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Abstract

Skin cancer is one of the most common and dangerous kinds of cancer worldwide,
although its detection remains a challenge even for expert dermatologists. This
thesis explores how artificial intelligence can be a trusted assistant in the diagnostic
process by combining the reasoning power of Large Language Models (LLMs) with
the precision of state-of-the-art vision tools.

The proposed framework is a modular agent with a central reasoning core that
leverages a set of specialized tools for image classification, lesion detection, patient
metadata integration, and explainable AI. Through extensive experiments, the
thesis evaluates the contribution of each component. First of all, the ability of
multimodal language models, such as GPT-40 and Gemini, is analyzed both in
classifying dermatological images with their own vision and in interacting with vision
tools. Furthermore, the research focuses on the integration of patient information
via text embeddings into the classification model, to understand whether this data
can enhance the performance of the tool.

The project also includes an evaluation on the interpretability gains given by concept-
based explainability methods; by exploiting the annotations of the SkinCon dataset,
made of 48 clinical concepts annotated by dermatologists, the model learns to
predict these concepts before performing the final classification. This technique
helps the central LLM to better communicate with the user by supporting its
answers with a set of “proofs.” The results show that while general-purpose Al
struggles on its own in fine-grained medical tasks, combining it with domain-specific
tools significantly boosts performance and reliability. This AI agent interacts,
through a ReAct loop approach, with dermatologists in natural language, providing
meaningful explanations of its decisions in order to make the reasoning transparent
to the user. This work demonstrates the potential of combining LLM reasoning
with modular vision tools to build an effective dermatological Al assistant. The
agent mimics the behaviour of a clinician by delegating tasks to specialized tools
and integrating their outputs into a final decision. Its modularity allows for
easy expansion and integration into real-world clinical workflows. The code of
the agent and the experiments is available at the following GitHub repository:
https://github.com/Sgroi71/MasterThesis-DermAgent.



Introduction

Over the past few years, the integration of Artificial Intelligence (Al) in the medical
domain has shown promising results in the analysis of clinical images, especially
in visually demanding fields like dermatology. Skin cancer and related diseases
represent some of the most common health issues worldwide. In this context, the
ability to provide an early and accurate diagnosis is of fundamental importance,
since detecting a lesion at an initial stage can greatly improve treatment outcomes
and even save lives.

Despite the remarkable success of the vision models for medical image and the
availability of large datasets, the process of diagnosing skin lesion remains complex.
Moreover, the diagnostic process is not free from subjective interpretation, and even
among experts of this field discrepancies emerge. This is where Al technologies
can make tangible differences.

Large Language Models (LLMs) have shown remarkable capabilities in processing
natural language and reasoning across different type of information. When LLMs
are combined with specialized vision-based tools, they cannot only analyse the
image giving a classification into a fixed set of pathologies but also explain their
reasoning, thus becoming a reliable assistant for experts.

The challenge is to design systems that are not only accurate but also transparent,
modular and adaptable to the workflow of clinicians practice. In other words,
the application of Al in medicine cannot be "black box": it needs to provide
explanations, justifications, and interaction modes that integrate clinicians in the
decision-making of the system, making sure that it is coherent with the way doctors
work.

The proposed thesis has the ambition to create an Al agent capable of assisting
dermatologists in their daily activities. The resulting Al assistant will not replace the
human expert but will support them in repetitive actions, suggesting interpretable
decisions, and enabling real-time interactions with the Al assistant. This aligns with
the current shift in Al research toward collaborative and human-in-the-loop systems,
making this work not only technically advanced but also clinically impactful.
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Introduction

Goal

The primary goal of this thesis is to design and implement an Al agent for dermato-
logical diagnosis that leverages both multimodal reasoning and vision-based tools,
while experimenting different Explainable AI techniques to the latter. Specifically
the objectives are:

Developing a tool that integrates the patient information (metadata) to the
features of the image extracted from the vision model;

Integrating a specialized tool for lesion detection and classification, ensuring a
transparent decision-making process;

Evaluating the effectiveness of saliency-based explanation methods and the
concept bottleneck approach [1] in improving interpretability for clinicians;

Implementing the AI agent and benchmark the system across different LLMs
to assess their ability to reason and interact within the medical context;

Development of a user-friendly interface, enabling flexible deployment options
from local to cloud-based solutions.

Thesis Structure

To achieve these goals, the thesis is organized into five main chapters, each address-
ing a key aspect of the research path.

Chapter 1 (Background and Related Works): This chapter combines
a review of the relevant literature with the presentation of the theoretical
foundations that underpin this thesis. It begins with an overview of Large
Language Models (LLMs), describing their architecture, history, and limita-
tions in medical tasks. Subsequently, it discusses the notion of Al agents
and the broader paradigm of Agentic Al, with particular attention to their
adoption in the clinical context and their modular structure. The chapter also
introduces the main approaches in Explainable AT (XAI), focusing on methods
that allow machine learning models to produce interpretable explanations
and the strategies used by researchers to evaluate them. Finally, it presents
detection models, which play a central role in identifying dermatological le-
sions within images, and reviews how Al has been applied in dermatology,
especially in the analysis of skin lesions and cancer detection. Together, these
concepts provide the necessary background to understand the originality of the
proposed approach and frame the methodologies and experiments described
in the following chapters.
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« Chapter 2 (Methodologies): This chapter describes in detail the design
and implementation of the Al agent and its modular architecture: detection,
classification and explanation tools, as well as the integration of the concept
bottleneck model.

o Chapter 3 (Experiments): Here it is presented the experiment setup,
including datasets, evaluation metrics and the discussion about the results.

e Chapter 4 (Conclusions): The final chapter summarizes the main find-
ings, underlining the contribution of this works, its limitations and potential
directions for future research.



Chapter 1

Background and Related
Works

In this chapter, we present an overview of both the relevant literature and the
theoretical foundations that underpin this research. The discussion combines an
examination of prior studies with the explanation of the fundamental concepts
required to contextualize the proposed framework. To provide clarity and structure,
the chapter is organized into five subsections: 1.1 Large Language Models, exploring
their history and structure; 1.2 Agentic AI and Al agents, focusing on their
architecture, applications, and relevance in healthcare; 1.3 Explainable AT (XATI),
underlining its contribution to transparency, trust, and clinical adoption; 1.4
Detection models, detailing approaches for lesion localization and analysis in
dermatological imaging; and finally, 1.5 Al in dermatology, with emphasis on skin
lesion analysis and cancer detection.

1.1 Large Language Models - LLMs

The development of Large Language Models (LLMs) represents one of the most
significant advancements in artificial intelligence over the past decade. Before
discussing Large Language Models, we need to introduce the broader history of
language modelling. Traditional language models were based on probabilistic
methods; they are also called n-gram models and they estimate the probability of
a word to be chosen, given the preceding ones.

While effective in small contexts, n-gram models have some limitations:

o As n increases, the number of possible n-grams grows exponentially;

o Lack of ability to capture long-term dependencies in text;
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o Lack of semantics, so similar words are treated in the same way as completely
different ones.

Moving beyond n-gram models, researchers started in 2000 to use neural networks
to learn language models [2]. This shift was marked by the development of word
embeddings (Word2Vec [3]) and sequence-to-sequence (seq2seq) models using LSTM.
The seq2seq architecture was introduced to handle tasks with variable-length input
and output sequences, such as machine translation. It is composed of two main
parts:

o Encoder: A recurrent network (typically LSTM or GRU) that compresses
the input sequence into a context vector.

o Decoder: Another recurrent network that, starting from the context vector,
generates the output sequence step by step.

Despite its early success, the model faced two major limitations: the bottleneck
problem, i.e., the difficulty of representing long sequences with a single fixed vector,
and the lack of parallelization, since RNNs process tokens strictly one after another.

1.1.1 Transformer Architecture

A decisive turning point came in 2017 with the introduction of the Transformer
architecture by Vaswani et al. [4] in “Attention is All You Need.” Unlike RNNs,
Transformers rely entirely on a self-attention mechanism, allowing models to
capture dependencies between tokens regardless of their distance in a sequence.
This innovation solved the “bottleneck” problem and enabled efficient parallelization
and scalability.

As shown in figure 1.1, the Transformer architecture is typically composed of:

« Embedding Layer: Converts tokens into dense vector representations.

e Positional Encoding: Adds sequence order information, to solve the atten-
tion mechanism’s lack of inherent sequentiality.

« Stacked Transformer blocks, where each block includes:
— Multi-head self-attention to capture diverse relational patterns among
tokens.

— Feed-forward neural networks applied independently to each position.

— Residual connections and layer normalization for stability and
gradient flow.
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e Output Layer: Produces probability distributions over the vocabulary,
enabling autoregressive text generation.

There are three Transformer variants:

« Encoder-Only Transformers (Figure 1.2): Composed solely of stacked
encoder layers, each with a self-attention layer. This structure is ideal for
tasks like classification and masked language modelling. An example of this
category is BERT [5], which is trained to predict masked words within the
context of a sentence.

e Encoder-Decoder Transformers: Combine an encoder architecture, that
handles the input, with a decoder architecture that generates the output. It
includes the self-attention layer in the encoder and the cross-attention layers
where the decoder attends to encoder outputs. An example is T5 (Text-to-
Text Transfer Transformer) [6], great for tasks that translate or transform one
sequence into another. The drawback is the heavier computation due to the
dual-stack architecture.

o Decoder-Only Transformers: Consist exclusively of decoder layers—each
containing causally masked self-attention and feed-forward sublayers—without
any encoder component. They are ideal for generative tasks like chatbots or
creative writing.

On top of the latter architecture, OpenAl introduced Generative Pre-trained
Transformers (GPT), inaugurating what is now called the GPT era.
GPT-1 (2018) demonstrated the effectiveness of large-scale pre-training followed
by task-specific fine-tuning. GPT-2 (2019), based on the previous version but with
a larger training corpus (10x) and a larger model (10x), removed the fine-tuning
phase, showing emerging capabilities to solve problems it was not explicitly trained
on. GPT-3 (2020), with 175 billion parameters, exhibited few-shot and zero-shot
learning capabilities. Subsequent models, including GPT-4 and multimodal variants
like GPT-40, expanded these capabilities by integrating text, images, and other
modalities.
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Figure 1.2: BERT architecture [5]
Figure 1.1: Transformer architecture

[4]

1.2 Agentic AI and AI Agents

Artificial Intelligent Agents (Al Agents) and the broader paradigm of Agentic Al
have recently gained increasing attention as frameworks for building autonomous
systems. Although the two terms are often used interchangeably, they describe
distinct design philosophies and capabilities.

