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Abstract

The Abstraction and Reasoning Corpus (ARC) has emerged as a key benchmark for
evaluating progress toward Artificial General Intelligence (AGI), as it emphasizes flexible
problem solving and generalization beyond narrow, domain-specific methods. This thesis
investigates the application of Genetic Programming (GP) to the ARC framework, with
the aim of exploring the feasibility of evolutionary search as a path toward generalizable
reasoning systems.

In this work, we describe our attempt to use the Byron fuzzer (Byron: A Fuzzer for
Turing-complete Test Programs, 2024) to tackle ARC tasks, focusing on fitness evalua-
tion, transformation functions and program structure. We analyze the performance of
the system on different ARC challenges, highlighting its potential and limitations. The
results provide insights into the role of evolutionary computation in AGI research and
suggest avenues for new approaches that could make better use of the Byron framework.
Ultimately, the thesis contributes to understanding how evolutionary search mechanisms
can support progress toward more general, adaptable artificial intelligence.
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Chapter 1

Introduction

Recent advances in the field of Artificial Intelligence (AI) have produced highly effective
systems in specialized domains such as computer vision, natural language processing, and
reinforcement learning. However, these systems are still limited to narrow tasks and lack
the ability to flexibly generalize across different domains. The pursuit of Artificial Gen-
eral Intelligence (AGI) aims to overcome this limitation by developing systems capable
of abstraction, reasoning, and problem solving in previously unseen settings [?].

The Abstraction and Reasoning Corpus (ARC), introduced by François Chollet (2019),
has been proposed as a benchmark to evaluate progress toward AGI [1]. Unlike more tra-
ditional machine learning datasets, ARC presents tasks explicitly designed to assess a
system’s ability to infer generalizable rules from a small number of examples.

Current machine learning approaches face significant difficulties when applied to ARC.
Data-driven statistical models, including deep learning architectures, generally fail to gen-
eralize when exposed to the limited number of examples provided for each task [2] [?].
Symbolic and program synthesis approaches, while capable of producing exact and inter-
pretable solutions, often suffer from inefficiency due to the combinatorial growth of the
search space [3].
Hybrid approaches that combine neural and symbolic methods have been investigated [4]
[5], but their effectiveness remains limited to subsets of the benchmark.

This context motivates the investigation of evolutionary computation as an alterna-
tive paradigm for addressing ARC. Evolutionary algorithms (EAs) are population-based
search methods inspired by natural selection [6], and are better suited to exploring large,
discontinuous search spaces. Among these, Genetic Programming (GP) provides a direct
mechanism for evolving executable programs expressed as compositional structures [7].
The ease of interpretation and modularity of GP make it particularly relevant to tasks
such as ARC, where solutions can be naturally represented as transformations of symbolic
structures.
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Introduction

This thesis examines the application of Genetic Programming to ARC as a means
of assessing its suitability for tasks that demand generalization and abstraction. Par-
ticularly, the goal of the thesis work was to adapt the Byron fuzzer [8] to solve ARC
tasks. Through experimental evaluation, the thesis aims to identify the strengths and
limitations of this approach and to provide insights into the potential role of evolutionary
computation in advancing AGI research.
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Chapter 2

Introduction to ARC-AGI

The Abstraction and Reasoning Corpus (ARC) is a benchmark introduced by François
Chollet in 2019 as a means of evaluating progress toward Artificial General Intelligence
(AGI) [1]. While the majority of machine learning datasets focus on large-scale pattern
recognition within a fixed domain (e.g., images, text, or speech), ARC is explicitly de-
signed to test a systems ability to generalize to novel tasks using only a small number of
examples.

As such, ARC plays a dual role. On one hand, it is a diagnostic tool, revealing the
limitations of contemporary deep learning approaches. On the other, it is a research
catalyst, motivating the exploration of alternative paradigms such as symbolic reasoning,
program synthesis, evolutionary search, and hybrid models that aim to bridge the gap
between narrow AI and more general, human-like intelligence.

2.1 Task structure

ARC is composed of a large collection of small tasks, each defined by a set of input-output
examples. The tasks are presented on grids of colored cells, with a discrete number of
possible colors, and the goal is to learn the underlying transformation that maps input
to output. Examples of transformations include:

• Recoloring or reshaping objects

• Identifying and applying symmetries

• Counting and/or repeating patterns

• Applying compositional operations (e.g., reflection followed by translation)

Each task includes only a handful of demonstrations, typically three to five, which
require the solver to infer the mapping rule and apply it to unseen test cases. Critically,
the tasks are deliberately diverse and heterogeneous, making it difficult to approach them
with predefined heuristics or pattern-matching strategies.
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Introduction to ARC-AGI

Figure 2.1: Example of an ARC task

2.2 Importance for Machine Learning

ARC challenges many of the assumptions underlying contemporary machine learning.
Most successful AI systems are based on large-scale training data, statistical generaliza-
tion, and optimization of task-specific objectives.
In direct contrast to these principles, ARC demands the ability to:

• Generalize from very few examples

• Discover and represent abstract concepts

• Adapt flexibly to entirely novel tasks

These requirements align more closely with human cognition than with conventional
supervised learning. A human can generally grasp a new rule or pattern after seeing only
one or two examples, whereas even the most advanced neural networks often fail in such
situations.

2.3 Challenges and open questions

Working with ARC also introduces several challenges that remain largely unsolved:

• Representation: How should the abstract information presented in an image be
encoded to be correctly interpreted during the rule inference process?

• Search and inference: What mechanisms enable the discovery of a correct rule given
such limited evidence?

• Transferability: Can solutions learned from one task inform the solving of another,
despite their differences on a surface level? And if so, how can they affect the
learning process?

• Evaluation: To what extent does performance on ARC truly measure progress
toward AGI, as opposed to specialized heuristics tailored to its structure?

These challenges illustrate why ARC has become a central benchmark in AGI research
and why it continues to attract interest from multiple communities, including machine
learning, cognitive science, and computational logic [9].
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2.4 – Current State-of-the-Art approaches and performance

2.4 Current State-of-the-Art approaches and performance
The ARC Prize website has a publicly available leaderboard that shows the performance
of different models [10]. Critically, all the models presented in the leaderboard are Large
Language Models (LLMs).

Figure 2.2: ARC leaderboard

The main models used to challenge ARC use Chain of Thought (CoT, colored green
in the image) prompting, a prompt engineering technique that enhances the output of
LLMs by guiding the model through a step-by-step reasoning process, using a coherent
series of logical steps.
These models include GPT (by OpenAI), Gemini (by Google), and Grok (by xAI). Grok,
in particular, is the best-performing model, with an accuracy of 66.7%.
These models present a critical flaw, though: as their performance increases, so does the
maintenance cost, up to $4.16/task for OpenAI’s o3 model.
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Chapter 3

Evolutionary algorithms and
Genetic Programming

Other than Large Language Models, some approaches to the ARC-AGI challenge utilize
a category of algorithms known as Evolutionary Algorithms (EAs).

