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Abstract

As mobility evolves, Electric Vehicles (EVs) are becoming increasingly prevalent,
offering new challenges and opportunities for understanding user behavior and
optimizing charging strategies.

This thesis presents the enhancement and evaluation of a Battery Electric Vehicle
(BEV) simulator, along with an analysis of the factors behind unsatisfied trips for
specific EV models under predefined charging policies. The study uses real-world
driving data on ICE cars provided by UnipolTech.

A previous version of the simulator developed by the research team was enhanced
in terms of efficiency, scalability, realism, and flexibility, and models the behaviors
of diverse charging profiles, specifying constraints based on time of the day, day
of the week, charging durations, state-of-charge (SoC) thresholds, and charger
preferences (AC or DC); integrating 50 EV models with different battery capacities,
energy consumption rates and charging capabilities. From this catalog of EV
models, five representative cars were selected for detailed analysis, ranging from
small-battery EVs like the Dacia Spring to high-autonomy vehicles such as the
Audi A6 Sportsback e-tron.

A central focus of the study is the categorization and analysis of unsatisfied
trips; those that could not be completed due to insufficient battery charge or were
inhibited from recharging due to restrictions from predefined charging policies. For
this study, nine different charging policies were simulated and analyzed, ranging
from highly flexible to time-restricted approaches.

Anonymized trip data were obtained from five Italian provinces: Milano, Asti,
Grosseto, Sassari, and Trieste; selected to represent diverse geographical, demo-
graphic, and territorial contexts. These cities vary in population density and area,
seeking to capture variations in driving behavior influenced by urban size, road
networks, and typical trip patterns.

Over 90% of trips are shorter than 35 km, while seasonal trends highlight longer
trips during summer vacations and specific holidays.

The results of the simulations indicate that flexible charging policies consistently
achieve the highest satisfaction rates, often exceeding 93%, whereas restrictive
policies lead to a greater proportion of unsatisfied trips. EV adoption and trip
satisfaction depend not only on vehicle performance but also on aligning charging
policies with specific user behavior conditions.

Cross-city analysis showed that, despite differences in territory and population
density, average trip distances, including typical maximum distances and average
parking times per user, fall within the capabilities of small-battery EVs. With a
flexible charging policy, Milano could reach up to 85% of satisfied users (being



the least adaptable), while Sassari emerges as the most adaptable city, achieving
98% satisfaction, mostly with low-range EVs. However, under stricter policies,
the forecast changes significantly: overall satisfaction rates drop, with Sassari still
leading at 46.5%, followed by Milano at 39.3%. In this scenario, fulfilling user
needs requires higher-range EVs compared to the flexible policy case.

The study suggests that, with well-designed policies and adequate infrastructure,
BEVs can meet daily mobility demands efficiently and sustainably, supporting
broader EV adoption in urban environments with driving patterns similar to those
observed in the studied cities. For users who regularly undertake longer trips,
however, selecting vehicles with greater autonomy and adopting a planned charging
strategy remains essential to ensure high satisfaction levels.
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Chapter 1
Introduction

The global shift toward sustainable mobility has accelerated the adoption of Electric
Vehicles (EVs) as a viable alternative to internal combustion engine (ICE) vehicles.
EVs offer multiple benefits, including reduced greenhouse gas emissions, lower air
pollution, and decreased dependence on fossil fuels. The European Climate Law
writes into law the goal set out in the European Green Deal for Europe’s economy
and society to become climate-neutral by 2050. The law also sets the intermediate
target of reducing net greenhouse gas (GHG) emissions by at least 55% by 2030,
compared to 1990 levels. [1]

The first half of 2025 marked a significant milestone for the European battery
electric vehicle (BEV) market, with new registrations up 34% compared to the
same period in 2024. This substantial increase underscores the region’s ongoing
transition towards electrified mobility and highlights the success of supportive
policies and investments in charging infrastructure. For the full year, electric car
sales in the United States are expected grow almost 10% in 2025, with a slight
increase in the electric car sales share.[2]

In a European context, according to the latest available data from July 2025,
electric cars held a market share of 16.8% in France, 18.4% in Germany, 8.9% in
Spain, and 21.3% in the United Kingdom. In the same month, Italy remained at
4.9%, while countries like Belgium and the Netherlands recorded market shares
of 31.8% and 30.9%, respectively. In Italy, the market share of e-cars thus rose to
4.8%, up from 3.4% in August 2024.[3]

In Latin America, sales volumes and penetration rates doubled in many countries,
with electric cars reaching a market share of 4% in 2024. Brazil towered over other
countries in the region with nearly 125 000 electric car sales, more than twice
the number of 2023 sales, and the electric sales share doubled to 6.5%. Costa
Rica, Uruguay and Colombia also achieved impressive EV market shares of around
15%, 13% and 7.5%, respectively. These increases are in large part the result
of government incentives such as tax exemptions, reduced registration fees, a
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Introduction

relaxation of traffic restrictions for EVs, and relatively high fossil fuel prices. [4]

However, their widespread adoption also introduces new challenges related to
energy management, charging infrastructure, and user behavior. Understanding
how EV users interact with charging networks and how charging policies affect trip
feasibility is crucial for designing strategies that maximize satisfaction and ensure
efficient use of resources.

Battery Electric Vehicles rely on limited battery capacities, making trip planning
and charging decisions central to daily mobility. Unlike ICE vehicles, whose refueling
is fast and widely accessible, BEV users must consider the availability, location,
and type of chargers, as well as vehicle-specific parameters such as battery size,
energy consumption, and charging rates. These factors, combined with user habits
and urban contexts, can lead to scenarios where trips may be partially or fully
uncompleted if charging strategies are not appropriately aligned with mobility
patterns.

1.1 Context and Motivation

Despite the rapid growth of EV markets, challenges remain in understanding how
different user behaviors, vehicle characteristics, and urban environments interact
with charging strategies. Many EV users face uncertainties regarding charging
availability, optimal charging times, and the impact of limited battery capacities
on trip feasibility. Additionally, potential users transitioning from ICE vehicles
may be hesitant to adopt EVs, as they are unsure whether an EV can reliably meet
their daily mobility needs.

These challenges highlight the need for data-driven tools that can simulate
EV usage, evaluate charging policies, and assess trip satisfaction under realistic
conditions.

Using these tools, a general assessment per city can be obtained from the
provided user samples to evaluate the potential adaptability of each city to an e-
mobility transition. Additionally, the same tools could be applied to individual case
scenarios, allowing a single user to input their trip data and driving behavior into
a simulator to analyze any unsatisfied trips and their underlying causes, providing
greater confidence in deciding whether to transition to an EV.

This thesis is motivated by the need to bridge this knowledge gap by combining
empirical driving data with a flexible, scalable Battery Electric Vehicle simulator.
By analyzing real trips in different Italian cities and evaluating multiple charging
strategies, the study aims to provide insights into how charging policies influence
user satisfaction, how vehicle performance aligns with typical urban mobility
patterns, and what strategies can support broader EV adoption. To achieve these
goals, the following objectives are defined:
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Objectives:

Enhance an existing BEV simulator to improve realism, scalability, efficiency,
and flexibility.

Replicate and analyze user trips from five Italian cities with diverse geograph-
ical and demographic contexts to assess EV adoption feasibility.

Categorize and analyze the causes of unsatisfied trips under specific charging
policies to assess their impact on trip satisfaction and user behavior in each
city.

Compare BEV simulator results with empirical public charging data to gain
insights into how closely the simulations reflect real-world behavior.

Identify suitable vehicle models and charging strategies that support daily
mobility needs and foster broader EV adoption.

1.2 Thesis Structure

The structure of this thesis is divided by chapters, following a logical progression
from Related Work, Methodology, Results and finally Conclusions.

Chapter 1: Introduction

Provides the context and motivation for the study, setting the stage for the
specific objectives of the thesis.

Chapter 2: Related Work

This section reviews existing research and studies relevant to the adoption
and usage of Battery Electric Vehicles (BEVs), establishes the foundation and
justification for enhancing the BEV simulator and evaluating charging policies
in the context of Italian cities.

Chapter 3: Data Management

Details the sources of the empirical driving data and explains how the data were
structured in preparation to be used as input for the simulations. Describes
the collection, preprocessing, and characterization of the data used in the
thesis.

Chapter 4: Methodology

Describes the predefined charging policies considered in the study, detailing
the rules, constraints, and flexibility levels applied for each policy. Next,
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it introduces the enhanced BEV simulator, explaining its features, presents
the methodology used to evaluate BEV trip feasibility. Later, outlines the
methodology for categorizing unsatisfied trips, identifying cases where trips
could not be completed due to insufficient battery charge or were restricted
by charging policies.

Chapter 5: Results

Contains the outcomes of the BEV simulations and analyses conducted in the
study. It summarizes the characteristics of the replicated trips, across the five
Italian cities. The section then evaluates the performance of different charging
policies, highlighting their impact on trip satisfaction and user behavior. It
also includes the categorization of unsatisfied trips.

Chapter 6: Conclusions

Discusses the impact of different charging policies on trip satisfaction and
the main causes of unsatisfied trips, emphasizing the importance of aligning
vehicle performance and charging strategies with user behavior and city-specific
conditions.



Chapter 2

Related Work

The current thesis continues the work previously conducted by Jamalof [5], who
used real-world driving data from 1,000 insurance customers to assess EV adoption
feasibility, focusing on user-specific trip patterns. A custom-designed simulator
formed the core of that study, evaluating EV feasibility by processing inputs such as
trip data, user parameters (e.g., anxiety thresholds, minimum parking durations),
vehicle parameters (e.g., battery capacity, consumption per road type, maximum
charging power), and grid parameters (e.g., AC and DC charging powers). The first
phase of Jamalof’s study adopted a more abstract approach, as input parameters
were not tied to specific EV models, instead considering diverse driving conditions
and vehicle energy demands. The second phase introduced nine distinct charging
profiles to account for real-world variations in charging behavior, incorporating
conditions such as charging during weekdays or weekends, overnight or daytime
hours, and SoC thresholds. These charging policies, initially defined in Jamalof’s
work, were later adjusted and refined for the current research. Phase Three retained
the nine user profiles from Phase Two to ensure consistency in behavioral modeling,
but shifted focus from hypothetical battery capacities and consumption patterns to
the real-world specifications of commercially available EVs. The current thesis builds
directly upon this framework, overcoming the limitations of Jamalof’s simulator by
providing a deeper analysis of the causes of unsatisfied trips and incorporating the
complexity of evaluating trips across different geographical contexts.

Part of the limitations observed during Jamalof’s research concerned the scal-
ability and flexibility of the simulator. The programming techniques employed
were designed for a relatively small dataset of about 4 million trips from the city
of Asti. Computations were performed row-by-row, which becomes infeasible for
larger datasets, like those considered in the current study, due to long execution
times and the increased complexity of handling large volumes of data. Regarding
flexibility, the simplicity of the constraints set for each charging policy limited the
simulator’s responsiveness. For example, a vehicle parked even slightly outside
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the allowed charging window, by just one minute, would not trigger a charging
session. Similarly, SoC thresholds were applied only to a few predefined policies,
while for other policies the vehicle could recharge anytime it was parked, provided
the minimum parking time was met. Another area for improvement was the defi-
nition of charging window hours, which were previously set based on theoretical
assumptions. In the current study, these timings were adjusted using actual user

data from each city, allowing the simulator to better reflect real-world charging
habits.

Another studies on the field considers a latent-based segmentation framework
for the investigation of charging behaviour of electric vehicle users. This paper
analyses observational data from a representative sample of German BEV owners
who provided information on mileage and charging activities over a timeframe of
eight weeks. BEV charging patterns, related vehicles kilometres travelled (VKT)
and battery charging behaviour are assessed via a multifaceted empirical framework
that pairs a hazard survival-based model with a log linear regression approach. A
latent class method is also employed to segment BEV owners into different charging
segments. The model suggests two types of charging behaviour exist, consisting
of regular and irregular chargers. Charging frequencies and patterns are found to
be radically different between the two groups under study, with regular chargers
estimated to charge their vehicles 1.5 times more than irregular chargers. Lastly,
the framework proposed is used to explore how charging behaviour will mutate
due to both technology advancements (BEV driving range improvements) and
user-centric factors (VKT variations). Neither technological or user factors are
predicted to substantially affect the inter-charging duration of irregular chargers,
whereas both increasing BEV driving ranges and reducing VKT results in a longer
elapsed time between two consecutive charges for regular chargers. [6]

Macaluso proposes a modelling approach to represent parking activities in urban
areas and obtain key indicators of the electric energy required. The agent-based
model reproduces the dynamics of user parking and assesses the impacts on the
electricity grid during the day. Since the focus is on parking activities, no detailed
data on vehicle trips are required to apply the standard demand modelling approach,
which would require Origin-Destination matrices to simulate traffic flows on the
road network. Preliminary results concerning the city of Turin are presented for
simulated scenarios to identify zones where charging demand can be critical and
peak events in electric power over the day. The model is designed to be scalable for
all European cities because, as the case study shows, it uses available data. The
results obtained can be used for the design of charging infrastructure (power and
type) by zones. [7]

Gerboni offers a novel user-friendly methodology to assess different recharging
scenarios. The methodology was applied to a real case study on an international car
manufacturer based in Italy. Several scenarios were addressed regarding the recharge
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at home of electrified vehicles, considering meter upgrades and different recharging
speeds. The Vehicle-to-Grid (V2G) case was also investigated. The results show
that PHEVs are the most flexible solution where domestic slow recharging is the
only or preferred choice. BEVs become viable when at least a 4.5 kW supply
contract is available together with a fast-recharging infrastructure with a suitable
home grid, or where daytime parking lots with recharging facilities are available.
The application of the proposed methodology to a real case study suggests that
this approach can usefully help decision makers to identify the type of investments
to be made and where they should be carried out. [§]

Di Luca proposes a dedicated battery management system (BMS) is required to
contemporaneously optimize the battery’s state of charge (SoC) and to increase
the battery’s lifespan through tight control of its state of health (SoH). Despite the
advancements in the modern onboard BMS, more detailed data-driven algorithms
for SoC, SoH, and fault diagnosis cannot be implemented due to limited computing
capabilities. To overcome such limitations, the conceptualization and/or implemen-
tation of BMS in-cloud applications are under investigation. The present study
hence aims to produce a new and comprehensive review of the advancements in
battery management solutions in terms of functionality, usability, and drawbacks,
with specific attention to cloud-based BMS solutions as well as SoC and SoH
prediction and estimation. Current gaps and challenges are addressed considering
V2X connectivity to fully exploit the latest cloud-based solutions. [9]

Alamin proposes the structure of a battery digital twin designed to reflect
battery dynamics at the run time accurately. To ensure a high degree of correctness
concerning non-linear phenomena, the digital twin relies on data-driven models
trained on traces of battery evolution over time: a state of health model, repeatedly
executed to estimate the degradation of maximum battery capacity, and a state of
charge model, retrained periodically to reflect the impact of aging. The proposed
digital twin structure will be exemplified on a public dataset to motivate its
adoption and prove its effectiveness, with a high degree of accuracy and inference
and retraining times compatible with onboard execution. [10]

Regarding trips satisfaction, transport authorities and providers use various
standardized indicators in order to evaluate the system performance. The main
objective of this study is to identify the most significant variables that describe
travellers’ satisfaction. An original survey and stakeholder consultation were
conducted across Europe. The relations between overall satisfaction and travel
experience variables, subjective well-being indices, travel-related attitudes as well as
individual- and trip-specific attributes were investigated for individual trip stages
as well as the whole journey experience. The segmentation of the population
into distinguished travellers’ groups revealed distinctively different sets of main
determinants of their satisfaction with various trip stages. The results of this survey
will facilitate the development of a traveller satisfaction measurement tool. [11]
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Data Management

3.1 Data Collection

For the development of the experiments and respective simulations, it was used the
data provided by UnipolTech. The data is collected by the Insurance Agency using
a data collector developed by themselves, named Unibox; the black box provided
by the insurance company Unipol for its customers, has several features, starting
with its tracking system, which is installed in the vehicle and is satellite-based.
This system allows constant monitoring of the user’s driving style and is already
installed in about 4 million vehicles in Italy. [12] The data was gathered from a
sample of their customers who volunteered for data analytics.

