
UNIVERSITY
LEVEL’s Degree in Communications Engineering

LEVEL’s Degree Thesis

Latency-Aware DNN Inference with
Adaptive Batching for Edge Task

Offloading

Supervisors

Prof. Carla Fabiana CHIASSERINI

Dr. Corrado POLLIGHEDU

Candidate

Sadegh JAMISHI

September 2025

Summary

Edge computer-vision systems need to satisfy low-latency requirements, even under
scarce computation and network resource availability. The novelty of this thesis
is the investigation of how admission control, batching, and concurrency need to
be jointly designed to jointly maximize the number of task completions without
deadline violations.

First, we perform an empirical characterization of modern inference frameworks
(e.g., PyTorch, NVIDIA TensorRT, YOLO). The findings show that batching and
parallelism benefit throughput, but hit diminishing returns as host-side processing
saturates. Inspired by this, we present a communication–computation model which
subsumes rate-dependent uploads, limited bandwidth, and asynchronous task ar-
rivals in a single compact form.

To address the scheduling problem, we introduce an algorithm Greedy-JBAS, a
simple batching algorithm based on earliest-deadline-first ordering with upload and
inference feasibility checks. It achieves high-completion ratios, plans in milliseconds,
and almost matches the performance of more costly optimization-based formulations
(e.g., Gurobi), thereby setting a new high-water mark for fixed-batch or mobile-
edge-computing baselines. Overall, the contributions of this thesis include: (i) a
reproducible empirical mapping of batching and concurrency behavior in modern
inference stacks, (ii) a formal, yet practical, unified communication–computation
model for edge inference, and (iii) a scalable scheduler that does not trade deploy-
ability for efficiency. These contributions aim to provide actionable guidance for
building latency-aware edge AI pipelines, and open new doors to host-side paral-
lelism opportunities. Keywords: Edge AI, deadline-aware scheduling, admission
control, batching, concurrency, latency SLAs.

ii

Acknowledgements

First and foremost, I would like to express my deepest gratitude to Prof. Carla
Fabiana Chiasserini for her invaluable support, insightful advice, and constant
encouragement throughout this journey. Her guidance helped me overcome the
many challenges I faced, and it has been a true privilege to work under her
supervision. I am also profoundly thankful to Dr. Corrado Pullighedu, whose
mentorship, patience, and kindness have been a source of both professional growth
and personal motivation. Without their help, this thesis would not have been
possible.

I am grateful to HPC Polito for providing the computational resources that
made my experiments feasible.

Finally, I would like to thank my family and friends for their kind support and
encouragement. I also wish to thank my classmates at Politecnico di Torino for the
good moments we shared, both in and outside the classroom. Even if our paths
may never cross again, I will always carry these memories with me.

iii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms xi

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem Statement . 2
1.3 Research Questions . 3
1.4 Contributions . 4
1.5 Thesis Outline . 5

2 Background & Related Work 6
2.1 Edge inference & SLAs . 6
2.2 Scheduling/Admission for DNN Inference 7
2.3 Communication Model Basics . 7
2.4 Batched-OAS Literatures . 8
2.5 Framework Backends . 8
2.6 Gap Analysis . 9

3 Empirical Measurements 11
3.1 Hardware and Software . 11
3.2 Datasets and Pre-processing . 12
3.3 Batch-Size Effects . 14
3.4 Concurrency Effects . 15
3.5 Offset Launches . 17
3.6 CPU/GPU Profiling . 19
3.7 Batch Delay Formulation . 22

3.7.1 Dataset and Metrics . 23
3.7.2 Empirical Curves . 24

v

4 System Model & Problem Formulation 26
4.1 Entities & Notation . 26
4.2 Communication Model . 29
4.3 Computation Model . 29
4.4 Problem Formulation . 30
4.5 Assumptions and Scope . 34

5 Algorithms 36
5.1 Design Goals . 36
5.2 Baselines . 36

5.2.1 Traditional Fixed–Batch . 37
5.2.2 MEC pipeline . 37

5.3 Greedy-JBAS . 37
5.3.1 Inputs and Parameters . 38
5.3.2 Backward Batch-Time Recursion 38
5.3.3 Algorithm . 38

5.4 Experimental Evaluation . 40
5.5 Sensitivity Studies . 41
5.6 Optimality Gaps . 43
5.7 Comparison of Different Algorithms 46

6 Conclusion & Future Work 49
6.1 Summary of Contributions . 49
6.2 Limitations . 50
6.3 Future Work . 51

A Hyperparameters, Versions, and Configs 53
A.1 Inference Model Settings . 54
A.2 TensorRT Engine Build . 54
A.3 YAML/JSON configs . 54

B GUI Overview and Screenshots 55
B.1 Purpose and scope . 55
B.2 Architecture . 56
B.3 Screenshots . 56

C Baseline algorithms 59

Bibliography 61

vi

List of Tables

3.1 GPU utilization (mean and peaks) as a function of the number of
streams S. 19

3.2 Per-stream affine fits dS(B) ≈ aSB + bS. 24
3.3 Predicted per-batch time dS(B) (seconds) from (3.7) with parameters

of equation (3.8). 25

4.1 Notation & units (Chapter 3). 28

5.1 Optimality-gap summaries for Small-K where LP relaxation (UB)
and MILP (OPT) are solved on an adaptive anchored time grid. For
Large-K we only reported Greedy vs. LP–UB 46

A.1 Hardware/software summary used for all experiments. 53
A.2 Model and input settings . 54
A.3 TRT build configuration . 54

vii

List of Figures

3.1 Performance evaluation of the two used frameworks: Blue curves
are related to the TensorRT-based YOLOv11 model, the other is
the YOLO V3 model on OpenMMLab 13

3.2 Measured per-batch inference latency per task as a function of batch
size (logarithmic y–axis), comparing native (blue) and TensorRT
(green) implementations and their fitted linear models. 14

3.3 Aggregate throughput as a function of stream count S under different
batch sizes. Markers indicate the concurrency knee. 15

3.4 Throughput and total infernce time as a function of T(B,S) Using
YOLO-v11n + TensorRT . 16

3.5 Relative throughput and total infernce time as a function of T(B,S)
Using YOLO-v11n + TensorRT . 16

3.6 GPU profiling for concurrent streams 17
3.7 Throughput comparison of synchronized vs. staggered offsets at

S = 3,5,6. Inset: representative GPU utilization traces for both
models. 18

3.8 GPU usage comparison at S = 1,2,3,4,5,6 at 100Hz frequency for B
= 8 TensorRT engine model. 19

3.9 Per-core CPU utilization under affinity mask cores 0–3. 20
3.10 Per-core CPU utilization under affinity mask cores 40–43. 20
3.11 Per-core CPU utilization under affinity mask cores 0–9. 20
3.12 GPU utilization under different affinity masks; GPU utilization

traces at S = 3,5,6. 21
3.13 GPU utilization under different affinity masks; GPU utilization

traces at S = 3,5,6. 21
3.14 GPU utilization under different affinity masks; GPU utilization

traces at S = 3,5,6. 22
3.15 Per-batch delay time as a multivariate function of (B,S) 23

4.1 System model for asynchronous task arrivals. 27

viii

5.1 Acceptance vs. feature size. 41
5.2 Acceptance vs. total bandwidth. 41
5.3 Completion vs. number of tasks K. 42
5.4 Completion vs. minimum delay requirement. 42
5.5 Completion vs. transmit SNR. 43
5.6 Completion vs. number of batches N (K = 60). 43
5.7 Solve-time comparison as a function of task count K: JBAS-Greedy

remains below 0.05s, while the direct MILP solver time explodes
beyond K ≈ 50. 44

5.8 Small-K results (S=1). LP relaxation is often tight (gap ≤ 10%),
and Greedy Alternating is often within 5–40% of MILP optimum,
and optimal at some K where the grid matches optimal batch starts
well. 44

5.9 Large-K fast experiment (S=1): Greedy vs. LP upper bound. The
gap decreases from ≈ 19% (K=100) to ≈ 6%–9% for K ∈ [200,300],
indicating that batching opportunities and the anchored UB both
tighten at scale. 45

5.10 Completion rate vs. number of tasks K for JBAS-Greedy, MEC
Pipeline, and Traditional Batch. 47

5.11 Completion rate vs. minimum delay requirement for JBAS-Greedy,
MEC Pipeline, and Traditional Batch. 47

5.12 Completion rate vs. transmit SNR for JBAS-Greedy, MEC Pipeline,
and Traditional Batch. 48

5.13 Completion rate vs. total bandwidth B for JBAS-Greedy, MEC
Pipeline, and Traditional Batch. 48

B.1 Main dashboard with actions, scrollable parameters, plot canvas,
export, and log. 57

B.2 Acceptance vs. feature size (seed–averaged). 57
B.3 Acceptance vs. bandwidth (seed–averaged). 58

ix

Acronyms

AI
artificial intelligence

CV
Computer vision

ML
Machine learning

DNN
Deep Neural Network

IoT
Internet of thing

TRT
TensorRT

SLA
service level agreement

EDF
Earliest deadline first

OAS
Order and acceptance scheduling

SNR
Signal to noise ratio

xi

AWGN
Additive white Gaussian noise

GPU
Graphics Processing Unit

CPU
Central Processing Unit

MILP
Mixed-Integer Linear Programming

xii

Chapter 1

Introduction

1.1 Background and Motivation
Edge computer-vision (CV) systems are beginning to see widespread adoption,
as they make it possible to process the continuous streams of images and videos
directly on the data source, whether it is a mobile device, an embedded system,
or at a localized edge server. These shifts in where and how we process data are
being adopted to meet the demands of a wide range of application domains and use
cases, including industrial inspection, autonomous robotics, traffic analytics, and
safety monitoring. In the industrial setting, for instance, edge CV systems can help
perform real-time quality control by processing images of items on a production
line, making sure defects are detected and addressed on time. In autonomous
robotics, edge CV systems allow machines to perceive the world around them with
high accuracy, leading to more complex navigation and interaction with dynamic
environments. In traffic analytics, edge CV can be leveraged to monitor vehicular
flow, detect anomalies and patterns, and to optimize traffic management systems.
In safety monitoring, these systems can be used to help keep public spaces safe,
by processing the video feeds from surveillance cameras, spotting incidents and
alerting the authorities as they occur. These use cases and many others show that
edge CV systems promise a significant reduction of latency by keeping the distance
that data has to travel to be processed as short as possible, and can help relieve
the bandwidth bottleneck and cloud infrastructure limitations from having to send
terabytes of video data to the cloud for processing and storage. [1]

In these and other settings, however, latency service-level agreements (SLAs) are
as much at the core as accuracy: detections must arrive within tens of milliseconds to
be of use, and sustained overload that lead to deadline misses can be far worse than
temporary reductions in accuracy. For this to happen, the software that implements
these systems needs to employ sophisticated algorithms and architectures that can

1

Introduction

navigate the trade-offs between latency and accuracy at the edge, in real time. [2]
Meeting such SLAs is nontrivial for three reasons that are highly intertwined.

First, the compute stack currently used in practice, deep neural networks deployed
through PyTorch or NVIDIA TensorRT [3] and wrapped in inference frameworks
such as Ultralytics YOLO or MMDetection, has non-trivial performance-resource
trade-offs. Throughput generally increases with batch size and number of parallel
streams, but only up to knee points beyond which additional batching or concurrency
causes diminishing or even negative returns, due to memory pressure, launch
overheads, and other host-side bottlenecks. Second, edge systems operate with
limited and variable network capacity. Upload times are tied to link speed, which in
turn depends on SNR and the particular bandwidth share allocated to the upload
task; for multi-tenant edges, communication can often be the major contributor to
the overall latency. Third, the incoming requests arrive at irregular intervals, with
different deadlines, sizes, and inter-arrival frequencies.[4]

The server therefore needs to make hard choices about what tasks to accept and
how to handle them during times of high load. Adaptive task offloading strategies
can be put in place to deal with this, to dynamically change resource allocation in
response to real-time network conditions and workload patterns, and may be used
to boost the overall efficiency of edge CV systems, improving their timeliness and
the performance of the system as a whole. Combined, these factors suggest that
simply increasing the batch size or the number of streams will not be sufficient
to guarantee SLA compliance. Edge inference requires a scheduling approach
that is aware of such hardware bottlenecks, co-designing admission control with
batching and concurrency choices, while taking into account the interaction with
communication and compute delays.

1.2 Problem Statement
In this work, we consider a single edge node that needs to handle an input sequence
of inference requests (often called jobs or tasks), each of which has an associated
release time, a deadline, and an upload payload (e.g., a feature vector or an image).
At a high level, the edge node can use three levers to control this processing:
1. Admission Control (Yk ∈ {0, 1}): the binary choice of whether to accept or
reject request (k), 2. Batching (π): the allocation policy for accepted requests to
batches, each with a given size (B), 3. Concurrency (S): the number of parallel
streams used to execute the batches. Then, the end-to-end latency (e2e) of each
job (k) can be decomposed into two components: a communication time, which is
determined by the uplink rate (rk) as a function of SNR and bandwidth allocation,
and a computation time, which is conditioned on the batch size and varies with
the backend framework used (among others). From our empirical measurements,

2

Introduction

we observe that given today’s processing stacks, per-batch delay (d(n)) is well-
approximated by the linear function d(n) ≈ an+ b (a > 0, b > 0), with saturation
effects that kick in for batch sizes (B ≈ 8–16) and limited marginal gains from
staggering launches beyond a certain point. We further find that concurrency
provides near-linear gains only for values up to (S ≈ 5–6), above which memory
pressure and host-side overheads, largely in the form of Python-level bottlenecks in
data preparation and model prediction, begin to dominate. [5, 6]

In this setting, our objective is to develop approaches to better coordinate the
choice of (Y, π,B, S) to complete as many tasks as possible, which in turn translates
into a higher application utility, all the while respecting each task’s deadlines, as
well as bandwidth and compute capacity constraints. Towards this goal, we first
situate our work in the classical batched Order-Acceptance and Scheduling (OAS)
problem setting: tasks come with deadlines and rewards, and the edge server has
to jointly decide which tasks to accept and how to schedule accepted tasks. In this
setting, “processing time” needs to be re-interpreted as a combination of upload
and batch-execution delays. We then propose a simplified batched OAS model
that has a natural and explicit representation of batching dynamics, and allows
for closed-form batch-time updates derived directly from the empirical batch delay
estimate inspired by what have been done in [7] and [8].