3.1 What are Evolutionary Algorithms?

Evolutionary Algorithms are a family of algorithms inspired by the principles of natural
selection and biological evolution. Instead of directly searching for a solution, EAs main-
tain a population of candidate solutions (called individuals), which are evolved iteratively
through processes analogous to mutation, selection, and inheritance. [6]
The guiding principle is that, over many generations, fitter individuals (better solutions)
accumulate in the population, gradually producing solutions that adapt to the task en-
vironment.

An EA will generally initialize a population of random individuals, then follow an
iterative process like this:

1. Evaluate the fitness of each individual in the population.

2. Check if a termination criterion is reached, and terminate the algorithm if so.

3. Select a number of individuals (preferably of higher fitness) as parents.

4. Produce offspring with optional crossover, in order to mimick reproduction.

5. Apply mutation operations on the offspring.

6. Select individuals (preferably of lower fitness) for replacement with new individuals
(mimicking natural selection).
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Evolutionary algorithms and Genetic Programming

Training start

Initialize population

Evaluate fitness values

Reached any
termination criteria?

Training end

Select parents

Generate children via crossover

Mutate offsprings

Replace individuals

Yes

No

Figure 3.1: Training loop of a generic EA

As such, the key components a programmer has to define in order to create an Evo-
lutionary Algorithm are the following:
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3.1 – What are Evolutionary Algorithms?

3.1.1 Representation

The first thing to define is the algorithm’s representation of candidate solutions, which
defines how individuals are encoded within the algorithm. This can generally take the
form of:

• Bit-strings, where each bit encodes a feature or parameter.

• Real-valued vectors, most often used in continuous optimization problems.

• Trees or expression graphs (most commonly used in genetic programming), where
nodes represent functions or primitives, and leaves represent inputs or constants.

• Specialized data structures tailored to the problem domain (e.g., neural network
architectures, symbolic rules, or grid transformations).

The choice of representation directly influences the search space, as well as the types
of operators that can be applied.

3.1.2 Fitness function

The fitness function is used to measure the quality of a candidate solution. It acts as the
guiding signal of the evolutionary process, determining which individuals are more likely
to survive and reproduce.

A well-designed fitness function should take into account some key considerations:

• Task relevance: the metric must reflect how well the candidate solves the problem.

• Granularity: the function should provide meaningful intermediate feedback, instead
of being strictly binary (correct/incorrect). This helps in creating a search space in
which even smaller differences between individuals can be appreciated, simplifying
the optimization process.

• Generalization: as with the majority of other Machine Learning algorithms, evalu-
ation should discourage overfitting.

3.1.3 Operators

Operators are responsible for generating diversity in the population. There are two main
types of operators: mutation operators and crossover operators.

Mutation operators are applied to a single individual and are used to modify it in a
random manner. Examples include flipping bits in a string, altering numerical parame-
ters, or replacing subtrees in a program. These operators tend to promote exploration,
generating a set of diverse individuals to better explore the search space.
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Evolutionary algorithms and Genetic Programming

Crossover operators combine parts of two parent individuals to produce an offspring
one. In genetic programming, for instance, crossover might exchange entire subtrees be-
tween two programs. Crossover promotes exploitation, allowing useful elements present
in an individual to spread through the population.

Effective design and use of these operators require balancing exploration and exploita-
tion: too much randomness leads to an unstructured search, while too little may trap the
population in a local fitness well (where fitness does not improve unless a much different
individual is proposed).

3.1.4 Selection mechanisms

Selection determines which individuals are retained for reproduction (crossover) and
which are discarded.
Commonly used selection mechanisms are:

• Fitness-proportionate selection (also called roulette wheel selection), where the
probability of selection is proportional to fitness.

• Tournament selection, where individuals compete in small groups and the fittest of
each group is chosen to perform crossover.

• Rank-based selection, where individuals are ordered by fitness and selection prob-
ability depends on the resulting rank instead of the fitness value itself.

Selection introduces evolutionary pressure, steering the population toward fitter so-
lutions. However, excessive pressure can lead to premature convergence, where the pop-
ulation diversity is lost and the algorithm stagnates. Conversely, too little pressure can
result in an inefficient search, with little diversity and a slow adaptation to the task
environment.

3.1.5 Termination criteria

The final element to define is a rule for when to stop the algorithm, since otherwise it
could theoretically continue to loop indefinitely.
Generally, the termination criteria of an EA include reaching a certain number of gen-
erations or evaluations, discovering a solution that meets or exceeds a certain fitness
threshold, or observing a stagnation in fitness improvement or diversity.
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3.2 – Program Synthesis

3.2 Program Synthesis

Program synthesis is a term used in Computer Science that defines the task of auto-
matically constructing computer programs satisfying a given specification [11]. Unlike
traditional programming, where a human explicitly writes the code, program synthesis
aims to generate the code automatically from constraints such as examples, formal rules,
or natural language descriptions.

The main motivation behind the pursuit of Program Synthesis is automation of rea-
soning: enabling computers to generate procedures for solving tasks without human in-
tervention could create more time for programmers and engineers to debug and fix other
critical systems.
In addition, allowing users to specify intent at a high level (through demonstrations or
rules) while the system handles the low-level implementation details could allow even
users with less technical knowledge to create programs and apps to help them and other
in their communities.

The types of specification a program has to satisfy may vary. Generally, though,
Program Synthesis is performed under three main types of constraints:

• Example-based synthesis (Programming by Example, PBE) enables the system to
generate a program consistent with a small number of input-output pairs. ARC is
a prime example of this mode.

• In constraint-based synthesis programs are synthesized to satisfy either logical or
mathematical constraints (e.g., SAT or SMT solvers).

• Natural language-based synthesis instead generates programs starting from textual
instructions or queries. This is a research area that is being increasingly explored
with LLMs.

These constraints are not mutually exclusive either, in fact there exist hybrid ap-
proaches that combine them for greater robustness.

3.3 Genetic Programming

Genetic Programming (GP) is an approach to Program Synthesis that uses Evolutionary
Algorithms to create a program [7].
The central idea is that, given a well-defined set of primitives (functions, operators, and
terminals), a GP system can discover compositions of these primitives that solve a given
task. Over successive generations, populations of candidate programs evolve following
a normal EA training loop, until a well-defined and (hopefully) functioning program is
generated.
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Evolutionary algorithms and Genetic Programming

3.3.1 Syntax Trees

Individuals in a GP algorithm are traditionally represented as tree structures, with ev-
ery internal node representing an operator function and every leaf node representing an
operand (a variable or a constant). This allows the tree to be easily evaluated in a
recursive manner.

Figure 3.2: Example of a mathematical function represented as a tree

This traditional representation favors the generation of programs written in functional
programming languages (such as Lisp), as they naturally embody tree structures.
Other solutions (and forms of representation) have been successfully implemented to work
with more traditional imperative languages.

3.3.2 Sub-tree crossover

In traditionally tree-represented GP algorithms, crossover is generally performed by swap-
ping sub-trees of the parents. This particular crossover operation is performed following
a series of steps:

1. Choose a random sub-tree from each parent individual.

2. One of the parents is selected as the root donating parent. This parent has its
selected sub-tree removed and replaced with the other parent’s subtree.

3. If two child crossover is used, meaning the crossover operation generates two children
instead of one, the same operation is performed on the other parent, removing its
sub-tree and replacing with the root donating parent’s.