As highlighted in the conceptual taxonomy of Sapkota et al. [7], “Al Agents are
autonomous software programs that perform specific tasks”, usually by combining
perception, reasoning, and tool-use. For instance, MedRAX, introduced by Fallah-
pour et al. [8], is a domain-specific AT Agent tailored for chest X-ray interpretation,
capable of orchestrating specialized vision models through a reasoning loop.

In contrast, Agentic Al represents a paradigm shift. Rather than focusing on
isolated agents, Agentic Al coordinates multiple specialized agents capable of
decomposing complex objectives into smaller tasks and dynamically collaborating
within a workflow. Acharya et al. [9] define it as “autonomous systems designed
to pursue complex goals with minimal human intervention”, showing adaptability
and long-term planning capabilities in evolving environments.

Following this paradigm, Feng et al. [10] proposed M3Builder, a multi-agent system
that automates medical imaging workflows by coordinating four role-specific agents
(task manager, data engineer, module architect, and model trainer), achieving a

8



Background and Related Works

success rate above 90% in benchmark tasks. Similarly, Shahin et al. [11] argue
that agentic workflows combined with specialized AI Agents can accelerate drug
development pipelines and quantitative clinical pharmacology.

The concept of an Al agent also emerges from the attempt to extend Large Lan-
guage Models (LLMs) beyond static workflows into systems capable of autonomous
reasoning and decision-making.

Agentic behaviour introduces the ability for the model to decide its own control
flow to solve complex problems. This flexibility enables the system to dynamically
adapt to tasks, making the LLM not just a reactive tool, but a proactive agent.
Before full agentic systems, LLMs were typically organized into structured chains,
such as sequential, tree, or router chains. Agentic systems, instead, can set their
own goals, plan actions, and adapt to changing circumstances, thus displaying
initiative and continuous improvement.

A full agent architecture (Figure 1.3) generally includes several components:

« Agent (Core Controller): Central decision-maker orchestrating the process.

« Tools: External modules (e.g., calculator, code interpreter, search engine)
used to extend capabilities.

e Memory: Divided into short-term (temporary context) and long-term (per-
sistent user or task knowledge).

o Planning: Strategies to break down complex objectives into subgoals.

e Reflection and Self-Criticism: Mechanisms for evaluating past decisions
and improving future reasoning.

e Chain-of-Thought & Subgoal Decomposition: Stepwise reasoning and
structured task division.
When multiple agents are deployed, interaction schemes define their behaviour:

o Cooperative: Agents collaborate, sharing information to achieve a shared
goal.

o Adversarial: Agents compete, optimizing strategies against opponents.

o Mixed: Combinations of cooperation and competition, organized in parallel
or hierarchical structures.
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Figure 1.3: General architecture of an Agentic Al system.

1.3 Explainable Al

Cino et al. pointed out physicians’ skepticism about the use of Al in the medical
field, due to the "black box" nature of Al models. They emphasized that “the lack of
transparency and explainability inherent in these models hinders their widespread
acceptance in clinical settings” [12].
Recent studies have integrated explainable AT techniques such as Grad-CAM [13]
and t-SNE [14] to provide visual justification for model predictions [12]. Moreover,
novel frameworks like SkinGen [15] explore interactive vision-language models to
generate synthetic but realistic visual interpretations of possible diagnoses, aiming
to enhance user trust and comprehension.

Explainable AT (XAI) provides methods to make models more interpretable,
allowing humans to understand the reasoning behind predictions. Explainability is
not a single step but spans the entire machine learning pipeline:

e Pre-modelling explainability: Conducted before training, it focuses on
understanding and preparing data. Typical activities include exploratory data
analysis, interpretable feature engineering, and dataset documentation.

e In-modelling explainability: Here, models are designed to be inherently
interpretable. Examples include decision trees, linear models, or concept-based
approaches such as concept bottleneck models.

o Post-hoc explainability: Applied after model training, it provides ex-
planations for black-box models. Common methods include gradient-based
approaches, surrogate models, and counterfactuals.

10
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XAI methods can differ in their scope:

« Global explanations: Aim to describe the overall behaviour of a model.
Examples include permutation feature importance, partial dependence plots,
or decision trees (if small enough to be interpretable).

o Local explanations: Focus on individual predictions, answering the question
“why did the model decide this class for this instance?”.

In this thesis we will focus only on methods of the latter category, since the
model to explain is a vision-based model applied to medical images. In this context,
looking for general rules that explain the overall behaviour of the model is not
trivial.

Another important distinction is based on generalizability:

« Model-agnostic methods (e.g., LIME, SHAP) treat the model as a black
box and can be applied to any architecture, since they only need access to the
inputs and the outputs.

e Model-dependent methods exploit the internal structure of a specific
model, such as Grad-CAM, which can be applied only to CNNs. These often
provide deeper insights but are limited in scope.

One of the major lines of research focuses on feature attribution methods. An
example of this category is SHAP [16], derived from cooperative games theory,
which assigns contributions to each input feature and has become a reference point
for model-agnostic explainable techniques.

Covert et al. [17] proposed a unified framework of removal-based explanations,
showing that in many contexts, predictions can be explained through the principle
of simulating feature removal.

Another family of methods explores prototype and concept-based explanations.
XProtoNet [18], for example, learns disease-representative prototypes to provide
both global and local explanations. Similarly, Concept-Bottleneck Models (CBMs)
impose predictions through human-defined intermediate concepts, enabling direct
interventions by the expert.

Koh et al. [1] state: “By construction, we can intervene on these concept bottleneck
models by editing their predicted concept values and propagating these changes
to the final prediction”. This paradigm shifts model interaction closer to clinical
reasoning, where physicians rely on explicit intermediate concepts.

Many of the explainable methods representation applied to vision-based models
uses saliency maps: for example, Ancona et al. [19] compare many attributions
methods based on gradient-information with respect to the input.

Recent works have also presented techniques to evaluate the interpretability of

11
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saliency maps: Bokadia et al. [20] proposed perceptual and semantic interpretability
metrics, showing that faithfulness alone is insufficient. Their study on melanoma
concluded that “None [of the saliency methods] achieves high scores across all three
metrics [...] but different methods perform well in different regions of the data
distribution”.

1.3.1 Gradient-Based Methods

The most widely adopted post-hoc model-agnostic methods are gradient-based
techniques, which leverage the derivative of the model’s output with respect to its
input features. The intuition is that the gradient indicates how small changes in
the input affect the model’s predictions.

Generally, the generated explanation has the same size as the input and, in the case
of images, it is shown as a saliency map, highlighting the pixels most influential for
the decision.

Gradient-based methods differ in how the gradient is computed:

e Vanilla Gradient: Computes the gradient of the output score for a target
class with respect to the input features. Formally, given a model F' trained for
C classes, the output of the model for the input I is F(I) = [F\(I),..., Fc(I)].
The objective, given an input [, with p features, is to compute a relevance
score for each feature and for class ¢: R = [Rf,..., Ry].

The idea is to model the score function F. as a linear function, but since it is
non-linear we approximate it with the first-order Taylor expansion:

F()~w'-IT+b=RI-T+5b

Where R, is the derivative of the score and it is calculated as follows:

VoFe(z) = PFC aFc]

Oz’ Oxy

As done during the training phase of the model, these derivatives are calculated
via backpropagation. While simple and computationally efficient, Vanilla
Gradients are often noisy and unstable, as small perturbations in the input
can cause large variations in the gradient.

o Input x Gradient: An extension of the basic approach, where the gradient
is multiplied element-wise with the input itself. This highlights features that
not only have a strong gradient but also high activation in the input. In
practice, it often produces sharper and more interpretable attribution maps
compared to Vanilla Gradients.

12
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» Integrated Gradients (IG): Compares the model’s prediction on an input
x with a baseline input 2’ (often a zero vector). The attribution is computed
by integrating the gradients along the straight-line path between x’ and x, as
shown in Figure 1.4. Formally:

10F (2 + alx — o/
IGi(x) = (x; — ) % /0 ( +8xi )) da

Where « is the interpolation constant.
Let k£ be a scaled feature perturbation constant and m the number of steps;
we can approximate the integral as follows:

1 m 8F(£L‘/ + £ (z - x’))

IG™ (2) = (w; — a}) — [21]
m; o0x;
' & :
@
O
X2
@)
O

O Baseline

Xy

Figure 1.4: Integrated gradient baseline

One of the major limitation of the above methods is that they are noisy, because
slight variations in the input data can result in significant changes in the model
output (and thus in the gradients), leading to noisy gradients and instability.
SmoothGrad reduces noise by generating N versions of the same input by adding
Gaussian noise and then averaging them:

N
Y V.F(z+e), €&~N(0,0%

i=1

SG(r) =
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This process smooths out fluctuations and results in clearer and more stable
saliency maps. In the figure 1.5 we can see the comparison between the vanilla
gradient techniques with and without Smooth-Grad.

Vanilla Gradient Vanilla Gradient + Smooth-Grad

Figure 1.5: Comparison between Vanilla Gradient with and without Smooth-Grad

1.3.2 Perturbation-based Methods

Another important family of post-hoc explainability approaches are removal-based
or perturbation-based techniques, also known as occlusion methods. Their central
idea is to evaluate the impact of removing or altering parts of the input on the
model’s prediction.

By quantifying how predictions change when features are hidden, it is possible to
infer their relative importance.

The general functioning of perturbation-based methods is formalized as follows.
Given a model f and an input z, the importance value of the feature A; is estimated
by comparing the prediction with and without that feature:

Importance(A;) = f(z) — f(z \ 4;)

where z \ A; denotes the input with feature A; removed or perturbed. Different
strategies exist for simulating removal:

Zeroing (set removed features to zero).

Default values (replace features with mean or constant values).

Blurring (for image regions).

Marginalization over the feature distribution.

14
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SHAP (SHapley Additive exPlanations) builds on the concept of Shapley values
from cooperative game theory. In this analogy:

o Each feature is a “player”;
e The prediction is the “payout” of the coalition of features;

o The Shapley value ¢; measures the average marginal contribution of feature ¢
across all possible feature coalitions.