1.3 Research Questions
To address the many questions that emerge when tackling the problem of edge
computing for CV applications in a rigorous manner, we formulate the following
questions:

• RQ1. What are the interaction between batch size and number of parallel
streams with respect to latency and throughput in real hardware (CPU and
GPU) and under modern inference backends (e.g., PyTorch vs TensorRT)?
More specifically, what are the critical performance metrics that one should
aim to characterize to understand scalability limitations? For the edge AI
community, understanding how hardware resources can best be used and
combined in edge environments is important, as described in [9] and [10].

• RQ2. Is it possible to design a unified model that can accurately couple rate-
dependent uploads (under realistic radio conditions) with batch-dependent
computation, while maintaining sufficient accuracy for scheduling while being
light enough to be computed in an efficient manner? If so, we could better tie
together communication and compute and reduce inference complexity, as per
the previous related works Bensalem et al. [11] and [12].

3

Introduction

• Can a lightweight scheduling algorithm have near-optimal acceptance and
completion rates compared to exact or relaxed MILP formulations, given
the difficulty in scaling to realistic settings? What structural heuristics such
as EDF algorithms with feasibility checks, can the algorithm leverage to
gain competitive performance? For scheduling, we base our questions and
sanity-checks in the literature [13, 14] and [15]

• How robust are our solutions to backend/architecture (i.e. PyTorch vs Ten-
sorRT) changes, outliers and errors in anticipated performance and delays and
variations in radio conditions (bandwidth, SNR, etc)? What practical guide-
lines can be inferred for appropriate values of batch sizes and concurrency?
We would like to formulate deployment guidelines that are useful and robust
in practice, which has also been the goal of some related works [16], [17], and
[18].

We hope to be able to answer all these questions and provide new insights into the
design and operation of edge AI systems that are primed to face the challenge of
real-time CV workloads.

1.4 Contributions
This thesis makes the following contributions to the state-of-the-art in edge AI and
CV:(i) We provide a reproducible study of Ultralytics YOLO and MMDetection
frameworks on two inference backends: PyTorch and TensorRT. Our experimental
results lead to an empirical quantification of the region of optimal operating points
for batch sizes and number of parallel streams (B ≈ 8–16 and S ≈ 5–6), and the
host-side bottleneck that caps further scaling, with staggered offsets providing only
marginal gains. These insights should inform model and algorithm design and
development and are also useful to understand performance at the edge.[19, 20,
5]. (ii) We show how to cleanly extend the batched OAS model (JBAS) to include
rate-dependent uploads and batch-dependent computation. This new model has a
simple closed-form recursion for batch start times, even under asynchronous arrival-
s/deadlines. This represents a unified edge inference model that should facilitate
more accurate scheduling. (iii) We present Greedy-JBAS, an algorithm built on an
EDF batching policy, that is both simple and preserves the closed-form nature of
timing updates. Greedy-JBAS simplifies feasibility checks for both upload and in-
ference deadlines and is able to run in the order of milliseconds, adaptively tracking
empirical stack behavior via (d(n)) and out-scale to problem sizes where no MILP
can be found, due to problem size. [7] (iv) We provide performance evaluations
of this approach in comparison to standard baselines with fixed batching/pipeline

4

Introduction

and MEC that have been used in the past, or to MILP/relaxed formulations if a
comparison is possible. In our experiments, we show that Greedy-JBAS is able to
achieve exceptionally high rates of completed tasks, while having planning times
orders of magnitude faster than a brute-force approach. (v) Finally, as part of this
effort, we also include scripts to fully regenerate all timing fits, performance plots,
and scheduling results from raw logs, as well as explicit configuration files of the
hardware/software/dataset we use throughout our studies.

1.5 Thesis Outline
Chapter 2 provides a survey of edge inference, including the basics of batching/-
concurrency behavior and communication-aware scheduling, with an emphasis on
related works on batched Order-Acceptance and Scheduling (OAS). In particular,
we identify and explicitly call out the key modeling and algorithmic gaps, that this
thesis as a whole and our specific work in this area attempt to address [5, 7, 8]
Chapter 3 lays out the system model we use throughout our investigation of the
problem. In this section, we formalize how we go from a maximum-completion
objective (hard deadlines) to simpler but more tractable formulations that cleanly
couple rate-dependent uploads with our empirical batch delay model. We also
present closed-form timing recursions required to support efficient batched execu-
tion. Chapter 4 presents the findings from our measurement study conducted on
two frameworks (Ultralytics YOLO and MMDetection) and two backends (PyTorch
and TensorRT). In this chapter, we show the empirical operating region of batch
size (B) and concurrency (S), and characterize host-side bottlenecks via CPU/GPU
profiling. Chapter 5 presents Greedy-JBAS, including its insertion logic (EDF based
batching), feasibility check, algorithmic complexity, and implementation details
(including how timing fits are used to drive the schedule). Chapter 6 presents the
experimental results, including comparison to MILP formulations when possible
as well as more traditional baselines. We perform sensitivity analysis on band-
width/SNR variations and workload size, as well as ablation studies on batching,
concurrency, and offsets. Chapter 7 discusses the implications of our work, as well
as the limitations (e.g., backend dependence of the parameters (a) and (b), the
single-node focus, and the effects of host-side parallelism, among others). We also
present deployment guidelines that we extract from our results. Finally, Chapter 8
concludes the thesis by reflecting on our contributions and outlining possible future
work. Some of these avenues include, but are not limited to, the investigation of a
multi-model queue, formulation of energy-aware objectives, learned policies, and a
robust C++ and multiprocess host pipeline.

5

Chapter 2

Background & Related Work

In this chapter, we situate the thesis in (i) edge inference architectures and associated
SLAs (on-device vs. offload; batching & streams), (ii) scheduling/admission for
DNN inference (batching, micro-batching, queueing), and (iii) communication
modeling for uplink, rate, bandwidth sharing and SNR. We then relate it to
existing Order-Acceptance and Scheduling (OAS) work — in particular batched
OAS (JBAS-style) literature — and finally to framework backends (PyTorch vs
TensorRT) in practice which make our empirical delay model in later chapters
necessary. We end with a gap analysis explaining what has been done before and
what we add to the literature.

This chapter will provide an in-depth analysis of existing literature and frame-
works related to edge inference and scheduling. By comparing and contrasting
various approaches and techniques, we aim to identify gaps and opportunities for
further research in this field.

2.1 Edge inference & SLAs
Edge inference is the strategy of running trained DNNs close to the data source
to improve performance by reducing end-to-end latency and offloading from the
backhaul. Its novel deployment targets span a large range of nodes on the edge of
the network from user devices such as mobile phones and robots, to micro-data
centers in the base stations. The key design choice in the former edge inference is
to run on-device, offload entirely to the cloud or use some partitioning that splits
computation between the two. Collaborative intelligence or hybrid AI are examples
where a framework (Neurosurgeon) automatically slices a trained network at the
mobile/cloud boundary to trade off between latency and energy [21]. Comprehensive
surveys on Edge AI have reviewed required system components in great detail
(sensing, pre-processing and post-processing, on-device acceleration, and the role

6

Background & Related Work

of near-edge servers) and emphasized the need to respect latency SLAs as hard
constraints during design [22].

Batching and multiple streams/instances are leveraged to efficiently use hardware
accelerators within a given latency SLA. Batching amortizes the overheads of kernel
and launch between multiple inputs. Streams or instances in a device allow
multiple kernels to be run concurrently to exploit device concurrency and keep
SMs busy. This has inherent bottlenecks (a knee point) after which adding more
batches/streams can only hurt latency (lead to more memory pressure and host
overheads). We show this in Chapter 4 quantitatively. Latency-aware batching has
already been adopted in production systems and research prototypes to trade off
the above benefits [23, 24]. We build our work on these motivations.

2.2 Scheduling/Admission for DNN Inference
Online prediction serving work has matured with focus on latency targets (SLO/S-
LAs) and maximizing throughput. Clipper built a system with model abstraction
layer that uses adaptive, latency-aware batching per-model to achieve target latency
while still enhancing throughput [23]. INFaaS extended the knobs to selection of
model variants (accuracy/latency tradeoffs) and combines batching with SLO-aware
admission and placement [25]. At the cluster-scale, Nexus shows that inference
scheduling must consider batching and may even need to split a DNN across
GPUs to hit SLOs while still retaining high utilization [24]. Very recently, Proteus
and BCEdge have shown up to this adaptive batching with concurrency manage-
ment and even DRL-based (learning-based) strategies to hit SLOs across workload
dynamics and different device types [26, 16].

In the stream-processing literature, the complementary notion of latency-
sensitive micro-batching was introduced to ensure all end-to-end deadlines for
GPU pipelines even under peak load by offering algorithms for dynamically ad-
justing batch size coupled with analytical latency models [27]. These ideas — of
adaptive batching, SLO-aware admission, and queueing — are the building blocks
for this thesis; the innovation here is their integration into a batched-OAS model
with explicit radio-aware upload times and a batch delay d(n) that is empirically
fit. We describe them in the coming sections.

2.3 Communication Model Basics
For the uplink, we model it by classical information-theoretic rate expressions
(AWGN). For a single user with a given bandwidth W and instantaneous SNR γ,
the corresponding Shannon capacity C can be computed as:

C = W log2(1 + γ). (2.1)

7

Background & Related Work

As is well-known, this is the rate that can be supported under AWGN, see [28, 29].
In the shared edge setting with multiple users all active at the same time, each
instantaneous rate rk will also depend on that user’s share of the bandwidth and
the overall time-sharing among all k active users as well as their SNRs. This means
that upload time needed for payload size ℓk for user k is:

t
(o)
k = ℓk

rk

. (2.2)

We use these standard wireless communication modeling expressions and treat
them as our link-level surrogates for our analysis. In this problem, the downlink
is disregarded because its impact is negligible. It only involves a JSON file being
transmitted back from the edge server to the user, having minimal influence on
timing and processing computations. Note that the Scheduling problem here is one
of optimally sharing the bandwidth to hit deadlines while also allowing batching to
be more advantageous on the compute side.

2.4 Batched-OAS Literatures
The Order-Acceptance and Scheduling (OAS) problem decides jointly which jobs
to accept and how to sequence them on a machine under its capacity and deliv-
ery/time constraints to maximize profit/completions. There is foundational work
that formalized MILP models and heuristics for the OAS on single-machine under
generalizations like release dates, deadlines, sequence-dependent setups, and tardi-
ness penalties [14, 30]. There have also been OAS variants that couple batching
and delivery decisions or even logistics coupling [13, 31].

Instead of the manufacturing-centric OAS literature, we are in the setting of
edge inference: (i) jobs arrive asynchronously with individual per-request deadlines;
(ii) “processing time” is the sum of rate-dependent upload and batch-dependent
inference delay; (iii) batches are run on a GPU with limited parallel streams. We
thus use a batched OAS (JBAS-style) formulation with closed-form batch-time
updates (Chapter 3) and then replace the original dual-update step with an EDF-
based greedy insertion that checks feasibility against upload and compute deadlines.
This ties the algorithm to our empirical d(n) model in Chapter 4.

2.5 Framework Backends
Modern CV stacks come with wide heterogeneity in run-time characteristics. Py-
Torch’s imperative API and eager execution programming model support rapid
prototyping and flexible design, which has led to its large adoption in research
and deployment in practice [19]. For instance, MMDetection is a popular modular

8

Background & Related Work

toolbox in object detection that spans model families and inference utilities which
lets users and researchers try out different backbones and model components easily
to speed up the research/development process [32]. NVIDIA TensorRT takes
trained models and converts them into optimized inference engines via a number of
techniques including: layer/tactic selection, kernel fusion, precision calibration, etc,
all of which are key to reducing latency. Production-grade server backends such
as Triton are meant to support the dynamic batching and multiple concurrently
running model instances at a time to utilize a device as well as its resources best
[33]. These optimizations will have an impact on the shape of the batch-delay
curve as well, which is a key figure of merit for inference systems. In our work, we
have observed that TensorRT does a great job of minimizing per-batch overheads
to bring out the useful batch size regime to about 8 to 16. It also truly enables
concurrency by allowing multiple instances of the same model to be launched
(Chapter 4). These are reasons behind us fitting an empirical d(n) in Chapter
3 vs an idealized analytical kernel-time model. The empirical model is required
to capture all the effects of the optimizations, PyTorch and TensorRT runtime
characteristics, etc.

2.6 Gap Analysis
Individual components of the above problem have been studied previously, but a
holistic solution is missing. Systems like Clipper[23], INFaaS[25], Proteus[26], and
BCEdge[16] have tried to adapt batch size (concurrency in some cases) to hit SLOs.
Research into micro-batching has provided important takeaways of latency-aware
adaptation for GPUs in particular. The OAS literature has worked on the order of
acceptance and sequencing jobs on abstract computational resources to minimize a
specific objective.

The missing part, however, is a formulation and algorithm that couples along
multiple axes: that of the radio-aware upload, mathematically formulated as
rk = W log2(1 + γk), with bandwidth sharing and one that also describes batch-
aware computation where simultaneously consider the batch size and the number
of parallel streams, fit from state-of-the-art backend systems, while also giving
importance to measure the CPU and GPU behavior through detailed usage profiling
to understand their impact on the model. The formulation needs to handle the
multiple dimensions of the problem at once in a tractable way. This includes
coupling admission control, batching, and parallel stream management to make
decisions within milliseconds at a scale representative of production environments.
Bridging this gap between accurate MILP or OAS formulation on one hand and
production inference servers on the other will be very important to design efficient
systems.

9

Background & Related Work

To this end, this thesis contributes by (i) calibrating d(n) on modern stacks (Py-
Torch vs. TensorRT over Ultralytics/MMDetection), (ii) embedding those measure-
ments into batched-OAS model with closed-form timing, and (iii) a Greedy-JBAS
algorithm that proposes an EDF-based scheduler that achieves high completion
rate of tasks within a tractable runtime. Integrating this new algorithm yields
practically deployable rules-of-thumb for B and S under network constraints which
we experimentally validate in Chapters 3–5.

