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Summary

The growing adoption of Kubernetes in multi-cluster and heterogeneous environ-
ments has led to the development of frameworks such as Liqo, an open-source add-on
that enables dynamic federation of Kubernetes clusters, resource sharing, and trans-
parent workload offloading. While Liqo provides robust primitives for inter-cluster
communication, its networking model traditionally enforces a consumer-centric
topology, where all traffic exchanged between provider clusters must transit through
the consumer. This approach introduces redundant hops, increased latency, and
potential bottlenecks, thereby limiting efficiency and scalability.

This thesis proposes and implements an architectural enhancement to Liqo’s
overlay network to address these limitations in scenarios where a consumer offloads
workloads to multiple providers simultaneously. The new mechanism allows, when
a direct inter-provider connection is available, traffic to be routed directly between
providers, bypassing the consumer cluster. The functionality is configurable on a
per-Service basis, offering fine-grained control and improved flexibility. In addition
to shortening network paths and reducing potential single points of failure, this
design lays the groundwork for the future integration of a service mesh capable of
dynamically optimizing inter-cluster routing decisions.

Although no quantitative benchmarks have been conducted yet, the architectural
benefits are evident: inter-provider communication is simplified, routing overhead
is reduced, and network responsiveness to the direct connection usage is not
compromised. The proposed enhancement is currently under review and is planned
for inclusion in a future release of Liqo, contributing to the evolution of efficient
and resilient networking in federated Kubernetes environments.
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Chapter 1

Introduction

The widespread adoption of cloud computing and containerization technologies
has profoundly transformed the way modern applications are designed, deployed,
and maintained. In this containerized context, Kubernetes emerged as the de facto

standard for container orchestration, providing a powerful and extensible platform
to manage workloads at scale. Its native support for declarative management,
self-healing mechanisms, and extensibility has made Kubernetes the cornerstone of
today’s cloud-native ecosystem.
However, as organizations increasingly embrace microservices-based architectures,
applications no longer reside within the boundaries of a single cluster. While
Kubernetes effectively manages workloads inside an individual cluster, it offers
limited support for scenarios where multiple clusters must collaborate seamlessly.
This limitation becomes critical in contexts such as multi-cloud deployments, edge
computing environments, and geo-distributed infrastructures, where scalability,
resource efficiency, and fault tolerance require the federation of diverse and hetero-
geneous clusters.
To address this gap, Liqo, an open-source project started at Politecnico di Torino,
extends Kubernetes beyond the single-cluster model, enabling the federation of
multiple clusters as if they were a single, unified system. Through Liqo, workloads
can be transparently offloaded across clusters, resources can be shared dynamically,
and inter-cluster communication can be managed efficiently.

1.1 Goals

The primary objective of this thesis is to enhance Liqo’s networking capabilities
by introducing a feature that enables direct communication between provider
clusters. In the current implementation, inter-cluster traffic follows a hub-and-
spoke model, where the consumer cluster acts as an intermediary for all traffic
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between providers. (Figure 1.1, all the components shown will be discussed in
detail in the following chapters.)

Liqo peering

Liqo shortcut
(network connect)

Cluster 1 (consumer)

Cluster 2
(provider)

Cluster 3
(provider)

Liqo peering

podpod

Gateway
cluster 2

Gateway
cluster 3

Gateway
cluster 2

Gateway
cluster 3

Gateway
cluster 1

Gateway
cluster 1

pod

Indirect route

Direct route

Figure 1.1: Direct and indirect pod communication between peered clusters in
Liqo.

While this approach ensures centralized control and uniform traffic management,
it also introduces several drawbacks:

• It creates a potential bottleneck that limits available bandwidth,

• It increases the networking overhead on the consumer cluster, and

• It may degrade performance for distributed workloads that rely on high-volume
east–west communication.

To address these limitations, the thesis proposes the design and implementation
of an optional feature allowing traffic to flow directly between provider clusters,
bypassing the consumer when centralized routing is unnecessary. This optimization
aims to:

• Improve bandwidth utilization by leveraging direct network paths,
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• Reduce the workload on the consumer cluster, freeing it from unnecessary
networking duties, and

• Increase the efficiency of cross-cluster communication for distributed, high-
throughput applications.

At the same time, the feature is designed to remain configurable and op-
tional, as in some scenarios it is desirable or even necessary to enforce routing
through the consumer cluster (e.g., for monitoring, auditing, or policy enforce-
ment). By providing this flexibility, the work ensures that Liqo can better adapt
to heterogeneous use cases.

1.2 Collaboration With Eng

This thesis has been developed in collaboration with the company Engineering
Ingegneria Informatica S.p.A.[1], as part of the European project IPCEI-CIS
AVANT[2], funded by the European Union with program NextGenerationEU.

1.2.1 What is IPCEI-CIS AVANT

IPCEI stands for Important Project of Common European Interest. These are large-
scale, strategic projects co-funded by multiple EU Member States and approved
under EU state-aid rules, to support innovation, infrastructure, or technologies of
major EU importance.

CIS means Cloud Infrastructure and Services. IPCEI-CIS is the IPCEI focused
on developing next-generation cloud and edge computing infrastructures and services
in Europe.

AVANT (an acronym from dAta and infrastructural serVices for the digitAl
coNTinuum) is one of the projects under the umbrella of IPCEI-CIS. It is led
by Engineering and aims to deliver advanced cloud-to-edge technologies, flexible
infrastructures, interoperability, and open source components.

1.3 Structure of the Thesis

The thesis is organized as follows:

• Chapter 2 introduces the fundamental concepts of Kubernetes, with a particu-
lar focus on its networking architecture

• Chapter 3 presents Liqo, detailing its architecture, the Kubernetes resources
it introduces, peering mechanism, and networking model.
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• Chapter 4 briefly presents the work on this subject carried out by a colleague,
on which this thesis partly builds.

• Chapter 5 describes the first implementation of the proposed feature, highlight-
ing the design choices and integrations with the foreign_cluster_connector

solution.

• Chapter 6 discusses the final implementation, outlining improvements, opti-
mizations, and the ideas behind architectural and technical decisions.

• Chapter 7 concludes the thesis, summarizing the results and proposing direc-
tions for future work.
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Chapter 2

Kubernetes

This chapter provides a historical and technical overview of Kubernetes, focusing
on its architecture, core resources, and networking model. It establishes the founda-
tional concepts necessary to understand the extensions and advanced orchestration
patterns —such as multi-cluster federation— addressed in the following chapters.

2.1 Introduction to Kubernetes

“Kubernetes is a portable, extensible, open source platform for managing container-
ized workloads and Services, that facilitates both declarative configuration and
automation. It has a large, rapidly growing ecosystem. Kubernetes Services,
support, and tools are widely available.” [3]

The origins of Kubernetes can be traced back to Google’s internal infrastructure
expertise, particularly its pioneering work on container management systems. In
the early 2000s, Google developed Borg, its first unified system for managing
containerized workloads across its vast data centers. Borg was crucial for running
services like Gmail and Google Search, enabling high resource utilization, fault
tolerance, and scalability for Google’s large-scale operations.

A significant development in the container ecosystem occurred in 2013 with
the release of Docker. Developed by dotCloud, Docker is an open-source software
tool that popularized lightweight container technology, simplifying the packaging,
distribution, and deployment of applications. While Docker revolutionized cloud-
native infrastructure, its limitation of primarily running on a single node highlighted
a crucial need for a system capable of orchestrating multiple containers across
numerous machines. Recognizing this, Google engineers Craig McLuckie, Joe Beda,
and Brendan Burns, who had worked on Borg, conceived an open-source container
orchestrator that would become Kubernetes.
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In 2015, with the release of Kubernetes 1.0, Google further cemented its com-
mitment by donating the project to the Cloud Native Computing Foundation
(CNCF)[4], an initiative aimed at making cloud-native computing ubiquitous. Since
then, Kubernetes has rapidly grown, becoming the CNCF’s first graduated project
by 2018 and surpassing competitors to become the industry standard for container
orchestration. Its profound impact aids in the development of cloud-native mi-
croservices, enables faster application development, and provides the automation
and observability essential for modern application management.

