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Abstract

Electronics and software are essential components in the modern automotive indus-
try, where safety, correctness, and real-time performance are critical requirements.
Traditional automotive software relies on C/C++ due to its high performance,
but its unrestricted syntax and manual memory management make it highly error-
prone, increasing development costs and risks, especially for large projects. Rust
is a promising alternative, a mature programming language that offers compara-
ble performance and eliminates entire classes of memory and concurrency errors
through strict compile-time rules. The language is gaining traction in the context of
embedded systems, supported by an expanding ecosystem of projects and libraries.

This thesis aims to demonstrate the feasibility of using Rust in real-time, safety-
critical embedded software through the development of a Rust-based operating
system compatible with the widely adopted AUTOSAR standard. The project
targets a development board featuring the real-time profile Cortex-R52 processor
and is also compatible with QEMU. The core component of the system is a priority-
based scheduler driven by a hardware timer on the CPU. AUTOSAR objects that
define more advanced features such as synchronization mechanisms between tasks
and cores, and configurable interrupt routines were implemented, along with a
comprehensive set of APIs to expose them to the user code, which remains in
C/C++ for compatibility.

The final outcome includes build tools, examples, and documentation. It
establishes a robust foundation that demonstrates the practical applicability of
Rust to real-time, safety-critical embedded systems. By providing a working
prototype aligned with AUTOSAR principles, the project offers a starting point
that can be extended and refined for future research and industrial adoption.
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Chapter 1

Introduction

The increasing complexity of modern vehicles has made electronics and software
indispensable components of the automotive industry. Advanced driver-assistance
systems (ADAS), infotainment platforms, and electronic control units rely heavily
on embedded software to guarantee performance, reliability, and safety. In such
systems, meeting real-time constraints and ensuring predictable behavior are
fundamental requirements, as any malfunction may compromise both system
integrity and passenger safety.

Traditionally, the automotive software stack has been dominated by C and
C++, languages valued for their efficiency and close interaction with hardware.
However, their low-level nature comes with inherent drawbacks. Aspects such as
unrestricted pointer manipulation, manual memory management, and the absence
of strict concurrency safety mechanisms make these languages prone to subtle bugs
and undefined behavior. As systems grow in scale and complexity, these issues
increase development costs, extend testing cycles, and raise certification challenges
for the required safety standards.

Rust has emerged as a promising alternative for developing embedded and
safety-critical applications. It combines performance comparable to C/C++ with a
strong focus on memory safety, concurrency correctness, and software reliability. By
enforcing strict compile-time checks, Rust prevents entire classes of runtime errors,
such as null pointer dereferencing, data races, and buffer overflows. Over the past
few years, the language has gained significant traction in the embedded domain,
supported by a growing ecosystem of tools, crates, and community-driven projects
that simplify cross-compilation, hardware abstraction, and real-time development.
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Introduction

1.1 Motivation

In traditional C development, software safety is typically ensured through strict
coding conventions, such as MISRA C, that programmers must manually adhere
to or through static analysis performed by sophisticated and often costly tools.
These approaches, while effective to a degree, are prone to human error and require
significant effort to maintain compliance throughout the development lifecycle.
Rust has been proven to reduce the reliance on such practices through its built-in
safety mechanisms. [1]

The adoption of Rust offers significant advantages in the development of inher-
ently complex, safety-critical software. Studies in the context of real-time operating
systems have shown that up to 54% of reported vulnerabilities originate from
memory corruption issues, which the safety model of Rust effectively mitigates. [2]

However, despite these clear benefits, the transition to Rust in production
environment, and particularly in the automotive sector, has been slow. This is
largely due to the absence of domain-specific solutions, standardized development
methodologies, and established best practices.

Broader adoption of Rust in domains such as the automotive industry, along
with emerging efforts to introduce the language in neighboring sectors such as
aerospace [3, 4], could accelerate its use across the embedded systems field and
software development in general. This convergence of adoption across safety-critical
domains is expected to contribute to improved reliability and security in critical
applications,.

1.2 Goal

This thesis aims to demonstrate the feasibility of using Rust in the development of
real-time, safety-critical embedded software by exploring the existing ecosystem
of tools, libraries, and methodologies, and by developing an operating system
compatible with the AUTOSAR standard, widely adopted in the development of
automotive ECUs.

The project targets a real-time hardware platform based on the ARM Cortex-
R52 processor, representative of products currently used in the industry. To
facilitate integration with existing software, and for adherence with the specification,
the system is designed to maintain compatibility with C applications, allowing
it to be used alongside existing codebases and tools. At the same time, the
kernel itself is fully developed in Rust, providing stronger guarantees of safety and
reliability. This approach represents a balanced compromise, simplifying adoption
in established workflows while leveraging the key advantages of Rust to enhance
software robustness.



Introduction

By delivering a fully functional prototype aligned with AUTOSAR design
principles, and by formulating practical development guidelines, this work ultimately
seeks to build a solid foundation for the integration of Rust in industrial automotive
software workflows and to encourage its broader adoption in the embedded systems
domain.

1.3 Outline of the thesis

The thesis work has been divided into the following chapters:

Background: Provides an overview of related topics, including embedded
systems, Rust, operating systems, and the AUTOSAR platform.

State of the Art: Reviews existing AUTOSAR-based solutions and resources
for embedded systems development in Rust.

Development Methodology: Describes the development process of the
operating system, including initial experiments, implementation of AUTOSAR
features, and the build system.

Testing and Evaluation: Explains the testing strategies, deployment and
performance evaluation on the target board.

Conclusion and Future Works: Concludes the thesis by summarizing the
work, key design decisions, contributions, and future improvements.



Chapter 2

Background

The first part of this chapter offers an overview of embedded systems, beginning with
the main hardware components and placing particular emphasis on the Cortex-R52,
followed by an outline of the software development principles and workflow.

The second part shifts to the software domain, providing a review of the features
of Rust, a discussion of the essential concepts of operating systems for embedded
devices, and an introduction to the AUTOSAR platform.

2.1 Embedded Systems

Embedded systems are special-purpose computing systems designed to interact
closely with external electronic components, such as displays, sensors, and actuators.
They are often built to perform specific tasks with high efficiency and reliability.
Common examples include smart appliances, bank ATMs, video game consoles,
industrial robots, network routers, and automotive ECUs.

Unlike general-purpose computing systems, embedded systems are typically con-
strained in terms of processing power, memory, and energy consumption, requiring
careful hardware and software design. Depending on the application domain, the
design priorities may emphasize different aspects, such as power efficiency, real-time
performance, and security making these systems highly optimized for their intended
functions.

2.1.1 System on a Chip (SoC)

A System on a Chip (SoC) is an integrated circuit that incorporates all the essential
components of a computing system on a single chip, including CPU cores, RAM,
flash memory, and various peripherals. By integrating these elements into a single
package, SoCs achieve high levels of power efficiency and compactness, making
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Background

them ideal for embedded systems, mobile devices, and other applications where
size and energy consumption are critical considerations.

Microcontrollers are a subset of SoCs that integrate a low-power processor core.
They are optimized for control tasks, low energy consumption, and cost efficiency.
They typically have limited computational power, smaller memory, and fewer
advanced features compared with high-performance CPUs.

Unlike modular designs, where individual components are connected separately,
SoCs trade off some flexibility and upgradability for a smaller footprint, reduced
power usage, and improved communication speed between components. This
approach enables manufacturers to deliver highly optimized and cost-effective
solutions for a wide range of computing tasks.

2.1.2 Printed Circuit Board (PCB)

Printed Circuit Boards (PCBs) are flat boards made of insulating materials with
copper pathways that connect electronic components. They can have one or more
layers, with connection between layers made with through-holes, small copper-plated
drilled holes that carry signals and power.

In the context of embedded systems, PCBs are commonly referred to simply as
boards, and they host the SoC along with supporting components, including the
power supply system, memory, and ports.
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Figure 2.1: Diagram showing the relationship between board, SoC, and CPU
cores.

A specific category is represented by development boards, which are intended
for evaluation and testing and typically provide a wide range of components. In
contrast, production devices usually employ custom PCBs that are tailored to the
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requirements of the final product.

2.1.3 Peripherals

Peripherals are hardware modules that extend the functionality of the CPU core.
They are controlled by means of registers on the module that are used both for
configuration and to exchange data. These registers are accessed through standard
read and write operations at specific, reserved memory addresses with a technique
known as memory mapping.

Peripherals signal events to CPU cores through interrupts, which are first handled
by a controller module. When an interrupt occurs, the normal instruction flow is
suspended and a configured handler function is executed. Each interrupt has a
priority level that determines the order in which interrupts are handled. Higher
priority interrupts can interrupt lower priority ones, allowing nested execution.

ARM architectures distinguish between two types of peripherals:

o Private Peripherals: tightly coupled with the core, typically integrated
with the CPU.

o Shared Peripherals: accessible to the whole system, typically installed on
the SoC or the board.

Configurable Software Generated Interrupts (SGIs) are also supported. These
interrupts are generated with specific instructions and share the same behavior as
traditional hardware interrupts [5].

This project focuses on two peripherals: the Universal Asynchronous Receiver-
Transmitter (UART), and the Generic Timer.

o« UART: shared peripheral which converts data into a serial stream that can
be read from a USB port for debugging purposes.

e Generic Timer: private peripheral used to generate periodic interrupts.

2.1.4 Cortex-R52

The ARM Cortex-R52 [6] is a high performance processor designed for time-sensitive
and safety-critical applications. It implements the ARMvS8-R 32-bit architecture
and integrates a set of hardware modules commonly found in other ARM processors,
including the following;:

« Vector Floating Point (VFP): coprocessor that provides hardware acceler-
ation for floating-point arithmetic operations.
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« Memory Protection Unit (MPU): configurable unit that enforces memory
access permissions on non-overlapping memory regions.