10

Chapter 3

Empirical Measurements

3.1 Hardware and Software
Experiments were performed on a dedicated edge node, with an AMD EPYC–class
multi-core CPU and an NVIDIA Volta-class GPU (GV100). Limits on GPU mem-
ory dictated the maximum possible batch size, setting the size of the experimental
operating window. To elicit host-side behavior, we also performed CPU affinity
tests by pinning the inference process to a small number of cores.

We instrumented two representative computer-vision inference stacks:

• OpenMMLab / MMDetection (PyTorch).

• Ultralytics YOLO (PyTorch / TensorRT).

In total, we study three running modes:

1. PyTorch eager inference. This serves as the baseline implementation.

2. A TensorRT-compiled engine, taking advantage of kernel fusion, tactic selection,
and lower kernel-launch overheads.

3. Single-model, single-GPU with streams. By launching multiple concurrent
instances of the same model, we expose GPU concurrency.

The experimental methodology emphasizes reproducibility so that all runs used
a fixed random seed, a fixed list of images, and warm-up iterations to stabilize
auto-tuning, caches, and memory allocations. Each configuration was repeated
at least 10 times to average the variance. We include full metadata for the entire
experiment in Appendix B, covering the CUDA, cuDNN, TensorRT, and driver
versions.

11

Empirical Measurements

The switch to TensorRT mode dramatically reduces per-batch overheads relative
to PyTorch, and also exposes a source of practical concurrency by supporting
multiple independent inference streams on the same GPU. These features feed
directly into the empirical delay model in Chapter 3.(Plots in the figure 3.1 show
the superiority of TensortRT-based model)

3.2 Datasets and Pre-processing
We use the COCO validation dataset for all performance measurements.[34] To
ensure fair comparisons between frameworks and backends, we pick a fixed subset
of 1,024 images and use it throughout.

Input pre-processing follows the default routines implemented in each framework.
Images are resized, letter-boxed to the model’s canonical input size, normalized,
reformatted, etc. Pre-processing was harmonized as much as possible across
PyTorch and TensorRT modes to ensure comparability.

The timing protocol is as follows:

1. Run a short warm-up phase (not measured) to stabilize autotuning, caches,
and memory allocations.

2. For each (batch size n) and (stream count S), process the full 1,024-image list.

3. Repeat each experiment at least 10 times.

4. Collect total wall-clock runtime, per-batch time,per-image time and through-
put, and report mean values as well as 95th percentile (p95) statistics.

Another interesting thing we understood, behind selecting the 1024 images,
is that we expect that the two aforementioned frameworks use padding in case
the number of remaining images in the last batch is not divisible by the batch
size. Yet, surprisingly, we found that while padding is a common methodology
in most computer vision algorithms, neither the OpenMMLab nor the Ultralytics
YOLO perform padding at the last batch, and they process the last batch as is.
Moreover, as a fixed number of images, a fixed dataset, combined with warm-ups
and repetitions, is essential to reproducible measurement of batch and concurrency
effects. It rules out spurious variance in results due to dataset composition.

12

Empirical Measurements

Figure 3.1: Performance evaluation of the two used frameworks: Blue curves are
related to the TensorRT-based YOLOv11 model, the other is the YOLO V3 model
on OpenMMLab

Figure 3.1 illustrates a baseline YOLO pipeline and its TensorRT-optimized
variant under four views of batch–scaling. The Total Inference Time vs. Batch
Size view (upper-left) shows the TensorRT curve lower and flattening sooner,
corresponding to both less end-to-end overhead and more of the GPU being well-
utilized as batch size increases. The Inference Time per Batch view (upper-right)
helps explain why: both models take longer per batch with larger batch sizes, but
the baseline scales nearly linearly (due to its weak amortization and kernel/launch
overheads), whereas the TensorRT version has a reduced slope (due to the fused
kernels, better memory access, and lower-precision execution that mitigate batch-
size growth).
The Inference Time per Image view (lower-left) depicts the well-known amortization
tradeoff: per-image latency decreases with batch size for both models, but is lower
and more constant for the TensorRT pipeline, resulting in more predictable latency
under load. The Throughput view (lower-right) completes the picture: throughput
increases with batch size before saturating, with the TensorRT variant saturating
at a higher point, corresponding to better GPU saturation and fewer bottlenecks.
In practice, these trends mean that the TensorRT-optimized pipeline has more
favorable latency–throughput operating points, particularly at moderate-to-large
batch sizes where the baseline pipeline saturates with memory and launch overheads.

13

Empirical Measurements

3.3 Batch-Size Effects
We begin by characterizing the effect of batch size n on per-batch delay d(n). Under
the Ultralytics YOLO + TensorRT backend, the empirical latency curve fits the
linear model:

d(n) = a n+ b,

with fitted parameters a = 0.011982 and b = 0.006082 in case that only one instance
of the model is running. This confirms that GPU kernel fusion and mixed-precision
optimizations preserve a nearly constant per-task slope, or fan-in factor a, over the
practical range of small to moderate batch sizes.

The practical operating window exhibits two patterns. Throughput grows
sharply up to around B, with more modest further gains up to B. Beyond this
point, further batching yields diminishing returns, as overheads from memory
pressure and host-side orchestration grow relative to GPU compute. In contrast,
the PyTorch implementation has higher fixed overhead (larger b) and poorer scaling
(larger effective a), consistent with less efficient batching.

Figure 3.2: Measured per-batch inference latency per task as a function of
batch size (logarithmic y–axis), comparing native (blue) and TensorRT (green)
implementations and their fitted linear models.

The fitted parameters (a, b) directly parameterize the computation delay model in
Chapter 3. They enter as empirical coefficients in the closed-form timing recursions
that underlie the Joint Batching and Scheduling (JBAS) framework.

14

Empirical Measurements

3.4 Concurrency Effects

We next characterize the effect of GPU concurrency by varying the number of
parallel streams S ∈ {1, . . . ,8}, where each stream corresponds to an independent
model instance running on the same GPU. Under TensorRT, throughput scales
nearly linearly with (S) up to about three to four streams, after which a distinct
knee is encountered at S ≈ 6. Beyond this point, throughput gains from adding
additional streams are negligible, and in some cases cause a regression in throughput
due to memory contention and host-side coordination overhead.

Aggregate throughput peaks around S = 5–6, representing the optimal level of
concurrency given the underlying GPU’s ability to schedule and overlap kernels.
However, this concurrency ceiling is sensitive to batch size: as B grows, so does
the amount of VRAM used per batch. For this reason, the most effective operating
points combined moderate batch sizes (B = 8–16) with S = 5–6 streams.

Figure 3.3: Aggregate throughput as a function of stream count S under different
batch sizes. Markers indicate the concurrency knee.

15

Empirical Measurements

Figure 3.4: Throughput and total infernce time as a function of T(B,S) Using
YOLO-v11n + TensorRT

Figure 3.5: Relative throughput and total infernce time as a function of T(B,S)
Using YOLO-v11n + TensorRT

The term relative in Figure 3.5 means that all curves in the figure are normalized
by the single-stream baseline (S = 1). In other words, in the left panel (Relative
Wall-time), T (S) is normalized by T (1); while in the right panel (Relative Through-
put), TP (S) is normalized by TP (1). This way, each curve in the figure reflects the
relative improvement of efficiency achieved by adding more streams. The results
show that increasing the number of streams improves throughput up to a saturation
point, while wall-time grows sublinearly with S. In particular, setting S = 5 parallel
streams captures roughly 90% of the maximum achievable throughput across all
settings. This implies that after 5 streams, there are diminishing returns, so S = 5
is a near-optimal choice for balancing utilization and overhead.

16

Empirical Measurements

3.5 Offset Launches
While we try to measure the GPU Utilizatoin for running multiple concurrent tasks,
after a batch completes, there’s a gap while the CPU prepares the next batch (or
while other overhead tasks complete), because the tasks are synchronized, these
gaps often line up, causing simultaneous dips in GPU usage. So, a common strategy
to mitigate this effect is introducing an offset for each concurrent task, meaning
Task B only begins loading and processing its first batch after Task A has already
started or even completed its first batch. This can reduce the periods of low GPU
usage between batches.

For instance consider the case where run the model at batch size eqaul 256, so
basically we will have four batches pass to the model, therefore we will have four
big spikes in GPU usage, one for each batch, Each large spike in GPU utilization
corresponds to the model actively processing one batch of size 256. Between
these spikes, the GPU usage drops because it’s waiting for the CPU to finish
preparing/loading the next batch or for other overhead to complete. This creates
the “periodic” pattern you’re seeing in the plot.

Figure 3.6: GPU profiling for concurrent streams

We calculate the offset duration based on below:

Number of patterns ≜
dataset_size

batch size (3.1)

17

Empirical Measurements

Pattern Duration ≜
Total Inference Time
Number of patterns (3.2)

Offset Duration ≜
Pattern Duration

Number of patterns (3.3)

Then, to further understand GPU utilization, we compare synchronized and
staggered (offset) launch strategies across multiple streams. In the synchronized
case, all streams begin at once, while in the offset case, model.predict calls are
staggered by a fixed delay intended to smooth GPU load. After correcting the
offset formula (offset = batch duration / number of streams), experimental results
revealed only marginal improvements.

Measured gains from staggering were modest at best, on the order of 1–3% once
S. GPU utilization traces confirm that offsets reduce idle gaps slightly, producing
a smoother load pattern. These benefits did not translate into material throughput
improvements in the presence of a concurrency knee at or above S.

Figure 3.7: Throughput comparison of synchronized vs. staggered offsets at
S = 3,5,6. Inset: representative GPU utilization traces for both models.

Implication. Offset scheduling has only a marginal impact on throughput in the
studied regime. As a result, we do not model offsets in Chapter 4 formulation, and
they can be viewed as an optional deployment-level refinement rather than a core
optimization.

18

Empirical Measurements

Figure 3.8: GPU usage comparison at S = 1,2,3,4,5,6 at 100Hz frequency for B
= 8 TensorRT engine model.

Streams S 1 2 3 4 5 6 8
GPU util (mean) ∼ 5% ∼ 15% ∼ 22% ∼ 28% ∼ 35% ∼ 38% ∼ 38%
GPU util (peaks) < 15% < 35% < 45% < 55% < 60% < 65% < 65%

Table 3.1: GPU utilization (mean and peaks) as a function of the number of
streams S.

Table 3.1 shows that even at the best operating point, GPU utilization remains below
70%, indicating substantial hardware headroom; end-to-end latency is dominated
by per-batch host work and/or TensorRT overhead.

3.6 CPU/GPU Profiling
To understand the reason behind throughput saturation before full GPU utilization,
we performed fine-grained CPU and GPU profiling.

Per-core CPU usage: Looking at the profile of CPU usage by limiting the
number of CPU used cores (either by using taskset command on Linux or by using
the Python OS library, os.sched_setaffinity), we find that only one or two cores are
significantly loaded. For instance, when running under a 10-core affinity mask (cores
0–9), typically one core would have sustained ∼60–75% utilization while another
was ∼20–35%; all other cores are near-idle. Shifting the affinity to another set of
cores (e.g., cores 40–43) simply relocates the bottleneck without actually engaging

19

Empirical Measurements

any new cores. This suggests that the Python host loop, including pre-processing,
post-processing, and all orchestration around the model.predict calls, effectively
operates as a single-threaded or dual-threaded workload. The Global Interpreter
Lock (GIL) in Python aggravates this condition.

Figure 3.9: Per-core CPU utilization
under affinity mask cores 0–3.

Figure 3.10: Per-core CPU utilization
under affinity mask cores 40–43.

Figure 3.11: Per-core CPU utilization under affinity mask cores 0–9.

GPU utilization: Average GPU utilization, even at the concurrency knee (S =
5–6), is rare to exceed 70%. GPU utilization traces show a roughly-periodic
sawtooth pattern, with bursts of high activity interrupted by dips when the GPU
stalls while waiting for the host to prepare new data or to finish data transfer. This
finding supports the conjecture that the GPU is not in fact fully saturated, but

20

Empirical Measurements

rather throughput is capped by a host-side bottleneck.

Figure 3.12: GPU utilization under different affinity masks; GPU utilization
traces at S = 3,5,6.

Figure 3.13: GPU utilization under different affinity masks; GPU utilization
traces at S = 3,5,6.

21

Empirical Measurements

Figure 3.14: GPU utilization under different affinity masks; GPU utilization
traces at S = 3,5,6.

While addressing the negative impact caused by CPU performance is beyond the
scope of this thesis, exploring potential solutions remains valuable. It is worthwhile
to investigate remedies for this situation, such as:

• Offload pre-/post-processing into C++ extensions or a multi-process pipeline
to avoid the Python GIL.

• Use a framework such as PyTorch DataLoader with multiple workers and
pin_memory enabled to parallelize data loading.

• Exploit async host-to-device transfer and prefetching to overlap computation
and data staging.

The limiting factor beyond S = 5–6 is not GPU compute, but rather host-side
bottlenecks related to data preparation and orchestration. This supports the
treatment of S as a fixed, exogenous parameter in Chapter 3’s problem formulation.
Optimization is instead focused on admission control and batching strategies.

3.7 Batch Delay Formulation
In sections 3.3 and 3.4, we saw the effect of batch size and concurrency, respectively,
on the model’s total inference time. For instance, figure 3.2 shows the regression
model fitted on the experimental measurement data in the case that we only have
one concurrent stream. In the following, we try to find a general term for batch

22

Empirical Measurements

delay to support testing the scenarios with a higher number of concurrent streams
in our final algorithm.

3.7.1 Dataset and Metrics
In figure 3.4, we profiled a GPU inference stack with varying batch sizes and
concurrency (CUDA streams). We collected tuples (B, S, total_s, img_per_s)
where B is the batch size, S the number of concurrent instances, total_s the
wall-clock time taken to process all images in the workload, and img_per_s the
throughput (images/s).
Now, For each (B, S) we derive the per-batch processing time as:

dS(B) = B

img_per_s(B, S) . (3.4)

When the total number of processed images Nimgs is known, (3.4) is equivalent to

dS(B) = total_s(B, S) ·B
Nimgs

. (3.5)

In practice, we also verify consistency via Nest = round(total_s · img_per_s).