2.2 Architecture

Kubernetes adopts a modular architecture that clearly separates the control plane

from the data plane, a design pattern inherited from the networking domain to
promote scalability, and manageability.

k-proxy

kubelet

sched
sched

sched

Control Plane

Node

etcd

Kubernetes cluster

api
api

api

c-c-m
c-c-m

c-c-m

c-m
c-m

c-m

Node Node

k-proxy

kubelet kubelet

k-proxy

Control plane

Scheduler
sched

Cloud controller

manager

(optional) c-c-m

Controller

manage r c-m

kubelet
kubelet

kube-proxy
k-proxy

(persistence store)

etcd

etcd

Node

API server
api

Figure 2.1: Overview of the architecture of a Kubernetes cluster. Source: [3]

2.2.1 Control Plane Components

The control plane is responsible for the global management and orchestration
of the cluster: it makes decisions about scheduling, scaling, and the overall
desired state of the system. Key components such as the kube-apiserver,
kube-controller-manager, kube-scheduler, and etcd (the cluster’s backing
store) reside in the control plane, collectively ensuring that the cluster operates
according to user specifications and policies.
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A defining feature of Kubernetes, which is implemented by the control plane, is
its declarative approach to cluster management. Users specify the desired state
of the system —such as which applications should be running, their configurations,
resource requirements, and much more— using manifest files (typically in YAML
or JSON format).

The control plane continuously monitors the actual state of the cluster and takes
automated actions to reconcile any differences, ensuring that the current state
matches the user-declared specification. This model abstracts away the complexity
of manual operations, enabling robust automation and self-healing capabilities.

All the following components can run on any machine in the cluster, but for
simplicity, they are often located on a single node.

etcd

etcd is a distributed key-value store that provides a reliable way to store the
cluster’s state data. It is used by the control plane to persist all configuration data,
state information, and metadata about the cluster. etcd is designed to be highly
available and resilient, ensuring that the cluster can recover from failures and
maintain consistency across all nodes.

It is based on the Raft consensus algorithm, which allows different nodes to
work as a coherent group, ensuring data consistency and fault tolerance. Only
the API server interacts directly with etcd, abstracting its complexity from other
components and users.

kube-apiserver

At the core of Kubernetes is its API server (implemented by kube-apiserver),
which represents the central entry point for all interactions with the cluster. It
exposes an HTTP interface through which both internal components and ex-
ternal clients communicate with the control plane. Every operation in Kuber-
netes—whether deploying a workload, scaling an application, or modifying con-
figuration—is expressed as an HTTP request handled by kube-apiserver which
processes them, validates them, and updates the cluster’s state in etcd.

Users typically interact with kube-apiserver through client tools rather than
forging direct HTTP requests. The most common utility is kubectl, a command-
line interface that translates user-friendly commands into API requests. Beyond
kubectl, users can also leverage various client libraries in languages like Go, Python,
or JavaScript.
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kube-scheduler

The scheduler is the component that assigns the workload (represented by Pods) to
specific nodes in the cluster based on resource availability, constraints, and policies.

kube-controller-manager

The kube-controller-manager is responsible for running controller processes. It
continuously monitors the state of the cluster and makes or requests changes as
needed to reconcile the actual state with the desired state defined in etcd.

Each controller operates on a specific resource of the cluster, but to reduce
complexity, they are all compiled into a single binary and run in a single process.

Some examples of controllers are:

• Node Controller: Monitors the health of nodes and takes action when they
become unreachable.

• Replication Controller: Ensures that the desired number of Pods are
running at all times.

• EndpointSlice Controller: Populates EndpointSlice objects, which link
Services and Pods.

• Service Account and Token Controllers: Manage service accounts and
their associated tokens, which are used for authentication within the cluster.

◼

◼

Figure 2.2: Overview of the how the operator pattern works. Source: [5]

cloud-controller-manager

This component allows the integration of Kubernetes with various cloud service
providers. It manages cloud-specific resources, such as load balancers, storage
volumes, and networking components.
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By decoupling cloud-specific logic from the core Kubernetes components, it
enables a more modular and flexible architecture, allowing it to run seamlessly
across different environments.

2.2.2 Data Plane Components

The data plane comprises the worker nodes and their local agents (primarily the
kubelet and kube-proxy), which form the execution environment for containerized
applications.

Unlike the control plane which makes orchestration decisions, worker nodes
focus on workload execution and resource provision. Each worker node runs critical
components—primarily the kubelet and kube-proxy—that translate the control
plane’s instructions into action.

These components are responsible for running the actual application workloads
(encapsulated in Pods), managing local container lifecycle, and handling network
traffic according to the rules established by the control plane.

Container Runtime

The container runtime is the software component in charge of running containers
on each node. Kubernetes supports multiple container runtimes, including Docker,
containerd, and CRI-O and any other implementation of the Kubernetes Container

Runtime Interface (CRI)[6].

kubelet

The kubelet makes sure that the containers are running in a Pod and are healthy.
The kubelet acts as a bridge between the API server and the container runtime,
receiving Pod specifications, monitoring execution, and reporting the status back
to the control plane so that action can be taken.

kube-proxy

kube-proxy is a network agent that runs on each node in the Kubernetes cluster.
It maintains network rules that enable network communication to Pods from both
inside and outside the cluster. If present, it leverages the operating system’s native
packet filtering capabilities (nftables or IPVS) to implement Service abstractions;
otherwise it can also use a user-space proxy mode.

Add-ons

Features and functionalities that are not part of the core Kubernetes components
but implemented by third parties to provide additional features and functionalities.
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Some examples are: Istio[7] for Service mesh, Prometheus[8] for metrics collection,
Grafana[9] for visualization or Liqo[10] for multi-cluster orchestration.

2.3 Kubernetes Resources

Kubernetes resources are persistent entities in the cluster that represent the desired
state of various aspects of the system. Specifically, they describe:

• What applications or workloads are running and on which nodes (e.g., Pods,
DaemonSets).

• How these applications should be configured (e.g., ConfigMaps, Secrets).

• The policies governing their behavior such as restart policies or fault-tolerance.
(e.g., Deployments, ReplicaSets).

• The resources available to those applications in terms of CPU or memory.

• How they should be exposed to the network (e.g., Services, Ingress).

Once a resource is created, the control plane will constantly work to ensure that
that object exists and its specifications are met. Usually, a resource object contains
the following fields:

• apiVersion: Specifies the version of the Kubernetes API that the object uses;

• kind: Indicates the type of resource (e.g. Pod, Service, Deployment);

• ObjectMeta: Contains data that helps uniquely identify the object, including
a name, namespace, labels, and annotations;

• Spec: Defined by the user, it represents the desired state of the resource,
including configurations and settings specific to the resource type;

• Status: Populated by the server, it reports the current state of the resource
as observed by the system.

The allowed operations on these resources are the typical CRUD actions:

• Create: Creates the resource in the backend; once created, the system applies
the desired state;

• Read: Retrieve information about the resource, comes in three variants;

– Get: Fetch a specific resource by name;
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– List: Fetch a collection of resources of a specific type within a single
namespace. The result can be filtered using labels and field selectors;

– Watch: Establish a streaming connection to the API server that receives
notifications about changes to resources. This allows clients to react to
resource modifications in real-time without constant polling.

• Update: Modify the specifications of an existing resource, two modes are
supported;

– Patch: Apply a partial update to a resource;

– Replace: Replace an existing resource with a new one.

• Delete: Remove a resource from the cluster.

In the following, some of the most relevant resources for this work are described in
more depth.

2.3.1 Pods

Pods are the smallest deployable units of computing on Kubernetes. A Pod is a
group of one or more containers with shared storage and network resources. They
are ephemeral, meaning they are created, destroyed, and re-created on demand.
Pods are designed to be lightweight and transient, making them ideal for running
microservices1.

ReplicaSet

A ReplicaSet is a higher-level abstraction that manages a set of identical Pods,
ensuring that a specified number of replicas are running at any given time. If a
Pod fails or is deleted, the ReplicaSet automatically creates a new one to maintain
the desired state.

Deployment

Deployments provide a higher-level abstraction for managing Pods and ReplicaS-
ets. While ReplicaSets ensure a specified number of identical Pods are running,
Deployments add more lifecycle management capabilities that simplify application
operations. They enable crucial features such as rolling updates (gradually replacing
old Pods with new ones), version rollbacks, and controlled scaling.

1Microservices are an architectural approach in which an application is composed of small,

independent services that communicate over well-defined APIs. Each service focuses on a specific

business capability and can be developed, deployed, and scaled independently.
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Namespaces

Namespaces are the mechanism Kubernetes uses to provide logical isolation between
resources within a single cluster. They create virtual boundaries that divide cluster
resources, allowing multiple teams, projects, or applications to share the same
physical infrastructure without interfering with each other. Names of resources need
to be unique within a namespace, but not across namespaces, enabling resource
naming simplification.

A real-world example

The following Listing 2.1 is an example of a Kubernetes Deployment manifest. It’s
written in YAML format, a human-readable serialization standard commonly used
for configuration files. YAML is often preferred to JSON thanks to its improved
readability, though the Kubernetes API supports both.