« Generic Interrupt Controller (GIC): centralized component that pri-
oritizes, routes, and forwards peripheral interrupts to the appropriate CPU
core.

On ARM architectures, the following CPU registers are defined:

» General-Purpose Registers (R0-R15): General-purpose registers used for
data storage and operations. R15 serves as the Program Counter (PC).

« Link Register (LR): Stores the return address for function calls and inter-
rupts.

« Stack Pointer (SP): Points to the current top of the stack memory, where
the compiler typically allocates variables.

e Program Counter (PC): Holds the address of the next instruction to be
executed.

o Current Program Status Register (CPSR): Contains flags for the current
processor state, including condition flags and interrupt disable bits.

The VFP uses a separate set of registers for floating point operations. The stack
pointer and link register are banked, meaning that each processor mode has its
own separate copy of these registers. This allows the processor to switch quickly
between modes, such as during exceptions or interrupts, without overwriting the
values used in another mode.

The Cortex-R52 was chosen as the target architecture for this project due to
its real-time capabilities, determinism, and safety features, which make it well-
suited for applications in the automotive sector. The target board hosts the ST
Stellar SR6P6 SoC, which integrates six Cortex-R52+ cores in a multi-cluster
configuration.

2.1.5 PYNQ Boards

PYNQ is a lineup of development boards produced by AMD that feature ARM
Cortex-A and Cortex-R CPU cores along with FPGAs. The development workflow
is based on the Vitis software suite. The PYNQ-Z2 board with the Cortex-A9
was used as a hardware reference in the early stages of the project to compile and
debug programs. Plans were made to move to the PYNQ-ZU with the Cortex-R5
due to its similarity to the target architecture.
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Figure 2.2: The PYNQ-Z2 development board.

2.2 Embedded Software Development

In embedded systems development, the program is typically written and built
on a host machine, a general-purpose computer running an operating system
such as Windows or Linux. The host provides the computational resources and
development tools needed to create code efficiently. The software produced on
the host is not executed directly on the same system but is instead designed to
run on a target platform, which is a specific board or SoC with its own hardware
architecture. Because the host and target architectures differ, software cannot be
compiled natively for the target processor. Instead, a cross-compilation process
is used, where the compiler running on the host generates executable code for a
different instruction set architecture (ISA). The compiler must be aware of the
target architecture, including its instruction set, calling conventions, and memory
model. Cross-compilation ensures that the generated binary is compatible with
the target hardware while allowing the developer to benefit from the performance
and flexibility of the host system. The collection of programs installed on the host
that enables cross-compilation is known as the toolchain. A typical embedded
toolchain includes a compiler, assembler, linker, debugger, and additional utilities
for code analysis or binary inspection. The GNU Arm Embedded Toolchain is
one of the most common examples, though many vendors provide custom versions
optimized for their devices. Compiled programs are often stored in the Executable
and Linkable Format (ELF), a standardized file format that contains machine code,
data sections, and metadata such as symbol tables and relocation information.
Once built, the program must be transferred from the host machine to the memory
of target system with a process known as flashing. This process is performed
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through a hardware debug interface on the board, such as JTAG, using specific
tools provided by the board manufacturer or third-party vendors.

f[@ ToolchamT e - ™

builds

flashed on

Target

Executable
ARMV8-R bare metal

Host
x64 Windows \ /
J

"

Figure 2.3: The typical embedded software development workflow.

2.2.1 Bare Metal

A bare metal program runs directly on the hardware without the support of an
operating system or runtime environment. All hardware resources, such as the
CPU, memory, and peripherals, are controlled explicitly by the program itself. This
approach is typical in deeply embedded applications where the software performs a
single, well-defined function and timing or resource constraints make the use of an
OS unnecessary. System-level software such as bootloaders, kernels, or firmware
components are also inherently bare metal, as they execute before any operating
system is initialized. Bare metal programs do not have access to standard libraries
or operating system services. In the Rust ecosystem, for instance, such programs
are typically built with the no-std attribute, which disables dependencies on the
standard library and allows the use of lightweight core libraries. These provide only
essential functionality such as basic data types and mathematical operations, while
system-level features like file /O, dynamic memory allocation, and multithreading
must be implemented explicitly.

Memory management in a bare metal environment is entirely under application
control. The layout of memory, including sections for code, data, and stack, is
defined in a linker script, which specifies how program sections are mapped to
physical memory regions. Since dynamic allocation can introduce non-deterministic
behavior and is often unavailable on small devices, data structures are typically
allocated statically at compile time. If heap allocation is required, it must be im-
plemented manually, usually by defining a custom memory allocator that interfaces
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directly with the available RAM.

The startup procedure of a bare metal system is handled by a small assembly
or startup file that executes immediately after reset. This code performs minimal
hardware initialization, sets up the stack pointer, initializes CPU registers, and
configures the vector table containing interrupt and exception handlers. It may
also copy data from flash to RAM and clear uninitialized memory sections before
transferring control to the main program entry point, usually defined as the main
function in C or Rust.

2.2.2 Software Development Kit (SDK)

The Software Development Kit (SDK) is a comprehensive software package provided
by the manufacturer of a board, designed to simplify development and accelerate
the creation of applications. It provides a collection of functions, libraries, and ab-
stractions that make it easier to interact with CPU cores, memory subsystems, and
hardware peripherals such as timers, communication interfaces, and sensors. The
SDK typically includes low-level boot code to initialize the processor and essential
hardware modules, device drivers for standard and board-specific peripherals, build
tools to compile and link programs, documentation describing the hardware and
software interfaces, and example programs demonstrating common usage patterns.
By providing these resources, the SDK allows developers to quickly familiarize
themselves with the board, test hardware functionality, and prototype applications
without needing to implement low-level routines from scratch, making it a critical
component in embedded software development.

The SDK of the target board, entirely written in C, was fully integrated in the
software stack. This integration enabled direct access to vendor-provided drivers
both from the kernel and from the application, while the Rust micro-architecture
crate was used to interact with CPU cores and configure modules such as the GIC

and MPU.

2.2.3 QEMU

QEMU is an open-source emulator that provides full-system emulation of complete
hardware platforms, reproducing processors, memory subsystems, and peripheral
modules entirely in software. Unlike instruction set simulators that emulate only
the CPU, QEMU models the behavior of an entire board, enabling developers
to run and debug complete embedded applications without access to physical
hardware. This makes it a fundamental tool in early-stage development, testing,
and continuous integration for embedded systems.

Internally, QEMU operates using two main execution modes: system emulation
and user-mode emulation. System emulation reproduces the entire hardware
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platform and is typically used for operating system or firmware development,
whereas user-mode emulation runs individual programs compiled for a different
architecture within the host OS. In both cases, QEMU employs dynamic binary
translation, converting target instructions into equivalent sequences for the host
CPU at runtime. This approach maintains accurate architectural behavior.

An important feature of QEMU is its integration with the GNU Debugger (GDB)
through a remote debugging interface. This allows developers to connect to an
emulated target as if it were a physical device, enabling capabilities such as setting
breakpoints, stepping through instructions, inspecting registers, and examining
memory regions. Combined with symbol information from the compiled ELF
binary, this feature provides deep visibility into program execution and simplifies
fault diagnosis during development.

QEMU supports a wide range of processor architectures, including ARM, RISC-
V, x86, PowerPC, and MIPS, as well as numerous development boards and SoC
configurations. Among these, the ARM MPS3-AN536 platform featuring a dual-
core Cortex-R5H2 processor is particularly relevant for real-time and safety-critical
applications. This board model provides an accurate representation of the core
architecture, memory regions, and essential peripherals such as timers, UART
interfaces, and interrupt controllers, making it suitable for testing embedded
kernels and operating systems.

Overall, QEMU offers a flexible and cost-effective platform for developing,
testing, and debugging embedded software. Its combination of hardware accuracy,
cross-architecture support, and integration with standard toolchains makes it an
indispensable component of modern embedded development workflows.

During this project, software emulation with QEMU was employed extensively
in the early development phases, when the target board was not yet available. The
emulator provided a stable and repeatable environment for testing the system.
This approach accelerated development by enabling rapid iteration, debugging,
and functional validation without requiring access to physical hardware. Although
QEMU cannot reproduce precise real-time behavior, it offered sufficient accuracy
to verify system logic and ensure architectural consistency. The final version of
the OS maintains full compatibility with QEMU, which continues to serve as a
regression-testing and prototyping platform alongside the target hardware.

2.3 Rust

Rust is a low-level, general-purpose programming language first released in 2012,
designed with a strong focus on memory safety, reliability, and concurrency. Its
core design philosophy aims to provide the performance and control typical of
system programming languages while eliminating classes of memory-related errors
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that often lead to instability and security vulnerabilities.

A central feature of Rust is the borrow checker, a component of the compiler that
enforces strict ownership and lifetime rules. These rules ensure that instructions
interact with memory safely, preventing common issues such as null pointer deref-
erences, data races, and use-after-free errors. Because this verification is performed
entirely at compile time through static analysis, the resulting binaries do not incur
additional runtime overhead. As a result, Rust achieves performance comparable
to other low-level languages such as C, while offering stronger guarantees of safety
and correctness.

Rust development is supported by a modern toolchain that simplifies the build
and maintenance process. Cargo, the Rust package manager and build system,
automates project configuration, dependency management, and compilation. It
also supports custom build scripts written in Rust and provides access to a large
ecosystem of reusable code modules and libraries, known as crates, which can be
integrated to extend functionality. Complementing this, rust-analyzer acts as a
language server that assists developers by providing context-aware suggestions,
inline diagnostics, and error highlighting to improve productivity and code quality.

