POLITECNICO
DI TORINO

POLITECNICO DI TORINO

Master Degree course in Computer Engineering

Master Degree Thesis

Design and development of program
synthesis approaches to improve the
generality of artificial intelligence.

Supervisors
Prof. Giovanni SQUILLERO
Prof. Alberto TONDA
Candidate
Roberto MONTESANTO

AcCADEMIC YEAR 2024-2025

Acknowledgements

At the end of this 5-year journey, I'd like to thank all the people that helped and sup-
ported me. Without them, I would probably have never been able to reach this important
goal.

I’d like to first thank my parents, for always believing in me and pushing me to always
do my best. I hope they are proud of what I managed to achieve.
I would also like to thank my friends and colleagues, for accompanying me during this
journey, sharing the sorrows and joys of our academic career.

And finally, I’d like to thank professors Giovanni Squillero and Alberto Tonda, for
their support and help in writing this thesis.

Thank you everyone

Abstract

The Abstraction and Reasoning Corpus (ARC) has emerged as a key benchmark for
evaluating progress toward Artificial General Intelligence (AGI), as it emphasizes flexible
problem solving and generalization beyond narrow, domain-specific methods. This thesis
investigates the application of Genetic Programming (GP) to the ARC framework, with
the aim of exploring the feasibility of evolutionary search as a path toward generalizable
reasoning systems.

In this work, we describe our attempt to use the Byron fuzzer (Byron: A Fuzzer for
Turing-complete Test Programs, 2024) to tackle ARC tasks, focusing on fitness evalua-
tion, transformation functions and program structure. We analyze the performance of
the system on different ARC challenges, highlighting its potential and limitations. The
results provide insights into the role of evolutionary computation in AGI research and
suggest avenues for new approaches that could make better use of the Byron framework.
Ultimately, the thesis contributes to understanding how evolutionary search mechanisms
can support progress toward more general, adaptable artificial intelligence.

Contents

1 Introduction

2 Introduction to ARC-AGI

2.1 Task structure
2.2 Importance for Machine Learning
2.3 Challenges and open questions
2.4 Current State-of-the-Art approaches and performance

Evolutionary algorithms and Genetic Programming

3.1 What are Evolutionary Algorithms?
3.1.1 Representationo
3.1.2 Fitness function o
3.1.3 Operators
3.1.4 Selection mechanisms
3.1.5 Termination criteria
3.2 Program Synthesiso L
3.3 Genetic Programming oL L o
3.3.1 Syntax Trees
3.3.2 Sub-tree crossover
3.3.3 Tree mutation
3.4 Fuzzing L
3.5 The Byron fuzzer
3.5.1 Program structure o
3.5.2 Fitness functions

Experimental setup

4.1 Fitness e e
4.2 Operator functions L L oL
4.3 Selectors
4.4 Training loop
4.4.1 Size estimation algorithm
4.4.2 Image generation algorithm

© 00 0o I

11
13
13
13
14
14
15
15
16
16
17
19
19
21
22

5 Experimental Results
5.1 Visualresults
5.2 Quantitative results
5.3 Best case scenarios e

6 Conclusions
Bibliography

A Script Python used to train the model and compile the results

31
31
33
33

39

41

43

Chapter 1

Introduction

Recent advances in the field of Artificial Intelligence (AI) have produced highly effective
systems in specialized domains such as computer vision, natural language processing, and
reinforcement learning. However, these systems are still limited to narrow tasks and lack
the ability to flexibly generalize across different domains. The pursuit of Artificial Gen-
eral Intelligence (AGI) aims to overcome this limitation by developing systems capable
of abstraction, reasoning, and problem solving in previously unseen settings [?].

The Abstraction and Reasoning Corpus (ARC), introduced by Francois Chollet (2019),
has been proposed as a benchmark to evaluate progress toward AGI [1]. Unlike more tra-
ditional machine learning datasets, ARC presents tasks explicitly designed to assess a
system’s ability to infer generalizable rules from a small number of examples.

Current machine learning approaches face significant difficulties when applied to ARC.
Data-driven statistical models, including deep learning architectures, generally fail to gen-
eralize when exposed to the limited number of examples provided for each task [2] [?].
Symbolic and program synthesis approaches, while capable of producing exact and inter-
pretable solutions, often suffer from inefficiency due to the combinatorial growth of the
search space [3].

Hybrid approaches that combine neural and symbolic methods have been investigated [4]
[5], but their effectiveness remains limited to subsets of the benchmark.

This context motivates the investigation of evolutionary computation as an alterna-
tive paradigm for addressing ARC. Evolutionary algorithms (EAs) are population-based
search methods inspired by natural selection [6], and are better suited to exploring large,
discontinuous search spaces. Among these, Genetic Programming (GP) provides a direct
mechanism for evolving executable programs expressed as compositional structures [7].
The ease of interpretation and modularity of GP make it particularly relevant to tasks
such as ARC, where solutions can be naturally represented as transformations of symbolic
structures.

Introduction

This thesis examines the application of Genetic Programming to ARC as a means
of assessing its suitability for tasks that demand generalization and abstraction. Par-
ticularly, the goal of the thesis work was to adapt the Byron fuzzer [8] to solve ARC
tasks. Through experimental evaluation, the thesis aims to identify the strengths and
limitations of this approach and to provide insights into the potential role of evolutionary
computation in advancing AGI research.

Chapter 2

Introduction to ARC-AGI

The Abstraction and Reasoning Corpus (ARC) is a benchmark introduced by Frangois
Chollet in 2019 as a means of evaluating progress toward Artificial General Intelligence
(AGI) [1]. While the majority of machine learning datasets focus on large-scale pattern
recognition within a fixed domain (e.g., images, text, or speech), ARC is explicitly de-
signed to test a systems ability to generalize to novel tasks using only a small number of
examples.

As such, ARC plays a dual role. On one hand, it is a diagnostic tool, revealing the
limitations of contemporary deep learning approaches. On the other, it is a research
catalyst, motivating the exploration of alternative paradigms such as symbolic reasoning,
program synthesis, evolutionary search, and hybrid models that aim to bridge the gap
between narrow Al and more general, human-like intelligence.

2.1 Task structure

ARC is composed of a large collection of small tasks, each defined by a set of input-output
examples. The tasks are presented on grids of colored cells, with a discrete number of
possible colors, and the goal is to learn the underlying transformation that maps input
to output. Examples of transformations include:

¢ Recoloring or reshaping objects
e Identifying and applying symmetries
o Counting and/or repeating patterns

o Applying compositional operations (e.g., reflection followed by translation)

Fach task includes only a handful of demonstrations, typically three to five, which
require the solver to infer the mapping rule and apply it to unseen test cases. Critically,
the tasks are deliberately diverse and heterogeneous, making it difficult to approach them
with predefined heuristics or pattern-matching strategies.

7

Introduction to ARC-AGI

Figure 2.1: Example of an ARC task

2.2 Importance for Machine Learning

ARC challenges many of the assumptions underlying contemporary machine learning.
Most successful Al systems are based on large-scale training data, statistical generaliza-
tion, and optimization of task-specific objectives.

In direct contrast to these principles, ARC demands the ability to:

e Generalize from very few examples
e Discover and represent abstract concepts

o Adapt flexibly to entirely novel tasks

These requirements align more closely with human cognition than with conventional
supervised learning. A human can generally grasp a new rule or pattern after seeing only
one or two examples, whereas even the most advanced neural networks often fail in such
situations.

2.3 Challenges and open questions

Working with ARC also introduces several challenges that remain largely unsolved:

e Representation: How should the abstract information presented in an image be
encoded to be correctly interpreted during the rule inference process?

e Search and inference: What mechanisms enable the discovery of a correct rule given
such limited evidence?

o Transferability: Can solutions learned from one task inform the solving of another,
despite their differences on a surface level? And if so, how can they affect the
learning process?

e Evaluation: To what extent does performance on ARC truly measure progress
toward AGI, as opposed to specialized heuristics tailored to its structure?

These challenges illustrate why ARC has become a central benchmark in AGI research
and why it continues to attract interest from multiple communities, including machine
learning, cognitive science, and computational logic [9].

8

2.4 — Current State-of-the-Art approaches and performance

2.4 Current State-of-the-Art approaches and performance

The ARC Prize website has a publicly available leaderboard that shows the performance
of different models [10]. Critically, all the models presented in the leaderboard are Large
Language Models (LLMs).

ARC-AGI LEADERBOARD

©® Grok 4 (Thinking)

x
w
4
[¢]
o
2]

s 4 (Thinking 1

Figure 2.2: ARC leaderboard

The main models used to challenge ARC use Chain of Thought (CoT, colored green
in the image) prompting, a prompt engineering technique that enhances the output of
LLMs by guiding the model through a step-by-step reasoning process, using a coherent
series of logical steps.

These models include GPT (by OpenAl), Gemini (by Google), and Grok (by xAI). Grok,
in particular, is the best-performing model, with an accuracy of 66.7%.

These models present a critical flaw, though: as their performance increases, so does the
maintenance cost, up to $4.16 /task for OpenAI’s 03 model.

10

Chapter 3

Evolutionary algorithms and
Genetic Programming

Other than Large Language Models, some approaches to the ARC-AGI challenge utilize
a category of algorithms known as Evolutionary Algorithms (EAs).