1 apiVersion : apps/v1

2 kind: Deployment

3 metadata :

4 name: nginx - deployment

5 namespace : demo - namespace

6 spec:

7 replicas : 3

8 selector :

9 matchLabels :

10 app: nginx

11 template :

12 metadata :

13 labels :

14 app: nginx

15 spec:

16 containers :

17 - name: nginx

18 image : nginx :1.19

19 ports :

20 - containerPort : 80

Listing 2.1: Example Kubernetes Deployment.

In the metadata section, the user specifies the name of the deployment and the
namespace where it will be created.

The spec field represent the specification the user desires, it’s up to the system
to achieve the described situation.

The replicas field is self explanatory, under the hood it creates a ReplicaSet
resource, which effectively manages the Pod replicas.

selectors are used to identify the Pods that belong to this deployment, in this
case, all Pods with the label app:nginx will be managed by this deployment.

12
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The template field contains the template to be used for the created Pods. Since
Pods are resources as well, they are again populated with metadata and spec.
This last field has info on the Pod itself, in this case the container image to be
used and the network ports to be exposed.

This example could be easily put in operation using the kubectl tool, in this
case with the command:

kubectl apply -f deploymentsample.yaml

2.3.2 Services

Services are fundamental Kubernetes resources that provide network connectivity
to a set of Pods. They abstract away the ephemeral nature of Pods by providing a
stable endpoint that remains constant even as the underlying Pods are created,
terminated, or replaced. This abstraction is crucial for microservice architectures
where components need to reliably communicate with each other.

A Service works by defining a logical set of Pods using label selectors and
exposing them through a single DNS name and network port. When a request is
made to a Service, it routes traffic to one of the backing Pods using a load-balancing
algorithm.

Kubernetes supports several types of Services to accommodate different net-
working requirements:

• ClusterIP: The default type that exposes the Service on an internal IP
accessible only within the cluster. This is useful for internal communication
between microservices and will be the one on which we are focusing on this
thesis as it is the one used intra-cluster.

• NodePort: Extends ClusterIP by exposing the Service on a static port on
each node’s IP. This makes the Service accessible from outside the cluster by
reaching any node at <NodeIP>:<NodePort>.

• LoadBalancer: Extends NodePort by provisioning an external load balancer
(when supported by the cloud provider) that routes traffic to the Service.

• ExternalName: Maps the Service to a DNS name rather than selecting Pods,
primarily used for accessing external services from within the cluster.

2.3.3 EndpointSlices

EndpointSlices represent a collection of network endpoints that provide addresses
and ports that Services use to route traffic to Pods. When a Pod is deployed,
the EndpointSlice controller automatically creates or updates the corresponding

13



Kubernetes

EndpointSlice objects to include the Pod’s IP address and port information and
populates the associated Service with those values.

2.3.4 Legacy: Endpoints

In Kubernetes versions prior to 1.16, the Endpoint resource was used in place of
the EndpointSlice. The main difference is that Endpoints were monolithic objects,
containing all the endpoints for a Service. This caused update inefficiency and
scalability issues, especially for Services with a large number of endpoints since an
update to a single endpoint required updating the entire Endpoints object.

This led to the gradual introduction of EndpointSlices, which store endpoints in
sets of maximum 100 endpoints (“slices”), making updates more efficient.

2.4 Kubernetes Network Architecture

After discussing how Kubernetes works and its core resources, it’s important to
understand how the network is handled to make communication between Pods and
resources possible.

This is defined by the Kubernetes networking model [11], which establishes
some principles for understanding how networking should work in a cluster:

• Every Pod has its own IP address.

• All containers within a Pod share the same IP address and port space.

• All Pods can communicate with all other Pods in the cluster without NAT.

• Agents on a node (e.g., kubelet, kube-proxy) can communicate with all Pods
on that node.

• Isolation is enforced through particular resources called network policies, not
with addressing management.

The result of these principles is that Pods can be used as if they were hosts, and
the containers inside, as processes. This simplifies the development of distributed
applications and the migration from systems based on VMs. Moreover, since
isolation is provided by network policies, the network structure can be kept simple.

However, these are only principles and Kubernetes does not provide a default
implementation. In facts, it relies on third-party solutions, called Container Network

Interface (CNI)[12] plugins, to actually implement the networking model. Some
examples of CNI plugins are Calico[13], Flannel[14], and Cilium[15].

Two main models are typically employed for cluster networking plugins: flat
and overlay network architectures.
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2.4.1 Flat Network

This model aligns closely with the networking principles by providing direct routabil-
ity between Pods without encapsulation or NAT. In a flat network, Pod IP addresses
are part of the physical network’s routing domain, making them directly accessible
across the cluster.

The benefits of this architecture are:

• No need for packet encapsulation or decapsulation between nodes.

• Lower CPU overhead, as no additional tunnel processing is required.

• Reduced bandwidth overhead, since fewer protocol headers are transmitted
over the network.

2.4.2 Overlay Network

Instead, overlay networks create a virtual network on top of the existing physical
network infrastructure. They use encapsulation techniques (like VXLAN[16] or
GRE[17]) to enable Pod-to-Pod communication across different nodes, even if those
nodes are on different subnets.

This approach provides several advantages:

• Works across almost any network infrastructure without special configuration
(particularly useful in cloud or multi-tenant environments)

• Isolates Pod IP space from the physical network, preventing address conflicts.

• Enables deployment across networks where direct Pod-to-Pod routing would
otherwise be impossible.

2.4.3 Linux Network Namespaces

Before describing the scenarios of communication, it’s important to understand
what Linux namespaces are, in particular the network namespace.

Namespaces are a mechanism offered by Linux to isolate and virtualize kernel
resources for a set of processes. There are different types of namespaces, each
isolating specific resources, such as process IDs, mount points, or the network stack.

The network namespace (also known as netns) provides isolation for network
resources, including interfaces, IP addresses, routing tables, and firewall rules. Each
network namespace has its own set of these resources, allowing processes within a
namespace to have their own independent network stack.

When a Pod is created, the CNI assigns it its own network namespace.
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2.4.4 Pod Networking

Container-to-Container

Inside a Pod, containers share the same network namespace, meaning they can
communicate directly through the loopback interface and the respective ports.

Pod-to-Pod on the same node

Pods on the same node leverage the root network namespace of the node to
communicate with each other. As shown in Figure 2.3, when a Pod is deployed on
a node, the CNI creates a pair of virtual interfaces. One end is placed inside
the Pod’s network namespace, while the other end is the node’s root network
namespace.2

Together with a virtual bridge, this allows the communication between Pods
using only the Linux networking stack.

Pod-to-Pod on different nodes

This is the scenario where the CNI matters the most, in fact, when the traffic needs
to go outside the node, it needs to know how to reach the destination Pod.

In case a CNI implementing a flat network is used, routes are pushed in the node
routing table to reach the Pod IPs through the corresponding node IPs. Remember
that in a flat network, nodes do not have overlapping IPs, so the routing becomes
simpler.

In case an overlay network is used, the traffic is encapsulated and sent to
the destination node, where it is decapsulated and delivered to the Pod. The
encapsulation method depends on the CNI.

Pod-to-Service

The main difference that comes into play when communicating with a Service is
that the Pod does not need to know the IP addresses of the Pods it wants to
communicate with, but only the IP address (or DNS name) of the Service.

This traffic is intercepted by the kube-proxy component running on the node
where the Pod is located which will take care of routing the traffic to one of the
backing Pods by applying a load balancing algorithm with the help of iptables or
IPVS.

2This behavior is common but may vary depending on the CNI implementation.
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Figure 2.3: A visual representation of the container-to-container and Pod-to-Pod
networking. Source: [11]

2.5 Note on Security and Network Policies

While security is a critical aspect of Kubernetes operations, it is not the primary
focus of this thesis. Topics such as authentication, authorization, and network
policies are only briefly mentioned to provide context for the architectural and
networking discussions.
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Liqo

This chapter introduces the concepts and architecture of Liqo, which is “an
open-source project that enables dynamic and seamless Kubernetes multi-cluster
topologies, supporting heterogeneous on-premise, cloud and edge infrastruc-
tures.” [18].

3.1 Overview

While Kubernetes supports the orchestration of workloads within a single cluster,
Liqo extends this capability by allowing the federation of multiple clusters by
leveraging the extensibility of Kubernetes. Also, Liqo is designed to be deployable
on any Kubernetes cluster, regardless of the underlying infrastructure or cloud
provider.

By federating —or “peering”, to use its jargon— clusters, Liqo allows workloads
to be offloaded across clusters, and resources to be shared dynamically.

To achieve this, Liqo creates on the local cluster a virtual node which represents
the resources of the remote peered cluster which are available to the local cluster.
This virtual node is managed by a component called Virtual Kubelet[19], which
acts as a bridge between the two clusters, handling the scheduling and the lifecycle
of Pods that are offloaded to the remote cluster. On the other side, it connects to
the remote cluster’s API server to manage the synchronization of resources and
workloads.