The anonymized data was provided for five carefully selected cities, chosen to
represent diverse contexts based on differences in geographical location, population
density, and territorial area. The selected cities are Milan, Asti, Grosseto, Sassari,
and Trieste.

Table 3.1: Resident population distribution and territorial area for each city. [13]

City Population  Area Density
(residents) (km?)  (residents/km?)
Milano 3247 623 1574.45 2 063
Asti 207 310 1 508.95 137
Grosseto 215 328 4 502.28 48
Sassari 471 653 7 697.80 61
Trieste 228 049 212.83 1072

The cities were chosen to capture variations in driving behavior influenced by
differing territorial sizes and population densities. As detailed in Table 3.1, Milan
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exemplifies a mid-size urban area with a high population density; Asti represents a
smaller territory with moderate density; Grosseto encompasses a larger area with
sparse population; Sassari combines extensive land coverage with low density; and
Trieste is characterized by a limited area coupled with a dense population, still
with a low number of residents.

3.2 Data Characterization

3.2.1 Raw Data

The data supplied by UnipolTech with the information of the trips made by their
users contained the following structure:

id_veicolo id_viaggio categoria_strada istante_start istante_stop tot_km
0 1 0 E 2024-08-2718:15:46 2024-08-27 18:18:16 0.71
1 1 0 U 2024-08-2718:15:46 2024-08-27 18:18:16 2.02
2 1 1 U 2024-08-27 19:59:20 2024-08-27 20:24:41 8.51
3 1 1 E 2024-08-2719:59:20 2024-08-27 20:24:41 2.02
4 1 2 U 2024-08-27 21:15:03 2024-08-27 21:16:05 0.00

Figure 3.1: Example of the raw trips dataset and its features.

o id_ veicolo: The vehicle ID is an anonymous identifier that allows to distin-
guish the trips performed by that user.

o id_ viaggio: The trip ID identifies the unique trip made by each user, it can
be repeated for the same user if the trip was routed on different road types.
The number can be restarted on each month.

o categoria__strada: The road category identifies the different kind of roads a
user could take.

— E: Extra urban

— U: Urban

— A: Highway

— "-": Other type of roads

» istante_ start: The start timestamp of the trip segment.
« istante_stop: The stop timestamp of the trip segment.

« tot__km: The distance of the trip segment in kilometers (km).

9
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Besides the information of the trips, it was also provided some anonymous
information related to the users and the kind of vehicle that is driven by them.

id_veicolo commerciale eta_approx genere tipo_veicolo annomese_immatricolazione aliment_auto

0 1 N 48 M 7 2016-06 B
1 2 N 65 M 1 2018-05 D
2 3 N 70 F 1 2015-09 B
3 4 N 36 M 1 2016-06 D
4 5 N 61 M 1 2016-05 B

Figure 3.2: Example of the user information dataset and its features.

o commerciale: Indicates if the vehicle is used for commercial purposes or not.

— N: Personal Vehicle

— S: Commercial Vehicle
» eta__approx: Approximate age of the user.

o genere: The gender of the user. Commercial vehicles do not have an assigned
gender.

— M: Male
— F: Female
» tipo_ veicolo: The categorization of the vehicle based on its purpose, engine
size and weight.
— 1: Passenger private car
— 2: Bus
— 4: Truck over 3.5 tons
— 6: Special-purpose truck over 3.5 tons (camper)
— 7: Motorcycles (> 50 cc)
— 8 Truck up to 1.5 tons
— 9: Truck from 1.5 to 3.5 tons
— 10: Special-purpose truck up to 1.5 tons
— 11: Special-purpose truck from 1.5 to 3.5 tons
— 12: Agricultural machinery
— 13: Mopeds (< 50 cc)
10
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e annomese__immatricolazione: Year and month of the subscription to
Unipol services.

o aliment__auto: The fuel type of the vehicle.

— B: Gasoline
— D: Diesel

— E: Electrical
— G: LPG

— H, I: Hybrid
— M: Methane

: Unknown

3.2.2 Filtered and Curated Data

The experiments conducted in this thesis focus on the evaluation of trips and
users within defined spatial and temporal boundaries. All data exceeding these
boundaries were excluded. The following filters were applied to the raw data
sequentially, in the order presented below:

o Time filter: The analysis considers a one-year period, from June 01%, 2024,
to May 31%¢, 2025. Any trips falling outside this time frame were discarded
accordingly.

o Short Stop Durations: Due to the nature of the data collection through
Uniboz, certain trips were split by brief stops lasting only a few seconds or
minutes. To correct for this, a threshold was applied to define the minimum
duration of a valid stop. Trips separated by pauses shorter than this threshold
were merged together and treated as a single trip. The threshold was defined
in 1 minute after evaluating the stopping time distribution of the cities.

e Duration and Distance Outliers: To ensure data reliability, trips were
filtered based on their duration and distance to exclude unrealistic values. The
distributions of both metrics were analyzed to establish suitable thresholds.
Trips shorter than 1 minute or longer than 12 hours were removed. Similarly,
trips covering less than 5 meters or more than 800 kilometers were excluded.
The assumption is that extremely long trips, likely include breaks due to the
driver’s physiological needs; such trips are treated as separate segments after
each stop, and therefore not affected by this filter.
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o Active Users: The analysis includes only active users, defined as those who
completed at least one trip in every month of the analysis period. Users who
did not use the vehicle for an entire month were excluded from the dataset.

e« Monthly duration gaps: Since trips may not begin or end precisely at
the start or end of each month, gaps often exist between trips. These gaps
are necessary to compute parking durations. To ensure monthly consistency,
where the sum of driving and parking durations equals the total number of
hours in the month, additional rows were inserted into the dataset to account
for these intervals.

Table 3.2: Total number of trips and users before and after filtering for each city.

City Number of Trips Number of Users

Raw Filtered  Percentage Raw  Filtered Percentage
Milano 167 418 918 113 213 729 67.6% 156 779 89 761 57.3%
Asti 13 810 127 9 368 413 67.8% 10 657 6 608 62.0%
Grosseto 23 919 766 16 345 873 68.4% 17851 11223 62.9%
Sassari 34 068 209 21 539 607 63.2% 23841 13 624 57.1%
Trieste 6 303 595 4 211 655 66.8% 6 282 3902 62.1%

After the filtering process (Table 3.2), the retained trip data exceeded 63%
for all cities. Sassari and Milan experienced the highest reduction in user counts;
however, both still retained over 57% of their original users. Notably, despite the
lower retention percentage, these two cities maintained a higher absolute number
of users compared to others with a greater retention rate.

Figure 3.3 illustrates the progression of trip and user counts after each filtering
step. The values were independently normalized against their total raw value to
facilitate comparison across cities. Overall, it is evident that the active user filter
accounts for the most significant reduction in both trips and users.
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Figure 3.3: Normalized count for filtered trips and users per city.

3.2.3 Data Exploration considering only Active Users

After applying the Active Users filter described above, the users under study are
distributed across cities and genders, as detailed in Table 3.3. A portion of these
users corresponds to commercial usage.

Table 3.3: User counts and gender distribution by city.

City Total Commercial Female Male

Count % Count % Count %

Milano 89 761 6998 7.80 33568 37.39 49195 54.81
Asti 6 608 321 486 2663 40.30 3624 54.84
Grosseto 11 223 499 445 4601 41.00 6123 54.55
Sassari 13 624 548  4.02 5492 40.31 7584 55.67
Trieste 3 902 199 510 1585 40.62 2118 54.28

Overall, the gender distribution appears relatively homogeneous across the cities,
with female users representing approximately 40%, male users around 55%, and
commercial users accounting for the remaining 5%. Milano stands out as the city
with the highest share of commercial users (7.8%) while also recording the lowest
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proportion of female users (37%). In contrast, Grosseto reports the highest share of
female drivers at 41%, whereas Sassari shows the lowest proportion of commercial
vehicles, with only 4% of its fleet.

For the demographic characterization, the active users were grouped also into
age bins: |18-25], ]25-35], |35-45], ]45-55], ]55-65], |65-75], |75-85], and |85-100]
years. The youngest user across all cities is 18 years old, and the oldest is 100
years old. Users classified under the "unknown" category correspond to commercial
vehicles.

The highest concentration of users is found in the 55-65 age group (Figure 3.4)
with about the 20-25% of the users, a pattern consistent across all the studied
cities. Asti represents the city with the youngest user population leading the first
part of the age curve, while Trieste reports a higher percentage for older age groups
compared to the other cities. It is noticeable that only Milano and Sassari have
users above the 85 years old.

—— Asti
0251 —— Grosseto
Milano
0.20 1 —— Sassari

Trieste

o o

= —

(<] wn
| |

Normalized Number of Users
o
(=]
(8,

0.00

Age Group

Figure 3.4: Normalized count for users per age group by city.

The user information dataset also provides the fuel type required by each user’s
vehicle. The distribution of users by city and fuel type is presented in Table 3.4.
In general, the current fleet in each city is dominated by gasoline vehicles, followed
by diesel. Although the presence of electric vehicles (EVs) is limited, these users
are of particular importance for the purposes of this thesis, as they will be used for
validation by representing real trips made with Battery Electric Vehicles (BEVs).
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Table 3.4: Number of users per fuel type and city

City Diesel Electrical GPL Gasoline Hybrid Methane Unknown

Milano 22 775 374 5 805 48 948 8 791 844 2 224
Asti 2 825 18 700 2 446 387 65 167
Grosseto 5 531 18 771 3 832 566 250 255
Sassari 6 334 27 355 5 497 508 11 892
Trieste 1214 9 38 2 268 253 5 115
0.6
Fuel Type
—+— Diesel
0.5 —e— Electrical
" --*- GPL
E 0.4 = Gasoline
2 - Hybrid
Ros3 - Methane
13
E City
S 0.2 Asti
=
Milano
0.14 Grosseto
Sassari
0.0- Trieste

Age Group

Figure 3.5: Normalized count of users by age group per fuel type.

By combining the information presented in Figure 3.4 and Table 3.4, it is
possible to analyze the preferred fuel type across different age groups, as illustrated
in Figure 3.5. The distributions were normalized by city and fuel type over the
various age groups. A notable outlier is the relatively high adoption of methane-
fueled vehicles among users aged 25-35 in Trieste. In general, the other fuel types
display consistent patterns, with the largest share of users observed in the 45-75
age range. This trend primarily reflects the overall age distribution of the user,
as seen in Figure 3.4, rather than a significant influence of fuel type. Focusing
on electric vehicle (EV) users (represented by the thicker line), some distinctive
patterns emerge. In Milano, EV users are comparatively younger, with the city
being the only case where EV adoption is observed among individuals aged 18-25.
Milano also reaches its peak among the 55-65 age group, which accounts for nearly
30% of its EV users. In Grosseto, the highest share of EV users is observed in the
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45-55 group, while in Asti, Sassari, and Trieste the peaks are shifted toward the
older 65-75 age group. Trieste, in particular, shows a relatively high concentration
of users also within the 65-85 range, although this distribution is less representative
given the limited number of EV users in the sample.

1.0 1.0
0.8 1
0.8 1
0.6 1
0.6 1 a
o
0.4
04 —— Asti —— Asti
Grosseto Grosseto
—— Milano 0.21 —— Milano
—— Sassari —— Sassari
0.2 —— Trieste —— Trieste
0.0
N 9 K ) 2 o A 5 Q RS 2 oD W & &
Distance (km) Duration (min)
(a) Trip distance (b) Trip duration
1.0
0.9
0.8 {
0.7 1
[T
0 0.6
Q
0.5 =
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041 Gr:osseto
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0.3 —— Sassari
—— Trieste
0.2
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P P PSP S
N QT R
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(c) Stopped duration

Figure 3.6: Cumulative distribution functions for (a) trip distance, (b) trip
duration, and (c) stopped duration between trips, for each city.

Digging into the trips themselves, the distributions of the distance and trip

duration, as well the stopped time in between the trips per user on each of the
cities were computed as a Cumulative Distribution Function as seen on Figure 3.6.

Figure 3.6a illustrates the CDF of trip distances. Across all five cities, over
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90% of trips are shorter than 35 km, with more than 60% being under 5 km.
Sassari records the highest frequency of short trips, while Trieste shows the lowest.
However, Trieste surpasses Asti, Grosseto, and Milano in the proportion of trips
longer than 6 km.

Figure 3.6b presents the CDF of trip durations. Similarly, more than 90% of
trips across all cities last less than one hour. In Sassari and Grosseto, approximately
60% of trips last under 10 minutes, while in Trieste the corresponding threshold is
15 minutes; Asti and Milano fall between these values. Milano exhibits the highest
share of long-duration trips, which may be associated with traffic congestion during
peak hours.

Finally, Figure 3.6¢ shows the distribution of inter-trip stop durations per user.
Considering the start and end time of the trips, the parking times can be estimated.
The inter-trip parking times can be computed as follows, the start of the parking
will be the end time of the last trip, and the end of the parking will be the start
time of the following trip for each independent user.

These values are incorporated into the original dataset for each trip, representing
the parking duration in minutes following the respective trip. The input dataset
for the BEV simulator (described in Section 4) is required to contain the columns
illustrated in Figure 3.7.

vehicle_id trip_id start_trip end_trip dis_highway_Km dis_urban_Km dis_other_Km dis_tot_Km trip_duration end_parking_time park_dur_min
) 2 pre_ip 20206701 2024-06-07 0.000 0.000 0.000 0000 0.000000 2 1893350000
1 2 o 2024-05.02 2024.06-02 0.000 0.400 0.000 0.400  12.450000 e s 2666667
2 2 3 20240692 2020.06°02 0.000 3.000 2,000 5009 10.366667 20208 0 219933333
3 2 o 2024-06:02 2028-06-02 1699 0.000 3.401 16100 14.050000 e o 232250000

Figure 3.7: Example of the input dataset to the BEV simulator.

These pauses can be considered as potential opportunities for EV charging,
providing valuable insights for evaluating the charging policies, which will be
discussed in Section 4. The results for the five cities, indicate that more than 20%
of stops last longer than 6 hours (360 minutes), around 20% fall between 2 and
6 hours, and approximately 60% are shorter than 2 hours. Being Trieste the city
with higher density of longer stop durations.
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Figure 3.8: Probability density function of stopped time between trips for com-
mercial and non-commercial vehicles, for each city.

