongfeng Ma, Feihu Xu, He Xu, Xiaoqing Tan, Bing Qi, and Hoi-Kwong Lo.
«Postprocessing for quantum random-number generators: Entropy evaluation
and randomness extraction». In: Physical Review A 87.6 (June 2013). issn:
1094-1622. doi: 10.1103/physreva.87.062327. url: http://dx.doi.org/
10.1103/PhysRevA.87.062327 (cit. on pp. 1, 26–29).

79

https://doi.org/10.1016/j.tcs.2014.05.025
http://dx.doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1007/s11128-023-04175-y
http://dx.doi.org/10.1007/s11128-023-04175-y
https://doi.org/10.1364/OL.35.000312
https://doi.org/10.1038/nphoton.2010.197
https://doi.org/10.1038/nphoton.2010.197
https://doi.org/10.1364/OL.35.000312
https://opg.optica.org/ol/abstract.cfm?URI=ol-35-3-312
https://doi.org/10.1103/physreva.87.062327
http://dx.doi.org/10.1103/PhysRevA.87.062327
http://dx.doi.org/10.1103/PhysRevA.87.062327

BIBLIOGRAPHY

[7] Anindya De, Christopher Portmann, Thomas Vidick, and Renato Renner.
«Trevisan’s Extractor in the Presence of Quantum Side Information». In:
SIAM Journal on Computing 41.4 (Jan. 2012), pp. 915–940. issn: 1095-7111.
doi: 10.1137/100813683. url: http://dx.doi.org/10.1137/100813683
(cit. on p. 1).

[8] Hugo Krawczyk. «LFSR-based Hashing and Authentication». In: Advances in
Cryptology - CRYPTO ’94, 14th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 21-25, 1994, Proceedings. Vol. 839.
Lecture Notes in Computer Science. Springer, 1994, pp. 129–139. doi: 10.
1007/3-540-48658-5_15 (cit. on pp. 1, 28).

[9] Xiaomin Guo, Fading Lin, Jiehong Lin, Zhijie Song, Yue luo, Qiqi Wang, and
Yanqiang Guo. Parallel and real-time post-processing for quantum random
number generators. 2024. arXiv: 2403.19479 [quant-ph]. url: https://
arxiv.org/abs/2403.19479 (cit. on pp. 1, 8, 39, 40).

[10] Xiangyu Wang, Yichen Zhang, Song Yu, and Hong Guo. «High-Speed Im-
plementation of Length-Compatible Privacy Amplification in Continuous-
Variable Quantum Key Distribution». In: IEEE Photonics Journal 10.3 (June
2018), pp. 1–9. issn: 1943-0655. doi: 10.1109/jphot.2018.2824316. url:
http://dx.doi.org/10.1109/JPHOT.2018.2824316 (cit. on p. 1).

[11] Xiaoguang Zhang, You-Qi Nie, Hao Liang, and Jun Zhang. «FPGA imple-
mentation of Toeplitz hashing extractor for real time post-processing of raw
random numbers». In: 2016 IEEE-NPSS Real Time Conference (RT). 2016,
pp. 1–5. doi: 10.1109/RTC.2016.7543094 (cit. on pp. 1, 29, 33–35).

[12] R. Adami. «Lecture notes for the course "Quantum Cryptography"». 2024-2025
(cit. on p. 2).

[13] R Sri Durga, C K Rashmika, Oruganti N V Madhumitha, D G Suvetha,
Bandaru Tanmai, and N Mohankumar. «Design and Synthesis of LFSR based
Random Number Generator». In: 2020 Third International Conference on
Smart Systems and Inventive Technology (ICSSIT). 2020, pp. 438–442. doi:
10.1109/ICSSIT48917.2020.9214240 (cit. on p. 2).

[14] Kamalika Bhattacharjee and Sukanta Das. «A search for good pseudo-random
number generators: Survey and empirical studies». In: Computer Science
Review 45 (2022), p. 100471. issn: 1574-0137. doi: https://doi.org/10.
1016/j.cosrev.2022.100471. url: https://www.sciencedirect.com/
science/article/pii/S1574013722000144 (cit. on p. 2).