Some practical use cases of Liqo include:

• Hybrid Cloud Deployments: Extend on-premise clusters to public clouds,
enabling dynamic resource scaling and workload migration.

• Edge Computing: Connect edge clusters to central data centers, allow-
ing workloads to be offloaded to or from edge locations based on resource
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availability and latency requirements.

• Resource Optimization: Share resources between clusters to maximize
utilization, reduce costs, and balance workloads.

• Bursting Workloads: Offload peak workloads to remote clusters during
high demand periods, avoiding resource shortages.

Liqo comes with a set of components and custom resources (which will be
presented in the following sections) together with a CLI, called liqoctl, which is
used to install, configure, and monitor Liqo on the clusters. Another way to install
and manage Liqo is through Helm[20] charts.

3.2 Peering

Peering is a procedure that allows two clusters to connect and share resources.
This process creates a unidirectional relationship: the consumer cluster is the
one that offloads resources (also called local cluster), and the provider cluster (also
called remote cluster), which provides resources. Note that it can be performed by
both clusters, making possible bidirectional peerings and more complex topologies
when more peerings are done on multiple clusters.

This connection is established through a handshake mechanism that involves
the exchange of cryptographically signed nonces and network configuration
details. This is necessary because clusters communicate over VPN tunnels using
WireGuard[21], ensuring secure and encrypted inter-cluster communication.

These tunnels are entirely created and managed by Liqo, which also handles the
routing of all the traffic involved by using some components that will be presented
in the next sections.
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Figure 3.1: Overview of two Liqo peered clusters.

To initiate a peering, the liqoctl CLI tool is used. It requires both the
kubeconfigs of the involved clusters plus some additional parameters. For more
details, refer to the official documentation [18].

Liqo allows also to create connection between clusters without fully peering them,
in this case we have a gateway server and client but there is no consumer-provider
relationship. In fact, this kind of connection cannot be used for offloading, but
only for inter-cluster communications. This kind of connection is named after the
command to create it, which is liqoctl network connect.

3.3 Offloading

Offloading is the process of transferring workloads from one cluster to another. In
Kubernetes jargon, it translates to scheduling Pods on a remote cluster instead of
the local one.

Offloading is enabled by the virtual node created at the end of the peering
process; it is created in the local cluster (the consumer) and represents the resources
of the remote cluster (the provider) that are available to the local cluster. The
starting amount is negotiated during the peering process and if the consumer needs
more resources, it can request them in the form of additional ResourceSlice which
need to be accepted by the provider in order to be used.

The virtual node acts as a physical node in the consumer cluster, this way

20



Liqo

Kubernetes can schedule Pods on it. When this happens, instead of the normal
kubelet, it runs the Virtual Kubelet, which takes care of translating the Pod
specifications and sending them to the remote cluster’s API server.

This way, the consumer cluster can see the deployed Pods as if they were running
locally, while in reality, they are executed remotely.

3.4 Virtual Kubelet

The Virtual Kubelet is an open-source kubelet implementation that masquerades
as a kubelet but does not manage any real node. Instead, it connects to other APIs
or services to manage the lifecycle of Pods.

Whenever a peering is established, a Virtual Kubelet is deployed on the consumer
cluster, associated with a virtual node to a provider cluster.

In Liqo, a custom version is employed which is responsible for:

• forwarding the Pod specifications to the remote cluster’s API server, so that
Pods are effectively deployed on a physical node,

• monitoring the status of the offloaded Pods and updating their status in the
local cluster.

This way, the Virtual Kubelet can be seen as a bridge between the two clusters.

3.5 Resource Reflection

The reflection is another mechanism that Liqo uses to effectively offload workloads.
It consists of synchronizing certain resources between the two clusters, ensuring
that both clusters have a consistent view of the resources and workloads.

This is accomplished by leveraging Kubernetes namespaces: the user chooses
the namespace to offload Pods from, and Liqo creates a corresponding “twin”
namespace in the provider clusters.

These twin namespaces will then host the offloaded Pods, together with other
resources that need to be synchronized, such as Services or ConfigMaps.
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3.6 Network Fabric

The network fabric is the Liqo subsystem used to extend the Kubernetes network
model across multiple clusters. It ensures that Pods running in different clusters
can communicate with each other with or without NAT translation. The figure 3.2
shows an high-level overview of the Liqo network fabric.

Figure 3.2: Liqo network fabric.

Practically, the network fabric is implemented as a network agent running on
every node (deployed via a DaemonSet). Each agent programs local routing so that
traffic destined for remote Pods is forwarded to the appropriate Liqo Gateway and
sent over WireGuard tunnels. The controller-manager provisions these forwarding
and translation rules when a peering is established.
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3.6.1 CIDR Remapping

The support that Liqo offers for multiple CNIs and network configurations makes it
impossible to guarantee non-overlapping Pod CIDRs among clusters. To
overcome this problem, Liqo employs a feature called remapping, which consists
of translating Pod IPs according to the cluster in which they are running.

Referring to Figure 3.3, consider two clusters, A and B with the same local
Pod CIDR. Remapping an address means changing the remote Pod CIDRs while
keeping the same host part: this way A sees all the addresses of the Pods deployed
on B as belonging to a different Pod CIDR, and the same on B.

Of course, this remapping is negotiated during the connection setup, as both
clusters need to agree on the chosen CIDRs to route the traffic correctly.

Figure 3.3 below shows an example:

Cluster A

pod

Local PodCIDR:
10.200.0.0/16

IPA: 10.200.0.10

pod

IPB: 10.200.0.25

Liqo peering

Cluster B Local PodCIDR:
10.200.0.0/16

IPB: 10.61.0.25

IPA: 10.64.0.10

pod

pod

Figure 3.3: Liqo remapping example: A remaps all the addresses in cluster B
with 10.61.0.0/16, while B remaps cluster A with 10.64.0.0/16.
Note that, despite the CIDR remapping, the host part is maintained.

Thus, remapping enables clusters to “have their own point of view on their
neighbors”, in networking terms.

Moreover, it affects only Pod IPs, that is, the endpoints written in the End-
pointSlices (2.3.3) of each cluster. This means that the native behavior of Services
is not altered.

Remapping is not always necessary: if the Pod CIDRs of the two clusters do not
overlap, Liqo can be configured to avoid doing it and allow clusters to communicate
using their own CIDRs.
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3.7 Liqo Custom Resources (CRDs)

Liqo extends the Kubernetes API by introducing several Custom Resource Defini-
tions (CRDs) to manage its components and functionalities. Here is a list of the
most relevant ones for this thesis:

3.7.1 VirtualNode

VirtualNode was already mentioned. It represents a remote cluster in the local
cluster which is masqueraded as a node. It contains information about the remote
cluster’s resources, status, and configuration.

3.7.2 Connection

Connection represents the Liqo connections made with other clusters. It comprises
both the peerings and the network connections, informing about their status, with
a measure of the latency. It is used to check if the connection is up and running.

3.7.3 Configuration

Configuration describes the remappings performed by the cluster to the others. It
contains all the CIDRs used by the cluster, both the original and the remapped
ones. It is used to configure the network fabric.

The following is an example of the content of a Configuration CR. The wide
output shows also the ExternalCIDRs but it was omitted for space reasons.

$ kubectl get configurations -n liqo-tenant-cluster2

NAME DESIRED POD CIDR REMAPPED POD CIDR AGE

cluster2 ["10.200.0.0/16"] ["10.60.0.0/16"] 11d

3.7.4 ShadowEndpointSlice

ShadowEndpointSlice is a resource used to reflect the endpoints of an EndpointSlice.
It is created and populated in the local cluster and sent to the remote cluster with
the endpoints as seen by the local cluster.

Once received by the remote cluster, it is handled by the ShadowEndpointSlice
controller (in the liqo-controller-manager), which creates its own the End-
pointSlice performing a remapping if necessary.

The creation of the ShadowEndpointSlice is managed by the virtual kubelet,
which transmits only the endpoints of Pods running outside the cluster that it is
reflecting to; the endpoints of the Pods deployed locally are already managed by
the native EndpointSlice controller.
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The following Figure 3.4 shows a representation of the EndpointSlice reflection,
highlighting the role of the ForeignCluster CR, which provides the status of the
peered cluster.

Figure 3.4: Schematic representation of the endpointslice reflection workflow.
Solid lines refer to liqo-related tasks, while dashed ones to standard Kubernetes
logic. Blue rectangles refer to liqo-related resources.
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3.7.5 IP

IP CR represents a single IP address and specifies what is its remapping on the
external CIDR of the local cluster.