16



3.3 – Genetic Programming

Figure 3.3: Example of sub-tree crossover

3.3.3 Tree mutation

There are different types of mutation operators that can be applied to tree structures.
They all aim to mutate a syntactically correct individual, generating a new one, still
syntactically correct.
There are four commonly used operators:

• Sub-tree mutation replaces a randomly selected sub-tree with a new randomly gen-
erated one. Naturally, the sub-tree generation must be programmed to always
generate syntactically correct sub-trees.

• Point mutation replaces an individual node with another of the same type. A leaf
node (variable or constant) will be replaced with another leaf node, while an internal
node (function) will be replaced with another function of the same arity (number
of inputs).

• Hoist mutation replaces a randomly chosen sub-tree with another randomly selected
sub-tree within itself, thus guaranteeing to make the tree smaller.

17
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(a) Subtree mutation

(b) Point mutation

(c) Hoist mutation

Figure 3.4: Examples of each mutation operator

18



3.4 – Fuzzing

3.4 Fuzzing

Fuzzing (or fuzz testing) is an automated software testing technique that involves pro-
viding invalid, unexpected, or random data as inputs to a computer program, then mon-
itoring the program for exceptions such as crashes, failing built-in code assertions, or
potential memory leaks [12].
Typically, fuzzers are used to test programs that take structured inputs. This structure
is specified and is used to distinguish valid inputs from invalid ones. An effective fuzzer
generates semi-valid inputs that are not directly rejected by the parser, but will create
unexpected behaviors deeper in the program and are able to expose corner cases that
have not been properly dealt with.

3.5 The Byron fuzzer

Byron is a source code fuzzer designed to support either assembly or higher level languages
[8]. It works by generating a set of random programs, which are then iteratively improved
by an evolutionary algorithm.
As such, it can also be adapted for Genetic Programming tasks, at least those for which
a fitness function can be appropriately designed. In this project we used it to try to
generate a Python program capable of solving ARC tasks.

Internally, it encodes candidate solutions as typed, directed multi-graphs, and can
effectively handle complex, realistic program structures containing local and global vari-
ables, conditional and looping statements, and subroutines.

Candidate programs can be evaluated using a user-defined Python function or an
external tool, such as an interpreter or a simulator. The framework also supports different
types of parallelization out of the box, from simple multi-threading to the creation of
temporary directories where multiple sub-processes are concurrently spawned.

19
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(a) Generated code sequence

(b) Multigraph

Figure 3.5: Example of a simple Python script generated using Byron, and its corre-
sponding graph
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3.5 – The Byron fuzzer

3.5.1 Program structure

Any candidate program in Byron is a composition of Macros and Frames.

Macros

Macros are essentially the building blocks used in the program generation. They repre-
sent fragments of code, with optional parameters. In the example used for Fig. 3.5, three
different macros were created: two containing snippets for creating numeric variables (n2
and n3), and one containing the code to print their sum (n4).

The parameters are objects that encode a value. They are used to add variability to
the candidate programs, and their values are updated at each iteration of the evolution
process.
There are different types of parameters:

• Integer and float parameters encode an integer and a floating-point value, respec-
tively.

• Choice parameters encode a single value chosen at random from a list of possible
elements.

• Array parameters encode a sequence of values, chosen at random from a list of
possible elements, and with a specified length.

Macros can also use references, a special kind of parameter that is used to reference
another point in the program. Specifically, a local reference points to another random
macro in the same bunch frame (see below, in Frames), while a global reference points
to a specific macro, independently of its position in the program.
Local references can be used mainly to create assembly jump instructions, while global
references can be used to create variables. For example, in Fig. 3.5, the macro n4 uses
two global references to access the macros n2 and n3, which created variables named after
themselves.

Frames

Frames are used to contain and join together different macros or other frames, and act as
parent nodes in the multi-graph, connected to each of their related macros or frames. In
the example used for Fig. 3.5, the node n1 is a frame containing the three macros used
in the program.
When evaluating a frame, the child macros will be evaluated differently based on the
frame’s type:

• Sequence frames simply arrange its child macros in a sequential manner and eval-
uates them in order.
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• Bunch frames will first generate a sequence of macros, randomly selected from their
children, then evaluate them in order similarly to sequence macros.

• Alternative frames randomly select a single macro from their children, and the
selected macro will be the only one to be evaluated.

3.5.2 Fitness functions

The Byron framework accepts user-defined fitness functions to use in its evolution process,
but accepts only numeric or vector-based fitness values. These two types are compared
differently.

Comparison between numeric fitness values, either integer or floating-point, is a simple
algebraic difference, but additional parameters can be specified for floating-point values
to define whether two individuals have comparable fitness.
Comparison between vector-based fitness values, on the other hand, is performed following
a lexicographic order: the comparison result is given by the values in the first position
of the vector; if they are the same, then the values at the second position are checked,
then if they are also the same the third position is compared and so on. If all pairings
are equal, then the two vectors are considered equal as well.
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Chapter 4

Experimental setup

This chapter will present our experimental setup, with particular attention to the fit-
ness function used to compare candidate programs, the operators designed to extrapolate
data from the input image and use it on the generated output, and the way the program
structure was set up (that is, the Macros and Frames used).

The model was trained on a set of 400 ARC tasks.
All images in the tasks were encoded as Numpy 2D integer arrays (bibref). Each element
ranges between 0 and 10, and corresponds to a different colored pixel.

4.1 Fitness

The first thing that needed to be defined was a fitness function, used to encode the per-
formance of a given candidate solution on a given ARC task. This fitness function would
take a generated image and the corresponding expected output and return a measure of
the difference between the latter and the former.

The first intuition was to simply define a pixel-correctness fitness, where the perfor-
mance would be measured in terms of percentage of correct pixels in the generated image,
compared to the expected output. The idea is to have a continuous measure to better
incentivize the evolution process.
However, this fitness proved to be, at least partially, ill-designed, because there are a
number of images where the majority of pixels are background color, and the actual task
focuses on a lower number of colored pixels. Thus, the function was improved by ignoring
the pixels that made up at least 50% of the image.
As an example of the measure provided by this function, consider Fig.4.1. Taking into
account background pixels (black in this case), the fitness value would be 8/9 ≈ 88%.
Ignoring them, the fitness value drops to 2/3 ≈ 66%, more representative of the actual
difference between the images.

Another intuition came when designing the selectors (more on that in section 4.3).
Since each selector captured a section of the image in the form of a list of pixels, a new
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Experimental setup

fitness function was designed to capture the difference in these selections. This fitness
would then be minimized in the evolution process, instead of being maximized.
The idea behind this measure is to have a quantifiable difference between relevant features
in the generated image and the expected output image, instead of a simple measure of
the number of correct pixels.
The fitness would first extrapolate all the possible selections in both images, then compute
a numeric difference between the results. Then these differences were placed in sequence,
in random order. The difference was calculated by the following algorithm:

1. Since any given selector could extract a different number of pixels in the two images,
the first thing to check is whether the number of selected pixels in the images is the
same.