Formally, for a feature 7 in the coalition S:

di(v) =

SCN\{i}

BRI (w0 i) - w(s)

where v(S) is the total expected sum of payoffs the players in S can obtain by
cooperating. It is calculated as v(S) = f(S) — E[f(X)], where f(S) is the model
prediction marginalizing over the features not in .S.

This technique has some limitations in terms of computation time. In fact, it is

exponential in the number of feature values since we need to evaluate the instance
over all possible coalitions.
The proposed solution is the approximation with Monte-Carlo sampling: take a
random instance z from the dataset, and define x; as the instance z where a
random number of feature values are replaced by feature values from the random
data point z; the value for the feature j is kept as in the original feature =x.
Conversely, x_; is defined as x; but with the value of j also replaced by the value
of the sampled z.

At each iteration the marginal contribution is computed as ¢7* = f(x1;)— f(z_;).
Finally, after M iterations we can compute the average of the marginal contributions.

SHAP proposes two approaches for estimating the Shapley values:

o KernelSHAP: Approximation using weighted linear regression that is model-
agnostic.

o TreeSHAP: Efficient exact computation for tree models.

The output of SHAP can be feature attributions for each instance if we want
local explanations, or it can be aggregated into global insights as shown in Figure
1.6.

In the case of image data, the image is divided into many parts called superpixels.
We define the coalition of the features with an interpretable representation: a vector
where each element is a binary value indicating if the superpixel is taken or not.
Figure 1.7 shows this method graphically. To reduce the dimensionality of the
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input space and produce explanations at a semantically meaningful level, images
were segmented into superpixels using the SLIC (Simple Linear Iterative
Clustering) algorithm [22].

SLIC is inspired by the k-means clustering method. The algorithm does not
only consider color similarity but also the spatial distance between pixels. This
way, superpixels are compact and follow the contours of visual structures. The

distance metric used is:
d,\>
D—\Jdg—i— (S) -m?

Where:

d.: color distance

ds: spatial distance

S: average superpixel size

m: compactness parameter (high — more regular superpixels; low — more
adapted to image edges)

The image is initially divided into a regular grid, and in each block a center
(seed) is chosen. The number of blocks corresponds to the desired number of
superpixels (n_segments). At each iteration, pixels are assigned to the closest
centroid considering the combined distance, and the cluster centroids are updated.
This is repeated until convergence.

The resulting segmentation mask was converted into a tensor and used as
feature_mask in SHAP computations, ensuring that attributions were calculated
over homogeneous regions rather than individual pixels. A neutral grey baseline
was adopted to represent the absence of informative features.
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Figure 1.6: SHAP global insights: Summary plot and Dependence plot
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Figure 1.7: SHAP’s Interpretable Representation

1.3.3 Concept-based Methods

Traditional XAI methods explored so far provide explanations in terms of features
or pixels. However, these representations are often misaligned with the way humans
reason, making the explanations difficult to interpret.

Concept-based Explainable Al (C-XAI) aims to bridge this gap by introducing
human-understandable concepts into the explanation process.

A concept can be any abstraction, such as a color, a texture, an object, or even a
higher-level attribute (e.g., “round,” “spotted,” or “beak”).

Several strategies exist in the literature to define concepts in XAlI:

« Symbolic concepts: Human-defined attributes (e.g., “the beak of a bird”).
e Unsupervised concepts: Clusters of similar samples in the latent space.
« Prototypes: Representative examples or parts of samples.

o Textual concepts: Embeddings derived from textual descriptions of classes.
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As shown in Figure 1.9, these concepts can be linked to model behavior through
different forms of association:

e Class-Concept Relations: Describe the relationship between a specific
concept and an output class of the model. They can express concept importance
or logic rules involving multiple concepts and their connection to an output
class. This type of relation can be applied to all kinds of concepts;

« Node-Concept Association: Assigns a concept to an internal unit (or a
filter) of a network. It enhances transparency by showing what internal units
“see” in a given sample. The association can be defined post-hoc (by analyzing
hidden units maximally activating on concept samples) or enforced during
training (requiring a unit to predict a concept);

o Concept Visualization: Highlights the input features that best represent a
specific concept. Similar to saliency maps but at the level of concepts, this is
particularly useful when non-symbolic or unsupervised concepts are employed.
It helps to understand which attributes or prototypes the network has actually
learned.

One of the most widely used methods in C-XAT is the Concept Bottleneck Model
(CBM). As we can see from Figure 1.8, extracted from the original CBM paper [1],
instead of mapping input x directly to output y, the CBM enforces an intermediate
concept layer ¢ that explicitly predicts human-defined concepts before performing
the final task prediction:

T — glx)=c — flc)=y

Here, g(z) is the concept encoder, mapping inputs to a set of concept predictions,
and f(c) is the task predictor, which takes the predicted concepts and outputs the
final class.

Koh et al. [1] proposed different training approaches:

o Independent: Train g to predict concepts and f to predict classes separately;
o Sequential: Train g first, then use its outputs to train f;
o Joint: Train g and f together, balancing task loss and concept loss.

This method has several advantages. In fact, it produces a transparent, by-
design model that provides explanations in terms of high-level concepts (“I predict
melanoma because the lesion is irregular, dark, and asymmetric”). Moreover, users
can edit predicted concepts and observe how predictions change. In this way,
expert knowledge can also become part of the Al decision process, increasing the
trustworthiness of clinicians.
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However, this strategy also has limitations. Enforcing concept prediction may
reduce classification accuracy compared to black-box models. Furthermore, CBMs
require concept annotations, which are costly to obtain.

input x

concepts ¢

() | sclerosis
| bone spurs task y

CNN . Regressor arthritis
s grade (KLG)

() | narrow joint space

concepts ¢

() | wing color
() | undertail color task y

Classifier
bird species

() | beak length

CNN

Figure 1.8: Concept Bottleneck Structure [1]

Beak — Parrot

.47 Beak

Figure 1.9: Concept Associations
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1.4 Detection Models

Object detection is a core task in computer vision. The objective is not only to
classify the objects present in an image but also to localize them with bounding
boxes. Unlike classification, which assigns a single label to an entire image, detection
produces a variable number of predictions, each one with a dual output:

e Bounding boxes: Four real numbers, where the first two indicate the position
of the upper-left corner, the third represents the width, and the last represents
the height.

o Category label: A single number that indicates the predicted class within a
fixed, known set of categories.

This dual requirement makes detection more challenging and computationally
demanding than simple classification. In clinical applications, such as dermatology,
it enables the identification of specific regions of interest (e.g., skin lesions) within
body images, thus reducing the focus area for subsequent fine-grained analysis.
With the advent of deep convolutional networks, remarkable results were obtained
in this field.

In 2014, Girshick et al. [23] presented R-CNN, introducing region proposals com-
bined with CNN-based classification. In the following years, Girshick proposed Fast
R-CNN (2015) [24] and Faster R-CNN (2016) [25], models that improved efficiency
by integrating proposal generation directly into the network.

Mask R-CNN (2017) [26] extended Faster R-CNN by adding a segmentation branch,
becoming the first widely adopted unified model for detection and instance segmen-
tation. While convolution-based methods proved extremely effective, they relied
on complex pipelines, anchor design, and non-maximum suppression (NMS). These
handcrafted components limited scalability and generalization.

Inspired by the success of Transformers in natural language processing, DETR
(2020) redefined object detection as a set prediction problem. Instead of using
anchors and post-processing, DETR applied encoder—decoder attention to produce
object queries directly matched to ground-truth boxes via bipartite matching.
Although DETR was conceptually elegant, it suffered from slow convergence and
suboptimal performance compared to CNN-based models. This led to several
improvements:

« DAB-DETR [27]: Introduced dynamic anchor boxes.
« DN-DETR [28]: Leveraged denoising training to accelerate convergence.

« DINO (2022) [29]: Combined these ideas with improved query selection and
anchor refinement, achieving state-of-the-art detection on COCO [30].
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Despite these advances, a gap remained: the best detection and segmentation
models were still separate. DINO excelled at detection, while Mask2Former [31]
excelled at segmentation.

To address this, Mask DINO (2023) [32] was proposed as a unified Transformer-
based model for both detection and segmentation. Its contributions include:

1. Mask prediction branch: Added in parallel to the box prediction head,
enabling instance, semantic, and panoptic segmentation.

2. Unified query selection: Leverages encoder tokens to generate both masks
and boxes, allowing early mask predictions to guide better box initialization.

3. Unified denoising: Extends denoising training to masks, improving stability
and convergence.

4. Hybrid matching: Incorporates classification, box, and mask losses into
bipartite matching, ensuring consistency across predictions.

The key contribution of Mask DINO is the demonstration that detection and
segmentation can reinforce each other: masks provide pixel-level priors for detection,
while detection pretraining on large datasets boosts segmentation performance.
In benchmarks, Mask DINO achieves state-of-the-art results across all segmentation
tasks (instance, semantic, and panoptic) while also surpassing DINO in detection.

1.5 Al in Dermatology

Dermatology has become a preferential field for AI due to the reliance on visual
data such as dermoscopic and clinical images.

According to Liopyris et al. [33] “CNN algorithms can classify skin lesions from
dermoscopic images with superior or at least equivalent performance compared
to clinicians”. The availability of large public dataset such as the ISIC Archive
[34] has significantly accelerated research. Despite these promising outcomes,
challenges remain regarding generalizability, image quality, and integration into
routine practice.

One of the major concerns is the lack of diversity in training data. Danashjou et al.
[35] highlight this gap by releasing the Diverse Dermatology images (DDI) dataset,
the first to include expert curated and pathologically confirmed images with diverse
skin tone. They show that state-of-the-art algorithms such as DeepDerm [36] and
ModelDerm [37] “exhibit substantial limitations on the DDI dataset, particularly
on dark skin tones and uncommon diseases.”. Specifically, they found that training
on diverse data closed the performance gap, demonstrating the critical role of
representative datasets in addressing algorithm bias.
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Transformer-based models offer better capture of long-range dependencies in images:
Gallazzi et al. [38] showed that by merging multiple datasets into a larger one,
transformer architectures achieved 86.37% accuracy on standardized test data; this
demonstrates that “the Transformer-based architecture achieves state-of the-art

performance in skin lesion classification, outperforming traditional CNNs and other
DL models previously employed for similar tasks.”
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Chapter 2

Methodologies

In this chapter, the methodological and technical implementation of the proposed
AT agent is described. The focus is on presenting the modular structure of the
agent and the tools integrated to achieve multimodal reasoning and explainable
decision-making.