Offloaded Pods trigger the creation of an IP CR: local ones do not because
their address is already managed by the native Kubernetes components. Manually
created IP CRs can be used to make external IPs reachable from other clusters.

The following section describes the purpose of the external CIDR in Liqo.

Example and notes on External CIDR

Addresses in the external CIDR are used as proxy destinations when the cluster
has no direct route to a remote Pod. Traffic sent to an external-CIDR address is
recognized by the network fabric and routed across the inter-cluster tunnels to the
provider cluster that actually hosts the Pod.

Here is an example of the content of an IP CR (the command was launched on
the consumer cluster):

$ kubectl get ips -n liqo-demo

NAME LOCAL IP REMAPPED IP REMAPPED IP CIDR

nginx-demo-1 10.60.0.173 10.70.0.6 10.70.0.0/16

nginx-demo-2 10.60.0.66 10.70.0.7 10.70.0.0/16

nginx-demo-3 10.63.0.86 10.70.0.5 10.70.0.0/16

nginx-demo-4 10.63.0.103 10.70.0.8 10.70.0.0/16

As we can see by the different Pod CIDRs of the local IPs (10.60.0.0/16 and
10.63.0.0/16), the Pods named nginx-demo-1 and nginx-demo-2 are offloaded to
a cluster, while nginx-demo-3 and nginx-demo-4 are offloaded to another cluster.

Also, note that the host part of the forged External IPs (marked with Remapped
IP in the example) differs from the original Pod IPs (i.e. x.x.0.170 vs x.x.0.6). This
is a big difference from the remapping example (Figure 3.3), where the host part is
preserved.

In fact, this kind of remapping is more similar to a NAT translation rather than
a remapping.
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State of the Art:
foreign_cluster_connector

This chapter briefly presents the foreign_cluster_connector [22] contribution
from a previous thesis project, which served as the foundation for this work.

It consists of a Kubernetes controller running in a consumer cluster, which is
capable of creating a direct connection between provider clusters without directly
accessing them. After doing this, it creates a CR that stores the details of the
newly created connection.

4.1 CR & Controller

The main purpose of foreign_cluster_connector1 is to simplify the deployment
and management of the connections among remote clusters in Liqo.

The idea follows the typical Kubernetes declarative approach: the user writes a
manifest containing the data needed for a peering or a network connection, the
controller intercepts it, and forwards the connection request to the involved clusters.
The big improvement is that the manifest is applied directly in the consumer cluster,
there is no need to switch contexts. Once received, the connection is created with
the provided parameters using liqoctl.

Whenever a connection is created this way, the controller creates in the local
cluster a resource of kind ForeignClusterConnection, which stores the status
of the connection, the parameters used for the peering and the Pod CIDRs (both
the local and the remapped) used by the clusters involved in the peering.

1foreign_cluster_connector is the name of the implementation, whereas

ForeignClusterConnection is the name of the CR that it is defined.
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Figure 4.1: An application of the ForeignClusterConnection solution. Through
the CLI or applying a manifest in cluster 1, the controller starts and creates
the connection between cluster 2 and cluster 3. When it is established, the
controller updates the CR reporting its status.

This is important because the Pod CIDRs negotiated during the connection are
not known by clusters not involved in the peering, so the central cluster gets to
know data that it would not have otherwise (unless forging a specific request to
the API servers of the remote clusters). This information will be useful in the next
chapter, where a more precise explanation of the optimization will be provided.

Below is the content of a ForeignClusterConnection CR: in the spec field are
the parameters used for the connection, while in the status field is the current
status of the connection, together with the negotiated Pod CIDR of both cluster,
under the name of “remapped PodCIDR”.
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1 Name: cluster2 - cluster3

2 Namespace : default

3 API Version : networking .liqo.io/ v1beta1

4 Kind: ForeignClusterConnection

5 Spec:

6 Foreign Cluster A: cluster2

7 Foreign Cluster B: cluster3

8 Networking :

9 Client Gateway Type: networking .liqo.io/ v1beta1 /

wggatewayclienttemplates

10 Client Template Name: wireguard - client

11 Client Template Namespace : liqo

12 Mtu: 1450

13 Server Gateway Type: networking .liqo.io/ v1beta1 /

wggatewayservertemplates

14 Server Service Port: 51840

15 Server Service Type: NodePort

16 Server Template Name: wireguard - server

17 Server Template Namespace : liqo

18 Timeout Seconds : 120

19 Wait: true

20 Status :

21 Foreign Cluster A Networking :

22 Pod CIDR: 10.63.0.0/16

23 Remapped Pod CIDR: 10.61.0.0/16

24 Foreign Cluster B Networking :

25 Pod CIDR: 10.60.0.0/16

26 Remapped Pod CIDR: 10.61.0.0/16

27 Is Connected : true

28 Last Updated : 2025 -06 -19 T23 :16:18 Z

29 Phase : Connected

Listing 4.1: Example of a ForeignClusterConnector CR.

For better user experience, the solution comes with a CLI to manage directly
the connections from the terminal.

4.2 Reflection and Inter-Cluster Communication

The features implemented by this work are used only for the remote connection
management, in fact, the behavior of Liqo is not altered and the traffic between
Pods in provider clusters is still flowing through the central cluster (as shown in
Figure 4.1).

More in depth, here is a description of the actual state of the system, regarding
the peer-to-peer communication among provider clusters.
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4.2.1 Peer-to-Peer Communication: an Example

The topology is the following (shown in Figure 4.1):

• There are three clusters: C1, C2 and C3. C1 acts as a consumer, while C2 and
C3 are provider clusters peered with C1.

• Between the two providers, a network connection (often called “shortcut”) is
established.

• A Pod is running on each cluster, and they are exposed with a Service of
type ClusterIP.

Note that Services are reflected by Liqo, so every cluster has their own version
of the Service, the only difference among those, are their endpoints, which are
subject to remapping (described in Section 3.6.1).

Now, consider this scenario: the Pod in C2 wants to communicate with
the Pod in C3, either using a Service or directly using the target Pod IP.

The address of the Pod in C3 is not known to C2, because it is running remotely
and providers do not have full knowledge of the topology, as they are only used to
provide resources.

This address is known only by C1, which has a full view of the topology, and it
is responsible of advertising it by reflecting its EndpointSlices.

4.2.2 Reflection of EndpointSlices

The described procedure is fundamental because the endpoints served by Services
are fetched from the EndpointSlices, and most importantly, the CIDRs of these
endpoints are used by Liqo to route the traffic correctly.

This is what happens during the reflection of the EndpointSlice from C1 to C2

(the same happens for C3):

1. The trigger for this procedure is the exposure of the Pod deployment with a
Service in C1. Since it involves Pods offloaded to remote clusters (C2 and C3),
the local Endpointslice containing those endpoints must be reflected to the
remote clusters, so that the Service is functional for all the Pods.

2. Then C1 forges a ShadowEndpointSlice with the endpoints as seen by the
central cluster of the Pods involved in the Service, without the endpoints of
the Pod running in C2 (its address is known because it is running locally).

3. In case of endpoints belonging to a different cluster than the one receiving
the ShadowEndpointSlice, an address belonging to C1 external CIDR is
provided.
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This is done because C1 detects that the endpoint is neither local nor on that
cluster, so it must handle the routing itself leveraging the external CIDR
addresses. Note that this happens even if the ForeignClusterConnection

resource is present.

4. C2 receives the ShadowEndpointSlice and remaps the endpoints according to
their remapping rules (Section 3.6.1) represented by the Configuration CRs
(Section 3.7.3) it owns.

5. Done that, an EndpointSlice is allocated in C2, and the Service is functional.

6. Now, when the Pod in C2 tries to reach the Pod in C3, it uses the address of
C1 external CIDR (remapped), and the traffic flows through C1, which routes
it to C3.

Figure 4.2 is a visual representation of the described procedure.

Endpointslice needs to
be reflected

ShadowEndpointSlice
is created and populated

with endpoints (only those
not present in the remote

cluster)

ShadowEndpointSlice is
reflected to providers

Provider receives the
ShadowEndpointSlice

Endpoints are remapped
using the Configuration of

the cluster

EndpointSlice is allocated
with endpoints meaningful

for the receiving cluster

Done by the Virtual Kubelet

Done by ShadowEndpointSlice controller

Figure 4.2: Reflection of EndpointSlices from the consumer to a provider. The
yellow rectangles represent actions performed by the consumer, while blue ones
represent actions performed by the provider.
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The “Automatic”
Implementation

This work implements two alternative solutions to the same problem (1.1). This
chapter presents the first implementation, an “automatic approach” built on top of
the technology described in the previous chapter.