Figure 3.15: Per-batch delay time as a multivariate function of (B,S)

23

Empirical Measurements

3.7.2 Empirical Curves
For each fixed S, we plot dS(B) vs. B and fit the affine model

dS(B) ≈ aS B + bS, (3.6)

where aS captures the incremental cost per image within a batch, and bS aggregates
per-batch fixed overheads (launch, sync, H2D/D2H setup).

Table 3.2 reports the least-squares fits (one line per S). The fits are near-perfect
(R2 ≈ 0.999), supporting the standard affine delay model.

S
(streams)

aS

(s/task)
bS

(s) R2

1 0.011590 0.003319 0.999967
2 0.006840 0.000492 0.999956
3 0.005344 0.000479 0.999195
4 0.004601 -0.000233 0.999795
6 0.004125 -0.000975 0.998303
8 0.004426 -0.001685 0.999118

Table 3.2: Per-stream affine fits dS(B) ≈ aSB + bS.

The per-stream slopes aS decrease as S increases (sublinear speedup; contention
and memory pressure), so a multiplicative form S(aB + b) is not supported by
the data. Instead, we adopt a saturating inverse scaling:

dS(B) = aB + b

1 + γ(S − 1) (3.7)

where (a, b) are single-stream coefficients and γ ∈ (0,1] quantifies concurrency
efficiency. Fitting (3.7) jointly over all measured (B, S) yields

a ≈ 0.01136 s/image, b ≈ 0.00502 s, γ ≈ 0.554. (3.8)

Equation (3.7) enables extrapolation to unmeasured (S,B) pairs (useful where
VRAM limits prevented experiments). Example predictions have been shown in
the table 3.3:

24

Empirical Measurements

S=1 S=4 S=8 S=16

B=8 0.096 0.022 0.012 0.007
B=16 0.187 0.042 0.023 0.013
B=32 0.369 0.082 0.044 0.024
B=64 0.733 0.162 0.087 0.047

Table 3.3: Predicted per-batch time dS(B) (seconds) from (3.7) with parameters
of equation (3.8).

From now, due to the flexibility of the interpolated model to compute the d(n),
the so-called per batch delay, we use its formula to calculate the a & b parameters
in our designed algorithm.

25

Chapter 4

System Model & Problem
Formulation

The chapter formalizes the edge inference scheduling problem that we will solve in
Chapters 5 and 6. We start by defining the entities and notation, and then the
communication and computation models. In Section 4.4, we state the decisions/-
constraints and objective ladder from (P1) to (P4). By default, we assume a single
edge node with a single GPU. The concurrency (number of parallel streams S) is a
fixed parameter that also affects the values of the delay fit coefficients.

4.1 Entities & Notation
We operate on a continuous time axis (units of seconds). The main sets, variables,
and parameters are collected in Table 4.1.

• Tasks/requests. Index tasks by k ∈ {1, . . . , K}. Each task has an arrival
time T (a)

k ∈ R≥0, a deadline T (d)
k > T

(a)
k , and an upload payload (feature size) ℓk

(bits).
• Radio state. Each task has an associated SNR (linear scale) or channel

gain γk used to determine its uplink rate rk (bit/s) given an allocated bandwidth
share (defined in §3.2).

• Admission & assignment. Yk ∈ {0,1} is a binary admission variable. If
admitted, a task is assigned to exactly one batch n ∈ {1, . . . , N} via indicator
πk,n ∈ {0,1} with q

n πk,n ≤ 1. The batch size is πn ≜
q

k πk,n, with a VRAM-driven
cap πmax (cf. Chapter 4).

• Batch timing. Batches execute sequentially in the base model: tn is the
start time of batch n, and d(πn) its service time (seconds). We will use the empirical

26

System Model & Problem Formulation

linear model extracted from experimental measurements in Chapter 3:

d(n) = a n+ b, a > 0, b > 0, n ∈ {0,1, . . . , πmax}.

Figure 4.1: System model for asynchronous task arrivals.

The fitted coefficients (a, b) correspond to the TensorRT version of YOLOv11n
at the chosen S (we denote them (a, b)TRT,YOLOv11n,S).

• Concurrency. The number of GPU streams/instances is S ∈ Z≥1. In the
base problem we fix S (chosen near the knee S ≈ 5–6, Chapter 4) and fold its effect
into the measured (a, b). Extensions with explicit multi-server timing appear in
the Appendix.

• Bandwidth. The total uplink bandwidth available to the edge is W (Hz).
Within any upload window (see §4.2), users share W according to a specified policy
(we adopt FDMA equal share by default in simulations).

• Slack & priority. Define slack σk ≜ T
(d)
k − T (a)

k . Each task has a priori-
ty/utility weight ρk ≥ 0 (dimensionless; default 1) used in the objective to value
completed tasks. Check the appendix B chapter for the GUI for more information
regarding the priority values.

27

System Model & Problem Formulation

• Safety & numerics. We use a small ϵ > 0 to avoid degenerate divisions in
upload windows and an optional safety inflation δ ∈ [0,0.1] on d(·) for robustness.

Table 4.1: Notation & units (Chapter 3).

Symbol Meaning Units/Notes
K Number of tasks in horizon –

T
(a)
k , T

(d)
k Arrival, deadline of task k s

ℓk Upload payload size bits (convert
bytes→bits uniformly)

γk SNR (linear) optionally dB in input;
convert

W, wk Total and per-task bandwidth share Hz
rk Uplink rate of task k bit/s
Yk Admission variable {0,1}

πk,n, πn Assignment of k to batch n; batch
size

{0,1}; integer

πmax Max batch size (VRAM) integer
tn, d(πn) Start time and service time of batch

n
s

a, b Delay fit coefficients
(TRT+YOLOv11n, S fixed)

s/task, s

S Parallel streams/instances integer
ρk Task priority/utility weight dimensionless; default

1
ϵ, δ Numerical slack; safety margin on d s; fraction

To avoid a clash with batch size B used elsewhere, we denote bandwidth by W
(Hz) and batch size by the batch cardinality πn (or by B only in prose).

28

System Model & Problem Formulation

4.2 Communication Model
We adopt a standard uplink model: during its upload window

è
T

(a)
k , tn

2
, a task

k that is assigned to batch n is allocated a bandwidth share wk ≥ 0 such thatq
i∈Un

wi ≤ W , where Un is the set of tasks uploading for batch n. The instantaneous
rate (bit/s) is

rk = wk log2

1
1 + γk

2
, (4.1)

with γk the (linear) SNR for task k; (4.1) is the AWGN surrogate used throughout
wireless modeling. [28, 29]

The upload time required to transmit ℓk bits at rate rk is

t
(o)
k = ℓk

rk

= ℓk

wk log2(1 + γk) . (4.2)

Feasibility for assignment πk,n = 1 requires that the upload finish before the batch
starts:

T
(a)
k + t

(o)
k ≤ tn, tn > T

(a)
k + ϵ. (4.3)

Within each window [T (a)
i , tn), bandwidth shares must obey the capacity budgetØ

i∈Un

wi ≤ W, wi ≥ 0. (4.4)

Sharing policy. In our simulations and experiments we use FDMA equal share:
at any time within [T (a)

i , tn), active uploaders share W equally (i.e., wi = W/|Un|).
This choice matches the implementation used to produce the results in Chapters 3
and simplifies feasibility checks. Other policies (proportional fair, TDMA) can be
substituted without changing the formulation.

Optional overhead. A small constant uplink setup latency c0 (e.g., link estab-
lishment) may be included by replacing (4.2) with t(o)

k = c0 + ℓk/rk. We set c0 = 0
in our experiments for simplicity.

Units and guards. We enforce t(o)
k > 0, 0 ≤ wk ≤ W , and convert any dB values

of SNR input to linear γk before applying 4.1. When 4.3 cannot be satisfied for
any batch n, the task must be rejected (Yk = 0).

4.3 Computation Model
We model the GPU service time for a batch of size n by the empirical linear fit
obtained in Chapter 4:

d(n) = a n+ b, a > 0, b > 0, n ∈ {0,1, . . . , πmax} (4.5)

29

System Model & Problem Formulation

where πmax is a VRAM-driven maximum batch size (from Chapter 4), and (a, b) are
the coefficients of the regression-fitted model (based on TensorRT + YOLOv11n)
measured at the chosen stream count S (fixed near the concurrency knee). In
the initial setup, Chapter 4 reports representative values a ≈ 0.011982 s/task and
b ≈ 0.006082 s.

Sequential execution (base model). We treat the GPU as a single server in
the base formulation: batches execute one after another, so start times obey the
recursion

tn+1 = tn + d(πn). (4.6)
This is the specialization (single server case) of the closed-form batch time update
proven in Chapter 3/Appendix A; we keep the general theorem there and use (4.5)
as the working relation here. (A multi-server extension with explicit S > 1 appears
in Appendix A.)

Streams and offsets. We fix the number of parallel streams S (chosen near
5–6 from Chapter 4) and fold its effect into (a, b); this keeps the problem ladder
(P1→P4) unchanged. Staggered offset launches were measured to provide only
≈ 1–3% benefit at S ≥ 4, so we ignore offsets in the base model (Appendix C shows
traces).

4.4 Problem Formulation
Inspired by [13, 8, 7], we first state the decision variables and the hard constraints
of the problem. Defining πk,n ∈ {0,1} (assign task k to batch n), batch size
πn = q

k πk,n, and batch start times {tn}. Building on the model above, we aim to
maximize the weighted number of completed tasks by choosing batch start times,
assignments, and the number of batches:

{tn}N
n=1, {πk,n}, N ∈ Z+, N ≤ K.

Let πn ≜
qK

k=1 πk,n and d(n) = an+ b (measured at fixed S near the concurrency
knee). The total uplink bandwidth is W (Hz). For a task k assigned to batch n,
the required bandwidth to finish its upload by tn is

bk(n, tn) ≜
ℓk1

tn − T (a)
k

2
log2

1
1 + γk

2, tn > T
(a)
k + ϵ. (4.7)

cf. §4.2.

(P1) max
{tn}, {πk,n}, N

KØ
k=1

NØ
n=1

ρk πk,n. (P1)

Subject to:

30

System Model & Problem Formulation

(i) Causality (upload finishes before batch starts). For any assignment
πk,n = 1,

tn > T
(a)
k + ϵ. (C1)

(ii) Deadline (compute finishes before task deadline).

tn + d(πn) ≤ T
(d)
k , ∀k with πk,n = 1. (C2)

(iii) Sequential batches (single server).
tn + d(πn) ≤ tn+1, n = 1, . . . , N − 1. (C3)

(iv) Bandwidth feasibility (FDMA surrogate). For any batch n,Ø
i: πi,n=1

bi(n, tn) ≤ W, tn > T
(a)
i + ϵ ∀i : πi,n = 1. (C4)

(v) Single assignment & domain.
NØ

n=1
πk,n ≤ 1, πk,n ∈ {0,1}, 0 ≤ πn ≤ πmax, N ≤ K. (C5)

(The strict ordering t1 < · · · < tN is implied by (iii) with d(πn) > 0 and therefore
omitted.) P1 is a Mixed-Integer Linear Programming (MILP) problem and, while
there are several heuristic algorithms for the simple OAS problem [14], we pursue
the convex-relaxation approach introduced in [7].

From (P1) to (P2): Decoupling Deadlines

Introducing the constant value Ξ ≜ max
k

T
(d)
k + d(K) = max

k
T

(d)
k + aK + b. Then:

tn + d(πn) ≤ T
(d)
k + (1− πk,n) Ξ, ∀k, n,

which is tight when πk,n = 1 and vacuous when πk,n = 0. Thus:

(P2) : max
{tn}, {πk,n}, N

KØ
k=1

NØ
n=1

ρk πk,n

s.t. tn > T
(a)
k + ϵ if πk,n = 1, ∀k, n,

tn + d(πn) ≤ T
(d)
k + (1− πk,n)Ξ, ∀k, n,

tn + d(πn) ≤ tn+1, n = 1, . . . , N − 1,Ø
i:πi,n=1

bi(n, tn) ≤ W, ∀n,

NØ
n=1

πk,n ≤ 1, πk,n ∈ {0,1},

0 ≤ πn ≤ πmax, N ≤ K.

31

System Model & Problem Formulation

From (P2) to (P3): Fixing the Number of Batches

By allowing empty batches, we can fix N = K without loss of optimality:

(P3) : max
{tn}, {πk,n}

KØ
k=1

KØ
n=1

ρk πk,n

s.t. tn > T
(a)
k + ϵ if πk,n = 1, ∀k, n,

tn + d(πn) ≤ T
(d)
k + (1− πk,n)Ξ, ∀k, n,

tn + d(πn) ≤ tn+1, n = 1, . . . , K − 1,Ø
i:πi,n=1

bi(n, tn) ≤ W, ∀n,

KØ
n=1

πk,n ≤ 1, πk,n ∈ {0,1},

0 ≤ πn ≤ πmax.

From (P3) to (P4): Smoothing the Non-Smooth Delay

The batch delay

dn(πn) =
a πn + b, πn > 0,

0, πn = 0,
(4.8)

is non-smooth at πn = 0. Using the log surrogate for the indicator (ℓ0) with
parameter δ > 0,

∥πn∥0 ≈
ln(1 + δ−1πn)
ln(1 + δ−1) , (4.9)

and the first-order linearization around π(r)
n yields

∥πn∥0 ≤ θ(r)
n πn + ψ(r)

n , d̃(r)
n (πn) =

1
a+ b θ(r)

n

2
πn + b ψ(r)

n . (4.10)

Relax πk,n ∈ {0,1} to 0 ≤ πk,n ≤ 1 and replace dn(πn) by d̃(r)
n (πn) to obtain:

32

System Model & Problem Formulation

(P4) : max
{tn}, {πk,n}

KØ
k=1

KØ
n=1

ρk πk,n

s.t. πk,n = 0 or tn > T
(a)
k + ϵ, ∀k, n,

tn + d̃(r)
n (πn) ≤ T

(d)
k + (1− πk,n) Ξ, ∀k, n,

tn + d̃(r)
n (πn) ≤ tn+1, n = 1, . . . , K − 1,

KØ
i=1

πi,n
ℓi1

tn − T (a)
i

2
log2(1 + γi)

≤ W, ∀n,

KØ
n=1

πk,n ≤ 1, 0 ≤ πk,n ≤ 1.

