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Summary

Grasslands are among the world’s most vital ice-free ecosystems, providing critical services
such as carbon sequestration, biodiversity support, and pollination. However, these systems
face increasing pressure from climate change, characterized by rising temperatures and al-
tered precipitation patterns. Predictive models that integrate historical data with future cli-
mate scenarios are essential for anticipating shifts in biomass dynamics and developing adap-
tive management strategies to preserve the ecological and economic functions of grasslands.

This thesis, developed in collaboration with the CEIGRAM Research Center in Madrid
(central Spain), evaluates the efficacy of satellite-derived vegetation indices, specifically the
Normalized Difference Vegetation Index (NDVI), as reliable proxy for pasture biomass pro-
duction under climate change. It addresses a key limitation in current agricultural insurance
models, which often rely on long-term NDVI averages that may not accurately capture real-
time forage availability in a changing climate. Through a combined analysis of satellite im-
agery and field measurements, this research performs a statistical comparison between NDVI
trends and directly measured biomass growth.

The study is grounded in a mathematical model that integrates soil properties and climatic
data to simulate pasture biomass. Field campaigns provide crucial data for model calibration,
ensuring that spectral indices robustly reflect actual on-the-ground biomass. The research was
carried out across three areas of the Community of Madrid, Spain, each chosen for their dis-
tinctive climatic and edaphic features; these locations encompass a gradient of environmental
conditions, ranging from humid mountainous zones to semi-arid agricultural landscapes. The
findings aim to determine if incorporating direct biomass estimation can enhance the preci-
sion of pasture monitoring systems; as shown in the chapter 4 a correlation between NDVI
and pasture biomass confirms that satellite data can be effectively and scientifically employed
as a reliable indicator for monitoring the status, productivity, and health of pastoral ecosys-
tems in a continuous and large-scale manner. This research contributes to optimizing remote
sensing tools for sustainable rangeland management, with potential implications for improv-
ing agricultural insurance frameworks, informing policy, and supporting climate adaptation

strategies.
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Chapter 1

Introduction

1.1 Agriculture and climate change

For millennia, agriculture has been the backbone of human civilization, ensuring food secu-
rity, shaping cultural landscapes, and enabling socioeconomic development. Yet, in the 21st
century, this ancient sector stands at a critical crossroads, increasingly strained by the mul-
tifaceted consequences of climate change. Rising global temperatures, altered precipitation
patterns, more frequent and intense extreme weather events and the growing atmospheric
concentration of greenhouse gases (particularly carbon dioxide (CO,)) are already reshap-
ing agroecosystems worldwide, undermining both productivity and the long-term stability of
global food systems [4}, 15]].

Taking as an example the wheat culture, thermal analyses indicate that wheat yields decline
substantially as temperatures exceed optimal thresholds, with estimated reductions of 5-15%
additional degree Celsius [6, [7]. Simultaneously, increased variability in precipitation pat-
terns and a higher frequency of drought events are undermining rainfed agricultural systems,
particularly in tropical and subtropical regions [8, 9].

Droughts have already led to significant global agricultural losses, with average yield reduc-
tions of 9—10% for major cereals [10]. Beyond heat and water stress, the rising incidence of
extreme weather events—such as heatwaves and intense rainfall—has caused direct damage
to crops, especially during critical stages like flowering and grain set [11} [12]]. Indirect ef-
fects include the poleward expansion of pests and pathogens, facilitated by warmer conditions
[13]. Furthermore, elevated atmospheric CO, concentrations have been linked to declines in
the nutritional quality of staple crops, with reductions in protein, zinc, and iron content [14]].
Coastal agricultural zones face additional threats from soil salinization due to sea-level rise

and saltwater intrusion into coastal aquifers [15]. Collectively, these challenges threaten



global food security, with projections suggesting substantial declines in agricultural produc-
tivity by mid-century, especially in already vulnerable regions [16]. Adaptation measures,
such as breeding crop varieties resistant to abiotic stress and implementing more sustainable
farming practices, are increasingly recognized as essential for mitigating negative impacts
[17].

The relationship between climate and agriculture is not unidirectional. While agriculture is
deeply vulnerable to climatic variability, it is also a significant contributor to anthropogenic
climate change. According to the Food and Agriculture Organization, agricultural activities,
including land use change, enteric fermentation, and the application of synthetic fertilizers,
account for approximately 23% of total global greenhouse gas emissions, [1]], a more detelied
description of the different contribution is illustraed in figure[I.1] This complex, bidirectional
relationship necessitates a nuanced and interdisciplinary approach that not only examines the
vulnerabilities of agricultural systems but also identifies pathways for both adaptation and

mitigation.
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Figure 1.1: Contribution of crops and livestock activities to total non-CO, emissions from
agriculture in 2018 (5.3 Gt CO.eq) [1]].

A growing body of scientific research has documented the adverse effects of climate
change on crop yields, particularly in low-income and tropical regions where adaptive ca-
pacity is limited. Lobell et al. [18] estimate that, without significant adaptation measures,
global warming could reduce the yields of key staple crops such as maize, wheat, and rice by
5-10% by mid-century, disproportionately affecting already food-insecure populations. Sim-
ilarly, Schlenker and Roberts [19] highlight the nonlinear effects of temperature increases on
crop productivity, with even short periods of extreme heat causing substantial yield losses. At

the same time, certain forms of intensive agriculture are accelerating environmental degrada-
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tion. The widespread use of nitrogen-based fertilizers contributes to the emission of nitrous
oxide (N,O), a greenhouse gas with a global warming potential nearly 300 times greater than
that of CO, [20]. Livestock farming emits large quantities of methane (CH,), while defor-
estation for agricultural expansion not only releases stored carbon but also diminishes the
land’s natural capacity for carbon sequestration [21]].

However, agriculture is not solely a victim or a driver of climate change, it also holds trans-
formative potential to become part of the solution. The concept of climate-smart agriculture
(CSA), introduced by Lipper et al. [22], emphasizes the integration of adaptation, mitigation,
and food security objectives. Practices such as conservation tillage, agroforestry, and inte-
grated nutrient management can enhance soil health, improve water use efficiency, and reduce
GHG (green house gases) emissions while increasing resilience to climatic stressors [23},24]].
Moreover, recent advancements in agricultural technology and data science are opening new
frontiers. The development of drought-resistant crop varieties, the deployment of precision
agriculture tools, and the use of Al-driven climate forecasting models are enabling more in-
formed, proactive responses to climate variability [[7]. These innovations, when embedded
in inclusive policy frameworks and supported by robust rural extension systems, have the

potential to steer agriculture toward greater sustainability and climate resilience.

1.2 Importance of pasture

Grassland ecosystems represent one of the planet’s most vital biomes, delivering indispens-
able ecosystem services that sustain both environmental stability and human livelihoods.
These semi-natural systems play a disproportionately large role in global carbon storage,
with estimates indicating that they contain up to one-third of the world’s terrestrial soil car-
bon [2} 25]]. Beyond carbon sequestration, grasslands contribute to climate regulation, biodi-
versity preservation, hydrological functions and sustainable agricultural production, making
their conservation a priority for global sustainability efforts.

Pastures represent a fundamental resource for sustainable livestock systems, providing not
only the primary source of forage but also contributing to animal health, welfare, and natu-
ral feeding behaviors. They sustain biodiversity by hosting a wide range of plant and animal
species, enhance soil fertility through nutrient cycling, and support carbon sequestration, thus
playing a pivotal role in climate regulation. Pastures also help preserve traditional rural land-
scapes and cultural heritage, while ensuring the production of high-quality animal products
with distinctive nutritional and organoleptic properties. By reducing the need for external

feed inputs, they strengthen farm self-sufficiency and economic resilience, while simultane-



ously delivering essential ecosystem services such as erosion control, water regulation, and
habitat provision.

The dynamics of carbon cycling in grasslands (also shown in figure [I.2)) are governed by
intricate interactions between biotic and abiotic factors. Plant diversity enhances soil organic
carbon (SOC) storage through increased root biomass and microbial activity, while variables

such as soil composition, climatic conditions and land-use practices further modulate seques-
tration efficiency [26), 2]].
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Figure 1.2: Grassland soil carbon sequestration [2]]

In particular, studies in seminatural Nordic grasslands demonstrate that optimized grazing
regimes can simultaneously sustain above-ground biodiversity and improve below-ground
carbon retention, illustrating the potential for management strategies that reconcile ecological
integrity with climate mitigation objectives [27].

Biodiversity serves as a pillar of the functionality of the grassland ecosystem. Long-term
experimental research underscores that the richness of plant species exerts a more substantial
influence on carbon storage than elevated CO, levels or nitrogen deposition. For instance,
a 19-year grassland experiment revealed that biodiversity-driven carbon accumulation sur-
passed the effects of other global change factors, reinforcing the critical role of species di-

versity in ecosystem resilience [25]. Systematic reviews further identify carbon sequestration



and forage production as among the most extensively studied grassland ecosystem services,
highlighting their dual agricultural and environmental significance.

Grazing management exerts a dualistic impact on grassland productivity and biodiversity.
Moderate grazing intensities have been shown to promote belowground biomass and plant di-
versity by alleviating competitive dominance among species. Conversely, excessive or poorly
managed grazing depletes vegetative cover, diminishes biodiversity, and disrupts carbon ac-
cumulation processes [28]. These findings emphasize the necessity of context-appropriate
grazing systems to maintain ecosystem functionality.

Restoration and sustainable management of grasslands hold substantial potential for climate
change mitigation. Biodiversity-focused restoration alone could sequester between 2.3 and
7.3 gigatonnes of CO, equivalent annually, with additional contributions from optimized
grazing practices (148—-699 megatonnes COse/year) and legume integration (147 megatonnes
COsel/year) [2]]. Such nature-based solutions offer cost-effective strategies to enhance carbon
storage while supporting rural economies, particularly in regions where grasslands underpin
livestock production and food security. Despite their ecological and socioeconomic impor-
tance, grasslands face persistent threats from land-use conversion, afforestation, and policy
neglect. In Europe and Nordic countries, grasslands remain indispensable for meat and dairy
production, yet their conservation status is increasingly precarious [27]. Effective gover-
nance frameworks that integrate biodiversity and climate objectives are urgently needed to
safeguard these ecosystems.

Functional diversity further improves grassland resilience by allowing complementary
resource use and stabilizing productivity under environmental stressors. Variations in plant
traits, such as rooting depth, leaf morphology, and flowering phenology, facilitate nutrient
cycling, forage quality, and resistance to invasive species [29]]. This diversity of traits buffers
ecosystems against climate extremes, ensuring sustained service provision under changing
conditions. Nevertheless, translating scientific insights into actionable policies remains a
challenge. Socioeconomic barriers, divergent stakeholder interests, and institutional limita-
tions often hinder the implementation of grassland conservation measures [30]. Market-based
incentives and participatory governance models are increasingly advocated to embed ecosys-
tem service valuations into land-use planning, thereby aligning ecological preservation with
local livelihood needs.

In summary, grasslands occupy a unique niche in global sustainability efforts, offering un-
paralleled benefits for carbon management, biodiversity conservation, and agricultural re-
silience. Their extensive distribution, deep-rooted vegetation, and multifunctional capacity
position them as indispensable natural climate solutions. However, realizing this potential
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requires concerted efforts to preserve species diversity, adopt regenerative land-use practices,
and institutionalize ecosystem service frameworks. Only through integrated management and

policy coherence can grasslands continue to fulfill their critical role in planetary stewardship.

1.3 State of the art and thesis’ goal

The measurement of pasture biomass through remote sensing has evolved from simple NDVI-
based correlations to sophisticated multi-sensor approaches, yet fundamental challenges per-
sist in operational applications. Traditional field measurements, still considered the gold
standard, typically involve destructive sampling or visual estimation methods, which pro-
vide absolute biomass values but suffer from limited spatial representativeness. This lim-
itation becomes particularly acute when attempting to validate satellite-derived estimates,
as demonstrated by Dusseux et al. [31] in French grasslands, where the spatial mismatch
between 20x20 cm quadrats and 10 m Sentinel-2 pixels introduced significant errors. Sim-
ilar challenges were also discussed in Mediterranean dehesas by Hernandez Diaz-Ambrona
et al. [32], highlighting the role of vegetation indices for forage estimation in heterogeneous
systems. Recent advances have demonstrated that machine learning models (e.g., Random
Forest, XGBoost) trained on a combination of satellite-derived vegetation indices and mete-
orological data can significantly improve the accuracy of dry matter estimation in intensively

managed grazing systems [33]].

The search for robust vegetation indices has historically revolved around the Normalized
Difference Vegetation Index (NDVI), which has proven to be a remarkably effective indica-
tor of canopy greenness and pasture productivity across diverse ecosystems [34, 35]. NDVI
is not the only index used but also indices such as the Enhanced Vegetation Index (EVI) and
EVI2 [36] incorporate corrections for soil and atmospheric effects, showing improved per-
formance in sparse or degraded grasslands. Similarly, the Soil-Adjusted Vegetation Index
(SAVI) and its modifications [37] have been effective in arid systems with high bare soil frac-
tions. The integration of long-term satellite data, particularly from the Sentinel-2 and Landsat
missions, allows for the development of robust biomass estimation models that can account
for seasonal and interannual variability, providing reliable information for sustainable pasture

management over time [38]].

Recent work has demonstrated the added value of integrating hyperspectral information.
Narrowband indices such as the Normalized Difference Red Edge (NDRE) and Chlorophyll
Indices [39] provide better sensitivity to nitrogen content and photosynthetic activity, com-



plementing NDVI in contexts where nutrient monitoring is essential. With Sentinel-2, red-
edge bands enable indices like the Inverted Red-Edge Chlorophyll Index (IRECI), which
correlate strongly with pasture biomass [40]. As shown by Chen et al. [41]], the use of multi-
index machine learning models leveraging Sentinel-2 improves biomass estimation accuracy
compared to NDVTI alone, particularly under conditions of high grazing pressure. The re-
lationship between NDVI and biomass is fundamentally non-linear and can be effectively
captured through optimized non-linear models, such as polynomial regressions, which have
been shown to significantly outperform simple linear correlations for accurate biomass esti-
mation [42].

The temporal resolution of satellite observations is another crucial factor. While MODIS data
provided the first continental-scale time series of pasture dynamics [43], their coarse resolu-
tion limited their utility in heterogeneous grazing systems. Sentinel-2’s 5-day revisit cycle
represents a significant step forward, though even this may miss rapid biomass changes during
rotational grazing events, as documented by Kallel et al. [44]. The fusion of Sentinel-2 with
PlanetScope data further enhances temporal resolution to near-daily levels [45], although this
comes at the cost of increased processing complexity. The value of high-temporal resolution
data is profound for capturing dynamic processes. Time-series analysis of coarse-resolution
data like AVHRR NDVI has been foundational for quantifying spatio-temporal patterns of
agricultural productivity over large, fragmented landscapes, revealing trends and responses

to environmental drivers that are invisible at shorter time scales [46]].

Beyond optical data, the fusion of radar and optical observations represents a promising fron-
tier. Sentinel-1’s C-band SAR offers all-weather capability, with moderate correlations to
biomass [47], while more recent approaches combining radar and optical indices in gradient
boosting frameworks have shown stronger predictive power [48]. In the context of sustain-
able grazing, applications such as the use of vegetation indices for Voisin rational grazing
management [49] demonstrate the operational relevance of these tools in adapting to climate
change.

Despite technological advances, ground-based calibration remains indispensable. The
dependence on field sampling continues to be a limiting factor [32], as species composition
strongly modulates the relationship between spectral signals and actual forage availability.
NDVI, while simple, cost-effective, and widely available, remains a cornerstone of biomass
estimation due to its robustness and historical consistency across studies [34]. Its enduring
relevance lies in its ability to provide a reliable baseline against which newer indices and
machine learning models can be evaluated.

The integration of multi-scale observations, including UAV (Uncrewed Aerial System)-
based remote sensing, now bridges the gap between field plots and satellite pixels [S0].
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LiDAR-equipped UAVs provide structural information that, when combined with multispec-
tral indices, improves calibration and accounts for within-pasture heterogeneity. These hi-
erarchical approaches underscore that while remote sensing offers unparalleled spatial and
temporal coverage, its effectiveness ultimately depends on field-based validation and ecolog-

ically informed interpretation.

In this thesis, the objective is to evaluate whether satellite-derived vegetation indices,
particularly the NDVI, can serve as reliable indicators for pasture biomass growth under
climate change scenario. This assessment is conducted through a combined analysis of satel-
lite data and field measurements, aiming to support more sustainable rangeland management
practices. Current insurance models often rely on decadal NDVI averages to assess pasture
productivity, neglecting real-time biomass dynamics, this approach may lead to inaccuracies
in estimating forage availability, particularly under changing climatic conditions. By per-
forming a statistical comparison between NDVI trends and measured biomass growth, this
study seeks to determine whether incorporating direct biomass estimation could improve the
precision of pasture monitoring systems.