By merging the datasets provided by UnipolTech using the wvehicle id, it is
possible to characterize the trips for a specific category of users. In this case, we can
evaluate the inter-trip stopping behavior of the commercial and non-commercial
users.

Figure 3.8 presents the probability density function (PDF) of inter-trip stop
durations per city for Commercial and Non-Commercial users. While the overall
trend is similar for both categories, commercial users tend to exhibit a higher
density of shorter stops. The plot has been truncated to highlight longer pauses. In
this scaled view, non-commercial users show a pronounced peak at approximately 4
hours (250 minutes), reflecting a consistent stopping behavior. In Asti, commercial
vehicles display a slight tendency toward a similar pattern. Additionally, a smaller
increase is observed around 8 hours (500 minutes), although this pattern is not
consistent in Sassari and Grosseto. These local variations in stop duration are
likely influenced by typical working hours, where a standard workday of 8-9 hours
may be interrupted by a midday break, or by just personal habits.

Another notable observation for commercial users is that, starting with Milano,
there is an increase in the frequency of stops around 500 minutes, then at 600
minutes the other cities starts to rise the frequency as well for longer pauses,
probably due to break schedules.
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Figure 3.9: Hourly distribution of stopped vehicles per city.
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Figure 3.10: Hourly distribution of parking minutes per city.

By considering the established parking times per city, based on the start and
end time of the parking, it can be estimated the number of cars that are parked
on a given hour of the day. This analysis have being done also by splitting the
parking in Weekdays (Monday to Friday) and Weekends (Saturday and Sunday).
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Figure 3.9 illustrates the normalized distribution of users stopped at each hour
of the day. The normalization was performed separately for weekends and weekdays
for each city as follows:

Considering Uy, to be the number of users stopped in hour h on day d, where
d € D (the dataset per city) and h € H = {0,1,...,23} (the set of hours in a day).
It was first computed the sum of users that where stopped per hour across all the
days on the respective dataset:

Sp = Z Ud,h, Vh e H
deD

Then, it was computed the total sum across all hours:

Stotal = Z Sh

heH

Finally, it was normalized the hourly count to obtain the proportion of users
stopped at each hour:

Sh,

= )
Stotal

P, Vh e H

P, represents the normalized distribution of users stopped at hour A which at
the same time are the values being displayed on Figure 3.9.

The distribution shows, as expected, that during the early morning, when users
begin their journeys, the number of parked vehicles decreases. Following this initial
drop, a relatively flat trend is observed on weekdays between 10:00 and 12:00,
followed by a second decline around midday, indicating higher vehicle usage in the
afternoon. The global minimum number of parked vehicles occurs around 16:00,
after which the number of parked users gradually increases. While the general
trend is similar across cities, there is a noticeable shift toward earlier vehicle usage
during weekends, with a local minimum around 10:00 and a global minimum at
17:00 in Sassari and at 16:00 for the other cities. This analysis provides valuable
insights for establishing charging policies, as it highlights periods during which
vehicles are most frequently parked. Such periods, corresponding to high peaks or
intervals with slower gradients, represent optimal opportunities for scheduling EV
charging.
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Figure 3.11: Hourly distribution for the trips start time.

Figure 3.10 shows the distribution in minutes of the parking duration per hour.
The curve represents the average time duration on each hour, while the colored
area is its respective standard deviation. The highest variability is shown at 7:00,
where in average the users are parked over 50 minutes, but there are still users
parking only between 35 and 40 minutes.

For the Figure 3.11, the start time of the trip has being selected in order to
aggregate the trips by hour, in this way it can be clearer the hours of the day where
the vehicles are usually needed the most, hence, the eventual EV battery should
be ready to start the trip. The Figure 3.11 indicates the total number of trips that
started at a given hour normalized against the total number of trips made on the
respective city during the weekdays and weekends.

From the distribution it can be noticed that most of the trips start between
04:00 and 20:00 hours. The highest density of trips are started between 06:00
and 17:00. And the maximum peak of trips during weekdays are usually started
between 15:00 and 16:00. There is a significant reduction of trips started during
mid-day. In particular during the weekends, the start time of the trips are usually
later in comparison to the weekday trips and its global maximum is during the
morning around 09:00.
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To gain a deeper understanding of travel patterns, the distribution of trips across
the days of the week was analyzed (Figure 3.12a). The results indicate a consistent
trend, with the majority of trips occurring from Monday to Thursday and a slight
increase observed on Fridays. In contrast, weekend activity is considerably lower:
trips on Saturdays account for less than 14% of the total, while those on Sundays
represent fewer than 11% of all trips.

Nonetheless, as shown in Figure 3.12b, which presents the average distance
traveled per user on each day of the week, it can be observed that although the
number of trips during weekends is lower, the distances covered tend to be longer. In
contrast, weekdays exhibit a higher frequency of trips, but these trips are generally
shorter in distance.

In Sassari, however, the difference between weekday and weekend distances is
minimal. As noted in Figure 3.6a, Sassari has the highest density of short trips
among the cities. In this case, the reduced number of trips during weekends,
without a corresponding increase in distance, suggests that vehicles are simply used
less frequently. While in Milano and Trieste the usage of the vehicles during the
weekends is remarkable, as those are the cities with the longest distances traveled
mostly during the Sundays.

Focusing on Figure 3.12c, the total number of parking hours where computed
and aggregated by day of the week. It allows to understand the days of the week
where the vehicles are mostly parked and eventually are available for eventually
charging the battery of the EV. It can be observed that in general, Thursdays
and Fridays are the busiest days, where the cars are not often parked, actually
there are a lot of trips happening with average distances. During the Saturdays
Milano and Trieste, seems to perform few trips of long distances, but apparently
once arrived to the far destination the vehicles are parked for several time. On
Sundays most of the cities reports a high percentage of vehicles parked. Despite
these daily variations, the overall distribution of parking durations is relatively
uniform, averaging 14.35% with a tolerance of approximately +0.15%.

Given that the datasets encompasses an entire year of trips, analyzing the
potential influence of seasonal variations on user behavior can provide valuable
insights into driving patterns. Figure 3.13 presents monthly aggregated information
on trip distance, duration, and inter-trip stop duration. Each subplot has been inde-
pendently normalized by city and by user category (male, female, and commercial
users), and further adjusted for the number of days in each month. Consequently,
the final values are divided by 28, 30, or 31, depending on the respective month.
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Figure 3.13: Normalized number of trips per month (a) and monthly daily
averages of (b) trip distance, (c) trip duration, and (d) stopped duration between
trips, for each city, segmented by gender.

In general, the trends of the different parameters are similar across cities,
reflecting the expected seasonal behavior, although the effect is more pronounced in
some locations, like Milano. The largest variation occurs in August, corresponding
to the summer vacation period in Italy. During this month, the total number of
trips decreases, but the distances of individual trips tend to be longer. This pattern
also impacts the daily average of inter-trip stop durations, which are reduced
compared to other months. Moreover, as the overall number of trips is lower, the
average trip duration is correspondingly reduced.
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Figure 3.14: Trip durations density per date along the year for Milano.

Other seasonal events may also influence user driving behavior, but as they
occur over shorter periods (e.g., long weekends or single days), their impact is
partially masked in monthly averages. As shown in Figure 3.14, several clusters of
trips with higher distances can be observed throughout the year represented by the
vertical lines with a lighter color, meaning higher density of trips during those days
for a wide range of distances, even for longer distances than usual. Weekend trips
consistently contribute to increased distances, while certain dates show a more
pronounced effect, often associated with holidays or special events. Specifically,
from July to late September (summer vacations) there is a cluster of trips generally
below 600 km. Additional clusters appear around November 1% (All Saints’ Day),
late December to early January (Christmas and New Year), during Easter (with

even longer distances), and in May, corresponding to the long weekend around
Labor Day.

3.3 Electric Vehicles Available on the Market

From the Electric Vehicle Database [14], there were chosen 50 different Electric
Vehicle Models from different car manufactures and ranging different performances,
costs and capabilities. These EV models are reported on Table 3.5.

The features of each EV model that were collected from EV Database consists
on the Clity Consumption, Highway Consumption indicating the performance of the
vehicle depending on the road type, and also the Combined Consumption for trips
mixing different road types, the three consumption features indicates the Energy
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consumed per kilometer (Wh/km). It is also specified the the charging power
(in kW) for the Fast Chargers using DC and for AC Chargers, finally it is also
indicated the Battery Capacity installed on the car in terms of energy (in kWh).
For simplicity, and due to the nature of the trips data, the Combined Consumption
is preferred to generalize the performance of the car. The Autonomy (in km) was
computed by calculating the ratio of the fully charged battery capacity and the
Consumption, resulting in an average of the distance the car could perform with
the SoC at 100% before the trip.

BatteryCapacity

Autonomy =
Y Consumption - 103

Table 3.5: Electric cars with consumption and charging data.

City Highway Combined AC DC Battery Autonomy  Price
# Brand Model Consumption Consumption Consumption Charging Charging Capacity (lam) (Euro)
(Wh/km) (Wh/km) (Wh/km) (kW) (kW) (kWh)

1 Audi q4 sportback e-tron 45 121 190 154 11 175 80 519 €54,950
2 Audi q4 sportback e-tron 45 quattro 131 203 164 11 175 7 469 €56,950
3 Audi q4 e-tron 55 quattro 134 211 171 11 175 7 450 €61,000
4 Audi sq8 e-tron 163 255 206 11 168 106 514 €100,350
5  Audi q4 sportback e-tron 35 120 189 153 11 145 52 339 €47.600
7 Audi q6 e-tron performance 134 213 171 11 260 94.9 554 €68,800
8 BMW i4 edrive35 108 164 134 11 180 67.1 500 €57,600
9 BMW i4 edrive40 109 166 136 11 207 81.3 597 €60,600
10 BMW ix xdrive40 138 215 175 11 148 71 405 €77,300
11 Dacia spring electric 45 98 172 132 6.6 34 25 189 €16,900
12 Fiat 500e hatchback 42 kwh 105 173 138 11 85 37.3 270 €34,990
13 Fiat grande panda 112 190 148 74 100 43.8 295 €24,990
14 Fiat 500e hatchback 24 kwh 101 170 133 11 50 21.3 160 €30,990
15 Fiat 60Oe 108 178 141 11 85 50.8 360 €36,490
16 Ford explorer extended range 122 195 156 11 135 7 493 €48,510
17 Ford mustang mach-e er rwd 129 207 165 11 150 91 551 €78,000
18 Hyundai inster long range 102 170 133 11 85 46 345 €25,400
19 Hyundai kona electric 65 kwh 113 184 145 11 105 65.4 451 €47,190
20 Kia niro ev 112 183 146 11 80 64.8 443 €45,690
21 Kia ev6 standard range 2wd 120 193 154 11 175 54 350 €44,990
22 Kia ev6 long range awd 127 203 162 11 263 80 493 €53,990
23 Mercedes-Benz eqb 250+ 116 183 147 11 102 70.5 479 €53,514
24 Mercedes-Benz eqe suv amg 43 4matic 150 232 189 22 173 90.6 479 €139,438
25 Mercedes-Benz eqt 200 standard 134 225 176 22 80 45 255 €39,623
26 o EQB 300 4MATIC 133 211 168 11 112 66.5 395 €55,519
27 MG4 Electric 51 kWh 114 185 147 6.6 87 50.8 345 €34,990
28 Morris-Garage  MG4 Electric 77 kWh 119 191 152 6.6 144 4.4 489 €45,990
29 Morris-Garage MG MG4 Electric XPOWER 130 213 169 6.6 142 61.7 365 €46,990
30 Peugeot ¢-208 50 kWh 108 175 138 74 101 46.3 335 €36,525
31 Peugeot e-208 51 kWh 103 169 134 74 100 48.1 358 €40,875
32 Peugeot e-3008 73 kWh 132 212 170 11 160 73 429 €48,750
33 Peugeot e-5008 97 kWh Long Range 137 220 176 11 160 96.9 550 €55,350
34  Peugeot e-308 114 185 147 11 100 50.8 345 €44,765
35 Renault Megane E-Tech EV60 220hp 105 171 136 22 129 60 441 €40,990
36 Renault Megane E-Tech EV40 130hp 103 167 133 22 85 40 300 €42,000
37 Renault Scenic E-Tech EV87 220hp 123 198 158 22 150 87 550 €47,900
38 Renault 5 E-Tech 52kWh 150hp 107 176 141 11 100 52 368 €32,900
39  Skoda Enyaq 85 117 186 148 11 135 7 520 €48,900
40 Skoda Enyaq 60 117 187 151 11 124 60 397 €44,400
41  Skoda Skoda Enyaq Coupe RS 117 179 145 11 175 7 531 €60,850
42 Skoda Enyaq iV 85x 4x4 120 190 152 11 175 7 506 €48,900
43 Skoda Enyaq iV Coupe 60 112 173 140 11 124 58 414 €44,400
44 Tesla Model Y 113 177 142 11 170 57.5 404 €45,970
45 Tesla Model Y Long Range 118 185 149 11 250 5 503 €52,990
46 Tesla Model Y Performance 124 195 156 11 250 75 480 €61,990
47 Tesla Model 3 93 142 116 11 170 60 517 €40,970
48  Tesla Model 3 Long Range Dual Motor 98 148 122 11 250 75 614 €49,990
49 Volvo EX40 Single Motor ER. 134 219 174 11 205 9 454 €55,490
50 Volvo EX30 Single Motor 121 196 156 11 134 49 314 €44,990

By evaluating the most recent statistics from the market sells on EVs [15],
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and comparing the models chosen from the EV Database, five car models where
chosen as reference of the further evaluations of the BEV Simulator. The Audi A6
Sportsback e-tron Performace (highlighted in green) represents the car with the
highest autonomy, big battery and fast charging (DC), the Dacia Spring and Fiat
500e Hatchback are representing the smallest batteries and lowest autonomy; while
BMW iz and Tesla Model Y are a medium range in between, these were chosen
from the most popular EVs sold on Europe during the last year (2025) according
to JATO, a global leader in automotive data, analysis and intelligence [16].

3.3.1 Unsatisfied Trips: Exceeding Vehicle’s maximum Au-
tonomy

Considering the Table 3.5 and the trips datasets per city, it is possible to identify
the amount of trips that are exceeding the autonomy of each car model per location.
The Figure 3.15 identify the percentage of users that are affected by the autonomy of
each car model to fulfill their trips. While the Figure 3.16 identifies the percentage
of trips that are not fully satisfied by each car model.

The coloring of the cells represents the intensity of the impact, with darker colors
indicating poorer performance and lighter colors indicating better performance. The
heatmap was normalized in both directions, vertically and horizontally, allowing for
the identification of the city most adversely affected for each car model (horizontally),
and of the car model that has the greatest negative impact on a city (vertically).

As expected, vehicles with smaller batteries rank highest in terms of user
dissatisfaction and trip-related limitations. Considering the different cities, Sassari
is the less affected, followed by Grosseto, Asti, Trieste and finally Milano being the
one with highest unsatisfaction rate.

