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Summary

In recent years, foundational vision-language models have opened new oppor-
tunities for addressing open-vocabulary object detection, with applications
such as automatic image annotation. However, despite their generalization
ability, these models often lack the specialization required to adapt efficiently
to novel datasets or domains, especially in low-data regimes. This thesis
investigates the use of prompt learning techniques, originally developed in
the natural language processing field, to enhance the adaptability of vision-
language models for object detection. By leveraging the intrinsic fusion of
text and visual modalities in these architectures, we extend current baselines
with prompt-based methods and evaluate their performance in few-shot se-
tups. The results demonstrate that the proposed approaches consistently
outperform the baseline method, showing the potential of prompt learning
to specialize foundational models for the task of image annotation with min-
imal supervision.
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Chapter 1

Introduction

1.1 Motivation: The Annotation Bottleneck

The field of computer vision has been one of the most fascinating areas in
recent decades, attracting considerable interest from both researchers and
companies. Giving machines the ability to perceive the world around them
opens up a wide range of possibilities, paving the way for their deeper inte-
gration into human life.

The progress of modern computer vision models has been fueled by the
availability of large-scale, richly annotated datasets. Resources such as PAS-
CAL VOC [1] and MS COCO [2] have enabled the development of highly
accurate supervised models, ranging from early frameworks like Faster R-
CNN [3] to more recent approaches such as YOLO [4] and Transformer-based
architectures [5, 6, 7]. However, this paradigm faces a persistent bottleneck:
the creation of high-quality annotations is labor-intensive, costly, and slow.
For the object detection task, annotating bounding boxes across several ob-
jects requires enormous human effort and expertise, especially in specialized
domains such as medical imaging or industrial defect detection.

For many practical applications, the cost of annotation outweighs the ben-
efits, leading to datasets that are small, weakly labeled, or partially anno-
tated. This limits the deployment of computer vision models in real-world
scenarios where the diversity of classes and contexts cannot be fully captured
by large public benchmarks. Addressing this bottleneck requires automated
or semi-automated annotation strategies that reduce dependence on exten-
sive manual labeling while preserving annotation quality.
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1.2 Problem Statement: Automatic Annota-
tion in Low-Supervision Settings

Previous work has addressed the problem of automated or semi-automated
annotation from several perspectives.

Early methods focused on semi-supervised detection, leveraging limited la-
bels or image-level supervision to train models through pseudo-labeling and
self-training pipelines to exploit unlabeled samples. Works like STAC [8],
which uses a teacher model to extract high-confidence predictions for the
student model for consistency regularizaition, or Unbiased Teacher [9], that
that addresses the class imbalance of pseudo-labels using a Focal Loss [10] and
improve incrementally the teacher model through Exponential Moving Aver-
age [11], significantly advanced the exploration of low-supervision paradigms
in object detection. Although these approaches reduced the need for full
annotations, they remained constrained to a closed vocabulary and required
careful tuning to avoid error accumulation.

Few-shot and meta-learning methods later aimed to generalize to unseen
classes using a handful of examples. Two-stage Fine-tuning Approach [12]
showed that a simple tuning of the last layer can outperform more complex
methods, while in Meta RCNN [13] a module capable of rescaling the input
of the classificaiton head has been proposed in order to adapt the network to
novel classes at test time. While these approaches don’t require any model
generated pseudo-label, they still rely on at least one labeled instance per
class, limiting their applicability to fully automatic labeling.

More recently, the advent of Vision-Language foundation models such
as CLIP [14] and ALIGN [15] has introduced open-vocabulary approaches,
showing remarkable generalization capabilities: by aligning visual and tex-
tual features, model can be prompted through natural language rather than
having fixed classification heads. Models such as YOLOE [16] and Ground-
ingDINO [17] extended this concept to object detection. However, directly
applying these models to new datasets often results in noisy predictions due
to domain gaps, spurious correlations, and the lack of task-specific adapta-
tion.

The central research question is therefore: how can we adapt foundation
models for automatic dataset annotation in low-supervision scenarios, ensur-
ing both efficiency and robustness?
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1.3 Proposed Approach: Prompt Learning for
Automatic Pseudo-Labeling

Building on the limitations of prior methods, recent research has explored
prompt learning as a lightweight strategy to adapt large Vision-Language
models to new tasks or domains with minimal supervision.

Born in the context of Natural Language Processing, prompt learning is a
technique that replaces manually crafted prompts (e.g., “a photo of a class”)
with learnable prompt embeddings.

Handcrafted templates require domain expertise or extensive trial-and-
error, and the same handcrafted phrase that worked in one task/dataset/do-
main could perform poorly in another. Prompt learning was introduced as a
data-driven alternative aiming, through a training process, to optimize the
prompt for the downstream application. This method provides a parameter-
efficient means to adapt large-scale Vision-Language models to new tasks/-
datasets/domains without fine-tuning their billions of parameters.

This approach is trivially adaptable to Vision-Language models due to
their promptable nature. Given the text description of a class, the same can
be specialized through a prompt refining process in order to improve model
performance.

Works like CoOp [18] and LoCoOp [19] have proposed a simple yet effective
way to specialize the CLIP [14] model using learnable prompts, enhancing
its image classification capabilities.

The prompting approach can be naturally extended to models like Ground-
ingDINO [17], which is exactly what this work aims to explore, focusing on
the development of a prompt-enhanced detection module as a step toward a
future automatic pseudo-labeling pipeline. Using these methods, we can spe-
cialize the model to a specific dataset distribution through prompt learning
strategies, leveraging the foundational knowledge of the model to optimize
prompts, while preserving the model’s zero-shot inference capability using
the same parameters.

1.4 Contributions
The main contribution of this thesis is the extension of prompt learning tech-
niques to open-vocabulary foundational Vision-Language models. Specifi-
cally, two previously mentioned methods are adapted from global-level to
region-level tasks, extending them to object detection:
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• Context Optimization (CoOp) [18]: learns a set of continuous “soft
prompts” that guide the model to better align with target categories
using only a small labeled subset.

• Local regularized Context Optimization (LoCoOp) [19]: introduces a
regularization loss to reduce the effect of spurious features (e.g., back-
grounds, irrelevant textures) that often contaminate bounding boxes.

The methods are designed to be parameter-efficient, requiring optimiza-
tion of only the prompt vectors while keeping the foundation model frozen.
This allows for scalable adaptation without the computational burden of full
fine-tuning.

Building on these adaptations, this thesis contributes the following:

• Benchmarking of open-vocabulary detectors (YOLOE and GroundingDINO)
for their suitability in automatic annotation pipelines in the zero-shot
setup.

• Extension of GroundingDINO with prompt learning methods (CoOp
and LoCoOp) to enhance performance in low-supervision settings, which
involves:

– Implementation of a modular PromptLearner framework for inte-
grating soft prompt tuning methods into GroundingDINO architec-
tures.

– Implementation of a modified loss to perform LoCoOp Local Regu-
larization, adapted for object detection.

• Benchmarking of adapted prompt learning techniques for their suitabil-
ity in automatic annotation pipelines under few-shot settings.

• Empirical validation on Roboflow-20VL FSOD dataset, demonstrating
that prompt learning consistently improves pseudo-labeling quality.

14



Chapter 2

Related Work

2.1 The Evolution of Object Detection

Figure 2.1: Object detection milestones from 2001 to 2022.

Object detection is a cornerstone of computer vision, enabling machines
to interpret and interact with the visual world at a finer level of detail than
simple classification. By localizing and identifying multiple objects within an
image, detection provides the structural understanding required for numerous
downstream applications, from autonomous driving and robotics to medical
imaging and content moderation. Unlike image classification, which provides
a global label, object detection offers spatially grounded predictions that
bridge perception and action, forming the basis for higher-level reasoning
tasks such as scene understanding and visual question answering.
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2.1.1 Early Object Detection: Handcrafted Features
Before the rise of deep learning, object detection relied heavily on handcrafted
features and statistical models. Early approaches focused on designing de-
scriptors that captured discriminative visual cues, combined with classifiers
such as Support Vector Machines (SVMs).

The Viola-Jones Detector [20] introduced the first real-time object detec-
tor, based on Haar-like features and a cascade of boosted classifiers. Although
primarily successful for face detection, it demonstrated that detection could
be practical at scale.