We explicitly guard denominators by requiring tn > T
(a)
i + ϵ whenever πi,n > 0.

Relaxation & Alternating-Optimization (P4)

At this stage, we have transformed the hard MINLP (P3) into a convex problem
by (i) approximating the non-smooth delay dn(πn) with its affine surrogate d̃(r)

n (πn)
(Section 4.4) and (ii) relaxing πk,n ∈ {0,1} to 0 ≤ πk,n ≤ 1. The resulting convex
program is (P4) above.
Alternating-Optimization. Problem (P4) is convex but still high-dimensional in
{πk,n} and {tn}. We therefore split it into two tractable subproblems and iterate:
(i) Task–Batch Association (fix t, optimize π): With {tn} and surrogate

weights {θ(r), ψ(r)} fixed, (P4) reduces to a linear program in π with simple
box and per-task sum constraints (dualizing deadlines, sequentiality, and
bandwidth). The LP naturally prioritizes tasks via the objective coefficients
ρk, choosing, for each task k, the batch n that maximizes the corresponding
net gain.

(ii) Batch Starting Times (fix π, optimize t): With {πk,n} fixed, feasibility
under causality, deadlines and sequentiality yields the closed-form backward
recursion

t∗n =
min{χn, t

∗
n+1} − dn(πn), πn > 0,

t∗n+1, πn = 0,
χn = min

k:πk,n=1
T

(d)
k . (4.11)

(iii) Surrogate-Weight Update: Update θ(r+1)
n , ψ(r+1)

n around the new πn, and
repeat.

Repeating (i)–(iii) until convergence yields a high-quality solution to the original
JBAS MINLP.

33

System Model & Problem Formulation

4.5 Assumptions and Scope
This section summarizes the modeling assumptions used in Sections 4.1–4.4 and
clarifies the scope of the problem and algorithms studied in later chapters. We
assume a single edge node, with a single GPU, and no coordination across multiple
edge servers or the cloud. The problem concerns asynchronous, single-shot inference
tasks with no feedback after execution; the tasks have independent processing
requirements and given (exogenous) arrivals and deadlines. The scheduler has a
finite planning horizon with K tasks, and produces batch start times {tn} within
the horizon.

For communication, we adopt the FDMA equal-share surrogate described in
Section 3.2 within each upload window [T (a), tn). We assume a fixed total bandwidth
W available within each window, and treat per-task SNR values as constants within
each window. Each task uses the standard AWGN rate expression

r = w log2

1
1 + SNR

2
,

and there are no retransmissions, HARQ, or fast fading. We also assume no cross-
traffic beyond the given set of tasks, so interference and MAC effects are abstracted
into the parameters W and the per-task SNRs.

On the computation side, we use the empirical batch-delay model

d(n) = a n+ b,

derived in Section 3.3 by fitting our experimental measurements obtained on our
hardware at a fixed stream count S chosen near the concurrency knee. We apply
this model only within n ∈ [1, πmax]. In the base formulation of Section 4.4, batches
execute sequentially on a single server, and batches do not overlap in time. Stream
offsets (explained in detail in Chapter 3) are ignored because their measured benefit
is negligible (≈ 1–3%) in our setting. Host-side preprocessing and post-processing
are outside of d(·); their effect is studied empirically in later chapters.

The scheduling model takes the form of admission plus batching with fixed
streams S, and the effect of concurrency is folded into the fitted coefficients a and
b. There is no explicit stream-level scheduling or preemption within a batch. Batch
size is limited by πmax from VRAM, and each task is in at most one batch. The
scheduling is deadline-aware and treats deadlines as hard constraints: if a task is in
batch n, then tn + d(n) must be before the task’s deadline. To improve robustness,
a small safety margin δ > 0 may be applied to d(·).

Energy and thermal constraints, fairness or age-based objectives, and multiple-
model interactions such as multiple queues for detection plus tracking are not
modeled. Time-varying SNR and measurement noise in the (a, b) values are also
out of scope; we mitigate them by incorporating a safety margin and advocating for

34

System Model & Problem Formulation

regular reassessment. Multi-edge coordination, backhaul contention, and low-level
optimizations in the host pipeline are left to future work.

Finally, we note that the coefficients (a, b) are backend- and model-specific, and
should be re-measured for the target hardware and backend before deployment.
The new (a, b) must be plugged into the formulation in place of the default YOLO
values for correctness and efficiency. While modest mis-fit can be tolerated by
the safety margin, correctness and efficiency improve with fresh measurements.
Under the above assumptions, the theoretical statements in Section 4.4 (problems
P1–P4 and the batch-time recursion) are valid; the experiments in later chapters
instantiate them using TensorRT + YOLOv11n and the radio surrogate described
in Section 4.2.

35

Chapter 5

Algorithms

This chapter presents the scheduling algorithms benchmarked in Chapter 5.4. It
starts with deployment goals (latency SLAs and throughput/utility), establishes
baselines, and then describes Greedy-JBAS, a priority-aware batching scheduler
tailored to the empirical delay model from Chapter 3. We assume that the
computation delay per batch is parameterized by the linear fit d(n) = a n+ b and
treat the parallel stream count S as a design choice selected from the concurrency
knee of Chapter 4.

N.B. The plots presented throughout this chapter represent the general scenario
where S equals 1 and priority is set to 1.

5.1 Design Goals
The primary objective is to maximize the weighted number of completed (on-time)
tasks, subject to per-request deadlines and a shared uplink bandwidth constraint.
As main SLA/KPI targets, we evaluate (i) weighted completion (utility) U and
its normalized form U/

q
k ρk, (ii) end-to-end latency, (iii) throughput (req/s), and

(iv) planner time (ms per decision horizon). Planning budget is critical because
the scheduler must produce decisions in milliseconds to cope with bursty arrivals;
this makes exact MILP solvers (e.g., Gurobi) infeasible at the scales we consider
(see Chapter 5.4 runtime comparison) [7].

5.2 Baselines
We compare against two structure–independent baselines that enforce the same
latency constraints as our method. For fairness and relevance, both baselines are
intentionally parameterized to be competitive. Algorithmic details are omitted
here and given in the appendix.

36

Algorithms

5.2.1 Traditional Fixed–Batch
Traditional Fixed–Batch (TFB) picks a fixed batch size B ∈ {8,16} and a fixed
stream count S (e.g., S = 5), keeps a FIFO queue of arrivals, and launches a batch
whenever B tasks are available and jointly feasible; otherwise, it launches at a
timeout with the largest feasible subset. Joint feasibility is checked per task k
that could be assigned to batch n with start time tn: (i) its upload must complete
by the time the batch starts, and (ii) its inference must finish by the deadline,
i.e., tn + d(B) ≤ T

(d)
k . Tasks that cannot satisfy (i)–(ii) for any batch with the

fixed (B, S) are rejected. Admission and feasibility checks are O(1) amortized per
arrival since B and S are constant and the model d(·) is affine, but the policy is
non–adaptive w.r.t. the workload variability. Reported performance is the weighted
utility U = q

k ρk Yk where Yk ∈ {0,1} is an indicator of completion by the deadline.

5.2.2 MEC pipeline
The MEC pipeline is like running TFB with no batching (B=1, S=1). A task
k is admitted if its upload could finish by the time service begins; it is then
scheduled immediately (or at the next available slot), with start time tn =
max{T (a)

k , server-available}. Feasibility requires tn + d(1) ≤ T
(d)
k ; otherwise the

task is rejected. The computational overhead is trivial, but the accelerator is
typically under–utilized due to lack of batching.

Both baselines respect latency constraints without exploiting joint admis-
sion–plus–adaptive batching. They therefore provide informative references for
quantifying the benefit of the proposed scheduler under the weighted objective and
realistic timing assumptions.

5.3 Greedy-JBAS
Greedy-JBAS instantiates the batched-OAS structure from Chapter 4 with a
priority-first, EDF tie-break insertion policy and closed-form batch-time updates,
using the empirical compute model d(n) = an + b and the radio surrogate from
Chapter 4. Our GUI implementation follows a grid-seeded alternating scheme: (i)
assign jobs to pre-seeded batch start times via priority-first + feasibility (EDF for
ties), then (ii) run a backward two-line update on {tn} to satisfy deadlines and
arrivals. This reflects the practical path used to generate the figures. (The GUI
intro and images are available in the appendix.)

37

Algorithms

5.3.1 Inputs and Parameters

• Per task k: arrival T (a)
k , deadline T

(d)
k , payload size ℓk (bits), spectral

efficiency sk (bits/s/Hz) with sk = log2(1 + γk) (cf. Eq. (4.1)), and priority
weight ρk ≥ 0 (default 1).

• Global: total bandwidth W (Hz), delay coefficients (a, b) (from Chapter 4),
optional batch-size cap πmax (VRAM), guard ϵ > 0, and the number of seeded
batches N (default N = K).

• Operating choice: stream count S held fixed (its effect folded into (a, b) per
Chapter 4).

5.3.2 Backward Batch-Time Recursion

Let χn ≜ min{T (d)
k : πk,n = 1 } be the tightest deadline in batch n and πn = q

k πk,n

its size. The GUI applies the following two-line update backwards for n = N, . . . ,1:

tn ← min{χn, tn+1 } −
1
a πn + b

2
,

tn ← max
;
tn, max{T (a)

k : πk,n = 1 }+ ϵ
<
.

(5.1)

This enforces both deadlines and causality. (When a batch is empty, the code sets
tn ← tn+1.)

5.3.3 Algorithm

We seed N batch start times uniformly between the earliest arrival and a slackened
horizon, then alternate assignment and time updates for a small number of rounds.

38

Algorithms

Algorithm 1 Greedy-JBAS (Priority-first + EDF tie-break + Feasibility)

1: procedure JBAS-GUI({T (a)
k , T

(d)
k , ℓk, sk, ρk}K

k=1, W , (a, b), N , ϵ, max_iters [, πmax] [, δ])
Require: sk is spectral efficiency in bits/s/Hz; W in Hz; ℓk in bits; T

(a)
k , T

(d)
k , tn in seconds;

d(n) = an + b in seconds.
Require: sk = log2(1 + γk); streams S are fixed and folded into (a, b) (cf. Ch. 4).
Ensure: weighted utility U =

q
k ρkYk, assignments πk,n ∈ {0,1}, start times {tn}N

n=1.
2: ▷ Initialization of batch start times (uniform grid over the horizon)
3: Tmin ← mink T

(a)
k ; Tmax ← maxk T

(d)
k

4: Xmax ← Tmax + (aK + b) ▷ slackened tail so last batch can fit
5: span← (Tmax − Tmin) + ϵ
6: for n = 1 to N do
7: tn ← Tmin + span · n−1

max(1,N−1) ▷ uniform grid
8: end for
9: tN+1 ← Xmax ▷ sentinel for backward update

10: πk,n ← 0 for all k, n ▷ no assignments yet
11: ▷ Alternating loop: priority-first assignment (π-step) then backward time update (t-step)
12: for iter = 1 to max_iters do
13: ▷ π-step: for each batch n, assign arrived jobs priority-first (EDF tie-break) under

bandwidth/deadline constraints
14: for n = 1 to N do
15: Un ← 0 ▷ used bandwidth (Hz) in batch n’s upload window
16: En ← { k : (

q
j πk,j) = 0 ∧ T

(a)
k ≤ tn } ▷ unassigned and arrived by tn

17: sort En by decreasing ρk (higher priority first), then by non-decreasing T
(d)
k (EDF

tie-break)
18: for each k ∈ En do
19: τo ← tn − T

(a)
k ▷ available upload time for k into batch n

20: if τo ≤ 0 then ▷ not yet arrived ⇒ skip
21: continue
22: end if
23: reqBW← ℓk

sk τo
▷ Hz needed so ℓk bits finish by tn

24: if Un + reqBW > W then ▷ bandwidth budget
25: continue
26: end if
27: m← 1 +

q
i πi,n ▷ prospective batch size if k is added

28: d̃(m)← (a m + b) · (1 + δ) ▷ optional safety inflation; GUI uses δ=0
29: if tn + d̃(m) > T

(d)
k then ▷ deadline feasibility

30: continue
31: end if
32: if defined(πmax) and m > πmax then ▷ optional VRAM cap
33: continue
34: end if
35: πk,n ← 1; Un ← Un + reqBW ▷ admit k into batch n
36: end for
37: end for
38: ▷ t-step: backward update to honor per-batch tightest deadline and causality
39: for n = N down to 1 do

40: πn ←
q

k πk,n; χn ←

I
min{T

(d)
k : πk,n = 1 }, πn > 0

tn+1, πn = 0
41: if πn > 0 then
42: tn ← min{χn, tn+1} − (a πn + b) ▷ back up to fit compute
43: tn ← max{ tn, max{T (a)

k : πk,n = 1}+ ϵ } ▷ respect arrivals (causality)
44: else
45: tn ← tn+1 ▷ empty batch inherits next start
46: end if
47: end for
48: end for
49: U ←

q
k ρk · ⊮{

q
n πk,n = 1} ▷ weighted utility of accepted tasks

50: return U , {πk,n}, {tn}N
n=1

51: end procedure

39

Algorithms

Complexity. Each iteration does a priority-first (then EDF) sort per batch and
linear scans over candidates; with N ≪ K and a small max_iters (e.g., 8–12),
planner time remains in the milliseconds in our runs.

5.4 Experimental Evaluation
We evaluate Greedy-JBAS against relevant baselines and, where feasible, exact
and/or relaxed formulations. We use the hardware-calibrated computation model
from Chapter 3 and the radio model from Chapter 4. Unless otherwise stated,
we fix the inference backend to Ultralytics YOLO-11n + TensorRT and use the
batch-delay fit d(n) = an+ b estimated from Chapter 3.

We generate single-edge, asynchronous-arrival workloads. The set of tasks is K,
each k associated with a tuple (T (a)

k , T
(d)
k , ℓk, rk, ρk). Here T (a)

k and T (d)
k are arrival

and deadline times; ℓk is the upload payload (feature size); rk is the uplink rate
from the radio model in Chapter 4; and ρk is the priority weight. We sweep the
number of tasks K and also sweep SNR and bandwidth to stress the communication
side. The following implementation scenarios can be imagined:

• Bandwidth sweep: a small grid of edge bandwidth budgets (low/med/high).
Exact values are listed in Appendix B (Table B.x).