The research is based on a mathematical model developed by the tutor who assisted in the
development of this thesis project 3], which integrates soil characteristics and climate data to
assess pasture data. Field campaigns provide essential calibration data, ensuring that spectral

indices accurately reflect on-the-ground biomass conditions.



Chapter 2

Materials and case study

2.1 Case study

This case study focuses on the evaluation of the dynamics of pasture biomass within the
Madrid Community, Spain - a region characterized by diverse climatic conditions and land
use patterns along a distinct north—south gradient. The study aims to explore how grassland
productivity and NDVI index are correlated.

The analysis is grounded in the SIMPAST model [3]], which integrates both climatic and soil
parameters to estimate potential biomass production. Historical climate records from 1975 to
2021, alongside projections up to 2100 under four Shared Socioeconomic Pathways (SSP1-
2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), provide the foundation for simulations. Inputs such
as daily temperature extremes, precipitation, and soil water capacity are used to assess net
primary productivity and water use efficiency across the study areas, as shown in figure
To capture the environmental heterogeneity of the region three study zones with different
climatic and edaphic characteristics were defined in the Community of Madrid, within each

zone, 5x5 km grids were established.
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Figure 2.1: Geographic distribution of pasture types (tree-dominated, shrub-dominated, and
herbaceous pastures) within the study area [3]].

One of the limitation to not include other regions was the proximity to soil pit available
information, as needed for the biomass model. The selection process utilized satellite imagery

and field verification to ensure the representativeness of each site. The zones are:

* Buitrago del Lozoya, northern zone (12280): characterized by a mountain climate with
lower temperatures and higher annual precipitation. In this region, water availability
plays a key role in the dynamics of herbaceous biomass, influencing its seasonality and
the recovery capacity of pastures after drought periods.
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Figure 2.2: Traditional field survey in Buitrago del Lozoya, May 2025.

* Colmenar Viejo, central zone (11033): located in the transition between dehesa (wooded
pastureland) and grassland systems, this area features moderately fertile soils and an in-
termediate climatic regime. Research in this zone will assess how interactions between

climate, soil and management influence forage productivity and quality.

Figure 2.3: Traditional field survey in Colmenar Viejo, May 2025.
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* Tielmes, southern zone (9862): Characterized by a drier climate and higher agricultural
pressure, with shallower soils and more limited water availability. In this context, the
results of this study could be used to analyze how aridity conditions affect herbaceous

biomass and what management strategies could mitigate drought effects.

Figure 2.4: Traditional field survey in Tielmes, May 2025.

2.2 Data utilized

2.2.1 NDVI

The use of satellite imagery in agriculture has enabled farmers to monitor their fields effi-

ciently, assess crop health, detect pests and diseases, and evaluate soil moisture levels—all

12



without the need for extensive ground-based data collection.

In this context, numerous spectral indices have been developed, including several specifically
designed for vegetation health monitoring, such as NDVL.

The NDVI is a widely used metric to assess vegetation health and density [51]]. It quantifies
photosynthetic activity by analyzing the contrast between near-infrared (NIR) and red light
reflectance: healthy vegetation strongly reflects NIR while absorbing red light. The NDVI is

calculated as follows:
NIR — Red

NIR + Red b
The result of this formula [2.1] ranges from -1 to +1, with negative values indicating cloud

NDVI = (2.1)

cover or water presence, values close to O which represent bare soil and values greater than
0 ranging from sparse vegetation (0.1 - 0.5) to dense green vegetation (0.6 and above). In
fact, as an example, the figure below shows that stressed plants have a difference between
near-infrared and red slower compared to healthy ones.
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50%

40%
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30%
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Figure 2.5: Spectral resolution healthy and stressed vegetation

[52]

The NDVI data used in this study are retrieved from NASA’s tool APPEARS (Applica-
tion for Extracting and Exploring Analysis Ready Samples) [53], a tool designed to facilitate
the efficient processing of geospatial data. Among the various datasets available, it has been
used MODIS (moderated resolution imaging spectroradiometer); it is an instrument aboard
the Terra and Aqua satellites which captures global data across 36 spectral bands, with com-
plete coverage every one to two days. Thanks to its wide spectral range, MODIS supports
research in diverse fields such as vegetation analysis, land use changes, oceanography, sea
surface temperature monitoring, and cloud studies. Additionally, it plays a crucial role in
tracking wildfires, natural disasters, and even oil spills. One of MODIS’s key strengths is its

13



rapid data accessibility. Real-time data streams are available via direct broadcast stations that
receive transmissions straight from the satellite. For near real-time access, NASA’s Land,
Atmosphere Near Real-time Capability for EOS (LANCE) system delivers select MODIS

products within just three hours of observation.

Our object of interest can be recovered by the MOD09Q1 version 6.1 product. It provides
surface spectral reflectance estimates for bands 1 and 2 of the MODIS on board the Terra
satellite, with a spatial resolution of 250 meters. These data are corrected for atmospheric
effects, such as gases, aerosols and Rayleigh scattering, and include two additional quality
levels. For each pixel, a single value is selected from all available acquisitions over the 8-day
composite period. The pixel selection is based on specific criteria, including the absence of
clouds and the solar zenith angle.

As shown in the table the MODO09Q1 contains different layers but the NDVI can be calculated
by the first two.

?IQIIBHFEE:.T:';?;;; Units Data Type \_.l:lltlm Valid Range rith:fr
e B 1 (620.670 sy [Reflectance [16-bit signed integer |-28672  |-100-16000  [0.0001
e B 2 (41§76 any Reflectance - [16-bit signed integer |-28672 |-100-16000 0.0001

Table 2.1: MODO09Q1 layers

2.2.2 Climate models

Climate models, are mathematical models capable of simulating the complex interactions
among key climate drivers, including atmospheric dynamics, ocean circulation, land surface
processes, and cryospheric changes (such as ice sheet and glacier evolution) [54]. Among
the different models there are the general circulations models (GCM). They consist of sep-
arating the Earth’s surface into a three-dimensional grid of cells connected to each other; in
fact the results of processes modeled in each cell are passed to neighboring ones to model the
exchange of matter and energy over time. The size of the grid cell defines the resolution of
the model: the smaller the size of the grid cells, the higher the level of detail in the model.

Many critical physical processes - such as cloud formation, radiative transfer, precipi-

tation mechanisms, and atmospheric and oceanic turbulence - occur at scales finer than the
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model grid can directly represent. To account for these sub-grid-scale phenomena, GCMs
incorporate parameterizations: mathematically formulated approximations derived from ex-
tensive theoretical and observational studies. These parameterizations essentially function as
specialized "sub-models" within the broader climate model framework, enabling the repre-
sentation of small-scale processes’ impacts on the global climate system.

The parameterization approach reflects the necessary compromise between physical re-
alism and computational feasibility, allowing climate models to simulate Earth’s complex
climate system while remaining computationally tractable. For example, one single model
can contain four different sub-models which describe, respectively, ocean, land, atmosphere,

and sea ice.

To assess the climate variability of the region and its impact on pasture productivity, daily
data on temperature (maximum, minimum, and mean), precipitation, solar radiation, and po-
tential evapotranspiration (ETO) have been collected. The data are sourced by AdapteCCa
[S5], it is a platform from which it is possible to know, visualize and download past and
projected climate data. AdapteCCa include local weather stations, IPCC (AR6) scenarios
SSP, (Shared Socioeconomic Pathways, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) and
climate models derived from CMIP6. The last two will be briefly described below.

Climate scenarios are indispensable in climate change research, offering a framework to
assess the long-term consequences of human activities on Earth’s systems. By simulating po-
tential futures, they enable researchers to evaluate how near-term decisions—whether policy-
driven, technological, or behavioral—could alter environmental outcomes decades ahead.
Among these tools, Shared Socioeconomic Pathways (SSPs), which were officially adopted
by the IPCC starting with the Sixth Assessment Report (AR6, 2021-2023) [S6] stand out as
a comprehensive suite of scenarios that extend beyond traditional emission projections to in-
corporate the complex interplay of societal, economic, and political factors shaping climate
vulnerability and resilience.

Developed as an advancement over earlier climate modeling frameworks, the SSPs pro-
vide structured narratives alongside quantitative projections, outlining how global society
might evolve throughout the 21st century. Unlike purely emissions-focused approaches, they
emphasize the underlying drivers of climate change, including governance, inequality, tech-
nological innovation, and resource management. This multidimensional perspective allows
researchers to explore how divergent development trajectories could either facilitate or hinder

climate mitigation and adaptation efforts.

The SSP framework comprises five core pathways, each representing a plausible future with
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distinct socioeconomic conditions and emission levels. Below is a detailed breakdown of
their key characteristics:

* SSP1 ("Sustainability"): This pathway envisions a world increasingly committed to
environmental protection, equity, and global cooperation. Societies prioritize educa-
tion, clean energy innovation, and sustainable consumption, leading to low greenhouse
gas emissions and high adaptive capacity. Technological advances are widely shared,

reducing material intensity and fostering resilience.

* SSP2 ("Middle of the Road"): Reflecting historical trends, this scenario assumes un-
even progress without transformative policy shifts. While some regions achieve moder-
ate development, challenges like inequality, resource scarcity, and climate vulnerability
persist globally. Emissions and adaptation efforts remain intermediate, mirroring cur-

rent trajectories.

* SSP3 ("Regional Rivalry"): A fragmented world marked by geopolitical tensions, weak
institutions, and limited cooperation. High population growth in low-income countries
coincides with underinvestment in education and technology. Environmental degrada-
tion accelerates, while political and economic barriers stifle both mitigation and adap-
tation.

* SSP4 ("Inequality"): This pathway highlights a future of stark disparities. Technolog-
ical progress and economic growth benefit a privileged minority, leaving marginalized
populations exposed to climate risks. Access to adaptation resources is highly unequal,

creating pockets of resilience amid widespread vulnerability.

* SSP5 ("Fossil-Fueled Development"): Driven by rapid economic growth and energy-
intensive lifestyles, this scenario prioritizes industrialization over sustainability. De-
spite high adaptive capacity due to technological and financial resources, delayed mit-

igation locks in high emissions, exacerbating long-term climate impacts.

These pathways are not deterministic forecasts but rather exploratory tools to assess how
societal choices—from governance to technology adoption—interact with climate systems.
Each SSP combines qualitative narratives (e.g., political cooperation, equity trends) with
quantitative data (e.g., GDP, population, energy demand) to feed into integrated assessment
models (IAMs). The Intergovernmental Panel on Climate Change (IPCC) routinely employs
SSPs in its reports to analyze risks and inform policy recommendations. By bridging so-
cioeconomic dynamics with biophysical impacts, the SSP framework helps decision-makers

weigh trade-offs between development priorities and climate action.
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The true value of the SSP framework lies in its flexibility and its ability to be combined with
different levels of greenhouse gas forcing. When merged with Representative Concentration
Pathways (RCPs) or similar radiative forcing targets, researchers can evaluate not just what
kind of climate future might result from certain emissions levels, but also how societal char-
acteristics affect both the likelihood of those outcomes and our ability to manage them.
The integrated SSP-RCP framework (alternatively designated as SSPX-Y scenarios) rep-
resents a methodological advancement in climate projection by coupling the foundational
Shared Socioeconomic Pathways (SSPs) with the radiative forcing targets established by the
Representative Concentration Pathways (RCPs) from the IPCC’s Fifth Assessment Report
(ARS).

This hybrid approach systematically applies the climate forcing constraints of RCP sce-
narios to the socioeconomic trajectories outlined in the SSP baseline scenarios. The resulting

matrix produces five principal SSP-RCP scenario combinations:

Near term, 2021-2040 Mid-term, 2041-2060 Long term, 2081-2100

Very likely
range (°C)

Very likely
range (°C)

Very likely

Best estimate (°C) range (°C)

Scenario Best estimate (°C) Best estimate (°C)

SSP1-1.9 15 1.2101.7 1.6 1.2t02.0 1.4 1010 1.8

SSP1-2.6 15 1.2101.8 12 13t02.2 1.8 131024

SSP2-4.5 15 1.2101.8 20 16t025 2.7 211035

SSP3-7.0 15 121018 21 1.7t02.6 3.6 281046

SSP5-8.5 16 131019 24 1.9t03.0 4.4 33105.7

Table 2.2: Description of scenarios [IPCC

The Coupled Model Intercomparison Project Phase 6 (CMIP6), instead, is a major in-
ternational effort coordinated by the World Climate Research Program (WCRP) to advance
global climate modeling [57]. It serves as a foundation for understanding Earth’s climate sys-
tem by bringing together the world’s leading climate research institutions to develop, com-
pare, and refine climate models. These models simulate interactions between the atmosphere,
oceans, land surface, and ice to project future climate conditions under different scenarios.
Within CMIP6, climate models like CNRM-ESM2-1 produce simulations across multiple
SSPs to evaluate divergent climate futures under varying socioeconomic and emission con-
ditions. Six different models have been used to have a better results and compare them, the
models are:

1. ACCESS CM2
Access is a family of related models, configured for specific applications, to meet oper-
ational and research needs from weather forecasting to climate projections created by
CSIRO (Commonwealth Scientific and Industrial Research Organisation) [58]].
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2. CNRM ESM2
The CNRM-ESM2-1 represents the second-generation Earth system model developed
by the CNRM/CERFACS modeling consortium, was released in 2017 by Centre Na-
tional de Recherches Meteorologique [S9]. Building upon the physical-dynamical
framework of its predecessor, the CNRM-CM6-1 coupled climate model, this advanced
system incorporates comprehensive interactions between physical atmospheric-oceanic

processes and biogeochemical components.

3. EC EARTH3 VEG
The EC-Earth modeling framework originated as a coupled atmosphere-ocean general
circulation model (AOGCM), derived from the seasonal forecasting system developed
by the European Centre for Medium-Range Weather Forecasts (ECMWF) [60]. The
EC-Earth3 represents the third generation of this modeling system and serves as the
foundational configuration for standard-resolution atmosphere-ocean physical model-
ing. However, EC-Earth3 is not a single compact model but rather a suite of eight
distinct configurations, each tailored for specific scientific applications. These variants
were employed by the EC-Earth consortium in its contributions to the sixth phase of the
Climate Model Intercomparison Project (CMIP6). Among these, the "ec-earth3-veg"
configuration stands out as one of the actively used versions, incorporating dynamic

vegetation processes to better represent land-atmosphere interactions.

4. MIROC6
The MIROCG6 climate model (Model for Interdisciplinary Research on Climate, version
6) was developed by a Japanese consortium led by the University of Tokyo, in collab-
oration with the National Institute for Environmental Studies (NIES) and the Japan
Agency for Marine-Earth Science and Technology (JAMSTEC) [61]. MIROCS6 in-
corporates advanced components for representing the climate system, including high-
resolution atmospheric and oceanic dynamics, biogeochemical processes, and land-
atmosphere interactions. The model is designed to improve the simulation of complex
climate phenomena, such as interannual variability (e.g., ENSO) and long-term projec-

tions under different anthropogenic forcing scenarios.

5. MPI ESM1
The MPI-ESM1-2 (Max Planck Institute Earth System Model version 1-2) represents a
state-of-the-art climate modeling system developed by Germany’s Max Planck Institute
for Meteorology (MPI-M) [62]]. Notably, MPI-ESM1-2 exists in multiple configura-
tions, with the LR (low resolution) and HR (high resolution) versions being particularly
widely used in CMIP6 experiments.
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6. MRI ESM2
Developed by Japan’s Meteorological Research Institute (MRI), the MRI-ESM?2.0 builds
upon the institution’s long-standing expertise in climate modeling while introducing

significant advancements in Earth system representation [63]].

In the next table are shown the different characteristics of each model; they all contain
the four different submodels already mentioned, where it is specified the name of the math-
ematical model used to characterized the corresponed climate driver and the resolution. It is
possible to see for example the CNRM-ESM2 and EC-EARTH3-VEG use the same model

for ocean or that in MIRCO6 it is used the same one for ocean and sea ice.

Model Sub Models
Ocean Atmopsphere Land Sea ice
Name Resoultion (km) MName Resoultion{km) MName Resoultion (km) MName Resoultion (km)|
MetUM-
ACCESS CM2 Access-om 2 100 HadGEM3 250 CABLE2.5 250 CICE5.1.2 100
-GA7.1
CNRM ESM2 Nemo 3.6 100 Arpege 6.3 250 Surfex 8.0c 250 Gelato 6.1 100
EC EARTH3 VEG Nemo 3.6 100 IFS cy36rd 100 HTESSEL 100 LIM3 100
MIROCE Coco 4.9 100 CCSR AGCM 250 MATSIRO6.0 250 COC04.9 100
MPI ESM1 HR Mpiom 1.63 50 ECHAMSG.3 100 JSBACH3.20 100 unnamed 50
MRI ESM2 Mri.com 4.4 100 MRI-AGCM3.5 100 HAL 1.0 100 MRI.COM4.4 100

Table 2.3: Model characteristics
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Chapter 3

Methodology

This section outlines the methodology employed to establish the correlation between pastures
and NDVL. First, will be presented the data in raw form. Subsequently, the statistical approach
used for the study will be presented; the software tools, functions, and formulas applied in the
analysis will also be discussed. Finally, the complete workflow will be described, providing

a comprehensive overview of the entire analytical process.