3.1 What are Evolutionary Algorithms?

Evolutionary Algorithms are a family of algorithms inspired by the principles of natural
selection and biological evolution. Instead of directly searching for a solution, EAs main-
tain a population of candidate solutions (called individuals), which are evolved iteratively
through processes analogous to mutation, selection, and inheritance. [6]

The guiding principle is that, over many generations, fitter individuals (better solutions)
accumulate in the population, gradually producing solutions that adapt to the task en-

vironment.

An EA will generally initialize a population of random individuals, then follow an
iterative process like this:

1. Evaluate the fitness of each individual in the population.

2. Check if a termination criterion is reached, and terminate the algorithm if so.
3. Select a number of individuals (preferably of higher fitness) as parents.

4. Produce offspring with optional crossover, in order to mimick reproduction.
5. Apply mutation operations on the offspring.

6. Select individuals (preferably of lower fitness) for replacement with new individuals
(mimicking natural selection).

11

Evolutionary algorithms and Genetic Programming

Training start

Initialize population

Evaluate fitness values

Reached any Yes Traini
o o raining end
termination criteria?

No

Select parents

Generate children via crossover

Mutate offsprings

Replace individuals

Figure 3.1: Training loop of a generic EA

As such, the key components a programmer has to define in order to create an Evo-
lutionary Algorithm are the following;:

12

3.1 — What are Evolutionary Algorithms?

3.1.1 Representation

The first thing to define is the algorithm’s representation of candidate solutions, which
defines how individuals are encoded within the algorithm. This can generally take the
form of:

o Bit-strings, where each bit encodes a feature or parameter.
e Real-valued vectors, most often used in continuous optimization problems.

o Trees or expression graphs (most commonly used in genetic programming), where
nodes represent functions or primitives, and leaves represent inputs or constants.

o Specialized data structures tailored to the problem domain (e.g., neural network
architectures, symbolic rules, or grid transformations).

The choice of representation directly influences the search space, as well as the types
of operators that can be applied.

3.1.2 Fitness function

The fitness function is used to measure the quality of a candidate solution. It acts as the
guiding signal of the evolutionary process, determining which individuals are more likely
to survive and reproduce.

A well-designed fitness function should take into account some key considerations:

e Task relevance: the metric must reflect how well the candidate solves the problem.

e Granularity: the function should provide meaningful intermediate feedback, instead
of being strictly binary (correct/incorrect). This helps in creating a search space in
which even smaller differences between individuals can be appreciated, simplifying
the optimization process.

e Generalization: as with the majority of other Machine Learning algorithms, evalu-
ation should discourage overfitting.

3.1.3 Operators

Operators are responsible for generating diversity in the population. There are two main
types of operators: mutation operators and crossover operators.

Mutation operators are applied to a single individual and are used to modify it in a
random manner. Examples include flipping bits in a string, altering numerical parame-
ters, or replacing subtrees in a program. These operators tend to promote exploration,
generating a set of diverse individuals to better explore the search space.

13

Evolutionary algorithms and Genetic Programming

Crossover operators combine parts of two parent individuals to produce an offspring
one. In genetic programming, for instance, crossover might exchange entire subtrees be-
tween two programs. Crossover promotes exploitation, allowing useful elements present
in an individual to spread through the population.

Effective design and use of these operators require balancing exploration and exploita-
tion: too much randomness leads to an unstructured search, while too little may trap the
population in a local fitness well (where fitness does not improve unless a much different
individual is proposed).

3.1.4 Selection mechanisms

Selection determines which individuals are retained for reproduction (crossover) and
which are discarded.
Commonly used selection mechanisms are:

o Fitness-proportionate selection (also called roulette wheel selection), where the
probability of selection is proportional to fitness.

e Tournament selection, where individuals compete in small groups and the fittest of
each group is chosen to perform crossover.

o Rank-based selection, where individuals are ordered by fitness and selection prob-
ability depends on the resulting rank instead of the fitness value itself.

Selection introduces evolutionary pressure, steering the population toward fitter so-
lutions. However, excessive pressure can lead to premature convergence, where the pop-
ulation diversity is lost and the algorithm stagnates. Conversely, too little pressure can
result in an inefficient search, with little diversity and a slow adaptation to the task
environment.

3.1.5 Termination criteria

The final element to define is a rule for when to stop the algorithm, since otherwise it
could theoretically continue to loop indefinitely.

Generally, the termination criteria of an EA include reaching a certain number of gen-
erations or evaluations, discovering a solution that meets or exceeds a certain fitness
threshold, or observing a stagnation in fitness improvement or diversity.

14

3.2 — Program Synthesis

3.2 Program Synthesis

Program synthesis is a term used in Computer Science that defines the task of auto-
matically constructing computer programs satisfying a given specification [11]. Unlike
traditional programming, where a human explicitly writes the code, program synthesis
aims to generate the code automatically from constraints such as examples, formal rules,
or natural language descriptions.

The main motivation behind the pursuit of Program Synthesis is automation of rea-

soning: enabling computers to generate procedures for solving tasks without human in-
tervention could create more time for programmers and engineers to debug and fix other
critical systems.
In addition, allowing users to specify intent at a high level (through demonstrations or
rules) while the system handles the low-level implementation details could allow even
users with less technical knowledge to create programs and apps to help them and other
in their communities.

The types of specification a program has to satisfy may vary. Generally, though,
Program Synthesis is performed under three main types of constraints:

o Example-based synthesis (Programming by Example, PBE) enables the system to
generate a program consistent with a small number of input-output pairs. ARC is
a prime example of this mode.

¢ In constraint-based synthesis programs are synthesized to satisfy either logical or
mathematical constraints (e.g., SAT or SMT solvers).

o Natural language-based synthesis instead generates programs starting from textual
instructions or queries. This is a research area that is being increasingly explored
with LLMs.

These constraints are not mutually exclusive either, in fact there exist hybrid ap-
proaches that combine them for greater robustness.

3.3 Genetic Programming

Genetic Programming (GP) is an approach to Program Synthesis that uses Evolutionary
Algorithms to create a program [7].

The central idea is that, given a well-defined set of primitives (functions, operators, and
terminals), a GP system can discover compositions of these primitives that solve a given
task. Over successive generations, populations of candidate programs evolve following
a normal EA training loop, until a well-defined and (hopefully) functioning program is
generated.

15

Evolutionary algorithms and Genetic Programming

3.3.1 Syntax Trees

Individuals in a GP algorithm are traditionally represented as tree structures, with ev-
ery internal node representing an operator function and every leaf node representing an
operand (a variable or a constant). This allows the tree to be easily evaluated in a

(+)
(+)
&R
OO0

(2.2 —(%))+(?*cas{‘f})

recursive manner.

Figure 3.2: Example of a mathematical function represented as a tree

This traditional representation favors the generation of programs written in functional
programming languages (such as Lisp), as they naturally embody tree structures.
Other solutions (and forms of representation) have been successfully implemented to work
with more traditional imperative languages.

3.3.2 Sub-tree crossover

In traditionally tree-represented GP algorithms, crossover is generally performed by swap-
ping sub-trees of the parents. This particular crossover operation is performed following
a series of steps:

1. Choose a random sub-tree from each parent individual.

2. One of the parents is selected as the root donating parent. This parent has its
selected sub-tree removed and replaced with the other parent’s subtree.

3. If two child crossover is used, meaning the crossover operation generates two children
instead of one, the same operation is performed on the other parent, removing its
sub-tree and replacing with the root donating parent’s.

16

3.3 — Genetic Programming

Father Genotype Mother Genotype

Crossover

Child Genotype 1 Child Genotype 2

Figure 3.3: Example of sub-tree crossover

3.3.3 Tree mutation

There are different types of mutation operators that can be applied to tree structures.
They all aim to mutate a syntactically correct individual, generating a new one, still
syntactically correct.

There are four commonly used operators:

e Sub-tree mutation replaces a randomly selected sub-tree with a new randomly gen-
erated one. Naturally, the sub-tree generation must be programmed to always
generate syntactically correct sub-trees.

e Point mutation replaces an individual node with another of the same type. A leaf
node (variable or constant) will be replaced with another leaf node, while an internal
node (function) will be replaced with another function of the same arity (number
of inputs).

o Hoist mutation replaces a randomly chosen sub-tree with another randomly selected
sub-tree within itself, thus guaranteeing to make the tree smaller.

17

Evolutionary algorithms and Genetic Programming

Original Individual Mutated Individual
Mutation

o /Point
© ()
() @ & ®® @

Randomly
Generated Sub-tree

@//

Mutation
Point

(a) Subtree mutation

= S 2
®» ® ® G

(b) Point mutation

add

> @ ®
) @

(c) Hoist mutation

Figure 3.4: Examples of each mutation operator

18

3.4 — Fuzzing

3.4 Fuzzing

Fuzzing (or fuzz testing) is an automated software testing technique that involves pro-
viding invalid, unexpected, or random data as inputs to a computer program, then mon-
itoring the program for exceptions such as crashes, failing built-in code assertions, or
potential memory leaks [12].

Typically, fuzzers are used to test programs that take structured inputs. This structure
is specified and is used to distinguish valid inputs from invalid ones. An effective fuzzer
generates semi-valid inputs that are not directly rejected by the parser, but will create
unexpected behaviors deeper in the program and are able to expose corner cases that
have not been properly dealt with.

3.5 The Byron fuzzer

Byron is a source code fuzzer designed to support either assembly or higher level languages
[8]. It works by generating a set of random programs, which are then iteratively improved
by an evolutionary algorithm.