Histogram of Oriented Gradients (HOG) [21] became a widely used de-
scriptor, leveraging edge orientation histograms to capture local shape. Cou-
pled with SVMs, it achieved strong performance for pedestrian detection.

Deformable Part Models (DPMs) [22] extended this approach by mod-
eling objects as collections of parts with geometric constraints, improving
robustness to deformation and intra-class variability.

While these methods were foundational, they saturated in performance
due to their limited representational power and reliance on hand-engineered
features.

2.1.2 The Deep Learning Revolution: Two-Stage De-
tectors

The introduction of Convolutional Neural Networks (CNNs) marked a paradigm
shift. Instead of relying on hand-engineered features, CNNs learned hierar-
chical visual representations directly from data. While the idea dates back to
the 1990s [23], it only became feasible at scale with the availability of large
datasets such as ImageNet [24] and the computational acceleration provided
by modern GPUs, culminating in the breakthrough of AlexNet [25] in 2012.

Region Based Convolutional Neural Networks (R-CNNs) [26] pioneered
CNN-based detection by applying selective search to generate region propos-
als, resizing each region, and classifying it with a CNN. While highly accu-
rate, the approach was computationally expensive due to redundant feature
extraction for overlapping regions.

Spatial Pyramid Pooling Networks (SPPNets) [27] addressed this ineffi-
ciency by computing a single feature map for the entire image and applying
Spatial Pyramid Pooling to generate region features of arbitrary sizes, greatly
improving efficiency.

Fast R-CNN [28] unified classification and bounding box regression into a

16



2.1 – The Evolution of Object Detection

single network, enabling end-to-end training.
Faster R-CNN [3] introduced the Region Proposal Network (RPN), replac-

ing selective search with a trainable, nearly cost-free proposal mechanism.
This was the first near real-time detector.

Feature Pyramid Networks (FPNs) [29] improved multi-scale detection
by combining high- and low-level features via lateral connections, enabling
robust detection of objects at different scales.

Cascade R-CNN [30] further refined detection by applying multiple stages
of progressively stricter IoU thresholds, reducing localization errors.

This family of methods established the two-stage detection paradigm,
characterized by high accuracy but moderate speed.

2.1.3 One-Stage Detectors: Speed-Oriented Models
In parallel, researchers sought faster alternatives by eliminating the explicit
proposal stage.

YOLO (You Only Look Once) [4] reframed detection as a single regression
problem. The image was divided into a grid, with each cell directly predict-
ing bounding boxes and class probabilities. This design enabled real-time
inference but sacrificed some accuracy, particularly for small objects.

SSD (Single Shot MultiBox Detector) [31] improved performance by mak-
ing predictions at multiple scales using feature maps from different convolu-
tional layers.

RetinaNet [10] closed the accuracy gap with two-stage detectors by intro-
ducing focal loss, which down-weights easy negative examples and focuses
training on hard positives. This addressed the severe class imbalance be-
tween foreground and background samples, allowing one-stage detectors to
achieve competitive accuracy with significantly higher speed.

Anchor-Free Detectors emerged as an alternative to anchor-based ap-
proaches. CornerNet [32] predicted paired keypoints (top-left and bottom-
right corners), while CenterNet [33] predicted object centers and sizes, sim-
plifying detection and reducing hyperparameter tuning.

One-stage methods have since become dominant in scenarios requiring
real-time inference or large-scale deployment.

2.1.4 The Transformer Era: DETR and Beyond
Despite these advances, CNN-based detectors still relied on complex com-
ponents such as anchor generation, non-maximum suppression (NMS), and
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region proposal networks (RPN). Thanks to the introduction of Transform-
ers to vision, the need for hand-crafted components has been largely reduced
through end-to-end architectures that model object relationships through
attention.

DETR (Detection Transformer) [5] eliminated region proposals and anchor
boxes altogether. Using a transformer encoder-decoder architecture, DETR
modeled global context across the entire image and directly predicted a fixed
set of objects via set-based bipartite matching using the Hungarian loss. This
end-to-end design simplified training pipelines but required long convergence
times and large datasets.

Subsequent improvements such as Deformable DETR [6] accelerated train-
ing by focusing attention on sparse, informative regions, while DN-DETR [7]
improved stability using denoising queries.

Transformers thus opened a new research direction for object detection,
shifting the focus from handcrafted priors to fully learnable architectures
capable of modeling rich image-wide dependencies.

While DETR redefined how visual dependencies are modeled, the next
breakthrough came from extending this reasoning to language itself, aligning
visual and textual features to unlock open-vocabulary detection.

2.2 Foundation Models and Vision-Language
Alignment

2.2.1 Representation of Information in Neural Net-
works

Neural networks work by transforming raw input data into internal repre-
sentations, usually continuous vectors of a specific dimension, that encode
the underlying information useful for a specific task. These representations
are often latent: they’re not directly interpretable, but they are optimized so
that downstream tasks (classification, detection, retrieval, etc.) can use them
effectively. Over time, researchers have put effort into designing or training
networks so that these representations capture the aspects of input that are
relevant for tasks while discarding irrelevant noise.

Based on which features of data are important, the information can be
extracted through different methods, some of which were introduced in the
previous chapter (e.g. CNNs, Transformer, etc.).

A particularly powerful way to formalize these learned representations is
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Figure 2.2: Visual representation of expected behaviour of the vector space
of word embeddings.

through the concept of embeddings. Embeddings represent complex data,
such as words, sentences, or images, as points in a continuous vector space,
where geometric relationships (like distance or direction) capture semantic or
structural similarity. Early work by Bengio et al. [34] introduced distributed
word representations, paving the way for Word2Vec [35], which learned em-
beddings by predicting word contexts. Transformers such as BERT [36]
extended this idea to contextual embeddings, dynamically adapting repre-
sentations based on sentence meaning. In vision, as we will later discuss,
models like CLIP [14] map both images and text into a shared embedding
space, enabling cross-modal reasoning and zero-shot generalization.

Textual and Visual Representation

Textual representations encode semantic and syntactic properties of language
in continuous vector spaces. These embeddings can be token-level (words,
subwords) or sentence-level, and they capture both local and contextual in-
formation [34, 35, 36].

Visual representations encode images into feature vectors that preserve
spatial and semantic content. CNNs traditionally extract hierarchical fea-
tures, while attention-based transformers allow modeling of global depen-
dencies across an image [37, 14].

By establishing robust representations for both modalities, models can
then align text and image information, enabling tasks such as image caption-
ing, text-to-image retrieval, and open-vocabulary object detection, which we
will discuss in the next section.
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2.2.2 From CLIP to Detection: Learning Transferable
Visual Models from Natural Language Supervi-
sion

Figure 2.3: Overview of CLIP architecture.

A major leap in representation learning came with the introduction of
CLIP (Contrastive Language-Image Pretraining) [14]. CLIP demonstrated
that natural language could act as a rich and scalable source of supervision
for visual representation learning, enabling models to generalize to new visual
concepts without explicit task-specific fine-tuning.

CLIP: Model structure and innovation.

CLIP is based on a dual-encoder architecture composed of a text encoder and
an image encoder, trained jointly to project both modalities into a shared
embedding space. The text encoder is a Transformer similar to the one in-
troduced in [37], while the image encoder can be either a Vision Transformer
(ViT) [38] or a ResNet [39]. Unlike traditional supervised vision models
that require labeled datasets with predefined categories, CLIP is trained on
hundreds of millions of image-text pairs collected from the web. Each pair
provides a weak but natural form of supervision, as the text roughly describes
the corresponding image. The image-text pairs are used to connect visual
concepts with language, an approach known as grounding.

CLIP: Alignment of textual and visual features.

The key innovation of CLIP lies in its training objective, a symmetric con-
trastive loss that aligns visual and textual embeddings. Given a batch of N
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image-text pairs, the model computes the cosine similarity between all image
and text embeddings, encouraging the similarity of matched pairs (vi, ti) to
be higher than that of mismatched ones. Formally, this is achieved using a
cross-entropy loss over the similarity matrix:

L = − 1
N

NØ
i=1

log exp(sim(vi, ti)/τ)qN
j=1 exp(sim(vi, tj)/τ)

+ log exp(sim(ti, vi)/τ)qN
j=1 exp(sim(ti, vj)/τ)


where sim(·) denotes cosine similarity and τ is a learnable temperature pa-
rameter. This bidirectional contrastive objective ensures that both modali-
ties learn a common semantic structure, making it possible to retrieve images
given text, and vice versa.