Figure 5.1 is a recap of the most basic topology which benefits this solution: one
consumer peered with two providers which have a direct connection. In this case
addresses are also specified so the reader can better follow the explanations. Lastly,
CIDRs are not shown explicitly in Figure 5.1; Liqo’s default network prefix length
is /16, so the CIDR for each address can be inferred from the first two octets.

Note that the addresses shown are already remapped: close to the gateways
of each cluster are represented the actual addresses used to reach remote pods,
located where the arrow is directed. For example, the pod on C3 has local address
10.200.0.244 but is reached from C1 using the address 10.63.0.244. Section 3.6.1
explains how remapping works in Liqo.

5.1 Overview – “Anticipated” Remapping

As presented in Section 4.2.2, the reflection of EndpointSlices is the mechanism
that needs to be improved in order to enable direct connections between provider
clusters.1

In broad terms, the idea behind this implementation is that the consumer cluster

1It is the main focus because the routing rules that allow the direct communication

between providers are already present in both the network fabrics involved. It can be

tested by manually pinging the addresses remapped on the correct CIDR.
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Liqo peering

Liqo shortcut
(network connect)
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podpod

10.200.0.179 10.200.0.244

10.63.0.3

10.60.0.7
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GW-to-C1 GW-to-C1

pod

10.200.0.3

Figure 5.1: Sample topology with addresses.
In red are shown the addresses used by the providers to reach each other through
the consumer, in green the addresses used to reach the pods directly.

detects which are the endpoints that can benefit from a direct connection, then
“anticipates the remapping” before sending the ShadowEndpointSlice and flags
them so that when they are received by the provider, it can understand that the
regular remapping must not be applied for them.

The anticipated remapping consists in performing the remapping for the provider
cluster directly in the consumer cluster using a CIDR meaningful for the
receiving cluster: in this case the CIDR is the one used for the the direct connection
by the provider (in the example of Figure 5.1 is 10.61.0.0/16 on both ends).

This way, the provider cluster receives the “direct” endpoints already remapped
and ready to be used.

5.1.1 Role of the ForeignClusterConnection CR

The importance of the ForeignClusterConnection CR, is that it makes available
to the consumer cluster two CIDRs: one is used by the consumer cluster to reach
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the provider on the other end of the connection (Pod CIDR in listing 5.1) and the
other one is the CIDR used by the provider to reach the other provider (Remapped

Pod CIDR).

The listing below shows details about the content of the ForeignCluster

Connection CR, allocated to represent the direct connection between C1 and C2.

1 Kind: ForeignClusterConnection

2 Spec:

3 Foreign Cluster A: cluster2

4 Foreign Cluster B: cluster3

5 Status :

6 Foreign Cluster A Networking :

7 Pod CIDR: 10.63.0.0/16

8 Remapped Pod CIDR: 10.61.0.0/16

9 Foreign Cluster B Networking :

10 Pod CIDR: 10.60.0.0/16

11 Remapped Pod CIDR: 10.61.0.0/16

12 Is Connected : true

13 Last Updated : 2025 -06 -19 T23 :16:18 Z

14 Phase : Connected

Listing 5.1: Focus of the Pod CIDRs in a ForeignClusterConnection CR.

So, referring to Figure 5.1 and Listing 5.1, we can see that:

• cluster A is C2 and B is C3,

• Status.A.PodCIDR represents how C1 reaches C3,

• Status.A.RemappedPodCIDR represents how C2 reaches C3.

5.1.2 Detailed Workflow

More in depth, let’s analyze what happens when an EndpointSlice is reflected to a
provider cluster, in order to understand how the idea is implemented. The steps
are the following, the reflection is done by the virtual kubelet running towards a
provider cluster; the starting point is when an EndpointSlice needs to be reflected
to a provider cluster, at the ShadowEndpointSlice creation:

1. The virtual kubelet checks if there is a ForeignClusterConnection resource
that involves the target cluster, if so, it extracts the CIDRs stored there.

2. The first is the one corresponding to the other end of the connection,
from the consumer point of view. This is used to detect if an endpoint
can benefit from the direct connection.
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3. In case an endpoint meets this condition, the other extracted CIDR is used:
it is the CIDR that the remote cluster uses to communicate with the other
provider cluster.

4. The anticipated remapping is done using the CIDR and the real part, already
known by the consumer.

5. If a remapping is done this way, that address is added to an array and included
in the label of the ShadowEndpointSlice

6. All the endpoints not meeting the condition in point 1 are remapped regularly.

7. The provider clusters receives the ShadowEndpointSlice and skips the remap-
ping for all the addresses contained in the label (which are already remapped)

This solution does not require user intervention to make traffic flow through
the direct connection: it is for this reason that this implementation is called
“automatic”.

5.1.3 Example of a ShadowEndpointSlice

The listing below is the content of an ShadowEndpointSlice reflected to C2 in the
scenario of Figure 5.1.

Some minor fields have been omitted for the sake of clarity and the name of the
pods have been changed to better describe the scenario.

1 Name: nginx -1

2 Namespace : liqo -demo

3 Labels : app= nginx

4 endpointslice . kubernetes .io/managed -by= endpointslice

. reflection .liqo.io

5 kubernetes .io/service -name=nginx - direct

6 offloading .liqo.io/ destination = cluster2

7 offloading .liqo.io/ origin = cluster1

8 shortcut - addresses =10.61.0.244

9 API Version : offloading .liqo.io/ v1beta1

10 Kind: ShadowEndpointSlice

11 Spec:

12 Template :

13 Address Type: IPv4

14 Endpoints :

15 - Addresses : 10.61.0.244

16 Conditions :

17 Ready : true

18 Node Name: cluster1

19 Target Ref:

20 Kind: RemotePod
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21 Name: nginx -on -cluster -3

22 Namespace : liqo -demo

23 - Addresses : 10.200.0.3

24 Conditions :

25 Ready : true

26 Node Name: cluster1

27 Target Ref:

28 Kind: RemotePod

29 Name: nginx -on -cluster -1

30 Namespace : liqo -demo

Listing 5.2: Example of the ShadowEndpointSlice reflected to C2. The scenario
is the same shown in Figure 5.1.

A ShadowEndpointSlice sent before this implementation would have contained
the following endpoints:

• 10.200.0.3, which is the local address of the pod on C1. At the EndpointSlice
creation, it will be remapped to the address 10.63.0.3.

• 10.70.0.7, which is the address of the pod on C3, remapped on the external
CIDR of C1. At the EndpointSlice creation, it will be remapped to 10.60.0.7.

The listing below shows the resulting EndpointSlice in C2 after the remapping is
applied. The local pod address (10.200.0.179) is not present because it is stored in
a separate EndpointSlice which is created and managed by the native Kubernetes;
here are only the remote endpoints, managed by Liqo.

1 Name: nginx -eps -1

2 Namespace : liqo -demo

3 Labels : app= nginx

4 endpointslice . kubernetes .io/managed -by= endpointslice

. reflection .liqo.io

5 kubernetes .io/service -name=nginx - direct

6 liqo.io/ managed =true

7 liqo.io/managed -by= shadowendpointslice

8 offloading .liqo.io/ destination = cluster2

9 offloading .liqo.io/ origin = cluster1

10 AddressType : IPv4

11 Endpoints :

12 - Addresses : 10.61.0.244

13 Conditions :

14 Ready : true

15 TargetRef : RemotePod /nginx -on -cluster -3

16 NodeName : cluster1

17 - Addresses : 10.63.0.3

18 Conditions :

19 Ready : true

20 TargetRef : RemotePod /nginx -on -cluster -1
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21 NodeName : cluster1

Listing 5.3: The EndpointSlice in C2 after remapping the ShadowEndpointSlice
in Listing 5.2.
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Chapter 6

The “Semi-Automatic”
Implementation

This chapter presents the final implementation, which is the one whose design
was approved by the Liqo maintainers and whose code is currently in review [23],
waiting to be merged and released in a future Liqo version.

Again, to make things clearer, the same topology used in the previous chapter is
considered (Figure 5.1). The main difference is that this implementation is based
on the standard Liqo (version 1.0.1) without the ForeignClusterConnection

prototype. No other CR is used, only the ones already defined by Liqo.

6.1 Why Another Implementation

When the automatic implementation was presented to the Liqo community, some
issues were raised: it was not flexible (users may want their traffic to be routed
through the central cluster for many reasons) and does not scale by design.

In fact, the number of ForeignClusterConnections in the consumer cluster
grows proportionally with that of the connections between pairs of providers1,
leading to a situation where it becomes so big that it negatively impacts the
performance of the system when reflecting EndpointSlices. The described scenario
is not uncommon, as a central cluster with many edge providers is a typical use
case for Liqo.

This led to the development of another solution: a more flexible one, which only
relies on the native Liqo CRs.