• SNR sweep: per-task SNRs are sampled from the specified range; we report
results by SNR quantiles as well as by mean SNR.

• Load sweep: K varied (e.g., 20 → 100). We also report sensitivity to the
number of batches N allowed (Section 5.5).

Computation model. We use the fitted TensorRT coefficients from Chapter 3:
Concurrency. The number of streams S is fixed near the concurrency knee

(Chapter 3): S ∈ {5,6} unless stated otherwise. VRAM determines the set of
admissible (B, S) pairs.

Baselines. (i) Traditional Fixed-Batch (TFB) with B ∈ {8,16} and EDF within
each batch; (ii) MEC pipeline with B = 1. Definitions are in this chapter.

Metrics. We report weighted completion (utility) U = q
k ρkYk and

U/
q

k ρk, throughput (req/s), p95 end-to-end latency, and planner runtime (ms).
All results are averaged over ≥ 10 runs; we show the mean with 95% CI unless
otherwise stated.

40

Algorithms

5.5 Sensitivity Studies
We quantify performance sensitivity for feature size, bandwidth, SNR, load (K),
the number of batches (N) and the delay of the tasks, all for the case K = 100, S
= 1 and priority = 1 (although they can be easily changed in the GUI). Unless
otherwise noted, plots report the weighted completion fraction U/

q
k ρk (trends

are qualitatively similar for unweighted completion).

• Weighted acceptance vs. feature size (Fig. 5.1). Acceptance decreases
monotonically as the per-task upload size ℓk grows: larger ℓk use more band-
width per task, so fewer tasks finish before their deadlines. The curve exhibits
a steep drop at very small sizes, then a long, gradual tail toward zero.

• Weighted acceptance vs. total bandwidth.(Fig. 5.2). Acceptance in-
creases monotonically with total bandwidth B, starting low at small B and
rising toward a saturation plateau once the communication bottleneck is
removed; rapid gain in the low-B regime, then flattening for B ≳ 20–40 MHz.

Figure 5.1: Acceptance vs. feature size. Figure 5.2: Acceptance vs. total band-
width.

• Weighted completion vs. number of tasks K (Fig. 5.3). The normalized
utility U/

q
k ρk decreases monotonically as K grows, reflecting increased

competition for finite communication and compute resources.

• Effect of minimum delay requirement (Fig. 5.4). Tight deadlines (e.g.,
50 ms) produce low weighted completion, since only the earliest arrivals and
fastest links can finish both upload and inference. Relaxing the minimum
delay to a few hundred milliseconds causes a rapid jump; beyond ∼1 s the
curve plateaus near 100% once both communications and compute are easily
accommodated.

41

Algorithms

Figure 5.3: Completion vs. number of
tasks K.

Figure 5.4: Completion vs. minimum
delay requirement.

• Effect of transmit SNR (Fig. 5.5). The weighted completion follows an
S-curve as SNR increases:

– Low SNR (< 10 dB): spectral efficiencies rk are very small, so uploads
take too long and most tasks miss their deadlines.

– Mid SNR (10–30 dB): modest power gains yield large rate improvements,
sharply reducing upload times and boosting completion.

– High SNR (> 30 dB): communications stop being the bottleneck—compute
latency a π + b dominates—so the curve flattens near its ceiling.

• Effect of Batch Count N (with K = 60, Fig. 5.6). The completion rate
rises with the number of batches:

– Few batches (N ≪ K): forcing many tasks together inflates both upload
and compute delays, yielding low throughput.

– Moderate N (20–40): more slots spread tasks out, reducing per-batch size
(compute delay) and giving late arrivals extra chances—acceptance climbs
steeply.

– Large N≳ 40: additional batches add only marginal flexibility; overhead
of tiny batches can even slightly hurt, so the curve saturates.

42

Algorithms

Figure 5.5: Completion vs. transmit
SNR.

Figure 5.6: Completion vs. number of
batches N (K = 60).

5.6 Optimality Gaps
Starting by figure 5.7, we compare the solve times of our greedy-JBAS against the
mixed–integer formulation (P1) problem.

• JBAS-Greedy Solve time remains nearly constant (about 0.01–0.04s) even
as K grows to 100, reflecting its simple combinatorial updates.

• Direct MILP (P1) Time starts increasing rapidly once K ≈ 40, consistent
with nonconvex coupling between π and t and large integer spaces, leading to
prohibitively long runtimes in the large-K regime.

Next, we compare the mixed–integer formulation (P1) from Sect. 4.4 — solved
on an anchored time grid — against the Greedy Alternating JBAS (Alg. 1). The
batch time here is dS(B) = aSB + bS with S=1 (measured coefficients). The upper
bound (UB) is computed from the LP relaxation on the same grid. For larger
instances, we retain the UB and compare it to the heuristic only.

For small number of tasks K, (where MILP is feasible) we report:

Relax gap (%) = UB−OPT
max{UB, ε} , Heuristic gap (%) = max{0,OPT−Greedy}

max{OPT, ε}

with ε = 10−9. For large K (no MILP), we use

Heuristic gap vs UB (%) = max{0,UB−Greedy}
max{UB, ε}

43

Algorithms

Figure 5.7: Solve-time comparison as a function of task count K: JBAS-Greedy
remains below 0.05s, while the direct MILP solver time explodes beyond K ≈ 50.

Figure 5.8: Small-K results (S=1). LP relaxation is often tight (gap ≤ 10%),
and Greedy Alternating is often within 5–40% of MILP optimum, and optimal at
some K where the grid matches optimal batch starts well.

44

Algorithms

Figure 5.9: Large-K fast experiment (S=1): Greedy vs. LP upper bound. The
gap decreases from ≈ 19% (K=100) to ≈ 6%–9% for K ∈ [200,300], indicating
that batching opportunities and the anchored UB both tighten at scale.

Table 5.1 reports optimality gaps in the small- and large-K regimes. For small
K we solve both the MILP and its LP relaxation on an adaptive anchored grid of
candidate batch start times seeded at arrivals/deadlines and locally refined; these
yield, respectively, a grid-consistent integer optimum (OPT) and an upper bound
(UB).

Our Greedy Alternating JBAS is naturally formulated in continuous time. In
many instances, the relaxation gap (UB − OPT)/UB is near zero, which is an
empirical indication that the LP relaxation is tight on the anchored grid. The
heuristic gap max{0,OPT − Greedy}/OPT varies with deadline tightness and
bandwidth but often shrinks with K as batching opportunities increase. When
Greedy exceeds the grid-based UB, this is due to discretization (i.e., Greedy may
place batch starts at arbitrary points between anchors); we therefore conservatively
clip negative gaps to zero rather than claim super-optimality.

45

Algorithms

Small-K Results

K UB OPT Greedy_cont RelaxGap
(%)

HeurGap
(%)

6 4.5249 4.4781 2.7798 1.03 37.92
8 6.6513 6.6513 3.9190 0.00 41.08
10 8.1538 7.3320 7.3320 10.08 0.00
12 9.9932 9.9932 7.2287 0.00 27.66
14 10.8335 10.8335 8.2669 0.00 23.69
16 11.7780 11.7780 11.1155 0.00 5.62
18 14.7291 13.9089 13.2385 5.57 4.82
20 15.5258 14.0068 14.7624 9.78 0.00

Large-K Results

K UB Greedy Gap vs UB
(%)

100 81.64 65.65 19.58
125 98.01 79.85 18.53
150 112.65 94.25 16.33
175 128.53 111.72 13.07
200 139.45 127.43 8.62
225 160.42 146.48 8.69
250 161.85 151.09 6.65
275 170.77 162.69 4.73
300 185.26 174.51 5.80

Table 5.1: Optimality-gap summaries for Small-K where LP relaxation (UB) and
MILP (OPT) are solved on an adaptive anchored time grid. For Large-K we only
reported Greedy vs. LP–UB

5.7 Comparison of Different Algorithms

Figure 5.10 shows how the number of tasks K impacts the completion rate of three
approaches: JBAS-Greedy, the MEC Pipeline heuristic, and a Traditional Batch
scheduler. Through it we can observe that JBAS-Greedy holds high completion
(≈ 0.9) up to K = 60, then gently falls to ≈ 0.75 at K = 100. MEC Pipeline
declines steadily from ≈ 0.9 at K = 10 to ≈ 0.25 at K = 100. Traditional Batch
collapses from ≈ 0.3 at K = 10 to below 0.1 by K = 100.JBAS-Greedy dynamically
balances communication and compute across batches. The MEC Pipeline’s fixed
slot assignments suffer growing congestion as K increases. Traditional Batch’s rigid
grouping cannot adapt to larger K, so most tasks miss their deadlines.

Figure 5.11 shows the effect of the minimum delay requirement on the same three
methods. In this figure, we can see that JBAS-Greedy reaches 100% once the delay
exceeds ≈ 500 ms (with a slight dip at 500 ms). MEC Pipeline climbs from ≈ 0.48
at 50 ms to ≈ 0.65 at 2000 ms. Traditional Batch slowly rises from ≈ 0.16 to
≈ 0.26.Relaxed deadlines allow JBAS-Greedy to fit all tasks into feasible slots. The
MEC Pipeline benefits from extra slack but remains limited by its fixed-pipeline
structure. Traditional Batch’s inflexible grouping can’t exploit larger delays, so
throughput stays low.

46

Algorithms

Figure 5.10: Completion rate vs. num-
ber of tasks K for JBAS-Greedy, MEC
Pipeline, and Traditional Batch.

Figure 5.11: Completion rate vs.
minimum delay requirement for JBAS-
Greedy, MEC Pipeline, and Traditional
Batch.

In figure 5.12, JBAS-Greedy shows a classic S-curve, very low (≈ 0) at 5 dB,
then steep rise between 10–30 dB, saturating near 1.0 by 50 dB. MEC Pipeline
climbs more gradually from ≈ 0.03 to ≈ 0.50. Traditional Batch remains near zero,
reaching only ≈ 0.14 at 50 dB. At low SNR, upload rates rk = log2(1+SNR×hk) are
too small—most tasks miss their deadlines. As SNR rises to 10–30 dB, each extra
dB dramatically speeds uploads, boosting acceptance. Above ∼30 dB, compute
latency a pn + b dominates, so JBAS-Greedy reaches ≈ 100% and MEC Pipeline
plateaus at its structural limit. Traditional Batch, with no adaptive scheduling,
cannot exploit higher rates.

In figure 5.13, JBAS-Greedy jumps from ≈ 0.80 at B = 5 MHz to ≈ 0.99
by B = 20 MHz, then fully saturates at 1.0. MEC Pipeline increases from
≈ 0.34 to ≈ 0.56, with diminishing gains beyond 40 MHz. Traditional Batch
rises modestly from ≈ 0.08 to ≈ 0.16. At low B, bandwidth scarcity throttles all
algorithms—JBAS-Greedy still adapts batches to maximize throughput. As B
passes ∼20 MHz, uploads finish quickly and JBAS-Greedy hits 100% acceptance.
MEC Pipeline and Traditional Batch remain constrained by their fixed slot structure
and compute delays, so their acceptance rates plateau below 1.0.

47

Algorithms

Figure 5.12: Completion rate vs.
transmit SNR for JBAS-Greedy, MEC
Pipeline, and Traditional Batch.

Figure 5.13: Completion rate vs. total
bandwidth B for JBAS-Greedy, MEC
Pipeline, and Traditional Batch.

48

Chapter 6

Conclusion & Future Work

Real-world edge inference is limited not only by the raw throughput of deployed
models, but also by host and network constraints. By reasoning about upload win-
dows, batch delays, and deadlines directly, our algorithm achieves both predictable
latency and high throughput at the cost of only implementation-level complexity, a
useful sweet spot between heuristic batching and intractable optimal search.

6.1 Summary of Contributions
In this thesis we have sought to understand how deadline–constrained vision work-
loads can be scheduled on an edge node that must juggle both radio uploads and
GPU batching. The problem setting is very common in practice, since: (1) tasks
arrive asynchronously, each with an arrival time and a hard deadline; (2) radio
uploads complete at SNR–dependent rates; and (3) the accelerator has classic
batching behavior with a fixed overhead and linear per–item cost. The objective
has been to admit and batch these tasks so that the weighted number of timely
completions is maximized, while keeping scheduling latency small enough to be
deployable.

To study this problem in a principled way, we began by building a simple
but faithful model linking communication and computation. On the radio side,
each task’s upload rate is characterized by an AWGN surrogate dependent on
its SNR and the available bandwidth. On the compute side, we calibrated the
per–batch delay of a modern stack (TensorRT + YOLO) and showed that it is well
described by an affine curve with a concurrency scaling that explains the observed
“knees” in batch size and streams. These two ingredients then let us formulate
a joint admission–and–batching problem with hard deadlines and sequential batches.

49

Conclusion & Future Work

Solving this problem directly as a mixed–integer program is instructive but turns
out to be impractical at scale. We therefore took a two–pronged approach. On the
theory track, we adapted an anchored–grid relaxation from batched OAS: by solving
a linear relaxation and an integer program on the same set of candidate start times,
we can get a reliable upper bound (UB) and an exact optimum (OPT) on that
grid, which can then be used for diagnosis and benchmarking. On the algorithm
track, we designed Greedy–JBAS, a lightweight scheduler that orders tasks by
deadline and priority, admits only bandwidth– and deadline–feasible assignments,
and places batches via a closed–form backward timing recursion. In effect, we retain
the structure of the optimality conditions but avoid the heavy solvers, yielding
millisecond–scale decisions.

Our experiments demonstrate that this combination is both effective and practi-
cal. Greedy–JBAS consistently produces deadline–respecting schedules and tracks
the grid–based UB/OPT closely, while being orders of magnitude faster than MILPs.
As the number of tasks increases, there are more batching opportunities and the
upper bound tightens, so the heuristic’s gap to UB shrinks. At smaller scales
and tight slack, the heuristic may be more conservative but it remains feasible
and predictable. Beyond aggregate metrics, the measurements also help to clarify
when batching is helpful (ample slack, healthy ingress) and when it is harmful
(tight slack, slow links), leading to simple guardrails—slack–aware waiting caps,
a two–queue design for urgent jobs, and safety–inflated feasibility checks—that
preserve performance without increasing complexity.