As such, it can also be adapted for Genetic Programming tasks, at least those for which
a fitness function can be appropriately designed. In this project we used it to try to
generate a Python program capable of solving ARC tasks.

Internally, it encodes candidate solutions as typed, directed multi-graphs, and can
effectively handle complex, realistic program structures containing local and global vari-
ables, conditional and looping statements, and subroutines.

Candidate programs can be evaluated using a user-defined Python function or an
external tool, such as an interpreter or a simulator. The framework also supports different
types of parallelization out of the box, from simple multi-threading to the creation of
temporary directories where multiple sub-processes are concurrently spawned.

19

Evolutionary algorithms and Genetic Programming

. n2 =2

. n3 = 1.025010755222667

. print(n2 + n3)

(a) Generated code sequence

nl

(b) Multigraph

Figure 3.5: Example of a simple Python script generated using Byron, and its corre-
sponding graph

20

3.5 — The Byron fuzzer

3.5.1 Program structure

Any candidate program in Byron is a composition of Macros and Frames.

Macros

Macros are essentially the building blocks used in the program generation. They repre-
sent fragments of code, with optional parameters. In the example used for Fig. 3.5, three
different macros were created: two containing snippets for creating numeric variables (n2
and n3), and one containing the code to print their sum (n4).

The parameters are objects that encode a value. They are used to add variability to
the candidate programs, and their values are updated at each iteration of the evolution
process.

There are different types of parameters:

o Integer and float parameters encode an integer and a floating-point value, respec-
tively.

e Choice parameters encode a single value chosen at random from a list of possible
elements.

o Array parameters encode a sequence of values, chosen at random from a list of
possible elements, and with a specified length.

Macros can also use references, a special kind of parameter that is used to reference

another point in the program. Specifically, a local reference points to another random
macro in the same bunch frame (see below, in Frames), while a global reference points
to a specific macro, independently of its position in the program.
Local references can be used mainly to create assembly jump instructions, while global
references can be used to create variables. For example, in Fig. 3.5, the macro n4 uses
two global references to access the macros n2 and n3, which created variables named after
themselves.

Frames

Frames are used to contain and join together different macros or other frames, and act as
parent nodes in the multi-graph, connected to each of their related macros or frames. In
the example used for Fig. 3.5, the node n1 is a frame containing the three macros used
in the program.

When evaluating a frame, the child macros will be evaluated differently based on the
frame’s type:

e Sequence frames simply arrange its child macros in a sequential manner and eval-
uates them in order.

21

Evolutionary algorithms and Genetic Programming

e Bunch frames will first generate a sequence of macros, randomly selected from their
children, then evaluate them in order similarly to sequence macros.

o Alternative frames randomly select a single macro from their children, and the
selected macro will be the only one to be evaluated.

3.5.2 Fitness functions

The Byron framework accepts user-defined fitness functions to use in its evolution process,
but accepts only numeric or vector-based fitness values. These two types are compared
differently.

Comparison between numeric fitness values, either integer or floating-point, is a simple

algebraic difference, but additional parameters can be specified for floating-point values
to define whether two individuals have comparable fitness.
Comparison between vector-based fitness values, on the other hand, is performed following
a lexicographic order: the comparison result is given by the values in the first position
of the vector; if they are the same, then the values at the second position are checked,
then if they are also the same the third position is compared and so on. If all pairings
are equal, then the two vectors are considered equal as well.

22

Chapter 4

Experimental setup

This chapter will present our experimental setup, with particular attention to the fit-
ness function used to compare candidate programs, the operators designed to extrapolate
data from the input image and use it on the generated output, and the way the program
structure was set up (that is, the Macros and Frames used).

The model was trained on a set of 400 ARC tasks.
All images in the tasks were encoded as Numpy 2D integer arrays (bibref). Each element
ranges between 0 and 10, and corresponds to a different colored pixel.

4.1 Fitness

The first thing that needed to be defined was a fitness function, used to encode the per-
formance of a given candidate solution on a given ARC task. This fitness function would
take a generated image and the corresponding expected output and return a measure of
the difference between the latter and the former.

The first intuition was to simply define a pixel-correctness fitness, where the perfor-
mance would be measured in terms of percentage of correct pixels in the generated image,
compared to the expected output. The idea is to have a continuous measure to better
incentivize the evolution process.

However, this fitness proved to be, at least partially, ill-designed, because there are a
number of images where the majority of pixels are background color, and the actual task
focuses on a lower number of colored pixels. Thus, the function was improved by ignoring
the pixels that made up at least 50% of the image.

As an example of the measure provided by this function, consider Fig.4.1. Taking into
account background pixels (black in this case), the fitness value would be 8/9 ~ 88%.
Ignoring them, the fitness value drops to 2/3 ~ 66%, more representative of the actual
difference between the images.

Another intuition came when designing the selectors (more on that in section 4.3).
Since each selector captured a section of the image in the form of a list of pixels, a new

23

Experimental setup

fitness function was designed to capture the difference in these selections. This fitness
would then be minimized in the evolution process, instead of being maximized.

The idea behind this measure is to have a quantifiable difference between relevant features
in the generated image and the expected output image, instead of a simple measure of
the number of correct pixels.

The fitness would first extrapolate all the possible selections in both images, then compute
a numeric difference between the results. Then these differences were placed in sequence,
in random order. The difference was calculated by the following algorithm:

1. Since any given selector could extract a different number of pixels in the two images,
the first thing to check is whether the number of selected pixels in the images is the
same.

2. If true, then calculate the average Manhattan distance between the selected pixels.

3. Otherwise, the difference is computed as the absolute difference in the number of
selected pixels, scaled by a factor of 100.

Taking again Fig.4.1 as an example, the color selectors Red and Yellow would produce
a difference of 100.0 (since a single pixel would be selected in one image while none in
the other), while the color selector Grey would produce a value of 0.0. Any other selector
would produce a value of 0.0 as well, as no pixels would be extracted. All these values
would then be put into a sequence in random order, and two different fitness sequences
would be compared in lexicographic order.

(a) Generated image (b) Expected output image

Figure 4.1: Example of a generated image and its corresponding expected output

24

4.2 — Operator functions

4.2 Operator functions

The next set of functions we defined are functions that operate on an image, applying
different transformations on it:

e connect_pixels(im, pxl, px2, color, left_connect_px = None): this func-
tion takes an image and two pixels as input, and draws a straight line between
them, of the defined color.

If the pixels are not aligned (i.e. they have different x and y coordinates), two lines
are drawn, connecting the pixels at a right angle following taxicab geometry.

The optional parameter left_connect_px can be used in this case to specify which
of the two pixels will have the connecting line start from its left.

e color_selection(im, pixels, color, offset = (0, 0)): this functions takes
an image and a list of pixel positions and sets all the specified pixels to the specified
color.

The optional parameter offset can be used to set the color of pixels that are near
the specified section.

e copy(im, out, pixels, offset = (0, 0), cut = True): this function takes two
images and a list of pixel positions as input, and tries to copy as many of the spec-
ified pixels from the im image to the out one. Any pixel that would end up outside
the bounds of the out image is discarded.

The optional parameter offset can be used to specify an offset vector to use during
the copy process.

The optional parameter cut can be set to True to remove the pixels from the im
image during the copy process.

o flip(out, pixels, pivot = (-1, -1), flip_x = False, flip_y = False): this
function takes an image and a list of pixel positions as input, and tries to generate
a symmetric copy of the specified section of the image while leaving the rest of it
unaltered. Any pixel that would be out of the bounds of the image is discared.
The parameters f1ip_x and flip_y are used to specify the axis/axes of symmetry
to use.

The optional parameter pivot can be used to specify the origin point used for the
transformation.

e rotate_90(out, pixels, times = 1, pivot = (-1, -1): this function takes an
image and a list of pixel positions as input, and tries to generate a copy of the im-
age with the selected section rotated 90 degrees anti-clockwise, while the rest of the

25

Experimental setup

image is left unaltered. Any pixel that would be out of the bounds of the image
during the rotation process is discarded.

The optional parameter times can be used to specify the number of rotations.
The optional parameter pivot can be used to specify the center of rotation.

color_selection()

connect_pixels()

copy() flip()

rotate_90()

Figure 4.2: Examples of different tranformations

26

4.3 — Selectors

4.3 Selectors

Since each of the defined operators needs a selection of pixels to work with, we next
designed a series of functions to extract sections of an image and return the corresponding
pixel positions.

e get_colored_pixels(im, colors): this function takes an image and a list of
integers (encoding different colors) as input, and returns the positions of all the
pixels in the image that are set to the specified color(s).

e get_group(im, index, color): this function takes an image, an integer encod-
ing a color, and an index as input, then performs a subroutine extracting all the
groups of connected pixels that are set to the specified color, and finally returns the
positions of the pixels in the group at the specified index.

e get_aligned_pixels(im, px = None, colors = None, filter_same_color = False):
this function takes an image and returns a list of pixel pairs, containing the positions
of all pairs of pixels in the image that share a coordinate and are not contiguous.
If the optional parameter px is specified, the function will instead return all pixels
that share a coordinate with the specified pixel, paired with the latter.

The optional parameter colors can be used to specify which colors to take into
consideration. Any pixel set to a color not in the list will be ignored.