Rust was selected for this project because its emphasis on safety and correctness
aligns with the requirements of real-time and safety-critical embedded systems.
These properties make it particularly suitable for developing a reliable, secure,
and maintainable kernel that integrates low-level control with modern software
engineering practices.

2.3.1 Foreign Function Interface (FFI)

The Rust Foreign Function Interface (FFI) provides a standardized mechanism
for interoperability between Rust and other programming languages. It defines
conventions for function calling, symbol linkage, and data type representation,
ensuring that code written in different languages can communicate safely and
efficiently. Through the FFI, existing libraries that are not natively implemented
in Rust can be integrated into a Rust project, allowing developers to reuse mature,
well-tested components. Conversely, Rust functions can also be exposed to other
languages, enabling mixed-language systems where Rust modules coexist with
legacy or platform-specific code.

Functions and data structures that belong to the FFI domain are declared using
the extern keyword, which specifies the expected calling convention and linkage
behavior. External symbols defined in the foreign language must be declared in
Rust through bindings, which act as a bridge between the two environments. These
bindings can be written manually by the developer or generated automatically
during the build process using dedicated tools. The bindgen utility is commonly
employed for this purpose, as it parses C header files and produces corresponding
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Rust bindings, reducing inconsistencies and manual errors.

Interfacing across language boundaries introduces challenges related to memory
management and safety. Because ownership and lifetime checks of Rust do not
extend beyond the FFI boundary, developers must ensure that data alignment,
allocation, and deallocation follow the conventions of both languages. Neglecting
these aspects can result in undefined behavior or memory corruption, undermining
the safety guarantees that Rust normally enforces.

In this project, the integration of C code from the SDK was performed using the
bindgen crate to generate Rust bindings automatically from the provided headers.
The FFI was also used in the opposite direction, allowing selected Rust functions that
form part of the operating system API to be accessible from application code written
in C. This bidirectional integration enabled seamless communication between
system-level components implemented in Rust and application logic developed in

C.

2.4 Operating System

An Operating System (OS) is a layer of software that supervises the execution
of applications and manages the hardware resources of a computing device. It
provides fundamental services such as task scheduling, memory management, and
input-output handling, acting as an intermediary between the user application and
the hardware. External programs executed under the control of the OS are referred
to as user applications, while the core module responsible for resource management
and control flow is known as the kernel.

In general-purpose systems such as desktop computers, user applications are
developed and compiled as independent programs, which the OS executes and
isolates from one another. In contrast, embedded systems typically adopt a more
integrated structure. User code is organized as individual functions, referred to
as tasks, which are compiled together with the operating system into a single
executable binary. The OS provides a lightweight runtime environment, handling
the scheduling and synchronization of these tasks while maintaining a small memory
footprint suitable for constrained hardware. At the core of the system, the kernel
is periodically updated through the system tick, a hardware-generated interrupt
that defines the basic time unit of the OS. The tick enables the kernel to maintain
control over task execution and to perform time-dependent operations.

Each active task is assigned a dedicated stack memory region, which stores its
local variables during execution. The OS also leverages the CPU execution levels,
or privilege modes, to distinguish user tasks from kernel operations. Typically,
user tasks run in an unprivileged mode, whereas the kernel executes in one or
more privileged modes with full access to system resources. The memory unit,
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such as the MPU, can be configured to enforce memory access restrictions between
these modes, ensuring that each task operates only within its assigned stack
and memory region. This separation improves system stability and prevents
unintended interference between tasks or with kernel memory. Interaction between
user tasks and the kernel occurs through system calls, which allow user code to
request privileged services such as task management, event handling, or timing
operations. On ARM architectures, these calls are implemented using Supervisor
Calls (SVCs), which trigger a controlled switch from user mode to privileged mode.
The kernel then executes the requested service and restores the previous execution
context before returning control to the task. To support this mechanism, the OS
preserves the current state of the CPU registers, collectively known as the context,
whenever an interrupt or SVC is processed. Context saving and restoring are
typically implemented in assembly language, using the stack to store register values
temporarily. This ensures that the interrupted task can resume execution precisely
from the point where it was suspended, maintaining system consistency.

2.4.1 Scheduler

The scheduler is a core component of the kernel responsible for managing the
lifecycle and execution of tasks. Its primary role is to determine which task should
run at a given time and on which CPU core, ensuring that all tasks share system
resources efficiently while meeting timing and priority requirements. When multiple
tasks are active simultaneously, the scheduler coordinates their execution over the
available cores according to predefined rules. This process, known as scheduling,
can follow various policies, such as static or dynamic priority levels, round-robin
rotation, or time slicing, depending on the requirements of the system.

During normal operation, the scheduler may suspend the execution of a task
to allow another one to run. This mechanism, referred to as preemption, enables
high-priority tasks or time-critical operations to take control of the CPU when
necessary. Preemption involves a context switch where the current state of the
running task, represented by the contents of its CPU registers, is saved so that
execution can later resume from the same point. The scheduler then restores the
context of the next selected task, effectively transferring control of the processor.
To support this mechanism, the kernel maintains dedicated data structures that
store the context and state information of suspended tasks. These structures
ensure that each task can be paused, resumed, or terminated without loss of data
or corruption of shared resources. Efficient management of these transitions is
essential for achieving deterministic behavior in real-time operating systems, where
predictable response times are often as important as raw performance.
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2.4.2 Synchronization

Synchronization mechanisms are essential in multitasking systems to prevent con-
flicts when multiple tasks attempt to access shared resources, such as memory
regions, data structures, or hardware devices. The portion of code that performs
such access is known as a critical section, where only one task should be allowed
to execute at a time. Ensuring exclusive access within this section prevents data
inconsistencies and unintended behavior. When two or more tasks concurrently
access a shared resource without proper synchronization, a race condition occurs,
leading to unpredictable and often non-deterministic results.

In addition to preventing conflicts, synchronization also enables coordination
between tasks that must cooperate to achieve a common objective. In such
cases, the progress of one task may depend on the outcome of another, requiring
mechanisms that control the order of execution and the exchange of signals or data.
These mechanisms ensure that dependent operations occur in a consistent and
predictable sequence, which is particularly important in real-time and safety-critical
environments.

The operating system provides specific abstractions to manage synchronization
and protect the execution of critical sections. These abstractions ensure safe access
to shared resources and reliable coordination among tasks. In AUTOSAR OS,
synchronization mechanisms are represented by events, resources, and spinlocks.
Events are typically used for signaling and task coordination, resources protect
access to shared data, and spinlocks support synchronization across multiple cores.
All these features are accessible to user tasks through supervisor calls, which
provide controlled interaction between user code and kernel-level synchronization
primitives.

2.4.3 Real-Time Operating System (RTOS)

A Real-Time Operating System (RTOS) is a specialized type of embedded OS
designed to guarantee predictable and deterministic behavior, meeting strict timing
and real-time constraints. RTOSs are commonly employed in domains where timely
execution is critical, including industrial automation, medical devices, aerospace,
and automotive systems. Unlike general-purpose operating systems, an RTOS
focuses on minimizing latency and ensuring that high-priority tasks execute within
their required time windows.

Key features of an RTOS include deterministic preemptive scheduling, typically
based on task priority levels, and low-overhead context switching that allows the
system to respond quickly to interrupts and external events. Efficient interrupt
handling is crucial for maintaining responsiveness and for coordinating the execution
of multiple concurrent tasks without violating real-time constraints. Many RTOSs
also provide lightweight synchronization mechanisms, timing services, and inter-task
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communication primitives to facilitate safe and predictable interaction between
tasks.

In addition to AUTOSAR OS implementations, which are widely used in auto-
motive and safety-critical contexts, FreeRTOS represents one of the most broadly
adopted small-footprint RTOSs. FreeRTOS is particularly well-suited for resource-
constrained systems, including IoT devices, sensor networks, and microcontroller-
based applications. It offers a minimal yet flexible kernel, supporting preemptive
scheduling, queues, semaphores, and software timers. Its simplicity and portability
make it a popular choice for developers who require a lightweight, deterministic
operating system without the complexity of a full-featured embedded OS.

2.5 AUTOSAR

AUTOSAR (AUTomotive Open System ARchitecture) is a global alliance of auto-
motive, electronics, and software firms founded in 2003 to define a common software
architecture for ECUs and to promote reuse, standardization, and interoperability
across vendors. Over time, AUTOSAR released two main platforms to cover differ-
ent use cases: the Classic Platform (CP) and the Adaptive Platform (AP). The
Adaptive Platform targets high-performance, service-oriented ECUs for applications
such as automated driving and connected cars, while the Classic Platform remains
the standard choice for ECUs with real-time and safety constraints. This project
focuses on the Classic Platform architecture, which is organized into three main
software layers:

o Application Layer: automotive software, mostly independent from the CPU
architecture.

« Runtime Environment (RTE): middleware that handles the communication
between software components and provides an interface to lower layers for
applications.

« Basic Software (BSW): low level modules not directly related to the
automotive application, including the OS.

In the Classic Platform, applications share the same memory space, with op-
tional support for MPU-based memory protection. AUTOSAR also provides a
methodology for system configuration, described via XML (ARXML) files, enabling
automation of RTE and BSW generation and strong toolchain interoperability.
The AUTOSAR OS specification is an evolution over the earlier OSEK standard.
It retains backward compatibility but extends functionality by adding multicore
support, timing extensions, and stricter safety features. In particular, release R24-11
of the AUTOSAR OS was selected as the reference for this project. By adopting
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the Classic Platform, this project aligns with a widely accepted industry standard
for real-time ECUs, leveraging the AUTOSAR architecture, methodologies, and
specification guarantees to guide the design and implementation of a Rust-based
OS for automotive applications.
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Chapter 3

State of the Art

This chapter analyzes existing solutions in the domains of Rust for embedded
systems and AUTOSAR-compliant operating systems, including open-source im-
plementations that informed the development of the project and resources for
embedded systems in Rust, some of which were integrated in the project. The
final section discusses the current state of the Rust community and the ongoing
initiatives aimed at incorporating the language into established industry standards.