From alignment to visual recognition and detection.

Once trained, CLIP can perform zero-shot classification by comparing the
embedding of an image with embeddings of class descriptions written in
natural language. This alignment between text and vision opened the path
toward open-vocabulary models, which can recognize classes not seen during
training, provided that textual descriptions are available.

Figure 2.4: Overview of GLIP architecture.

The success of CLIP has inspired several extensions that adapt its archi-
tecture to downstream tasks beyond classification, including object detection
and segmentation. Notably, GLIP (Grounded Language-Image Pretraining)
[40] proposed a unified framework that integrates grounding and detection
tasks into a single pretraining objective. By aligning region-level visual fea-
tures with text spans in captions and introducing modality fusion layers,
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GLIP effectively brings CLIP’s global alignment principle to a spatial level,
enabling the model to both localize and name objects in an open-vocabulary
setting.

Following this direction, GroundingDINO [17] further refined the text-
image alignment mechanism by combining the DINO [41] detection backbone
with introduction of language for unseen object generalization.

These advancements represent a natural evolution of CLIP’s philosophy,
from global semantic matching to fine-grained, region-level understanding,
ultimately bridging image-level representation learning with object detection.

Extending this principle to object detection required combining visual
backbones with language-conditioned detection heads. The resulting archi-
tectures allow users to “prompt” the detector with arbitrary text queries,
enabling prompt-based detection of unseen objects.

2.2.3 GroundingDINO: Language-Guided Open-Vocab-
ulary Detection

Figure 2.5: Overview of GroundingDINO architecture.
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Building on the principles of CLIP and GLIP, GroundingDINO [17] rep-
resents one of the most significant advances in text-conditioned object detec-
tion. It extends the DINO object detector [41] by tightly coupling visual and
textual modalities throughout the detection pipeline, enabling promptable
and open-vocabulary detection. The model is capable of localizing and iden-
tifying arbitrary objects or phrases described by natural language prompts,
even if those categories were never seen during training.

Model architecture

GroundingDINO inherits the transformer-based detection structure of DINO
but introduces a multimodal fusion mechanism that allows textual informa-
tion to directly guide the detection process. Its architecture can be divided
into three principal modules:

1. Feature Enhancer: This module fuses multi-scale visual features from
a Swin Transformer backbone with text embeddings produced by a
Transformer text encoder, through different feature-enhancer layers. Each
layer is composed by a deformable self-attention to enhance image fea-
tures and the vanilla self-attention for text feature enhancers. Then, in-
spired by GLIP [40], an image-to-text and a text-to-image cross-attention
module for feature fusion is added. This tight fusion ensures that fea-
tures become aware of the other modality before entering the detection
stage.

2. Language-Guided Query Selection: The goal of this module is to
ensure that the decoder focuses on image regions that are semantically
relevant to the input text.
Let the encoded image features be XI ∈ RNI×d and the text features be
XT ∈ RNT ×d, where d is the shared embedding dimension. To initialize
the decoder, a fixed number of Nq = 900 queries must be selected from
the image features. Instead of sampling them uniformly or randomly,
GroundingDINO selects those that are most relevant to the textual de-
scription.
This relevance is measured by computing a similarity matrix XIX⊤

T be-
tween image and text features. The maximum similarity score across all
text tokens is taken for each image token, and the top Nq tokens are
selected according to:

INq = TopNq

3
max

−1
(XIX⊤

T )
4

, (2.1)
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where TopNq
extracts the indices of the most text-correlated image fea-

tures. The features corresponding to these indices are then used to
initialize the decoder queries.
Following DINO [41], each query is composed of two components: a po-
sitional part and a content part. The positional part encodes spatial
information through dynamic anchor boxes derived from the encoder
outputs, while the content part consists of learnable embeddings that
are refined during training. By selecting queries in this text-aware man-
ner, the model ensures that decoding begins from visually and semanti-
cally grounded regions, effectively bridging the gap between image and
language modalities.

3. Cross-Modality Decoder: The decoder jointly processes the language-
guided queries and multimodal features through a series of cross-attention
and self-attention layers. Each query predicts both a bounding box and
a textual similarity score, determining which text token or phrase best
describes the localized object.

Training objective

GroundingDINO is trained end-to-end with a combination of detection and
grounding objectives, designed to jointly optimize spatial localization and
semantic alignment. Following previous DETR-like works [5, 42, 41], the
model employs an ℓ1 loss and a Generalized IoU (GIoU) loss [43] for bounding
box regression, ensuring accurate localization of detected objects.

For classification, GroundingDINO adopts a contrastive loss inspired by
GLIP [40], aligning predicted visual queries with the corresponding lan-
guage tokens. Specifically, each decoder query is dot-multiplied with the
text feature embeddings to produce logits over text tokens, after which a
focal loss [10] is computed to handle class imbalance and emphasize harder
examples.

A Hungarian bipartite matching strategy is used to associate each pre-
dicted box with its corresponding ground-truth object, based on both clas-
sification and regression costs. The final loss combines all these components
as follows:

Ltotal = λclsLcls + λℓ1 Lℓ1 + λgiouLgiou,

where Lcls denotes the classification loss (computed via focal loss on text-
aligned logits), Lℓ1 is the ℓ1 regression loss on bounding box coordinates, and
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Lgiou represents the GIoU loss. The λ coefficients balance the contribution
of each component.

The matching between predicted boxes ŷi and ground-truth objects yj is
determined by minimizing a cost function that combines both localization
and classification terms:

Lmatch(i, j) = λcls Ccls(ŷi, yj) + λboxCbbox(ŷi, yj) + λgiou Cgiou(ŷi, yj).

Once the optimal bipartite assignment is computed using the Hungarian
algorithm, the final loss is evaluated only on the matched pairs. As in DETR-
like architectures, auxiliary losses are added after each decoder layer and from
the encoder outputs to stabilize training and improve convergence.

This unified optimization framework ensures that the model not only lo-
calizes objects accurately but also learns to ground textual concepts within
the visual domain, effectively bridging the gap between phrase grounding
and open-vocabulary object detection.

Promptable and open-vocabulary capabilities

A key property of GroundingDINO is that it is inherently promptable: at
inference time, the model accepts arbitrary text prompts that directly mod-
ulate the detection process. Because class names or descriptive phrases are
encoded as text embeddings, the model generalizes naturally to unseen object
categories, achieving zero-shot detection. This design represents a shift from
closed-set recognition to open-ended, language-driven reasoning over visual
content.

Performance and results

GroundingDINO exhibits strong performance across a range of zero-shot and
referring-expression tasks. On COCO zero-shot transfer, it achieves 52.5 AP
for object detection, while on the ODinW benchmark (Object Detection in
the Wild) it reports a mean AP of 26.1 across unseen domains. It also
demonstrates excellent phrase grounding ability on datasets such as Ref-
COCO, RefCOCO+, and RefCOCOg. Later versions (GroundingDINO 1.5
and 1.6) further improved zero-shot COCO performance to 54.3 AP and
55.4 AP, respectively, by scaling model size and training on larger ground-
ing datasets [44].

Compared to earlier CLIP-based adaptations for detection, GroundingDINO
achieves tighter text-image integration by using linguistic features to train
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the detection transformer. The combination of early fusion, language-guided
queries, and cross-modal decoding make possible to reach spatial precision
and semantic alignment. This allows a single model to seamlessly handle
detection, grounding, and referring expression comprehension in a unified
manner. In this sense, GroundingDINO marks a key step in the evolution
from global vision-language alignment (as in CLIP) to fine-grained, region-
level understanding required by open-vocabulary detection.

2.2.4 YOLOE: Real-Time Seeing Anything

Figure 2.6: Overview of YOLOE architecture.

In contrast with GroundingDINO, YOLOE [16] represents a CNN-based
approach to open-vocabulary detection, retaining YOLO’s efficiency while
incorporating promptable modules.

YOLOE extends the traditional YOLO detection framework to the open-
vocabulary setting by introducing a unified representation that bridges vi-
sual and linguistic modalities. Unlike standard YOLO architectures, which
rely on a fixed set of predefined classes, YOLOE learns a shared embedding
space where both visual and textual features coexist, similarily to what we’ve
seen with GroundingDINO. This design enables the model to recognize and
localize novel object categories at inference time, guided solely by textual
prompts.