The chapter is organized into six main sections. First, the structure of the system
is introduced, together with the technical details such as the libraries used for the
implementation of the agent, the reasoning core, and the memory component.
Subsequently, the embedding tool is presented, which manages the retrieval of
patient metadata and embeds them in a form that can be integrated into the
input of the classification model. The classification tool is then analyzed in depth,
covering the model architecture, datasets, and the adoption of a concept bottleneck
model to enhance explainability. The saliency tool section focuses on the techniques
used to generate visual explanations. Finally, the detection stage that localizes
multiple lesions at risk within complex dermatological images.

Together, these modules form a unified framework capable of supporting clinicians
in their diagnostic workflow.

2.1 Agent Structure

The AT agent is designed as a modular framework that integrates a Large Language
Model (LLM), which orchestrates reasoning and tool selection within a ReAct loop.
This allows the agent to iteratively decompose a medical query into sequential
steps of observation, reasoning, and action, dynamically deciding which tools
to employ.

The agent is built on top of the LangChain and LangGraph frameworks. The
first simplifies the integration of LLMs with external tools, APIs, and memory
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modules, enabling the creation of flexible agents supporting a wide variety of mod-
els, from open-source to proprietary ones. Owing to this flexibility, the following
chapter is dedicated to experimentation across multiple LLMs to determine which
is most effective in this context. The current implementation employs GPT-40
with vision.
LangGraph extends LangChain with a graph-based orchestration layer for manag-
ing stateful agent workflows, supporting multi-step reasoning, parallel tool execution,
and control over the decision path.
To maintain context and enable multi-turn interactions, the agent uses a short-
term memory implemented through LangChain. This component stores both
user queries and tool outputs, providing continuity across the reasoning process.
Memory ensures that intermediate results, such as detected lesions or previous
classifications, can be reused in subsequent steps, reducing redundant computations
and supporting coherent dialogue with the user.

As shown in the figure 2.1 the system integrates multiple specialized tools, each
implemented as an independent module that communicates with the LLM through
structured calls. The toolset includes:

e Detection tool, used to identify and segment multiple lesions in panoramic
body images;

o Classification tool, trained on heterogeneous dermatology datasets and
enhanced with a concept bottleneck model;

o Saliency tool, which applies gradient-based and perturbation-based methods
to generate interpretable visual explanations.

The modularity of the system ensures that tools can be updated or replaced

independently by simply defining a new class, specifying the tool’s input/output
formats and capabilities. The LLM can then learn its usage without additional
training.
For each tool, two classes are defined: the first inherits from BaseModel and defines
the input parameters that the LLM must specify in the tool call; the second extends
the BaseTool class from Pydantic and contains the logic of the tool. In particular,
it must override the _run method, which implements the actual execution logic and
is invoked whenever the LLM calls the tool. In addition to the synchronous _run
implementation, an asynchronous counterpart _arun is also defined. This method
allows the tool to be invoked in asynchronous workflows, where non-blocking
execution is required.

To guide the agent toward producing a clinically accurate, transparent and safe
answers the system prompt was defined as follow:

You are an expert medical AI assistant capable of answering
medical questions and analyzing dermatological images with

24



Methodologies

reasoning similar to that of a clinician. Your responses must
always be careful, transparent, and should never be presented
as a definitive diagnosis. At the end of every answer, you must
explicitly remind the user that your interpretation does not
replace a professional medical evaluation and that consultation
with a qualified specialist is required. Use your own visual
reasoning to analyze the images and rely on available tools to
complement and strengthen your conclusions. You may perform
multiple tool calls, either in sequence or in parallel, to
achieve a more complete and reliable assessment. Always review
and critically evaluate the outputs of each tool, highlighting
their usefulness, consistency, and possible limitations. If
essential information is missing, you may ask one concise,
specific follow-up question to clarify before proceeding, but
never fabricate or assume data that has not been provided.

When you describe results, write in a detailed yet concise

way, offering a structured medical interpretation. Include

the primary finding or suspected pathology, specify whether the
lesion appears benign or potentially malignant, and indicate

a qualitative confidence level such as low, medium, or high.
Support your reasoning by referencing the key visual evidence
observable in the image, such as asymmetry, border irregularity,
color variation, diameter, or evolution (following the ABCDE
criteria), as well as any notable dermoscopic structures if
visible. Whenever appropriate, you may mention one or more
plausible differential diagnoses and indicate any concerning

or suspicious features that would justify further clinical
evaluation. Suggest appropriate next steps, such as dermoscopic
examination, biopsy, or consultation with a dermatologist,
making clear that these are recommendations for further
assessment, not diagnostic conclusions. Tool-generated images
are shown in a box to the right of your textual output. Never
include Markdown image tags or HTML image elements, and never
display any file system paths or URLs, including localhost or
temporary directories. When a tool generates an image, refer
to it only in descriptive form, for example: "Here is the
result: an annotated image highlighting the most significant
regions is shown on the right." Always sanitize tool outputs
before presenting them, removing any technical paths, URLs, or
internal filenames that might appear. Maintain a professional
and informative tone throughout your explanations, clearly
stating the limitations of the analysis and acknowledging any
uncertainty arising from image quality, occlusions, or model
reliability. If your confidence in a finding is low, express
that uncertainty explicitly and explain why. Conclude every
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response with a clear disclaimer such as: "This is not a
medical diagnosis. Please consult a qualified dermatologist
for definitive evaluation."

The prompt initially describe the expected agent behavior in the communication
with the user. It instructs the system how to use the tools and elaborate its
output, and how they should be described in the answer, critically evaluating their
reliability and limitations.

Furthermore, it enforces strict formatting constraints, requiring the model to
describe generated images only in natural language. Finally, the prompt ensures
medical safety and ethical compliance by mandating an explicit disclaimer at the
end of every response, clearly stating that the output is not a medical diagnosis and
that consultation with a qualified dermatologist is always necessary for definitive
evaluation.

» Memory
LangChain

o D

TOOLS

Classification
SwinDI

T

Saliency Tool
gradient-based techniques
perturbation-based techniques

Detection
Mask DINO

- /

text-embedding-3-small

Figure 2.1: Overall design of the Al agent. The LLM acts as the central controller
connecting the clinician’s query to the different vision-based modules.

Finally, to ensure usability in clinical settings, the system has been equipped
with a Gradio-based interface. The interface showed in the figure 2.2 enables
users to:

o Upload dermatological images using the box on the right;
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Enter natural language queries in the text box at the bottom left;

Receive interactive responses in the box on the left;

View visual outputs displayed again in the box on the right;

Clear the chat using the dedicated button.

Transparency is enhanced by showing intermediate tool results alongside the final
reasoning, thereby increasing trust and usability in real-world scenarios.

il MedDerm
Medical Reasoning Agent for dermatology

Agent B Image

oy

4

Drop Image Here

Click to Upload

Upload skin image

Clear Chat

&

Figure 2.2: User interface. The layout displays a dual-panel structure, where the
left section hosts the conversational agent for reasoning and dialogue, and the right
section allows users to upload dermatological images and receive visual results from
the system.
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2.2 Classification Tool

The classification tool is a central component of the proposed system. It is designed
to classify dermatological images and provide reliable predictions across a wide
range of conditions.

In this section, the structure of the model and the strategy adopted to handle the
heterogeneity of available datasets in dermatology are presented.

The tool combines a powerful transformer-based backbone with architectural
mechanisms that allow the integration of knowledge from heterogeneous label
distributions, ensuring robustness and generalization. A description was defined
for all the tools since it is crucial for guiding the agent in the correct selection of
the tool to use. For the classification tool the description is the following one:

This tool analyses dermatologic images and classifies them

for multiple pathologies. Input should be the path to a
dermatologic image file Output is a dictionary with heads (of
the model, directly connected to dataset used to train them)
as key and a dictionary of pathologies and their predicted
probabilities (0 to 1) as values. Example: {’fitzpatrick’:
{’acanthosis nigricans’:0.9987}} Reason over all the output
heads of the model in order to output only one pathology among
all of them

Figure 2.3 shows an example of how the system operates when the classification
tool is employed. In the first image, the left panel allows the user to upload
the dermatological image to be analyzed. The second image displays the agent’s
response, including the model predictions and the corresponding explanation of
the classification results.
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The analysis of the image suggests that the lesion is most likely a -or-
Melanocytic Nevus, which is a benign condition. Here is a summary of Click to Upload
the findings:
= HAMIOk Model: High probability for Melanocytic Nevus (091) and
very low for malignant conditions such as Melanoma.
> DERM7pt-derm Model: High probability for Nevus (0.9999), indicating
a benign nature.

= BCN20k Model: High probability for Melanocytic Nevus (092).
Overall, the lesion is classified as benign across all models, with no

significant indication of malignancy.

Next Steps: If there are any changes in the lesion's appearance or if
h ting with @ for further & ek

examination might be advisable.

. o
This is not a medical diagnosis. Please consult a qualified dermatologist - Upload skin image

for definitive evaluation.
Clear Chat

Ask about the image.

Use via APT & - Built with Gradio ® - Settings &

(b) Agent’s classification response

Figure 2.3: Example of the system interface when the classification tool is
used. (a) The right panel shows the interface section where the user can upload a
dermatological image for analysis. (b) The left panel displays the agent’s response,
including model predictions and an explanation of the classification results.
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2.2.1 Classification Model

The backbone of the model is a Swin Transformer, a hierarchical vision trans-
former that computes image features using shifted windows for self-attention.
Unlike standard Vision Transformers, which compute global attention across all
image patches, the Swin Transformer restricts attention to local windows that are
shifted between layers.

The hierarchical design further allows the extraction of multi-scale features, which
is particularly beneficial for dermatological images where both local texture and
global context are relevant.

On top of the backbone, the classification tool implements a multi-head architecture
to deal with the heterogeneity of dataset labels.

Each dataset used in the training is associated with a dedicated head, trained
independently on its respective label space.

This design prevents conflicts between incompatible taxonomies while preserving
dataset-specific knowledge.

During inference, the features extracted by the Swin backbone are forwarded to all
classification heads, since it is not possible to determine in advance which dataset
a general dermatological image most closely resembles.