3.1 AUTOSAR OS Implementations

The available implementations of systems and platforms based on the AUTOSAR
specification can be divided in three categories:

o Commercial Solutions: Developed by companies such as ETAS and Vector,
these are fully supported, feature-complete AUTOSAR implementations, but
require licensing fees.

o Consortium-developed Reference Products: Developed under the AU-
TOSAR partnership (e.g. OpenERIKA), mainly as reference or educational
implementations, often with limited scope and not always intended for pro-
duction use.

e Open-source Implementations: A few projects exist, such as ERIKA
Enterprise and Arctic Core, but they are no longer actively maintained and
may not include the latest AUTOSAR features.

Companies typically rely on commercial solutions, which offer support for several
hardware architectures and integration with the tools commonly used in automotive
software development workflows.
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The two main open-source solutions were analyzed, providing an insight into
the design and implementation of the modules and features of an AUTOSAR OS.

o Arctic Core AUTOSAR-compliant platform developed by ARCCORE;, later
acquired by Vector in 2018. The source code of the project is released
under the GPLv2 license with support for the MPCbhxxx and STM32 series
microcontrollers. Although Arctic Core is a complete implementation of the
standard, the publicly available versions date back to 2014 and do not include
important features such as multicore support.

o« ERIKA Enterprise RTOS developed by Evidence. Although ERIKA is not
a direct implementation of the AUTOSAR platform, it includes many features
defined in the AUTOSAR OS specification, including recent extensions. This
system is OSEK/VDX certified, provides explicit multi-core support and has
been deployed in production across automotive and white-goods applications.
The Enterprise version, however, is no longer actively maintained as the
development shifted towards the OpenERIKA project.

All existing implementations of AUTOSAR-compliant operating systems are
written in C. This is in large part because C is the predominant language in
the automotive industry, and because the specification itself assumes the use
of the language for both the kernel and the API exposed to application code.
However, Rust represents a viable alternative for implementing an AUTOSAR OS.
Through its support for interoperability with C via the FFI, a Rust-based kernel
can seamlessly interact with existing C code and libraries, ensuring adherence to
the specification. At the same time, using Rust allows the kernel to benefit from
features that enhance safety and reliability, providing a foundation for more robust
and maintainable embedded software.

3.2 Rust Crates

Rust is supported by a vast ecosystem of projects and resources for embedded
system. In 2024, more than 11.000 crates were already available, including hardware
support packages, drivers, utility crates, and systems [2].

A specific category is represented by micro-architecture crates, which serve a
similar purpose to a SDK, but more limited in scope. The focus is on functionalities
that are specific to the CPU based on its architecture, including direct access to
registers and operation of peripherals integrated with the CPU. Typically, the boot
code is also provided. The cortex-m crate is a notable example. All features are
implemented through zero-cost idiomatic abstractions. This approach simplifies the
development process, enabling the use of Rust in place of assembly instructions and
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providing a direct overview of the low-level features of the CPU and its modules.
The development of the cortex—-ar crate specific for Cortex-R processors started
during the early stages of this project. This crate and arm-gic, a separate crate
that focuses on the GIC module, were integrated with the project and proved
essential for managing the complexity of the architecture.

Utility crates offer functionalities that are normally provided by system libraries
but without relying on the abstractions of an operating system. For this reason,
they are often referred to as no-std crates. The supported features include dynamic
memory management, network stacks, mathematical operations, and data storage
mechanisms. Such crates are useful both in bare-metal programming and in system
development, where they can extend the kernel with additional capabilities. Their
use enables developers to build complex functionality in environments that lack
standard library support, while keeping control over resource usage and hardware
interaction.

Among the most widely used utility crates in Rust embedded development,
embedded-hal provides standardized interfaces for peripherals, enabling hardware-
independent driver and application code. This crate defines a set of standardized
traits for GPIO, I12C, SPI, UART, and timers, serving as the foundation for many
higher-level libraries and operating systems in the Rust embedded ecosystem. By
implementing these traits, developers can write portable drivers and applications
that work across different architectures without modification.

3.3 Rust Projects

Embedded operating systems and real-time frameworks fully developed in Rust
are increasingly available, and studies have analyzed their design, performance,
and safety characteristics, highlighting their strengths, weaknesses, and potential
application domains [7]. Many of these solutions, however, are primarily aimed
at low-power microcontroller devices and may not meet the strict timing and
feature requirements of real-time applications. Others are not complete operating
systems, but rather frameworks or libraries intended to simplify the development
of embedded software. In contrast, industrial sectors such as automotive require
domain-specific, production-ready systems that comply with established standards
like AUTOSAR. These standards define precise requirements for task scheduling,
memory protection, communication, and system reliability, and currently there are
no Rust-based solutions that fully satisfy them. This section provides an overview
of some of the most relevant Rust-based embedded OSs and frameworks, illustrating
the current state of the ecosystem.

e Tock: The most prominent embedded OS fully developed in Rust. This
open source project targets Cortex-M and RISC-V architectures with an

20



State of the Art

emphasis on power efficiency and security. Tock relies on the safety features
of Rust to provide a multiprogramming environment for microcontrollers,
isolating software faults and supporting application workloads written in any
language [8]. While Tock is not an RTOS, efforts to extend it with real-time
capabilities and other features have been made both in research projects [9]
and in commercial products like OxidOS.

Ariel OS: The first embedded OS in Rust with support for multicore pre-
emptive scheduling on microcontrollers. Ariel integrates components from the
Embassy framework and other utility crates to provide a complete execution
environment with features such as networking, storage, and cryptography. [10]

Hubris: A microkernel style OS designed for deeply embedded and safety
critical systems. Hubris follows a strictly static and minimal architecture with
a kernel of about 2000 lines of Rust code. It uses preemptive scheduling, and
all tasks, memory regions, and priorities are defined at compile time, with
no dynamic allocation or runtime task creation allowed. This system relies
on hardware memory protection to isolate tasks, running nearly all code in
unprivileged mode and reducing the trusted computing base.

Drone: Designed for writing real-time applications in Rust, this OS supports
a flexible concurrency model with lightweight stackless tasks and optional
stackful tasks for blocking code. A CLI utility simplifies project setup, config-
uration, and building across different microcontroller targets. The project is
no longer actively developed.

RTIC: A lightweight concurrency framework for real-time applications. RTIC
leverages hardware interrupt controllers to manage preemptive scheduling with
minimal software overhead. It employs the Stack Resource Policy (SRP) to
ensure compile-time guarantees against data races and deadlocks, promoting
safe concurrency without the need for locks or semaphores. RTIC is well-
suited for bare-metal applications requiring deterministic behavior and efficient
resource utilization. [11]

3.4 Working Groups and Standardization

Rust Embedded is an official working group of the Rust project that focuses on
improving the experience of using Rust on embedded system. This organization
develops projects, produces manuals and curates an extensive list of resources which
includes crates, drivers, and whole operating systems.

The Safety-Critical Rust Consortium, established in 2024 by the Rust Foundation,

brings together organizations from various domains, including AdaCore, Arm,
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HighTec, and Ferrous Systems. Its objective is to promote the responsible adoption
of Rust in regulated and safety-critical environments by developing guidelines, tools,
and collaborations with existing certification standards. Among the members of
the consortium, Ferrous Systems contributes with the Ferrocene compiler, a Rust
toolchain designed for qualification in safety-critical applications.

Within the automotive domain, AUTOSAR has introduced preliminary support
for Rust applications, referred to as ARA applications, in the Adaptive Platform.
Automotive software companies such as Vector and HighTec have also presented
proof-of-concept integrations that demonstrate the coexistence of Rust components
with AUTOSAR-compliant software, highlighting the growing interest in Rust for
automotive development. [12]

The presence of active working groups and ongoing projects developed in Rust
shows a positive trend and the initiatives led by companies and standardization
organizations to ensure compliance with safety and certification standards represent
a key step toward integrating Rust into safety-critical fields. However, the lack of
domain-specific solutions, particularly AUTOSAR-compliant systems, still limits
its broader industrial adoption.
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Chapter 4
Development Methodology

This chapter outlines the development process, beginning with the initial experi-
ments and progressing through the implementation of the operating system to its
deployment on the target board. Core concepts from the AUTOSAR specification
are examined, with particular attention to the strategies adopted for implementing
key features. The chapter concludes by describing the build process of the system.

4.1 Preliminary Experiments and Environment
Setup

The work commenced with a preliminary investigation focused on three main
objectives:

o Toolchain Setup: Verifying the functionality of cross-compilation for ARM
embedded platforms in bare-metal mode, and ensuring proper integration of
the GDB debugger to enable effective program analysis and testing.

o C Interoperability: Establishing the integration of C libraries within the
development workflow, using automated tools to facilitate linking and maintain
compatibility between C and Rust modules.

e Development Environment: Selecting and configuring a suitable develop-
ment environment to begin the development process, given that the target
board was not yet available during the early stages of the project.

4.1.1 Toolchain Setup

The experimentation involved the compilation and debugging of simple Rust
programs intended for embedded systems, executed on the PYNQ-Z2 development
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board. This board integrates a Cortex-A processor and was selected primarily
because it was readily available and provided a straightforward means of hardware
testing during the initial phase of the project. The presence of an accessible JTAG
debugging interface, which could be reached through a micro USB connection,
significantly simplified the setup process and allowed a smooth debugging experience.
Although the board was not identical to the final target hardware, it represented an
adequate platform for practical experimentation and validation of essential concepts
on real embedded equipment. The PYNQ family also includes models based on
Cortex-R processors, which share several architectural and tooling similarities
with the intended target architecture. Consequently, working with the PYNQ-Z2
facilitated an early understanding of the development and debugging tools that are
commonly employed across this product line.