Architecture Overview

YOLOE maintains the core one-stage detection paradigm of YOLO, ensuring
real-time performance while introducing a text-conditioned similarity head
in place of the conventional classification layer. Given visual features Fv ∈
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RH×W ×d extracted by the YOLO backbone and text embeddings Ft ∈ RC×d

derived from a pretrained vision-language model such as CLIP, the model
computes class scores by measuring the similarity between the two modalities:

S = σ

A
FvF ⊤

t

τ

B
, (2.2)

where τ is a learnable temperature parameter and σ denotes the sigmoid or
softmax activation. This formulation replaces the fixed classification layer
with a flexible similarity computation, allowing YOLOE to generalize seam-
lessly to new categories described in natural language.

Training Objective

YOLOE is trained using a dual-branch objective that unifies traditional su-
pervised detection and language-vision alignment. The supervised detec-
tion branch employs standard YOLO losses, including objectness prediction,
bounding box regression, and confidence scoring. The language alignment
branch, on the other hand, introduces a contrastive objective between vi-
sual region embeddings and their corresponding text embeddings, following
the principles of CLIP-style supervision. This hybrid optimization allows
YOLOE to learn both fine-grained localization and semantic alignment be-
tween image regions and linguistic concepts.

Open-Vocabulary Detection

At inference time, YOLOE performs open-vocabulary detection by simply
replacing the category-specific classifier weights with text embeddings of ar-
bitrary labels. The model thus predicts the similarity between visual regions
and the given textual prompts, enabling zero-shot detection of unseen classes
without any retraining or architectural modification. This approach makes
YOLOE capable of both closed-vocabulary detection (on predefined cate-
gories) and open-vocabulary detection (on arbitrary textual queries) within
a single unified framework.
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Performance and Advantages

YOLOE achieves strong zero-shot generalization across datasets such as
COCO and LVIS while maintaining the computational efficiency characteris-
tic of YOLO-based models. It delivers performance comparable to transformer-
based open-vocabulary detectors like GroundingDINO, but with substan-
tially lower computational overhead. By integrating text-conditioned reason-
ing into a one-stage framework, YOLOE represents a significant step toward
efficient and practical open-vocabulary object detection.

2.3 Prompt Learning for Vision-Language
Models

As anticipated in Section 1.2, while foundational models like GroundingDINO
exhibit remarkable zero-shot performance, proving their generalization abil-
ity, the learned semantic isn’t enough to be effective among all domains. For
these reason, several methods have been proposed to specialize these models
on challenging datasets, aiming to preserve their generalization capability
while effectively leveraging the rich knowledge acquired during pretraining
while keeping training time acceptable.

One of these techniques is prompt learning, that originated in the field of
Natural Language Processing (NLP) as a parameter-efficient alternative to
full fine-tuning of large-scale language models. Instead of updating billions of
parameters, prompt learning introduces soft prompts, learnable continuous
vectors prepended or appended to token embeddings, that steer the model
toward a downstream task [45, 46]. This approach enables rapid adapta-
tion with minimal supervision and a drastically reduced number of trainable
parameters, preserving the generalization ability of pretrained models while
improving task specialization.

2.3.1 The Power of Scale
Lester et al. [46] demonstrated that prompt tuning remains highly effective
even when tuning only a small number of parameters, provided that the un-
derlying model is large enough. Their experiments across T5 [47] variants
revealed a scaling law: the performance gap between prompt tuning and
full fine-tuning diminishes as model size increases (Figure 2.7). This finding
established prompt tuning as a scalable and robust strategy for large founda-
tion models, capable of rivaling full fine-tuning while training a much lower
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number of parameters.

Figure 2.7: Visualization of prompt tuning scaling law.

2.3.2 Theoretical Motivation

From a theoretical perspective, prompt learning can be seen as learning in
the input space rather than in the parameter space. The foundation model
parameters θ remain fixed, while the prompt vectors P act as trainable inputs
that condition the model’s internal behaviour:

h = fθ(P, x), (2.3)

where x denotes the original input (e.g., a textual description or an image
embedding), and P encodes task-specific knowledge. By optimizing P , the
model can adapt its internal activation patterns to new domains or tasks
while maintaining the semantic structure learned during large-scale pretrain-
ing. This approach preserves the generalization of foundation models while
introducing controllable, interpretable task conditioning.

Prompt learning is also related to the concept of in-context learning, where
models are guided by examples or textual cues rather than explicit parameter
updates. Unlike discrete text prompts, however, soft prompts are continuous
and differentiable, allowing efficient optimization via gradient descent.
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2.3.3 Prompt Learning in Vision-Language Models
In the context of vision-language models, prompt learning primarily targets
the textual encoder. Since models like CLIP align image and text repre-
sentations in a shared embedding space, modifying the text side via learned
prompts effectively alters how the model interprets visual categories. This
allows the model to adapt to new domains or tasks without altering the
pretrained weights of the backbone.

Early works such as CoOp [18] introduced context optimization, where
learnable prompt tokens replace manually designed text templates (e.g., “a
photo of a [CLASS]”). This enables the model to discover optimal context
representations for each class. Building on this idea, LoCoOp [19] proposed
local regularized context optimization, adding a loss term in order to train
prompts that adaptively capture possible intra-class nuisances. By optimiz-
ing prompts, LoCoOp achieves stronger robustness under the same CoOp
conditions.

2.3.4 CoOp: Context Optimization

Figure 2.8: Overview of CoOp architecture.

Context Optimization (CoOp) [18] is one of the pioneering works that in-
troduced prompt learning into the vision-language domain, extending tech-
niques originally developed for Natural Language Processing (NLP) to mod-
els such as CLIP. Its core motivation lies in overcoming the inefficiency and
suboptimality of manual prompt engineering, while enabling efficient adap-
tation of large pre-trained vision-language models to downstream datasets.
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Motivation

Models like CLIP leverage hand-crafted textual templates such as “a photo of
a [CLASS]” to encode class names into the shared vision-language embedding
space. While this design allows zero-shot generalization to unseen categories,
these manually designed prompts are not necessarily optimal for downstream
datasets with domain shifts or task-specific nuances. The process of designing
textual templates is labor-intensive, requires domain knowledge, and cannot
guarantee performance consistency across datasets.

Core idea

CoOp replaces the fixed natural language context in textual templates with
a set of learnable continuous vectors, also known as soft prompt tokens,
which can be optimized end-to-end using a small number of labeled samples.
These vectors serve as continuous substitutes for words in the textual prompt,
allowing the model to automatically discover the most informative contextual
cues that align textual and visual features.

Formally, let fV (·) and fT (·) denote the frozen CLIP image and text en-
coders, respectively. In CLIP, the textual representation of a class c is typi-
cally obtained by encoding a template such as:

tc = “a photo of a [CLASS]”,

and computing the corresponding text feature zc = fT (tc).
In CoOp, instead of relying on the manually fixed phrase “a photo of a”

as prefix to guide classification, the template is parameterized by M learn-
able context vectors P = {v1, v2, . . . , vM}, each of dimension d (matching the
token embedding dimension of the text encoder, i.e. the vector representa-
tion of the word). The method involve concatenating those vectors to token
embeddings of the prompt, thus for class c we have:

ec = [v1, v2, . . . , vM , embed(c)],

where embed(c) is the embedding of the class name token. These learnable
tokens vi are jointly optimized with respect to the downstream classification
objective, while the text encoder fT and image encoder fV remain frozen.

Training objective

Given an image x and its corresponding label y, the CLIP-style similarity
score between the visual feature fV (x) and the textual feature fT (tc) for class
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c is computed via cosine similarity:

sim(x, c) = fV (x)⊤fT (tc)
∥fV (x)∥ ∥fT (tc)∥

.

The model’s prediction probability is given by:

p(y|x) = exp(sim(x, y)/τ)qC
c=1 exp(sim(x, c)/τ)

,

where τ is a learnable temperature parameter. The cross-entropy loss over
the training dataset D = {(xi, yi)} is minimized to optimize the context
vectors:

LCoOp = − 1
N

NØ
i=1

log p(yi|xi).

During training, gradients are propagated through the text encoder to the
learnable prompt vectors vi, enabling them to capture the contextual seman-
tics that maximize alignment with visual features for the target dataset.