3.1 Data analysis and processing

3.1.1 Pre-analysis of the dataset

Each study area was assigned a unique identifier code: Buitrago del Lozoya North (12280),
Colmenar Viejo central (11033), and Tielmes South (9862). For each area, an Excel file con-
taining NDVI data and six additional Excel files, one for each climate model, were provided.
Since the data structure remains consistent across all areas and models, this section will de-
scribe the organization for a single area and a single model; the same approach will be applied

in the Workflow section.

The NDVI dataset included the following fields: date, month, year, ID, mean NDVI, me-
dian NDVI, SGolay N5 P2, and SGolay N7 P2. The ID column corresponds to the study
area, labeled as described above. The columns SGolay N5 and N7 represent corrected NDVI
values obtained through the Savitzky-Golay (SGolay) filter. The Savitzky-Golay (S-Golay)
filter is a digital signal processing method widely employed for data smoothing and numer-
ical differentiation while preserving essential signal features, such as peak amplitudes and
widths, which are often distorted by conventional moving-average filters [64]. The mathe-

matical foundation of the S-Golay filter relies on constructing a polynomial of degree *p*
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over a window of *2m+1* points centered at each data sample; the one used in our case uses
a second polynomial degree and a window of 7 points, the central observation, the previous
three and the following three. The observation period spans from February 18, 2000, to April
6, 2024, with data collected at 8-day intervals. For each interval, the best-quality observation
was selected and subsequently refined using the SGolay correction.

Regarding the climate models, the six provided files, each corresponding to a different
model, contained data for all three study areas (identified by the ID column) and the four
IPCC scenarios. The datasets included records of day, month, year, soil characteristics, [PCC
scenario, mean/min/max temperature, and precipitation. Unlike the NDVI data, which were
aggregated at 8-day intervals, the climate model observations were recorded daily. The tem-
poral coverage of the climate models extends from 1975 to 2100, with observed data from
1975 to 2021 and projected climate simulations, aligned with the scenarios outlined in Chap-
ter 2, from 2021 to 2100.

Based on this explanation, we have to deal with time series; to do that we use box-plots.
Box-plots, also known as box-and-whisker plots, are a fundamental graphical tool in de-
scriptive statistical analysis, as they summarize the distribution of a dataset through robust
indicators such as the median, quartiles, and potential outliers.

As shown in figure [3.1] the boxplot structure consists of a central box and two lines, called
"whiskers," extending from it. The box represents the interquartile range (IQR), bounded by
the first quartile (Q1) and the third quartile (Q3), with an internal line marking the median
(Q2). The whiskers typically extend up to 1.5 times the IQR above and below the quartiles,
though alternative conventions may define them differently. Data points falling beyond this

range are considered potential outliers and are represented as individual points or asterisks.
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Figure 3.1: Box plot, graphical representation

The primary functions of the boxplot are to analyze data variability, identify skewness,
and detect outliers. Unlike other graphical tools, such as histograms, the boxplot provides a
robust distribution summary due to its low sensitivity to extreme values. This makes it par-
ticularly useful for comparing multiple datasets, allowing for quick assessment of differences

in central tendency and dispersion.

When applied to time series, box-plots gain particular significance by enabling the exami-
nation of how a variable’s distribution evolves over time. This is achieved by segmenting the
data into defined temporal intervals—such as months, seasons, or years—and representing
the distributional characteristics for each period. This approach proves especially valuable
for identifying trends, cyclical patterns, or structural shifts, as it extends beyond mere central

tendency analysis to assess dispersion, skewness, and the presence of outliers in each interval.

3.1.2 Regression

Regression analysis stands as one of the foundational methodologies in statistics and ma-
chine learning, serving to model and examine relationships between a dependent variable
(or outcome) and one or more independent variables (predictors) [65]. At its core, this ap-
proach seeks to understand how variations in predictors influence the outcome, enabling both

prediction and inference. Its formulation is here represented:
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y=0o+ fix+e (3.1)
Where:

* y : dependent variable;

* x : independent variable;
* [ : intercept;

* (3 : angular coefficient;
* ¢ : residual.

While standard regression assumes a uniform relationship across all data points, real-
world phenomena often exhibit structural changes or threshold effects - precisely where
piecewise regression becomes indispensable.

Piecewise regression, also called segmented regression, extends conventional regression anal-
ysis by accommodating situations where the relationship between variables is non linear and
changes at specific intervals of the independent variable. Rather than imposing a single
parametric form across the entire data range, this method identifies breakpoints (or knots)
where the nature of the association fundamentally shifts, fitting distinct regression models
to each homogeneous segment; breakpoints can be either manually selected or automatically

searched. For the presence of these breakpoints the formulation changes as follow:

y =00+ b+ Ba(x — 1)t + Bs(x — o)t + ... (3.2)

Where:
* y: dependent variable;
* x : independent variable;
* (3 : intercept;
e (Byx : first linear part with slope f1;
* By(x — ¢1)™: change in slope after the first breakpoint;

* [3(x — c2)T: change in slope after the second breakpoint.
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One of the purpose of this thesis is to compare the different slopes (so Sy, 51, etc.) among
all the datasets, between NDVI and the different models which predict pasture and correlate
them. To evaluate the goodness of the regression we use different parameters: R-square (mul-

tiple and adjusted), standard error and P value.

R-squared (R?) is one of the most widely used metrics, quantifying the proportion of vari-
ance in the dependent variable accounted for by the independent variables [65]. However,
distinctions exist between multiple R-squared and adjusted R-squared, each serving specific
purposes in model assessment.

Multiple R-square ranges from O to 1, it provides an immediate assessment of how well the

regression model captures the observed data patterns. The formula is here described:

SSE

2
:]_——
R SST

multiple

(3.3)

Where:

* SSE: Residual Sum of Squares. It represents the sum of the squares of the differences
between the observed values and the estimated values, low SSE means that the models
fit in a good way the data.

» SST: Total Sum of Squares. It is the sum of the squares of the differences between the

observed values and their mean.

However, a critical limitation of R-squared is that it invariably increases when additional pre-
dictors are included in the model, regardless of their actual contribution. This property can
lead to model overfitting, where the model appears to perform well on the training data but

fails to generalize to new data.

Adjusted R-squared addresses this limitation by incorporating a penalty for the number of
predictors relative to the sample size [65]. Unlike R-squared, which can only increase or
stay the same with added variables, adjusted R-squared may decrease when irrelevant pre-
dictors are included. This adjustment makes it particularly valuable for comparing models
with different numbers of predictors or when working with limited data. The penalty term
ensures that only meaningful variables that genuinely improve the model’s explanatory power
contribute positively to the metric.

R . SSE/(n—Fk—1)

adjusted — + T SST/(TL _ 1) (34)
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Where:
* n: sample size;
* k: number of estimated. regression coefficients excluding the intercept (3,

The distinction between these two measures has important practical implications. While R-
squared provides an initial assessment of model fit, adjusted R-squared offers a more rigorous

evaluation by accounting for model complexity.

The standard error (SE) is a fundamental measure in regression analysis that quantifies the
precision of an estimated parameter, such as a regression coefficient or the model’s predicted
values [63]]. It represents the estimated standard deviation of the sampling distribution of the
statistic, reflecting how much the estimated value would vary across different samples drawn
from the same population. A lower standard error indicates greater precision in the estimate,
while a higher standard error suggests greater uncertainty.

The p-value, or probability value, is a fundamental statistical measure that quantifies the
evidence against a null hypothesis [65]. It represents the probability of obtaining a result at
least as extreme as the one actually observed in the sample data, assuming the null hypothesis
is true.

In research practice, the p-value serves as a decision-making tool. Researchers establish
a predetermined significance level, typically 0.05 (called «), and compare the obtained p-
value with this threshold. When the p-value falls below a, we conclude there is sufficient
statistical evidence to reject the null hypothesis in favor of the alternative. Conversely, a
p-value above the threshold indicates the data do not provide enough evidence against the
null hypothesis. Proper interpretation of p-values requires careful attention to several crucial
aspects. First and foremost, it’s essential to understand that the p-value does not represent the
probability that the null hypothesis is true, nor the probability that the alternative hypothesis
is false. Moreover, the p-value does not provide information about the practical importance
or magnitude of the observed effect, but only about its statistical significance.

In regression analysis, for example, the p-value associated with each coefficient allows us
to evaluate whether the corresponding predictor variable has a statistically significant effect
on the response variable. However, it’s important to remember that statistical significance
doesn’t automatically imply practical relevance. A small p-value might result from a very
large sample detecting negligible differences, while a larger p-value in an underpowered study

might mask potentially important effects.
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Depending on the value of this parameter it is possible to associate a number of stars to the
result which indicate the statistical significance of a test result, more in details:

* p value > 0,05: no symbol;
e p value <=0,05: *;
e p value <= 0.01: **;

e p value <= 0,001: ***,

3.1.3 Correlation

Correlation between two variables, X and Y, exists when they exhibit systematic covaria-
tion—that is, when changes in X correspond to predictable changes in Y (and vice versa). If
this covariation follows a straight-line pattern, the relationship is termed linear correlation;
if it follows a curved pattern, it is referred to as nonlinear correlation. The absence of cor-
relation occurs when Y fluctuates randomly with respect to X (or vice versa), showing no
discernible pattern. A linear correlation is considered positive if increases in X are associated
with increases in Y, whereas it is negative if increases in X correspond to decreases in Y.

To quantify the strength and direction of a linear relationship, correlation coefficients are
employed. Various linear correlation coefficients exist, each suited to different measurement
scales, differing in computational formulas but sharing identical interpretation principles.
These coefficients range between -1 and +1, conveying two key pieces of information: the
strength of the relationship (indicated by the absolute value) and its direction (indicated by
the sign). For example in the figure below coefficient closer to +1 reflects a stronger
linear association, whereas values near zero suggest a weaker relationship. For instance, a
coefficient of -0.7 denotes a strong negative correlation, while 0.3 indicates a weak positive
correlation. A perfect linear relationship (r = £1) implies that a unit change in X corresponds
to a constant proportional change in Y. However, a coefficient near zero does not necessarily
imply statistical independence; rather, it suggests the absence of a linear association, as X
and Y may still be related through a nonlinear function, which standard linear correlation
measures cannot detect. In such cases, it is more precise to state that no linear correlation
exists.
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Figure 3.2: Pearson correlation values

Among these measures, Pearson’s correlation coefficient is a parametric statistic assess-
ing the degree of linear dependence between two continuous variables under the assumption
of bivariate normality [66]. It yields values between -1 and +1 because its formula [3.5] de-
rives from the standardization of the covariance with respect to the variability of the indi-
vidual variables. Since Pearson’s method relies on distributional assumptions, particularly
normality and the fact that the variance of the error is constant whithin a model, its validity
is contingent upon meeting these conditions. Consequently, it is most reliable when applied
to data conforming to these requirements, as violations may lead to biased or misleading

inferences.
B COV(X,Y)

0.0y

r (3.5)
Where:
¢ COV(X,Y): covariance of the variables X and Y;

e o,: standard deviation of X;

* o,: standard deviation of Y.
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3.2 Software

The software that has been used for the statistical analysis is R Studio. R is a language and
environment for statistical computing and graphics [67]. It is a GNU project which is similar
to the S language and environment which was developed at Bell Laboratories by John Cham-
bers and colleagues. R can be considered as a different implementation of S. There are some
important differences, but much code written for S runs unaltered under R.

R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical
tests, time-series analysis, classification, clustering, ...) and graphical techniques, and is
highly extensible. In the next section will be now explained the functions used to elaborate
the dataset.

3.2.1 Functions and formulas

aggregate: Splits the data into subsets, computes summary statistics for each, and returns the
result in a convenient form. The usage is aggregate(x, dataset, FUN), where "x" is the for-
mula (such as y ~ x) where the y variables are numeric data to be split into groups according
to the grouping x variables, "dataset" is the dataset from which the data are used and "FUN"
is a function to compute the summary statistics which can be applied to all data subsets (in

our case will be the mean function but it will be explained better in the next paragraph).

predict: generic function for predictions from the results of various model fitting functions.
The usage is predict(object) where "object" stands for a model object for which prediction is
desired.

Im: is used to fit linear models, including multivariate ones. It can be used to carry out regres-
sion, single stratum analysis of variance and analysis of covariance. The usage is Im(formula,
data), both already explained.

Models for Im are specified symbolically. A typical model has the form response ~ terms
where response is the (numeric) response vector and terms is a series of terms which specifies
a linear predictor for response. A terms specification of the form first + second indicates all
the terms in first together with all the terms in second with duplicates removed. A specifica-
tion of the form first:second indicates the set of terms obtained by taking the interactions of
all terms in first with all terms in second. The specification first*second indicates the cross
of first and second. This is the same as first + second + first: second. For this type of analysis
it has been use the first one.
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pmin and pmax: take one or more vectors as arguments, recycle them to common length

and return a single vector giving the ‘parallel’ maxima (or minima) of the argument vectors.

cbind: take a sequence of vector, matrix or data-frame arguments and combine by columns

or rows, respectively. These are generic functions with methods for other R classes.

cor: provides the correlation of two vectors. The usage is cor(X,y, use="complete.obs")

where x and y are the vectors to be correlated and use complete.obs to avoid NA values.

find_best_segmented <- function(data, y_var, x_var, max_breakpoints = n): this func-
tion is designed to systematically identify breakpoints in relationships between variables.
The process begins by dynamically creating a regression formula and fitting a baseline linear
model, which serves as the foundation for subsequent segmented analyses. The function ex-
tracts the relevant variables’ values, computes the total range of the independent variable and
the total sum of squares—key quantities for evaluating model fit through R-squared. This
metric is manually calculated using the traditional statistical definition, ensuring more robust

and consistent results compared to automated implementations.

The algorithm employs an incremental strategy for breakpoint detection, sequentially testing
models with an increasing number of breakpoints up to a user-specified maximum (max_break
point). This parameter is particularly relevant in specific applications, such as seasonal data
analysis where a known number of breakpoints might be expected (e.g., 4 for quarterly data).
For each tested configuration, breakpoints are initially placed at quantiles of the indepen-
dent variable’s distribution while maintaining a minimum spacing of 15% of the total domain
width—a critical constraint to prevent overfitting and ensure statistical significance of the
identified segments. The core segmentation relies on the segmented package, which imple-
ments an iterative algorithm. Starting from initial breakpoint positions (psi_init), the method
progressively adjusts their locations to maximize alignment between linear segments and ob-
served data until convergence (when further improvements become negligible). The entire
process is wrapped in a robust error-handling mechanism using tryCatch, ensuring analysis
continuity even with problematic configurations by returning NULL instead of failing.
Model estimation occurs through the primary call segmented(mod, seg.Z =

as.formula(paste("~", x_var)), psi = psi_init, control = seg.control(display = FALSE)), where
both the base model (mod) containing the variable relationship and the target independent
variable (x_var) for breakpoint detection are specified. This bidirectional approach maintains
clear overall model specification while focusing structural change analysis on the variable of
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1nterest.

For each successfully estimated model, the function performs detailed result analysis—computing
not just the global R-squared but also segment-specific slopes and their statistical signifi-
cance. These metrics are systematically compared across alternative models, with variables
storing the best configuration being progressively updated. The selection criteria intelligently
balance goodness-of-fit (prioritizing models with R-squared improvements >0.02) and model
complexity. The final output provides a comprehensive summary, including the optimal

model, breakpoint locations, and detailed segment characteristics with transition analyses.

correlation_function <- function(df1, df2, coll, col2, group_coll='""new_label",
group_col2="label", groups): is the prototype of the function developed to analyze the cor-
relation between pairs of variables from two different data frames, while maintaining align-
ment based on shared groups or categories.

The function takes the list of groups of interest (the groups parameter). For each group, it
searches the first data frame (df1) for all rows belonging to that group (using the column spec-
ified by group_coll) and extracts the values from the column you want to correlate (coll). At
the same time, it performs the same operation in the second data frame (df2), selecting rows
from the same group (this time using group_col2) and the values from col2. Then, for each
group, the function computes the correlation coefficient between these two sets of values.
The use = "complete.obs" argument ensures that only complete cases are used, automatically

excluding missing values from both datasets.