A minimal Rust project was implemented to conduct these preliminary tests.
The program executed a series of basic arithmetic operations designed to verify
the runtime behavior of the compiler and to confirm correct execution flow on the
target hardware. After configuring the Rust compiler toolchain, the project was
cross-compiled to produce an ELF executable suitable for embedded platforms.
The resulting binary was subsequently transferred to the development board using
the Xilinx Software Command-Line Tools (XSCT), which are distributed as part of
the Vitis suite. Program execution was then validated through GDB by launching
the code in debug mode and examining the state of variables during execution,
thereby confirming the correct functioning of both compilation and debugging
processes.

4.1.2 C Interoperability

Following this initial validation, the bindgen crate was utilized to generate Rust
bindings for a C library, thus enabling seamless interaction with external functions
and data structures implemented in C. This process required compiling the C source
code separately as a static library using a designated version of the GCC compiler
configured for the ARM bare-metal environment. The generated bindings allowed
Rust programs to directly reference the functions, constants, and data types defined
in the C library, which facilitated the integration of existing C components within
the Rust-based workflow. A similar approach was later used when integrating the
SDK with the kernel. In that case, however, the compiler included in the SDK
is used to ensure compatibility with the provided toolchain. When the kernel is
compiled together with user-level C code, the process is reversed: the operating
system is first built as a library and then linked with the C application.
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4.1.3 Development Environment

At this stage of development, the target hardware board was not yet available, so
software emulation was identified as one of the possible approaches to be explored
in order to support early testing and functional validation. Version 9 of QEMU was
utilized to emulate the MPS3-AN536 board featuring a dual-core Cortex-R52 CPU.
The Rust toolchain for the ARMv8-R architecture required the use of the nightly
compiler release, together with specific build configurations to successfully compile
the core library for this target. To verify the correctness of the setup, the UART
Driver project developed by Ferrous Systems was initially employed as a reference.
In the QEMU environment, the UART peripheral is automatically redirected to the
standard output, which allowed debug messages to be displayed directly through
the terminal. Portions of this reference project were later integrated within the
kernel implementation to supply UART functionality in QEMU, where no dedicated
SDK was available for the MPS3-AN536 platform.

At this point, the decision was to be made between QEMU and the PYNQ-
ZU board featuring the Cortex-R5. QEMU was ultimately selected, primarily
because it provided the same CPU architecture as the target board and offered
greater flexibility within the development workflow. The emulator enabled quick
iteration by allowing rapid testing and deployment of new builds with minimal
setup overhead. This capability significantly accelerated the development cycle,
as programs could be executed and debugged almost instantly within a consistent
software environment. The PYNQ-ZU platform, on the other hand, presented
additional layers of complexity due to its more sophisticated hardware architecture,
which incorporates an FPGA and requires dedicated configuration and tool support.

The QEMU-based development environment was progressively refined with
scripts and supporting tools to streamline the build and execution workflow. Initially,
launching QEMU and GDB required lengthy terminal commands specifying the
board and configuration parameters. To simplify this process, Windows batch files
were first employed, later replaced by Visual Studio Code task definitions that
offered greater flexibility and maintainability. GDB integration within the IDE,
along with a UART visualizer for both cores based on the MultiTail utility, enabled
real-time monitoring of system behavior and output, improving debugging efficiency
and overall development productivity. Lastly, the integration of Rust crates that
abstract low-level architectural features, such as cortex-ar and arm-gic, together
with the definition of the project requirements provided the groundwork to begin
the development phase.
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Figure 4.1: Buttons to launch build tasks (on the left) and the UART visualizer
showing output from two cores (on the right) in Visual Studio Code.

4.2 Functional Requirements

The system requirements were defined based on the essential properties of an RTOS
and the characteristics of the intended application domain. Compatibility with
C was identified as a critical condition to enable potential adoption in industrial
environments, where legacy systems and existing development workflows rely heavily
on C-based toolchains. The architecture of the target board, designed for real-time
responsiveness, also played an important role in shaping the design process. It
influenced optimization strategies, especially in areas related to timing precision
and resource efficiency.

The requirements applied during the development of the system are summarized
below.

e Real-time Performance: The system is lightweight and performance-
oriented, with emphasis on the efficiency of core mechanisms such as context
switching and interrupt handling. These elements are optimized to minimize
delays and ensure deterministic behavior under varying workloads.

« Rust and C Interoperability: The kernel is implemented in Rust to
increase safety and reliability while maintaining full compatibility with user
code and the SDK, both developed in C. This interoperability allows developers
to integrate existing C modules without major modifications, facilitating a
smoother migration path.

« AUTOSAR OS Features: The fundamental features defined by AUTOSAR
OS are implemented and made available to user code through a C-language
APT of SVC functions. This approach allows a familiar interaction model
for developers used to AUTOSAR environments while maintaining the safety
guarantees offered by Rust in the kernel.
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« SDK and Drivers: The SDK for the target board is fully integrated with
both the user applications and the kernel. The kernel directly manages essential
hardware modules such as GIC, MPU, WDG, and UART, ensuring consistent
control and efficient communication between software layers.

e« Board Optimizations: The system is developed with attention to the
hardware characteristics of the target board, including its memory layout
and peripheral interfaces. This allows specific optimizations that improve
performance and reduce overhead where practical.

4.3 System Architecture

The architecture of the OS follows a simplified AUTOSAR-like design that maintains
a clear separation between kernel services, user-level code, and other modules. At
the core of the system, the kernel provides two main functions: task scheduling
and interrupt management.

The scheduler is responsible for the execution of tasks, which are defined as C
functions combined with their configuration parameters. Each task is assigned a
priority that determines its position within the scheduling policy. The policy is
based on fixed priority levels, ensuring that higher-priority tasks can preempt lower-
priority ones whenever required to meet real-time constraints. This preemptive
approach guarantees that critical operations receive immediate CPU attention,
reducing latency and improving responsiveness under load.

Another essential component of the kernel is the interrupt manager, which
configures and controls the GIC module of the CPU. This module enables flexible
prioritization and routing of interrupts across multiple CPU cores, supporting
scalable real-time processing. The interrupt manager handles both kernel and
AUTOSAR interrupts. Kernel interrupts correspond to system-level events such as
the system tick and communication between cores, while AUTOSAR interrupts
belong to the application domain and are defined in a similar way to tasks, with
corresponding configuration and behavior.

Interaction between the application and the kernel is achieved through a dedi-
cated API exposed as a C header file. This API provides essential services such as
task activation, termination, and synchronization. By following a familiar C-based
interface, the system allows developers to build and integrate user applications
without needing to understand the internal details of the kernel implementation.
Access to vendor-provided drivers for the target board is available through the
SDK, which connects user applications with hardware resources in a consistent
way.

System configuration takes place at compile time through a custom XML file.
This configuration file is parsed automatically to generate both kernel code and
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the data structures required by the application. The compile-time configuration
is essential because dynamic memory management is not implemented, which
means all data must be statically allocated before runtime. This approach also
improves efficiency, as it removes the need for runtime allocation and reduces
memory fragmentation. The resulting data structures, referred to as AUTOSAR
objects, represent the configured tasks, interrupts, and other resources. During
runtime, the kernel uses these objects to store state information, schedule activities,
and manage system execution according to the defined configuration.
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Figure 4.2: Representation of the system architecture

4.4 API Functions

Selected kernel features are made accessible to the application through a dedicated
API, which provides the set of functions defined in the specification. These functions
serve as the main interface between user applications and the kernel, allowing user-
level code to request kernel services in a controlled and predictable manner. The
implementation of these functions relies on supervisor calls, which enable a secure
and well-defined transition between user and privileged execution modes. Each call
is processed by a dedicated SVC handler within the kernel. The handler interprets
the service request and dispatches it to the corresponding internal routine. During
the execution of a supervisor call, interrupts are temporarily disabled to prevent
interference from concurrent events. This mechanism ensures that kernel operations
complete atomically and that the system remains in a consistent state after each
call. The key functions associated with each kernel feature are presented in the
following sections.
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Most of the functions return a value of type StatusType, which indicates the
outcome of the requested operation. This return type provides a range of specific
error codes that describe different failure conditions, such as invalid parameters,
access to unavailable resources, or function calls made in an incorrect system state.
For brevity, the return type is not repeated in the individual function descriptions
that follow.

Some API functions operate across CPU cores. By default, these functions
are executed synchronously, meaning that control is returned to the caller only
after the requested operation has been completed on the target core. In specific
cases, asynchronous variants of these functions are also available. These allow the
application to continue execution while the requested operation proceeds in the
background, which can improve responsiveness and parallel efficiency under certain
workloads.

4.5 Task Scheduling

The scheduling process is organized around the concept of a schedule table, which
defines when individual tasks are activated. Each schedule table specifies precise
activation times that determine the temporal behavior of the system. Durations
within the table are defined relative to updates received through the system tick,
commonly referred to as ticks. Each tick represents a fixed unit of system time,
and the table uses these increments to define expiry points, specific offsets from the
start of the table where one or more tasks are activated. This structure provides
deterministic task activation and makes system timing predictable.

The specification allows multiple schedule tables to coexist, enabling them to
be executed in sequence or under defined conditions. However, in practice, the
most common use case involves a single schedule table that repeats continuously.
This table automatically restarts once it reaches the end of its cycle, providing
a periodic and stable scheduling framework. The project adopted this simplified
but representative approach to streamline the development of the scheduler while
maintaining the core functionality needed for real-time applications.