As an usage example, the vertical color gradient can be used to identify the
car models that best match the needs of each city, by defining a threshold for the
percentage of users considered acceptable to compromise. For instance, considering
Trieste, if a 5% of users could be left with some unsatisfied trips, this means that
EV models with an autonomy higher than 441 km are acceptable, and only the
0.01% of the trips will be affected.
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Users Above Autonomy by Car Model and City

fiat_500e hatchback 24 kwh
dacia_spring electric 45 4
mercedes-benz_eqt 200 standard 10.61

fiat_500e hatchback 42 kwh 8.97
fiat_grande panda 6.70
Renault_Megane E-Tech EV40 130hp 6.36
Volvo_EX30 Single Motor 5.36
Peugeot_e-208 50 kWh 4.37
audi_g#4 sportback e-tron 35 4.23
MG_MG#4 Electric 51 kWh 4.06
hyundai_inster long range 4.06
Peugeot_e-308 4.06
kia_evé standard range 2wd 3.90
Peugeot_e-208 51 kWh 371
fiat_600e 3.68
MG_MG MG4 Electric XPOWER 23R
Renault_5 E-Tech 52kWh 150hp 3.52
mercedes-benz_EQB 300 4MATIC E: 6.83 3.06
Skoda_Enyaq 60 6.73 6.66 3.01
Tesla_Model ¥ 6.33 6.24 277
bmw_ix xdrive40 6.31 6.14 2.73
Skoda_Enyaq iV Coupe 60 5.60 ELE 2.39
Peugeot_e-3008 73 kwh 4.86 473 2.00 5.30
E Renault_Megane E-Tech EV60 220hp 4.25 3.97 1.68 4.64
<] kia_niro ev 4.22 3.88 164 4.51
E audi_g4 e-tron 55 quattro 3.95 3.51 1.56 4.20
8 hyundai_kona electric 65 kwh 3.90 3.48 1.53 4.15
Volve_EX40 Single Motor ER 3.78 3.33 151 4.07
audi_qg4 sportback e-tron 45 quattro 3.06 2.67 1.35 3.51
mercedes-benz_eqge suv amg 43 4matic 2.75 2.34 1.20 313
mercedes-benz_eqb 250+ 2.75 2.34 1.20 313
Tesla_Model ¥ Performance 2.74 Zazlz) 119 3.00
MG_MG4 Electric 77 kwh 2.59 2.17 112 2.67
kia_evb long range awd 2.47 2.06 1.06 2.59
ford_explorer extended range 2.47 2.06 1.06 2.59
bmw_i4 edrive35 4. 2.32 1.86 0.99 241
Tesla_Model Y Long Range 2.29 1.82 0.92 2.28
Skoda_Enyaq iV 85x 4x4 2.19 1.75 0.90 2.10
audi_sq8 e-tron 2.03 1.57 0.84 197
Tesla_Model 3 198 150 0.81 190
audi_q4 sportback e-tron 45 1.97 141 0.81 179
Skoda_Enyaq 85 195 139 0.81 177
Skoda_skoda Enyaq Coupe RS 173 122 0.70 149
Peugeot_e-5008 97 kwh Long Range 1.42 1.03 0.50 118
Renault_Scenic E-Tech EV87 220hp 142 1.03 0.50 118
ford_mustang mach-e er rwd 142 1.02 0.50 115
audi_g6 e-tron performance 1.36 0.92 0.47 113
bmw_i4 edrive40 077 053 0.28 0.62
Tesla_Model 3 Long Range Dual Motor 0.70 0.42 0.21 0.46
audi_ab sportback e-tron performance 0.24 0.18 0.07 0.18
| ] ] ]
Milano Asti Grosseto Sassari Trieste
City

Figure 3.15: Percentage of users affected by trips above the autonomy of each
EV model, per city.
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Trips Above Autonomy by Car Model and City

fiat_500e hatchback 24 kwh ) 1 1.0e-01
dacia_spring electric 45
mercedes-benz_eqt 200 standard d 2.0e-02

fiat_500e hatchback 42 kwh 4.6e-02 1.6e-02
fiat_grande panda 3.2e-02 3.3e-02 1.1e-02
Renault_Megane E-Tech EV40 130hp 3.0e-02 3.le-02 1.0e-02
Volvo_EX30 Single Motor 2.5e-02 2.6e-02 7.5e-03
Peugeot_e-208 50 kWh 2.0e-02 2.0e-02 5.8e-03
audi_g#4 sportback e-tron 35 1.9e-02 1.9e-02 5.6e-03
MG_MG#4 Electric 51 kWh 1.8e-02 1.8e-02 5.2e-03
hyundai_inster long range 1.8e-02 1.8e-02 5.2e-03
Peugeot_e-308 1.8e-02 1.8e-02 5.2e-03
kia_evé standard range 2wd 1.7e-02 1.7e-02 5.0e-03
Peugeot_e-208 51 kWh 1.5e-02 1.5e-02 4.6e-03
fiat_600e 1.5e-02 1.5e-02 4.6e-03
MG_MG MG4 Electric XPOWER 1.4e-02 1.4e-02 4.4e-03
Renault_5 E-Tech 52kWh 150hp 1.3e-02 1.3e-02 4.4e-03
mercedes-benz_EQB 300 4MATIC 9.3e-03 9.2e-03 3.6e-03
Skoda_Enyaq 60 9.1e-03 8.9e-03 3.5e-03
Tesla_Model ¥ 8.4e-03 8.1e-03 3.1e-03
bmw_ix xdrive40 8.3e-03 7.9e-03 3.0e-03
Skoda_Enyaq iV Coupe 60 7.1e-03 6.9e-03 2.6e-03
Peugeot_e-3008 73 kwh 5.8e-03 5.4e-03 2.0e-03
E Renault_Megane E-Tech EV60 220hp 5.0e-03 4.3e-03 1.6e-03
<] kia_niro ev 4.9e-03 4.2e-03 1.5e-03
E audi_g4 e-tron 55 quattro 4.5e-03 3.7e-03 1.4e-03
8 hyundai_kona electric 65 kwh 4.5e-03 3.7e-03 1.4e-03
Volve_EX40 Single Motor ER 4.3e-03 3.5e-03 1.4e-03
audi_qg4 sportback e-tron 45 quattro 3.5e-03 2.7e-03 1.2e-03
mercedes-benz_eqge suv amg 43 4matic 3.1e-03 2.4e-03 1.0e-03
mercedes-benz_eqb 250+ 3.1e-03 2.4e-03 1.0e-03
Tesla_Model ¥ Performance 3.1e-03 2.3e-03 1.0e-03
MG_MG4 Electric 77 kwh 2.9e-03 2.1e-03 9.5e-04
kia_evb long range awd 2.8e-03 2.0e-03 8.9e-04
ford_explorer extended range 2.8e-03 2.0e-03 8.9e-04
bmw_i4 edrive35 2.6e-03 1.8e-03 8.0e-04 3.6e-03
Tesla_Model Y Long Range 2.4e-03 1.8e-03 7.5e-04 3.4e-03
Skoda_Enyaq iV 85x 4x4 2.3e-03 1.7e-03 7.3e-04 3.2e-03
audi_sq8 e-tron 2.1e-03 1.5e-03 6.8e-04 2.9e-03
Tesla_Model 3 2.0e-03 1.5e-03 6.5e-04 2.8e-03
audi_q4 sportback e-tron 45 2.0e-03 1.4e-03 6.5e-04 2.6e-03
skoda_Enyaq 85 2.0e-03 1.4e-03 6.4e-04 2.6e-03
Skoda_skoda Enyaq Coupe RS 1.7e-03 1.2e-03 5.4e-04 2.1e-03
Peugeot_e-5008 97 kwh Long Range 1.4e-03 1.0e-03 3.9e-04 1.6e-03
Renault_Scenic E-Tech EV87 220hp 1.4e-03 1.0e-03 3.9e-04 1.6e-03
ford_mustang mach-e er rwd 1.4e-03 1.0e-03 3.8e-04 1.5e-03
audi_g6 e-tron performance 1.3e-03 9.2e-04 3.5e-04 1.4e-03
bmw_i4 edrive40 7.9e-04 5.5e-04 2.0e-04 7.6e-04
Tesla_Model 3 Long Range Dual Motor 7.0e-04 4.3e-04 1.6e-04 5.7e-04
audi_ab sportback e-tron performance 2.3e-04 l4e-04 4.6e-05 1.7e-04
i l ] i
Milano Asti Grosseto Sassari Trieste
City

Figure 3.16: Percentage of trips above the autonomy of each EV model, per city.
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Methodology

Using as a reference the preprocessed and characterized data illustrated in the
previous sections, this chapter focuses on describing the process undertaken to
enhance the BEV simulator, building upon the foundations developed in the thesis
of Jamalof [5], and the later categorization of the unsatisfied trips for the different
cities and car models under study.

The BEV Simulator focuses on replicating the charging behaviors of diverse user
profiles, each characterized by unique habits, time constraints, and infrastructure
preferences. By incorporating these profiles into a comprehensive simulation
framework, the study bridges the gap between the dataset representing real-world
trips undertaken in internal combustion engine (ICE) vehicles and the algorithmic
logic that governs EV charging decisions. This methodological approach enables
a nuanced exploration of charging behaviors, providing insights into how various
factors influence EV adoption [5].

The BEV simulator developed for this Master Thesis was further enhanced in
terms of efficiency, scalability, organization, realism, and flexibility. In parallel, its
performance was validated against empirical data derived from real EV trips and
public charging station usage.

Naturally, as in the case of ICE trips, certain EV trips cannot be fully satisfied
due to the inherent battery limitations. The scope of this work is therefore to
categorize such unsatisfied trips and to analyze in detail the underlying reasons
why specific BEV models may fail to accommodate them.
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4.1 BEV Simulator

4.1.1 Definition of Predefined Charging Policies

An early stage of the BEV simulator was developed by Jamalof [5], where that
research enabled the identification of nine charging policies defined by fixed pa-
rameters. These policies were established to replicate the charging habits of EV
users. The parameters focused on describing the type of charger (slow AC or fast
DC), the restricted time windows during which charging could occur, the specific
weekdays when charging was allowed, as well as the minimum and maximum
charging duration (if applicable). Additionally, they considered the minimum bulk
State of Charge (SoC), when specified, and whether charging sessions could extend
overnight across consecutive days.

The early stage of the simulator considered rigid charging conditions, such that
if a stopping event did not begin exactly within the fixed pre-established time
window, the charging session was not permitted. This strict approach resulted
in multiple long stopping events without previous charging of the battery and
eventually leading to a high percentage of unsatisfied trips, even in cases where
trips were made with actual EVs. Based on this observation, the current thesis
redefined the charging conditions associated with the pre-established policies to
improve realism.

The first improvement was the introduction of the concept of overlapping with
the pre-established windows. Specifically, if a stopping event began outside the
allowed charging window, its duration was evaluated. If the event extended into
the start of the authorized window and satisfied the minimum charging duration
constraints, the charging session was permitted for the portion of time falling within
the allowed window.

Another implementation done to improve the realistic behavior of the EV users,
was to define a threshold for the bulk SoC, meaning the state-of-charge of the
battery before a charging session, in this way, it can be replicated the necessity
to recharge the battery only if it is bellow a given threshold, leading to a more
realistic approach of how real EV users react and also considering a small aspect
for the concept of State-of-Health (SoH) of the battery itself. Previously, only three
of the nine charging policies had this threshold, mostly to limit the recharge only
for cases with very low bulk SoC.

According to Jamalof [5], each user profile encapsulates specific rules governing
when, where, and how often vehicles are charged. These rules account for:

« Time of day (e.g., overnight, afternoon charging).

« Day of the week (e.g., weekday, weekend charging habits).
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« Charging duration thresholds (e.g., minimum or maximum charging
times).

« Charger preferences (e.g., AC slow chargers, DC fast chargers).

Below is a synopsis of the nine distinct user predefined profiles and the modifi-
cations made for the current research:

1. Frequent Users

Description: Regularly charge their vehicles at home, typically overnight
or during the weekends they may leave vehicles connected for extended
periods, due to reduced usage during leisure days.

Time of day: Overnight (from 21:00 to 08:00 of next day) or for weekends
(from Friday 21:00 to Monday 06:00)

Day of week: Weekdays and Weekends.

Charging duration: Minimum of 7 hours for overnight charging and
more than 11 hours on weekends.

— Update: Minimum of 6 hours, in general.

Charger preference: Primarily AC chargers (up to 11 kW) at home or
in residential areas.

— Added: Minimum bulk SoC threshold of 75% for recharge.

2. Visitor Users

Description: Make short, spontaneous visits to commercial or business
districts, charging while running errands or attending meetings.

Time of day: Afternoon (from 12:00 to 19:00). Charge can happens only
during the same day.

Day of week: Weekdays and Weekends.
Charging duration: Between 1.5 up to 7 hours.
— Update: Between 2 up to 6 hours.

Charger preference: Predominantly use DC fast chargers (46 kW or
higher).

— Added: Minimum bulk SoC threshold of 75% for recharge.

3. Taxi Drivers

Description: Charge only overnight at home or in residential areas.
Time of day: Overnight (from 21:00 to 08:00 of next day).
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Day of week: Weekdays and Weekends.
Charging duration: From 7 hours.
— Update: From 6 hours.

Charger preference: AC slow charging, ensuring a full battery for daily
operations.

— Added: Minimum bulk SoC threshold of 75% for recharge.

4. Car Sharing Fleets

Description: Operate on a high utilization model, requiring multiple
short charges throughout the day to keep vehicles available.

Time of day: Anytime.

Day of week: Weekdays and Weekends.

Charging duration: Between 20 minutes to 1.5 hours.
— Update: Between 20 minutes to 2 hours.

Charger preference: Heavily rely on DC fast chargers (46-250 kW)
to minimize downtime. Charging typically starts when the battery SoC
drops to 20%.

5. Conservative Drivers

Description: Overly cautious about low battery levels. They prefer AC
chargers but use DC fast chargers in "emergency" cases for very low SoC.

Time of day: Anytime.
Day of week: Weekdays and Weekends.
Charging duration: From 20 minutes.

Charger preference: Primarily AC chargers (11 - 22 kW) for routine
top-ups when SoC falls below 50% and with DC fast chargers (46-94 kW)
as a backup for emergency use when SoC drops below 20%.

— Update: AC chargers when SoC falls below 75% and with DC when
it falls bellow 20%, as before.

6. Business Travelers

Description: Require efficient, quick charging during long-distance week-
day trips.

Time of day: During travel breaks within typical working hours (from
08:00 to 18:00). Charge can happens only during the same day.
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Day of week: Monday through Friday.
Charging duration: From 20 minutes.

Charger preference: DC fast chargers (46 - 250 kW) along highways or
business corridors.

— Added: Minimum bulk SoC threshold of 75% for recharge.

7. Weekend Travelers

Description: Plan weekend getaways, relying on fast chargers to top up
quickly during trips.

Time of day: Anytime.
Day of week: Saturday and Sunday.
Charging duration: Between 20 minutes up to 2 hours.

Charger preference: DC fast chargers (46 - 250 kW) when SoC drops
bellow 30%.

8. Workplace-Dependent Drivers

Description: Lack access to home charging and rely solely on office
chargers.

Time of day: Typical during working hours (from 08:00 to 18:00). Charge
can happens only during the same day.

Day of week: Monday through Friday.
Charging duration: From 6 hours.