1In a topology with n providers, the maximum number of ForeignClusterConnections is

n(n − 1)/2, thus growing with the square of the number of providers.
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6.2 Overview

The core idea revolves around one key difference with respect to the previously
discussed implementation: in the automatic version, the remapping was anticipated
by the consumer and sent together with the endpoint to replace; this time, the
remapping is performed by the provider, which receives some additional data
from the consumer in order to be able to perform the remapping to the correct
address. The remapping is hence considered “forced”, because the provider must
remap an address which would not normally undergo remapping.

Moreover, to increase flexibility, a per-Service approach has been chosen: the
traffic which should leverage the direct connection is decided by the user applying
a specific label on the Service, which is why this implementation is said to be
“semi-automatic”.

This way Liqo’s default behavior remains unchanged, whereas the choice of
using direct connections is left to the user, and the scalability issue is resolved as
no ForeignClusterConnection CRs are needed.

To make this possible, without the help of the ForeignClusterConnection CR,
the consumer cluster needs the data which was previously stored there.

6.2.1 Data Requirements

More in detail, referring to Figure 6.1, the data needed to perform this new
remapping is:

1. The clusterID of the provider on the other end of the connection,

2. The CIDR negotiated by the provider for the direct connection,

3. The host part of the pod’s IP address.

This data is almost the same that was used in the previous implementation,
except for point 1, which is now needed by the recipient provider to identify which
is the direct connection use.

The reason why the anticipated remapping (that is, remapping directly in the
consumer) is not a possible solution without the ForeignClusterConnection CR,
is because the 3 values above are stored in different places: while the clusterID
and the host part of the endpoint can be easily obtained by the consumer cluster
through its informers2, the problem is about the CIDR.

2A tool offered by native Kubernetes, it acts like a cache for resources frequently accessed, so

not to wait for responses from the API server.
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This information can be retrieved only making a request to the API server of
the provider cluster, which is a very slow operation, and should be avoided as much
as possible3.

The request to the provider’s API server is therefore inevitable — the same
lookup is required by the standard remapping —, but its overhead is mitigated
by a local cache, which reduces latency for repeated accesses. More importantly,
performing the lookup on the provider is conceptually correct: the CIDR and
configuration data are authoritative at the provider, so delegating the remapping
to the provider ensures the operation uses locally consistent information and avoids
exchanging useless data between clusters.

10.63.0.244

C1 (consumer)

C2
(Provider) C3

(Provider)

podpod

10.200.0.179 10.200.0.244

GW-to-C2 GW-to-C3

GW-to-C2GW-to-C3

GW-to-C1 GW-to-C1

pod

10.200.0.3

10.61.0.0/16

ShadowEndpointSlice

1

2

3

1 + 2 + 3 + standard data sent
in a ShadowEndpointSlice

Figure 6.1: Schema of the data required by C2 to perform the forced remapping:
1 and 2 are available in the consumer cluster and sent in the ShadowEndpointSlice,
3 is known by the provider.

3The “automatic” implementation makes this request and stores the CIDRs in the CR, so it’s

only done once, after the connection has been established. In this case the request should be

performed everytime an EndpointSlice is reflected.
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6.2.2 Detailed workflow

This section describes what happens when an EndpointSlice is reflected to a provider
cluster, in order to understand how the idea is implemented. The steps are the
following:

1. The starting point is the creation of a ShadowEndpointSlice by the virtual
kubelet running towards a provider cluster,

2. The virtual kubelet checks if the Service corresponding to the EndpointSlice
has the label which enables the direct connection feature, if so it proceeds
with the following steps, otherwise it reflects the EndpointSlice normally,

3. For each endpoint in the EndpointSlice:

(a) The virtual kubelet checks if the endpoint can benefit from a direct
connection, that is, if the pod is running in a provider cluster and is not
the one receiving the EndpointSlice,

(b) In case the endpoint meets this condition, the clusterID of the provider
where the pod is running is extracted,

(c) It retrieves the local IP of the pod, that is the address as seen by the
consumer cluster. It will be later used to extract the host part,

(d) It retrieves also the remapped IP of the pod, which is the address sent
normally in the ShadowEndpointSlice, it will be used to understand which
is the address to replace,

(e) For each clusterID, a pair (local IP, remapped IP) is stored in a data
structure

4. After all the endpoints have been processed, the above data structure is
encoded to JSON and added to an Annotation4 of the ShadowEndpointSlice,

5. The ShadowEndpointSlice creation proceeds as usual, and is finally sent to
the provider cluster.

6. The provider cluster receives the ShadowEndpointSlice and checks if it has
the Annotation containing the data for the forced remapping,

7. In case it is present, data is decoded and stored in a data structure,

8. At this point every received endpoint is processed:

4The maximum size of Kubernetes annotations is 256kB, in case the encoded data exceeds

this limit, no direct connection data is attached to the ShadowEndpointSlice.
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9. If it is not found in the data structure it is remapped normally,

10. Otherwise, the other two values are extracted (clusterID and local IP),

11. The ClusterID is used to retrieve the Configuration CR, which contains the
CIDR used by the provider to reache the cluster identified with that ID,

12. Using this CIDR and the host part extracted from the local IP, the remapping
is performed,

13. The endpoint is updated with the new remapped IP.

Figure 6.2 summarizes the additional data sent in the ShadowEndpointSlice to
enable the forced remapping.

Consumer
Provider A

pod

Provider C

pod

Provider B

pod

IPB IPC

IPA

ClusterID Local IP Ext.
remapping

B IPB
' IPB

X

C IPC
' IPC

X Direct connections

ShadowEndpointSlice

"DirectConnectionData":

Endpoints:

IPB
X

IPC
X

Figure 6.2: Schema of the data sent in the ShadowEndpointSlice.
DirectConnectionData is the additional payload sent in the Annotations and
used for forced remapping. Superscript X denotes IPs remapped into the con-
sumer’s External CIDR (these are the addresses normally carried in the Shad-
owEndpointSlice); superscript prime (’) denotes the local IPs as observed by the
consumer. Subscripts indicate the clusterID of the pod’s home cluster.
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6.3 Code Snippets

Some code snippets are presented to show how the implementation is done in
practice. Note that some parts (error handling for instance) are avoided for space
reasons. The entire code, including future reviews, is available in the author’s Pull
Request to the main repository [23].

6.3.1 Forging the ShadowEndpointSlice with the Additional
Data

Listing 6.1 shows the part of code during the forging process, in charge of retrieving
the data needed for the forced remapping. The Handle() function is the one called
when an EndpointSlice needs to be reflected to a provider cluster. local is the
EndpointSlice to reflect, while remote is the corresponding ShadowEndpointSlice
in the provider cluster. Note that this code is executed both in case the Shad-
owEndpointSlice is created for the first time and in case it is updated. The logic is
the same in both cases.

Several small utility functions were added to centralize common operations (label
checks, resource field extraction and annotation handling), reducing duplication
and clarifying the main flow.

All the Get operations (6.1, lines 13 and 32, aimed at retrieving the Node and
the IP resources) in this code snippet are not requested directly to the API server
but instead on the local cache of the informers, which is much faster.

1 func (ner * NamespacedEndpointSliceReflector ) Handle (ctx context .

Context , name string ) error {

2

3 // ... existing code ...

4

5 var marshaledData [] byte

6 if ner. ShouldProvideDirectConnectionData ( local ) {

7 var remoteConnectionsData directconnectioninfo . InfoList

8

9 for _, endpoint := range local . Endpoints {

10 if endpoint . NodeName == nil {

11 continue

12 }

13 node , err := ner. localNodeClient .Get (* endpoint . NodeName )

14

15 if ! directconnectioninfo . ShouldIncludeDataFromNode (node ,

string ( forge . RemoteCluster )) {

16 continue

17 }

18
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19 clusterID , err := getters . RetrieveRemoteClusterIDFromNode (

node)

20 objectName := endpoint . TargetRef .Name

21 ipsObj , err := ner. localIPs .Get( objectName )

22 localIPs , err := ipamutils . GetLocalIPFromObject ( ipsObj )

23 remappedIPs , err := ipamutils . GetRemappedIPFromObject ( ipsObj

)

24 remoteConnectionsData .Add(clusterID , [] string { localIPs }, []

string { remappedIPs })

25 }

26 if len( remoteConnectionsData . Items ) == 0 {

27 /* no direct connection data */

28 } else {

29 marshaledData , err = remoteConnectionsData . ToJSON ()

30 if len( marshaledData )+ totalAnnotationsSize ( local ) >=

maxAnnotationSize {

31 // Max size of data in annotations is 256 KB

32 marshaledData = nil

33 } else {

34 /* success */

35 }

36 }

37 }

38 // ... further code ...