The optional parameter filter_same_color can be set to True to only consider
pair of pixels set to the same color.

get_colored_pixels(image, [1]) = [(0, 1),
0, 3, (2, 4]
(selects only the blue pixels)

get_group(image, 0, 2) = [(2, 1), (2, 2), (3, 1)]
(selects the pixels in the first - and only - red group)

get_aligned_pixels(im) = [((0, 1), (0, 3)),
(o, 1), 3, 1)), (2, 2), (2,)]

(selects all pairs of aligned pixels, indiscriminately)
get_aligned_pixels(im, (2, 1)) = [((2, 1),
0, 1)), (2, 1, (2, 4]

(selects all pixels aligned to - and paired with - the
pixel in position (2, 1), but not touching it)

The top-left pixel corresponds to the position (y=0, x=0).
The color blue is encoded by the number 1, while red is encoded by the number 2.

Figure 4.3: Examples of selectors and their output

27

Experimental setup

4.4 Training loop

For each task, we launched two separate consecutive iterations of the evolutionary algo-
rithm, each with its own set of hyper-parameters and fitness evaluator: the first aimed
only to find the correct dimensionality of the generated image, while the second one was
in charge of generating the image itself.

4.4.1 Size estimation algorithm

The size algorithm utilizes a Manhattan distance-based fitness function, trying to mini-
mize the distance between the generated size and the correct one.
For this process, we created two Macros:

o one initializes the image as a black image of fixed size (with the size being governed
by parameters).

e the other generates a copy of the input image, applying a scaling factor and a size
offset (both governed by parameters).

Then we have an Alternative Frame, selecting one of the two Macros to initialize the
generated image.
The algorithm was set to run for 1000 iterations, but stop if a distance of 0.0 was reached.

4.4.2 Image generation algorithm

The image generation algorithm then has the responsibility of modifying the generated
image to resemble as closely as possible the expected output, with the comparison being
dictated by one of the fitness functions defined in Section 4.1. This process is the most
complex, using a variety of different Macros and Frames.

The first Macros used are the selectors. We defined two Macros for extracting pixels
from the input image and store them into variables:

o the first uses the get_colored_pixels to extract a number of pixels based on their
color.

e the second uses the get_group function to instead try to extract information on
contiguous sections of the image.

For both Macros, the arguments of the functions they call are governed by parameters.
A sequence of Bunch Frames containing these Macros is then used to initialize these se-
lectors.

A similar set of Macros and Frames is also used to extract pixels from the generated
image, in the case relevant information is created during the generation process.
Since the number of variables holding selections of pixels is limited by the size of the

28

4.4 — Training loop

Bunch frames (a hyperparameter), a third set of Macros and Frames was also created to
reassign variables to a new selection.

Next we implemented the Macros holding the transformation functions (where again
the arguments of the functions were governed by parameters):

e A Macro connecting all pairs of aligned pixels in the image.

o A Macro connecting two selected pixels (assuming that the two selections contain
only a single pixel each).

e A Macro to copy a section of either the input or generated image to the generated
image itself.

o A Macro to flip a section of the generated image along one or both axes.
e A Macro to rotate a section of the generated image.

e A Macro to set a selection of pixels in the generated image to a different color.

These Macros are children of a Bunch frame, selecting them at random and improving
the selection over time.

The image generation algorithm was tested with the two fitness functions defined in
Section 4.1, and the results of both are reported in the next chapter.
The algorithm was set to run for 150 iterations. For the pixel-correctness fitness function,
another stopping criterion was to reach a fitness value of 1.0.

29

30

Chapter 5

Experimental Results

For each task, after training the model on the input samples, we executed the synthesized
code on the evaluation sample(s) to generate the corresponding output images.

5.1 Visual results

The first assessment we can make is a visual comparison between the generated images
and their corresponding expected outputs. Fig. 5.2 and show some examples of tasks
and their generated output.

HHE EE " EE
Ndh HEN " "

Sample 1 Sample 2 Sample 3

(a) Training samples

Expected output
Input

Generated image

(b) Test sample and result
Figure 5.1: Task 8e5a5113

31

Experimental Results

Sample 1 Sample 2 Sample 3

(a) Training samples

Exp.

Gen.

Input

(b) Test sample and result

Figure 5.2: Task 445eab21

The model clearly has mixed performances.

Task 8ebabl113, for example, required a section of the input image to be rotated and
translated along the output image. The model identified the correct rule but got a
rotation wrong.

Task 445eab21 instead consisted of finding the larger rectangle in the input and filling a
2x2 square with the corresponding color for the output. In this case, the model copied a
corner of the rectangle, trying to fill as much of the image as possible, but unable to add
pixels on its own.

32

5.2 — Quantitative results

5.2 Quantitative results

Naturally, some kind of quantitative measure of the results is needed. To this end, we
computed the pixel-correctness of each generated image (as a measure of accuracy) and
compiled the results in Fig. 5.3.

Samples accuracy distribution

Pixel-correctness fitness Selector difference fitness
14.0%

10.0% +
12.0% -

8.0% - 10.0% 4

6.0% -

H | 4.0% A

2.0% 4

0.0% -
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
Pixel correctness of test samples Pixel correctness of test samples

Figure 5.3: Tasks accuracy distribution

As shown in the graph, the fitness function used had a noticeable impact on the
performance of the model.
While both functions resulted in about ~8% of the samples reaching near-zero accuracy,
the selectors difference fitness yielded the worst overall results, with more than 13% of
the samples remaining almost or completely unsolved.
In contrast, the use of pixel-correctness fitness resulted in the best overall values, with
most samples reaching an accuracy of 50% and above. Of particular note is also the fact
that about ~15% of the samples reached a high-level accuracy (95%+), and about ~25%
of these completely solved the task or came really close (99% - 100% accuracy).

5.3 Best case scenarios

Another analysis we decided to perform was to check the best result with each fitness
function, in order to gauge the potential of the algorithm.

Fig. 5.4 shows the best result obtained with the selector difference fitness. In this
case, the task consisted of extracting the only colored square containing the blue dot.
The model did not manage to solve this task, despite reaching an accuracy of 97%. This
clearly indicates a fault in the chosen metric, since pixel-correctness is not capable of
meaningfully capturing a single-pixel difference, which in this case is critical to solve the

33

Experimental Results

|
N
Sample 1

Sample 2

Sample 3

task.

(a) Training samples

Expected

Input Generated

(b) Test sample and result

Figure 5.4: Best case results with selector difference fitness

Figs. 5.5, 5.6, and 5.7 instead show the best results obtained with the pixel-correctness
fitness. Notice how all three are completed tasks, with no error.

34

5.3 — Best case scenarios

e o L

Input Input
Sample 1 Sample 2 Sample 3
Output Output Qutput

a) Training samples

Expected output

Test input

Generated output

(b) Test sample and result

Figure 5.5: Task ¢8f0f002

The goal of this task was to re-color all orange sections in gray. The model managed
to completely solve the task, probably thanks to the color_selection() function that
was developed precisely for similar situations.

35

Experimental Results

Input Input Input
Sample 1 Sample 2 Sample 3
Output Output Output

(a) Training samples

Test input

Expected output Generated output

(b) Test sample and result

Figure 5.6: Task

In this task, the input consists of 3 copies of the same section. The goal is to isolate
this section and return it as the output. Again, the model was capable of completely
solving this task.

36

5.3 — Best case scenarios

.I_
B BE
i

Sample 1 Sample 2
Sample 3 Sample 4

(a) Training samples

L

Expected

Generated

Input

(b) Test sample and result
Figure 5.7: Task

37

Experimental Results

Finally, this task also consisted in extracting a particular section of the input image,
although the rule behind the choice of the section is not entirely clear.
In this case, the model managed to correctly solve the task, despite it being relatively
difficult to understand.

These results are consistent with the accuracy distributions shown in Fig. 5.3, and

show again that the pixel-correctness fitness function is more reliable than the selectors
difference fitness.

38

Chapter 6

Conclusions

This thesis investigated the application of Genetic Programming to the Abstraction and
Reasoning Corpus (ARC), a benchmark designed to evaluate progress toward Artificial
General Intelligence. The study examined the ability of evolutionary computation to
generate compositional, interpretable solutions for ARC tasks, and evaluated the perfor-
mance of the Byron EA framework with two different fitness measures: Model A, which
uses a pixel-correctness fitness with a form of data-balancing, and Model B, which instead
uses a vector-based fitness to capture the information on particular sections of the images.

The comparative analysis revealed that both models left at least ~8% of the evaluated

tasks completely unsolved, highlighting the intrinsic difficulty of ARC and the limitations
of current evolutionary approaches when confronted with sparse supervision and diverse
task requirements.
Between the two models, notable differences were observed. Model A exhibited more
consistent performance across tasks, suggesting a robustness that makes it less sensitive
to variation in task structure. It also showed a high potential, managing to completely
solve 3 different tasks. Model B, on the contrary, was overall less stable, with a higher
number of completely unsolved tasks and, overall, less satisfactory results. It also did not
manage to completely solve a single task.

These findings suggest that there is substantial room for improvement in both repre-
sentation and search strategy. In particular, the use of alternative parameter settings or
richer sets of operators could potentially lead to a significant performance improvement.
Moreover, the reliance on pixel-correctness as the only evaluation metric may obscure
other dimensions of progress; adopting alternative or complementary performance mea-
sures could provide a more nuanced assessment of the models strengths and weaknesses.