Parameter efficiency

A key advantage of CoOp is that only the context vectors P , typically a
few dozen parameters, are trainable, while the multimodal backbone remains
frozen. This drastically reduces computational cost and prevents catastrophic
forgetting of the pre-trained knowledge. In practice, CoOp achieves signif-
icant performance gains over manual prompts using as few as 16 training
samples per class, highlighting its strong data efficiency.

Context modalities

CoOp can be implemented in two variants:

• Shared-context: The same context vectors P are shared across all
classes, enforcing a common embedding template that captures global
contextual information.

• Class-specific context: Each class c has its own context set Pc =
{vc,1, . . . , vc,M}, allowing the model to learn finer, class-dependent tex-
tual cues. This variant provides greater flexibility but at the cost of
additional parameters.
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Empirically, class-specific CoOp tends to achieve higher accuracy on the
seen (base) classes but may overfit, leading to weaker transfer to unseen
categories. Shared-context CoOp, while less expressive, shows more robust
generalization.

2.3.5 LoCoOp: Local Regularized Context Optimiza-
tion

Figure 2.9: Overview of LoCoOp architecture [19]. CLIP local features from
background regions are treated as pseudo-OOD samples during training, en-
forcing separation between in-distribution (ID) and OOD representations.

Local Regularized Context Optimization (LoCoOp) [19] was proposed
to overcome some CoOp limitations. It introduces an Out-of-Distribution
(OOD) regularization mechanism within the prompt learning framework, en-
abling CLIP to avoid overfitting on few-shot distributions.

Motivation

While CoOp [18] introduced learnable prompts that significantly improved
few-shot adaptation efficiency, its formulation remains limited when applied
to OOD data. CoOp optimizes prompt embeddings so that image features
and class text embeddings of In-Distribution (ID) samples are closely aligned.
However, this training objective also causes the model to inadvertently asso-
ciate ID text embeddings with ID-irrelevant visual regions (e.g., backgrounds
or co-occurring objects). As a result, the learned text features contain nui-
sance information, leading the model to assign artificially high confidence to
OOD images that share similar background cues.
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For this reason, LoCoOp method try to expoit ID-irrelevant regions to
make the learned prompt nuisances-aware. To achieve this, instead of re-
lying on external OOD data, LoCoOp leverages the local features of CLIP
itself, particularly those corresponding to background or object-irrelevant re-
gions, as pseudo-OOD features during training. By explicitly pushing these
nuisance features away from all ID text embeddings, LoCoOp purifies the
learned prompts, yielding cleaner and more discriminative representations
for OOD detection.

Core idea

CLIP classification process relies on a global feature vector of the image,
thereby discarding locality. LoCoOp idea is to leverage this local informa-
tion in order to improve performance. For each local region, there should be
a way to extract an indication of its ID-irrelevancy. The method relies on a
simple yet effective assumption: a local region is likely an ID-irrelevant re-
gion if, based on its similarities with textual features describing the class, the
ground truth class logit doesn’t figure among the top-K values. In this way,
using a strong foundational model, LoCoOp trusts the model and its zero-
shot capability, assuming that it’s capable at least to detect ID-irrelevancies,
assigning lower scores to those patches that represent background informa-
tion.

Training objective

LoCoOp builds upon CoOp’s formulation, where an image encoder fV (·) and
a text encoder fT (·) from CLIP are kept frozen, and a set of learnable context
vectors P = {v1, v2, . . . , vM} is optimized. Similarily to what we’ve seen with
CoOp in Section 2.3.4 the classification probability for an ID image xin and
its label y is computed as:

p(y|xin) = exp(sim(xin, y)/τ)qC
c=1 exp(sim(xin, c)/τ)

,

, and the corresponding loss is the standard cross-entropy:

LCoOp = − 1
N

NØ
i=1

log p(yi|xin
i ).

To enhance OOD robustness, LoCoOp introduces a regularization term.
First, local region features fV (xin

j ) are extracted from CLIP’s feature map
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and projected into the text embedding space. For each image xin, regions
that are irrelevant to the ID object, that is, whose ground-truth class does
not appear among the top-K predicted text similarities, are collected into a
set J :

J = {j : rank(pj(y|xin
j )) > K}.

For each such region j ∈ J , LoCoOp maximizes the entropy of its pre-
dicted class distribution, encouraging it to be dissimilar from all ID text em-
beddings. This is achieved by maximizing the average of all the ID-irrelevant
regions entropy in the image:

LOOD = − 1
N

JØ
j

H(pj),

where H(·) denotes the Shannon entropy. This operation effectively teaches
the model that ID-irrelevant features (e.g., backgrounds) should not correlate
with any known class representation.

The final training objective combines the standard CoOp loss with the
OOD regularization term:

LLoCoOp = LCoOp + λLOOD,

where λ controls the strength of the OOD regularization.
This regularization scheme allows LoCoOp to better adapt to OOD con-

ditions without requiring external datasets, by pushing background (pseudo-
OOD) features away from class text embeddings. Consequently, LoCoOp
reduces overconfidence on unseen data and improves separation between ID
and OOD regions.

Figure 2.10: LoCoOp extracted ID-irrelevant regions.
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CoOp vs LoCoOp

The results of the work, show that LoCoOp is better at imporoving the model
performance with respect to CoOp, proving that regularization is beneficial
for the prompt tuning process. Furthermore, its overhead is not a concern,
since it takes only 1.4x training time compared to CoOp. The only downside
is that LoCoOp introduces a new hyperparameter: the K parameter influence
directly how ID-irrelevant regions are calculated, and it has to be carefully
tuned to get the best results by the model.

2.3.6 Prompt Learning in Object Detection
While CoOp and LoCoOp were initially designed for image classification with
CLIP, their principles naturally extend to other promptable models.

Foundational object detection models like GroundingDINO provide strong
open-vocabulary detection backbones, but without adaptation, they may
yield noisy pseudo-labels. By integrating CoOp and LoCoOp into Ground-
ingDINO, this work aims to enhance the model’s annotation quality under
limited supervision, bridging the gap between foundational models and prac-
tical use cases.

The following chapter establishes the technical foundation for the proposed
methodology, showing how advances in object detection, foundational mod-
els, and prompt learning enable better performance through efficient model
tuning, thereby paving the way for automatic, low-cost dataset annotation.
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Methodology

3.1 Overview of the Proposed Methodology
What follows is the results of the extentions of Context Optimization (CoOp) [18]
and Local Context Optimization (LoCoOp) [19] to the task of open-vocabulary
object detection using the GroundingDINO [17] framework. These textual
prompt learning strategies, originally developed for classification, are adapted
to guide region-level detection. Figure 3.1 provides a high-level overview of
the system architecture.

3.1.1 System Architecture Overview
As detailed in Section 2.2.3, GroundingDINO extends the DINO [41] de-
tector by tightly coupling image and text modalities throughout the detec-
tion pipeline, enabling language-guided and open-vocabulary detection. Its
transformer-based architecture fuses visual and textual features across mul-
tiple stages, allowing natural language prompts to influence decoding in the
final layers of the model.

In this work, we extend GroundingDINO by introducing a PromptLearner
module positioned between the text encoder and the multimodal fusion blocks.
This component produces a set of learnable prompt embeddings P ∈ Rnctx×d

that act as contextual tokens conditioning the text encoder on the down-
stream dataset. Rather than relying solely on static textual representations
such as tokenized class names, the PromptLearner generates additional vec-
tors that are optimized to adapt the language branch result to the target
detection domain.

For each class c, the resulting prompt-conditioned textual embeddings
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Figure 3.1: Overview of the proposed pipeline integrating CoOp and LoCoOp
into GroundingDINO.

are processed by the other layers of the model, where they interact with the
visual tokens extracted by the visual backbone through cross-attention layers.
This integration allows the model to perform grounded detection guided by
optimized textual context instead of static labels, improving adaptability
under limited supervision or domain shifts.

The following sections describe how this architectural extension is special-
ized through the two previously introduced prompt learning strategies, CoOp
and LoCoOp, and how they are adapted to the GroundingDINO framework
for object detection.
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3.2 Adaptation of CoOp to Object Detection
in GroundingDINO

Theoretical Aspects

The original CoOp [18] method learns a set of continuous context tokens
that condition the textual feature of the description of the image in order to
improve classification precision. To adapt this to object detection, we treat
the prompt embeddings as learnable modifiers of the class textual features
extracted by GroundingDINO text backbone.