The final output is a set of correlation coefficients—one for each group—telling you how
linearly related the two selected variables are within each category. This is particularly use-
ful when you suspect that the relationship between two variables might vary across different

groups, allowing you to systematically test for these differences.

#function
correlation_function =<- function{dfl, df2, coll, col2, group_coll="new_label™,
group_col2="Tabel", groups){
sapply(groups, function(g) {
cor(
dfi[dfi[[group_coll]] %in% g, coll],
df2[df2[[group_col2]] %in% g, col2],
use = "complete.obs™

"
J
A
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)
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Figure 3.3: Code correlation function
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3.3 Workflow

In the picture below (figure[3.4)) a graphical workflow is presented to simplify the lecture and
have a better illustration of this section.
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Figure 3.4: Graphical workflow



3.3.1 Data preparation

The initial phase of the analysis focused on NDVI data, organized into one single file and
divided in three for each study area to streamline calculations. Each file contains a unique
identifier code in the "ID" column. As said, the hydrological calendar (starting in September)
was adopted to align with the biomass growth cycle, as vegetation typically begins to recover
after the summer stagnation period, ensuring observations commence following a stationary

phase.

To examine the correlation between the parameters of interest, a regression analysis was
performed. To do that preliminary boxplots were generated (described in Section 3.1.1), with
the x-axis representing the observations days of each year and the y-axis displaying the corre-
sponding NDVI values. For this purpose, the new Excel files for each area were structured to
include data from 5 September 2000 to 6 April 2024, excluding records from 2 February 2000
to August 2000, as they pertain to the preceding hydrological year. This approach yielded a
25-year observation period with recurring dates (e.g., 5 September or 13 September across
different years). To facilitate grouping, a "new label" column was introduced, assigning val-
ues from 1 to 46 for each 8-day interval within the hydrological year. September start dates
were labeled as 1, while late August dates were labeled as 46. Leap years were accommo-
dated by maintaining the same label for the corresponding 8-day composite observation, for
our interests it does not represent a problem cause the NDVI value is the best out of 8 days
of observations.

Given that pasture data were provided in cumulative form, NDVI values were similarly trans-
formed from discrete to cumulative. A new column, labeled "Cum Sgolay n7 from sept," was
created, where the first cell matched the SGolay-filtered value for that row, and subsequent
cells represented the cumulative sum of the preceding values. This was repeated annually,
ensuring that each label "1" corresponded to the initial SGolay value of the hydrological year.

Regarding pasture data, they were incorportaed with the climate ones cause they are re-
trieved from the model [3] in six separate files, corresponding to different climate models,
each containing data for the three study areas under four scenarios. To simplify processing,
new Excel files were generated for each model and area, retaining only data from 1 Septem-
ber 2000 to 11 April 2024 under the SSP245 scenario (18 files total, 6 for each area). This
alignment was necessary because NDVI data were limited to this period, and the SSP245
scenario most closely followed historical trends. Unlike NDVI data, which were collected
every 8 days, climatic data were recorded daily. To compare the datasets, an 8-day mov-
ing average was computed for the column containing the data related to the biomass called
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"pasture corregido" which is the one of our interest. Starting from 1 September, the average
of each 8-day interval was calculated (e.g., days 1-8, 916, etc.), with care taken to handle
year transitions. These averaged values were then associated with the corresponding NDVI
reference dates. A dedicated "id day" column was created in Excel, numbering rows in 8-day
blocks (1 to 1086), enabling the subsequent calculation of averages in R for all dates sharing
the same "id day" value. Excel microsoft sofware was used for the data preparation.

3.3.2 Regression and correlation analysis

In the R environment, three distinct files were created for each area under investigation. Ini-
tially, the necessary packages—namely readxl, ggplot2, segmented, and corrplot—were im-
ported to facilitate the reading of Excel files (.xIs format), generate graphical representations,
perform regression analyses, and compute correlations, respectively.

The NDVI data files and the corresponding climate model datasets were loaded and stored
in variables labeled "area*" (where the asterisk denotes the specific area: 1, 2, or 3, corre-
sponding to 12280, 11033, and 986) and the relevant climate model name, also indexed by
the asterisk to indicate the associated area. For illustrative purposes, this section focuses on
area 12280 (areal) and the climate model ACCESS (accessl), as the computational proce-
dure remains consistent across all cases.

Subsequently, the aggregate function was employed to compute the mean values of pasture
data. The operation PST_accessl <- aggregate(Accessl$Pasture_Corregido ~Accessl$id
day, Accessl, mean) signifies that the variable "PST_access1" stores the mean of the "Pas-
ture_Corregido" variable, grouped by the id day identifier, as derived from the Accessl
dataset. After converting "PST_accessl" into a dataframe, a "label" column was appended,
containing sequential values from 1 to 46, to align with the structure of the NDVI data. Ad-
ditionally, the column names were modified, replacing "Access1$Pasture_corregido" with
"Pasture_Cum" and "Access1$id day" with "id day" for clarity.

To ensure the graphical representation was interpretable, a scaling factor was calculated,
given the disparity in magnitude between NDVI and pasture values (20 versus 2000). This
factor, denoted as "scal_accl," was derived as the ratio of the maximum values of the two
datasets and subsequently applied to the NDVI values within the areal dataframe.
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#upload model ACCESS for pasture
Accessl<-read_x1sx("correct_ACCESS_CM2_areal2280.x1sx™)

#aggregate date

PST_accessl<-aggregate(AccesslSPasture_Corregido~ Access1% id day ., Accessl, mean)
df_accl<-data.frame(P5T_accessl)

df_acclflabel <- rep_len(1l:46, length.out = nrow(df_accl))

names (df_accl) [c(1,2)]<-c("id_day™, "Pasture_cCum™)

View(df_accl)

#scale factor to overlay the graphs

scal_accl<-max(df_accliPasture_Cum,na.rm = TRUE)/max(arealiCum_Sgolay_n7_from_sept , na.rm = TRUE)
arealisgolay_n7_p2_norm<-scal_accl*arealiCum_sgolay_n7_from_sept +3000

Figure 3.5: Code illustration part 1

Two distinct regression approaches were implemented. The first utilized a custom func-

tion (detailed in Section 3.2) to automatically identify optimal breakpoints for fitting the data,
while the second employed fixed breakpoints corresponding to seasonal transitions (specif-
ically at points 3, 14, 26, and 37). For the former, the function prototype regr_pst_accl <-
find_best_segmented(df_accl, "Pasture_Cum", "label”, max_breakpoints = 4) was applied,
storing the output—a list-type variable—under the name "regr_pst_accl". A similar naming
convention was adopted for other models; for instance, the MIROC6 model output would
be labeled regr_pst_mirol, where "regr" denotes regression, "pst" refers to pasture, and the
suffix indicates the climate model and area number.
In essence, this function performs a regression of "Pasture_Cum" against "label" within the
df_accl dataframe, with a predefined maximum of four breakpoints to facilitate comparison
not only with NDVI results but also with the seasonal regression, which likewise incorporates
four breakpoints.

An analogous regression was conducted for NDVI data using the command regr_ndvil
<- find_best_segmented(areal, "sgolay_n7_p2_norm", "new_label", max_breakpoints = 4),
a procedure performed only once, cause it would have been redound.

The regression outputs, stored as list-type variables, contain several fields, of which
"model" and "breakpoint" are of primary interest. The former encapsulates the regression
results, with values extracted and estimated via the predict function in a new column of the
corresponded dataset called "pred", while the latter records the breakpoint locations. Both
sets of values were subsequently appended to the pasture and NDVI dataframes for further

analysis.
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# regression on NDVI data
regr_ndvil <- find_best_segmented(areal, "sgolay_n7_p2_norm", "new_label",
max_breakpoints = 4)

# regression on pasture data
regr_pst_accl <- find_best_segmented(df_accl, "Pasture_Cum", "Tabel",
max_breakpoints = 4)

# add prediction on dataframe
df_acclSpred <- predict(regr_pst_acclimodel)
arealipred =<- predict(regr_ndvilimodel)

# add subset for breakpoints (bp)
bp_pst_accl <- df_accl[round(df_acc1$label)
bp_ndvil <- areal[round(arealinew_label) %in%

%in% round(regr_pst_acclibreakpoints), ]
round(regr_ndwvil3breakpoints), ]

Figure 3.6: Code illustration part 2

Regarding the seasonal regression, a vector containing four breakpoints was created.
These values were determined based on the id day column in the NDVI dataframe (rang-
ing from 1 to 46), corresponding to seasonal transitions. Specifically:

1. "3": 22/09, autumn equinox;
2. "14": 19/12, winter solstice;
3. "26": 22/03, spring equinox;
4. "37": 18/06, summer solstice.

To ensure precise placement of the breakpoints, the dataframes were manually partitioned
into five segments using the pmin and pmax functions mentioned above. Following this
segmentation, a piecewise regression was performed using the Im function: seas_accl <-
Im(Pasture_Cum ~ segl + seg2 + seg3 + seg4 + seg5, data = df _accl).

As with the automated regression, the predict function was applied to the seas_accl variable
to generate the regression line, in this case the new column is called "pred2". This procedure
was executed once for the NDVI data and repeated for each climate model under analysis.
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# season regression

season_bp<-c(3,14,26,37)

#PASTURE

#segments creation

df_acclisegl <- pmin(df_accl$label, season_bp[1])

df_accliseg2 <- pmin(pmax(df_accl$label - season_bp[1l], 0), season_bp[2] - season_bp[1])
df_accliseg3 <- pmin(pmax(df_accl$label - season_bp[2], 0), season_bp[3] - season_bp[2])
df_acclisegd <- pmin(pmax(df_accl$label - season_bp[3], 0), season_bp[4] - season_bp[3])
df_accliseg5 <- pmax(df_accl%label - season_bp[4], 0)

# Regression

seas_accl <- Im(Pasture_Cum ~ segl + seg? + seg3 + segd + seg5, data = df_accl)
df_acclipred2 <- predict(seas_accl)

#breakpoints

bp_seas_accl <- df_accl[df_acclflabel %in% season_bp, ]

FNDVI

#segments creation

arealSsegl <- pmin(arealfnew_label, season_bp[1])

arealiseg2 <- pmin(pmax(arealSnew_label - season_bp[l], 0), season_bp[2] - season_bp[l])
arealfseg3 <- pmin(pmax(arealSnew_label - season_bp[2], 0), season_bp[3] - season_bp[2])
areallsegd4 <- pmin(pmax(areal$new_label - season_bp[3], 0), season_bp[4] - season_bp[3])
arealiseg5 <- pmax(arealfnew_label - season_bp[4], 0)

# Regression

seas_ndvil <- Im(sgolay_n7_p2_norm ~ segl + seg2 + seg3 + segd + seg5, data = areal)
arealfpred2 <- predict(seas_ndvil)

#breakpoints

bp_seas_ndvil <- areallarealinew_label %in% season_bp, ]

Figure 3.7: Code illustration part 3

Regarding the correlation analyses, instead, the previously mentioned correlation_function
<- function(dfl, df2, coll, col2, group_coll="new_label", group_col2 ="label", groups)
function was employed. Four distinct types of correlations were conducted—two for each re-
gression type (automatic and seasonal)—with one based on the regression line and the other
on the entire dataset. Again, for brevity, only the correlations pertaining to one regression
type will be explained, as the methodology remains consistent across both, differing only in

the data source.

Considering the automatic regression, an additional objective was to compare the different
climate models. However, since these models exhibited breakpoints at varying positions and
better explined in the next chapter—identified by the automatic regression function—a solu-
tion was required to standardize the analysis. To address this, the breakpoints derived from
the NDVI dataset were used instead. These were extracted via a list named period_autol.

Regarding the correlation analysis for the regression line, a new dataset was first generated
for each model (as well as for the NDVI data). This dataset retained only the columns con-
taining the regression line values—specifically, the "pred" column for the automatic regres-
sion and "pred2" for the seasonal regression. The naming convention followed the structure

df_pr_ndvil (where "df" denotes the dataframe, "pr" signifies the predicted values, and the
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suffix indicates either NDVI or the climate model of interest).

To streamline processing and consolidate all Pearson correlation indices, a variable was cre-
ated using the cbind function. This variable, named matrix_cor_autol, stored the output of
the correlation function. For example: Access = correlation_function(dfl = df_pr_ndvil, df2
= df_pr_acl, coll = "pred", col2 = "pred", groups = periods_autol) This approach com-
puted the correlation between the pred variable from the first dataframe and the identically
named pred variable in the second dataframe, segmented according to the NDVI breakpoints.
Similarly, for the full-dataset correlation, another variable—matrix_cor_autol.2—was gen-
erated. Here, the input dataframes (areal and df_accl) were passed alongside grouping
variables (Cum_Sgolay_n7_from_sept and Pasture_Cum) to compute correlations across the
complete dataset.

# subset data for correlation by regression

df _pr_ndvil <- areal[l:46, c{"new_Tlabel”, "pred”, "pred2")]
df _pr_acl <- df_accl[1l:446, c("label”, "pred”, "pred2")]

df _pr_cnrml <- df_cnrml[1:46, c("Tabel™, "pred”, "pred2”)]
df _pr_ecl <- df_ecl[1:46, c("Tabel”, "pred”, "pred2")]

df _pr_mirol<- df_mirol[l:46, c("Tabel”, "pred”, "pred2")]
df _pr_mpil<-df_mpil[1l:46, c("label”, "pred”, "pred2"}]

df _pr_mril<- df_mril[1:46, c({"1abel”, "pred”, "pred2")]

#define breakpoints

periods_autol <- Tist(
"6/09 - B/10" = 1:5,
"a/10 - 23/04" = 6:30,
"24/04 - 1070867 31: 36,
"11/08 - 12/07" 3740,
"13/07 - 29/08" = 41:46

Figure 3.8: Code illustration part 4
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#build matrix with correlation indexes based on regression line
matrix_cor_autol =- cbind(
access = correlation_function{dfl = df_pr_ndvil, df2 = df_pr_acl,
coll = "pred”, col2 = "pred”, groups = periods_autol

1
A1

CNRM = correlation_function(dfl = df_pr_ndvil, df2z = df_pr_cnrml,
coll = "pred”, col2 = "pred”, groups = periods_autol

EC = correlation_function(dfl = df _pr_ndvil, df2 = df_pr_ecl,
coll = "pred”, col2 = "pred”, groups = periods_autol

f;fIRU = correlation_function(dfl = df_pr_ndvil, df2z = df_pr_mirol,
coll = "pred”, col2 = "pred”, groups = periods_autol

f;*PI = correlation_function(dfl = df_pr_ndvil, df2 = df_pr_mpil,
coll = "pred”, col2 = "pred”, groups = periods_autol

r:fRI = correlation_function(dfl = df_pr_ndvil, df2z = df_pr_mril,
coll = "pred”, col2 = "pred”, groups = periods_autol

Figure 3.9: Code illustration part 5

The final step involved the creation of graphical representations, beginning with regres-
sion plots followed by correlation heatmaps, both of which will be instrumental in the sub-
sequent results analysis chapter. The initial concept was to consolidate, for each model un-
der consideration, the NDVI boxplots, their corresponding regression lines, and the biomass
boxplots into a single comprehensive graph. This approach was adopted to provide a clear

visualization of the observed trends.

To achieve this, the ggplot function from the ggplot2 package was employed. Within this
framework, three additional functions were utilized: geom_boxplot for the boxplots, geom_line
for the regression line, and geom_point to mark the breakpoints. In these visualizations, the
NDVI data was assigned a green color scheme, while each model was distinguished by a
unique color.

The structure of these three functions follows a consistent pattern, requiring the definition of
the data source, the x-axis (which, across all data frames, corresponded to the "label" col-
umn), and the y-axis. Additional parameters were also specified to enhance the graphical
output, including color schemes, line thickness, and the handling of outliers. Finally, a sec-
ondary y-axis was incorporated for the NDVI data, facilitated by the previously mentioned

scaling factor.
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ggplot() +
# Pasture data
geom_boxplot(data = df_accl, aes(x
alpha = 0.5, coef = 0.3, col = "[@") +
geom_line(aes(x = df_acclflabel, y = df_acclipred),
col = "MME'. Tinewidth = 1) +
geom_point(data = bp_pst_accl, aes(x = label, vy = pred),
col = "[GEEen", size = 2) +
# NDVI data
geom_boxplot(data = areal, aes(x = as.factor(new_label), y = sgolay_n7_p2_norm),
col = "[@EEen"', alpha = 0.3) =
geom_line(aes(x = arealinew_label, vy = arealipred),
col = "', Tinewidth 1) +
geom_point(data = bp_ndvil, aes(x new_label, v = pred),
col = "', size = 2)

as.factor(label), v = Pasture_Cum),

I |l

# Axis formatting

scale_x_discrete(labels = areal$ days/mm”, name = "Observations") +
scale_y_continuous

name = "Pasture"”,

sec.axis = sec_axis(~ (. - 3000)/scal_accl, name = "NDVI")) +
¥ Title

labs(title = sprintf("Area 12280 - Model Access ")) +
theme_minimal() +
theme(
axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5),
axis.title.y= element_text(color="TRZ4"),
axis.title.y.right = element_text(color =" ",
plot.title = element_text(hjust = 0.5, face = "bhold"),
plot.subtitle = element_text(hjust = 0.5)

Figure 3.10: Code illustration part 6
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Chapter 4
Results and discussion

In this section, the findings of this study will be examined. First, it is presented the complete
dataset to provide an initial overview of the temporal dynamics of NDVI and pasture pro-
ductivity across the observed years. The figure 4.1] shows the timeseries related to the area
12280 of the models ACCESS and CNRM, this area, as explained in section is the one
with more biomass in fact, it has a mean of 3000 NPP (net primary productivity). As in all
studies, all the models have been considered, but in this section just some example will be
represented, and the complete results are shown in Appendix A.