Each task is associated with a priority value that is defined statically in the
system configuration. This value determines the relative importance of the task in
the scheduling process. Although priorities remain fixed under normal conditions,
they can be temporarily modified through synchronization protocols described in
the following sections. The priority has a direct influence on the order of task
execution and on how the system reacts to new activations. When a task with
higher priority becomes ready to execute, it immediately preempts any task with
lower priority that is currently running. As a result, at any given moment, the
running task usually corresponds to the active task with the highest priority. This
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preemptive scheduling model ensures responsiveness and guarantees that operations
with strict timing requirements are executed without delay.
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Figure 4.3: Example of a schedule table.
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Figure 4.4: Example of priority-based scheduling. The running task is represented.

4.5.1 Task State

Tasks can be in one of the following states:

e Suspended: inactive or terminated, can be activated at a later time.

e Ready: already activated and ready to be executed.
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e Running: currently in execution, can terminate or be preempted by a task
of higher priority.

activation
)
Suspended
preemption
termination execution
&
Running

Figure 4.5: States of a basic task.

Before the schedule table loop begins, a specific group of tasks referred to as
startup tasks can be executed. These tasks carry out initialization routines that
prepare the application for normal operation by setting up essential components
and verifying the system state. Once the system is ready, the scheduler proceeds
with the regular execution of the schedule table. When no other task is in the
ready state, the scheduler executes an idle task that remains permanently available
and never terminates. The idle task can be employed for basic power management
or for background operations that do not require strict timing.

Tasks can also be activated through the API by other tasks or by interrupt
routines. An activation is accepted only when the target task is currently in the
suspended state, which ensures that each activation follows a defined and consistent
lifecycle. This rule prevents conflicts and keeps the kernel state predictable during
task management.

The OS typically runs a limited set of tasks repeatedly with the goal of en-
suring deterministic behavior. The main source of variability is the handling of
interrupts generated from external sources, which may delay the execution of tasks.
Applications introduce large time margins to avoid overlapping activations of the
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same task. This behavior, known as overrun, is reported by the OS when a new
activation occurs while the task is in the wrong state.

ActivateTask(TaskID task)

Transfers the specified task, which can be defined on any core, from
the Suspended state into the Ready state. The asynchronous version
ActivateTaskAsyn is also available.

TerminateTask()

Terminates the current task.

ChainTask (TaskID task)

Terminates the current task and activates the specified task with a single
operation.

Table 4.1: API functions related to the scheduling of tasks.

4.5.2 Implementation Details

In order to support context switching between tasks, tasks are associated with a
Task Control Block (TCB) which defines the required fields to store the values of
all CPU registers, including the VFP coprocessor registers used for floating point
calculations. During a context switch, the scheduler saves and restores the content
of these registers to preserve task state.

The scheduler maintains a record of ready tasks through a dedicated queue
structure. In the initial implementation, this queue was built as a linked list in
which tasks were sorted by their priority. Although functional, this approach
produced higher management costs when the number of tasks increased. In order
to improve performance in applications that handle many concurrent tasks, the
linked list was later replaced with a structure composed of individual queues, one
for each priority level. This design allows faster insertion and retrieval operations,
which directly benefits response time in the scheduling process.

Inside the ready queue, the system distinguishes between tasks that were newly
activated and those that were preempted. This distinction is represented by two
internal ready states. It is important because different preparation steps must be
carried out before a task begins or resumes execution, depending on its state:

o Newly activated tasks: the stack pointer and program counter are initialized
in the task context.

o Preempted tasks: the task context is restored from the Task Control Block
(TCB).
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The allocation of stack memory for tasks follows the assumption that execution
occurs in a defined order determined by priority. Because preempted tasks have
lower priority and resume only after the running task finishes, their stacks remain
inactive during this period. As a result, the stack of a newly activated task can
be allocated above the stacks of other preempted tasks without causing overlap or
corruption. This approach makes efficient use of limited memory resources while
preserving safe task isolation.

The MPU is reconfigured dynamically each time the running task changes.
The reconfiguration is based on the stack region assigned to the task to ensure
separation between memory spaces. The MPU enforces isolation according to
the maximum stack size value defined for each task in the configuration. Since
stack-level protection is not required in all cases, this mechanism can be optionally
disabled to simplify execution and improve performance in systems where strict
isolation is not necessary.

4.6 Multi-core Support

Since both the target board and the MPS3 in QEMU feature multiple CPU cores,
the system was designed to support multi-core functionality from the early stages
of the project.

QEMU supports Symmetric Multi-Processor (SMP) mode, in which the two
cores of the MPS3 execute instructions from the same executable while sharing a
common RAM space. In this execution model, conditional branches in the program
distinguish the behavior of each core, allowing them to perform separate operations.
One of the first steps in initialization is to allocate distinct stack regions for each
core to avoid memory overlap and preserve isolation. On ARM architectures, the
Multiprocessor Affinity Register (MPIDR) is used to identify the core currently
executing instructions. This register contains several fields that vary depending on
the implementation, but it is generally used to enumerate individual CPU cores
and clusters.

4.6.1 Synchronization Mechanisms

Shared memory regions provide the basis for synchronization mechanisms between
cores. Within the kernel, two main mechanisms are used: barriers and spinlocks.

o Barriers are points in the program where each core must wait until all other
cores reach the same location before continuing execution. This ensures that
all cores progress in a coordinated manner.

o Spinlocks control access to shared resources by allowing only one core to
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use the resource at a time. Cores that attempt to access a locked resource
repeatedly check the lock and wait until it is released.

Both mechanisms are implemented using Rust abstractions for atomic types.
In the case of barriers, a counter keeps track of the number of cores that have
reached the synchronization point, allowing execution to continue only when all
cores have arrived. Spinlocks rely on a variable that records which core currently
holds the lock, preventing simultaneous access and ensuring safe coordination
between cores. This approach provides deterministic behavior and minimizes the
risk of race conditions in multi-core execution.

4.6.2 Inter-core Communication

A mechanism for Inter-core Communication (ICC), referred to as the core mailbox,
was also implemented. Each core is associated with a mailbox, which relies on a
spinlock to protect a shared memory region where data can be exchanged. When
two cores need to communicate, the sender acquires the spinlock and writes data
on the mailbox of the receiver, then sends a SGI to notify the receiver. When the
interrupt is processed, the receiver reads the data and releases the lock. Mailboxes
also support a response mode, in which the receiver sends data back to the sender.
In this mode, a barrier causes the sender to wait until the receiver processes the
message and writes the response in its own mailbox. The sender then reads the
response and releases the lock. This mechanism is used to implement API functions
that operate across cores, such as the ActivateTask function.

SGIs are also used to propagate faults or panic events from one core to all other
cores. This ensures that critical errors are communicated system wide and allows
coordinated responses to maintain safety and consistency across cores.

4.6.3 Multi-core Scheduling

In AUTOSAR, the first core is conventionally designated as the master core, and
each core runs its own instance of the operating system with a dedicated scheduler.
To maintain synchronization between schedulers, the Generic Timer of the master
core is configured to generate the system tick, which is forwarded to all other cores
through SGIs. During system startup, all cores synchronize using a barrier to ensure
that all startup tasks are executed before the schedule tables begin operation.

In the system configuration, tasks and expiry points are defined as part of a
single global schedule table. In practice, however, they are distributed across the
individual schedulers running on different cores. The parser generates identifiers
that embed the core number in the upper bits, which are set through masking and
bitwise operations. This mechanism allows the system to identify the core to which
each task is assigned. The same method is applied to other AUTOSAR objects.
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4.7 Interrupt Management

The interrupt manager is the kernel component responsible for the configuration
and management of the GIC module. At the initialization it configures all interrupts
used by the kernel, including the system tick and the SGIs used for cross-core
communications. Application-related interrupts, represented by AUTOSAR Inter-
rupt Service Routines (ISRs), are also configured and managed by the interrupt
manager to ensure correct execution within the operating system.

4.7.1 Interrupt Service Routines (ISRs)

Interrupt Service Routines are functions defined by the application that are exe-
cuted inside interrupt handlers under the control of the kernel. The AUTOSAR
specification defines two categories of ISR:

« Category 1 (ISR1): functions associated with high priority interrupts that
do not have access to SVCs.

« Category 2 (ISR2): can interact with the kernel through SVCs, potentially
resulting in task activations or preemption of the running task.

The operating system keeps track of the type of operation currently being
executed using a field known as the call level. This field indicates whether a task,
ISR1, ISR2, or another kernel operation is in progress. The call level is used to
enforce access restrictions in supervisor calls and to guide the execution of specific
operations in their implementation.

In practice, ISRs are implemented as system wrappers that invoke the configured
application functions within the interrupt handlers. For ISR1, the wrapper only
preserves the task context and sets the call level, ensuring minimal overhead and
predictable execution. For ISR2, the wrapper includes an additional check to
determine whether the running task should be preempted, and the scheduler is
invoked if necessary to manage task switching.

ISRs can be interrupted by other interrupts, allowing nested execution. Because
Category 1 ISRs are generally assigned higher priority values, they complete before
any ISR2 when nesting occurs. For nested ISR2, the scheduler is not invoked
immediately upon termination. Instead, potential preemption of the running task
is performed only after the outermost interrupt handler finishes, ensuring correct
task sequencing and avoiding unnecessary context switches.

The interrupt manager also provides mechanisms that are used to implement
the API functions related to interrupts.

35



Development Methodology

DisableInterruptSource (ISRID isr)

Disables the interrupt associated with the ISR. EnableInterruptSource is
used to enable the interrupt.

DisableAllInterrupts()

Disables all interrupts, including AUTOSAR and kernel interrupts. Used with
EnableAllInterrupts to re-enable the interrupts at a later time.