In summary, while neither of the proposed models achieves a comprehensive solution
to ARC, the results demonstrate the promise and challenges of Genetic Programming
in this domain. The contrast between consistency and ceiling performance provides a
valuable perspective on the design space for evolutionary approaches, and the identified
limitations point toward concrete avenues for future research.

39

40

Bibliography

[1]
2]

3]
[4]

[10]

[11]

F. Chollet, “On the measure of intelligence,” 2019.

B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman, “Building machines
that learn and think like people,” Behav. Brain Sci., vol. 40, no. €253, 2017.

S. Gulwani, O. Polozov, and R. Singh, “Program synthesis,” Found. trends® program.
lang., vol. 4, no. 1-2, pp. 1-119, 2017.

J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cali,
M. Terry, Q. Le, and C. Sutton, “Program synthesis with large language models,”
2021.

K. Ellis, C. Wong, M. Nye, M. Sable-Meyer, L. Cary, L. Morales, L. Hewitt, A. Solar-
Lezama, and J. B. Tenenbaum, “DreamCoder: Growing generalizable, interpretable
knowledge with wake-sleep bayesian program learning,” 2020.

J. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analy-
sis with Applications to Biology, Control, and Artificial Intelligence. University of
Michigan Press, 1975.

J. R. Koza, Genetic programming. Complex Adaptive Systems, Cambridge, MA:
Bradford Books, Dec. 1992.

G. Squillero, A. Tonda, D. Masetta, and M. Sacchet, “Byron: A fuzzer for turing-
complete test programs,” in Proceedings of the Genetic and Evolutionary Compu-
tation Conference Companion, (New York, NY, USA), pp. 1691-1694, ACM, July
2024.

F. Chollet, M. Knoop, G. Kamradt, and B. Landers, “ARC prize 2024: Technical
report,” 2024.

“ARC Prize - Leaderboard — arcprize.org.” https://arcprize.org/leaderboard.
[Accessed 19-09-2025].

D. Basin, Y. Deville, P. Flener, A. Hamfelt, and J. Fischer Nilsson, “Synthesis of
programs in computational logic,” in Program Development in Computational Logic,
Lecture notes in computer science, pp. 30-65, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004.

B. Jeffries and L. Landauer, Hunting Security Bugs. Redmond, WA: Microsoft Press,
Aug. 2006.

41

https://arcprize.org/leaderboard

42

Appendix A

Script Python used to train the
model and compile the results

43

Script Python used to train the model and compile the results

Image utility functions

Converts a list of 2-element tuples (encoding pixel positions) to the
corresponding numpy indices
def pixels_list_to_indices(pixels: list) -> tuplel
np.ndarray,
np.ndarray
] | None:
if len(pixels) == O0:
return None

stack: np.ndarray = np.vstack(pixels)
indices: tuple[np.ndarray, np.ndarray] = stack[:, 0], stack[:, 1]

return indices

Returns the pixel value of a given image at a given pixel position
def get_image_value(im, px) -> int | None:
index = pixels_list_to_indices ([px])

if index is None:
return None

try:
return im[index]
except IndexError:
return None

ARC task parser
def parse_arc_test_file(filename: str) -> tuple[list, list]:
with open(filename) as file:
data: dict[
str, listl[
dict[
str, list[list[int]]

]
] = json.load(file)

List of train samples, encoded as Numpy arrays
train_data: list = []

for train_item in datal[’train’]:
train_data.append ((

np.array(train_item[’input’]) .reshape(
len(train_item[’input’]),
len(train_item[’input’][0])

) g

np.array(train_item[’output’]) .reshape(
len(train_item[’output’]),
len(train_item[’output’][0])

))

44

Script Python used to train the model and compile the results

List of test sample, encoded as Numpy arrays
test_data: list = []

for test_item in datal[’test’]:
test_data.append ((

np.array(test_item[’input’]) .reshape(
len(test_item[’input’]),
len(test_item[’input’][0])

) o

np.array(test_item[’output’]).reshape(
len(test_item[’output’]),
len(test_item[’output’][0])

))

return train_data, test_data

Code converter from Byron to Python
def extrapolate_code(element_or_genotype: Individual | Type[SElement]
ParameterABC | str) -> str:
final_code = 7’
if isinstance(element_or_genotype, str):
for line in element_or_genotype.splitlines():
code = line.split(’;’) [0]

if code.strip().strip(’:’).strip(’n’).isnumeric():
continue

if code.isspace():
continue

final_code += code.strip(’ ’) + ’\n’

else:
for line in byron.f.as_text(element_or_genotype).splitlines():
code = line.split(’;’) [0]

if code.strip().strip(’:’).strip(’n’).isnumeric():
continue

if code.isspace():
continue

final_code += code.strip(’ ’) + ’\n’
return final_code.replace(’\n\n\n’, ’\n’).replace(’:\n\n’, ’:\n’)
Operators
Grouping operator
def get_connected_pixels_groups(im, color: int = 0) -> list:

groups: list = []

if color in range(1l, 10):

labels, num_features = sp.ndimage.label(im == color)
for i in range (num_features):
grp = np.argwhere(labels == i + 1).tolist ()

45

Script Python used to train the model and compile the results

if len(grp) > 1:

groups . append (grp)
eilfsiel:
labels, num_features = sp.ndimage.label(im != 0)
for i in range(num_features):
grp = np.argwhere(labels == i + 1).tolist ()

if len(grp) > 1:
groups . append (grp)

return groups

Selectors

def get_colored_pixels(im, colors: list[int] = None) -> list:
if colors is None:
pixels: list = np.argwhere(im != 0).tolist ()
if len(pixels) == O0:

return []
return pixels

if len(colors) <= 0:
return []

pixels: list = np.argwhere(

np.logical_or.reduce ([np.array(im == color) for color in colors])
) .tolist ()
return pixels

def get_group(im, index: int, color: int) -> list:
groups: list = get_connected_pixels_groups(im, color)
if index < len(groups):
return groups[index]

return []

Alignment operator
def get_aligned_pixels(

im,
px = None,
colors: list[int] = None,
filter_same_color: bool = False
) -> list[tuple]:
input_pixels: list = get_colored_pixels(im, colors)
if input_pixels is None:
input_pixels = get_colored_pixels(im)

if px is not None:

returned_pixels: list = [

(px, p) for p in input_pixels

if p[0] == px[0] or pl[1] == pxI[1]
]

46

Script Python used to train the model and compile the results

if px in returned_pixels:
returned_pixels.remove (px)

return returned_pixels
aligned_pixels: list[tuple] = []
groups: list = get_connected_pixels_groups (im)
def check_same_value(pxl, px2) -> bool:

if not filter_same_color:
return True

valuel get_image_value (im, px1)

value2 = get_image_value(im, px2)

if valuel is None or value2 is None:
return False

return valuel == value2

same_x_pixels_combs = [
¢ for ¢ in itertools.combinations (input_pixels, 2)
if c¢[0][1] == c[1]1[1] and not np.any([
c[0] in grp and c[1] in grp for grp in groups
]) and check_same_value(c[0], c[1])

]
same_y_pixels_combs = [
¢ for ¢ in itertools.combinations (input_pixels, 2)
if c¢[0][0] == c[11[0] and not np.any([
c[0] in grp and c[1] in grp for grp in groups
]) and check_same_value(c[0], c[1])
]

aligned_pixels.extend (same_x_pixels_combs + same_y_pixels_combs)
return aligned_pixels

Connection operator
def connect_pixels(
out,
px1,
px2,
color: int | np.ndarray[tuple[int, ...], np.dtypelint]],
left_connecting_pixel = None
) -> bool:
if pxl is None or px2 is None:
return False

if px1[0] == px2[0]:
out [px1[0], range(px1[1] + 1, px2[1])] = color
return True

if px1[1] == px2[1]:
out [range (px1[0] + 1, px2[0]), px1[1]] = color

47

Script Python used

to train the model and compile the results

return True

connecting_point [0, O
if np.random.rand() < O.
connecting_point [0]
connecting_point [1]
else:

connecting_point [0]
connecting_point [1]

if left_connecting_pixel

N o -

.pxl[OJ
px2[1]

px2 [0]
px1[1]

== pxl and px2[1] < px1[1]:

connecting_point [0] = px1[0]
connecting_point [1] = px2[1]
if left_connecting_pixel == px2 and px1[1] < px2[1]:
connecting_point [0] = px2[0]
connecting_point [1] = px1[1]
out [
range (
min(px1[0], px2[0], connecting_point[0]) + 1,
max (px1[0], px2[0], connecting_point [0])
) o
connecting_point [1]
] = color
out [
connecting_point [0],
range (
min(px1[1], px2[1], connecting_point[1]) + 1,
max (px1[1], px2[1], connecting_point[1])
)
] = color

out [pixels_list_to_indice
return True

Copy operator

def copy (
im,
out,
pixels: 1list None,
offset: tuplel[int,
cut: bool False

-> bool:

if pixels is None:

pixels

)

if pixels is None:
return False

error: bool False
for px in pixels:
input_index: tuplel[
np.ndarray,
np.ndarray

]

int]

s ([connecting_point])] color

(O) 0))

get_colored_pixels (im)

pixels_list_to_indices ([px])

48

Script Python used to train the model and compile the results

if input_index is None:

error = True

continue
image_value: int = get_image_value (im, px)
if image_value is None:

error = True

continue

try:
if cut:
im[input_index] = 0

output_index: tuplel
np.ndarray,
np.ndarray
] = pixels_list_to_indices(
[(px + np.array(offset)).tolist ()]
)
if output_index is None:
error = True
continue
if output_index[0] < O or output_index[1] < O:
error = True
continue

out [output_index] = image_value
except (IndexError, ValueError):
error = True

return not error

Symmetry operator

def flip(
out,
pixels: list = None,
pivot = (-1, -1),
flip_x: bool False,
flip_y: bool False