[15] Miguel Herrero-Collantes and Juan Carlos Garcia-Escartin. «Quantum ran-
dom number generators». In: Rev. Mod. Phys. 89 (1 Feb. 2017), p. 015004.
doi: 10.1103/RevModPhys.89.015004. url: https://link.aps.org/doi/
10.1103/RevModPhys.89.015004 (cit. on pp. 3, 8).

80

https://doi.org/10.1137/100813683
http://dx.doi.org/10.1137/100813683
https://doi.org/10.1007/3-540-48658-5_15
https://doi.org/10.1007/3-540-48658-5_15
https://arxiv.org/abs/2403.19479
https://arxiv.org/abs/2403.19479
https://arxiv.org/abs/2403.19479
https://doi.org/10.1109/jphot.2018.2824316
http://dx.doi.org/10.1109/JPHOT.2018.2824316
https://doi.org/10.1109/RTC.2016.7543094
https://doi.org/10.1109/ICSSIT48917.2020.9214240
https://doi.org/https://doi.org/10.1016/j.cosrev.2022.100471
https://doi.org/https://doi.org/10.1016/j.cosrev.2022.100471
https://www.sciencedirect.com/science/article/pii/S1574013722000144
https://www.sciencedirect.com/science/article/pii/S1574013722000144
https://doi.org/10.1103/RevModPhys.89.015004
https://link.aps.org/doi/10.1103/RevModPhys.89.015004
https://link.aps.org/doi/10.1103/RevModPhys.89.015004

BIBLIOGRAPHY

[16] Manabendra Nath Bera, Antonio Acín, Marek Kuś, Morgan W Mitchell,
and Maciej Lewenstein. «Randomness in quantum mechanics: philosophy,
physics and technology». In: Reports on Progress in Physics 80.12 (Nov.
2017), p. 124001. issn: 1361-6633. doi: 10.1088/1361-6633/aa8731. url:
http://dx.doi.org/10.1088/1361-6633/aa8731 (cit. on p. 4).

[17] Helmut Schmidt. «Quantum-Mechanical Random-Number Generator». In:
Journal of Applied Physics 41.2 (Feb. 1970), pp. 462–468. issn: 0021-8979. doi:
10.1063/1.1658698. eprint: https://pubs.aip.org/aip/jap/article-
pdf/41/2/462/18352678/462_1_online.pdf. url: https://doi.org/
10.1063/1.1658698 (cit. on p. 4).

[18] S. Pironio et al. «Random numbers certified by Bell’s theorem». In: Nature
464.7291 (Apr. 2010), pp. 1021–1024. issn: 1476-4687. doi: 10.1038/nature
09008. url: https://doi.org/10.1038/nature09008 (cit. on p. 4).

[19] L. Columbo. «Lecture slides for the course "Quantum Photonics"». 2023-2024
(cit. on pp. 4, 10, 16).

[20] Thomas Jennewein, Ulrich Achleitner, Gregor Weihs, Harald Weinfurter, and
Anton Zeilinger. «A fast and compact quantum random number generator».
In: Review of Scientific Instruments 71.4 (Apr. 2000), pp. 1675–1680. issn:
0034-6748. doi: 10.1063/1.1150518. eprint: https://pubs.aip.org/aip/
rsi/article- pdf/71/4/1675/19183814/1675_1_online.pdf. url:
https://doi.org/10.1063/1.1150518 (cit. on pp. 4, 5).

[21] Xiongfeng Ma, Xiao Yuan, Zhu Cao, Bing Qi, and Zhen Zhang. «Quantum
random number generation». In: npj Quantum Information 2.1 (June 2016).
issn: 2056-6387. doi: 10.1038/npjqi.2016.21. url: http://dx.doi.org/
10.1038/npjqi.2016.21 (cit. on pp. 6, 7).

[22] Giuseppe Vallone, Davide G. Marangon, Marco Tomasin, and Paolo Villoresi.
«Quantum randomness certified by the uncertainty principle». In: Phys. Rev.
A 90 (5 Nov. 2014), p. 052327. doi: 10.1103/PhysRevA.90.052327. url:
https://link.aps.org/doi/10.1103/PhysRevA.90.052327 (cit. on pp. 6,
15).