The learned prompts are prepended to the text encoder output of the class
name, determining the first difference with the original CoOp, that learned
the prompt at the token embedding level. Formally, for each class c, we
concatenate nctx learnable context vectors P = {P1, P2, . . . , Pnctx} with the
text encoder output, forming the final prompt embedding:

XTc = [ P1, P2, . . . , Pnctx, fT(c) ]. (3.1)

Here, fT(·) denotes the text encoder that maps the class description to its
embedding space, and nctx is the number of context vectors to optimize.
By indicating with nc the number of tokens produced by the tokenizer for
the class name c, XTc ∈ R(nctx+nc)×d represents the final prompt-conditioned
textual embedding used by the model to represent the class description.

The learnable context vectors can be either shared among all classes or
unique for each class. In the first case, the model optimizes a parameter
matrix P ∈ Rnctx×d, while in the second case P ∈ R(nctx·nclasses)×d.

The context vectors are initialized from a normal distribution and op-
timized jointly with the detection objective, determining the another shift
from original CoOp formulation. Indeed, instead of using a different loss
with respect to the model in which it’s used, the learning process is tailored
naturally to the original model loss. In this way the prompts are optimized
not only for classification, but even for bounding box regression, using the
following loss:

Ltotal = λclsLcls + λℓ1 Lℓ1 + λgiouLgiou

, where Lcls denotes the Focal Binary Cross Entropy, and its defined as:

39



Methodology

BCE(z, y) = −[y log σ(z) + (1− y) log(1− σ(z))]
pt = yσ(z) + (1− y)(1− σ(z))
αt = yα + (1− y)(1− α)

ℓi,q,c = αtBCE(zi,q,c, yi,q,c)(pt,i,q,c)γ

Lcls = 1
N+

Ø
i,q,c

ℓi,q,c

; the term Lℓ1 is the ℓ1 regression loss on bounding box coordinates, defined
as:

Lℓ1 = 1
N

Ø
i,q

||bi,q − b̂i,q||1

; while the last term Lgiou represents the GIoU loss, defined as:

LGIoU = 1
N

Ø
i,q

3
1−GIoU(bi,q, b̂i,q)

4
,

GIoU(bi,q, b̂i,q) = |bi,q ∩ b̂i,q|
|bi,q ∪ b̂i,q|

− |Ci,q| − |bi,q ∪ b̂i,q|
|Ci,q|

,

Finally, the prompt-conditioned textual embeddings XTc are fused with the
visual tokens extracted by the vision backbone through the following layers
of the network, enabling grounded detection conditioned on textual prompts.

Motivation

The expected results of this adaptation is that prompts optimize to condition
the textual branch in order to align better to the visual features of the specific
dataset in exam. Since the training uses the same objective as the original
model, it should learn not only to classify better the predicted bounding boxes
but also to localize object more accurately. Moreover, appending prompts
after the textual backbone should mimic the behaviour of a text embedding
of a token, while removing a possible source of signal attentuation that is the
textual backbone itself, concentrating more in the network fusion part.

Implementation Details

The PromptLearner is implemented as a learnable embedding layer ini-
tialized from a Normal distribution with µ = 0 and σ = std What the
PromptLearner do is to take the encoded text from the text backbone of the
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model, and, for each encoded token describing a specific class, it insert at its
beginning the vectors of the context (the same for all classes if the context
is unified, while a different context for each class if not). The pseudocode at
Algorithm 1 outlines the class responsible for the modification of the texutal
prompt.

Algorithm 1 PromptLearner
1: Input: nctx, ctxdim, csc, ncls, std, des_norm
2: if csc is True then
3: ctx ∼ N (0, std2)[nctx × ncls, ctxdim]
4: else
5: ctx ∼ N (0, std2)[nctx, ctxdim]
6: end if
7: if des_norm defined then
8: Normalize each ctx vector to norm = des_norm
9: end if

10: function Forward(embeddings, position_ids, add_ctx)
11: for each idx z where position_ids = 0 (excluding [CLS], [SEP]) do
12: Insert nctx before z the context vectors
13: end for
14: return modified embeddings
15: end function

As we outlined in Section 3.2, training follows the same objective as the
base model, using the GroundingDINO loss to propagate gradients backward
in order to optimize prompt values.

3.3 Adaptation of LoCoOp to Object Detec-
tion in GroundingDINO

Theoretical Aspects

LoCoOp [19] extends CoOp by introducing a regularization loss that discour-
ages spurious correlations between object appearance and background. We
follow the original formulation, adapting it to the bounding-box level.

Specifically, we add the LoCoOp entropy-based regularization term to the
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loss, but this time it’s computed over the image regions enclosed by each pre-
dicted bounding box. The ground truth label is extracted through Hungar-
ian matching algorithm, that uses a cost function described in Section 2.2.3
to find a one-to-one matching between predicted and ground truth bound-
ing boxes. The local regions cosine similarities between visual and textual
features are then taken into consideration to regularize against possible nui-
sances inside the bounding box.

If the region-text similairy of the ground truth text description of the class
do not rank within the top-K highest values, then the region is considered
to be an ID-irrelevant one, and used for the regularization in the loss.

J = {j : rank(pj(y|xin
j )) > K}

Given predicted probability distribution pj for non-topK local regions j,
for each matched bounding box q we have:

LOOD = − 1
Nq

Ø
q

1
Nj

Ø
j

H(pj),

where H(·) denotes entropy. The term is then integrated in the original
GroundingDINO loss as follow:

Ltotal = LGD + λLoCoOpLOOD

In this way, learned prompts encourages the model to remain uncertain
about background areas, improving robustness to domain shift.

Motivation

LoCoOp prompts condition the model same way as CoOp do, sharing the
same structure of concatenation and backpropagation. The main reason to
prefer LoCoOp is that it tries to make the prompts uncertain about sus-
pected spurious correlation. What we expect from this implementatin is a
drop in wrong bounding boxes confidence. A direct influence of this method
could be in the langauge-guided query initialization process: since the regu-
larization tries to maximize entropy of non topK patches through similarity
between text and visual, almost the same used for query selection, the pro-
cess could learn to select better queries for initialization, discarding false
positives. Qualitatively speaking, we expect that areas that are crowded by
multiple bounding box at different confidence level will be in a way filtered,
making wrong and duplicate boxes lower in confidence.
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Implementation Details

LoCoOp adopts the same prompt-learning strategy as CoOp but introduces
an additional loss module in the training loop. The PromptLearner module
remains largely identical to the CoOp adaptation, with the main differences
residing in the other components of the model.

In our Tranformer layer adaptation, by taking the fused multimodal fea-
tures output by the Feature Enhancer, normalizing them, and performing a
matrix multiplication, we obtain the cosine similarity between textual token
features and visual patch features (Algorithm 2).

From this similarity matrix, the regions used for regularization are selected
following the principles of the original LoCoOp, with two main adaptations

1. The similarities are now computed between image patches and text to-
kens; since GroundingDINO uses a sub-word tokenizer, a class can be
described by more than one token; for this reason, token-level similari-
ties belonging to the same class are projected to produce a patch-class
similarity matrix through a one-hot encoding of class-token mapping
(Algorithm 4).

2. The classification regularization is extended to detection by computing
the regularization term within each predicted bounding box, so we have
to aggregate across all boxes to obtain the final value (Algorithm 4).

For each prediction, the entropy calculation involves computing the aver-
age entropy over the selected ID-irrelevant patches of the bounding box. The
ID-irrelevant region are selected by taking regions in which the similarities
with ground truth class isn’t among the topK values (Algorithm 3).

Regularization computation ends averaging over all the detections in the
batch. (Algorithm 4).