Considering the graph in the top, the NDVI is depicted in green, and pasture biomass is
depicted in blue, both variables exhibit a generally consistent trend, both within individual
years and throughout the study period. However, notable differences in their temporal pat-
terns emerge upon closer inspection. More in details the NDVI follows a more linear path
compared to pasture, this can be explained by the fact that for the former it is always possible
to appreciate a change every observation time, while regarding the latter, there are periods
where there the biomass does not grow and so the cumulative data does not change. More-
over, the NDVI shows a more constant behavior than pasture biomass, this could be explicable
by many reasons as a different usage of the pasture, climate conditions or water scarcity.
Additionally, it is possible to notice a difference between the two models (just from the 2020
cause are predictions and not observation data), precisely because different sub-models are

used.

Regarding the area 11033 and area 9862 similar considerations can be done; instead, the
main differences are nominal values of both NDVI and pasture. For the area 11033 are the
NDVI is approximately 13 and pasture 1000 NPP, while for the area 9862 the NDVI is in
mean around 10 and pasture 500 NPP.
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Figure 4.1: Time series area 12280; top model Access, below model Cnrm
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4.1 Regression results

This section presents the results of the regression analysis. For each study area, the findings
for the NDVI will be detailed first, followed by those for the pasture data.

Area 12280
NDVI

The automated regression analysis for the NDVI yielded a highly significant R? value of
0.97. Breakpoints were identified at the following temporal positions: 08/10, 23/04, 02/06,
and 04/07, as indicated by the red points in the figure The extended duration between
the first and second breakpoint, covering more than half of the year, suggests a period of
consistent NDVI growth from autumn through spring. This trend is characterized by a stable
slope of 125.07, which is statistically significant (p-value < 2x10716). This slope coefficient
indicates an increase of 125.07 units on the ordinate axis for each step on the abscissa, which
in this case corresponds to an 8-day interval. The high statistical significance of the slopes
for all other regression segments, further detailed in Appendix A, confirms the robustness of
the model. A similarly high R? value of 0.97 was obtained using seasonal regression, with
breakpoints consistently identified at 22/09, 19/12, 22/03, and 18/06 across all model varia-
tions.

The notably high incremental values over an 8-day period are attributable to the applica-
tion of a scaling factor used for graphical representation. Furthermore, negative slopes are
not observed in this analysis (except in certain instances of constrained seasonal regression)
as the data are cumulative. Consequently, the comparative analysis of trend intensity is best

achieved by evaluating the relative magnitude of the slope coefficients.
Pasture

Regarding the pasture data, a notable observation is the slight variation in breakpoint posi-
tions (green points in the figure [4.2)) across the different models, which are generally located
around 30/09, 25/11, 22/03, and 10/06. The R? values demonstrate moderate explanatory
power, ranging from 0.76 for the ACCESS model to 0.72 for the EARTH EC model.

In contrast to the NDVI, the pasture growth trend is not constant. The slopes between the

second and third breakpoints, and particularly after the final breakpoint, are comparatively
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low, with values of 31 and 14, respectively. The most substantial growth occurs in the fourth
period, with an incremental value of 163.97, which is associated with a highly significant
p-value (¥*%),

Statistically, the first and final regression segments for all six models were found to be non-
significant. The non-significance of the initial segment may be explained by the limited
number of data points available for that period. For the final segment, the presence of several
influential outliers, as visible in the figure, is likely responsible for the lack of statistical sig-

nificance.

The seasonal regression analysis follows a congruent trend, yielding comparable R? values
and slope coefficients to those obtained through automated regression, as comprehensively

detailed in Appendix A.
Automatic regression Season regression
Value | St. error P value Value St. error P value
Slopel | 66.837 | £9.213 0.3341 46.96 90.56 0.604
Slope 2 92.12 8.572 | 2x10n-1p *** | 124.06 24,2 3.5x10A-TF * &%
Slope3 | 27.718 5.73 4.1x104-5 31.56 7.56 4x10”-5 ***
L2 8

Sloped | 171.448 | 7.644 | 2x10°-16 *** | 173.55 12.35 <2x107-16 ***
Slope5 | 2.488 | 11.6621 0.8311 13.085 14.4 0.36

Table 4.1: Results area 12280

A comparative analysis reveals a strong congruence in both the magnitude and statistical
significance of the slope coefficients for the fourth (Slope 4) and third (Slope 3) temporal
segments across the models. As previously elucidated, the first and final slope estimates
lack statistical significance, a finding consistent with the earlier explanations concerning data

paucity in the initial segment and the influence of outliers in the terminal one.
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Figure 4.2: Regression analysis model MIRO area 12280: top automatic regression, below

seasonal regression
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AREA 11033
NDVI

Area 11033 exhibits the most fragmented automatic regression for NDVI, as shown in the
figure 4.3} however, the lowest R-square value, equal to 0.95, remains highly satisfactory. In
this case as well, the trend is linear, with breakpoints more evenly distributed at 16/10, 1/01,
30/03, and 2/06. As a result, the slopes are relatively similar, indicating a consistent growth
pattern throughout the year. Notably, all slopes show a high level of statistical significance,
as reported in Appendix A.

Pasture

The R-squared values in this case are lower, ranging from 0.58 for the MIRO model to 0.659
for the MRI model. It is useful to note that the positions of the breakpoints vary across the
different models; in some models the first is located at 22/09 and in others at 27/12, (identified
with green points in figure regarding the model CNRM), while the EC model identifies
only three breakpoints in the dataset. As explained in Chapter 2, the various models employ
different mathematical formulations, which can lead to divergent results. As expected, the
slope values, which represent the rate of biomass increase, are lower compared to those in
area 12280, as this is an area with lower biomass.

The seasonal regression demonstrates, for all models and across other areas, the greatest

growth occurs during autumn and a period of stasis during summer, with the specific values

reported in Appendix A.

AREA 9862

NDVI

Both the automatic and seasonal regression analysis revealed an Rsquared value of 0.97.
The model’s slope parameters were found to be consistent and demonstrated a high degree of
statistical significance (p-value < 0.001).

Pasture

Consistent with its classification as the area with the most intensive agricultural use, region
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9862 was predicted to have reduced biomass. This prediction is strongly supported by the
model’s output, which shows significantly diminished slope values (approximately 25).
Area 11033 (central) - climate model Chrm
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Figure 4.4: Seasonal regreggion area 9862, model MPI
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It is possible to see how considering all the three study areas, although the climate models
display slight variations, particularly in the initial part of the curves, the overall trend within
each area remains consistent across all figures. The NDVI exhibits a linear increase through-
out the year, with the highest values recorded in the northern area (12280) and the lowest in
the southern area (9862), in line with the description provided in Chapter 2. Since the values
are cumulative, the increase or decrease in NDVI is inherently variable, in contrast to the
behavior observed for biomass.

With regard to biomass, the geographical gradient once again reflects the description out-
lined in Chapter 2, with higher values found in the northern mountainous area and lower val-
ues in the southern area, which is more strongly influenced by agricultural activities. Unlike
the NDVI, the biomass trend is not linear; however, the general pattern is consistent across
all areas, even though with different magnitudes. A common characteristic, as illustrated in
Appendix A, is that, with the exception of a few models, the breakpoints occur in comparable
positions within the same area, and the derived slope values are similarly aligned. Overall,
the results highlight a phase of stationarity during the summer period (following the fourth
breakpoint in the figures) across all areas. This can be explained by the fact that in summer

pastures stop growing due to lack of water and too much temperature.

When comparing NDVI and pasture biomass, the analysis refers to seasonal regressions in
order to consider equivalent periods. The table 4.2] reports NDVI and biomass values for
each area, where "pasture" estimates represent the average of six climate models. In bold, the
higher growth rate between NDVI and biomass is highlighted. It emerges that the steepest
slopes, corresponding to the highest temporal growth, are found in spring for area 12280,
with slope values across the different models averaging 168.48; instead, in areas 11033 and
9862, the highest slopes occur in autumn, with values of 65.454 and 34.5, respectively. These
are the only seasons in which biomass growth exceeds NDVI growth, as also evident from
the figures [4.2] 4.3]and 4.4} In winter period, all areas display lower slope values compared
to spring and autumn, though these are not to be considered stationary as in the case of sum-
mer. The reduction in slope during winter can be attributed to limiting factors such as low

temperatures, climatic events including snow or frost, and reduced solar radiation.
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AREA 12280 AREA 11033 AREA 9862
NDVI PASTURE NDVI PASTURE NDVI PASTURE
06/09 — 22/09 ;
99.64 71,5455 38,37 8,3965 22,95 2,99667
End of summer
22/09 - 19/12 ;
125,07 93,36017 61,55 65,454 26,66 34,50667
Autumn
19/12 - 22/03
. 142,84 27,843 65,75 16,1035 25,33 7,3894
Winter
77/03 — 18/
22/03 . 18/06 109,81 168,4848 57,14 42,12717 28,14 16,72917
Spirng
06 — 29/
18/06 - 29/08 89,23 7,056 34,45 1,779833 22.8 1,0135
Summer

Table 4.2: Slopes’ values for NDVI and pasture across the study areas

4.2 Correlation results

As previously stated, four types of correlation analyses between NDVI and pasture biomass
were performed, two for each regression type. To do that, it has been selected the periods
identified by the NDVI to have a comparison among the climate models. For both automatic
and seasonal regressions, the results based on the regression line (labeled ’regression line’
in the figure .5 produced statistically significant but functionally irrelevant results for the
purposes of this investigation. Since these correlations are derived from regression lines fit-
ted to cumulative data, they inherently produce Pearson correlation coefficients approaching
1. For illustrative purposes, the figure includes heatmaps for the three areas: those derived
from automatic regressions for areas 12280 and 9862, and the seasonal regression for area
11033. It is evident that, regardless of the area, climate model, or time period considered, the

correlation values are consistently close to 1, indicating a very strong relationship.
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Area 12280 Automatic Correlation (regression line) Area 9862 automatic Correlation (regression line)
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Figure 4.5: Correlation’s heatmap based on regression line: top-left area 12280, top-right
area 9862, below area 11033

In contrast, heat maps generated from complete datasets yield significant and interest-
ing results. As said in chapter 3 it has been carried out 2 types of correlations, reflecting the
methodology used in the regression analysis section, a detailed area-by-area examination will
be performed to elucidate these findings.

AREA 12280

Regarding the automatic correlation it is possible to notice also by the figure [4.6] (the left
one), the CNRM model consistently demonstrates the lowest correlation values across the
entire annual cycle, establishing it as the least effective in capturing the relationship between
the variables. Conversely, the MRI model emerges as the most robust, achieving a peak
correlation coefficient of 0.80 for the period spanning 9/10 to 23/04.

These correlation findings are consistent with the results of the regression analysis. The
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stronger correlation aligns with periods where the slopes of the NDVI and pasture biomass
trends are more similar. The weaker correlation, though still indicating a discernible linear re-
lationship (Pearson’s *r* = 0.40), corresponds to the final period characterized by a stationary
trend in pasture biomass.

The seasonal correlation analysis, designated as "season correlation (data)" in the figure
.6 provides the most significant insight. This methodological approach allows for a di-
rect comparison of data within identical temporal windows, thereby controlling for seasonal
variability. This analysis yields higher average correlation indices than the previous method,
while reaffirming the performance hierarchy among the models: CNRM remains the poorest
performer and MRI the strongest. Notably, this seasonal framework reveals elevated correla-
tion values, approaching 0.70, even during the spring period.

Area 12280 Automatic Correlation (data) Area 12280 Season Correlation (data)
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Figure 4.6: Heatmap correlation based on dataset area 12280: left automatic, right season

AREA 11033

The analysis reveals a pronounced temporal decline in correlation strength. For instance,
the highest-performing model, MIROC, exhibits a substantial decrease in the Pearson corre-
lation coefficient, from *r* = 0.66 in the initial period to *r* = 0.27 in the final period. This
declining trend is consistently observed across all other models, confirming a systematic pat-
tern of weakening relationship over time.

The ACCESS model consistently demonstrates the poorest performance, with a notably
low correlation of *r* = 0.05 during the period from 10/01 to 30/01, indicating a negligible
linear relationship between the variables.

This performance hierarchy between models remains consistent in the seasonal regression
analysis, with MIRO again identified as the most robust and ACCESS as the least effective.
A key finding from this seasonal evaluation is the stark contrast in model performance be-

tween periods. The autumn season is characterized by a strong correlation, with coefficients
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reaching approximately *r* = 0.70. In contrast, for the remainder of the annual cycle, the
Pearson correlation indices suggest only a weak relationship.

Area 11033 Automatic Correlation (data) Area 11033 Season Correlation (data)
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Figure 4.7: Heatmap correlation based on dataset area 11033: left automatic, right season
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AREA 9862

Consistent with the regression analysis, the area 9862 exhibits a trend analogous to that ob-
served in area 11033. Specifically, the automated regression results indicate that the initial
two periods are characterized by higher correlation coefficients compared to the latter peri-
ods. Within this area, the EC model demonstrates the strongest performance, whereas the
ACCESS model yields the weakest results.

This pattern is further corroborated by the seasonal regression analysis. As illustrated in
the accompanying figure, the autumn season consistently presents the highest correlation in-
dices. Conversely, the remainder of the annual cycle is marked by a notably weak correlation.

Area 9862 Automatic Correlation (data) Area 9862 Season Correlation (data)
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Figure 4.8: Heatmap correlation based on dataset area 9862: left automatic, right season
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The analysis of correlations between NDVI and pasture biomass clearly demonstrates

that the relationship between satellite-derived NDVI and the actual productivity of pastoral
ecosystems is not constant but varies markedly according to season and vegetative phenology.
Among the different temporal windows, the autumn period (23 September — 19 December)
emerges unequivocally as the most favorable phase for the operational use of NDVI. During
this season, correlation values frequently exceed 0.70, with peaks of up to 0.80, indicating
a robust and predictable linear relationship between the spectral index and field-measured
biomass.
This pattern is consistent with the ecological dynamics of Mediterranean pastures, where the
first autumn rains terminate the summer dormancy and trigger a rapid resurgence of herba-
ceous vegetation. NDVI captures this flush of photosynthetically active green biomass with
high fidelity, providing a reliable proxy for estimating pasture productivity.

In spring, the relationship remains statistically significant, though more variable between
study areas, with correlations generally ranging between 0.4 and 0.6. Such variability sug-
gests that local factors—including soil type, floristic composition, and management prac-
tices—exert a stronger influence, thereby reducing the uniformity of the spectral response.
In contrast, both summer and late summer, as well as the winter period, reveal much weaker
correlations, often falling below 0.3 and in some cases approaching zero. In summer, the
accumulation of senescent, non-photosynthetic biomass leads to a clear decoupling between
NDVI and total biomass, while in winter the limited vegetative activity prevents the index

from adequately reflecting the true productivity of the pastures.