[23] Zhu Cao, Hongyi Zhou, and Xiongfeng Ma. «Loss-tolerant measurement-
device-independent quantum random number generation». In: New Journal
of Physics 17.12 (Dec. 2015), p. 125011. doi: 10.1088/1367-2630/17/12/
125011. url: https://dx.doi.org/10.1088/1367-2630/17/12/125011
(cit. on p. 6).

[24] Mario Stipčević and Çetin Koç. «True Random Number Generators». In:
Nov. 2014, pp. 275–315. isbn: 978-3-319-10682-3. doi: 10.1007/978-3-319-
10683-0_12 (cit. on pp. 7, 8).

81

https://doi.org/10.1088/1361-6633/aa8731
http://dx.doi.org/10.1088/1361-6633/aa8731
https://doi.org/10.1063/1.1658698
https://pubs.aip.org/aip/jap/article-pdf/41/2/462/18352678/462_1_online.pdf
https://pubs.aip.org/aip/jap/article-pdf/41/2/462/18352678/462_1_online.pdf
https://doi.org/10.1063/1.1658698
https://doi.org/10.1063/1.1658698
https://doi.org/10.1038/nature09008
https://doi.org/10.1038/nature09008
https://doi.org/10.1038/nature09008
https://doi.org/10.1063/1.1150518
https://pubs.aip.org/aip/rsi/article-pdf/71/4/1675/19183814/1675_1_online.pdf
https://pubs.aip.org/aip/rsi/article-pdf/71/4/1675/19183814/1675_1_online.pdf
https://doi.org/10.1063/1.1150518
https://doi.org/10.1038/npjqi.2016.21
http://dx.doi.org/10.1038/npjqi.2016.21
http://dx.doi.org/10.1038/npjqi.2016.21
https://doi.org/10.1103/PhysRevA.90.052327
https://link.aps.org/doi/10.1103/PhysRevA.90.052327
https://doi.org/10.1088/1367-2630/17/12/125011
https://doi.org/10.1088/1367-2630/17/12/125011
https://dx.doi.org/10.1088/1367-2630/17/12/125011
https://doi.org/10.1007/978-3-319-10683-0_12
https://doi.org/10.1007/978-3-319-10683-0_12

BIBLIOGRAPHY

[25] Ziyong Zheng, Yichen Zhang, Weinan Huang, Song Yu, and Hong Guo. «6
Gbps real-time optical quantum random number generator based on vacuum
fluctuation». In: Review of Scientific Instruments 90.4 (Apr. 2019). issn:
1089-7623. doi: 10.1063/1.5078547. url: http://dx.doi.org/10.1063/1.
5078547 (cit. on pp. 8, 32, 78).

[26] C. Henry. «Theory of the linewidth of semiconductor lasers». In: IEEE
Journal of Quantum Electronics 18.2 (1982), pp. 259–264. doi: 10.1109/JQE.
1982.1071522 (cit. on p. 9).

[27] Jinlu Liu, Jie Yang, Zhengyu Li, Qi Su, Wei Huang, Bingjie Xu, and Hong
Guo. «117 Gbits/s Quantum Random Number Generation With Simple
Structure». In: IEEE Photonics Technology Letters 29.3 (2017), pp. 283–286.
doi: 10.1109/LPT.2016.2639562 (cit. on pp. 11, 12, 75).

[28] Jialiang Li, Zitao Huang, Chunlin Yu, Jiajie Wu, Tongge Zhao, Xiangwei
Zhu, and Shihai Sun. «Quantum random number generation based on phase
reconstruction». In: Optics Express 32.4 (Jan. 2024), p. 5056. issn: 1094-4087.
doi: 10.1364/oe.515390. url: http://dx.doi.org/10.1364/OE.515390
(cit. on p. 11).

[29] Ivan B. Djordjevic. «Chapter 5 - Quantum detection and quantum communi-
cation». In: Quantum Communication, Quantum Networks, and Quantum
Sensing. Ed. by Ivan B. Djordjevic. Academic Press, 2023, pp. 157–214. isbn:
978-0-12-822942-2. doi: https://doi.org/10.1016/B978-0-12-822942-
2.00011-X. url: https://www.sciencedirect.com/science/article/
pii/B978012822942200011X (cit. on pp. 16, 17).