The output of the tool is a JSON object, where each key corresponds to a dataset
name and the associated value represents the output of the corresponding head,
expressed in terms of class probabilities. In the next chapter, an experiment will be
presented to validate this approach, demonstrating the ability of the central LLM
to reason across all output heads and improve the accuracy of individual heads by
leveraging the results of the others.

2.2.2 Datasets

The model was trained on five widely used dermatological datasets, each con-
tributing to generalization across different image types, skin tones, and clinical
settings:

« HAM10000 [39]: A large dataset of dermatoscopic images annotated into
seven diagnostic categories, widely used as a benchmark in dermatology.

o Derm7pt [40]: Includes both dermatoscopic and clinical images, annotated
according to the seven-point checklist.

« BCN20000 [41]: A large-scale collection of dermoscopic lesion images acquired
in real-world clinical settings, improving robustness to acquisition variability.

o DermNet [42]: A dataset of clinical photographs covering a wide range of
dermatological conditions.
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» Fitzpatrickl17k [43]: A dataset with 114 skin conditions and diverse skin tones,
ensuring inclusivity and improved generalization across patient populations.

The combination of these datasets allows the model to be more adaptable to
different clinical contexts.

2.2.3 Concept Bottleneck Model

To enhance transparency and interpretability, the classification tool was further
extended with a concept bottleneck model trained on the SKINCON dataset [44].
SKINCON contains images annotated by dermatologists with 48 clinical concepts,
such as color, texture, and morphological patterns.

As shown in Figure 2.4, in this setup, the model is trained to predict these
intermediate clinical concepts before producing the final diagnostic label. This
forces the network to align its internal representation with human-understandable
features.

At inference time, the tool outputs not only the predicted pathology but also the
set of activated concepts that contributed to the decision.

input x

concepts c

() | sclerosis
() | bone spurs task y

CNN ) Regressor arthritis
: grade (KLG)

() | narrow joint space

Figure 2.4: Example of a concept bottleneck model. Raw input images (medical
X-ray and bird photo) are first mapped into high-level semantic concepts, which
are then used to predict the final classification. [1]

However, since the number of images annotated at the concept level is lim-
ited, the overall performance of this component remains restricted. The current
implementation should therefore be regarded primarily as a proof of concept,
demonstrating the potential benefits that could be achieved if a larger quantity of
concept-level annotated data were available.

Beyond improving interpretability, this approach also enables concept inter-
vention. By exploiting the interactive nature of the agent, domain experts can
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directly inspect and even modify the activated concepts through the conversational
interface. This makes it possible to correct mispredicted concepts and guide the
system towards more clinically meaningful predictions.

Figure 2.5 illustrates a possible workflow of the interaction between the agent
and the dermatologist.

Plaque

[[1.48 ...0.10 ... 0.5] H WRONG

behcets disease
Intervention l

[[1 48 ...1.00 ... 0.5] H CORRECT
basal cell carcinoma

Figure 2.5: Concept Intervention: Example of how modifying an interpretable
concept can alter the model’s prediction. Increasing the activation of the Plaque
concept changes the classification from Basal Cell Carcinoma to Behget’s Disease,
illustrating the causal influence of semantic concepts on the model’s decision.

2.3 Embedding Tool

The embedding tool is responsible for integrating patient metadata into the classi-
fication pipeline, ensuring that non-visual information such as age, sex, and lesion
localization contributes to the diagnostic reasoning process. While dermatological
images provide essential visual cues, contextual metadata can significantly influence
classification accuracy and alignment with real-world clinical practice. According
to consultation with an expert dermatologist, the most relevant patient information
for this task are: age, since some conditions are more frequent in older patients;
sex; and the localization of the lesion on the body.

To integrate this information into the reasoning process, patient metadata must
be brought into the same feature space as the image representations. This is
achieved by leveraging text embeddings.

Text embeddings are dense numerical representations of natural language that cap-
ture semantic information in a continuous vector space. The goal of an embedding
model is to map semantically similar inputs (e.g., “male patient” and “the patient
is a man”) to vectors that are close to each other, while semantically unrelated
inputs are mapped to distant vectors.

After several experiments with different text-embedding models, the one that
achieved the best performance was OpenAl’s text-embedding-3-small model. This
state-of-the-art embedding generator is designed for a broad range of applications,
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including classification, semantic search, clustering, and recommendation tasks. It
processes natural language input and projects it into a high-dimensional embedding
space; in this case, using the text-embedding-3-small model, the embedding is
represented as a vector of 1536 real numbers. The model was accessed via the
OpenAl API!, which provides official support and documentation for embedding
generation.

To leverage text embeddings in the dermatological classification pipeline, structured
metadata must first be transformed into natural language sentences. This step
is crucial, as the embedding model is trained to operate on free text rather than
categorical variables.

For example:

o Metadata: { "age": 45, "sex": "female', "localization": "back" }

o Transformed input: “The patient is 45 years old, who is female, with a skin
lesion located on the back.”

By converting structured metadata into natural language descriptions, the
embedding model can exploit its semantic capabilities to generate meaningful
vectors that encode the available patient information. The retrieval of patient
metadata can be performed in two ways:

e The user manually enters them through the interface.
o The patient information is automatically queried from a database.

Once generated, the metadata embeddings are projected to the same dimen-
sionality as the visual features extracted by the Swin Transformer. As shown
in Figure 2.6, the embeddings are then combined, through a simple summation
operation, with the pooled features of the classification model. This fusion allows
the final classifier heads to reason jointly over image features and patient context.
For example, the same lesion appearance might suggest different probabilities
depending on whether the patient is a child or an adult, or whether the lesion is
localized on the face or on the hands. As shown in the experimental section, this
approach leads to an improvement in the overall performance of the classification
model.

'https://platform.openai.com/docs/guides/embeddings
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Figure 2.6: Architecture of the embedding tool. Patient metadata is converted
into natural language, embedded into a numerical vector using the text-embedding-
3-small model, projected to the same dimensionality as the visual features, and
combined with the Swin Transformer representations.

2.4 Saliency Tool

The saliency tool provides a visual explanation of the classification results, highlight-
ing which regions of the input image most strongly contributed to the prediction.
This component is fundamental in the context of explainable AT (XAI), as it allows
clinicians to verify whether the system’s reasoning is coherent with medical practice
and focused on clinically relevant areas of the skin.

Among the tested methodologies, the approach that achieved the most reliable
and interpretable results is Vanilla Gradient.
This method belongs to the family of gradient-based explainable techniques, and it
is the simplest one because it just computes the importance of each input feature
by directly evaluating the gradient of the model’s output with respect to the input
pixels. In the context of our agent, this results in a saliency map where the most
influential pixels are highlighted according to their impact on the target prediction.
The tool was implemented using the Captum library.

The overall workflow is coordinated by the central agent, which can call the tool
by specifying the path of the image and the target label to analyze. This image is
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not an endpoint in itself: it is passed back to the central LLM, which integrates the
visual evidence into its prompt, supporting the reasoning chain in such a way that
it can engage in a clinically oriented discussion with the dermatologist, grounding
its output in interpretable visual cues.

Generally, the agent is instructed to use as target label the predicted class of
the image classifier, but it is possible that reasoning over multiple saliency maps
generated for different target labels could enhance the agent’s reasoning process.
For this reason, in cases where the output of the classification tool is not confident
about a specific class, the saliency tool may be called more than once for the
same image. To instruct the central LLM to use the tool correctly the following
instruction prompt was defined:

A tool that generates a saliency map for a given image to
explain the classification model’s prediction. Before calling
this tool, you must have already classified the image using the
MuteClassifierTool. Pay attention to use the same head used
for the classification. And pay attention to the spelling of
the target class, it must be exactly the same as in the model’s
classes. It takes an image path, and return the saliency maps,
the generated pictures represent in the left the original

image in the centre the image masking and in the right the
blended heatmap, that highlights the regions of the image that
contributed most to the prediction.

To enhance interpretability, the attributions are visualized through three com-
plementary modalities:

1. Original Image: To preserve the clinical context.

2. Masked Image: To highlight which regions were considered important or
irrelevant by the model.

3. Blended Heat Map: To overlay the attribution map on the original image,
providing an intuitive visualization of the salient areas.

An example of the explanation is shown in Figure 2.7, where it can be seen how
easily the user can simultaneously assess the raw input and the isolated relevant
features. As a continuation of the chat showed in figure 2.3, in this other image 2.8
it is asked to the agent to produce the saliency map of the lesion under analysis.
On the right side, it is showed the final result integrated in the left with the agent
analysis.
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Figure 2.7: Example of Vanilla Gradient-based explanation. The figure shows
the original image, the saliency mask, and the blended heat map highlighting the
regions most influential in the classification decision.
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Here is the result: an annotated image highlighting the most significant
regions contributing to the classification of the lesion as a Melanocytic

Nevus is shown on the right.

This visualization helps to understand which parts of the image were
most influential in the prediction. If you have any further questions or

need assistance, please let me know!

This is not a medical diagnosis. Please consult a qualified dermatologist

for definitive evaluation.

*

Upload skin image

Clear Chat

Figure 2.8: Example of the interface during the explanation phase. On the right,
the visualization displays the original image, the positive attribution map, and the
masked result, illustrating how the explanation tool enhances interpretability by
linking model predictions to visible clinical features.
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2.5 Detection Tool

The detection tool is responsible for identifying and localizing multiple suspicious
lesions in wide-field dermatological images. For this purpose, the system leverages
MaskDINO, a state-of-the-art transformer-based model for object detection
and instance segmentation. This model has demonstrated high performance in
generating both bounding boxes and segmentation masks, making it particularly
suitable for the analysis of panoramic body images where several lesions may
coexist.

The model was trained on the SKINPAN dataset, a large collection of 10,050
high-resolution panoramic dermatology images specifically created to support re-
search into lesion detection and segmentation in realistic clinical scenarios. The
dataset was developed at the University of Insubria by PhD student Mattia Gatti,
and represents one of the first resources explicitly focused on panoramic clinical
imagery.

Unlike traditional dermatoscopic datasets such as HAM10000 or BCN20000, which
mostly include close-up images of single lesions, SKINPAN reflects the conditions
of real clinical practice. Each image depicts broad anatomical regions (e.g., back,
chest, abdomen) and contains one or more lesions selected by expert dermatologists
for observation. This context is crucial for diagnostic workflows, as clinicians often
evaluate the distribution, symmetry, and relative characteristics of multiple lesions
within the same patient.