Inter-site comparisons further highlight the non-universal nature of the NDVI-biomass re-
lationship. Area 12280 stands out for its greater stability, maintaining moderate to strong
correlations not only in autumn but also in winter and spring, thus indicating a more consis-
tent link between vegetation indices and productivity throughout the year. Conversely, Area
11033 shows an intermediate pattern, with strong correlations confined to autumn, weaker
relationships in spring, and negligible predictability in summer. Area 9862 presents the most
extreme case, where NDVI is a reliable proxy exclusively in the fall and loses predictive
power throughout the year. The comparison of climate models reinforces these findings,
revealing a clear performance hierarchy. The MRI model consistently delivers the highest
correlations, confirming its robustness and reliability, whereas CNRM and ACCESS system-
atically produce weaker coefficients, in some instances approaching non-significance. This
pattern, consistent with earlier regression analyses, underscores the importance of model se-

lection as a critical factor in achieving accurate biomass estimation from satellite data.
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Overall, these results provide scientific validation for the use of NDVI as an effective tool to
monitor the status, productivity, and ecological health of pasture ecosystems on a continuous
and large-scale basis. However, its efficacy as a proxy for total biomass is strongly modulated
by seasonal phenology. While autumn constitutes the optimal window for its application, in
spring the index must be interpreted with caution, and in summer and winter its utility is con-
siderably limited. This evidence highlights a key implication for agro-pastoral management:
NDVI-based maps are highly useful and easily accessible for decision-making, yet their inter-
pretation requires critical calibration to seasonal dynamics and, when necessary, integration
with complementary sources of information. In this sense, both the timing of satellite data
acquisition and the choice of interpretive model emerge as decisive elements in transforming
NDVI from a powerful observational index into a robust and operationally reliable metric in

support of rangeland management.
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Chapter 5
Conclusions

This thesis set out to investigate the efficacy of the Normalized Difference Vegetation Index
(NDVI) as a reliable proxy for estimating pasture biomass under the evolving pressures of
climate change. The research was motivated by a critical gap in current agricultural insurance
models, which often rely on decadal NDVI averages that fail to capture the real-time dynam-
ics of forage availability, thereby potentially undermining the resilience of pastoral systems
in a warming world. Through a rigorous statistical analysis that integrated satellite-derived
NDVI data from multiple climate models with field-measured biomass across three distinct
areas in the Community of Madrid (Spain), this work provides a refined and scientifically
robust answer to this central question.

The findings of this study unequivocally demonstrate that the relationship between NDVI
and pasture biomass is not a static or universal constant but is profoundly mediated by sea-
sonal phenology and local ecological context. The autumn period (23 September — 19 Decem-
ber) emerged as the unequivocally optimal temporal window for application, characterized
by strong and reliable correlations frequently exceeding 0.70. This is directly attributable
to the Mediterranean climatic regime of the study area, where autumn rains break summer
dormancy, triggering a flush of photosynthetically active green biomass that the NDVI index
captures with high fidelity. In this phase, satellite data transcends its role as a mere indica-
tor of "greenness" to become a powerful and trustworthy tool for estimating actual biomass,
offering land managers and policymakers a reliable basis for decision-making.

Conversely, the summer and late-summer periods revealed the fundamental limitation
of NDVI, with correlations often diminishing to non-significant levels. This attenuation
results from a decoupling of the spectral signal from total biomass; while senescent, non-
photosynthetic material remains present on the ground, it is largely invisible to an index
designed to detect chlorophyll activity. This critical insight confirms that NDVI is an excel-
lent proxy for photosynthetically active green biomass but a poor one for total biomass during
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periods of plant senescence. The spring season presented an intermediate scenario, with mod-
erate correlations that exhibited significant variability between the studied areas, suggesting
that local factors such as soil composition, specific floristic communities, and management
practices gain greater influence, modulating the NDVI-biomass relationship.

The comparative analysis of the three study areas further enriched this understanding,
highlighting that the stability of the NDVI-biomass link is itself site-specific. Area 12280,
north, demonstrated remarkably consistent correlations across multiple seasons, indicating a
more predictable and stable ecological dynamic. In contrast, Areas 11033 and 9862 (central
and south respectively), exhibited a more extreme pattern, with strong predictability con-
fined almost exclusively to autumn. This geographic variability underscores the necessity of
moving beyond one-size-fits-all models and towards context-specific calibrations for effec-
tive large-scale monitoring. Furthermore, the consistent performance hierarchy among the
climate models, with the MRI model systematically outperforming others like CNRM and
ACCESS, underscores that the choice of the underlying climatic data is not a neutral detail
but a critical factor determining the accuracy of the final biomass estimation.

In conclusion, this thesis validates the scientific use of satellite-derived NDVI for contin-
uous, large-scale monitoring of pasture ecosystems, thereby contributing to the broader fields
of climate-smart agriculture and sustainable rangeland management. The research confirms
that when applied judiciously, with a critical understanding of its seasonal strengths and lim-
itations, NDVTI is an invaluable tool. The key to its operational success lies in the conscious
integration of phenological awareness: autumn provides a window of high reliability, spring
requires cautious interpretation supplemented by local knowledge, and summer demands the
integration of complementary data sources or alternative methodologies. Therefore, this work
provides a clear framework for enhancing the precision of agricultural insurance models and
pastoral management strategies. It recommends a shift from static, long-term averages to-
wards dynamic, phenologically-calibrated monitoring systems that can better reflect the true
state of pasture productivity in an era of climate change, ultimately supporting the resilience
of both agricultural livelihoods and the vital ecosystem services provided by grasslands.

Future research should focus on integrating multi-sensor approaches and developing phe-
nologically calibrated monitoring. Combining optical indices like NDVI with radar data

could be particularly useful for improving senescent biomass detection.
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APPENDIX A

Tables of all results

Acronyms used:
* BP: breakpoint
e N°: number
* Automatic: regression based on breakpoints provied by automatic formula
» Season: regression based on season breakpoints

e St. err. : standard error
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NDVI RESULTS

AUTOMATIC SEASON
R SQUARE BP SLOPE R SQUARE BP SLOPE
MULTIPLE | ADJUSTED | N° | VALUE | N° VALUE ST.ERR. P VALUE MULTIPLE | ADJUSTED | N° | VALUE | N° v ST.ERR. P VALUE
1 5,44 1 99,642 17,89 3,25x107-8 1 3 1 75,28 30,53 0,0139 **
AREA
12280 2 29,55 2 125,07 1,67 Qi+ 2 14 2 123,008 3,782 <2x107-16
% % %k
0,9723 0,921 3 35,39 3 142,84 13,81 6,05 x 10A-5 0,9723 0,9722 3 26 3 124,06 2,969 <2x107-16
%k k. %k %k
4 109,81 25,85 2,34 x107-5 4 135,332 3,373 <2x107-16
4 39,48 rex 4 37 rr
5 89,23 10,92 8,86 x 10 5 93,59 5,146 <2x107-16
%k k. %k %k
AUTOMATIC SEASON
R SQUARE BP SLOPE R SQAURE BP SLOPE
MULTIPLE | ADJUSTED | N° | VALUE | N° VALUE ST. ERR. P VALUE MULTIPLE | ADJUSTED | N° | VALUE | N° VALUE ST.ERR. P VALUE
1 6,44 1 38,37 7,36 2,27 x 10A-7 1 3 1 17,22 16,65 0,301
AREA
11033 2 16,76 2 61,55 3,39 2,11x 1076 2 14 2 55,95 2,06 <2x107-16
% %k k. % %k %k
0,9615 0,9612 3 27,39 3 64,75 2,93 3,94 x 107-89 0,9614 0,9612 3 26 3 66,1 1,62 <2x107-16
* %k % % %k
4 57,14 4,82 1,76 x 107-30 4 55,335 1,84 <2x107-16
4 35,31 ks 4 37 ik
5 34,45 3,01 7,36 x 10729 5 31,57 2,81 <2x107-16
* %k K % % %
AUTOMATIC SEASON
R SQUARE BP SLOPE R SQUARE BP SLOPE
MULTIPLE | ADJUSTED | N° | VALUE | N° VALUE ST.ERR. P VALUE MULTIPLE | ADJUSTED | N° | VALUE | N° VALUE ST.ERR. P VALUE
1 7,14 1 22,95 2,26 3,76 x 107-23 1 3 1 18,783 6,464 0,00374 **
AREA
9862 2 18,54 2 26,66 1,14 6,83 x 10198 2 14 2 25,875 0,8 <2x107-16
% %k k. % %k %
0,9715 0,9712 3 29,58 3 25,33 1,14 1,98 X101-89 0,9715 0,9713 3 26 3 25,835 0,628 <2x107-16
* % % ok K
4 28,14 2,31 5,01 X10-32 4 26,783 0,7139 <2x107-16
4 36,15 £ 4 37 G
5 22,8 1,34 3,54 X101-57 5 22,862 1,089 <2x107-16
* %k K % % %k




PASTURE RESULTS: ACCESS CM2

AUTOMATIC SEASON
R SQUARE BP SLOPE R SQUARE BP SLOPE
MULTIPLE | ADJUSTED N°® VALUE N° VALUE ST. ERR. P VALUE MULTIPLE ADJUSTED | N° % N° VALUE ST. ERR. P VALUE
1 4,47 1 53,534 58,52 0,36 1 3 1 62,05 70,66 0,38
AREA
2 10,48 2 128,87 31,282 4,08 x107-8 2 14 2 93,288 8,752 <2x10"-16
12280
0.7665 0.7645 3 26,28 3 34,765 7,09 1,11x10-10 0,759 0,759 3 26 3 26,564 6,871 0,000117
* ok ok %k
4 183,21 14,59 7,81 x10"-34 4 179,279 7,805 <2x10"-16
4 36,67 el 4 37 Lhbd
5 13,96 14,717 0,342 5 9,958 11,907 0,403
AUTOMATIC SEASON
R SQUARE BP SLOPE R SQUARE BP SLOPE
MULTIPLE ADJUSTED N° VALUE N° VALUE ST. ERR. P VALUE MULTIPLE ADJUSTED | N° | VALUE | N° VALUE ST. ERR. P VALUE
1 3,74 1 17,098 56,4 0,761 1 3 1 6,286 43,024 0,88
AREA
2 13,59 2 64,29 8,78 4,82x107-13 2 14 2 61,11 5,32 <2x107-16
11033
0,5539 0,5502 3 25,74 3 14,57 6,67 0,029 * 0,5537 0,5517 3 26 3 15,01 4,18 0,000349
%%k Kk
4 47,029 7,69 1,37x10"-9 4 45,661 4,751 <2x10"-16
4 36,21 sl 4 37 S0
5 3,78 8,97 0,67 5 0,925 7,24 0,898
AUTOMATIC SEASON
R SQUARE BP SLOPE R SQUARE BP SLOPE
MULTIPLE ADJUSTED N° VALUE N° VALUE ST. ERR. P VALUE MULTIPLE ADJUSTED | N° | VALUE | N° VALUE ST. ERR. P VALUE
1 47 1 9,89 18,433 0,591 1 3 1 -6,28 22,23 0,77
AREA
9862 2 14,5 2 32,73 4,53 1,02 x107-12 2 14 2 31,797 2,754 <2x107-16
%k k %k %%k Kk
0,4879 0,4836 3 26,3 3 5,563 3,44 0,1067 0,4874 0,485 3 26 3 6,885 2,163 0,00149
%k k.
4 19,62 5,38 2,83x107-4 4 17,569 2,45 1,56 x 10A-
4 35,7 S 4 37 12%%*
5 1,639 4,014 0,683 5 0,165 3,747 0,964




PASTURE RESULTS: CNRM ESM2

AUTOMATIC SEASON
R SQUARE BP SLOPE R SQUARE BP SLOPE
MULTIPLE ADJUSTED N° VALUE N° VALUE ST. ERR. P VALUE MULTIPLE ADJUSTED | N° | VALUE | N° VALUE ST. ERR. P VALUE
1 4,58 1 54,394 61,03 0,372 1 3 1 63,274 73,725 0,391
AREA
2 10,61 2 128,17 32,622 9,07x10%-5 2 14 2 91,412 9,131 <2x107-16
12280
0,7249 0,7226 3 25,61 3 31,933 8,155 9,58x10%-5 0,7239 0,7227 3 26 3 28,803 7,169 6,28x10%-5
%k k. % %k %k
4 162,52 13,163 7,62x101-33 4 162,102 8,142 <2x107-16
4 36,35 g 4 37 g
5 14,384 15,34 0,348 5 4,862 12,423 0,696
AUTOMATIC SEASON
R SQUARE BP SLOPE R SQUARE BP SLOPE
MULTIPLE ADJUSTED N° VALUE N° VALUE ST. ERR. P VALUE MULTIPLE ADJUSTED | N° | VALUE | N° VALUE ST. ERR. P VALUE
1 15,2 1 59,67 3,965 1,05x10"-46 1 3 1 2,36 35,7 0,9473
AREA
11033 2 21,5 2 9,086 15,839 0,566 2 14 2 65,721 4,422 <2x107-16
%k %k
0,6475 0,6447 3 26,4 3 21,16 20,95 0,312 0,6478 0,6462 3 26 3 16,147 3,471 3,7x107-6
%k %k
4 43,79 7,389 4,15x10"-9 4 41,74 3,943 <2x107-16
4 36,1 g 4 37 g
5 4,24 7,45 0,59 5 1,405 0,234 0,8154
AUTOMATIC SEASON
R SQUARE BP SLOPE R SQUARE BP SLOPE
MULTIPLE ADJUSTED N° VALUE N° VALUE ST.ERR. P VALUE MULTIPLE ADJUSTED | N° | VALUE | N° VALUE ST. ERR. P VALUE
1 4,81 1 10,03 17,07 0,556 1 3 1 -7,86 20,6 0,7
AREA
2 14,6 2 33,97 4,202 1,67x10"-15 2 14 2 32,998 2,55 <2x10"-16
ommN %%k k. %k %k
0,5289 0,525 3 26,27 3 5,683 3,192 0,075 * 0,5283 0,5261 3 26 3 7,2605 2,003 0,0003 ***
4 18,384 4,989 2,/4x10"-4 4 16,355 2,275 1,22x107-12
4 35,68 g 4 37 g
5 1,596 3,718 0,667 5 0,244 3,471 0,943




PASTURE RESLTS: EC-EARTH VEG

AUTOMATIC SEASON
R SQUARE BP SLOPE R SQUARE BP SLOPE
MULTIPLE ADJUSTED N° VALUE N° VALUE ST. ERR. P VALUE MULTIPLE ADJUSTED | N° | VALUE | N° VALUE ST. ERR. P VALUE
1 4,4 1 62,65 63,97 0,327 1 3 1 81,82 77,281 0,2899
AREA
2 10,5 2 130,1 34,198 1,5x10"-4 2 14 2 92,6 3,716 <2x107-16
12280
0,72 0,7175 3 25,7 3 32,137 8,549 1,79x10%-4 0,7189 0,7176 3 26 3 27,925 7,515 0,000213
%k k. %k %k
4 168,07 13,8 4,64x107-32 4 168,909 8,535 <2x107-16
4 36,5 g 4 37 T
5 17,496 16,08 0,27 5 10,315 13,022 0,428
AUTOMATIC SEASON
R SQUARE BP SLOPE R SQUARE BP SLOPE
MULTIPLE ADJUSTED N° VALUE N° VALUE ST. ERR. P VALUE MULTIPLE ADJUSTED | N° | VALUE | N° VALUE ST. ERR. P VALUE
1 14,6 1 59,08 5 2,25x1030 1 3 1 8,047 40,688 0,843
AREA
11033 2 25,6 2 14,64 7,19 0,0419 * 2 14 2 63,864 5,039 <2x107-16
%k %k
0,5835 0,5807 3 36,1 3 43,5 5,97 3,03x10"-9 0,584 0,582 3 26 3 16,265 3,956 4,24x101-5
%%k k. %k ok
4 4,714 0,555 0,57 4 42,13 4,494 <2x10"-16
4 = 4 37 ok
5 - - - 5 2,294 6,856 0,738
AUTOMATIC SEASON
R SQUARE BP SLOPE R SQUARE BP SLOPE
MULTIPLE ADJUSTED N° VALUE N° VALUE ST. ERR. P VALUE MULTIPLE ADJUSTED | N° | VALUE | N° VALUE ST. ERR. P VALUE
1 4,85 1 12,5 17,37 0,47 1 3 1 -4,97 20,96 0,812
AREA
2 14,51 2 35,05 4,276 6,98x10"-16 2 14 2 34,231 2,596 <2x107-16
mmmN %%k kK % % %k
0,5427 0,5389 3 27,49 3 7,07 2,879 0,0142 ** 0,5421 0,54 3 26 3 7,734 2,038 0,000156
%k ok
4 18,6 5,093 2,727x10"-4 4 16,55 2,315 1,61x107-12
4 36,6 0 4 37 g
5 1,821 4,368 0,676 5 1,947 3,532 0,581