[30] R. Proietti. «Lecture slides for the course "Quantum Communications and
Networks"». 2024-2025 (cit. on pp. 17, 18).

[31] Marco Avesani, Davide G. Marangon, Giuseppe Vallone, and Paolo Villoresi.
«Source-device-independent heterodyne-based quantum random number gen-
erator at 17 Gbps». In: Nature Communications 9.1 (2018), p. 5365. issn:
2041-1723. doi: 10.1038/s41467-018-07585-0. url: https://doi.org/
10.1038/s41467-018-07585-0 (cit. on pp. 17–20).

[32] Arti Badhoutiya, Zainb Jaffer, Heba Mohammed Hussein, Ashima Juyal,
Manisha Mittal, and Rohit Anand. «Field Programmable Gate Array: An
Extensive Review, Recent Trends, Challenges and Applications». In: 2024 11th
International Conference on Computing for Sustainable Global Development
(INDIACom). 2024, pp. 1084–1090. doi: 10.23919/INDIACom61295.2024.
10498934 (cit. on p. 23).

[33] G. Turvani. «Lecture slides for the course "Quantum Hardware Design and
Optimization"». 2024-2025 (cit. on pp. 23, 24).

82

https://doi.org/10.1063/1.5078547
http://dx.doi.org/10.1063/1.5078547
http://dx.doi.org/10.1063/1.5078547
https://doi.org/10.1109/JQE.1982.1071522
https://doi.org/10.1109/JQE.1982.1071522
https://doi.org/10.1109/LPT.2016.2639562
https://doi.org/10.1364/oe.515390
http://dx.doi.org/10.1364/OE.515390
https://doi.org/https://doi.org/10.1016/B978-0-12-822942-2.00011-X
https://doi.org/https://doi.org/10.1016/B978-0-12-822942-2.00011-X
https://www.sciencedirect.com/science/article/pii/B978012822942200011X
https://www.sciencedirect.com/science/article/pii/B978012822942200011X
https://doi.org/10.1038/s41467-018-07585-0
https://doi.org/10.1038/s41467-018-07585-0
https://doi.org/10.1038/s41467-018-07585-0
https://doi.org/10.23919/INDIACom61295.2024.10498934
https://doi.org/10.23919/INDIACom61295.2024.10498934

BIBLIOGRAPHY

[34] AMD (Xilinx). 7 Series CLB Features. 7 Series FPGAs Configurable Logic
Block User Guide (UG474). Rev.1.9. AMD Inc. 2025. url: https://docs.
amd.com/r/en-US/ug474_7Series_CLB/7-Series-CLB-Features (cit. on
p. 24).

[35] Xilinx Inc. Vivado Design Suite User Guide: Design Flows Overview. UG892
(v2025.1). Xilinx. 2025. url: https://docs.amd.com/r/en-US/ug892-
vivado-design-flows-overview/Design-Flows (cit. on pp. 24, 25).

[36] Rudolf J. Freund, William J. Wilson, and Donna L. Mohr. «CHAPTER 2
- Probability and Sampling Distributions». In: Statistical Methods (Third
Edition). Ed. by Rudolf J. Freund, William J. Wilson, and Donna L. Mohr.
Third Edition. Boston: Academic Press, 2010, pp. 67–124. isbn: 978-0-12-
374970-3. doi: https://doi.org/10.1016/B978-0-12-374970-3.00002-0.
url: https://www.sciencedirect.com/science/article/pii/B9780123
749703000020 (cit. on p. 27).

[37] J.Lawrence Carter and Mark N. Wegman. «Universal classes of hash func-
tions». In: Journal of Computer and System Sciences 18.2 (1979), pp. 143–
154. issn: 0022-0000. doi: https://doi.org/10.1016/0022- 0000(79)
90044-8. url: https://www.sciencedirect.com/science/article/pii/
0022000079900448 (cit. on p. 28).

[38] PuTTY: a free SSH and Telnet client. https://www.chiark.greenend.org.
uk/~sgtatham/putty/ (cit. on p. 48).