Finally, this work is also the first to contribute a number of practical arti-
facts: a calibrated compute model and concurrency scaling that can be re–fit on
new hardware; an anchored–grid tool to generate UB/OPT for analysis; and an
implementable scheduling policy suitable for real deployments. The scope was
intentionally narrow—single edge node, single model, fixed coefficients, and simpli-
fied host pipeline—which keeps the problem tractable and the insights clear. These
limitations, together with opportunities for multi–model scheduling, multi–edge
coordination, energy awareness, and learning–augmented control, are discussed in
the sections that follow.

6.2 Limitations
We study a single edge node without multi-edge coordination or placement; ex-
tending admission with routing is future work. The compute model uses hard-
ware–specific (a, b) from TensorRT + YOLO-11n; different backends/models shift
these coefficients. We mitigate via a safety factor δ and recommend periodic

50

Conclusion & Future Work

re–fitting. The host pipeline is simplified (Python/C++ preprocessing and I/O
variability are abstracted), and energy is unmodeled; adding power/thermal con-
straints would enable energy–aware scheduling. Fairness is not enforced—EDF
can starve very loose jobs under sustained load—suggesting weight/age–based
refinements.

Threats to validity include dataset and hardware dependence (COCO subset;
EPYC+GV100 class machine), framework variance (Ultralytics/MMDetection) and
TensorRT build choices (precision/tactics), and MILP solver sensitivity (parame-
ters/time limits). We standardize configurations, apply warm–ups, report versions,
and use a common time budget for fairness, but local re–fitting and sensitivity
checks remain advisable. Finally, UB/OPT are computed on a finite anchored grid;
finer grids can only lower UB and raise OPT, so reported gaps are conservative for
the continuous–time problem.

6.3 Future Work
We view this work as a first step in the right direction. A natural follow-up is to
move past simulations to a real edge–AI platform where traces can be replayed
with realistic latencies, transient failures, and non-ideal topologies. A field-collected
dataset of long traces of arrivals, payload sizes, and radio conditions from an
IoT/camera fleet, replayed under measured and transient failures and non-ideal
topologies, would reveal inadequacies in our current abstractions (e.g., AWGN rate
surrogate, affine batch model), and be a useful platform for tuning the scheduler
for both scalability and robustness in production environments.

A systems re-engineering effort around the host pipeline can likely produce quick
wins. Our measurements point to Python-side preprocessing and orchestration as a
concurrency knee. We believe a C++ or multi-process replacement of this portion
of the path should eliminate this knee and improve completions under the same
SLAs. Telemetry and instrumentation of the pipeline with fine-grained queueing
delays, per-stage service times, and CPU/GPU utilizations will be important to
close the loop on online adaptation and regression testing.

A more holistic scheduling study would also address multi-model and multi-
queue scenarios. Many edge stacks co-host models (e.g., detection and classification)
with significantly different delay curves dm(n) and priorities. A logical extension
of the policy is to jointly allocate batches across models, while enforcing fairness
guarantees across SLA classes. This makes the approach applicable to a much
richer set of workloads. At larger scales, the scheduling problem couples with
placement: coordination of admission and routing decisions across multiple edge
nodes, mobility and handoff management, and shared-splitting of radio uplink
bandwidth and inter-edge traffic.

51

Conclusion & Future Work

Energy and sustainability metrics are also natural first-class objectives. Aug-
menting the objective with Joules per task or some carbon proxy, and coupling with
device power telemetry or calibrated power models, could open the door to explicit
tradeoffs between timeliness and energy. This would make possible energy-aware
admission (e.g., throttling batch size in high-carbon periods) while still honoring
hard deadlines.

Learning-augmented control is a promising direction. Contextual bandits or
lightweight RL can be used to adapt batch size B, effective streams S, and safety
margins online, seeded by Greedy–JBAS decisions and trajectories. The key is to
treat feasibility as a hard constraint: the learned policy must never schedule a job
that cannot meet its deadline. With appropriate guardrails, learning can track
slow drift in workload and network conditions without sacrificing predictability.

Lastly, we leave some interesting directions on tighter analysis and stronger
bounds. On the optimization side, we can work to tighten the anchored-grid
construction (e.g., data-driven anchors, column generation) to improve the LP
upper bound and shrink the MILP search space. On the robustness side, rolling
re-fits of (a, b) and distributionally robust variants that hedge against rate and slack
uncertainty could provide conservative but easily computable feasibility certificates
in the wild. We also plan to work towards establishing approximation guarantees
for the greedy policy under more realistic traffic models to better understand when
and why the policy is near-optimal.

52

Appendix A

Hyperparameters, Versions,
and Configs

Hardware
CPU x86_64 (multi-core)
RAM 252 GB
GPU NVIDIA Quadro GV100
VRAM 31.73 GB

Operating System
Distribution Ubuntu 22.04.1 LTS
Kernel Linux 6.8.0-57-generic (#59~22.04.1-Ubuntu)

Drivers / Runtimes
CUDA toolkit 11.5 (Cuda compilation tools, release 11.5, V11.5.119)
cuDNN 8.9.2
TensorRT 8.6.1

Optimization Solver
Gurobi (gurobipy) 12.0.2

Frameworks
PyTorch 2.2.2
Ultralytics / MMDetection 8.3.99 / Not installed

Table A.1: Hardware/software summary used for all experiments.

53

Hyperparameters, Versions, and Configs

A.1 Inference Model Settings

Table A.2: Model and input settings

Setting YOLO-11n YOLO-11m Notes
Input size 640× 640 640× 640 Standard Ultralytics default
Precision FP16 FP16 Engines built with mixed-precision
NMS IoU 0.6, conf 0.25 IoU 0.6, conf 0.25 Defaults from Ultralytics

A.2 TensorRT Engine Build

Table A.3: TRT build configuration

Parameter Value Notes
Max workspace 4096 MB Typical default; limits temporary memory
Tactics Enabled (default search) TensorRT autotunes kernels
Precision FP16 Chosen for throughput; INT8 not used
Dynamic shapes Enabled Engine supports variable batch sizes
Max batch (πmax) 32 Export limited to 32 images per call

A.3 YAML/JSON configs
Below are minimal, copyable configs used to reproduce experiments. Replace with
your actual files or include via \lstinputlisting.

Listing A.1: Minimal YAML config
1 experiment :
2 backend : t r t
3 model : yolov11n
4 batch_candidates : [1 , 2 , 4 , 8 , 1 6]
5 streams : 5
6 de l ay_f i t : { a : 0 .011982 , b : 0 .006082 , d e l t a : 0 .05 }
7 pi_max : 16
8 e p s i l o n : 0 .001
9 s eeds : [1 , 2 , 3 , 4 , 5]

10 datase t : coco_val_1024

54

Appendix B

GUI Overview and
Screenshots

B.1 Purpose and scope
This is a desktop app that simulates our Greedy–JBAS of algorithm 1 under
resource-constrained uploads and deadline constraints. It stochastically generates
instances of tasks (arrivals, SNR-driven rates, slack windows) and assembles them
into batches via a greedy EDF policy, subject to feasibility checks under both link
and compute models. The GUI exposes the main knobs (feature size, bandwidth,
SNR, slack ranges, number of batches N , and streams S) and plots seed–averaged
outcomes such as accepted tasks and weighted utility. Priorities are optional and
user-selectable from the UI.

Model (enforced in simulator). Per task k assigned to batch n with start
time tn:

(upload feasibility) Fbits

(tn − T (a)
k) rk

≤ Btot, rk = log2

1
1 + SNRk

2
,

(compute feasibility) tn + dS

1
|Bn|

2
≤ T

(d)
k , dS(B) = max{0, aSB + bS}.

Here Fbits is the feature payload, Btot the total uplink bandwidth (Hz), and |Bn| the
batch size. The GUI automatically chooses (aS, bS) for the chosen streams S from
measured coefficients when available, and otherwise falls back to the generalized
concurrency surface

aS ≈
a1

1 + γ(S − 1) , bS ≈
b1

1 + γ(S − 1),

55

GUI Overview and Screenshots

with fixed γ from calibration. The plotted KPI is either the number of accepted
tasks or the weighted utility U = q

k ρkYk (acceptance indicator Yk ∈ {0,1}).

B.2 Architecture
The app is implemented in Python 3 using Tkinter (UI) and Matplotlib (plots); the
core scheduler is vectorized NumPy. A lightweight worker thread runs simulations
and marshals updates back onto Tk’s main loop to keep the UI responsive. Major
components of the app are as below:

1. Instance generator: draws arrivals T (a), SNRs (Rayleigh path loss →
SNR), per-task rates rk, and deadlines T (d) from user-specified slack ranges;
also generates priorities ρk by mode (one/low/med/high/rnd).

2. Greedy assignment step: within each tentative batch start, ranks eligi-
ble tasks by a priority-weighted value-per-bandwidth score (EDF tie-break),
admits only if both link and deadline constraints pass.

3. Alternating timing: after assignment, a backward “just-in-time” recursion
places batch start times tn to respect deadlines; steps (assignment/timing)
repeat a few iterations (milliseconds runtime at typical sizes).

4. UI & export: contextual parameter panes (scrollable), a Matplotlib canvas,
PNG/CSV export, a timestamped log, and a progress bar.

B.3 Screenshots
For each selected action, the user will have a wide variety of options to choose
the parameters to be tuned, such as the number of streams, the KPI, and the
priority index. In the output plots, “Accepted” is the count of tasks scheduled
without violating upload or compute feasibility. “Weighted” sums ρk over accepted
tasks. Trends versus feature size, bandwidth, SNR, K, N , and S reflect the same
constraints as the theory chapters.

56

GUI Overview and Screenshots

Figure B.1: Main dashboard with actions, scrollable parameters, plot canvas,
export, and log.

Figure B.2: Acceptance vs. feature size (seed–averaged).

57

GUI Overview and Screenshots

Figure B.3: Acceptance vs. bandwidth (seed–averaged).

58

Appendix C

Baseline algorithms

Here, we provide an explanation to the two baseline batching algorithms that were
used to evaluate the performance of our novel algorithm with respect to them.

1. Traditional Batching
Goal: Form exactly one batch at the optimal start time to maximize the number
of tasks completed before their deadlines.
Algorithm:

1. Collect candidate start times {t1} from each task’s arrival T (a)
k .

2. For each t1:

• Greedily fill one batch by selecting tasks with T (a)
k ≤ t1, in order of earliest

deadline.
• For each selected task, check:

– Uplink bandwidth: q L

rk (t1−T
(a)
k

)
≤ Btot.

– Deadline constraint: t1 + d(b) ≤ T
(d)
k .

• Compute the fraction accepted.

3. Choose the t1 that yields the highest acceptance rate.

2.MEC Pipeline
Goal: Serve tasks one by one (no batching), consuming communication and
compute time for each task in arrival order.
Algorithm:

1. Sort tasks by increasing arrival time T (a)
k .

2. Initialize clock now ← 0.

59

Baseline algorithms

3. For each task k in arrival order:

• Start upload at tstart = max(now, T (a)
k).

• Upload duration: τ o
k = L

rk Btot
.

• Inference duration: d(1) = a+ b0.
• Finish time: tfinish = tstart + τ o

k + d(1).
• If tfinish ≤ T

(d)
k , count task as completed.

• Advance clock: now ← tfinish.

60

Bibliography

[1] Vítor Teixeira, Carlos Pires, Fernando Pinto, João Freitas, Miguel Sales
Dias, and Eduarda Mendes Rodrigues. «Towards Elderly Social Integration
using a Multimodal Human-computer Interface». In: Proceedings of the 2nd
International Living Usability Lab Workshop on AAL Latest Solutions, Trends
and Applications - Volume 1: AAL, (BIOSTEC 2012). INSTICC. SciTePress,
2012, pp. 3–13. isbn: 978-989-8425-93-5. doi: 10.5220/0003852800030013
(cit. on p. 1).

[2] Robert Nishihara et al. «Real-Time Machine Learning: The Missing Pieces».
In: Proceedings of the 16th Workshop on Hot Topics in Operating Systems.
HotOS ’17. Whistler, BC, Canada: Association for Computing Machinery,
2017, pp. 106–110. isbn: 9781450350686. doi: 10.1145/3102980.3102998.
url: https://doi.org/10.1145/3102980.3102998 (cit. on p. 2).

[3] Yuxiao Zhou and Kecheng Yang. «Exploring TensorRT to Improve Real-
Time Inference for Deep Learning». In: 2022 IEEE 24th Int Conf on High
Performance Computing Communications; 8th Int Conf on Data Science
Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor,
Cloud Big Data Systems Application (HPCC/DSS/SmartCity/DependSys).
2022, pp. 2011–2018. doi: 10.1109/HPCC-DSS-SmartCity-DependSys57074.
2022.00299 (cit. on p. 2).

[4] Ziyang Zhang, Yang Zhao, Huan Li, and Jie Liu. «BCEdge: SLO-Aware DNN
Inference Services With Adaptive Batch-Concurrent Scheduling on Edge
Devices». In: IEEE Transactions on Network and Service Management 21.4
(2024), pp. 4131–4145. doi: 10.1109/TNSM.2024.3409701 (cit. on p. 2).

[5] NVIDIA. TensorRT Batching and Optimization Guide. Developer Documen-
tation. 2023. url: https://docs.nvidia.com/deeplearning/tensorrt/
archives/tensorrt-861/developer-guide/index.html#appendix (vis-
ited on 09/11/2025) (cit. on pp. 3–5).

[6] Ultralytics. Ultralytics YOLO Documentation. Software documentation. 2023.
url: https://docs.ultralytics.com (visited on 09/11/2025) (cit. on p. 3).

61

https://doi.org/10.5220/0003852800030013
https://doi.org/10.1145/3102980.3102998
https://doi.org/10.1145/3102980.3102998
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00299
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00299
https://doi.org/10.1109/TNSM.2024.3409701
https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-861/developer-guide/index.html#appendix
https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-861/developer-guide/index.html#appendix
https://docs.ultralytics.com

BIBLIOGRAPHY

[7] Yihan Cang, Ming Chen, and Kaibin Huang. Joint Batching and Scheduling for
High-Throughput Multiuser Edge AI with Asynchronous Task Arrivals. 2023.
arXiv: 2307.14350 [eess.SP]. url: https://arxiv.org/abs/2307.14350
(cit. on pp. 3–5, 30, 31, 36).