2. If true, then calculate the average Manhattan distance between the selected pixels.

3. Otherwise, the difference is computed as the absolute difference in the number of
selected pixels, scaled by a factor of 100.

Taking again Fig.4.1 as an example, the color selectors Red and Yellow would produce
a difference of 100.0 (since a single pixel would be selected in one image while none in
the other), while the color selector Grey would produce a value of 0.0. Any other selector
would produce a value of 0.0 as well, as no pixels would be extracted. All these values
would then be put into a sequence in random order, and two different fitness sequences
would be compared in lexicographic order.

(a) Generated image (b) Expected output image

Figure 4.1: Example of a generated image and its corresponding expected output
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4.2 – Operator functions

4.2 Operator functions

The next set of functions we defined are functions that operate on an image, applying
different transformations on it:

• connect_pixels(im, px1, px2, color, left_connect_px = None): this func-
tion takes an image and two pixels as input, and draws a straight line between
them, of the defined color.

If the pixels are not aligned (i.e. they have different x and y coordinates), two lines
are drawn, connecting the pixels at a right angle following taxicab geometry.
The optional parameter left_connect_px can be used in this case to specify which
of the two pixels will have the connecting line start from its left.

• color_selection(im, pixels, color, offset = (0, 0)): this functions takes
an image and a list of pixel positions and sets all the specified pixels to the specified
color.

The optional parameter offset can be used to set the color of pixels that are near
the specified section.

• copy(im, out, pixels, offset = (0, 0), cut = True): this function takes two
images and a list of pixel positions as input, and tries to copy as many of the spec-
ified pixels from the im image to the out one. Any pixel that would end up outside
the bounds of the out image is discarded.

The optional parameter offset can be used to specify an offset vector to use during
the copy process.
The optional parameter cut can be set to True to remove the pixels from the im
image during the copy process.

• flip(out, pixels, pivot = (-1, -1), flip_x = False, flip_y = False): this
function takes an image and a list of pixel positions as input, and tries to generate
a symmetric copy of the specified section of the image while leaving the rest of it
unaltered. Any pixel that would be out of the bounds of the image is discared.
The parameters flip_x and flip_y are used to specify the axis/axes of symmetry
to use.

The optional parameter pivot can be used to specify the origin point used for the
transformation.

• rotate_90(out, pixels, times = 1, pivot = (-1, -1): this function takes an
image and a list of pixel positions as input, and tries to generate a copy of the im-
age with the selected section rotated 90 degrees anti-clockwise, while the rest of the
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Experimental setup

image is left unaltered. Any pixel that would be out of the bounds of the image
during the rotation process is discarded.

The optional parameter times can be used to specify the number of rotations.
The optional parameter pivot can be used to specify the center of rotation.

Figure 4.2: Examples of different tranformations
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4.3 Selectors
Since each of the defined operators needs a selection of pixels to work with, we next
designed a series of functions to extract sections of an image and return the corresponding
pixel positions.

• get_colored_pixels(im, colors): this function takes an image and a list of
integers (encoding different colors) as input, and returns the positions of all the
pixels in the image that are set to the specified color(s).

• get_group(im, index, color): this function takes an image, an integer encod-
ing a color, and an index as input, then performs a subroutine extracting all the
groups of connected pixels that are set to the specified color, and finally returns the
positions of the pixels in the group at the specified index.

• get_aligned_pixels(im, px = None, colors = None, filter_same_color = False):
this function takes an image and returns a list of pixel pairs, containing the positions
of all pairs of pixels in the image that share a coordinate and are not contiguous.
If the optional parameter px is specified, the function will instead return all pixels
that share a coordinate with the specified pixel, paired with the latter.

The optional parameter colors can be used to specify which colors to take into
consideration. Any pixel set to a color not in the list will be ignored.
The optional parameter filter_same_color can be set to True to only consider
pair of pixels set to the same color.

get_colored_pixels(image, [1]) = [(0, 1),
(0, 3), (2, 4)]
(selects only the blue pixels)

get_group(image, 0, 2) = [(2, 1), (2, 2), (3, 1)]
(selects the pixels in the first - and only - red group)

get_aligned_pixels(im) = [((0, 1), (0, 3)),
((0, 1), (3, 1)), ((2, 2), (2, 4))]
(selects all pairs of aligned pixels, indiscriminately)
get_aligned_pixels(im, (2, 1)) = [((2, 1),
(0, 1)), ((2, 1), (2, 4))]
(selects all pixels aligned to - and paired with - the
pixel in position (2, 1), but not touching it)

The top-left pixel corresponds to the position (y=0, x=0).
The color blue is encoded by the number 1, while red is encoded by the number 2.

Figure 4.3: Examples of selectors and their output
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4.4 Training loop

For each task, we launched two separate consecutive iterations of the evolutionary algo-
rithm, each with its own set of hyper-parameters and fitness evaluator: the first aimed
only to find the correct dimensionality of the generated image, while the second one was
in charge of generating the image itself.

4.4.1 Size estimation algorithm

The size algorithm utilizes a Manhattan distance-based fitness function, trying to mini-
mize the distance between the generated size and the correct one.
For this process, we created two Macros:

• one initializes the image as a black image of fixed size (with the size being governed
by parameters).

• the other generates a copy of the input image, applying a scaling factor and a size
offset (both governed by parameters).

Then we have an Alternative Frame, selecting one of the two Macros to initialize the
generated image.
The algorithm was set to run for 1000 iterations, but stop if a distance of 0.0 was reached.

4.4.2 Image generation algorithm

The image generation algorithm then has the responsibility of modifying the generated
image to resemble as closely as possible the expected output, with the comparison being
dictated by one of the fitness functions defined in Section 4.1. This process is the most
complex, using a variety of different Macros and Frames.

The first Macros used are the selectors. We defined two Macros for extracting pixels
from the input image and store them into variables:

• the first uses the get_colored_pixels to extract a number of pixels based on their
color.

• the second uses the get_group function to instead try to extract information on
contiguous sections of the image.

For both Macros, the arguments of the functions they call are governed by parameters.
A sequence of Bunch Frames containing these Macros is then used to initialize these se-
lectors.

A similar set of Macros and Frames is also used to extract pixels from the generated
image, in the case relevant information is created during the generation process.
Since the number of variables holding selections of pixels is limited by the size of the
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Bunch frames (a hyperparameter), a third set of Macros and Frames was also created to
reassign variables to a new selection.

Next we implemented the Macros holding the transformation functions (where again
the arguments of the functions were governed by parameters):

• A Macro connecting all pairs of aligned pixels in the image.

• A Macro connecting two selected pixels (assuming that the two selections contain
only a single pixel each).

• A Macro to copy a section of either the input or generated image to the generated
image itself.

• A Macro to flip a section of the generated image along one or both axes.

• A Macro to rotate a section of the generated image.

• A Macro to set a selection of pixels in the generated image to a different color.

These Macros are children of a Bunch frame, selecting them at random and improving
the selection over time.

The image generation algorithm was tested with the two fitness functions defined in
Section 4.1, and the results of both are reported in the next chapter.
The algorithm was set to run for 150 iterations. For the pixel-correctness fitness function,
another stopping criterion was to reach a fitness value of 1.0.
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Chapter 5

Experimental Results

For each task, after training the model on the input samples, we executed the synthesized
code on the evaluation sample(s) to generate the corresponding output images.