Data collection took place at the Hospital Circolo e Fondazione Macchi di Varese
between 2014 and 2025. Panoramic images were captured by board-certified der-
matologists using the FotoFinder Universe system and the Medicam 800HD
camera, ensuring standardized resolution (1920x1080), lighting, and patient po-
sitioning. Each image was marked with red arrows indicating suspicious lesions,
which served as ground truth for the annotation phase.

The annotations were performed through a semi-automated pipeline that combined
the Segment Anything Model (SAM) with manual refinement. The red arrows
placed during acquisition were automatically extracted and used as prompts for
SAM. Each lesion was labeled as “selected for observation”, indicating that, while
not necessarily malignant, it was clinically relevant and required further analysis.

The dataset includes both bounding boxes and segmentation masks for all lesions
in COCO format. Moreover, metadata such as patient age and anatomical site
of the lesion are also available.

An example of images belonging to the dataset with the relative ground truth is
shown in Figure 2.9.

Additionally, to compensate for the lack of negative samples, the dataset incor-
porated synthetic inpainting using Stable Diffusion XL (SDXL), producing
lesion-free versions of selected images.
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The integration of MaskDINO with the SKINPAN dataset provides a robust
detection tool capable of analyzing wide-field dermatological images in a clinically
meaningful way. The tool is called by the central LLM when it recognizes that
the image contains more than one lesion to be analyzed. The following instruction
prompt is used to guide the LLM in the correct call of this tool:

The tool detects dermatologic lesions in panoramic images

using Mask DINO. The tool must be called only if the image

is panoramic so if in the image are present more that one
dermatological lesion. Returns bounding boxes, scores, and

the path to an image with boxes drawn. You don’t need to give
further details about the boxes, it is enough to show the image
with the boxes drawn on it.

Figure 2.10 illustrates the workflow used to interact with the agent when analyzing
panoramic images.

Figure 2.9: Examples of images from the SKINPAN dataset with annotated
lesions (green contours). The dataset provides bounding boxes and segmentation
masks created through a semi-automated pipeline.
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Figure 2.10: Example of the system interface when the Detection tool is used. (a)
The right panel shows the interface section where the user can upload a panoramic
image for analysis. (b) The left panel displays the agent’s response, while on the
right panel the final image with the predicted bounding boxes
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Chapter 3
Experiments

This chapter presents the experimental evaluation of the proposed framework. The
objective is to systematically assess the contribution of each module to the overall
performance of the dermatological Al agent, analyzing not only accuracy but also
robustness and interpretability. The experiments are organized into four main
sections, each focusing on one of the core components of the system:

» Reasoning Core — Large Language Model: This part evaluates the ability
of state-of-the-art multimodal LLMs, specifically GPT-40, Gemini 2.0 Flash,
and Gemini 2.5 Flash, to reason over dermatological images and interact with
the classification tool (SwinDI).

o Text Embeddings for Metadata: This section investigates how patient
information (age, sex, localization) can be effectively integrated into the
classification pipeline. Different strategies for metadata embedding are tested
to measure their impact on classification accuracy.

» Concept Bottleneck Model: Here the focus is on evaluating the integration
of concept-level annotations from the SKINCON dataset. The experiments
explore how the prediction of intermediate clinical concepts improves inter-
pretability, while also highlighting the limitations imposed by the relatively
small number of concept-annotated samples.

« Explainable AI Techniques: Finally, this section examines the interpretabil-
ity of the model’s predictions. Several saliency-based methods are compared
in terms of visual coherence and robustness when the target class changes.

Together, these experiments highlight the strengths of the modular design by testing
each tool in isolation and observing their combined effect on the overall system.
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Experiments

3.1 Reasoning Core — Large Language Model

In this section, we evaluate the reasoning capabilities of multimodal LLMs in the
dermatological context. Three models were tested: GPT-40, Gemini 2.0 Flash,
and Gemini 2.5 Flash.

All experiments were conducted using the HAM10000 dataset for dermatological
images, complemented with 1,000 non-medical images from ImageNet [45] for the
binary classification tasks.

The tool integrated in these experiments was exclusively the SwinDI classifier,
while other modules of the agent were not considered.

A significant challenge in using a vision model as a tool for a multimodal LLM
lies in the fact that images are represented solely as features. To address this,
we considered two integration methods for incorporating images into the LLM’s
pipeline. In the first, the image path is passed as a text input to the LLM, which
then uses this path to access the image when invoking the vision tool. In the
second, the integration of the image into the prompt of the LLM is achieved by
uploading the image in base64 format and passing it in the API call, as shown in
the following code snippet:

with open(image_path, "rb") as img_file:
img_base64 = base64.bb64encode(img_file.read()).decode("utf-8")

messages .append ({"role": "user", "content": f"the image is located
at: {image_path}"})
messages .append (

{
"role": "user",
"content": [
{
"type": "image_url",

"image_url": {"url": f"data:image/jpeg;base64, {
img_base64}"},
}
1,

3.1.1 Experiment Setup

The experiments fall into three main categories:

« Binary classification (dermatology vs non-dermatology): this exper-
iment tests whether the LLM can distinguish dermatological images from
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non-medical ones. The experiment is carried out in two variants:

— Direct answering (“YES/NO”) without tool calls.

— Tool-call evaluation: The challenge is to call the tool only when the
LLM analyzes a dermatological image, and avoid wasting time when the
image does not contain a lesion. If the LLM decides to invoke SwinDI, it
must also provide a short textual explanation of the image.

The instruction prompts used are the following:

— For the binary classification without tool:

If the image contains a skin lesion answer YES, otherwise
NO. Output [YES, NO] only, without any additional text or
explanation.

— For the binary classification with tool:

If the image refers to skin lesions, answer ’Yes’ and
perform the classification with the tools and use this
information added to the initial text to answer the
question in detail and explain the characteristics
observed in the image.

o Multi-class classification without tool: The goal is to evaluate the inherent
visual ability of the LLM. The task is to classify the images of the HAM10000
test set into seven categories (MEL, NV, BCC, AKIEC, BKL, DF, VASC)
based only on its internal multimodal capacities, without tool support. The
instruction prompt is the following:

Classify this image, using your own vision and reasoning,
into one of the seven classes: MEL, NV, BCC, AKIEC, BKL,
DF, VASC. Output the class name only, without any additional
text or explanation.

o Multi-class classification with tool: Evaluation of how the LLMs integrate
the tool output of SwinDI. SwinDI produces predictions from all dataset-
specific heads. The LLM must reason over these outputs together with its
own vision to provide the final classification. In this experiment the following
instruction prompt is used:

Classify this image, using your own vision and reasoning
into one of the seven classes: MEL, NV, BCC, AKIEC, BKL, DF,
VASC. Use tools to complement your reasoning. Critically
think about the tool outputs. Output the class name only,
without any additional text or explanation.
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3.1.2 Results

Table 3.1: Binary classification accuracy (skin lesion vs. no skin lesion) on images
from HAMTest1512 and a subset of ImageNet. Performance comparison across
multimodal LLMs using either direct question answering or Tool-call evaluation
approach.

Model Direct Tool called

GPT-40 99.92% 99.96%
Gemini 2.0 Flash 99.72% 97.25%
Gemini 2.5 Flash  99.20% 99.68%

The binary classification task reflects a more general diagnostic triage, such

as deciding whether a specialized dermatology tool is needed. Multimodal LLMs
appear to perform significantly better in this simplified context. Table 3.1 reports
the classification accuracies on this binary task using images from HAMTest1512
and a subset of ImageNet.
GPT-40 demonstrates exceptional performance, reaching 99.92% accuracy when
directly answering the binary question. Its performance improves slightly when tools
are used (99.96%), suggesting that tool usage can marginally enhance reliability
even in straightforward tasks. Similarly Gemini-2.0-Flash and Gemini-2.5-Flash
perform strongly. The slightly drop in performance may indicate less efficient tool
invocation compared to GPT-4o0, but overall performance remains robust.

Table 3.2: Comparison of full classification performance on HAMTest1512 between
Vision Models and Multimodal Language Models.

Model Accuracy
SwinDI 86.64%
GPT-40 52.71%

Gemini 2.0 Flash 52.05%
Gemini 2.5 Flash 28.84%

As shown in Table 3.2, SwinDI achieves the highest accuracy at 86.64%, substantially
outperforming all other tested models. The accuracy of the model is obtained by
looking at the specific HAM10000 head. This result confirms the strong suitability
of domain-specific vision models for fine-grained dermatological classification tasks.

In contrast, all tested multimodal LLMs perform significantly worse. GPT-4o,
the best among them, reaches only 52.71%, which is almost 34 percentage points
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below SwinDI. This sharp gap underscores a critical limitation of general-purpose
multimodal LLMs: despite their broad capabilities in vision-language reasoning,
they lack the fine-grained discriminative power needed for medical image analysis
without the support of dedicated vision tools.

Gemini 2.0 Flash performs at a similar level, with 52.05%, confirming that even
across different architectures, general-purpose LLMs struggle to achieve clinically
meaningful accuracy in this highly specialized task. Gemini 2.5 Flash shows a
severe performance drop, reaching only 28.84%, which highlights instability and
inconsistency when applying generalist models directly to medical domains.

Table 3.3: Comparison of full classification performance on HAMTest1512 between
Multimodal Language Models, using the tool output.

Model Accuracy

GPT-40 86.77%
Gemini 2.0 Flash 76.32%
Gemini 2.5 Flash  86.18%

As shown in Table 3.3, the integration of the SwinDI classification tool radically
changes the performance. All three multimodal LLMs significantly improve their
accuracy when reasoning over the tool’s outputs, demonstrating the effectiveness
of combining a domain-specific vision model with a general-purpose LLM.

GPT-40 achieves the best result at 86.77%, even surpassing the performance
of SwinDI alone. In four cases where the tool’s output was uncertain, the LLM
adjusted the prediction, and in two of these cases it selected the correct class.
This shows that GPT-40 is not only capable of orchestrating tool calls but also of
integrating external evidence into coherent and accurate reasoning.

Gemini 2.0 Flash reaches 76.32% accuracy. However, its performance remains
below the other models because, in this experiment, the LLM did not invoke the
tool in almost 400 cases, relying instead on its own visual capabilities which, as
shown in the previous experiment, are limited.