[8] Ziming Yang, Zichuan Zheng, Liyou Deng, Shan Zhang, Zhiyuan Wang,
and Hongbin Luo. «ACBatch: Adaptive and Cooperative Batching for Edge
Inference». In: IEEE INFOCOM 2025 - IEEE Conference on Computer
Communications. 2025, pp. 1–10. doi: 10.1109/INFOCOM55648.2025.11044
583 (cit. on pp. 3, 5, 30).

[9] Yoshiaki Inoue. «Queueing Analysis of GPU-Based Inference Servers with Dy-
namic Batching: A Closed-Form Characterization». In: CoRR abs/1912.06322
(2019). arXiv: 1912.06322. url: http://arxiv.org/abs/1912.06322
(cit. on p. 3).

[10] Vyacheslav Zhdanovskiy, Lev Teplyakov, and Philipp Belyaev. «Efficient
single- and multi-DNN inference using TensorRT framework». In: Sixteenth
International Conference on Machine Vision (ICMV 2023). Ed. by Wolfgang
Osten. Vol. 13072. International Society for Optics and Photonics. SPIE, 2024,
p. 1307215. doi: 10.1117/12.3023487. url: https://doi.org/10.1117/
12.3023487 (cit. on p. 3).

[11] Mounir Bensalem, Jasenka Dizdarevć, and Admela Jukan. «Modeling of
Deep Neural Network (DNN) Placement and Inference in Edge Computing».
In: 2020 IEEE International Conference on Communications Workshops
(ICC Workshops). 2020, pp. 1–6. doi: 10.1109/ICCWorkshops49005.2020.
9145449 (cit. on p. 3).

[12] Jiawei Shao and Jun Zhang. «Communication-Computation Trade-Off in
Resource-Constrained Edge Inference». In: CoRR abs/2006.02166 (2020).
arXiv: 2006.02166. url: https://arxiv.org/abs/2006.02166 (cit. on
p. 3).

[13] İstenç Tarhan and Ceyda Oğuz. «Generalized order acceptance and scheduling
problem with batch delivery: Models and metaheuristics». In: Computers
Operations Research 134 (2021), p. 105414. issn: 0305-0548. doi: https://doi.
org/10.1016/j.cor.2021.105414. url: https://www.sciencedirect.
com/science/article/pii/S0305054821001775 (cit. on pp. 4, 8, 30).

[14] Ceyda Og˘uz, F. Sibel Salman, and Zehra Bilgintürk Yalçın. «Order accep-
tance and scheduling decisions in make-to-order systems». In: International
Journal of Production Economics 125.1 (2010), pp. 200–211. issn: 0925-5273.
doi: https://doi.org/10.1016/j.ijpe.2010.02.002. url: https:
//www.sciencedirect.com/science/article/pii/S0925527310000514
(cit. on pp. 4, 8, 31).

62

https://arxiv.org/abs/2307.14350
https://arxiv.org/abs/2307.14350
https://doi.org/10.1109/INFOCOM55648.2025.11044583
https://doi.org/10.1109/INFOCOM55648.2025.11044583
https://arxiv.org/abs/1912.06322
http://arxiv.org/abs/1912.06322
https://doi.org/10.1117/12.3023487
https://doi.org/10.1117/12.3023487
https://doi.org/10.1117/12.3023487
https://doi.org/10.1109/ICCWorkshops49005.2020.9145449
https://doi.org/10.1109/ICCWorkshops49005.2020.9145449
https://arxiv.org/abs/2006.02166
https://arxiv.org/abs/2006.02166
https://doi.org/https://doi.org/10.1016/j.cor.2021.105414
https://doi.org/https://doi.org/10.1016/j.cor.2021.105414
https://www.sciencedirect.com/science/article/pii/S0305054821001775
https://www.sciencedirect.com/science/article/pii/S0305054821001775
https://doi.org/https://doi.org/10.1016/j.ijpe.2010.02.002
https://www.sciencedirect.com/science/article/pii/S0925527310000514
https://www.sciencedirect.com/science/article/pii/S0925527310000514

BIBLIOGRAPHY

[15] Ying Chen, Yongchao Zhang, and Xin Chen. «Dynamic Service Request
Scheduling for Mobile Edge Computing Systems». In: Wireless Communica-
tions and Mobile Computing 2018.1 (2018), p. 1324897. doi: https://doi.
org/10.1155/2018/1324897. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1155/2018/1324897. url: https://onlinelibrary.wiley.
com/doi/abs/10.1155/2018/1324897 (cit. on p. 4).

[16] Author Zhang et al. «BCEdge: SLO-Aware DNN Inference Services with Adap-
tive Batching on Edge Platforms». In: Proceedings of ACM/IEEE Conference.
2024 (cit. on pp. 4, 7, 9).

[17] Nasir Abbas, Yan Zhang, Amirhosein Taherkordi, and Tor Skeie. «Mobile Edge
Computing: A Survey». In: IEEE Internet of Things Journal 5 (2018), pp. 450–
465. url: https://api.semanticscholar.org/CorpusID:31429854 (cit.
on p. 4).

[18] Wazir Zada Khan, Ejaz Ahmed, Saqib Hakak, Ibrar Yaqoob, and Arif Ahmed.
«Edge computing: A survey». In: Future Generation Computer Systems 97
(2019), pp. 219–235. issn: 0167-739X. doi: https://doi.org/10.1016/j.
future.2019.02.050. url: https://www.sciencedirect.com/science/
article/pii/S0167739X18319903 (cit. on p. 4).

[19] Adam Paszke et al. «PyTorch: an imperative style, high-performance deep
learning library». In: Proceedings of the 33rd International Conference on Neu-
ral Information Processing Systems. Red Hook, NY, USA: Curran Associates
Inc., 2019 (cit. on pp. 4, 8).

[20] OpenMMLab. MMDetection Documentation. Software documentation. 2023.
url: https://mmdetection.readthedocs.io (visited on 09/11/2025) (cit.
on p. 4).

[21] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge,
Jason Mars, and Lingjia Tang. «Neurosurgeon: Collaborative Intelligence
Between the Cloud and Mobile Edge». In: Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Languages
and Operating Systems. ASPLOS ’17. Xi’an, China: Association for Computing
Machinery, 2017, pp. 615–629. isbn: 9781450344654. doi: 10.1145/3037697.
3037698. url: https://doi.org/10.1145/3037697.3037698 (cit. on p. 6).

[22] Raghubir Singh and Sukhpal Singh Gill. «Edge AI: A survey». In: Internet
of Things and Cyber-Physical Systems 3 (2023), pp. 71–92. issn: 2667-3452.
doi: https://doi.org/10.1016/j.iotcps.2023.02.004. url: https:
//www.sciencedirect.com/science/article/pii/S2667345223000196
(cit. on p. 7).

63

https://doi.org/https://doi.org/10.1155/2018/1324897
https://doi.org/https://doi.org/10.1155/2018/1324897
https://onlinelibrary.wiley.com/doi/pdf/10.1155/2018/1324897
https://onlinelibrary.wiley.com/doi/pdf/10.1155/2018/1324897
https://onlinelibrary.wiley.com/doi/abs/10.1155/2018/1324897
https://onlinelibrary.wiley.com/doi/abs/10.1155/2018/1324897
https://api.semanticscholar.org/CorpusID:31429854
https://doi.org/https://doi.org/10.1016/j.future.2019.02.050
https://doi.org/https://doi.org/10.1016/j.future.2019.02.050
https://www.sciencedirect.com/science/article/pii/S0167739X18319903
https://www.sciencedirect.com/science/article/pii/S0167739X18319903
https://mmdetection.readthedocs.io
https://doi.org/10.1145/3037697.3037698
https://doi.org/10.1145/3037697.3037698
https://doi.org/10.1145/3037697.3037698
https://doi.org/https://doi.org/10.1016/j.iotcps.2023.02.004
https://www.sciencedirect.com/science/article/pii/S2667345223000196
https://www.sciencedirect.com/science/article/pii/S2667345223000196

BIBLIOGRAPHY

[23] Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J. Franklin, Joseph E.
Gonzalez, and Ion Stoica. Clipper: A Low-Latency Online Prediction Serving
System. 2017. arXiv: 1612.03079 [cs.DC]. url: https://arxiv.org/abs/
1612.03079 (cit. on pp. 7, 9).

[24] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong, Matthai
Philipose, Arvind Krishnamurthy, and Ravi Sundaram. «Nexus: a GPU
cluster engine for accelerating DNN-based video analysis». In: Proceedings
of the 27th ACM Symposium on Operating Systems Principles. SOSP ’19.
Huntsville, Ontario, Canada: Association for Computing Machinery, 2019,
pp. 322–337. isbn: 9781450368735. doi: 10.1145/3341301.3359658. url:
https://doi.org/10.1145/3341301.3359658 (cit. on p. 7).

[25] Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and Christos Kozyrakis.
«INFaaS: Automated Model-less Inference Serving». In: 2021 USENIX Annual
Technical Conference (USENIX ATC 21). USENIX Association, July 2021,
pp. 397–411. isbn: 978-1-939133-23-6. url: https://www.usenix.org/
conference/atc21/presentation/romero (cit. on pp. 7, 9).

[26] Sohaib Ahmad, Hui Guan, Brian D. Friedman, Thomas Williams, Ramesh
K. Sitaraman, and Thomas Woo. «Proteus: A High-Throughput Inference-
Serving System with Accuracy Scaling». In: Proceedings of the 29th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 1. ASPLOS ’24. La Jolla, CA, USA: Associa-
tion for Computing Machinery, 2024, pp. 318–334. isbn: 9798400703720. doi:
10.1145/3617232.3624849. url: https://doi.org/10.1145/3617232.
3624849 (cit. on pp. 7, 9).

[27] Charles M. Stein, Dinei A. Rockenbach, Dalvan Griebler, Massimo Torquati,
Gabriele Mencagli, Marco Danelutto, and Luiz G. Fernandes. «Latency-aware
adaptive micro-batching techniques for streamed data compression on graphics
processing units». In: Concurrency and Computation: Practice and Experience
33.11 (2021), e5786. doi: https://doi.org/10.1002/cpe.5786. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5786. url:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5786 (cit. on
p. 7).

[28] Andrea Goldsmith. Wireless Communications. Cambridge, UK: Cambridge
University Press, 2005. isbn: 978-0521837163 (cit. on pp. 8, 29).

[29] David Tse and Pramod Viswanath. Fundamentals of Wireless Communication.
Cambridge, UK: Cambridge University Press, 2005. isbn: 978-0521845274
(cit. on pp. 8, 29).

64

https://arxiv.org/abs/1612.03079
https://arxiv.org/abs/1612.03079
https://arxiv.org/abs/1612.03079
https://doi.org/10.1145/3341301.3359658
https://doi.org/10.1145/3341301.3359658
https://www.usenix.org/conference/atc21/presentation/romero
https://www.usenix.org/conference/atc21/presentation/romero
https://doi.org/10.1145/3617232.3624849
https://doi.org/10.1145/3617232.3624849
https://doi.org/10.1145/3617232.3624849
https://doi.org/https://doi.org/10.1002/cpe.5786
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5786
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5786

BIBLIOGRAPHY

[30] Susan A. Slotnick. «Order acceptance and scheduling: A taxonomy and
review». In: European Journal of Operational Research 212.1 (July 2011),
pp. 1–11. doi: None. url: https://ideas.repec.org/a/eee/ejores/
v212y2011i1p1-11.html (cit. on p. 8).

[31] N. Hall and C. Potts. «Supply Chain Scheduling: Batching and Delivery». In:
Operations Research (2003) (cit. on p. 8).

[32] Kai Chen et al. MMDetection: Open MMLab Detection Toolbox and Bench-
mark. 2019. arXiv: 1906.07155 [cs.CV]. url: https://arxiv.org/abs/
1906.07155 (cit. on p. 9).

[33] NVIDIA. Triton Inference Server: Dynamic Batching Guide. Developer docu-
mentation. 2024. url: https://docs.nvidia.com/deeplearning/triton-
inference-server/user-guide/docs/introduction/index.html (visited
on 09/11/2025) (cit. on p. 9).

[34] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. «Microsoft COCO:
Common Objects in Context». In: Computer Vision – ECCV 2014. Ed. by
David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars. Cham:
Springer International Publishing, 2014, pp. 740–755. isbn: 978-3-319-10602-1
(cit. on p. 12).

65

https://doi.org/None
https://ideas.repec.org/a/eee/ejores/v212y2011i1p1-11.html
https://ideas.repec.org/a/eee/ejores/v212y2011i1p1-11.html
https://arxiv.org/abs/1906.07155
https://arxiv.org/abs/1906.07155
https://arxiv.org/abs/1906.07155
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/introduction/index.html
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/introduction/index.html

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background and Motivation
	Problem Statement
	Research Questions
	Contributions
	Thesis Outline

	Background & Related Work
	Edge inference & SLAs
	Scheduling/Admission for DNN Inference
	Communication Model Basics
	Batched-OAS Literatures
	Framework Backends
	Gap Analysis

	Empirical Measurements
	Hardware and Software
	Datasets and Pre-processing
	Batch-Size Effects
	Concurrency Effects
	Offset Launches
	CPU/GPU Profiling
	Batch Delay Formulation
	Dataset and Metrics
	Empirical Curves

	System Model & Problem Formulation
	Entities & Notation
	Communication Model
	Computation Model
	Problem Formulation
	Assumptions and Scope

	Algorithms
	Design Goals
	Baselines
	Traditional Fixed–Batch
	MEC pipeline

	Greedy-JBAS
	Inputs and Parameters
	Backward Batch-Time Recursion
	Algorithm

	Experimental Evaluation
	Sensitivity Studies
	Optimality Gaps
	Comparison of Different Algorithms

	Conclusion & Future Work
	Summary of Contributions
	Limitations
	Future Work

	Hyperparameters, Versions, and Configs
	Inference Model Settings
	TensorRT Engine Build
	YAML/JSON configs

	GUI Overview and Screenshots
	Purpose and scope
	Architecture
	Screenshots

	Baseline algorithms
	Bibliography