[39] Hong Guo, Wenzhuo Tang, Yu Liu, and Wei Wei. «Truly random number
generation based on measurement of phase noise of a laser». In: Physical
Review E 81.5 (May 2010). issn: 1550-2376. doi: 10.1103/physreve.81.
051137. url: http://dx.doi.org/10.1103/PhysRevE.81.051137 (cit. on
p. 75).

[40] Andrew Rukhin et al. A Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications. NIST Special Publication
800-22rev1a. Revised version 1a. Gaithersburg, MD: National Institute of
Standards and Technology, 2010. url: https://nvlpubs.nist.gov/nist
pubs/legacy/sp/nistspecialpublication800-22r1a.pdf (cit. on pp. 75,
76, 78).

[41] Feng Xia, Jiaying Liu, Hansong Nie, Yonghao Fu, Liangtian Wan, and Xiangjie
Kong. «Random Walks: A Review of Algorithms and Applications». In: IEEE
Transactions on Emerging Topics in Computational Intelligence 4.2 (Apr.
2020), pp. 95–107. issn: 2471-285X. doi: 10.1109/tetci.2019.2952908.
url: http://dx.doi.org/10.1109/TETCI.2019.2952908 (cit. on p. 78).

83

https://docs.amd.com/r/en-US/ug474_7Series_CLB/7-Series-CLB-Features
https://docs.amd.com/r/en-US/ug474_7Series_CLB/7-Series-CLB-Features
https://docs.amd.com/r/en-US/ug892-vivado-design-flows-overview/Design-Flows
https://docs.amd.com/r/en-US/ug892-vivado-design-flows-overview/Design-Flows
https://doi.org/https://doi.org/10.1016/B978-0-12-374970-3.00002-0
https://www.sciencedirect.com/science/article/pii/B9780123749703000020
https://www.sciencedirect.com/science/article/pii/B9780123749703000020
https://doi.org/https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/https://doi.org/10.1016/0022-0000(79)90044-8
https://www.sciencedirect.com/science/article/pii/0022000079900448
https://www.sciencedirect.com/science/article/pii/0022000079900448
https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://doi.org/10.1103/physreve.81.051137
https://doi.org/10.1103/physreve.81.051137
http://dx.doi.org/10.1103/PhysRevE.81.051137
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf
https://doi.org/10.1109/tetci.2019.2952908
http://dx.doi.org/10.1109/TETCI.2019.2952908

	List of Figures
	Introduction
	Random Number Generators
	Pseudo-Random Number Generators
	Classical True Random Number Generators
	Quantum Random Number Generators
	QRNG Applications

	FPGA and QRNGs

	Quantum Random Number Generator Models and Experimental Setups
	Phase Fluctuations-Based QRNG
	Spontaneous Emission and Stimulated Emission in a Laser Diode
	Phase Fluctuations-Based QRNG Model
	Implementation

	Vacuum State Heterodyne Measurement-Based QRNG
	Vacuum State
	Homodyne and Heterodyne Detection
	Vacuum State Heterodyne Measurement-Based QRNG Model
	Implementation

	High-Rate Randomness Extraction Using a FPGA
	FPGA: Overview and Design
	FPGA Structure
	FPGA Circuit Design Workflow

	Randomness Extraction
	Binary Distributions and Security Parameter
	Extractors
	Universal Hash Functions

	Toeplitz Randomness Extractor
	Matrices Multiplication Strategy
	Data Extraction Algorithm
	Circuit Design Strategy
	Circuit Implementation: Functional Blocks

	Integration of the Randomness Extractor Circuit into the SoC
	Online implementation
	Offline implementation

	Results
	Phase Fluctuations-Based QRNG
	Experimental Setup Analysis
	Raw Data Analysis
	Extracted Data Analysis

	Vacuum State Heterodyne Measurement-Based QRNG
	Experimental Setup Analysis and Calibration
	Raw Data Analysis
	Extracted Data Analysis

	Circuit Performance
	Slice Occupation and Security Parameter
	Throughput

	Conclusions and Future Developments
	Randomness Testing
	Statistical Testing Concept
	Test Battery
	Results Interpretation

	Bibliography