PASTURE RESULTS: MIROC6

AUTOMATIC SEASON
R SQUARE BP SLOPE R SQUARE BP SLOPE
MULTIPLE ADJUSTED N° VALUE N° VALUE ST.ERR P VALUE MULTIPLE ADJUSTED | N° | VALUE | N° VALUE ST. ERR. P VALUE
1 4,49 1 62,71 61,1 0,304 1 3 1 80,245 73,827 0,277
AREA
2 10,44 2 132,99 32,66 5x10”-5 2 14 2 93,797 9,144 <2X107-16
12280
0,7286 0,7259 3 25,69 3 31,06 8,165 1,5x10%-5 0,7272 0,7259 3 26 3 26,646 7,179 0,000216
%k k. %k %k
4 163,97 13,18 2,7x10"-33 4 164,564 8,156 <2X10"-16
4 36,39 g 4 37 T
5 14,012 15,367 0,362 5 6,251 12,44 0,6154
AUTOMATIC SEASON
R SQUARE BP SLOPE R SQUARE BP SLOPE
MULTIPLE ADJUSTED N° VALUE N° VALUE ST. ERR. P VALUE MULTIPLE ADJUSTED | N° | VALUE | N° VALUE ST. ERR. P VALUE
1 4,36 1 33,122 34,186 0,332 1 3 1 17,271 0,419 0,675
AREA
11033 2 12,69 2 77,413 11,795 8,17x107-11 2 14 2 69,878 5,107 <2X107-16
%%k Kk %k %k
0,5865 0,583 3 29,29 3 20,806 3,7969 5,29x10"-8 0,5862 0,5844 3 26 3 16,365 4,009 4,79x10i-5
%%k k. %k ok
4 46,723 14,757 1,58x10%-3 4 38,332 8,418 <2X10"-16
4 36,14 g 4 37 g
5 4,49 8,59 0,601 5 3,847 0,554 0,58
AUTOMATIC SEASON
R SQUARE BP SLOPE R SQUARE BP SLOPE
MULTIPLE ADJUSTED N° VALUE N° VALUE ST. ERR. P VALUE MULTIPLE ADJUSTED | N° | VALUE | N° VALUE ST. ERR. P VALUE
1 4,82 1 11,91 17,21 0,488 1 3 1 -5,75 20,736 0,78
AREA
2 13,42 2 37,108 4,986 1,66X10"-13 2 14 2 35,46 2,568 <2X10"-16
mmmN %%k kK % % %k
0,5325 0,5296 3 39,42 3 10,525 1,017 5,45X10"-24 0,5332 0,5311 3 26 3 7,576 2,016 0,000181
%%k k. %k ok
4 0,785 12,431 0,949 4 14,26 2,29 6,81X107-10
4 44 4 37 Kok k
5 -0,81 55,59 0,988 5 1,173 3,494 0,737




PASTURE RESULTS: MPI ESM1

AUTOMATIC SEASON
R SQUARE BP SLOPE R SQUARE BP SLOPE
MULTIPLE ADJUSTED N° VALUE N° VALUE ST. ERR. P VALUE MULTIPLE ADJUSTED | N° | VALUE | N° VALUE ST. ERR. P VALUE
1 3,96 1 49,96 90,56 0,604 1 3 1 66,887 69,213 0,3341
AREA
2 10,71 2 124,06 24,2 3,5x107-7 2 14 2 92,12 8,572 <2x107-16
12280
0,761 0,7591 3 25,73 3 31,56 7,65 4x107-5 0,7601 0,759 3 26 3 27,718 6,73 4,1x10"-5
%k k. %k %k
4 173,59 12,35 2,64x10"-36 4 171,448 7,644 <2x107-16
4 36,29 g 4 37 T
5 13,085 14,4 0,36 5 2,488 11,662 0,8311
AUTOMATIC SEASON
R SQUARE BP SLOPE R SQUARE BP SLOPE
MULTIPLE ADJUSTED N° VALUE N° VALUE ST. ERR. P VALUE MULTIPLE ADJUSTED | N° | VALUE | N° VALUE ST. ERR. P VALUE
1 4,31 1 25,13 30,71 0,413 1 3 1 6,4 37,05 0,862
AREA
11033 2 13,47 2 69,277 8,86 1,31x107-14 2 14 2 64,29 4,589 <2x107-16
%%k Kk %k %k
0,6324 0,6293 3 25,67 3 15,079 5,74 8,77x107-3 0,632 0,63 3 26 3 15,75 3,602 1,35x10A-5
%%k k. %k ok
4 46,394 7,64 1,8x10"-9 4 43,98 4,092 <2x10"-16
4 35,71 S 4 37 g
5 4,244 6,688 0,525 5 0,078 6,24 0,99
AUTOMATIC SEASON
R SQUARE BP SLOPE R SQUARE BP SLOPE
MULTIPLE ADJUSTED N° VALUE N° VALUE ST. ERR. P VALUE MULTIPLE ADJUSTED | N° | VALUE | N° VALUE ST. ERR. P VALUE
1 5,22 1 12,08 11,258 0,283 1 3 1 12,08 11,258 0,283
AREA
9862 2 13,85 2 37,12 5,493 2,28X107-11 2 14 2 37,124 5,493 2,28X10"-11
%%k kK % % %k
0,5819 0,5784 3 26,31 3 6,716 2,638 0,011 * 0,5819 0,5784 3 26 3 6,7169 2,6389 0,0011 ***
4 19,35 4,653 3,344X10%-5 4 19,355 4,653 3,44x101-5
4 35,75 0 4 37 g
5 1,577 3,467 0,6493 5 1,577 3,467 0,649




PASTURE RESULTS: MRI ESM2

AUTOMATIC SEASON
R SQUARE BP SLOPE R SQUARE BP SLOPE
MULTIPLE ADJUSTED N° VALUE N° VALUE ST. ERR. P VALUE MULTIPLE ADJUSTED | N° | VALUE | N° VALUE ST. ERR. P VALUE
1 3,62 1 45,114 88,578 0,6106 1 3 1 74,997 67,735 0,2685
AREA
2 11,3 2 125,85 19,329 1,14x10"-10 2 14 2 96,944 8,389 <2X107-16
12280
0,7689 0,7669 3 24,73 3 30,79 8,305 2,2x10"-4 0,7677 0,7666 3 26 3 29,402 6,586 8,88x107-6
%k k. %k %k
4 161,8 12,083 6,25x10"-38 4 164,607 7,481 <2X107-16
4 37,01 g 4 37 T
5 16,46 14,088 0,242 5 8,462 11,413 0,4586
AUTOMATIC SEASON
R SQUARE BP SLOPE R SQUARE BP SLOPE
MULTIPLE ADJUSTED N° VALUE N° VALUE ST. ERR. P VALUE MULTIPLE ADJUSTED | N° | VALUE | N° VALUE ST. ERR. P VALUE
1 3,6 1 18,04 46,63 0,698 1 3 1 10,015 35,574 0,7784
AREA
11033 2 13,5 2 71,73 7,26 4,26x10"-22 2 14 2 67,861 4,406 <2X10"-16
%%k Kk %k %k
0,6597 0,6568 3 25,3 3 16,75 5,514 0,024 *** 0,6595 0,6579 3 26 3 17,084 3,459 9,1x107-7
%k ok
4 40,899 6,361 1,92x107-10 4 40,92 3,929 <2X10"-16
4 36,5 g 4 37 g
5 4,106 7,416 0,579 5 2,13 5,994 0,7224
AUTOMATIC SEASON
R SQUARE BP SLOPE R SQUARE BP SLOPE
MULTIPLE ADJUSTED N° VALUE N° VALUE ST. ERR. P VALUE MULTIPLE ADJUSTED | N° | VALUE | N° VALUE ST. ERR. P VALUE
1 4,52 1 11,19 15,849 0,48 1 3 1 -5,2 19,12 0,7853
AREA
9862 2 14,48 2 36,31 3,9 7,1x107-20 2 14 2 35,43 2,368 <2X10"-16
%%k kK % % %k
0,5965 0,5932 3 25,43 3 6,563 3,379 0,0523 * 0,5962 0,5943 3 26 3 8,164 1,859 1,24X107-5
%k ok
4 16,7 3,3418 1,178x10"-6 4 16,286 2,11 2,8X107-14
4 36,6 0 4 37 g
5 1,424 3,985 0,72 5 0,975 3,221 0,7621




Bibliography

[1]

(2]

[6]

[7]

FAO. Emissions due to agriculture: Global, regional and country trends 1990-2019,
2021. Food and Agriculture Organization of the United Nations.

Yongfei Bai and M. Francesca Cotrufo. Grassland soil carbon sequestration: Current
understanding, challenges, and solutions. Science, 377(6606):603—-608, 2022. ISSN
0036-8075, 1095-9203. URL https://www.science.org/doi1/10.1126/

science.abo2380.

Marcos Aragon M Pizarro, Carlos Diaz-Ambrona, A.M. Tarquis, M. Ana, Andrés F.
Almeidana-fiuay, and Ernesto Sanz. Modelling biomass projections in grasslands of
central spain under climate change scenarios. 2025.

IPCC. Climate change and land: An ipcc special report on climate change, desertifi-
cation, land degradation, sustainable land management, food security, and greenhouse
gas fluxes in terrestrial ecosystems. https://www.ipcc.ch/srccl/, 2019. In-

tergovernmental Panel on Climate Change.

Tim Wheeler and Joachim von Braun. Climate change impacts on global food security.
Science, 341(6145):508-513, 2013. ISSN 1095-9203. doi: 10.1126/science.1239402.
URL https://doi.org/10.1126/science.1239402.

S. Asseng et al. Rising temperatures reduce global wheat production. Nature Climate
Change, 5(2):143-147, 2015. ISSN 1758-6798. doi: 10.1038/nclimate2470. URL

https://www.nature.com/articles/nclimate2470.

Chuang Zhao, Bing Liu, Shilong Piao, Xuhui Wang, David B. Lobell, Yao Huang,
and Senthold Asseng. Temperature increase reduces global yields of major crops in
four independent estimates. Proceedings of the National Academy of Sciences, 114
(35):9326-9331, 2017. doi: 10.1073/pnas.1701762114. URL https://www.pnas.
org/doi/full/10.1073/pnas.1701762114.

64


https://www.science.org/doi/10.1126/science.abo2380
https://www.science.org/doi/10.1126/science.abo2380
https://www.ipcc.ch/srccl/
https://doi.org/10.1126/science.1239402
https://www.nature.com/articles/nclimate2470
https://www.pnas.org/doi/full/10.1073/pnas.1701762114
https://www.pnas.org/doi/full/10.1073/pnas.1701762114

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

J. Rockstrom et al. Managing water in rainfed agriculture: The need for a paradigm
shift. Managing water in rainfed agriculture: The need for a paradigm shift, 97(4):
543-550, 2010. ISSN 0378-3774.

Aiguo Dai. Increasing drought under global warming in observations and models. Na-
ture Climate Change, 3(1):52-58, 2013. ISSN 1758-6798. doi: 10.1038/nclimate1633.
URL https://www.nature.com/articles/nclimatel633l

Corey Lesk, Pedram Rowhani, and Navin Ramankutty. Influence of extreme weather
disasters on global crop production. Nature, 529(7584):84-87, 2016. ISSN 1476-4687.
doi: 10.1038/mature16467.

Edmar I. Teixeira, Guenther Fischer, Harrij Van Velthuizen, Christof Walter, and Frank
Ewert. Global hot-spots of heat stress on agricultural crops due to climate change.
Agricultural and Forest Meteorology, 170:206-215, 2013. ISSN 0168-1923. doi:
10.1016/j.agrformet.2011.09.002. URL https://www.sciencedirect.com/
science/article/pi1i/50168192311002784.

Kevin E. Trenberth, Aiguo Dai, Gerard Van Der Schrier, Philip D. Jones, Jonathan
Barichivich, Keith R. Briffa, and Justin Sheffield. Global warming and changes in
drought. Nature Climate Change, 4(1):17-22, 2014. ISSN 1758-678X, 1758-6798.
URL https://www.nature.com/articles/nclimate2067.

Daniel P. Bebber, Mark A. T. Ramotowski, and Sarah J. Gurr. Crop pests and
pathogens move polewards in a warming world. Nature Climate Change, 3(11):985—
988, 2013. ISSN 1758-6798. URL https://www.nature.com/articles/
nclimatel990.

S. S. Myers et al. Increasing CO2 threatens human nutrition. Nature, 510(7503):
139-142, 2014. ISSN 0028-0836, 1476-4687. URL https://www.nature.com/

articles/naturel3179.

Pichu Rengasamy. World salinization with emphasis on Australia. Jour-
nal of Experimental Botany, 57(5):1017-1023, 2006. ISSN 1460-2431, 0022-
0957. URL http://academic.oup.com/jxb/article/57/5/1017/

641287 /World—-salinization—-with—-emphasis—-on—-Australia.

IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of
Working Group I to the Sixth Assessment Report. Cambridge University Press, 2022.

65


https://www.nature.com/articles/nclimate1633
https://www.sciencedirect.com/science/article/pii/S0168192311002784
https://www.sciencedirect.com/science/article/pii/S0168192311002784
https://www.nature.com/articles/nclimate2067
https://www.nature.com/articles/nclimate1990
https://www.nature.com/articles/nclimate1990
https://www.nature.com/articles/nature13179
https://www.nature.com/articles/nature13179
http://academic.oup.com/jxb/article/57/5/1017/641287/World-salinization-with-emphasis-on-Australia
http://academic.oup.com/jxb/article/57/5/1017/641287/World-salinization-with-emphasis-on-Australia

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

S. Mark Howden, Jean-Francois Soussana, Francesco N. Tubiello, Netra Chhetri,
Michael Dunlop, and Holger Meinke. Adapting agriculture to climate change. Pro-
ceedings of the National Academy of Sciences of the United States of America, 104(50):
19691-19696, 2007. ISSN 1091-6490. doi: 10.1073/pnas.0701890104.

David B. Lobell, Wolfram Schlenker, and Justin Costa-Roberts. Climate trends and
global crop production since 1980. Science, 333(6042):616-620, 2011. doi: 10.1126/
science.1204531.

Wolfram Schlenker and Michael J. Roberts. Nonlinear temperature effects indicate
severe damages to U.S. crop yields under climate change. Proceedings of the National
Academy of Sciences of the United States of America, 106(37):15594-15598, 2009.
ISSN 0027-8424. URL https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC2747166/.

Pete Smith and et al. Agriculture, forestry and other land use (afolu). In Climate
Change 2014: Mitigation of Climate Change. Contribution of Working Group III to
the Fifth Assessment Report of the IPCC. Cambridge University Press, 2014. URL
https://www.ipcc.ch/report/ar5/wg3/.

Timothy Searchinger and et al. Creating a sustainable food future. |https://
WWw.Wri.org/research/creating-sustainable-food-future, 2019.

World Resources Institute.

Leslie Lipper, Philip Thornton, Bruce M. Campbell, Thomas Baedeker, Ademola
Braimoh, Moses Bwalya, and Robert Hottle. Climate-smart agriculture for food se-
curity. Nature Climate Change, 4(12):1068-1072, 2014. ISSN 1758-678X, 1758-6798.
URL https://www.nature.com/articles/nclimate2437.

Jules Pretty, Tim Benton, Zareen Bharucha, Lynn Dicks, Cornelia Flora, Charles God-
fray, Dave Goulson, Susan Hartley, Nicolas Lampkin, Carol Morris, Gary Pierzynski,
P. V. Vara Prasad, John Reganold, Johan Rockstrom, Pete Smith, Peter Thorne, and
Stephen Wratten. Global assessment of agricultural system redesign for sustainable
intensification. Nature Sustainability, 1, 08 2018. doi: 10.1038/s41893-018-0114-0.

Miguel A. Altieri, Clara I. Nicholls, Alejandro Henao, and Marcos A. Lana. Agroe-
cology and the design of climate change-resilient farming systems. Agronomy for
Sustainable Development, 35(3):869-890, 2015. URL https://hal.science/
hal-01309778.

66


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2747166/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2747166/
https://www.ipcc.ch/report/ar5/wg3/
https://www.wri.org/research/creating-sustainable-food-future
https://www.wri.org/research/creating-sustainable-food-future
https://www.nature.com/articles/nclimate2437
https://hal.science/hal-01309778
https://hal.science/hal-01309778

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Yulong Zhao, Zhongwei Liu, and Jianguo Wu. Grassland ecosystem services: A sys-
tematic review of research advances and future directions. Landscape Ecology, 35(5):
1053-1072, 2020. doi: 10.1007/s10980-020-00995-3.

L. Liu, E.J. Sayer, M. Deng, and S. Piao. The grassland carbon cycle: Mechanisms,
responses to global changes, and potential contribution to carbon neutrality. Science of
The Total Environment, 849:157748, 2022. doi: 10.1016/j.scitotenv.2022.157748.

Ann Norderhaug, Karina E. Clemmensen, Paul Kardol, Anna Gudrun Thorhallsdottir,
and Iulie Aslaksen. Carbon sequestration potential and the multiple functions of Nordic
grasslands. Climatic Change, 176(5):55, 2023. ISSN 1573-1480. URL https://
doi.org/10.1007/s10584-023-03537-w.

Fengfeng Cao, Weibin Li, Yuan Jiang, Xiaoling Gan, Chuanyan Zhao, and Jiancheng
Ma. Effects of grazing on grassland biomass and biodiversity: A global synthesis. Field
Crops Research, 306:109204, 02 2024. doi: 10.1016/.fcr.2023.109204.