SuspendAllInterrupts ()

Variant of DisableAllInterrupts that supports multiple sequential calls.
Used with ResumeAllInterrupts. SuspendO0SInterrupts and the correspond-
ing Resume function are used to manage kernel interrupts separately.

Table 4.2: API functions related to interrupts.

4.7.2 Implementation Details

The GIC module provides 256 priority levels for interrupts and supports nested
execution. Special care was required when implementing nested interrupts, as the
link register could otherwise be overwritten, causing incorrect return addresses.
To prevent this, interrupt routines are executed in the privileged system mode,
which preserves the original register values through the use of banked registers.
This approach ensures reliable nested execution while maintaining consistent kernel
state.

Because the GIC has separate interfaces for each core, initialization is performed
individually for every core. ISRs are configured during system initialization and
enabled after the startup phase, when the schedule tables begin execution. In the
system configuration, each ISR is defined with the data necessary to configure
the interrupt in the GIC, including the interrupt number (INTID), an enable flag,
and the priority. Category 1 ISRs are enforced to have higher priority values to
simplify the handling of preemption in nested scenarios. Category 2 ISRs allow
nested execution by explicitly re-enabling interrupts within their wrappers.

4.8 Other Features

This section presents features that are part of the specification and extend the
functionality of the system, providing synchronization and execution mechanisms.
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4.8.1 Events

Events provide a mechanism for synchronization and signaling between tasks. They
are associated with extended tasks, a variant of tasks that supports an additional
Waiting state. In this state, the execution of the task is suspended until one or more
events are set by other tasks or interrupt routines. This allows tasks to coordinate
their execution and respond to specific conditions or signals without continuously
polling for changes. Because multiple events can be referenced together, bit masks
are used to represent groups of events efficiently. A task can wait for a combination
of events, resuming execution only when all the required events in its mask are set.
This allows complex synchronization patterns between tasks, such as waiting for
multiple conditions to be met simultaneously.

WaitEvent (EventMask events)

Puts the current task in the Waiting state until the events are set.

SetEvent (TaskID task, EventMask events)

Sets the events for the specified task, which can be defined on any core. The
asynchronous version SetEventAsyn is also available.

ClearEvent (EventMask events)

Clears the events for the current task.

Table 4.3: API functions related to events.

In the implementation, each extended task is associated with two mask fields:
one records the events required for the task to resume execution, while the other is
updated when events are set. This distinction is necessary because events remain
set until they are explicitly cleared, and a single field would not be sufficient to
track all changes reliably.

Stack memory allocation for extended tasks requires a different approach com-
pared with standard tasks, because they do not always follow the traditional
priority-based execution scheme. In this project, fixed memory sections are pre-
allocated during OS initialization, ensuring that each extended task has sufficient
stack space regardless of its execution order or waiting behavior.

In typical applications, events are used to implement producer-consumer patterns,
signal the completion of hardware operations, or synchronize tasks that depend on
external inputs. For example, one task may wait for a sensor reading to complete,
while another task sets the corresponding event once the data is available. This
approach allows the application to remain responsive and deterministic, avoiding
unnecessary CPU usage while tasks wait for relevant conditions.
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4.8.2 Resources

Resources provide a mechanism for synchronization, commonly used to protect
critical sections from interference by other tasks or ISRs running on the same
core. They ensure that shared data or hardware is accessed safely and consistently,
preventing race conditions and inconsistent state.

When a resource is acquired, the runtime priority of the owning task or ISR is
raised according to the Priority Ceiling Protocol (PCP). The new value, known as
the priority ceiling of the resource, is defined as the maximum priority among all
tasks and ISRs that may access the resource. Raising the priority to the ceiling
prevents other tasks or ISRs with conflicting access from executing within the
critical section, since their priorities are lower or equal. Once the resource is
released, the owner’s priority is restored to its previous value, which may result in
preemption if higher priority tasks become ready.

Multiple resources may be acquired in succession. In these cases, the highest
priority ceiling among the acquired resources is applied, and resources must be
released in last-in, first-out (LIFO) order. All resources must be released before
a task or ISR can terminate or, for an extended task, wait for events. In the
implementation, both tasks and ISRs track the resources they acquire using a
queue, which allows the system to verify that all resources are released when
required. This disciplined approach ensures that resources remain available to other
tasks and ISRs, preventing deadlock and maintaining predictable system behavior.

GetResource (ResourcelID resource)

The current task or ISR acquires the resource.

ReleaseResource(ResourceID resource)

The current task or ISR releases the resource, which must be its most recently
acquired resource.

Table 4.4: API functions related to resources.

In typical applications, resources are used to protect access to shared hardware
peripherals, communication buffers, or data structures that are modified by multiple
tasks or interrupt routines. For example, a task updating a shared sensor buffer
may acquire a resource to prevent an ISR from reading inconsistent data at the
same time. Similarly, multiple tasks writing to a status variable can use a resource
to serialize access, ensuring correct ordering and avoiding corruption.

ISRs and tasks may access the same resources. Normally, ISRs can interrupt
tasks regardless of their priority levels. However, when a resource is shared between
tasks and ISRs, interrupts that would cause conflicting access must be prevented
while a task already owns the resource. To apply the priority ceiling protocol
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to ISRs, they are assigned priority values that are comparable to task priorities,
allowing the system to compute a consistent ceiling value for each resource. In this
project, interrupts are managed by the GIC, which uses a scheme where higher
priority interrupts have numerically lower values. To reconcile this difference,
priority mapping functions translate GIC interrupt priorities into values compatible
with the ceiling protocol. When a resource is acquired, interrupts with lower
priority than the ceiling are temporarily masked using the priority mask field in
the GIC, ensuring that access to the resource remains exclusive and consistent.

Tasks and ISRs statically define the list of resources they may access in the
system configuration. This allows the ceiling priority for each resource to be
computed at compile time when the configuration file is parsed.

4.8.3 Spinlocks

Spinlocks provide a synchronization mechanism designed specifically for use across
multiple CPU cores. They can be acquired and released similarly to resources, but
the underlying mechanism is different. Because a spinlock may not be immediately
available, a task or ISR attempting to acquire it may enter a busy-wait loop until
the lock is free. In this project, AUTOSAR spinlocks are implemented using the
spinlock abstraction provided by the kernel, which relies on Rust atomic types for
safe and efficient inter-core synchronization.

GetSpinlock(SpinlockID spinlock)

The current task or ISR acquires the spinlock. This function returns after the
spinlock becomes available.

TryToGetSpinlock(SpinlockID spinlock, SpinlockResult* result)

The current task or ISR acquires the spinlock if available. This function always
returns immediately.

ReleaseSpinlock(SpinlockID spinlock)

The current task or ISR releases the spinlock, which must be its most recently
acquired spinlock.

Table 4.5: API functions related to spinlocks.

Multiple spinlocks may be acquired in succession. To prevent deadlock scenarios,
a fixed lock acquisition order is defined in the system configuration and enforced
by the kernel. Once acquired, spinlocks must be released in LIFO order, and all
spinlocks must be released before waiting or termination.

Spinlocks are intended solely for inter-core synchronization, and attempting
to acquire a spinlock already held by the current core results in an error. They
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are particularly useful for protecting critical sections that involve shared data
or hardware accessed by multiple cores, where traditional resource locks cannot
guarantee exclusivity. However, because spinlocks rely on busy-waiting, their use
should be restricted to short critical sections. Prolonged busy-waiting could waste
CPU cycles and negatively affect real-time performance.

In typical applications, spinlocks are used to guard shared communication buffers,
control registers, or other data structures that are modified by tasks or ISRs on
different cores.

4.8.4 Alarms

Alarms provide a mechanism for executing actions at specific times, based on
counters. Counters are numerical values that increase either through a hardware
timer or by software increments. Each alarm is associated with a counter and can
be configured to expire when the counter reaches a predetermined value. When an
alarm expires, the operating system executes one of the following actions:

o Task Activation of a task on the same core.
 Event Setting on a task on the same core.

» Callback of a function provided by the application.

SetRelAlarm(AlarmID alarm, Ticks increment, Ticks cycle)

Sets the alarm to expire after increment ticks on its first activation and
subsequently every cycle ticks. If cycle is zero, the alarm expires only once.

CancelAlarm(AlarmID alarm)

Cancels the alarm so that it will no longer be updated.

GetAlarm(AlarmID alarm, Tick* ticks)

Stores in ticks the number of ticks remaining until the alarm expires.

Table 4.6: API functions related to alarms.

In this project, the implementation of alarms was simplified and restricted to
those associated with the system tick. The scheduler is responsible for tracking all
active alarms. During each tick, after updating the schedule table, the scheduler
updates the state of alarms to ensure timely execution of their associated actions.
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4.9 Build Process

The build process of the system requires multiple steps and operations where files
are processed and modules written both in Rust and C are linked. This process
is supported by build tasks in the IDE, makefiles, and Rust build scripts, which
together ensure a reproducible and automated compilation flow.

Build tasks provide a user-friendly entry point for developers, prompting the
selection of the application project, the target board, and the build mode, either
debug or release. Internally, these tasks invoke terminal commands that start the
Rust build process through Cargo and execute additional scripts. The Rust build
script runs on the host system and uses crates that depend on system libraries.
The following operations are performed before the kernel is compiled:

1. Assembly Build: Assembly files, including the boot code and routines for
saving and restoring the CPU context, are compiled first.

2. SDK Binding: Selected modules of the SDK are specified in a JSON file.
The file is parsed using the serde_json crate and then bindings for these
modules are generated through a build module based on the bindgen crate.