5.1 Visual results

The first assessment we can make is a visual comparison between the generated images
and their corresponding expected outputs. Fig. 5.2 and show some examples of tasks
and their generated output.

(a) Training samples

(b) Test sample and result

Figure 5.1: Task 8e5a5113
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(a) Training samples

(b) Test sample and result

Figure 5.2: Task 445eab21

The model clearly has mixed performances.
Task 8e5a5113, for example, required a section of the input image to be rotated and
translated along the output image. The model identified the correct rule but got a
rotation wrong.
Task 445eab21 instead consisted of finding the larger rectangle in the input and filling a
2x2 square with the corresponding color for the output. In this case, the model copied a
corner of the rectangle, trying to fill as much of the image as possible, but unable to add
pixels on its own.
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5.2 Quantitative results

Naturally, some kind of quantitative measure of the results is needed. To this end, we
computed the pixel-correctness of each generated image (as a measure of accuracy) and
compiled the results in Fig. 5.3.

Figure 5.3: Tasks accuracy distribution

As shown in the graph, the fitness function used had a noticeable impact on the
performance of the model.
While both functions resulted in about ∼8% of the samples reaching near-zero accuracy,
the selectors difference fitness yielded the worst overall results, with more than 13% of
the samples remaining almost or completely unsolved.
In contrast, the use of pixel-correctness fitness resulted in the best overall values, with
most samples reaching an accuracy of 50% and above. Of particular note is also the fact
that about ∼15% of the samples reached a high-level accuracy (95%+), and about ∼25%
of these completely solved the task or came really close (99% - 100% accuracy).

5.3 Best case scenarios

Another analysis we decided to perform was to check the best result with each fitness
function, in order to gauge the potential of the algorithm.

Fig. 5.4 shows the best result obtained with the selector difference fitness. In this
case, the task consisted of extracting the only colored square containing the blue dot.
The model did not manage to solve this task, despite reaching an accuracy of 97%. This
clearly indicates a fault in the chosen metric, since pixel-correctness is not capable of
meaningfully capturing a single-pixel difference, which in this case is critical to solve the

33



Experimental Results

task.

(a) Training samples

(b) Test sample and result

Figure 5.4: Best case results with selector difference fitness

Figs. 5.5, 5.6, and 5.7 instead show the best results obtained with the pixel-correctness
fitness. Notice how all three are completed tasks, with no error.
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(a) Training samples

(b) Test sample and result

Figure 5.5: Task c8f0f002

The goal of this task was to re-color all orange sections in gray. The model managed
to completely solve the task, probably thanks to the color_selection() function that
was developed precisely for similar situations.
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(a) Training samples

(b) Test sample and result

Figure 5.6: Task

In this task, the input consists of 3 copies of the same section. The goal is to isolate
this section and return it as the output. Again, the model was capable of completely
solving this task.
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(a) Training samples

(b) Test sample and result

Figure 5.7: Task
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Finally, this task also consisted in extracting a particular section of the input image,
although the rule behind the choice of the section is not entirely clear.
In this case, the model managed to correctly solve the task, despite it being relatively
difficult to understand.

These results are consistent with the accuracy distributions shown in Fig. 5.3, and
show again that the pixel-correctness fitness function is more reliable than the selectors
difference fitness.
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Chapter 6

Conclusions

This thesis investigated the application of Genetic Programming to the Abstraction and
Reasoning Corpus (ARC), a benchmark designed to evaluate progress toward Artificial
General Intelligence. The study examined the ability of evolutionary computation to
generate compositional, interpretable solutions for ARC tasks, and evaluated the perfor-
mance of the Byron EA framework with two different fitness measures: Model A, which
uses a pixel-correctness fitness with a form of data-balancing, and Model B, which instead
uses a vector-based fitness to capture the information on particular sections of the images.

The comparative analysis revealed that both models left at least ∼8% of the evaluated
tasks completely unsolved, highlighting the intrinsic difficulty of ARC and the limitations
of current evolutionary approaches when confronted with sparse supervision and diverse
task requirements.
Between the two models, notable differences were observed. Model A exhibited more
consistent performance across tasks, suggesting a robustness that makes it less sensitive
to variation in task structure. It also showed a high potential, managing to completely
solve 3 different tasks. Model B, on the contrary, was overall less stable, with a higher
number of completely unsolved tasks and, overall, less satisfactory results. It also did not
manage to completely solve a single task.

These findings suggest that there is substantial room for improvement in both repre-
sentation and search strategy. In particular, the use of alternative parameter settings or
richer sets of operators could potentially lead to a significant performance improvement.
Moreover, the reliance on pixel-correctness as the only evaluation metric may obscure
other dimensions of progress; adopting alternative or complementary performance mea-
sures could provide a more nuanced assessment of the models strengths and weaknesses.

In summary, while neither of the proposed models achieves a comprehensive solution
to ARC, the results demonstrate the promise and challenges of Genetic Programming
in this domain. The contrast between consistency and ceiling performance provides a
valuable perspective on the design space for evolutionary approaches, and the identified
limitations point toward concrete avenues for future research.
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Appendix A

Script Python used to train the
model and compile the results

1 import itertools
2 import json
3 import traceback
4 import os
5

6 import byron
7 from byron. classes import FitnessABC , ParameterABC , Individual , SElement
8

9

10 import numpy as np
11 import scipy as sp
12

13

14 from tqdm import tqdm
15

16 import matplotlib . pyplot as plt
17 from matplotlib . ticker import PercentFormatter
18

19

20 from PIL import Image
21

22

23

24 train_set , test_set = None , None
25

26

27 # General utility functions
28 def sign(n: int) -> int:
29 return int(np. copysign (1, n))
30

31 def distance (px1 , px2) -> int:
32 # Manhattan distance
33 return abs(px1 [0] - px2 [0]) + abs(px1 [1] - px2 [1])
34

35
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36 # Image utility functions
37

38 # Converts a list of 2- element tuples ( encoding pixel positions ) to the
corresponding numpy indices

39 def pixels_list_to_indices ( pixels : list) -> tuple[
40 np.ndarray ,
41 np. ndarray
42 ] | None:
43 if len( pixels ) == 0:
44 return None
45

46 stack: np. ndarray = np. vstack ( pixels )
47 indices : tuple[np.ndarray , np. ndarray ] = stack [:, 0], stack [:, 1]
48

49 return indices
50

51 # Returns the pixel value of a given image at a given pixel position
52 def get_image_value (im , px) -> int | None:
53 index = pixels_list_to_indices ([px])
54

55 if index is None:
56 return None
57

58 try:
59 return im[index]
60 except IndexError :
61 return None
62

63

64 # ARC task parser
65 def parse_arc_test_file ( filename : str) -> tuple[list , list ]:
66 with open( filename ) as file:
67 data: dict[
68 str , list[
69 dict[
70 str , list[list[int ]]
71 ]
72 ]
73 ] = json.load(file)
74

75 # List of train samples , encoded as Numpy arrays
76 train_data : list = []
77