43



Methodology

Algorithm 2 CustomLoCoOpTransformer
1: Input: srcs (multi-scale visual features), masks, refpoint_embed,

pos_embeds, tgt, text_dict
▷ Step 1: Feature Enhancer

2: Encode multimodal inputs:
memory ← visual embeddings
memory_text← text embeddings

3: Initialize query embeddings (tgt) and reference boxes (refpoint_embed).
▷ Step 2: Multimodal Decoder

4: Decode multimodal representations:
(hs, references)← TransformerDecoder(memory, tgt, refpoint_embed)

▷ Step 3: LoCoOp similarity computation
5: Normalize features:

memory_norm← normalize(memory, L2)
text_norm← normalize(memory_text, L2)

6: Compute cosine similarity:
sim_flat← memory_norm× text_normT

7: Store per level similarity results in text_dict:
{sim_flat_lvl, sim_flat_lvl_avg}

▷ Step 4: Return
8: return hs, references, hs_enc, ref_enc, init_box_proposal

Algorithm 3 EntropySelectTopK
1: Input: p (class similarities [n_features, n_classes]), top_k, label,

num_of_local_feature
2: Apply softmax over classes:

p← Softmax(p)
▷ — Exclude regions containing the ground-truth label —

3: pred_topk ← TopKIndices(p, top_k)
4: contains_label← (pred_topk == label)
5: selected_p← p[not contains_label]

▷ — Compute entropy over selected regions —
6: entropy ← −mean

1q
selected_p · log(selected_p + 10−5)

2
7: return entropy
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Algorithm 4 SetCriterion with LoCoOp Regularization
1: Input: outputs, targets, indices, num_boxes
2: Parameters: locoop_top_k, locoop_weight
3: Compute index mapping between matching prediction-target.
4: Normalize pos_maps ▷ one-hot token-class mapping
5: for each batch b in matching indexes do
6: Get boxesb, labelsb

7: Select first similarity level sim_map← sim_levels[0][b]
8: for each (box, label) in (boxesb, labelsb) do
9: Convert box from (cx, cy, w, h) to pixel coordinates

10: Extract local region:
local_sim← sim_map[y1 : y2, x1 : x2, :]

11: Project to class space:
local_class_sim← local_sim× pos_mapsT

b

12: Compute entropy regularization:
loss← −EntropySelectTopK(local_class_sim, locoop_top_k, label)

13: Append loss to locoop_losses
14: end for
15: end for

▷ — Aggregate and return —
16: loss_locoop← mean(locoop_losses)× locoop_weight
17: return {loss_locoop}
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Chapter 4

Experiments and Results

In this chapter, the focus will be moved to the evaluation of prompt-based
conditioning, to explore whether it improves adaptation in few-shot detection
scenarios consistently.

4.1 Experimental Setup

4.1.1 Benckmark

Datasets

Both CoOp and LoCoOp adaptations are trained on Roboflow-20VL, a chal-
lenging dataset built in order to measure the ability of foundation mod-
els to localize objects from a few visual examples and textual descriptions.
Roboflow-20VL (RF20) is a set of different sub-datasets developed in col-
laboration between Roboflow and Carnegie Mellon University as part of the
Foundational Few-Shot Object Detection Challenge [CVPR 2025].

Designed to assess the capability of foundation models to localize objects
from a few visual examples and textual descriptions, provides a benchmark
for few-shot multimodal learning. The dataset consists of 20 heterogeneous
sub-datasets drawn from distinct domains, such as supermarket product lo-
calization, defect detection, and action contextualization, as well as diverse
imaging modalities, including X-rays, thermal imagery, and aerial photogra-
phy.

Each sub-dataset provides few annotation, encouraging the exploration of
limited supervision techniques.
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State-of-the-art foundation models such as Qwen 2.5VL and Ground-
ingDINO achieve less than 1% accuracy on many RF20 datasets, highlighting
the benchmark’s difficulty. Consequently, RF20 provides an ideal testbed for
analyzing the robustness, adaptability, and semantic alignment of prompt-
able and few-shot-aware models such as the one proposed in this thesis.

Table 4.1: Overview of datasets composing the benchmark. Domain is
choosen over dataset name since more informative. Each of the entries be-
long to one dataset only.

Domain #Images #Classes
Volleyball Actions 523 6
Aerial Airplans 42 1
UI Elements 183 10
Aquatic Life 152 7
Railway Components 253 4
Dental X-ray 175 4
FLIR Camera 564 4
Wheat Head 509 1
Lacrosse Components 113 4
Wood Defects 210 5
Snack Packages 132 8
Document Structure 853 19
Waste Material 302 6
Soda Bottles 246 3
Dreidels and Letter 158 6
Wildlife Trail 167 2
Water Meter Digits 220 10
White-Backed Animal 201 3
Wildfire Smoke 95 1
Hand X-ray 458 6
total 5556 110

Metrics

To compare a prediction with its ground truth in visual tasks, it’s often used
a metric called Intersection over Union (IoU) to give a measure of how two
visual region are matching each other. IoU equation (Figure 4.2) is used to
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Figure 4.1: Examples of Roboflow 20VL datasets images.

calculate the ratio between the intersection and the union of two boxes or
segmentation masks.

Figure 4.2: Visualization of IoU equation.

Through IoU, if two boxes are far away, not sharing any of their area,
the ratio approaches zero; while, for perfectly matching boxes, it approaches
1. This metric is used in order to consider, given a specific threshold, if a
predition is a true positive or not, given the ground truth to be compared
with.

IoU is used inside metrics such as Average Precision (AP) in order to
combine precision and recall into a single number. Precision and recall are
formally described as:
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precision = TP

TP + FP

recall = TP

TP + FN

To get precision and recall values in vision tasks, predictions are sorted
decreasingly based their confidence: at each level, just predictions having a
greater or equal confidence score are considered. In this way we’re saying
that, above that confidence score, the model is capable to obtain that values
of precision and recall, given an IoU threshold. For each new prediction con-
sidered, we one between TP and FP increases, respectively if that’s a correct
or wrong prediction, while the precision increases or decreases accordingly.
FN decreases when a new TP is found, making the recall value always not
decreasing. The ideal condition is that, for each new prediction, we have a
TP , so that the value of precision is always 1 while recall increases. The gen-
eral definition of AP is the area under the precision-recall curve (Figure 4.3):

AP =
Ú 1

0
p(r)dr

, greater value of this area means the model is performing better. In most
framework, the value of AP is obtained discretely sampling precision at recall
interval, using this value to numerically integrate the curve.

Figure 4.3: Precision recall curve example.

The COCO standard benchmark AP is indeed calculated sampling 101
points of the precision-recall curve. Moreover, COCO AP is an average of
APs at different IoU threshold intervaled by a fixed range of 0.05, giving an
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indication of both strong localization capabilities (e.g. IoU = 0.9) while still
looking if the model is capable of detecting object at all (e.g. IoU = 0.5).
Typical IoU values for the COCO IoU thresholds are 0.5 : 0.05 : 0.95, 0.5
and 0.75.

Experiments

All the experiments are conducted in order to prove the effect of few-shots
prompt-learning techniques on GroundingDINO model, comparing three main
configurations:

• Baseline: the original GroundingDINO without any prompt adaptation.

• CoOp: GroundingDINO equipped with a prompt learner module as de-
scribed in Section 3.2.

• LoCoOp: CoOp GroundingDINO with the additional local regulariza-
tion term introduced in Section 3.3.

For the baseline, we report performance on a zero-shot setup, to check for
any improvement from the base model, while for the other configuration as
anticipated, experiments are conducted under few-shot regimes, varying the
number of samples per class (k ∈ {4, 8}).

Sampling for few-shot setup

In order to perform few-shot learning, we have to implement a strategy to
build a subset of the dataset composed ideally by nshots samples (bounding
boxes) for each class we have in our dataset. Dealing with a variable annota-
tion number for each image, imposes to build a sampling process that either
discard some annotation to match exactly the nshots number, or accept some
minimal variability to the number of samples taken per class. Among these
two choises, the second seems more reasonable, since removing annotations
from an image could negatively affect the model’s ability to recognize the ob-
jects present in that image. So the sampling strategy could be summarized
in the following points:

1. Each class must include at least the required number of annotations to
satisfy the chosen number of shots for the experiment.

2. For classes that ends up having more than the specified number of shots,
the number of included annotations is kept as low as possible while still
meeting all constraints.
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3. The final solution is found in a way that the number of classes exceeding
the shots number is keep as low as possible.

Training Details

In accordance with the CoOp and LoCoOp training setups, we use the
AdamW optimizer with a learning rate of 0.002, a linear warm-up over the
first 10 epochs (from 0 to 0.002), and a cosine annealing schedule for the
remaining epochs. The batch size is set to 4 and the number of epochs for
all the experiments 100.

For the GroundingDINO loss, the weights used are 2.0 for the focal loss, 5.0
for the ℓ1 loss, and 2.0 for the GIoU loss, while for the LoCoOp regularization,
we used a weight of 0.25 following the original work.

For the pretrained checkpoint, all experiment are performed initializing
GroundingDINO through official weights linked in the official repository.

A summary of training parameters is shown in Table 4.2.