3. Configuration Parsing: The XML file containing the system configuration
is parsed through a build module based on the roxmltree crate to generate
Rust code representing the AUTOSAR objects required by the application.
Additionally, a C header file is created containing symbols used in user code
to reference these objects, such as task IDs passed as parameters in supervisor
calls.
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Figure 4.6: Steps to build the kernel as a static library.
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After these steps, the kernel is compiled as a static library using rustc, the Rust
compiler. In a second stage, the application project, written in C, is compiled using
either the ARM version of GCC or the compiler provided with the SDK. Finally,
the application is linked together with the SDK and the OS library to produce the
final ELF executable. This staged approach ensures that dependencies between
assembly, Rust, and C modules are correctly resolved and that the resulting binary

is fully functional on the target platform.
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Figure 4.7: Steps to build the final ELF executable.
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Chapter 5

Testing and Validation

This chapter is divided in two parts. The first part presents the strategies used to
test the system and verify its functionality, while the second part addresses the
modifications needed to deploy the system on the target board and presents the
measurements used to evaluate performance across different scenarios.

5.1 Testing Procedure

Since the functionality of the system is tied to runtime execution and asynchronous
events, unit tests would not be sufficient or practical. The solution adopted for
testing employs small dedicated applications aimed at verifying individual features
of the system during execution.

The first step for the development of test applications was a modification to the
build system that enabled the use of individual application projects, simply referred
to as projects, contained in the folder of the system. This made the development
of applications more flexible and enabled the creation of separate projects for the
various features to test.

A second step was the implementation of a macro for assertions, similar to that
of the C standard library. This macro checks a condition and, if it is not verified,
performs a system call that halts execution and prints a message relying on the
panic macro of Rust. This allowed the immediate detection and reporting of errors,
even in applications with complex behavior.

Test projects were designed to validate the system by checking that API functions
produced the expected results under different conditions and that tasks and routines
executed in the correct order according to their configuration and the runtime state.
In practice, user code performs mathematical operations on shared variables while
using OS mechanisms such as priorities, locks, and events to enforce execution order
and protect data integrity. The results are then checked for correctness, which is
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achieved only if the operations are executed in the expected order.

The real-time behavior of the developed programs was observed and verified
thanks to the assistance of simple mechanisms such as direct feedback from the
on-board LEDs and output via the UART interface.

These test projects were primarily developed for QEMU due to its flexibility
and ease of use, providing a regression-testing environment in which tests can
be executed after system updates to verify functionality and compatibility with
existing features. This approach proved instrumental in identifying and correcting
programming errors throughout the development process.

5.2 Porting to the Target Hardware

While QEMU provided an accurate emulation of the target CPU architecture,
several adjustments were required to deploy the system on the target board and
obtain the expected behavior.

5.2.1 Build Tools and SDK Integration

The first step was the integration of the build tools supplied with the SDK. Although
the SDK includes its own makefile, it could not be used directly, as certain operations
that are typically automated by the vendor-provided IDE had to be implemented
explicitly. In practice, additional directives and symbol redefinitions were required
to incorporate the necessary modules. For this reason, the makefile provided
with the SDK was incorporated into a custom makefile, which integrates these
modifications.

The kernel also relies on selected modules from the SDK. Linking the entire
SDK would have necessitated generating bindings for all components, which was
not practical. To address this, only the required modules are linked. A dedicated
build module, referred to as the SDK binder, was developed for this purpose, using
the bindgen crate.

5.2.2 Runtime Behavior

The runtime behavior of QEMU differs significantly from that of the target board
because of the multi-core execution model and its associated memory layout. Unlike
the MPS3, where all cores execute instructions from a single executable stored in
shared memory, the target board provides separate memory modules for each core,
where individual programs are stored to improve performance. A shared memory
module is also available, but it offers slower access and is intended exclusively for
data that must be explicitly shared between cores. This architectural difference
required modifications to both the configuration parser module and the build tools.
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Since the build process produces separate executables rather than a single ELF,
the data structures generated from the configuration, along with their accessor
functions, are distributed so that each core has access only to the objects defined for
it. Synchronization variables and data structures associated with shared peripherals
are placed in the shared memory section so that they can be accessed by any core.

Core 1

..... S

Code (shared)

Data (core 0) Data (core 1)

RAM (shared)

Figure 5.1: Memory layout of the MPS3 board in QEMU.

RAM (shared)

Shared Data

RAM (core 0) RAM (core 1)

Figure 5.2: Memory layout of the target board.

45



Testing and Validation

5.3 Performance Evaluation

The performance evaluation process focused on measuring the duration of core
low-level operations such as context switching between tasks and interrupt handling.
Although this scope may appear limited, these operations are highly impactful
due to their frequency, and their efficient implementation is critical for minimizing
delays and achieving acceptable real-time performance.

Measurements were conducted on applications executed on the target board.
Execution was monitored using the Lauterbach TRACE32 software, with cycle-
accurate timing obtained via the Embedded Trace Macrocell (ETM) trace chart.
Observed values were generally consistent. However, values reported refer to the
maximum times.

Two applications were employed for the evaluation. In the first, two tasks
alternated execution, producing context switches. In the second, a long-running
high-priority task was active while other tasks were activated but not immediately
executed.

The following values were observed:

Tick Interrupt 1ps
Tick 4+ Task Activation 1.3ps
Tick + Task Activation + Preemption (by new task) 1.8ps

Task Termination + Preemption (by new task) 1.1ps

Task Termination 4+ Preemption (by preempted task) 1.5ps

e Tick Interrupt: Duration of the interrupt when no tasks are activated
from the schedule table. The operations performed are limited to saving and
restoring the context and processing the interrupt.

o Task Activation: In this case a lower priority task was activated from an
expiry point of the schedule table and inserted in the queue of ready task.

o Task Termination: When a task terminates, the scheduler is invoked within
the SVC without waiting for the tick and a task from the ready queue is
scheduled (or the idle task if there no other tasks).

« Preemption (by new task): When the running task is suspended to start a
new task, only few registers such as the program counter and the stack pointer
are set in the context so that the execution can begin from the entry point of
the task.

46



Testing and Validation

« Preemption (by preempted task): When the running task is suspended
to resume another task that was previously preempted, the whole context of
the task is restored from its TCB.

In practical applications, typical values for the resolution of the system, which are
used to configure the tick interval, are in the range of milliseconds. In comparison,
the observed durations for the execution of system operations are negligible, leaving
ample margin for task execution and ensuring that delays in handling external
events remain acceptable.
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Chapter 6

Conclusion and Future
Works

This chapter concludes the thesis by providing an overview of the work conducted
and the results achieved. It summarizes the key design decisions and the main
contributions of the project, while also highlighting potential improvements, op-
timizations, and future developments that could further enhance or extend the
system, with the ultimate goal of industrial adoption.

6.1 Conclusion

This project aimed to explore the use of Rust in embedded systems through the
development of an AUTOSAR-based RTOS for the ARM Cortex-R52. Rust was
selected for its memory-safety and reliability features, while interoperability with
C, the de facto industry standard, was implemented from the beginning to support
industrial adoption. Development and testing were largely performed through
software emulation of the target architecture using QEMU.

The development process began with the implementation of fundamental features
of the system, including deterministic, priority-based task scheduling and interrupt
management. Subsequent work introduced multi-core support and MPU-based
memory protection, which played a central role in shaping the architecture of
the system. In addition, synchronization and execution mechanisms defined in
the AUTOSAR OS specification were implemented. The required functions were
made available to the user application through an API, implemented via SVCs and
provided in a C header file.

The system was tested using dedicated applications designed to verify the
runtime behavior of its various features. Lastly, the project was deployed to
the target board to collect performance measurements. This process required
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code adaptations due to differences in multi-core execution and memory layout
compared with the QEMU environment. The observed results met the typical
timing requirements of real-time applications.

In conclusion, the project demonstrates the practical feasibility of using Rust for
real-time, safety-critical embedded systems. The resulting implementation provides
a self-contained software platform that can be extended and refined to support
future research and industrial adoption.

The combination of features and tools integrated within the Rust ecosystem,
effective software emulation through QEMU, and the automation capabilities
provided by the Visual Studio Code IDE demonstrate that open-source solutions can
serve as highly reliable and efficient alternatives in a field traditionally dominated
by proprietary technologies.

Although the amount of available resources, particularly in specialized domains,
is still more limited than that of C, the Rust community has proven to be highly
active and responsive. Observing the rapid development of several related open-
source projects, some of which were integrated into this work during its execution,
and even contributing to their evolution, has been highly encouraging. These
experiences reinforce the belief that Rust is rapidly maturing and is likely to
become a prominent choice for embedded and safety-critical development in the
near future.

6.2 Future Works

While the developed system represents a fully functional prototype and a strong
foundation, several limitations remain that offer opportunities for improvement.
Future work could focus on achieving better compliance with the specification and
improving the development experience. The subsequent points outline potential
paths for further improvement:

« AUTOSAR OS Features: Some of the implemented features are only
partially compliant with the specification, as simplified versions were developed.
This is the case for schedule tables and alarms. Other features, such as hooks,
were not implemented However, the system architecture was designed to
facilitate their future integration.

o Platform Integration: Although the system currently operates as a stan-
dalone solution, it has not been tested as part of the full AUTOSAR platform.
Integration with industry-standard development tools, such as the Vector
DaVinci suite, would ensure compatibility with typical workflows. This would
require adopting the standardized configuration format and adapting the
existing parser accordingly.

49



Conclusion and Future Works

« AUTOSAR Scalability Class 3: This specification, typically required
for high-end ECUs in industrial contexts, defines advanced features such as
timing and memory protection mechanisms. Since the system already supports
some of the features, such as memory protection, are already available, the
implementation of the missing features would be feasible and it would support
industrial adoption.

» Rust Application: The system is designed to work with user code written
in C. Allowing the use of Rust for the application code alongside C would
support broader adoption of Rust in embedded development. This would
require modifications to the build system.
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