78 for train_item in data[’train ’]:
79 train_data . append ((
80 np.array( train_item [’input ’]). reshape (
81 len( train_item [’input ’]),
82 len( train_item [’input ’][0])
83 ),
84 np.array( train_item [’output ’]). reshape (
85 len( train_item [’output ’]),
86 len( train_item [’output ’][0])
87 )
88 ))
89
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90 # List of test sample , encoded as Numpy arrays
91 test_data : list = []
92

93 for test_item in data[’test ’]:
94 test_data . append ((
95 np.array( test_item [’input ’]). reshape (
96 len( test_item [’input ’]),
97 len( test_item [’input ’][0])
98 ),
99 np.array( test_item [’output ’]). reshape (

100 len( test_item [’output ’]),
101 len( test_item [’output ’][0])
102 )
103 ))
104

105 return train_data , test_data
106

107

108 # Code converter from Byron to Python
109 def extrapolate_code ( element_or_genotype : Individual | Type[ SElement ] |

ParameterABC | str) -> str:
110 final_code = ’’
111 if isinstance ( element_or_genotype , str):
112 for line in element_or_genotype . splitlines ():
113 code = line.split(’;’)[0]
114

115 if code.strip ().strip(’:’).strip(’n’). isnumeric ():
116 continue
117 if code. isspace ():
118 continue
119

120 final_code += code.strip(’ ’) + ’\n’
121 else:
122 for line in byron.f. as_text ( element_or_genotype ). splitlines ():
123 code = line.split(’;’)[0]
124

125 if code.strip ().strip(’:’).strip(’n’). isnumeric ():
126 continue
127 if code. isspace ():
128 continue
129

130 final_code += code.strip(’ ’) + ’\n’
131 return final_code . replace (’\n\n\n’, ’\n’). replace (’:\n\n’, ’:\n’)
132

133

134 # Operators
135

136 # Grouping operator
137 def get_connected_pixels_groups (im , color: int = 0) -> list:
138 groups : list = []
139

140 if color in range (1, 10):
141 labels , num_features = sp. ndimage .label(im == color)
142 for i in range( num_features ):
143 grp = np. argwhere ( labels == i + 1). tolist ()

45



Script Python used to train the model and compile the results

144

145 if len(grp) > 1:
146 groups . append (grp)
147 else:
148 labels , num_features = sp. ndimage .label(im != 0)
149 for i in range( num_features ):
150 grp = np. argwhere ( labels == i + 1). tolist ()
151

152 if len(grp) > 1:
153 groups . append (grp)
154

155 return groups
156

157 # Selectors
158 def get_colored_pixels (im , colors : list[int] = None) -> list:
159 if colors is None:
160 pixels : list = np. argwhere (im != 0). tolist ()
161

162 if len( pixels ) == 0:
163 return []
164

165 return pixels
166

167 if len( colors ) <= 0:
168 return []
169

170 pixels : list = np. argwhere (
171 np. logical_or . reduce ([np.array(im == color) for color in colors ])
172 ). tolist ()
173 return pixels
174

175 def get_group (im , index: int , color: int) -> list:
176 groups : list = get_connected_pixels_groups (im , color)
177 if index < len( groups ):
178 return groups [index]
179

180 return []
181

182 # Alignment operator
183 def get_aligned_pixels (
184 im ,
185 px = None ,
186 colors : list[int] = None ,
187 filter_same_color : bool = False
188 ) -> list[tuple ]:
189 input_pixels : list = get_colored_pixels (im , colors )
190 if input_pixels is None:
191 input_pixels = get_colored_pixels (im)
192

193 if px is not None:
194 returned_pixels : list = [
195 (px , p) for p in input_pixels
196 if p[0] == px [0] or p[1] == px [1]
197 ]
198
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199 if px in returned_pixels :
200 returned_pixels . remove (px)
201

202 return returned_pixels
203

204 aligned_pixels : list[tuple] = []
205

206 groups : list = get_connected_pixels_groups (im)
207

208 def check_same_value (px1 , px2) -> bool:
209 if not filter_same_color :
210 return True
211

212 value1 = get_image_value (im , px1)
213 value2 = get_image_value (im , px2)
214

215 if value1 is None or value2 is None:
216 return False
217

218 return value1 == value2
219

220 same_x_pixels_combs = [
221 c for c in itertools . combinations ( input_pixels , 2)
222 if c [0][1] == c [1][1] and not np.any ([
223 c[0] in grp and c[1] in grp for grp in groups
224 ]) and check_same_value (c[0], c[1])
225 ]
226 same_y_pixels_combs = [
227 c for c in itertools . combinations ( input_pixels , 2)
228 if c [0][0] == c [1][0] and not np.any ([
229 c[0] in grp and c[1] in grp for grp in groups
230 ]) and check_same_value (c[0], c[1])
231 ]
232

233 aligned_pixels . extend ( same_x_pixels_combs + same_y_pixels_combs )
234

235 return aligned_pixels
236

237 # Connection operator
238 def connect_pixels (
239 out ,
240 px1 ,
241 px2 ,
242 color: int | np. ndarray [tuple[int , ...] , np.dtype[int ]],
243 left_connecting_pixel = None
244 ) -> bool:
245 if px1 is None or px2 is None:
246 return False
247

248 if px1 [0] == px2 [0]:
249 out[px1 [0], range(px1 [1] + 1, px2 [1])] = color
250 return True
251

252 if px1 [1] == px2 [1]:
253 out[range(px1 [0] + 1, px2 [0]) , px1 [1]] = color
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254 return True
255

256 connecting_point = [0, 0]
257 if np. random .rand () < 0.5:
258 connecting_point [0] = px1 [0]
259 connecting_point [1] = px2 [1]
260 else:
261 connecting_point [0] = px2 [0]
262 connecting_point [1] = px1 [1]
263

264 if left_connecting_pixel == px1 and px2 [1] < px1 [1]:
265 connecting_point [0] = px1 [0]
266 connecting_point [1] = px2 [1]
267 if left_connecting_pixel == px2 and px1 [1] < px2 [1]:
268 connecting_point [0] = px2 [0]
269 connecting_point [1] = px1 [1]
270

271 out[
272 range(
273 min(px1 [0], px2 [0], connecting_point [0]) + 1,
274 max(px1 [0], px2 [0], connecting_point [0])
275 ),
276 connecting_point [1]
277 ] = color
278 out[
279 connecting_point [0],
280 range(
281 min(px1 [1], px2 [1], connecting_point [1]) + 1,
282 max(px1 [1], px2 [1], connecting_point [1])
283 )
284 ] = color
285 out[ pixels_list_to_indices ([ connecting_point ])] = color
286

287 return True
288

289 # Copy operator
290 def copy(
291 im ,
292 out ,
293 pixels : list = None ,
294 offset : tuple[int , int] = (0, 0),
295 cut: bool = False
296 ) -> bool:
297 if pixels is None:
298 pixels = get_colored_pixels (im)
299

300 if pixels is None:
301 return False
302

303 error: bool = False
304 for px in pixels :
305 input_index : tuple[
306 np.ndarray ,
307 np. ndarray
308 ] = pixels_list_to_indices ([px])
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309 if input_index is None:
310 error = True
311 continue
312