Charger preference: AC chargers (3.2 - 22 kW) available at the work-
place.

— Added: Minimum bulk SoC threshold of 75% for recharge.

9. Casual Users

Description: Drive infrequently, charging at irregular intervals when
SoC nears 20%. They may go days or weeks without charging if the
vehicle is seldom used.

Time of day: Anytime.
Day of week: Weekdays and Weekends.
Charging duration: From 8 hours.

— Update: From 6 hours.
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« Charger Preference: Prefers AC slow charging (home or public) when
SoC falls bellow 20%.

To summarize the predefined charging policies described before, on Table 4.1
it can be found the main characteristics and conditions for each of the updated
version of the charging policies, where the mentioned times for charging hours are
considered as follows:

e Any time: The charging session can take place regardless the time of the
day.

o Afternoon: The charging session could take place only if the EV is connected
between the 12:00 and 19:00.

e Daytime: The charging session could take place only if the EV is connected
between the 08:00 and 19:00.

e Overnight: The charging session could take place only if the EV is connected
between the 21:00 and 08:00 of the following day.

Table 4.1: Summary of updated predefined charging policies conditions.

Bulk

Charging Policy Charger Time Days Duration SoC Overnight
Anytime —  Weekends
Frequent Users AC Overnight —  Weekdays +6 hours < 75% Yes
Visitor Users DC Afternoon All days 2h <t <6h < 75% No
Taxi Driver AC Overnight All days +6 hours < 755% Yes
Car Sharing DC Anytime All days 20min <t <2h < 20% Yes
Conservative Driver AC & DC Anytime All days +20 min < 75% (AC) Yes
<20% (DC)
Business Travelers DC Daytime Weekdays 420 min < 75% No
‘Weekend Travelers DC Any time Weekends 20min < ¢ < 2h < 30% Yes
‘Workplace Users AC Daytime Weekdays +6 hours < 75% No
Casual Users AC Anytime All days +6 hours < 20% Yes

4.2 BEYV Simulator Engine

Regarding the engine responsible for managing each trip and updating the State of
Charge (SoC) according to the charging policies, this section aims to describe the
underlying processes and highlight the main improvements implemented in this
research compared to the earlier version of the simulator.

The original simulator was developed in a Jupyter Notebook, with execution
performed cell by cell. It was based on Python functions that used iterative loops
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with for cycles to evaluate trips one at a time. Separate functions handled the
classification of parking sessions (according to the temporal conditions of the
charging policies), the battery update behavior (following the charging preferences),
and the overall simulation execution for a given car model, culminating in the
generation of output files. These functions were repeated nine times, once for
each charging policy, and were executed every two or three car models, which
were stored as dictionaries in a notebook cell and created independently for each
charging policy with the required features. Considering the 50 car models, this
setup required an average of 25 executions per function for the nine different
scenarios, resulting in approximately 225 executions per function to complete the
450 individual simulations, which might not be an efficient behavior.

In the updated version of the BEV simulator engine, the primary improvements
concern scalability, efficiency, and flexibility, implemented in a well-organized
manner.

Initially, the 50 car models and their respective features were organized and
stored in a single JSON file, allowing the catalog to be read only once when invoking
the function responsible for executing the complete set of simulations. Each entry
in the catalog contains the information presented in Table 3.5, including the car’s
brand and model, consumption values (in Wh/km), and charging parameters such
as AC and DC power (in kW) and battery capacity (in kWh). Entries in this catalog
can be added, removed, or modified, and all entries present at the time of running
the simulator are used to generate a replication of trips from the selected dataset,
incorporating the features of each vehicle. This structure allows for straightforward
scalability of the car models considered in the study.

[
{

"consumption": [
{"city": 121,
"highway": 190,
"combined": 154,
"pbrand": "audi",
"model": "g4 sportback e-tron 45"}

1,

"charging": [
{"ac_charging_power_kw": 11,
"dc_charging power_kw": 175,
"battery_capacity_kwh": 80}

]

3
]

Regarding the engine code itself, it had to be rewritten following the predefined
baseline to achieve greater scalability and efficiency. As shown in Table 3.2, the
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total number of trips considered in this research is substantial, and since the
simulations require a trip-by-trip execution to update the State of Charge (SoC)
after each trip and recharge accordingly, the previous approach using iterative loops
became unsuitable for handling this volume of data.

Consequently, the code was migrated from individual functions per predefined
charging policy in a Jupyter Notebook to a dedicated Python module. This new
implementation employs parallelization techniques to accelerate simulation times
and manage large datasets efficiently, while avoiding hard-coded parameters, thus
allowing flexibility for defining additional charging policies in the future.

The revisited simulator follows the same structure as defined by Jamalof [5]:

1. Reading the EV features from the JSON catalog.

2. Reading the trips dataset and flagging parking events as opportunities
to recharge the battery, if permitted, based on the allowed charging times
defined by the selected charging policy parameters. Using as baseline the
algorithms of the previous BEV simulator, this approach consolidates all
predefined charging policy flagging functions into a single generalized function,
eliminating hard-coded values and replacing them with variable parameters to
allow greater flexibility and customization in defining charging policies, while
incorporating the overlapping window concept.

3. Preparing of the consumption calculations for each trip.

4. Execution of the simulation process, updating the State of Charge (SoC)
according to the selected charging policy and EV characteristics, while also
computing additional performance indicators.

5. Generation of the output file, with a custom name reflecting the parameters
used during the simulation.

The figure 4.1 represents the flowchart describing the inputs to the BEV simulator
and its respective output, which will provide the status of the SoC before and after
each trip, the energy consumption and trip feasibility as will be detailed later on
this section.
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Figure 4.1: Flowchart of the BEV Simulator

The segment that follows examines each step of the process in detail.

4.2.1 Reading EV features

It is a function that takes as input the file path of the JSON catalog with the
EV features. After reading the dictionary for each car model, it extracts the
consumption and charging parameters. The output are two lists (consumption and
charging) containing the values of these parameters for each entry in the catalog.

4.2.2 Flagging opportunities to recharge
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of the fastest solutions for processing data on a single machine. It provides a
well-structured, strongly typed API that is both expressive and user-friendly [17].
The flagging stage has been enhanced to accept multiple parameters, enabling
the construction of a custom charging policy.
The input parameters are as follows:

e minimum_parking hours (float): Defines the lower bound in hours for the
charging duration. (e.g., 20 minutes can be specified as 0.33).

e maximum_parking hours (float): Defines the upper bound in hours for
charging duration.

« overnight (bool) Indicates whether the charging session is allowed to extend
across consecutive days, spanning overnight hours. Valid values are True or
False.

o valid_days (list[int]): A list of integers from 0 (Monday) to 6 (Sunday),
representing the days of the week during which charging is permitted. The list
may include specific consecutive days. If left empty, it implies that charging
sessions are allowed on any day of the week (e.g., [0,1,2,3,4] for weekdays
or [] for all days).

o overnight_start_hour (int): Defines the starting hour of the overnight
charging window, with valid values ranging from 0 to 23. This parameter is
only applicable if overnight is set to True.

o overnight_end_hour (int): Defines the final hour of the overnight charging
window, with valid values ranging from 0 to 23. This parameter is only
applicable if overnight is set to True.

o weekend_start_charge_hour (int): Defines the starting hour of the charg-
ing window during weekends, with valid values from 0 to 23. This boundary
applies exclusively to weekend charging sessions and is independent of the week-
day configuration. In cases where the overnight parameter is set to True and
the weekend_start_charge_hour exceeds the weekend_end_charge_hour,
the overnight_start_hour will be used instead.

o weekday_start_charge hour (int): Defines the starting hour of the charg-
ing window during weekdays, with valid values from 0 to 23. This boundary ap-
plies exclusively to weekdays charging sessions and is independent of the week-
end configuration. In cases where the overnight parameter is set to True and
the weekday_start_charge_hour exceeds the weekday_end_ charge hour,
the overnight_start_hour will be used instead.
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o weekend_end_charge_hour (int): Defines the final hour of the charging
window during weekends, with valid values from 0 to 23. This boundary applies
exclusively to weekends charging sessions and is independent of the weekday
configuration. In cases where the overnight parameter is set to True and the
weekend_start_charge_hour exceeds the weekend_end_charge hour, the
overnight_end_hour will be used instead.

o weekday_end_charge_hour (int): Defines the final hour of the charging
window during weekdays, with valid values from 0 to 23. This boundary applies
exclusively to weekdays charging sessions and is independent of the weekend
configuration. In cases where the overnight parameter is set to True and the
weekday_start_charge_hour exceeds the weekday_end_charge_hour, the
overnight_end_hour will be used instead.

After assigning valid values to each of the described parameters, the temporal
constraints for the custom charging policy are established. Omnce this step is
completed, the algorithm defines the corresponding window boundaries for the
timestamp of each parking event and evaluates the overlapping period to compute
the amount of charging hours during which the vehicle remained within the allowed
charging window. Finally, a flag is assigned to each parking session, indicating
whether charging is authorized based on the specified additional criteria, such as
minimum and maximum parking hours, as well as the validity of the day.

The expected output corresponds to the same dataset illustrated in Figure
3.7, augmented with two additional columns: charge_hours, representing the
total duration of the overlapping parking period, and can_charge, a boolean flag
indicating whether all conditions are satisfied to allow battery charging for the
specified charge_hours.

4.2.3 Consumption Calculations

At this stage, the function receives as input the trips dataset as a Polars DataFrame,
along with the consumption parameters generated in Section 4.2.1.

Using the information from both inputs, the energy consumption for each trip
is computed as follows:

trip Wh=dy -c,+d,-c,+d,-c,

Considering dj,, d,, d, as the highway (h), urban (u), and other (o) distances in
kilometers; and ¢, ¢, ¢, as the corresponding highway (h), city (u), and combined
(0) consumption values in Wh/km.

The output is a list of dictionaries, where each dictionary contains a list of
energy consumption values for all trips, a list of corresponding can_charge flags,
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a list of indicators marking the presence of a new user within the trips, and the
consumption parameters used to compute the energy consumption of the trips.

4.2.4 State-of-Charge Update

This function is responsible for updating the battery’s state of charge (SoC) after
each trip and applying the corresponding recharge. It is called internally on the
function in charged of orchestrating the simulations, which will be described later.

It takes as input a list of energy consumption values for all trips and iterates
over this list. For the first trip of each user (identified using a previously defined
indicator list), the initial SoC is set to the battery’s full capacity, as defined in the
charging parameters. For subsequent trips, the SoC after any recharge from the
previous trip is used.

After accounting for the trip’s energy consumption, the SoC is updated while
ensuring it remains positive and does not exceed the battery’s maximum capacity,
following the equation below. Here, ¢ represents the trip, pre_SoC' is the SoC
before trip consumption, trip_ Wh is the energy consumed during the trip, and
capacity Wh is the battery’s maximum energy:

0, if pre_ SoC; — trip_ Wh, < 0,
S0C; = { pre_SoC, — trip_ Wh,, if 0 < pre SoC, — trip_ Wh, < capacity  Wh,
capacity  Wh, it pre_ SoC; — trip_ Wh, > capacity_ Wh.

The recharge procedure is subsequently executed. The algorithm evaluates
whether the state of charge (SoC) after the trip falls within the allowed thresholds
to initiate charging. It has been modified to allow charging at two different rates,
depending on the bulk SoC prior to the recharge.

These thresholds can be used to customize the charging policy and to replicate
the default behavior of EVs, which typically reduces the charging rate after reaching
a high SoC to help preserve battery state of health (SoH). The SoH is generally
defined as the capacity of a fully charged battery relative to that of a fresh cell [18].

If the SoC falls below the lower threshold, the battery is recharged using the
fast charging rate (DC charger). If the SoC is above this threshold, the battery
is charged at the slower rate (AC charger). The selected charging rate is then
multiplied by the charge_hours allocated for the trip. If no thresholds are triggered,
the recharged energy is zero. Subsequently, the SoC is updated based on the actual
charged energy if at the same time it is compliant with the charge flag, ensuring it
does not exceed the battery’s maximum capacity.

Although the charging rates are described as AC or DC, this distinction is not
strict. Both rates can be implemented using the same charger, with the lower or
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higher rate triggered by the respective SoC thresholds. This approach provides
greater flexibility in the simulation and allows for more customizable charging
policies.

The flowchart followed on this process is described on Figure 7.1.

4.2.5 Orchestration of the Simulation Process

This function is responsible for optimizing the simulations and improving their
overall efficiency. It can receive the complete catalog of EV models, a list of tuples
representing different charging rates (AC Power, DC Power), and a list of tuples
specifying the lower and upper SoC thresholds that determine the corresponding
charging speeds. Each combination of these parameters can be used to run an
independent simulation for the entire list of trips in the dataset, allowing the
simulations to be parallelized for increased efficiency.

The simulations have being parallelized using concurrent.futures, which is a
Python class that allows to run functions concurrently using threads. It’s useful for
I/O-bound tasks like network requests, file reads/writes, or calling APIs in parallel
[19]. Additionally, the Polars DataFrame is vectorized, including only the columns
of interest, enhancing computational speed.

Within each thread, the battery capacity, charging speeds (AC and DC), and the
bulk SoC thresholds are selected. These parameters, together with the vectorized
trip columns, are passed to the previously described function to update the SoC.
The function outputs are then added to the final results, including columns for the
SoC before and after each trip and the amount of charged energy (if any).

At this stage, additional performance metrics are computed for each trip, such
as a satisfaction indicator, which denotes whether the trip was fully completed
based on the available SoC before the trip. If it is higher than the required energy
to fulfill the trip, then it will be flag as satisfied.

True, if pre_SoC, > trip_ Wh,,
Trip_ Satisfied; =
False, otherwise.

The percentage of satisfaction is also computed, representing the portion of
the trip that can be completed with the available SoC before departure. For this
calculation, the available SoC (expressed in energy, [Wh]) is divided by the vehicle’s
specific consumption (energy per distance, [Wh/km]) to obtain the maximum
feasible distance. This value is then compared to the actual trip distance (in
kilometers) to determine the percentage of the trip that can be covered.

pre_ SoC,

Satisfied  Percentage; = min ( - 100, 100) %

consumption - trip_ distance,
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Another computed metric is the instantaneous autonomy of the car for a given
trip, which indicates the total distance (in kilometers) that can be traveled with
the available SoC, based on the vehicle’s average combined consumption.

pre_SoC;[Wh]
consumption[Wh/km)|

Instant_ Autonomy, =

Finally, the output file is generated, containing the original dataset along with all
the additional features described above, organized in columns. To further improve
computational efficiency, the output is written in chunks.

The flowchart of the overall BEV simulator engine is described on the Figure
7.5.
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4.3 Unsatisfied Trips: Categorization

One of the main objectives of this thesis is to understand the reasons behind
unfeasible trips under the predefined charging policies. To this end, a categorization
of trips has been created, allowing each trip to be assigned to a specific category.
This enables a detailed analysis of trips that could not be completed or even started.
By later aggregating the results from each category, it becomes possible to provide
statistical insights per city, car model, or individual user.