This phenomenon is not observed in Gemini 2.5 Flash, which in most cases
relied on the tool’s output. Nevertheless, in 61 cases it overrode the tool’s prediction,
but less than half of these changes were correct. Despite this, its overall performance
remains strong, achieving 86.18% accuracy.
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3.2 Embedding Tool - Text Embeddings for Meta-
data

The integration of patient metadata into the classification pipeline aims to enrich
the diagnostic process with contextual information that may strongly influence the
prediction. Through consultation with an expert dermatologist, three attributes
were selected from the available metadata as most relevant for dermatological
classification: age, sex, and lesion localization. These features were chosen
because certain pathologies are more prevalent in specific age groups, show different
distributions across sexes, or tend to appear in particular anatomical regions.

3.2.1 Datasets

All experiments were conducted on the HAM10000[39] and BCN20000[41] datasets,
using the classification head associated with the respective dataset. For all ex-
periments, the models were trained from scratch using the same set of training
hyperparameters. The datasets were consistently divided into training, valida-
tion, and test sets, maintaining identical splits across experiments to ensure a fair
comparison.

3.2.2 Experiment Setup
The training configuration is reported below:
» Batch size: 24
e Number of epochs: 100
o Learning rate: 5 x 1075
o Optimizer: Adam

o Early stopping applied if the validation accuracy did not improve for more
than 10 consecutive epochs

The first investigation aimed to establish the most effective method to integrate
textual embeddings with visual features extracted by the Swin Transformer classifier.
Two strategies were tested, both evaluated on OpenAl’s text-embedding-3-small
model on the HAM10000 dataset:

o Concatenation approach: The embedding vector representing the meta-
data was concatenated with the image feature vector produced by the Swin
Transformer. This combined vector was then projected back onto the image
feature dimensionality before being passed to the classification heads.
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e Summation approach: The embedding vector was projected onto the same
dimensionality as the Swin feature vector and then simply added element-wise.

Figure 3.1 shows a visual explanation of the difference between the two ap-
proaches.

Class probabilities
Embedding-N Class probabilities Class probabilities
I

Combined features
Embedding-1 CLL] Embedding-N

Text embeddings

Class probabilities
Embedding-1

Pooled features

H

Pooled features

Pooled features

G

text-embedding-3-small

)

text-embedding-3-small

SWIN model SWIN model
[ | [ oo ] [ecotomen] [ aa | [ s | [covaamion]
(a) Concatenation approach (b) Summation approach

Figure 3.1: Comparison of two strategies for integrating metadata embeddings
with Swin features. (a) Concatenation of pooled image features with text em-
beddings, followed by projection. (b) Projection of text embeddings to the same
dimension as pooled image features and element-wise summation.

Table 3.4: Comparison of full classification with text-embeddings metadata on
HAMTest1512 between two approaches: Concatenation approach, Summation
approach

Approach Accuracy

Concatenation 87.09%
Summation 88.28%

As shown in Table 3.4, both integration strategies for metadata embeddings lead
to an improvement over the baseline performance of 86.64% (without metadata).
The concatenation approach reaches 87.09%, providing only a marginal gain of
less than half a percentage point, suggesting that this integration approach does
not fully exploit the information provided by metadata. In contrast, the summation
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approach achieves 88.28%, corresponding to a clear improvement of more than 1.6
percentage points over the baseline.

This result indicates that simply summing element-wise the projected embeddings
allows for a more natural and effective fusion of contextual information with
visual features. As a result, all subsequent experiments were conducted using this
summation strategy.

Once the integration method was fixed, the next step was to compare different
text embedding models available via public APIs. Two models were tested: OpenAl
text-embedding-3-small and Google Gemini text-embedding-004. The goal
was to evaluate which model provides embeddings that best complement the visual
features in dermatological classification tasks. For each experiment, metadata was
first transformed into natural language sentences (e.g. “The patient is 45 years old,
who is female, with a skin lesion located on the back”), then encoded into dense
numerical vectors by the embedding model, projected, and finally summed with
the Swin features.

3.2.3 Results

Table 3.5: Test accuracy (%) on HAM10k and BCN20k of the SwinDI classification
model with the integration of patient metadata through the text embedding from
OpenAl text-embedding-3-small and Google Gemini text-embedding-004.

Model HAM10k Acc. BCN20k Acc.
OpenAl text-embedding-3-small 88.28% 74.85%
Gemini text-embedding-004 86.43% 74.85%

As shown in Table 3.5, the integration of patient metadata through text embed-

dings produces measurable improvements compared to the baseline performance of
the SwinDI classifier without metadata, which achieves 86.64% on HAM10k and
74.39% on BCN20k. As discussed in the previous experiment, for HAM10000 the
use of OpenAl’s text-embedding-3-small increases accuracy to 88.28%, correspond-
ing to a gain of approximately 1.6 percentage points over the baseline.
This demonstrates that contextual information such as age, sex, and lesion local-
ization can effectively complement visual features, improving diagnostic robustness
in a dataset where intra-class variability is high. The Gemini text-embedding-004
also contributes positively, reaching 86.43%, though its performance remains close
to the baseline, suggesting that its embedding space may be less aligned with the
dermatological context compared to OpenAl’s model.
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For BCN20000, both embedding models reach 74.85%, improving slightly over
the baseline. The more modest gain observed in this dataset may be due to its
higher heterogeneity and noise, which reduce the impact of metadata relative to
visual features.

Overall, these results confirm the importance of metadata integration in derma-
tological Al. The proposed strategy allows the classifier to exploit complementary
information, increasing performance and opening the possibility for future devel-
opment of Explainable Al techniques over the metadata to further enhance the
transparency of the Al Agent.

3.3 Classification Tool - CBM

The Concept Bottleneck Model (CBM) aims to improve interpretability by intro-
ducing an intermediate layer of clinically meaningful concepts between the image
features and the final pathology classification.

3.3.1 Training Strategies

Two different training strategies were evaluated:

e Independent training: In this configuration, the model is divided into two
phases. First, a classifier is trained to predict the set of clinical concepts from
the input image. Then, a second classifier is trained independently to predict
the final pathology label, using as input the ground-truth concepts instead
of the predicted ones. This approach allows the pathology classifier to learn
under ideal conditions, but at inference time it cannot rely on perfect concept
annotations, thus introducing a performance gap.

e Joint: In this configuration, the entire model is trained entirely. Both the
concept predictor and the pathology classifier are optimized simultaneously,
using a combined loss function that balances the concept prediction loss
and the final classification loss. The relative importance of the two terms is
controlled by a weighting parameter A, allowing different trade-offs between
concept accuracy and task accuracy.

3.3.2 Dataset

All the experiement were conducted on the SKINCON dataset [44], which contains
dermatological images annotated with 48 expert-defined clinical concepts (e.g. color
texture and morphological patterns).
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3.3.3 Metrics
Two different metrics were adopted for evaluation:

o Concept prediction: Since concepts classification is a multi-label problem,
the Area Under the Receiver Operating Characteristic curve (AU-
ROC) was used. The ROC curve is a graphically tool used to evaluate the
performance of a binary classifier across different decision thresholds from 0
to 1. on the x-axis we find the False Positive Rate (FPR)

False Positives

FPR =
False Positives 4+ True Negatives

on the y-axis the True Positive Rate (TPR) also called sensitivity or recall.

True Positives

PR = True Positives + False Negatives
The AUROC is calculated as the area under this curve for each of the 48
clinical concepts treated as binary classifier where the concept under analysis
is considered the positive class while the others are the negative ones. Finally
the average is calculated to obtain the final value. An AUROC of 1 indicates
perfect discrimination, while 0.5 corresponds to random guessing.

o Task prediction: the final pathology classification task was evaluated using
accuracy, defined as the proportion of correctly classified images over the
total number of test images.

3.3.4 Loss Functions

Two types of loss function were employed:

« Concept prediction: Binary Cross-Entropy (BCE): For a multilabel
setting with C' concepts, the BCE loss is defined as:
1 C
Lpck = C Z [yelog(Je) + (1 — ye) log(1 — §c)]
c=1
where y. € {0,1} is the ground-truth label for concept ¢ and g, € [0,1] is the
predicted probability.

 Final classification: Cross-Entropy (CE): For a multiclass classification
problem with K classes, the CE loss is defined as:

K
Lop == yrlog(fi)
k=1
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where y;, is the one-hot encoded ground-truth label and g is the predicted
probability for class k.

For joint training, the combined loss is:

L=Lce+NCgcE

3.3.5 Results

The results of the experiment are reported in Table 3.6

Table 3.6: Results of the Concept Bottleneck Model on the SKINCON test set
using independent and joint training with different A\ values.

Training strategy Concept AUROC Task Accuracy

Independent 0.815 0.149
Joint, A = 0.001 0.585 0.373
Joint, A = 0.01 0.678 0.391
Joint, A = 0.1 0.721 0.366
Joint, A =1 0.769 0.373

Figure 3.2 shows the trade-off between concept error (1 - AUROC) and task
error (1 - Accuracy).

CBM Trade-off
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Figure 3.2: Trade-off between concept prediction and task prediction in the
Concept Bottleneck Model. The z-axis represents the concept error (1 - AUROC)
and the y-axis represents the task error (1 - Accuracy).
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3.3.6 Discussion

The results highlight a clear trade-off between concept prediction and task accuracy:
The independent training strategy achieves the highest AUROC for concept
prediction (0.815), showing that the model can learn meaningful concept-level
representations. However, task accuracy remains very low (0.149), as the pathology
classifier is trained on ground-truth concepts and cannot handle the noisy predicted
concepts at inference time.

The joint strategy sacrifices some concept accuracy in order to improve the final
classification task. For example, with A = 0.01 the model achieves the best task
accuracy (0.391) despite a lower concept AUROC (0.678). This demonstrates
that learning concepts and pathologies together can result in better end-to-end
performance.

Increasing A shifts the balance towards better concept learning but slightly reduces
task accuracy. Conversely, very low A values prioritize task prediction but degrade
concept interpretability.

For a fair evaluation of the results, a further experiment was conducted. The
original model (without the CBM architecture) was trained on the SKINCON
dataset using the Fitzpatrick label distribution and was therefore evaluated on the
SKINCON test-set only on the head corresponding to the Fitzpatrick dataset.
Table 3.7 shows a comparison between the task accuracy of the different training
versions of the concept bottleneck model and the original model.