313 image_value : int = get_image_value (im , px)
314 if image_value is None:
315 error = True
316 continue
317

318 try:
319 if cut:
320 im[ input_index ] = 0
321

322 output_index : tuple[
323 np.ndarray ,
324 np. ndarray
325 ] = pixels_list_to_indices (
326 [(px + np.array( offset )). tolist ()]
327 )
328 if output_index is None:
329 error = True
330 continue
331 if output_index [0] < 0 or output_index [1] < 0:
332 error = True
333 continue
334

335 out[ output_index ] = image_value
336 except (IndexError , ValueError ):
337 error = True
338

339 return not error
340

341 # Symmetry operator
342 def flip(
343 out ,
344 pixels : list = None ,
345 pivot = (-1, -1),
346 flip_x : bool = False ,
347 flip_y : bool = False
348 ) -> bool:
349 if not ( flip_x or flip_y ):
350 return False
351

352 if pixels is None:
353 pixels = np. argwhere (out != 0). tolist ()
354

355 if len( pixels ) == 0:
356 return False
357

358 original_pivot = pivot
359 if flip_x and pivot [1] == -1:
360 pivot = [pivot [0], out.shape [1] // 2]
361 if flip_y and pivot [0] == -1:
362 pivot = [out.shape [0] // 2, pivot [1]]
363
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364 already_updated_indices : list[tuple[np.ndarray , np. ndarray ]] = []
365

366 error: bool = False
367 for px in pixels :
368 input_index : tuple[
369 np.ndarray ,
370 np. ndarray
371 ] = pixels_list_to_indices ([px])
372 if input_index is None:
373 error = True
374 continue
375

376 image_value = get_image_value (out , px)
377 if image_value is None:
378 error = True
379 continue
380

381 flipped_px = px
382

383 if flip_x :
384 flipped_px [1] = px [1] + 2 * (pivot [1] - px [1])
385 if original_pivot [1] == -1 and out.shape [1] % 2 == 0:
386 flipped_px [1] -= 1
387 if flip_y :
388 flipped_px [0] = px [0] + 2 * (pivot [0] - px [0])
389 if original_pivot [0] == -1 and out.shape [0] % 2 == 0:
390 flipped_px [0] -= 1
391

392 try:
393 flipped_index = pixels_list_to_indices ([ flipped_px ])
394 if flipped_index is None:
395 error = True
396 continue
397 if flipped_index [0] < 0 or flipped_index [1] < 0:
398 error = True
399 continue
400

401 if (
402 input_index != flipped_index and
403 not input_index in already_updated_indices
404 ):
405 out[ input_index ] = 0
406

407 out[ flipped_index ] = image_value
408 already_updated_indices . append ( flipped_index )
409 except (IndexError , ValueError ):
410 error = True
411

412 return not error
413

414 # Rotation operator
415 def rotate_90 (
416 out ,
417 pixels : list = None ,
418 times: int = 1,
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419 pivot = (-1, -1)
420 ) -> bool:
421 if pixels is None:
422 pixels = np. argwhere (out != 0). tolist ()
423

424 input_indices : tuple[
425 np.ndarray ,
426 np. ndarray
427 ] = pixels_list_to_indices ( pixels )
428

429 if input_indices is None:
430 return False
431

432 boundary_top_left : tuple[int , int] = (
433 np.min( input_indices [0]) ,
434 np.min( input_indices [1])
435 )
436 boundary_size : tuple[int , int] = (
437 np.max( input_indices [0]) - boundary_top_left [0] + 1,
438 np.max( input_indices [1]) - boundary_top_left [1] + 1
439 )
440

441 original_pivot = pivot
442 if pivot [0] == -1 or pivot [1] == -1:
443 if boundary_size [0] != boundary_size [1]:
444 return False
445

446 pivot = [
447 boundary_top_left [0] + boundary_size [0] // 2,
448 boundary_top_left [1] + boundary_size [1] // 2
449 ]
450

451 cosine : int = 0
452 sine: int = 0
453 no_pivot_offset = [0, 0]
454 match times % 4:
455 case 0:
456 cosine , sine = 1, 0
457 case 1:
458 cosine , sine = 0, 1
459 no_pivot_offset = [0, -1]
460 case 2:
461 cosine , sine = -1, 0
462 case 3:
463 cosine , sine = 0, -1
464 no_pivot_offset = [-1, 0]
465

466 already_updated_indices : list[tuple[np.ndarray , np. ndarray ]] = []
467

468 error: bool = False
469 for px in pixels :
470 input_index : tuple[
471 np.ndarray ,
472 np. ndarray
473 ] = pixels_list_to_indices ([px])
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474 if input_index is None:
475 error = True
476 continue
477

478 image_value = get_image_value (out , px)
479 if image_value is None:
480 error = True
481 continue
482

483 offset_from_pivot = (np.array(px) - np.array(pivot)). tolist ()
484 rotation_offset = [
485 -offset_from_pivot [1] * sine - offset_from_pivot [0] * cosine ,
486 offset_from_pivot [0] * sine - offset_from_pivot [1] * cosine
487 ]
488

489 rotated_pixel = (pivot + np.array( rotation_offset )). tolist ()
490 if (
491 original_pivot == (-1, -1) and
492 pivot == [
493 boundary_top_left [0] + boundary_size [0] // 2,
494 boundary_top_left [1] + boundary_size [1] // 2
495 ] and
496 boundary_size [0] % 2 == 0 and boundary_size [1] % 2 == 0
497 ):
498 rotated_pixel = (
499 rotated_pixel + np.array( no_pivot_offset )
500 ). tolist ()
501

502 try:
503 rotated_index : tuple[
504 np.ndarray ,
505 np. ndarray
506 ] = pixels_list_to_indices ([ rotated_pixel ])
507

508 if (
509 input_index != rotated_index and
510 not input_index in already_updated_indices
511 ):
512 out[ input_index ] = 0
513

514 if rotated_index is None:
515 error = True
516 continue
517 if rotated_index [0] < 0 or rotated_index [1] < 0:
518 error = True
519 continue
520

521 out[ rotated_index ] = image_value
522 already_updated_indices . append ( rotated_index )
523 except (IndexError , ValueError ):
524 error = True
525

526 return not error
527

528 # Pixel - coloring operator
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529 def color_selection (
530 im ,
531 pixels : list ,
532 color: int ,
533 offset : tuple[int , int] = (0, 0)
534 ) -> bool:
535 if len( pixels ) == 0:
536 return False
537

538 error: bool = False
539 for px in pixels :
540 try:
541 output_index : tuple[
542 np.ndarray ,
543 np. ndarray
544 ] = pixels_list_to_indices (
545 [(px + np.array( offset )). tolist ()]
546 )
547 im[ output_index ] = color
548 except (IndexError , ValueError ):
549 error = True
550

551 return not error
552

553

554 # Fitness functions
555

556 # Image size fitness (for size estimation )
557 @byron . fitness_function ()
558 def size_fitness ( genotype : str) -> FitnessABC :
559 fitness : list[int] = []
560

561 for train_sample in train_set :
562 input_image , output_image = train_sample
563