An algorithm was developed to aggregate all trips for the predefined charging
policies simulated for a given car model and the trips of a single city or user (if
desired). This aggregation produces a single table with each category represented
as a column. Each cell under a category contains a tuple composed by three values:

(unsatisfied, total, percentage)

The first value, "unsatisfied', represents the number of trips under that specific
category that were not fully or partially satisfied; the second value "total’, is the
total count of trips in that category, including both satisfied and the unsatisfied
trips; the third value, "percentage”, provides the conditional probability to obtain
an unsatisfied trip under the given category.

In the following section, each of these categories will be explained in detail.
Initially, there are four main categories that provide a general overview of unsatisfied
trips. For trips made by a BEV, the primary reason for uncompleted trips is an
insufficient battery SoC to start or complete the trip. Accordingly, unsatisfied trips
can be classified as either a fully discharged battery before the trip (Discharged)
or insufficient battery to complete the trip, meaning that the available autonomy
with the current SoC is inadequate (Exceeded Autonomy).

Hence, to provide a general overview of user dissatisfaction under a given
charging policy, the following four categories are defined:

o Total: This category provides an overall summary of unsatisfied trips for the
given charging policy. It counts the total number of unsatisfied trips relative
to the total number of trips in the dataset.

o Ex_ Aut_ Charge: This category stands out for Exceeded Autonomy with
Charging Session before the trip. It indicates that the trip was flagged as
unsatisfied even though the battery had been recharged prior to departure. In
other words, despite the previous recharge, the available battery load at the
start of the trip was insufficient to complete the desired distance. This results
in a partially unsatisfied trip.

e Ex_Aut_ No_ Charge: Similarly, this category stands out for Exceeded
Autonomy without Charging Session before the trip. It indicates that the trip
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was flagged as unsatisfied and the battery had not been recharged prior to
departure. This results in a partially unsatisfied trip.

o Discharged: This category includes all trips in which the battery was fully
discharged before departure, i.e., the SoC was 0% at the start. In other words,
trips under this category could not be started.

To gain a deeper understanding of the reasons behind the previously described
categories, subcategories have been defined. These subcategories either describe
the nature of parking sessions in temporal terms or characterize the SoC conditions
prior to the trips.

« Sat_ Dist_ (x)_ (y): Stands out for Satisfied Distance Percentage in the
range between z and y. Under this category, it had been defined four ranges
from 0 to 25%], [25% to 50%][, [50% to 75%[ and [75% to 100%|. This
subcategory defines the satisfaction percentage of the trips under the categories
with exceeded autonomy.

o Pre__SoC_ (z)_ (y): This subcategory represents the state of charge (SoC)
prior to the trip, falling within the range between x and y. Five ranges have
been defined: |0-25%], [25-50%][, [50-75%], [75-100%]|, and exactly 100%.
Trips in the last range correspond to trips made with a fully charged battery;
if any trip in this range is unsatisfied, it indicates that the trip was unfeasible
due to the limited maximum autonomy of the car model. This subcategory
specifically characterizes the SoC prior to trips classified under the exceeded
autonomy categories.

e Above__SoC__th: This subcategory represents trips for which the SoC was
above the allowed upper bulk threshold, preventing a charging session. As
described in the simulator section, if the battery is above this threshold, the EV
cannot recharge. This subcategory indicates how many trips were unsatisfied
and could not be charged prior to departure due to this condition.

« Overlap_ (time): This subcategory describes the charging duration range
within the allowed charging windows defined for each policy, following the
overlapping concept. The time is expressed in ranges consistent with the
predefined policies: |0-20 min], |20 min-2 h|, |2-6 h], and more than 6 hours.
It also includes 0 min of overlapping, representing stopping events that fall
outside the predefined charging windows.

o Next__day: This subcategory represents stopping events that began on one
day and ended on a different day. It is particularly useful for evaluating the
effectiveness of charging policies that do not allow overnight recharging.
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Weekday: This subcategory represents stopping events that began on a
weekday, from Monday to Friday, providing insight, together with the Weekend
subcategory, into the distribution of trips throughout the week.

Weekend: This subcategory represents stopping events that began during
the weekend, from Saturday to Sunday, providing insight, together with the
Weekday subcategory, into the distribution of trips throughout the week.

Morning: This subcategory, complemented by the Afternoon and Ouvernight
subcategories, represents stopping events that began during the morning
period. For this study, the Morning period is defined as 08:00 to 12:00, in
accordance with the predefined charging policies.

Afternoon: This subcategory, complemented by the Morning and Overnight
subcategories, represents stopping events that began during the afternoon/evening]
period. For this study, the Afternoon period is defined as 12:00 to 21:00, in
accordance with the predefined charging policies.

Overnight: This subcategory, complemented by the Morning and After-
noon subcategories, represents stopping events that began during the late
evening/early morning period. For this study, the Overnight period is defined
as 21:00 to 08:00 of next day, in accordance with the predefined charging
policies.
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4.4 User-Level Suitability of EV Models and Charg-
ing Policies per City

As a first approach to increasing the satisfaction rate in each city, the suitability
of different car model and charging policy combinations was evaluated at the
individual user level. Instead of generalizing all users within a city under the same
car model or the same charging policy, each user was assigned the combination
that maximizes their own satisfaction. This personalized selection is expected to
lead to a higher overall satisfaction rate for the city. To achieve this objective, the
following selection process was applied:

1. Unsatisfied trips — selects the combination(s) with the minimum number of
unsatisfied trips.

2. Car model price — among the combinations with minimum unsatisfied trips,
chooses the cheapest car able to achieve that minimum (As all the cars have
different prices it will assign a unique car model per user).

3. AC/DC charging power — if several policies with that car still guarantee
the minimum unsatisfied trips, AC policies are prioritized because they usually
are cheaper.

4. Charging time — if multiple policies remain with the same AC/DC type, the
one(s) with shorter charging time are preferred.

5. If; at this point, several policies are still tied in terms of AC/DC and charging
time, all of them are reported as suitable for the user.
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Results

5.1 Simulator Validation

To validate the predefined charging policies detailed in Section 4.1.1 and summarized
in Table 4.1, the updated version of the BEV simulator was employed. The following
parameters were considered to describe each charging policy. For further details on
these parameters, please refer to Section 4.2.2.

Table 5.1: Parameters definition to be use on BEV simulator for Predefined
Charging Policies.

Profile DC AC Valid Minimum Maximum Overnight Overnight ‘Weekday ‘Weekend
(kW) (kW) Days parking parking (Start-End) (Start—End) (Start—End)

Frequent 22 22 - 6 00 Yes 21-08 21-08 0-24
Visitor 50 50 - 2 6 No - 12-19 12-19
Taxi 22 22 - 6 00 Yes 21-08 21-08 21-08
Car Sharing 50 50 0.33 2 Yes 21-08 0-24 0-24
Conservative 50 22 - 0.33 o] Yes 21-08 0-24 0-24
Business 50 50 0-4 0.33 00 No - 08-19 -
Weekend 50 50 5-6 0.33 2 Yes 21-08 - 0-24
Workplace 22 22 04 6 00 No - 08-19 -
Casual 22 22 6 00 Yes 21-08 0-24 0-24

5.1.1 Replication of real EV trips

This section analyzes real trips made exclusively with electric vehicles, which are
replicated using the BEV simulator to assess the behavior of the predefined charging
policies. For this purpose, 374 EV users from the city of Milan were selected (Table
3.4). Ideally, if the simulator operates accurately and the charging policies are
well-suited to the driving behavior observed in Milan, the results are expected to
be satisfactory.
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The 374 users completed a total of 479,458 trips, driving a variety of unknown car
models. As a result, the feasibility of each trip depends on the specific characteristics
of the individual vehicle. For the simulations, all trips were replicated using one
car model at a time, considering in particular, the car models that were selected
(highlighted) in Table 3.5.
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Figure 5.1: Percentage of unsatisfied users and trips for the replicated EV user
trips from Milano.
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The aggregated results from the simulator are shown in Figure 5.1, which
illustrates the impact of each EV model and the selected charging policy on the
trips made by EV users.

Among the tested models, the Audi A6 exhibits the highest satisfaction rate,
reflecting its superior performance compared to the other selected vehicles. Overall,
the percentage of unsatisfied trips remains low, generally below 10% as shown in
Figure 5.1b. In particular, for the Audi A6, most charging policies resulted in a
satisfaction rate of around 98.5%. Nevertheless, the distribution of unsatisfied trips
varies depending on the charging policy, which can be observed in the number of
users affected. With this car model, on average, across the nine charging policies,
approximately 35% of users experienced at least one unsatisfied trip.

It is also evident that the highest rates of unsatisfied trips, regardless of car
model, occur under the Weekend Policy and the Workplace Policy. This suggests
that, given the driving behavior of EV users in Milan, such policies may not
be suitable. As shown in Figure 3.12c¢, the time vehicles remain parked during
weekends is not substantially different from weekdays. However, users tend to travel
longer distances on weekends, which implies that EVs should ideally be charged
and ready prior to the start of weekend trips. This limitation highlights the gap in
the effectiveness of the Weekend Policy.

Regarding the Workplace Policy, charging is restricted to weekdays during
working hours. While this policy performs better than the Weekend Policy, it is
still not ideal. As illustrated in Figure 3.9, only about 45% of users are parked
during working hours. Consequently, reliance on this policy alone still results in a
relatively high proportion of unsatisfied trips.

The most flexible policy is the Conservative policy, which, as shown in Table 4.1,
allows charging whenever the session lasts more than 20 minutes and the SoC is
below 75%. Thanks to this flexibility, it consistently achieves the highest satisfaction
rates across all car models.

Even when combining the best-performing car model with the most flexible
policy, there remains a small fraction of unsatisfied trips: 0.02% of trips, affecting
5.61% of users. To understand the reasons behind these cases, the categorization
of trips introduced in Section 4.3 becomes particularly useful.

Note: Values contained on each cell are read as (Number of unsatisfied trips,
Total Number of Trips under that category, percentage of unsatisfied trips over the
total for the category), see section 4.3 for further details.
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Total Ex_Aut_Charge

Policy
Frequent 41, 374, 10.96 0, 374, 0.0
Visitor = 78, 374, 20.86 0, 374, 0.0
Taxi 41, 374, 10.96 0, 374, 0.0
Car Sharing _ 57,374, 15.24
Conservative 21, 374, 5.61 11, 374, 2.94
Business = 82, 374, 21.93 4,374,1.07
Weekend 31, 374, 8.29
Workplace 0, 374, 0.0
Casual 0, 374, 0.0

Ex_Aut_No_Charge Discharged
40, 374, 10.7 35, 374, 9.36
74,374,19.79 74, 374,19.79

39, 374, 10.43 35, 374, 9.36

13,374,3.48 14, 374, 3.74

77,374, 20.59 78, 374, 20.86

Figure 5.2: Classification of unsatisfied users made with an Audi A6 e-tron, for

trips of EV users from Milano.

Total Ex_Aut_Charge

Policy
Frequent 432, 479458, 0.09 0, 479458, 0.0
Visitor 6556, 479458, 1.37 0, 479458, 0.0
Taxi 555, 479458, 0.12 0, 479458, 0.0
Car Sharing 7006, 479458, 1.46 | 158, 479458, 0.03
Conservative 88, 479458, 0.02 | 30, 479458, 0.01
Business 1905, 479458, 0.4 5, 479458, 0.0
Weekend 53, 479458, 0.01
Workplace 0, 479458, 0.0
Casual 6097, 479458, 1.27 0, 479458, 0.0

Ex_Aut_No_Charge Discharged

108, 479458, 0.02 324, 479458, 0.07
253, 479458, 0.05 6303, 479458, 1.31
112, 479458, 0.02 443, 479458, 0.09
1335, 479458, 0.28 5513, 479458, 115

21, 479458, 0.0 37, 479458, 0.01

244, 479458, 0.05

1656, 479458, 0.35

2506, 479458, 0.52
1024, 479458, 0.21

788, 479458, 0.16 5309, 479458, 1.11

Figure 5.3: Classification of unsatisfied trips made with an Audi A6 e-tron, for

trips of EV users from Milano.

From Figure 5.3 it can be observed for the Conservative policy, there were 88
trips were unsatisfied affecting 21 different users (Figure 5.2). From those trips,
51 where partially completed (Exceeded Autonomy) and 37 trips were not able to
even start, having a SoC of 0% before the trip. By splitting this unsatisfied trips
in two groups, it can be analyzed the 30 trips that did charged before, but still the
battery was not loaded enough, and the remaining trips that did not charged in
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preparation for the trip.
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Figure 5.4: SoC of pre-charged EVs against trip distance for partially unsatisfied
trips from Milano users, with an Audi A6 e-tron under the Conservative Policy.

The 30 trips in question, which were partially unsatisfied despite being charged
beforehand, are shown in Figure 5.4, these trips are distributed between 11 different
users. It is evident that, for most of these trips, the charging duration was too
short to fully prepare the vehicle for the subsequent trip. The color bar indicates
the charging time, ranging from 20 minutes to 1.5 hours, which represents the
maximum charging time among these trips.

For example, one user had a battery SoC of 44% and intended to complete
a 481 km trip, but only charged for half an hour beforehand. Prior to the trip,
the battery was at 43%, indicating that under this charging policy, the AC slow
charging rate was applied.

Another example is the user who charged for 18 minutes (green square) before
attempting a 308 km trip with only 16% battery remaining. Although the vehicle
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used DC charging for nearly an hour prior to departure, the charging session was
still insufficient to meet the trip’s energy demand.

Overall, all the unsatisfied trips within this category correspond to journeys
longer than 200 km, where the preceding stop allowed only a short charging
duration and the average SoC before departure was below 30%. These represent
very particular cases, likely influenced by the specific timing of the trips and the
charging speed available, which did not align with the user’s energy needs. It should
also be noted that, although this car model is highly performant, the fast-charging
option used by the simulator corresponds to only 20% of the vehicle’s maximum
charging capacity. The remaining 58 unsatisfied trips are directly associated with
the fact that the EV was not recharged prior to departure. Among these, 21 trips
were partially satisfied, affecting 13 users, while 37 trips could not be initiated
at all, affecting 14 users. The underlying reason for the lack of recharging is the
constraint set by the charging policy. In the case of the Conservative Policy, the
only restriction is the minimum allowed charging time of 20 minutes. As illustrated
in Figure 5.5, these trips were not recharged beforehand precisely because the
preceding stop duration was shorter than the 20 minute threshold.

Total Ex_Aut_No_Charge Discharged Overlap_Omin Overlap_20min Overlap_less_2h

Policy
Frequent 432, 479458, 0.09 | 108, 479458, 0.02 324, 479458, 0.07 196, 204658, 0.1 128, 62642, 0.2 77, 67892, 0.1
Visitor 6556, 479458, 1.37 253, 479458, 0.05 6303, 479458, 1.31 3180, 183653, 1.73 2468, 73723, 3.35 695, 118326, 0.59
Taxi 555, 479458, 0.12 | 112, 479458, 0.02 443, 479458, 0.09 319, 256843, 0.12 140, 44186, 0.32 69, 49490, 0.14
CarSharing 7006, 479458, 1.46 | 1335, 479458, 0.28 5513, 479458, 1.16 5,4940,01 2805,133138,2.11 217, 143110, 0.15
Conservative 88, 479458, 0.02 21, 479458, 0.0 37, 479458, 0.01 0,4940,00 58133138, 0.04  30,143110, 0.02
Business 1905, 479458, 0.4 | 244, 479458, 0.05 1656, 479458, 0.35 1745, 234900, 0.74 155, 69520, 0.22 5, 92281, 0.01
Weekend | 48676, 479458, 10.15 | 2506, 479458, 0.52 | 46117, 479458, 9.62 3961, 41619, 9.52 56, 44811, 0.12

Workplace 1024, 479458, 0.21

Casual

6097, 479458, 1.27

788, 479458,0.16 5309, 479458, 1.11 1,4940,0.02 2722,133138,2.04 2057143110, 1.44

Figure 5.5: Statistics of unsatisfied trips made with an Audi A6 e-tron, for trips
of EV users from Milano. (Overlap information between the charging policy and
the stopped time).