) -> bool:

if not (flip_x or flip_y):

return False

if pixels is None:
pixels = np.argwhere(out != 0).tolist ()

if len(pixels) == O0:
return False

original_pivot = pivot
if flip_x and pivot[1] == -1:

pivot = [pivot[0], out.shapel[1l] // 2]
if flip_y and pivot[0] == -1:

pivot = [out.shape[0] // 2, pivot[1]]

49

Script Python used to train the model and compile the results

already_updated_indices: list[tuple[np.ndarray, np.ndarrayl]] = []

error: bool = False
for px in pixels:
input_index: tuplel[
np.ndarray,
np.ndarray

] = pixels_list_to_indices ([px])
if input_index is None:
error = True

continue

image_value = get_image_value (out, px)
if image_value is None:

error = True

continue

flipped_px = px

if flip_x:
flipped_px[1] = px[1] + 2 * (pivot[1] - px[1])
if original_pivot[1] == -1 and out.shape[1l] % 2 == 0:
flipped_px[1] -= 1
if flip_y:
flipped_px[0] = px[0] + 2 *x (pivot[0] - px[0])

if original_pivot[0] == -1 and out.shape[0] % 2 == 0:
flipped_px[0] -= 1
try:
flipped_index = pixels_list_to_indices([flipped_px])
if flipped_index is None:
error = True
continue
if flipped_index[0] < O or flipped_index[1] < O0:
error = True
continue

if (

input_index != flipped_index and

not input_index in already_updated_indices
):

out [input_index] = 0
out [flipped_index] = image_value

already_updated_indices.append(flipped_index)
except (IndexError, ValueError):
error = True

return not error

Rotation operator
def rotate_90(

out,
pixels: list = None,
times: int = 1,

50

Script Python used to train the model and compile the results

pivot = (-1, -1)

) -> bool:
if pixels is None:
pixels = np.argwhere(out != 0).tolist ()

input_indices: tuplel
np.ndarray,
np.ndarray
] = pixels_list_to_indices(pixels)

if input_indices is None:
return False

boundary_top_left: tuplel[int, int] = (
np.min(input_indices [0]),
np.min (input_indices [1])

)
boundary_size: tuplel[int, int] = (
np.max (input_indices [0]) - boundary_top_left[0] + 1,
np.max (input_indices [1]) - boundary_top_left[1] + 1
)
original_pivot = pivot
if pivot [0] == -1 or pivot[1] == -1:
if boundary_size[0] != boundary_size[1]:
return False
pivot = [
boundary_top_left [0] + boundary_size[0] // 2,
boundary_top_left[1] + boundary_size[1] // 2
]
cosine: int = 0
sine: int = 0

no_pivot_offset = [0, 0]
match times % 4:

case O:
cosine, sine = 1, O
case 1:
cosine, sine = 0, 1
no_pivot_offset = [0, -1]
case 2:
cosine, sine = -1, 0
case 3:
cosine, sine = 0 =il

no_pivot_offset = [-1, 0]
already_updated_indices: list[tuple[np.ndarray, np.ndarrayl] = []

error: bool = False
for px in pixels:
input_index: tuplel[
np.ndarray,
np.ndarray
] = pixels_list_to_indices ([px])

51

Script Python used to train the model and compile the results

if input_index is None:
error = True
continue

image_value = get_image_value (out, px)
if image_value is None:

error = True

continue

offset_from_pivot = (np.array(px) - np.array(pivot)).tolist ()
rotation_offset = [
-offset_from_pivot[1] * sine - offset_from_pivot[0] * cosine,
offset_from_pivot [0] * sine - offset_from_pivot[1] * cosine
]
rotated_pixel = (pivot + np.array(rotation_offset)).tolist ()
if (
original_pivot == (-1, -1) and
pivot == [

boundary_top_left [0] + boundary_size[0] // 2,
boundary_top_left [1] + boundary_size[1] // 2

] and
boundary_size[0] % 2 == 0 and boundary_size[1] % 2 == 0
)
rotated_pixel = (
rotated_pixel + np.array(no_pivot_offset)
) .tolist ()
try:

rotated_index: tuplel
np.ndarray,
np.ndarray
] = pixels_list_to_indices([rotated_pixel])

if (
input_index != rotated_index and
not input_index in already_updated_indices

out [input_index] = 0

if rotated_index is None:
error = True
continue
if rotated_index[0] < O or rotated_index[1] < O:
error = True
continue

out [rotated_index] = image_value

already_updated_indices.append(rotated_index)
except (IndexError, ValueError):

error = True

return not error

Pixel-coloring operator

52

Script Python used to train the model and compile the results

def color_selection(
im,
pixels: 1list,
color: int,

offset: tuplel[int, int] = (0, 0)
) -> bool:
if len(pixels) == O0:

return False

error: bool = False
for px in pixels:
try:
output_index: tuplel
np.ndarray,
np.ndarray
] = pixels_list_to_indices(
[(px + np.array(offset)).tolist ()]

)

im[output_index] = color
except (IndexError, ValueError):

error = True

return not error

Fitness functions

Image size fitness (for size estimation)

@byron.fitness_function ()

def size_fitness(genotype: str) -> FitnessABC:
fitness: list[int] = []

for train_sample in train_set:
input_image, output_image = train_sample

exec (extrapolate_code (genotype), {
’np’: np,
’copy’: copy

}, locals())

fitness.append(-distance(
locals () [’generated_image’]. shape,
output_image.shape

))
return byron.fit.Scalar(sum(fitness))
Pixel-correctness fitness
@byron.fitness_function
def pixel_correctness_fitness(genotype: str) -> FitnessABC:
fitness: list[float] = []
for train_sample in train_set:

input_image, output_image = train_sample

53

Script Python used to train the model and compile the results

try:
exec (extrapolate_code (genotype), {
’np’:np,
’sp’:8p,

’sign’:sign,
’pixels_list_to_indices’:pixels_list_to_indices,
’get_image_value’:get_image_value,
’get_colored_pixels’:get_colored_pixels,
’get_group’:get_group,
’get_aligned_pixels’:get_aligned_pixels,
’connect_pixels’:connect_pixels,
’get_connected_pixels_groups’:get_connected_pixels_groups,
’copy’:copy,
’flip’:flip,
’rotate_90°’:rotate_90,
’color_selection’:color_selection

}, locals())

except:
return byron.fit.Scalar(-1.0)

comparison_image = locals()[’generated_image’]

if comparison_image.shape != output_image.shape:
comparison_image = np.zeros(
shape=output_image.shape,
dtype=int
)

copy(locals () [’generated_image’], comparison_image)
pixel_correctness: float = 0.0

uniq = np.unique_counts (output_image)
index = np.argmax(uniq.counts)

if (

uniq.counts[index] < output_image.size and
uniq.counts[index] / output_image.size >= 0.5

):
output_image [output_image == uniq.values[index]] = -1
comparison_image [comparison_image == uniq.values[index]] = -1
output_image [np.nonzero (output_image - comparison_image)] = -2
pixel_correctness = np.count_nonzero (
output_image >= 0
) / np.count_nonzero (
output_image + 1
)
else:
pixel_correctness = 1 - np.count_nonzero (

output_image - comparison_image
) / output_image.size

fitness.append(pixel_correctness)

54

Script Python used to train the model and compile the results

return byron.fit.Scalar(np.mean(fitness))

Selectors difference fitness
SELECTORS_DIFFERENCE_FITNESS_TYPE = byron.fit.reverse_fitness(
byron.fit.Lexicographic

)
@byron.fitness_function(type_ = SELECTORS_DIFFERENCE_FITNESS_TYPE)
def selectors_difference_fitness(genotype: str) -> FitnessABC:

fitness: list[list[float]] = []

for train_sample in train_set:

input_image, output_image = train_sample
try:
exec (extrapolate_code (genotype), {
’np’:np,
’sp’:sp,

’sign’:sign,
’pixels_list_to_indices’:pixels_list_to_indices,
’get_image_value’:get_image_value,
’get_colored_pixels’:get_colored_pixels,
’get_group’:get_group,
’get_aligned_pixels’:get_aligned_pixels,
’connect_pixels’:connect_pixels,
’get_connected_pixels_groups’:get_connected_pixels_groups,
’copy’:copy,
’>flip’:flip,
’rotate_90’:rotate_90,
’color_selection’:color_selection

}, locals())

except:

prilnG (2 coosoosoosossooosoos BRREE coocossooosoosoosoos)

print (extrapolate_code (genotype))

print (traceback.format_exc())

P (2 soossossosososoossssssosoosoooooosoooosossosoos)

comparison_image = locals()[’generated_image’]

if comparison_image.shape != output_image.shape:
comparison_image = np.zeros (
shape = output_image.shape,
dtype=int
)

copy(locals () [’generated_image’], comparison_image)

output_color_selections = []

for combination in itertools.combinations_with_replacement (
range (1, 10),
MAX_COLORS_NUMBER

output_color_selections.append(
get_colored_pixels (output_image, combination)

)