Table 4.2: Training configuration summary.

Parameter Value
Learning rate 0.002
Learnig rate scheduling linear[: 10]+cosine[10 :]
Batch size 4
Epochs 100
Focal loss coef. 2.0
L1 loss coef. 5.0
GIoU loss coef. 2.0
LoCoOp reg. coef. 0.25

4.2 Quantitative Results
The initial experiment aimed to evaluate the performance of the baseline
GroundingDINO models and determine which visual backbone between the
lighter Swin-T or the heavier Swin-B is better to use in subsequent experi-
ments. As results reported in Table 4.3 show, Swin-B achieves better perfor-
mance in all IoU thresholds, so it will be used as a baseline for our methods
evaluation.
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Table 4.3: GroundingDINO baseline performances.

Visual Performance
Backbone AP AP50 AP75

Swin-T 13.62 18.63 15.49
Swin-B 17.63 24.15 20.45

After conducting multiple experiments with varying configurations for the
CoOp and LoCoOp extentions, we have shown that prompr learning improve
the accuracy of GroundingDINO consistently, as shown in Table 4.4. Even
at higher IoU threshold, we achieve strong improvement over the baseline,
showing that implemented techniques are contributing positively to the lo-
calization power precision of the model. Each setup reported in Table 4.4
is presented with its best-performing configuration, as identified through the
ablation studies discussed in Section 4.4.

Table 4.4: GroundingDINO best-setup few-shot performances.

Performance
Method Shots AP AP50 AP75
GroundingDINO 0 17.63 24.15 20.45
CoOp 4 33.93 45.18 37.73
CoOp 8 37.77 50.22 42.88
LoCoOp 4 35.47 47.02 39.89
LoCoOp 8 39.75 53.24 44.68

4.3 Qualitative Results
To evaluate qualitatively LoCoOp reuglarization, we report results of patches
selection of best selected model through different training epochs in Fig-
ure 4.4. As we can see, through the learning process, more patches of the
object that must be detected are excluded from the regularization process,
suggesting that the model is learning better patch level text-visual aligning.

While in Figure 4.5, we can see that the baseline already have localization
capabilities, but perform poorly in classification. LoCoOp regularization
helps improving the model, correctly classifying objects that were previously
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Figure 4.4: Example of locoop regularization on image patches over time.
Greyed out patches are those that aren’t taken to regularize the model.

misclassified.

4.4 Ablation Studies

We’ve setup different experiments in order to verify the contribution of each
component of the model. The experiments are about the number of context
tokens and the topK parameter in the Local Regularization.

Regarding the context length, the experiments (reported in Table 4.5)
generally show that increasing the amount of context leads to improved per-
formance. We have a large initial increase in performance just introducing
context—about +8.98 between the chosen baseline and the lowest-performing
setting—while variations in context length within the same context type and
shot configuration yield an average improvement of approximately +0.55.
Instead, regarding the context type, we can notice that it’s the most condi-
tioning setup overall, with its shift between the best configuration of Unified
Context and Class-Specific Context of +7.18.

As expected, learning a specialized prompt for each specific class improve
more than learning a unified context for the whole dataset. But, while class-
specific context dispense better results, unified context is still interesting,
since could possibly encode broader information about the dataset global
distribution.

Regarding Local Regularization (experiments reported in Table 4.6), we
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Figure 4.5: Comparison of base model with the best performing setup. On
the left we can see the results of the baseline model, while on the right the
best performing setup (LoCoOp with topK=1, shots=8, class-specific context
= 8).

observe an average improvement of +2.28 compared to the CoOp-only im-
plementation, when keeping all other parameters fixed. This shows the ef-
fectiveness of the regularization with respect to possible nuisances present in
the data.

As for the topK ablation, the trend is less straightforward: in some config-
urations, strong regularization (with the maximum value, topK = 1) yields
the best performance, while in others, the optimal setting is found close to
the maximum but not at its extreme.
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Table 4.5: CoOp context length ablation results.

Context Performance
Type Length Shots AP AP50 AP75

Uni

4 4 26.61 36.11 30.15
8 27.23 36.26 30.28
4 8 30.09 40.22 33.74
8 30.59† 40.12 33.49

CS

4 4 32.95 43.67 37.03
8 33.93* 45.18 37.73
4 8 37.64 50.16 42.46
8 37.77*† 50.22 42.88

* Best performance for few-shot setup configuration
† Best performance for context type configuration

Table 4.6: LoCoOp TopK value ablation results.

Context Local reg. Performance
Type Length Shots Weight TopK AP AP50 AP75

Uni 8 4 0.25
0.4 29.80 38.94 34.19
0.2 29.80 39.32 34.37
1.0 29.64 38.80 34.54

CS 8 4 0.25
0.4 33.98 45.17 38.30
0.2 33.84 45.51 38.29
1.0 35.47 47.02 39.89

CS 8 8 0.25
0.4 39.16 51.99 44.09
0.2 39.23 51.58 43.60
1.0 39.75 53.24 44.68

4.5 Discussion
Prompt-based adaptation dominates zero-shot

Few-shot prompt tuning (CoOp) yields large improvements over the baseline
(Table 4.4 and Table 4.5). With class-specific context and 8 shots, AP rises
from 17.63 to 37.77 (+20.14 AP), and even with only 4 shots AP reaches 33.93
(+16.30). These gains confirm that learning textual prompts is a parameter
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efficient way to adapt large vision-language models to unseed classes under
scarce supervision.

Context semantics outweigh context length

Across matched settings, class-specific context outperforms uniform context
by a wide margin: at 4 shots and length 8, class-specific outperform uniform
context by +6.70 AP; at 8 shots and length 8, by +7.18 AP (Table 4.5). In
contrast, increasing context length from 4 to 8 tokens brings only modest
gains (on average ≈+0.56 AP across settings), with diminishing returns at
higher data regimes (e.g., CS 8-shot: +0.13 AP). Learning highly specialized
set of prompts, class-specific context learns to guide the model encoding the
semantic useful to detect the class. This suggests that what the context
encodes matters substantially more than how much context is provided.

Local Regularization (LoCoOp) provides further, reliable gains

Adding the locality regularizer on top of CoOp improves both AP and high-
IoU metrics (Table 4.6, Table 4.4). For CS, 8-shot, length 8, LoCoOp with
TopK=1.0 raises AP by +1.98, AP50 by +3.02, and AP75 +1.80. In a lower-
data/less-informative setting (Uni, 4-shot, length 8), LoCoOp still brings
+2.41 to +2.57 AP depending on TopK, with particularly strong improve-
ments at AP75 (+3.91 to +4.26), suggesting better box tightness and spatial
precision under data scarcity

By the higher AP50 value, we can state that the model learn to stabi-
lize prompt vectors, matching visuals features across images more reliably.
Moreover, the value of AP75, suggest that even localization has improved.

Sensitivity to the locality hyper-parameter

TopK interacts with the data regime: for CS/8-shot, the best AP is with
TopK=1.0; for Uni/4-shot, several TopK values tie on AP but trade off AP50
vs. AP75. This indicates the regularizer can be tuned either for recall/confi-
dence (higher AP50) or for tighter localization (higher AP75), depending on
deployment needs.
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4.6 Conclusion and Future Work
This work investigated prompt-based adaptation strategies for open-vocabulary
object detection using the GroundingDINO framework. Through systematic
ablations, we analyzed the influence of number of shots and the proposed
adaptation of Context Optimization and Local Regularization modules.

Prompt learning methods like CoOp yield substantial gains even in ex-
tremely low-shot settings, and their effectiveness depends more on the seman-
tic specificity of the context (class-specific vs. uniform) than on its length.
About the Local Regularization (LoCoOp), it consistently enhances both de-
tection accuracy and localization precision, providing a simple yet effective
mechanism to stabilize learned prompts.

Possible future works could estabilish the difference between class-specific
and uniform context under different constraint: rather than rough model per-
formance, a valuable experiment could estabilish if uniform context capture
global characteristics of the dataset as a whole, by comparing its performance
with in-domain novel classes. Another possible interesting path could explore
adaptive or learned strategies for selecting context length and regularization
strength.

Overall, our results suggest that careful prompt design, supported by local-
ized regularization, can unlock strong few-shot generalization in grounding-
based object detection systems, and that, incrementally improving this tech-
niques, can lead to fully automatic pipelines delivering high quality annota-
tions.
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