Listing 6.1: Code snippet of the ShadowEndpointSlice forging process.

6.3.2 ShadowEndpointSlice Controller – Remapping Pro-
cess

Listing 6.2 below shows the part of code executed by in the provider cluster,
when a ShadowEndpointSlice is received. The Reconcile() function is the one
called when a ShadowEndpointSlice is created or updated in the provider cluster.

Its logic is very simple and straightforward, as it just checks if the Annotation
containing the data about direct connections is present, and if so it decodes it and
remaps the endpoints with the function MapEndpointsWithConfiguration().

1 // Reconcile ShadowEndpointSlices objects .

2 func (r * Reconciler ) Reconcile (ctx context .Context , req ctrl.

Request ) (ctrl.Result , error ) {

3 // ... existing code ...

4

5 // Check if direct connections data is provided

6 var remoteConnectionsData directconnectioninfo . InfoList

7 if val , ok := shadowEps . Annotations [

directConnectionAnnotationLabel ]; ok {

8 err := remoteConnectionsData . FromJSON ([] byte(val))
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9

10 if err != nil {/* error logging */}

11 // JSON is not propagated to the EndpointSlice

12 delete ( shadowEps . Annotations , directConnectionAnnotationLabel )

13 }

14

15 remappedEndpoints := shadowEps .Spec. Template . Endpoints

16 if foreigncluster . IsNetworkingModuleEnabled (fc) {

17 // remap the endpoints if the network configuration of the

remote cluster overlaps with the local one

18 if err := MapEndpointsWithConfiguration (ctx , r.Client ,

clusterID , remappedEndpoints , remoteConnectionsData ); err !=

nil {

19 /* error logging */

20 }

21 }

22

23 // Forge the endpointslice given the shadowendpointslice

24 newEps := discoveryv1 . EndpointSlice {

25 ObjectMeta : metav1 . ObjectMeta {

26 Name: shadowEps .Name ,

27 Namespace : shadowEps .Namespace ,

28 Labels : labels . Merge ( shadowEps .Labels , labels .Set{

29 consts . ManagedByLabelKey : consts .

ManagedByShadowEndpointSliceValue }) ,

30 Annotations : shadowEps . Annotations ,

31 },

32 AddressType : shadowEps .Spec. Template . AddressType ,

33 Endpoints : remappedEndpoints ,

34 Ports : shadowEps .Spec. Template .Ports ,

35 }

36 // ... further code ...

Listing 6.2: Code snippet of the ShadowEndpointSlice remapping process.

6.3.3 The Forced Remapping

Listing 6.3 and Listing 6.4 show the functions in charge of performing the forced
remapping, using the data sent in the Annotation of the ShadowEndpointSlice.

MapEndpointsWithConfiguration() iterates over all the endpoints in the Shad-
owEndpointSlice, and for each of them it checks if it is present in the data structure
containing the data for the forced remapping. If so, it extracts the clusterID and
the local IP, retrieves the CIDR from the Configuration CR and performs the
remapping using the utility function ForceMapAddressWithConfiguration().

This code is better described in steps 8 to 13 of the workflow presented above.
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1 func MapEndpointsWithConfiguration (ctx context .Context , cl client .

Client ,

2 clusterID liqov1beta1 .ClusterID , endpoints [] discoveryv1 .

Endpoint ,

3 list directconnectioninfo .InfoList ,

4 ) error {

5 for i := range endpoints {

6 for j := range endpoints [i]. Addresses {

7 addr := endpoints [i]. Addresses [j]

8

9 addrHasBeenRemapped := false

10

11 // Check if mapping should be forced

12 if len(list. Items ) != 0 {

13 clusterID , ip , addressFound := list. GetConnectionDataByIP (

addr)

14

15 if addressFound {

16 rAddr , err := ipamips . ForceMapAddressWithConfiguration (

ctx , cl , liqov1beta1 . ClusterID ( clusterID ), ip)

17

18 if err == nil {

19 endpoints [i]. Addresses [j] = rAddr . String ()

20 addrHasBeenRemapped = true

21 } else {/* error logging */}

22 }

23 if addrHasBeenRemapped {

24 break

25 }

26 }

27

28 // Regular mapping is performed

29 if ! addrHasBeenRemapped {

30 rAddr , err := ipamips . MapAddress (ctx , cl , clusterID , addr)

31 if err != nil {

32 return err

33 }

34 endpoints [i]. Addresses [j] = rAddr

35 }

36 }

37 }

38

39 return nil

40 }

Listing 6.3: Code snippet of the mapping using MapEndpointsWithConfiguration.

ForceMapAddressWithConfiguration() is a utility function which performs
the actual remapping, given the CIDR and the local IP. It extracts the host part
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of the local IP and combines it with the CIDR to create the new remapped IP.
This function makes use of a function called GetConfigurationByClusterID(),

which retrieves the Configuration CR corresponding to the clusterID passed as
argument.

This is the only case in which a request to the API server is made without using
the local informers cache but this would happen anyway, since also the standard
remapping needs to retrieve a Configuration CR. This problem is easily solved
by the standard Liqo caching mechanism: it stores the remappings in a local cache,
including the ones made with the forced approach.

1 func ForceMapAddressWithConfiguration (ctx context .Context , cl

client .Client ,

2 clusterID liqov1beta1 .ClusterID , address string ) (net.IP , error )

{

3 // This address is used only to get its host part!

4 addr := net. ParseIP ( address )

5

6 cfg , err := getters . GetConfigurationByClusterID (ctx , cl ,

clusterID , corev1 . NamespaceAll )

7 if err != nil {

8 return addr , err

9 }

10

11 podCidr := cidrutils . GetPrimary (cfg. Status . Remote .CIDR.Pod).

String ()

12 _, podnet , err := net. ParseCIDR ( podCidr )

13 if err != nil {

14 return addr , err

15 }

16

17 return RemapMask (addr , * podnet ), nil

18 }

Listing 6.4: Code snippet of the forced remapping function.
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Chapter 7

Conclusions and Future
Work

This thesis presents two approaches to enable direct communication between
provider clusters in Liqo. Both solutions address the problem by modifying how
EndpointSlices are reflected to provider clusters, with slight differences discussed in
Section 5 and Section 6. The first, fully automatic approach requires the Foreign

ClusterConnection CR, which has not yet been accepted by the Liqo team. The
second, semi-automatic approach relies solely on Liqo, offering a more scalable and
flexible solution; it only requires annotating a Service, a task that can be easily
automated in future implementations.

7.1 Results

The observed results are straightforward: by shortening the path between providers,
latency is certainly reduced, the workload on the consumer cluster is decreased,
and the overall network efficiency is improved.

Moreover, the standard Liqo behavior is not altered unless specified, so the
upgrade to a future Liqo version can be seamless and non-desruptive for all those
systems which require the inter-provider traffic to be routed through the consumer.

Only a few quantitative notes are worth mentioning about the semi-automatic
implementation:

• The overhead introduced by the additional data sent in the ShadowEnd-
pointSlice is negligible, as it reaches ~130 bytes per endpoint in the worst
case1. This is a very small amount of data, considering that an EndpointSlice

1This case is: clusterID of 63 characters, and addresses that use 3 digits per octet.
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can contain up to 100 endpoints, so the overhead per endpoint is very low,
making this solution efficient and scalable.

• Some operations are required to perform the remapping: among those, the
most computationally expensive are the requests to the API servers. However,
these requests are backed either by informers or a cache internal to Liqo so
that the overhead is mitigated. Anyway, these are needed also in the standard
remapping, so the overhead introduced by this implementation is negligible in
this case.

• The runtime overhead is limited to the cases where endpoints must be checked
against the consumer-supplied DirectConnectionData. In our experiments no
measurable degradation was observed because the data structures remained
small. If this becomes a bottleneck, easy mitigations are available (for example
compressing the encoded payload, adding an index, or using a hash set). The
current design intentionally exposes the reflected data so operators can inspect
and trace EndpointSlice creation and updates.

7.2 Future Work

Although the semi-automatic approach was chosen to be merged into the main
project, the automatic one can be useful as a proof of concept and a starting point
for future developments in the direction of a fully automatic solution.

Otherwise, the semi-automatic implementation can be further improved in the
future, for example by:

• Developing a controller that’s capable of automatically applying the label
to the Services which can benefit from the direct connection, based on some
criteria (e.g. the amount of traffic exchanged between two clusters).

• Implementing a mechanism to automatically create direct connections between
clusters, based on the network topology and latency measurements.

• Extending the implementation to support more complex network topologies,
such as a Service Mesh among different remote clusters.

In conclusion, this thesis represents a step forward in optimizing inter-cluster
communications in Liqo, and opens the door to further enhancements in this field.
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