55

Script Python used to train the model and compile the results

output_group_selections = [
get_group (output_image, i, color)
for i in range (MAX_GROUP_INDEX) for color in range(O, 10)

comparison_color_selections = []

for combination in itertools.combinations_with_replacement (
range (1, 10),
MAX_COLORS_NUMBER

K

comparison_color_selections.append(

get_colored_pixels (comparison_image, combination)

)
comparison_group_selections = [

get_group (comparison_image, i, color)

for i in range (MAX_GROUP_INDEX) for color in range(O, 10)
]

color_groups_diff = []
for i in range(len(output_color_selections)):
len_diff = abs(
len(output_color_selections[i]) -
len(comparison_color_selections[i])
)
if len_diff > O:
color_groups_diff.append (100 * len_diff)
continue

if len(output_color_selections[i]) == O0:
color_groups_diff.append (0.0)
continue

pixel_distances = []
for j in range(len(output_color_selections[i])):
pixel_distances.append(distance (
output_color_selections[i][j],
comparison_color_selections[i][j]

)
color_groups_diff.append(np.mean(pixel_distances))

groups_diff = []
for i in range(len(output_group_selections)):
len_diff = abs(
len(output_group_selections[i]) -
len(comparison_group_selections[i])
)
if len_diff > O:
groups_diff.append (100 * len_diff)
continue

if len(output_group_selections[i]) == O0:
groups_diff.append (0.0)

56

Script Python used to train the model and compile the results

continue

pixel_distances = []
for j in range(len(output_group_selections[i])):
pixel_distances.append(distance (
output_group_selections[i][j],
comparison_group_selections[i][j]

))
groups_diff .append(np.mean(pixel_distances))

res = color_groups_diff + groups_diff
np.random.shuffle (res)

fitness.append(res)

return byron.fit.Lexicographic(np.mean(fitness, axis = 0).tolist())

Size estimation hyperparameters
MAX_SIZE_GENERATIONS = 1000

MAX_FIXED_SIZE
MAX _DELTA_SIZE

15
5

Image generation hyperparameters
MAX_IMAGE_GENERATIONS = 150

MAX_COLORS_NUMBER = b
MAX_GROUP_INDEX = 15

MAX_OFFSET = 10
MAX_PIVOT = 20

MAX_OPERATIONS = 75

Single-task train + test function

def solve_task(fitness = selectors_difference_fitness) -> tuple[float,

Image initializing macros
init_image_fixed_size = byron.f.macro(
’size_x = {x}\n’
’size_y = {y}t\n’

’generated_image = np.zeros((size_y, size_x), dtype=int)’,

x=byron.f.integer_parameter (1, MAX_FIXED_SIZE),
y=byron.f.integer_parameter (1, MAX_FIXED_SIZE)

57

str

Script Python used to train the model and compile the results

init_image_input_based_size = byron.f.macro(
’scale_x = {sx}\n’
>scale_y = {syX}\n’
’delta_x = {dx}\n’
’delta_y = {dy}\n’
)\nJ
‘new_size_x
’new_size_y
)\nJ

’if new_size_x < 0:\n’

int (input_image.shape[1] * scale_x + delta_x)\n’
int (input_image.shape [0] * scale_y + delta_y)\n’

’\tnew_size_x = 0\n’

’if new_size_y < 0:\n’

’\tnew_size_y = 0\n’

7\11)

’generated_image = np.zeros((new_size_y, new_size_x), int)\n’
>copy (input_image , generated_image)’,

sx = byron.f.choice_parameter ([0.25, 0.5, 1.0, 1.5, 2.0]),

sy = byron.f.choice_parameter ([0.25, 0.5, 1.0, 1.5, 2.0]),

dx = byron.f.integer_parameter (-MAX_DELTA_SIZE, MAX_DELTA_SIZE+1),
dy = byron.f.integer_parameter (-MAX_DELTA_SIZE, MAX_DELTA_SIZE+1)

Initializer choice

init_image = byron.f.bunch([
init_image_fixed_size,
init_image_input_based_size

D

Size estimation training + image initialization code extraction
evaluator = byron.evaluator.PythonEvaluator (
size_fitness,
backend=’joblib’
)
image_initialization_code = extrapolate_code(byron.ea.adaptive_ea(
init_image, evaluator,
max_generation=MAX_SIZE_GENERATIONS,
max_fitness=byron.fit.Scalar (0.0)

) o)

e IMAGE GENERATION ---------=--------oooooo

Input image selection macros
input_select_colors = byron.f.macro (
’{_node} = get_colored_pixels(input_image, [{colors}])’,
colors = byron.f.array_parameter (
range (1, 10),
MAX_COLORS_NUMBER,

58

Script Python used to train the model and compile the results

input_select_group = byron.f.macro(
’{_node} = get_group (input_image, {index}, {color})’,
index = byron.f.integer_parameter (0, MAX_GROUP_INDEX),
color = byron.f.integer_parameter (0, 10),
_label = 7’

Input image selections sequences

input_selections = byron.f.sequence ([
byron.f.bunch([input_select_colors], (0, 10)),
byron.f.bunch([input_select_group], (0, MAX_GROUP_INDEX + 1))

D

Generated image selection macros
generated_select_colors = byron.f.macro(
’{_node} = get_colored_pixels(generated_image, [{colors}])’,
colors = byron.f.array_parameter (
range (1, 10),
MAX_COLORS_NUMBER ,

bl b)
>

) g
_label = 77

)

generated_select_group = byron.f.macro(
>{_node} = get_group(generated_image, {index}, {color})’,
index = byron.f.integer_parameter (0, MAX_GROUP_INDEX),
color = byron.f.integer_parameter (0, 10),
_label = 7~

)

Generated image selections sequences

generated_selections = byron.f.sequence ([
byron.f.bunch([generated_select_colors], (0, 10)),
byron.f.bunch([generated_select_group], (0, MAX_GROUP_INDEX + 1)),

D

Input image reassignment macros
reassign_input_color_selection = byron.f.macro(
’\n{ref} = get_colored_pixels(input_image, [{colors}])\n\n’,
ref = byron.f.global_reference (input_selections),
colors = byron.f.array_parameter (
range (1, 10),
MAX_COLORS_NUMBER ,

J)
>

)

)

reassign_input_group_selection = byron.f.macro(
’\n{ref} = get_group (input_image, {index}, {color})\n\n’,
ref = byron.f.global_reference (input_selections),
index = byron.f.integer_parameter (0, MAX_GROUP_INDEX),
color = byron.f.integer_parameter (0, 10)

)

59

Script Python used to train the model and compile the results

Input image reassignments sequences

reassign_input_selection = byron.f.bunch([
reassign_input_color_selection,
reassign_input_group_selection

ID)

Generated image reassignment macros
reassign_generated_color_selection = byron.f.macro(
’\n{ref} = get_colored_pixels(generated_image, [{colors}])\n\n’,
ref = byron.f.global_reference (input_selections),
colors = byron.f.array_parameter (
range (1, 10),
MAX_COLORS_NUMBER,

bl b)
>

)
)
reassign_generated_group_selection = byron.f.macro(
’\n{ref} = get_group(generated_image, {index}, {color})\n\n’,
ref = byron.f.global_reference(input_selections),
index = byron.f.integer_parameter (0, MAX_GROUP_INDEX),
color = byron.f.integer_parameter (0, 10)
)

Generated image reassignments sequences

reassign_generated_selection = byron.f.bunch ([
reassign_generated_color_selection,
reassign_generated_group_selection

D

Image manipulation macros and frames

Frame - Connect operator + alignment operator
connect_aligned_pixels = byron.f.sequence ([
’px = None’,

byron.f.bunch ([
byron.f.macro (

’if len({refl}) == 1:\n’
’\tpx = {ref}[0]’,
ref = byron.f.global_reference (generated_selections)
)
1, (0, 2)),

byron.f.bunch ([
byron.f.macro(

’colors = None'’
)
byron.f.macro(
>colors = [{colors}]’,
colors = byron.f.array_parameter (range(1i, 10), 9, ’, 7)
)
D,
J\ni,

>for pxl, px2 in get_aligned_pixels(generated_image, px, colors):

60

Script Python used to train the model and compile the results

byron.f.bunch ([
byron.f.macro (
’\tcolor = {color}’,

color = byron.f.integer_parameter (1, 10)
) o
byron.f.macro (
’\tcolor = get_image_value (generated_image, {pxl})’,
px = byron.f.choice_parameter ([’pxl’, ’px2’])
)
D,
’\n’,
’\tconnect_pixels (generated_image, pxl, px2, color)’
D
Frame - Connect operator (with selections global reference
parameters)
connect_selections = byron.f.sequence ([
byron.f.macro (
’if len({ref1}) == 1 and len({ref2}) == 1:\n’

’\tpxl = {ref1}[0]\n’

’\tpx2 = {ref2}[0]°,

refl = byron.f.global_reference(generated_selections),

ref2 = byron.f.global_reference(generated_selections)
),
byron.f.bunch ([

byron.f.macro (

’\tcolor = {color}’,

color = byron.f.integer_parameter (1, 10)

) o

byron.f.macro (
>’\tcolor = get_image_value(generated_image, {px})’,
px = byron.f.choice_parameter ([’pxl’, ’px2’])

)