Evaluating the 21 trips that were partially satisfied but did not charge before
departure due to a stop duration of less than 20 minutes, it is observed that most
of these unsatisfied trips correspond to distances below 200 km, with a pre-trip SoC
of less than 30%. Figure 5.6 shows the relationship between the available SoC and
the remaining distance required to complete the trip. In general, the satisfaction
percentage for these trips is relatively high, with completion falling short only by a
small margin of additional charge.
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Figure 5.6: SoC of EVs against trip distance for partially unsatisfied trips without
pre-charge from Milano users, with an Audi A6 e-tron under the Conservative
Policy.

Considering the Dacia Spring Electric, which among the observed vehicles has a
low autonomy of only 189 km (Table 3.5) and limited charging rates for both AC
and DC (below the tested values), only 0.56% of trips were compromised under the
Conservative Policy (Figure 5.1b). Naturally, this results in a higher percentage of
affected users compared to other car models. Nevertheless, the overall outcome
demonstrates that, with sufficiently flexible charging policies, the simulator can
reliably replicate EV trips even for vehicles with lower capabilities, while still
ensuring a high level of consistency with real-world conditions, where 100% of EV
trips are assumed to be satisfied.
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5.1.2 Predefined charging policies behavior against real
EVSE data

For this study, access was granted to anonymized data collected from several
charging stations across Milan. The dataset comprises nearly 13,000 charging
sessions, including information such as charging duration, bulk SoC, and SoC at
the end of the session. This dataset enables a comparison with the performance
of the predefined charging policies, providing a general indication of how realisti-
cally these policies reflect actual charging behavior. It is important to note that
some misalignments are expected, since the simulations are based on a single car
model (Tesla Model Y), while the EVSE dataset includes recharges from multiple,
unspecified car models.
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Figure 5.7: Cumulative distribution of charging durations per policy compared
with EVSE (DC) charging sessions for EV users in Milano.

From Figure 5.7, it can be observed that the charging durations of EV users
in the UnipolTech dataset for Milano resemble those of EV owners recharging at
DC stations around the city when following the Weekend and Car Sharing policies.
This indicates a typical behavior for DC charging sessions lasting less than 1.5
hours, while these policies, as shown in Table 4.1, set a maximum charging duration
of 2 hours.
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Figure 5.8: State of Charge (SoC) before the charging session for a Tesla Model
Y in Milano.

Analyzing the behavior of the charging sessions under the predefined policies,
it is possible to observe both the frequency at which users start recharging for a
given SoC and the frequency at which charging stops.

Figure 5.8 shows the behavior of EV users in Milan charging at public stations
(EV SoC - black line) compared with the simulated users under each predefined
policy. Overall, the predefined policies exhibit a more “anxious” behavior, as a
higher density of charging sessions begins at higher SoC levels. In contrast, the
empirical EV SoC' line displays a more concave growth, with a higher density of
sessions starting at lower SoC values.

The policies that reflect a less anxious behavior are the Casual, Car Sharing,
and Weekend policies, which by definition cap the maximum allowed bulk SoC
threshold at 20% or 30%.

On Figure 5.9 the end of the charging session is reflected. It indicates the
frequency for the SoC to which the users interrupt the charging. Again, the results
from the simulations are compared against the empirical data (E'V SoC — black
line). For this case it is import to observe how the behavior is similar between
certain policies and the empirical data. Both results, demonstrates the final sudden
increase to 100% indicating a high density of users that recharge until the full
capacity of their battery. While, the Weekend and Car Sharing again, are the
policies that are closer to the model user behavior.

This is the reason, why an entire section is dedicated to categorize the unsatisfied
trips for the entire collection of data for each city.
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Figure 5.9: State of Charge (SoC) after the charging session for a Tesla Model Y
in Milano.

In general, the BEV simulator is able to replicate trips from combustion engine
vehicles with high accuracy, as verified against real EV trips. Despite the general-
izations applied to users, such as the assumption of a specific car model, most trips
can be reproduced with a high satisfaction rate. Under the most suitable policies,
approximately 98% of trips were successfully satisfied. This indicates that these
policies are particularly well-suited to the EV users in Milan, while other policies
may still be more appropriate for specific users or even for different cities.

For this reason, an entire section is dedicated to categorizing the unsatisfied
trips across the full dataset for each city.

5.2 Unsatisfied Trips: Analysis per city

In order to evaluate the feasibility of adapting the users of different cities to the
electrical mobility, their trips, made with different fuel types, were replicated by
using different models of BEV under different charging policies. This experiment
will allow to understand which city is more subseptable to increase the usage of
EV on their daily basis trips, and to identify the proportion of users that might be
suitable for this transition.

The BEV simulator detailed on section 4.2.1 was used for replicating this trips,
considering a grid capacity of 22 kW for AC chargings and 50 kW for DC chargings.
Consider that the simulator also takes into consideration the specific limitations of
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the allowed charging power for each car model, meaning that for specific cases this

power might be lower.

5.2.1 User satisfaction under different charging policies

As a first step, the average behavior of each user was analyzed by evaluating trip
distances and parking times.
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Figure 5.10: Density of users per average traveled distance, average parking
duration and maximum traveled distance per city.
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Figure 5.10 shows the distribution of average trip distance, average parking time,
and maximum traveled distance per user. The data indicate that, overall, the cities
under study exhibit similar patterns of user behavior: most users undertake trips
of less than 50 km, and the average parking time ranges between 4 and 8 hours.
Regarding maximum traveled distance per user, the city averages are close to 200
km; however, Milano shows a higher density of longer trips.

Based on this evidence, it can be concluded that the vast majority of trips in
these cities could be satisfied with low-autonomy electric vehicles. Taking the Fiat
500e, which has a maximum range of 270 km, as a reference, it could accommodate
a large proportion of user trips. However, as shown in Figure 5.10c, Sassari has the
lowest average maximum distance, well within the car’s range. Conversely, Milano
has an average maximum distance closer to this limit, indicating that a significant
percentage of users there may not be fully satisfied with this vehicle type, as some
trips would exceed its range limitations.

To verify this information, the percentages of satisfied trips relative to the total
number of trips (Figure 5.11a), the user satisfaction rate in each city (Figure 5.11b),
and the average number of unsatisfied trips per user (Figure 5.11¢) were computed.

Essentially it can be observed how for all the cities, over the 93% of the trips
are satisfied with most of the charging policies, however, the number of users fully
satisfied is quite dramatic for more restrictive policies. Meaning that there are a few
trips that were not partially or completely satisfied under a given charging policy or
even due to the limitations of the chosen car model. As anticipated, Sassari shows
the higher number of satisfied trips (99.90%) as well of users (75.69%) under a very
flexible charging policy such as the Conservative, while Milano reports the lowest
rate of satisfied users (48.74%). For an inverse relationship, the average number
of unsatisfied trips per users during a year is minimum for Sassari (6.4), while for
Trieste the average number (12.2) is above those from Asti (10.4), being Asti the
second city with highest number of satisfied trips, but reaching the forth position
for the satisfied users, a behavior that is also reflected on the average number of
unsatisfied trips per user.

These findings suggest that a very high percentage of trips made by residents
of these cities could be completed with BEVs. However, not all trips can be fully
satisfied due to occasional longer trips or shorter trips that are not planned in a
way that allows timely recharging in compliance with the respective charging policy
constraints
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Figure 5.11: Satisfaction percentage of (a) trips and (b) users, with the average
number of unsatisfied trips per user on each city using a Fiat 500e with different
charging policies.
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To better understand the reasons behind unsatisfied trips, the procedure de-
scribed in Section 4.3 was followed. For each EV model listed in Table 3.5 and
for each city, a categorization table was computed. This resulted in aggregated
simulated trips for each city under the 9 charging scenarios across 50 different EV
models, producing a total of 450 aggregated tables per city, or 2,250 tables overall,
each detailing the categorization of unsatisfied trips relative to the total number of
trips per city. For example, considering only the trips replicated with a Fiat 500e
under the Conservative policy, the most relevant aggregated results per city are
summarized in Figure 5.15.

Conservative Policy Conservative Policy
1.0

1.0

Share of Unsatisfied Trips
Share of Unsatisfied Trips

0.0 0.0

& & ¢ @9‘?& :f‘"’é\
City City
mmm Discharged B Ex_Aut_No_Charge mmm Sat_Dist_0_25 Bl sat_Dist_50_75
B Ex_Aut_Charge B Sat_Dist_25_50 B Sat_Dist_75_100
(a) Cateogrized trips. (b) Partially satisfied distance.
Conservative Policy Conservative Policy

1.0 1.0

Share of Unsatisfied Trips
Share of Unsatisfied Trips

0.0 0.0

L

@ o £ o & 5@ o
s ®'n° i 60‘:,0‘ @,ﬁ” < ®<a° i o@e,,z‘ 4,,4’
City City
mmm Overlap_Omin B Overlap_2h_6h s Pre_SoC_0_25 B Pre_SoC_50_75
W Overlap_20min B Overlap_more_6h W Pre_SoC_25 50 W Pre_SoC_75_100
mmm Overlap_less_2h
(c) Overlapping time with policy’s window. (d) SoC before trip.

Figure 5.12: Unsatisfied trips categorization and analysis on each city, using a
Fiat 500e and a Conservative charging policy.

Figure 5.15 shows the share of unsatisfied trips per category, ranging from 0.10%
to 0.46% depending on the city. Figure 5.12a highlights the main categorization,
revealing consistent behavior across all cities except Sassari, which reported a
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higher percentage (50%) of partially satisfied trips without a prior recharge. Under
the Conservative policy, the only constraints are a minimum parking duration of
20 minutes and a minimum SoC of 75% before charging. Figure 5.12¢ shows that
over 78% of unsatisfied trips in most cities were due to not meeting the minimum
20-minute charging requirement. In contrast, Sassari has a lower percentage under
20 minutes, due to the larger share (7%) of trips overlapping more than 6 hours,
suggesting that 26% of unsatisfied trips with overlap over 20 minutes are explained
by 18% of charging opportunities starting with a SoC above the allowed threshold.
Figure 5.12d further shows that Sassari reports the highest SoC before unsatisfied
trips, which explains why Figure 5.12b shows Sassari leading the other cities in
distance traveled during the 64% of trips classified as partially satisfied.

—— Trieste
f —— Asti
4 17.6 min
0.0040 /) ) —— Grosseto 100 - 114.5 kfn, SoC: 34.2%
20.1 min .
N . —— Milano
0.0035 |} 28.0 min —— Sassari
29.1 min| 804 ,50C: 21.1%
0.0030 - 33%: 38.8 min %)
wn | [=]
g o ‘
wn il il N i . )
S 0.0025 UEJ‘ 60 y 11.6 km, SoC: 21.1%
S Z
2 0.0020 et
g G 404 104.4 kin, SoC:20.6%
[} v
e T
0.0015 —
n .
20 A 1, 119.0 ki, SeC:-18-6%
0.0010 7
0.0005 07
i
0.0000 +—- T T . . . T . . T T
0 100 200 300 400 500 600 0 200 400 600 800
Average stopped time before trip (min) Average Unsatisfied Trip Distance (km)

Figure 5.13: Available SoC over trip distance for unsatisfied trips under the
Conservative Policy

By plotting the density of users based on their average unsatisfied trips, it is
possible to gain visual insight into why each user was not satisfied. Figure 5.14
shows the unsatisfied trips per user for each city, representing the unfeasible trip
profile of the users missing in Figure 5.11b.

Observing Figure 5.14, most cities show an average stopped time before unsatis-
fied trips between 17 and 39 minutes. This indicates that under the Conservative
Policy, however a high percentage of users were parked bellow 20 minutes (minimum
required by the policy) and disables the EV to recharge.

Furthermore, the level curves of trip density in terms of trip distance and
available SoC show that all cities report average SoC values bellow 20%. This
suggests that during available charging minutes, vehicles were in general recharged
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at low AC power (if it was parked longer than the 20 minutes), while the average
planned trips exceeded 100 km. For a Fiat 500e, such trips would require at least
37% SoC, but it was only available between 10 to 20%. Under this limited scenario
close to the policies boundaries, increasing user satisfaction would require adjusting
its behavior: before longer trips, users should wait longer to reach the necessary
SoC. For example, a trip over 100 km starting at 20% SoC could be satisfied with
an additional 17% charge, which at 11 kW AC power requires 34 minutes, just 14
minutes longer than the typical available stop time.
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Figure 5.14: Available SoC over trip distance for unsatisfied trips under the
Casual Policy.

A second analysis was performed using a more restrictive and realistic policy,
reflecting less “anzious” behavior, as observed during the Validation section. The
results for the Fiat 500e under the Casual policy were examined. As shown in
Figure 5.11a, around 5% of trips were unsatisfied, but these affected 90% of users
in Asti and Grosseto, and approximately 85% of users in the other cities.

Those 85% of users, in average are unsatisfied by non fulfilling trips of less than
16 km, but for doing them, they had available only 1% of the SoC, nonetheless
having been parked in average for over 2 hours. The constraints for this charging
policy are very strict, the car should be parked for over 6 hours and with a bulk
SoC under 20%. Needing to match the two conditions in order to anticipate longer
trips.

In both of the examples analyzed, the average user dissatisfaction is biased
by those trip characteristics. Under the Conservative policy, which is more flexi-
ble, most of the unsatisfied trips involve longer distances where the battery was
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insufficient, even though it was regularly charged under an anxious pattern. In
contrast, under the more restrictive Casual policy, the average is influenced by a
higher number of shorter, more typical trips that reflect the average user behav-
ior in each city, where the vehicle was unable to recharge sufficiently due to the
SoC threshold constraints. Since the average unsatisfied distance is low and the
remaining energy needed to complete these trips is minimal, the dissatisfaction
occurs despite users being parked long enough to recharge; the policy restrictions
prevent it. In this scenario, increasing the satisfaction rate would require relaxing
the policy conditions.

In general, as observed, according to the charging policy, even with a small
battery EV, most of the trips across the different cities can be satisfied, but not all
the users will be equally satisfied across the cities. This is directly related with the
combination of several factor such as driving behavior, the potential charging time
before the trip, the available SoC before the trip and the distance of the future trip.
Under the current conditions, using the Conservative charging policy will maximize
the overall satisfaction rate, and it can be said, for the case of Milano, that at least
48% of its users will be satisfied. From Figure 7.7, the satisfaction rate of users of
Milano could be increased to 85% by upgrading the car to an Audi A6 sportback
e-tron. Meaning that if the adaptability is not limited to small battery cars, for all
the cities, the user satisfaction can be increased.
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Figure 5.15: EV Model Distribution for Full User Satisfaction with Minimal-
Range EVs per charging policy.