Selvi Wehn, Knut Anders Hovstad, and Line Johansen. The relationships between
biodiversity and ecosystem services and the effects of grazing cessation in semi-natural
grasslands. Web Ecology, 18(1):55-65, 2018. ISSN 1399-1183. URL https://we.
copernicus.org/articles/18/55/2018/L

Yongyao Li, Kangning Xiong, Shuzhen Song, and Wenfang Zhang. Realizing the
value of grassland ecosystem services: Global practice and its inspiration for the
karst desertification control area. Frontiers in Sustainable Food Systems, 7, 2024.
ISSN 2571-581X. URL https://www.frontiersin.org/journals/
sustainable-food-systems/articles/10.3389/fsufs.2023.
1240431 /full.

Pauline Dusseux, Laurence Hubert-Moy, Thomas Corpetti, and Francoise Vertes. Eval-
uation of spot imagery for the estimation of grassland biomass. International Jour-
nal of Applied Earth Observation and Geoinformation, 38:72-77, 06 2015. doi:
10.1016/j.jag.2014.12.003.

Carlos Gregorio Herndndez Diaz-Ambrona, Ana Tarquis Alfonso, and Juan Rodriguez.
SelecciOn de Indices de vegetaciOn para la estimaciOn de la producciOn herbAcea
en dehesas = selection of vegetation indices to estimate pasture production in dehesas.
Pastos, 44:6-18, 10 2015.

Guilherme Defalque, Ricardo Santos, Davi Bungenstab, Diego Echeverria, Alexandre

Dias, and Cristiane Defalque. Machine learning models for dry matter and biomass

67


https://doi.org/10.1007/s10584-023-03537-w
https://doi.org/10.1007/s10584-023-03537-w
https://we.copernicus.org/articles/18/55/2018/
https://we.copernicus.org/articles/18/55/2018/
https://www.frontiersin.org/journals/sustainable-food-systems/articles/10.3389/fsufs.2023.1240431/full
https://www.frontiersin.org/journals/sustainable-food-systems/articles/10.3389/fsufs.2023.1240431/full
https://www.frontiersin.org/journals/sustainable-food-systems/articles/10.3389/fsufs.2023.1240431/full

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

estimates on cattle grazing systems. Computers and Electronics in Agriculture, 216:
108520, 2024. ISSN 0168-1699. URL https://www.sciencedirect.com/
science/article/pi1i/S0168169923009080.

M. Pulido, S. Schnabel, J.F. Lavado-Contador, et al. The role of vegetation indices in
pasture biomass estimation under mediterranean conditions. Agricultural Systems, 149:
103-113, 2016. doi: 10.1016/j.agsy.2016.07.017.

M. Balzarini et al. Remote sensing for pasture biomass monitoring in heterogeneous
landscapes. Remote Sensing, 12(13):2160, 2020. doi: 10.3390/rs12132160.

Z Jiang, A Huete, K Didan, and T Miura. Development of a two-band enhanced veg-
etation index without a blue band. Remote Sensing of Environment, 112(10):3833—
3845, 2008. ISSN 00344257. URL https://linkinghub.elsevier.com/
retrieve/pii/50034425708001971.

AR. Huete. A soil-adjusted vegetation index. Remote Sensing of Environment,
25(3):295-309, 1988. URL https://www.sciencedirect.com/science/
article/pii/003442578890106X.

Chiara Clementini, Andrea Pomente, Daniele Latini, Hideki Kanamaru, Maria Raf-
faella Vuolo, Ana Heureux, Mariko Fujisawa, Giovanni Schiavon, and Fabio Del Frate.
Long-Term Grass Biomass Estimation of Pastures from Satellite Data. Remote Sens-
ing, 12(13):2160, 2020. ISSN 2072-4292. URL https://www.mdpi.com/
2072-4292/12/13/2160.

P.S. Thenkabail et al. Hyperspectral vegetation indices. In Hyperspectral Remote Sens-
ing of Vegetation, pages 123—176. CRC Press, 2013. ISBN 9781439845370. doi:
10.13140/2.1.2985.3127.

William James Frampton, Jadunandan Dash, Gary Watmough, and Edward James Mil-
ton. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical
variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 82:
83-92, 2013. ISSN 09242716. URL https://linkinghub.elsevier.com/
retrieve/pii/5092427161300107X.

Yun Chen, Juan Guerschman, Yuri Shendryk, Dave Henry, and Matthew Tom Harri-
son. Estimating Pasture Biomass Using Sentinel-2 Imagery and Machine Learning.
Remote Sensing, 13(4):603, 2021. ISSN 2072-4292. URL https://www.mdpi .
com/2072-4292/13/4/603.

68


https://www.sciencedirect.com/science/article/pii/S0168169923009080
https://www.sciencedirect.com/science/article/pii/S0168169923009080
https://linkinghub.elsevier.com/retrieve/pii/S0034425708001971
https://linkinghub.elsevier.com/retrieve/pii/S0034425708001971
https://www.sciencedirect.com/science/article/pii/003442578890106X
https://www.sciencedirect.com/science/article/pii/003442578890106X
https://www.mdpi.com/2072-4292/12/13/2160
https://www.mdpi.com/2072-4292/12/13/2160
https://linkinghub.elsevier.com/retrieve/pii/S092427161300107X
https://linkinghub.elsevier.com/retrieve/pii/S092427161300107X
https://www.mdpi.com/2072-4292/13/4/603
https://www.mdpi.com/2072-4292/13/4/603

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

Ghislain Tontibomma Bambara, André Kiema, Valérie M.C. Bougouma-Yameogo,
Abroulaye Sanfo, and Wieme Some. Development of a model for estimating the
biomass of pastures using normalized difference vegetation index (NDVI): The case
of the Niassa pastoral zone in Burkina Faso. GSC Advanced Research and Reviews,
20(2):157-166, 2024. ISSN 25824597. URL https://gsconlinepress.com/
journals/gscarr/node/2788.

Xiaoyang Zhang, Mark A. Friedl, Crystal B. Schaaf, Alan H. Strahler, John C.F.
Hodges, Feng Gao, Bradley C. Reed, and Alfredo Huete. Monitoring vegetation phe-
nology using MODIS. Remote Sensing of Environment, 84(3):471-475, 2003. ISSN
00344257. URL https://linkinghub.elsevier.com/retrieve/pii/
S0034425702001359.

Abdelaziz Kallel, Mauro Dalla Mura, Sana Fakhfakh, and Najmeddine Romdhane.
Physics-based fusion of sentinel-2 and sentinel-3 for higher resolution vegetation mon-
itoring. IEEE Transactions on Geoscience and Remote Sensing, PP:1-1, 01 2023. doi:
10.1109/TGRS.2023.3257219.

Bernardo Candido, Ushasree Mindala, Hamid Ebrahimy, Zhou Zhang, and Robert
Kallenbach. Integrating Proximal and Remote Sensing with Machine Learning for
Pasture Biomass Estimation. Sensors, 25(7):1987, 2025. ISSN 1424-8220. URL
https://www.mdpi.com/1424-8220/25/7/1987.

M. J. Hill and G. E. Donald. Estimating spatio-temporal patterns of agricul-
tural productivity in fragmented landscapes using AVHRR NDVI time series. [In-
ternational Journal of Remote Sensing, 24(14):3011-3030, 2010. doi: 10.1080/
01431161003743181. URL https://www.tandfonline.com/doi/full/
10.1080/01431161003743181.

Mathilde De Vroey, Julien Radoux, and Pierre Defourny. remote sensing grassland
mowing detection using sentinel-1 time series: Potential and limitations. Remote Sens-
ing, 13:348, 01 2021. doi: 10.3390/rs13030348.

Yizhe Li and Xinqing Xiao. Deep learning-based fusion of optical, radar, and lidar data
for advancing land monitoring. Sensors, 25:4991, 08 2025. doi: 10.3390/s25164991.

P. Manzano et al. Application of vegetation indices obtained from satellite images for

the management of the voisin rational grazing. Rangeland Ecology and Management,
2024. In press.

69


https://gsconlinepress.com/journals/gscarr/node/2788
https://gsconlinepress.com/journals/gscarr/node/2788
https://linkinghub.elsevier.com/retrieve/pii/S0034425702001359
https://linkinghub.elsevier.com/retrieve/pii/S0034425702001359
https://www.mdpi.com/1424-8220/25/7/1987
https://www.tandfonline.com/doi/full/10.1080/01431161003743181
https://www.tandfonline.com/doi/full/10.1080/01431161003743181

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Wagner Santos and other. Use of Unmanned Aerial Vehicles for Monitoring Pastures
and Forages in Agricultural Sciences: A Systematic Review. Drones, 8(10):585, 2024.
ISSN 2504-446X. URL https://www.mdpi.com/2504-446X/8/10/585.

Mich Ann Arbor. Proceedings of the sixth International Symposium on Remote Sensing
of Environment, Oct. 13-16, 1969. Ann Arbor : Willow Run Laboratories, Environmen-
tal Research Institute of Michigan, 1969. URL http://archive.org/details/
trent_0116401042951.

Alyssa Pfaff. Capturing Deeper Ag Data Analytics with NDVI Imagery, May 2023.

URL https://sentera.com/resources/articles/ndvi—-imagery/.

NASA Earth Science Data Systems. AppEEARS | NASA Earthdata, August 2024. URL
https://www.earthdata.nasa.gov/data/tools/appeears. Publisher:
Earth Science Data Systems, NASA.

Bader D. C., Covey C., Gutowski W. J., Held I. M., Kunkel K. E., and Miller R. L.
Climate Models: An Assessment of Strengths and Limitations. Climate Change Science
Program (U.S.) eBooks, 2008.

Agencia estatal de meteorologia.  Visor de Escenarios de Cambio Climadtico.
URL | https://escenarios.adaptecca.es/#&model=CMIP6—-spain.
ACCESS-CM2_rlilplfl_FESD-RegBA&variable=tasmin&scenario=
ssp245&temporalFilter=year&layers=AREAS&period=NEAR
FUTURE&anomaly=RAW_VALUE&ids=11, 6.

Intergovernmental Panel On Climate Change (Ipcc).  Climate Change 2021 —
The Physical Science Basis: Working Group I Contribution to the Sixth Assess-
ment Report of the Intergovernmental Panel on Climate Change. Cambridge Uni-
versity Press, 1 edition, July 2023. ISBN 978-1-009-15789-6. doi: 10.1017/
9781009157896. URL https://www.cambridge.orqg/core/product/
identifier/9781009157896/type/bookl

Coupled Model Intercomparison Project. CMIP - Coupled Model Intercomparison
Project, 2022. URL https://wcrp-cmip.org/.

Commonwealth Scientific and Industrial Research Organisation (CSIRO). ACCESS-
CM2. URL https://research.csiro.au/access/about/cm2/.

Roland Séférian et al. Development and evaluation of CNRM Earth system model —
CNRM-ESM1. Geoscientific Model Development, 9(4):1423—-1453, April 2016. ISSN

70


https://www.mdpi.com/2504-446X/8/10/585
http://archive.org/details/trent_0116401042951
http://archive.org/details/trent_0116401042951
https://sentera.com/resources/articles/ndvi-imagery/
https://www.earthdata.nasa.gov/data/tools/appeears
https://escenarios.adaptecca.es/#&model=CMIP6-spain.ACCESS-CM2_r1i1p1f1_ESD-RegBA&variable=tasmin&scenario=ssp245&temporalFilter=year&layers=AREAS&period=NEAR_FUTURE&anomaly=RAW_VALUE&ids=11,6
https://escenarios.adaptecca.es/#&model=CMIP6-spain.ACCESS-CM2_r1i1p1f1_ESD-RegBA&variable=tasmin&scenario=ssp245&temporalFilter=year&layers=AREAS&period=NEAR_FUTURE&anomaly=RAW_VALUE&ids=11,6
https://escenarios.adaptecca.es/#&model=CMIP6-spain.ACCESS-CM2_r1i1p1f1_ESD-RegBA&variable=tasmin&scenario=ssp245&temporalFilter=year&layers=AREAS&period=NEAR_FUTURE&anomaly=RAW_VALUE&ids=11,6
https://escenarios.adaptecca.es/#&model=CMIP6-spain.ACCESS-CM2_r1i1p1f1_ESD-RegBA&variable=tasmin&scenario=ssp245&temporalFilter=year&layers=AREAS&period=NEAR_FUTURE&anomaly=RAW_VALUE&ids=11,6
https://www.cambridge.org/core/product/identifier/9781009157896/type/book
https://www.cambridge.org/core/product/identifier/9781009157896/type/book
https://wcrp-cmip.org/
https://research.csiro.au/access/about/cm2/

[60]

[61]

[62]

[64]

[65]

[66]

[67]

1991-9603. doi: 10.5194/gmd-9-1423-2016. URL https://gmd.copernicus.
org/articles/9/1423/2016/.

A European community Earth System Model. EC-Earth — EC-Earth a Global Climate
Model. URL https://ec—earth.org/l

Hiroaki Tatebe et al. Description and basic evaluation of simulated mean state, inter-
nal variability, and climate sensitivity in MIROC6. Geoscientific Model Development,
12(7):2727-2765, July 2019. ISSN 1991-959X. doi: 10.5194/gmd-12-2727-2019.
URL https://gmd.copernicus.orqg/articles/12/2727/2019/. Pub-
lisher: Copernicus GmbH.

Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and
Its Response to Increasing CO2 - Mauritsen - 2019 - Journal of Advances in
Modeling Earth Systems - Wiley Online Library. URL https://agupubs.
onlinelibrary.wiley.com/doi/full/10.1029/2018MS001400.

Seiji aand others Yukimoto. The Meteorological Research Institute Earth System Model
Version 2.0, MRI-ESM2.0: Description and Basic Evaluation of the Physical Compo-
nent. Journal of the Meteorological Society of Japan. Ser. 11, 97(5):931-965, 2019. doi:
10.2151/jmsj.2019-051.

Abraham. Savitzky and M. J. E. Golay. Smoothing and Differentiation of Data by
Simplified Least Squares Procedures. Analytical Chemistry, 36(8):1627-1639, July
1964. ISSN 0003-2700, 1520-6882. doi: 10.1021/ac60214a047. URL https:
//pubs.acs.org/doi/abs/10.1021/ac60214a047. Publisher: American
Chemical Society (ACS).

Douglas C. Montgomery, Elizabeth A. Peck, and G. Geoffrey Viving. Introduction to
linear regression analysis. Wiley series in probability statistics. Wiley, New York, 5rd
ed. edition, 2012. ISBN 978-0-470-54281-1.

Jules J. Berman. Chapter 4 - understanding your data. In Jules J.
Berman, editor, Data Simplification, pages 135-187. Morgan Kaufmann, Boston,
2016. ISBN 978-0-12-803781-2. doi: https://doi.org/10.1016/B978-0-12-803781-2.
00004-7. URL https://www.sciencedirect.com/science/article/
rii/B9780128037812000047.

R: Whatis R? URL https://www.r—-project.org/about.htmll

71


https://gmd.copernicus.org/articles/9/1423/2016/
https://gmd.copernicus.org/articles/9/1423/2016/
https://ec-earth.org/
https://gmd.copernicus.org/articles/12/2727/2019/
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018MS001400
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018MS001400
https://pubs.acs.org/doi/abs/10.1021/ac60214a047
https://pubs.acs.org/doi/abs/10.1021/ac60214a047
https://www.sciencedirect.com/science/article/pii/B9780128037812000047
https://www.sciencedirect.com/science/article/pii/B9780128037812000047
https://www.r-project.org/about.html

Acknowledgement

I would like to express my sincere gratitude to my thesis supervisor, Prof. Carlos Gregorio
Diaz Ambrona, and to the entire team at the CEIGRAM research center. I am deeply thankful
for the opportunity to work on such a challenging and interesting topic, for their invaluable
support, and for graciously hosting me during this period.

A special thank you goes to my tutor, Prof. Elena Belcore, for her continued support, her
prompt responses, and her consistently valuable suggestions, which were essential to the
completion of this work.

Finally, I wish to extend my heartfelt thanks to Ernesto Sanz for his daily, always kindly
offered support, without which this journey would have been far more difficult.

72



	Summary
	Contents
	List of Figures
	List of Tables
	Introduction
	Agriculture and climate change
	Importance of pasture
	State of the art and thesis' goal

	Materials and case study
	Case study
	Data utilized
	NDVI
	Climate models


	Methodology
	Data analysis and processing
	Pre-analysis of the dataset
	Regression
	Correlation

	Software
	Functions and formulas

	Workflow
	Data preparation
	Regression and correlation analysis


	Results and discussion
	Regression results
	Correlation results

	Conclusions
	APPENDIX A
	Bibliography