Table 3.7: Comparison between the task accuracy over the SKINCON test-set of
the original model and the different training versions of the Concept Bottleneck
Model (CBM).

Model Version Accuracy
Original model 0.4161

Independent 0.149
Joint, A = 0.001 0.373
Joint, A = 0.01 0.391
Joint, A = 0.1 0.366
Joint, A =1 0.373

The introduction of the Concept Bottleneck Model (CBM) leads to a slight
deterioration in task accuracy compared to the original model. This behavior
is expected, as the additional concept prediction layer constrains the model’s
capacity to optimize purely for performance. However, this trade-off is a typical
and acceptable outcome: while the CBM slightly reduces accuracy, it significantly
enhances interpretability, allowing the model’s decisions to be better understood
and grounded in human-interpretable clinical concepts.
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3.4 Saliency Tool - Explainable AI Techniques

These experiments were conducted to perform a comparative analysis of different
methodologies for generating saliency maps, with the aim of assessing their effec-
tiveness in the dermatological context.

As explained in Section 1.3, saliency maps provide a visual explanation of the
model predictions by highlighting the regions of the image that contributed most
to the classification.

This type of explanation is particularly relevant in clinical practice, as it allows
one to evaluate the alignment of the model’s reasoning with the visual evidence
typically used by dermatologists.

3.4.1 Experiment Setup

The experiments were implemented using Captum, an open-source library by
Meta that provides a wide range of attribution algorithms for deep neural networks.
Four explanation techniques were tested:

e Vanilla Gradient: Computes the gradient of the target class with respect to
the input pixels. Based on the value of the gradients, the attribution matrix is
generated and then overlaid on the original image to create the saliency map.

e Input x Gradient: Multiplies the gradients by the input values, giving more
weight to pixels with higher intensity. This method emphasizes the relative
contribution of each pixel in the original image to the target class.

o Integrated Gradients: Estimates pixel importance by integrating gradients
along a path from a baseline image to the actual image. This technique can
be memory-intensive, so specific parameters must be set to avoid memory sat-
uration. In particular, n_ steps = 200 represents the number of interpolation
steps, and internal_batch_size = 10 indicates that the algorithm divides the
total number of steps x examples into chunks of size at most 10, which are
processed sequentially.

o« Kernel SHAP: A technique based on the Shapley value approach that
estimates the contribution of image regions (superpixels) to the output. The
first design choice for this method is how to generate the feature mask; in
this case, SLIC [22] was used with 100 superpixels. Two parameters were
tuned for this method: n_ samples = 400, representing the number of samples
of the original model used to train the surrogate interpretable model; and
perturbations_per__eval = 32, which groups several perturbations together
in a single forward pass (as a batch), speeding up the process.
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The first three methods were also implemented with SmoothGrad, a technique
that reduces noise by generating N noisy versions of the same input by adding
Gaussian noise and then averaging them. Captum enables this strategy through
the NoiseTunnel class. The following parameters were used:

o nt_samples = 30: The number of noisy versions of the input image generated.

e nt_samples_batch size = 5. The batch size used to process the noisy
samples.

e stdev = 0.2: The standard deviation of the Gaussian noise added to the input
image.

To provide a qualitative comparison of the different explanation techniques,
Figure 3.3 reports an illustrative example generated from the same dermatological
image. The figure shows the resulting saliency maps obtained using the five
methods under evaluation. This visualization highlights the distinct behavior of
each technique in terms of localization, precision, and comprehensibility of the
explanations.

For each technique, the continuous attribution values were converted into binary
masks. This was achieved through normalization followed by percentile thresholding:
only pixels above the 70th percentile were set to 1. The dataset used for these
experiments was HAM10000 [39], which includes annotations for both classification
and segmentation tasks.

The generated masks were compared with the ground-truth segmentation masks
using the Intersection over Union (IoU) metric. The IoU is defined as the ratio
between the intersection and the union of the predicted mask P and the ground-

truth mask G:
B |P NG|

- |PUG|
When evaluating across a dataset of N images, the mean IoU (mloU) is computed
as the average IoU over all samples:

IoU(P, G)

1 N
mloU = N ZIOU(H, G;)

i=1
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(c) Integrated Gradients (d) Kernel SHAP

Figure 3.3: Example of saliency maps generated for the same dermatological
image using different explanation techniques: (a) Vanilla Gradient, (b) Input x
Gradient, (c) Integrated Gradients, and (d) Kernel SHAP.
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3.4.2 Results

The evaluation was conducted on 320 images from HAM10000, equally split between
correctly and incorrectly classified samples. The mean IoU results for each method
are shown in Table 3.8.

Table 3.8: Mean Intersection over Union (mloU) between the saliency maps and
the ground-truth segmentation masks on 320 images from the HAM10000 dataset.

Explanation Technique mloU

Integrated Gradients 0.242
Input x Gradient 0.234
Vanilla Gradient 0.421
Kernel SHAP 0.191

The best-performing technique was Vanilla Gradient, which outperformed
more complex approaches. This finding is notable, as it suggests that a simple
gradient-based method can better capture clinically relevant regions compared
to theoretically stronger but more complex algorithms. Kernel SHAP obtained
the lowest scores, likely due to its reliance on superpixels, which do not always
align with lesion boundaries. Integrated Gradients and Input x Gradient achieved
comparable intermediate results.

3.4.3 Error Analysis and Central Agent Perspective

A second analysis focused on misclassified images. The goal was to investigate
whether saliency maps could reveal that the model was attending to incorrect image
regions, particularly when the classification was wrong.

With this objective, the IoU values were compared between Vanilla Gradient
attributions and the ground-truth segmentation masks for the subset of correctly
classified images. For the subset of misclassified images, the explanations were
generated twice: first by targeting the predicted class, and then by targeting the
ground-truth class. The results are shown in Table 3.9.
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Table 3.9: Mean IoU (mloU) values obtained when comparing saliency maps
generated with Vanilla Gradient against ground-truth segmentation masks. Results
are reported for correctly classified images and for misclassified images, using both
the predicted class and the ground-truth class as targets.

Scenario mloU
Correct predictions 0.451
Wrong predictions, target = predicted class 0.395

Wrong predictions, target = ground-truth class  0.392

The small difference between the latter two values suggests that, in misclassified
cases, saliency maps do not realign with the ground-truth class. Nevertheless,
the consistent difference observed between correctly classified and misclassified
images highlights a potentially valuable signal for the central reasoning agent: it
could detect unreliable predictions through the explanations and trigger alternative
reasoning strategies.

3.4.4 FEvaluation of SmoothGrad

Finally, the impact of the SmoothGrad technique was assessed. SmoothGrad
reduces noise in gradient-based explanations by averaging attributions from multiple
noisy versions of the same input. Three methods were tested with and without
SmoothGrad. The results are shown in Table 3.10.

Table 3.10: Comparison of mean IoU (mloU) with and without the application of
SmoothGrad (SG). Results are reported for the three gradient-based explanation
techniques. SmoothGrad consistently improves the overlap with the ground-truth
segmentation masks.

Explanation Technique mloU without SG mloU with SG

Integrated Gradients 0.205 0.242
Input x Gradient 0.192 0.234
Vanilla Gradient 0.301 0.421

In all cases, SmoothGrad consistently improved mloU, confirming its effectiveness
in generating clearer and more clinically aligned saliency maps.
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Chapter 4

Conclusions

This thesis has presented the design, architecture, and evaluation of an Al agent
framework for the diagnostic support of dermatologists. The system integrates a
reasoning core, based on a multimodal Large Language Model, with a set of special-
ized tools for image classification, lesion detection, patient metadata integration,
and explainability.
The central idea is to produce a chatbot that not only generates accurate results
but also explains its decisions in a transparent way, incorporating the expertise of
dermatologists into the reasoning loop. To achieve these results, the system com-
bines general-purpose reasoning with domain-specific models, avoiding retraining
or fine-tuning of the LLMs with medical data, and creating a framework that is
scalable and customizable for every specific use.
The experimental results highlight several key findings. First, general-purpose mul-
timodal LLMs struggle to classify dermatological images, confirming that domain
knowledge is essential in medical applications. Second, the integration of vision
tools such as the SwinDI classifier significantly improves performance, demonstrat-
ing the effectiveness of a modular design and highlighting the LLMs’ capabilities
in orchestrating tools. Third, the incorporation of patient metadata, encoded as
text embeddings, provides measurable improvements, showing the effectiveness of
contextual information in the clinical workflow and the robustness of the chosen
integration strategy.
Moreover, the experiments with Concept Bottleneck Models illustrate the po-
tential of aligning predictions with human-understandable concepts, improving
interpretability. However, the limited amount of dermatological images annotated
at the concept level constrains the effectiveness of this technique, revealing a
trade-off that is more unbalanced toward model transparency than performance.
Looking ahead, several directions for future work can be identified. A pos-
sible enhancement of the Concept Bottleneck Model could be the adoption of
Concept Embedding Models [46]. Instead of explicitly predicting concepts before
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the final diagnosis, concept embeddings would represent them in a continuous
high-dimensional latent space, capturing richer relationships and providing better
generalization. These embeddings can also be aligned with textual or medical
knowledge representations and do not strictly require every training image to be
annotated with concepts. In fact, CEMs can leverage large unannotated datasets
by aligning to embedding spaces. Moreover, this technique allows the incorporation
of new concepts without retraining the models, as they can naturally be embedded
into the same representation space.

Further research could also investigate attention-based explanation methods. In
this thesis, gradient-based and perturbation-based saliency methods were employed,
but since the model to explain is based on a Transformer, attention can also be used
to retrieve the attributions for the saliency map. In the literature, methods have
been proposed that leverage attention to produce faithful and effective explanations,
showing that this direction can provide high-quality attribution maps [47]. Applying
these strategies to the Swin Transformer remains challenging due to its hierarchical
structure, which does not produce fixed-size attention maps. Leveraging attention
mechanisms directly for interpretability could yield explanations more faithful to
the model’s reasoning.

Finally, an exciting perspective could be the development of multi-agent systems.
In this context, different agents could cooperate by specializing in subtasks or
interact in an adversarial way to challenge each other’s predictions, ultimately
improving robustness. These multi-agent dynamics could reflect the collaborative
and critical discussions of clinical teams, enhancing both accuracy and reliability.
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