Figure 5.15a shows the minimum share of each EV model required per user to
achieve full satisfaction under the Conservative charging policy. The sum of these
shares represents the maximum user satisfaction rate per city given the charging
constraints, without modifying user behavior and taking EV model limitations into
account. On the stack bar, the upper level car models will be able to satisfy also
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the sum of al the percentages bellow its own stack as it has a higher autonomy
than its predecessor. Overall, Sassari achieves the highest adaptability, with up to
98% of users satisfied, over 56% relying on the Dacia Spring Electric, the cheapest
and least performant EV in Table 3.5, followed by Grosseto and Asti. In contrast,
Milano is the least adaptable city, with only 84.9% of users satisfied. It shows the
highest reliance on the top-range Audi A6 e-tron, and the lowest satisfaction when
using the Fiat 500e.

Under the less restrictive Casual charging policy (Figure 5.15b), overall user
satisfaction decreases. However, cities respond differently: Sassari remains the most
adaptable, with 46.5% of users satisfied, while Trieste and Milano show moderate
improvements, and Asti and Grosseto lag behind. Notably, the Dacia Spring is no
longer the most suitable EV in any city; instead, the Audi A6 e-tron becomes the
model that contributes most to increasing user satisfaction.
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5.3 Analysis: User-Level Suitability of EV Mod-
els and Charging Policies per City

As described in Section 4.4, the most suitable combination of car model and charging
policy was selected to increase user satisfaction while maintaining minimal cost.
Following the assignment process, the overall satisfaction rate per city improved
compared to the results obtained using only the Conservative Policy (Figure 5.15a).
As shown in Figure 5.16, the satisfaction rate in Milano increased from 84.9% to
85.7%, primarily due to a higher number of users adopting the Tesla Y model.
Similar improvements of approximately 1% were observed in the other cities. This
indicates that, despite its flexibility and cautious nature, the Conservative Policy
was not entirely suitable for all users.
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Figure 5.16: EV Model Distribution for Full User Satisfaction with Minimal-
Range EVs and most suitable charging policy per user.

As described previously, the selection process assigns a single car model to each
user, ensuring the minimum possible number of unsatisfied trips while selecting the
most economical option. However, multiple charging policies may be considered
suitable for the same user, provided that the resulting number of unsatisfied trips
and the charging time remain equal to the minimum values observed across all
policies. Figure 5.17 illustrates, for each city, the percentage of users with a given
car model who are suitable to recharge under each charging policy.
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Figure 5.17: User distribution per car model and its corresponding charging
policy across the cities.

The top three ranked policies are Conservative, Frequent, and Tazi. As expected,
the Conservative Policy is the most commonly adopted among users across all
car models. However, Dacia Spring users in Milano show a lower suitability rate
compared to other cities, with only 62.31% of users likely to adopt this policy while
owning this car model. Policies such as Car Sharing and Weekend are generally
unsuitable in most cities. While Fiat 500e owners in Grosseto, Milano, and Sassari
may find the Car Sharing Policy suitable, users of other car models in all cities,
except Milano, do not adopt these policies at all. Milano is the only city where a
small percentage of users show suitability for these policies. Nonetheless, Fiat 500e
users in Milano are not suitable for the Weekend Policy, and Dacia Spring owners
are not suited to the Car Sharing Policy.

The Figure 5.18 allows to profile the seasonality of the unsatisfied trips per
gender on each city.
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Figure 5.18: Monthly unsatisfied user percentage per city.

The plot shows that, as expected, the number of unsatisfied users increases
during the holidays, particularly over the summer break. As observed previously,
during these months, traveled distances are higher, and parking times before trips
may not allow the car to fully recharge or provide sufficient autonomy for the
trip. Single holiday trips are often not enough to meet these requirements. In
August, this phenomenon affects mostly male users, with the highest percentage
in Milano, followed by Asti. For the rest of the year, Trieste exhibits the highest
unsatisfied user rate. From this analysis, it can be inferred that excluding these
unusual holiday trips would likely increase overall satisfaction and, consequently,
the city’s adaptability to EV adoption. In Milano, which currently exhibits the
lowest full satisfaction rate, at least 5% of unsatisfied users are due to holiday trips.
If users plan these trips in advance and adjust their schedules, satisfaction could
be achieved with some compromise. However, if users do not modify their habits,
longer holiday trips will continue to negatively impact performance metrics. It
should be noted that unsatisfied users are not necessarily consistent throughout the
year; a single unsatisfied trip in any month classifies the user as unsatisfied, affecting
the city’s overall adaptability score. The distribution of monthly unsatisfied trip
counts per unsatisfied user is shown in Figure 5.19.

During months with major festivities, the median number of unsatisfied trips
per user increases. Typically, affected users experience two unsatisfied trips per
month, rising to three in August. Users in Sassari are least affected, with only
one unsatisfied trip on average, while Milano’s users are the most susceptible to
seasonal increases in unsatisfied trips with users on the 75% percentile with around
four unsatisfied trips.
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Figure 5.19: Monthly Distribution of Unsatisfied Trips per User Across Cities.

To characterize the unsatisfied users, Figure 5.20 illustrates the percentage of
unsatisfied users by gender and age group, distinguishing between Commercial and
Non-Commercial vehicles. For Commercial vehicles, those from Trieste and Milano
are the most affected, with approximately 22% and 20% of the fleet experiencing
unsatisfied trips, respectively. In contrast, Sassari is affected the least, reporting
only about 4% of its Commercial fleet affected. For Non-Commercial vehicles,
Trieste and Milano also rank highest in most age groups. Notably, Asti’s users
under 25 years old are the most affected among their age peers, with around 2%
experiencing unsatisfied trips, except when compared to Sassari users. Considering
gender among Non-Commercial users, males are generally more affected across
all age groups and cities. However, female users in Trieste under 25 years old
experience the highest percentage of unsatisfied trips, exceeding both females and
males of the same age in other cities.
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Figure 5.20: Unsatisfied user profile based on gender and age group per city
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On Figure 5.21, the percentage of unsatisfied users affected based on their
original fuel type is present. Showing also on top of the bar the raw number of
users that are represented on the bar in question. As it can be observed, the most
affected users, in proportion, are those were originally used Diesel, Hybrid or GPL.

The interesting part are the users with originally Electric Vehicles, that were
actually supposed to satisfied all their trips, but are still present some on Grosseto,
Milano and Trieste.

Milano shows 21 unsatisfied users, however it represents just the 5% of the
EV fleet of Milano, hey were already exposed during the Replication of real EV
trips section, and the reasons behind their dissatisfaction were explained in detail.
Mostly because the charging time before the trip was not enough according to the
choosen policy (mostly Conservative), or long trips out of the autonomy of the
assigned car were attempted with low SoC.

In the case of Trieste and Grosseto, only a single EV user was not satisfied. The
user of Trieste is a male of 44 years old that attempted to perform 3 trips of 180,
200, 380 km with only 0%, 20% and 45% of the SoC, were the 45% capacity of
the battery allows only 311 km. The Grosseto user is for Commercial purpose and
attempted to do 8 trips over 160 km with SoC of less than 20% which will cover
only for 138 km.
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Figure 5.21: Unsatisfied user profile based on fuel per city
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Chapter 6
Conclusions

This study assessed the feasibility of using battery electric vehicles (BEVs) to
satisfy user trips across several Italian cities, considering diverse vehicle models
and charging policies. The analysis integrated trip distances, parking durations,
and vehicle state of charge (SoC) dynamics to evaluate trip-level and user-level
satisfaction.

Results indicate that most urban trips can be completed using small-battery
EVs, such as the Dacia Spring and Fiat 500e. In the analyzed cities, most trips are
under 50 km, with average parking times between 4 and 8 hours, and users typically
travel a maximum of around 200 km. However, satisfaction varies significantly by
city due to differences in travel patterns and user density. Sassari achieves the
highest satisfaction rates, favored by shorter trips and longer parking durations,
while Milano exhibits lower satisfaction because its users frequently travel longer
distances near the limits of vehicle autonomy.

Charging behavior plays a decisive role in satisfaction outcomes. The Conser-
vative policy, offering greater flexibility in charging opportunities, resolves most
unsatisfied trips with only minor behavioral adjustments. In contrast, the more
restrictive Casual policy leaves a larger share of users unsatisfied, often due to
insufficient charging time or unmet SoC requirements. Addressing these limitations,
by relaxing policy constraints or encouraging users to plan charging before long
trips, significantly could improve the satisfaction rates. Similarly, upgrading to
higher-capacity EVs, such as moving from a Fiat 500e to an Audi A6 e-tron, notably
enhances performance in high-demand cities like Milano, raising user satisfaction
from roughly 48% to 85%.

Overall, user satisfaction depends on the interaction between technical vehicle
characteristics and behavioral charging habits. Technical factors (vehicle range,
SoC management) and behavioral aspects (charging discipline, trip planning) jointly
define the suitability of EV adoption. Sassari stands out as the most adaptable city,
achieving nearly full satisfaction under the Conservative policy and maintaining
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high performance even under less flexible conditions. In contrast, Milano remains
the least adaptable, but still with over 85% of satisfied users, depending on long-
range vehicles to meet user travel demands. Across all cities, at least 50% of users
could be satisfied using low-range EVs such as the Dacia Spring or Fiat 500e.

No single charging policy suits all users. While the Conservative policy achieves
the best overall results, its rigidity limits its suitability for specific user profiles.
Allowing users to adopt their most compatible charging policy individually increases
satisfaction by about 1% across cities, confirming the value of behavioral flexibility.
Policies such as Conservative, Frequent and Taxi proved to be suitable for most
users, while Car Sharing and Weekend remain largely ineffective, except for a small
subset of users in Milano. These differences underscore the heterogeneous nature
of urban mobility and the importance of personalized charging strategies.

Seasonal variations further influence satisfaction rates. The number of unsatisfied
users peaks during the summer, especially in August, when longer leisure trips reduce
charging opportunities. This effect is strongest in Milano and Asti, while Trieste
consistently shows higher dissatisfaction throughout the year. Excluding these
seasonal anomalies could increase Milano’s satisfaction by up to 5%, highlighting
how occasional behaviors can skew overall city performance. Encouraging better
planning and charging before long holiday trips would mitigate these seasonal
drops.

Demographic and fleet analyses reveal additional insights. Commercial fleets in
Trieste and Milano experience the highest dissatisfaction, with about 20% of users
affected, whereas Sassari is minimally impacted. Among non-commercial users,
drivers under 25 are the most affected in Asti and Trieste. Male users are generally
more prone to dissatisfaction, although young female users in Trieste exhibit the
highest overall rate.

Fuel-type analysis shows that users transitioning from Diesel, Hybrid, or GPL
vehicles face greater adaptation challenges, being overrepresented among the un-
satisfied users. Interestingly, a few existing EV owners in Milano, Grosseto, and
Trieste also reported dissatisfaction, largely due to behavioral issues like inadequate
pre-trip charging or inappropriate policy selection, rather than technical vehicle
constraints.

In summary, the adaptability of cities to EV adoption depends not only on
vehicle performance and infrastructure but also on behavioral flexibility and charg-
ing discipline. Sassari demonstrates that successful EV integration is achievable
even with modest vehicles when user behavior aligns with technical limitations.
Conversely, Milano’s lower satisfaction levels emphasize the need for behavioral
adaptation and possibly improved charging infrastructure.

During this research, several assumptions were made to enable the analysis and
to replicate trips as if they were performed with electric vehicles. Although the
charging policies were designed to simulate realistic charging behavior by assigning

72



Conclusions

specific time windows for charging, this does not necessarily imply that users would
always charge their vehicles during those periods. Moreover, unexpected trips may
require charging behaviors that differ from the usual patterns. Currently, such cases
may result in unsatisfied trips, as the simulator does not allow multiple charging
policies per user nor forecasts the next trip to determine the most suitable charging
strategy.

Additionally, the current simulator recharges the battery whenever a parking
event meets the charging policy conditions, regardless of the actual availability of a
charging station at that location. Unfortunately, Origin-Destination coordinates
were not available in the provided datasets, making it impossible to include spatial
details that would enhance realism by considering real charging infrastructure.

For future developments, the simulator could be expanded by integrating real-
world features of current EV technologies—such as automated charging parameter
adjustments and scheduling based on vehicle-to-charger communication protocols.
With access to location data, the simulator could be linked to public databases
of charging stations, enabling it to detect when a user parks within the vicinity
of an available EVSE and flag that event as an opportunity to recharge. Also,
considering the thresholds on SoC to recharge set by each car, the charging speed
varies continuously depending on the SoC level. The current model emulates this
behavior using two discrete thresholds; however, in practice, the charging curve is
more dynamic, with power gradually decreasing as the SoC increases. Incorporating
additional thresholds or implementing a continuous power derating function based
on the instantaneous SoC could therefore enhance the realism of the simulations.

Furthermore, given the flexibility of the BEV simulator and its easily customiz-
able charging policy features, future work could explore optimization approaches
to identify the set of charging policy parameters that maximize trip satisfaction for
each user. This would allow evaluating whether the overall satisfaction rate per
city improves when unsatisfied users are assigned personalized charging policies
better aligned with their individual travel needs.
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7.1 BEV Simulator Flowcharts
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7.2 Unsatisfied Trips categorization shares using

a Fiat 500e for all cities
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7.3 Milano
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Figure 7.7: Percentage of unsatisfied users per charging policy for Milano.
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Figure 7.8: Percentage of unsatisfied trips per charging policy for Milano.
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Figure 7.9: Percentage of charging time relative to total parked time per charging
policy for Milano.

7.4 Asti
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Figure 7.10: Percentage of unsatisfied users per charging policy for Asti.
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Figure 7.11: Percentage of unsatisfied trips per charging policy for Asti.
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Figure 7.12: Percentage of charging time relative to total parked time per charging
policy for Asti.
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7.5 Grosseto

Dacia_spring electric 45_ - 83.66 98.69 95.78 - 90
- 80
Fiat_500e hatchback 42 kwh_ 97.16 92.43 70
o
'g 60
= BMW _ix xdrive40_ 94.21 85.77
[ 50
[1v]
o
40
Tesla_Model Y_ 94.13 85.88
30
Audi_A6 sportback e-tron performance_ 85.88 20
: 10
5 2 8 £ § 3 5 T &
c 5 s s ) = Kl L %_
25 o z g > g ¥
a g & : 3
& 5
v}
Policy

Figure 7.13: Percentage of unsatisfied users per charging policy for Grosseto.
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Figure 7.14: Percentage of unsatisfied trips per charging policy for Grosseto.
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Figure 7.15: Percentage of charging time relative to total parked time per charging
policy for Grosseto.

7.6 Sassari
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Figure 7.16: Percentage of unsatisfied users per charging policy for Sassari.
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Figure 7.17: Percentage of unsatisfied trips per charging policy for Sassari.
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Figure 7.18: Percentage of charging time relative to total parked time per charging
policy for Sassari.
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7.7 Trieste
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Figure 7.19: Percentage of unsatisfied users per charging policy for Trieste.
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Figure 7.20: Percentage of unsatisfied trips per charging policy for Trieste.
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Figure 7.21: Percentage of charging time relative to total parked time per charging
policy for Trieste.
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