D,

byron.f.macro (
’\tleft_px = {px}’,

px=byron.f.choice_parameter ([’px1’, ’px2’, ’None’])
)3
’\1’1’,
’\tconnect_pixels (generated_image, pxl, px2, color, left_px)’
»
Frame - Copy operator
copy_to_generated = byron.f.sequence ([

byron.f.bunch ([
byron.f.sequence ([
’im = input_image’,
J\n7’
byron.f.bunch ([
byron.f.macro(
’pixels = None’,
) o
byron.f.macro (
’pixels = {ref}’,

ref = byron.f.global_reference(input_selections)

61

Script Python used to train the model and compile the results

D
D,
byron.f.sequence ([
’im = generated_image’,
’\Il’,
byron.f.bunch ([
byron.f.macro (
’pixels = None’,
),
byron.f.macro (
’pixels = {refl}’,
ref = byron.f.global_reference(
generated_selections

D
D
D,
’\n”,
byron.f.bunch ([
byron.f.macro(
’offset = (0, 0)°
)5
byron.f.macro(
>offset = ({offset})’,

offset = byron.f.array_parameter (
range (1, MAX_OFFSET),
2,
)
)
1)) ¢
’\n’,

byron.f.macro (
’copy(im, generated_image, pixels, offset, {cut})’,

cut = byron.f.choice_parameter ([True, False])
)
ID)
Frame - Symmetry operator
flip_generated = byron.f.sequence ([
byron.f.bunch ([
byron.f.macro(’pixels = None’),
byron.f.macro(
’pixels = {ref}’,
ref = byron.f.global_reference (
generated_selections,
creative_zeal = 1
)
)
1D,
)\ni,

byron.f.bunch ([
byron.f.macro(’pivot = (-1, -1)’),

62

Script Python used to train the model and compile the results

byron.f.macro (
’pivot = ({pivot})’,

pivot = byron.f.array_parameter (
range (1, MAX_PIVOT),
2,
)
)
1,
’\n’,

byron.f.bunch ([
byron.f.macro(’flip_x, flip_y

True, False’),

byron.f.macro(’flip_x, flip_y = False, True’),

byron.f.macro(’flip_x, flip_y = True, True’),

pivot)’,

1D)
’\n’,
>flip(generated_image, pixels, pivot, flip_x, flip_y)’
D
Frame - Rotation operator
rotate_generated = byron.f.sequence ([
byron.f.bunch ([
byron.f.macro(’pixels = None’),
byron.f.macro (
’pixels = {ref}’,
ref = byron.f.global_reference (
generated_selections,
creative_zeal = 1
)
)
1)
’\n’,
byron.f.bunch ([
byron.f.macro(’pivot = (-1, -1)7),
byron.f.macro (
’pivot = ({pivot})’,
pivot = byron.f.array_parameter (
range (1, MAX_PIVOT),
2,
J))
)
)
D,
’\n’,
byron.f.macro(
’rotate_90 (generated_image, pixels, {times},
times = byron.f.integer_parameter (1, 5)
)
i)
Frame - Pixel-coloring operator
color_generated = byron.f.sequence ([

byron.f.bunch ([
byron.f.macro(’offset = (0, 0)’),
byron.f.macro (

63

Script Python used to train the model and compile the results

’offset = ({offset})’,

offset = byron.f.array_parameter (
range (1, MAX_OFFSET),
2,
J .)

)

1)

byron.f.macro (
>color_selection(generated_image, {ref}, {color}, offset)\n\n’

ref=byron.f.global_reference (
generated_selections,
creative_zeal = 1

) b

color=byron.f.integer_parameter (1, 10)

ID)

Bunch frame containing all operator frames.

operations = byron.f.bunch([
reassign_input_selection,
reassign_generated_selection,
connect_aligned_pixels,
connect_selections,
copy_to_generated,
flip_generated,
rotate_generated,
color_generated

1, size=(1, MAX_OPERATIONS + 1))

Final image generation frame, contains all selections and operators

generate_image = byron.f.sequence ([
input_selections,
’\1’1’,
generated_selections,
’\n’,

operations

D

Final training frame, contains the initialization code previously
evolved and the image generation frame
train = byron.f.sequence ([

image_initialization_code,

’\n°’,

generate_image

D

Image generation training + final code extraction

evaluator = byron.evaluator.PythonEvaluator (
fitness,
backend = ’joblib’

64

Script Python used to train the model and compile the results

)
final_code = extrapolate_code(byron.ea.adaptive_ea(
train,
evaluator,
max_generation = MAX_IMAGE_GENERATIONS,
max_fitness =
byron.fit.Scalar(1.0) if fitness == pixel_correctness_fitness
else None
) [01)

----- - TEST ------------"-"-"-"-"-"-"—"-"-"-"-"-"—"—"—"—"—"-
fitness: list[float] = []

for index, test_sample in enumerate(test_set):
input_image, output_image = test_sample

Execute the final code on the test samples
exec (final_code, {

’np’: np,

’sp’: sp,

’sign’: sign,

’pixels_list_to_indices’: pixels_list_to_indices,
’get_image_value’: get_image_value,
’get_colored_pixels’: get_colored_pixels,

’get_group’: get_group,
’get_aligned_pixels’: get_aligned_pixels,

’connect_pixels’: connect_pixels,
’get_connected_pixels_groups’: get_connected_pixels_groups,
’copy’: copy,

>flip’: flip,

’rotate_90°’: rotate_90,

’color_selection’: color_selection
}, locals())

Isolate the generated image, and fit it to the output size
comparison_image = locals()[’generated_image’]
if comparison_image.shape != output_image.shape:
comparison_image = np.zeros (
shape=output_image.shape,
dtype=int
)

copy(locals () [’generated_image’], comparison_image)
Compute the pixel-correctness value for the sample
pixel_correctness = 1 - np.count_nonzero (

output_image - comparison_image

) / output_image.size

fitness.append(pixel_correctness)

65

Script Python used to train the model and compile the results

Return the mean pixel-correctness across all test samples, as well
as the final code
return np.mean(fitness), final_code

Utility function for graph drawing
def draw_gradient_histogram(axis, data: list, title: str):
cm = plt.cm.get_cmap(’RdY1Bu_r’)

_, bins, patches = axis.hist(
data,
range=np.arange (0.0, 1.1, 0.1),
bins=np.arange (0.0, 1.05, 0.05),
weights=np.ones (len(data)) / len(data),
edgecolor=’black’

)

axis.yaxis.set_major_formatter (PercentFormatter (1))
bins_center = 0.5 * (bins[:-1] + bins[1:])

col = bins_center - min(bins_center)
col /= max(col)

for ¢, p in zip(col, patches):
plt.setp(p, ’facecolor’, cm(c))

axis.set_title(title)
axis.set(xlabel=’Pixel correctness of test samples’)

Numpy array to Image converter
def ARC_grid_to_image(grid: np.ndarray) -> Image:
color_map = {
0: (0, 0, 0),
(0, 116, 217),
(255, 65, 54),
(46, 204, 64),
(255, 220, 0),
(170, 170, 170),
(240, 18, 190),
(2565, 133, 27),
(127, 219, 255),
(135, 12, 37)

© 00 N O O W N+~

image = Image.new(mode=’RGB’, size=grid.shapel[::-1])

for y in range(grid.shape[0]):
for x in range(grid.shape[1]):
image.putpixel ((x, y), color_mapl[gridly, xI11)

image = image.resize(

(image.size [0] * 50, image.size[1] * 50),
Image.Resampling . NEAREST

66

Script Python used to train the model and compile the results

return image

File execution entry point
if __name == ’_ main__"’:

byron.logger.setlevel (byron.logging.CRITICAL)

Compute test results for all 400 tasks in ’data/training’, using the
pixel-correctness fitness function during training
pixel_correctness_fitness_results = []
for filename in tqdm(os.listdir(’data/training’)):
train_set, test_set = parse_arc_test_file(
f’data/training/{filenamel}’

acc, _ = solve_task(fitness=pixel_correctness_fitness)
pixel_correctness_fitness_results.append(acc)

Compute test results for all 400 tasks in ’data/training’, using the
pixel-correctness fitness function during training
selector_difference_fitness_results = []
for filename in tqdm(os.listdir(’data/training’)):
train_set, test_set = parse_arc_test_file(
f’data/training/{filenamel}’

acc, _ = solve_task(fitness=selectors_difference_fitness)
selector_difference_fitness_results.append(acc)

Plot results

fig, (axl, ax2) = plt.subplots(l, 2)
fig.suptitle(’Samples accuracy distribution’)
fig.set_size_inches (12.0, 6.0)

draw_gradient_histogram(
axl,
pixel_correctness_fitness_results,
’Pixel -correctness fitness’

)

draw_gradient_histogram(
ax2,
selector_difference_fitness_results,
’Selector difference fitness’

)

plt.show ()

67

	Introduction
	Introduction to ARC-AGI
	Task structure
	Importance for Machine Learning
	Challenges and open questions
	Current State-of-the-Art approaches and performance

	Evolutionary algorithms and Genetic Programming
	What are Evolutionary Algorithms?
	Representation
	Fitness function
	Operators
	Selection mechanisms
	Termination criteria

	Program Synthesis
	Genetic Programming
	Syntax Trees
	Sub-tree crossover
	Tree mutation

	Fuzzing
	The Byron fuzzer
	Program structure
	Fitness functions

	Experimental setup
	Fitness
	Operator functions
	Selectors
	Training loop
	Size estimation algorithm
	Image generation algorithm

	Experimental Results
	Visual results
	Quantitative results
	Best case scenarios

	Conclusions
	Bibliography
	Script Python used to train the model and compile the results