564 exec( extrapolate_code ( genotype ), {
565 ’np’: np ,
566 ’copy ’: copy
567 }, locals ())
568

569 fitness . append (- distance (
570 locals ()[’generated_image ’]. shape ,
571 output_image .shape
572 ))
573

574 return byron.fit. Scalar (sum( fitness ))
575

576 # Pixel - correctness fitness
577 @byron . fitness_function
578 def pixel_correctness_fitness ( genotype : str) -> FitnessABC :
579 fitness : list[float] = []
580

581 for train_sample in train_set :
582 input_image , output_image = train_sample
583
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584 try:
585 exec( extrapolate_code ( genotype ), {
586 ’np’:np ,
587 ’sp’:sp ,
588 ’sign ’:sign ,
589 ’pixels_list_to_indices ’: pixels_list_to_indices ,
590 ’get_image_value ’: get_image_value ,
591 ’get_colored_pixels ’: get_colored_pixels ,
592 ’get_group ’:get_group ,
593 ’get_aligned_pixels ’: get_aligned_pixels ,
594 ’connect_pixels ’: connect_pixels ,
595 ’get_connected_pixels_groups ’: get_connected_pixels_groups ,
596 ’copy ’:copy ,
597 ’flip ’:flip ,
598 ’rotate_90 ’:rotate_90 ,
599 ’color_selection ’: color_selection
600 }, locals ())
601 except :
602 return byron.fit. Scalar ( -1.0)
603

604 comparison_image = locals ()[’generated_image ’]
605

606 if comparison_image .shape != output_image .shape:
607 comparison_image = np.zeros(
608 shape= output_image .shape ,
609 dtype=int
610 )
611 copy( locals ()[’generated_image ’], comparison_image )
612

613 pixel_correctness : float = 0.0
614

615 uniq = np. unique_counts ( output_image )
616 index = np. argmax (uniq. counts )
617

618 if (
619 uniq. counts [index] < output_image .size and
620 uniq. counts [index] / output_image .size >= 0.5
621 ):
622 output_image [ output_image == uniq. values [index ]] = -1
623 comparison_image [ comparison_image == uniq. values [index ]] = -1
624

625 output_image [np. nonzero ( output_image - comparison_image )] = -2
626

627 pixel_correctness = np. count_nonzero (
628 output_image >= 0
629 ) / np. count_nonzero (
630 output_image + 1
631 )
632 else:
633 pixel_correctness = 1 - np. count_nonzero (
634 output_image - comparison_image
635 ) / output_image .size
636

637 fitness . append ( pixel_correctness )
638
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639 return byron.fit. Scalar (np.mean( fitness ))
640

641 # Selectors difference fitness
642 SELECTORS_DIFFERENCE_FITNESS_TYPE = byron.fit. reverse_fitness (
643 byron.fit. Lexicographic
644 )
645 @byron . fitness_function (type_ = SELECTORS_DIFFERENCE_FITNESS_TYPE )
646 def selectors_difference_fitness ( genotype : str) -> FitnessABC :
647 fitness : list[list[float ]] = []
648

649 for train_sample in train_set :
650 input_image , output_image = train_sample
651

652 try:
653 exec( extrapolate_code ( genotype ), {
654 ’np’:np ,
655 ’sp’:sp ,
656 ’sign ’:sign ,
657 ’pixels_list_to_indices ’: pixels_list_to_indices ,
658 ’get_image_value ’: get_image_value ,
659 ’get_colored_pixels ’: get_colored_pixels ,
660 ’get_group ’:get_group ,
661 ’get_aligned_pixels ’: get_aligned_pixels ,
662 ’connect_pixels ’: connect_pixels ,
663 ’get_connected_pixels_groups ’: get_connected_pixels_groups ,
664 ’copy ’:copy ,
665 ’flip ’:flip ,
666 ’rotate_90 ’:rotate_90 ,
667 ’color_selection ’: color_selection
668 }, locals ())
669 except :
670 print(’-------------------- Error --------------------’)
671 print( extrapolate_code ( genotype ))
672 print( traceback . format_exc ())
673 print(’-----------------------------------------------’)
674

675 comparison_image = locals ()[’generated_image ’]
676

677 if comparison_image .shape != output_image .shape:
678 comparison_image = np.zeros(
679 shape = output_image .shape ,
680 dtype=int
681 )
682 copy( locals ()[’generated_image ’], comparison_image )
683

684

685 output_color_selections = []
686 for combination in itertools . combinations_with_replacement (
687 range (1, 10) ,
688 MAX_COLORS_NUMBER
689 ):
690 output_color_selections . append (
691 get_colored_pixels ( output_image , combination )
692 )
693
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694 output_group_selections = [
695 get_group ( output_image , i, color)
696 for i in range( MAX_GROUP_INDEX ) for color in range (0, 10)
697 ]
698

699 comparison_color_selections = []
700 for combination in itertools . combinations_with_replacement (
701 range (1, 10) ,
702 MAX_COLORS_NUMBER
703 ):
704 comparison_color_selections . append (
705 get_colored_pixels ( comparison_image , combination )
706 )
707

708 comparison_group_selections = [
709 get_group ( comparison_image , i, color)
710 for i in range( MAX_GROUP_INDEX ) for color in range (0, 10)
711 ]
712

713

714 color_groups_diff = []
715 for i in range(len( output_color_selections )):
716 len_diff = abs(
717 len( output_color_selections [i]) -
718 len( comparison_color_selections [i])
719 )
720 if len_diff > 0:
721 color_groups_diff . append (100 * len_diff )
722 continue
723

724 if len( output_color_selections [i]) == 0:
725 color_groups_diff . append (0.0)
726 continue
727

728 pixel_distances = []
729 for j in range(len( output_color_selections [i])):
730 pixel_distances . append ( distance (
731 output_color_selections [i][j],
732 comparison_color_selections [i][j]
733 ))
734

735 color_groups_diff . append (np.mean( pixel_distances ))
736

737 groups_diff = []
738 for i in range(len( output_group_selections )):
739 len_diff = abs(
740 len( output_group_selections [i]) -
741 len( comparison_group_selections [i])
742 )
743 if len_diff > 0:
744 groups_diff . append (100 * len_diff )
745 continue
746

747 if len( output_group_selections [i]) == 0:
748 groups_diff . append (0.0)
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749 continue
750

751 pixel_distances = []
752 for j in range(len( output_group_selections [i])):
753 pixel_distances . append ( distance (
754 output_group_selections [i][j],
755 comparison_group_selections [i][j]
756 ))
757

758 groups_diff . append (np.mean( pixel_distances ))
759

760 res = color_groups_diff + groups_diff
761 np. random . shuffle (res)
762

763 fitness . append (res)
764

765 return byron.fit. Lexicographic (np.mean(fitness , axis = 0). tolist ())
766

767

768 # Size estimation hyperparameters
769

770 MAX_SIZE_GENERATIONS = 1000
771

772 MAX_FIXED_SIZE = 15
773 MAX_DELTA_SIZE = 5
774

775

776 # Image generation hyperparameters
777

778 MAX_IMAGE_GENERATIONS = 150
779

780 MAX_COLORS_NUMBER = 5
781 MAX_GROUP_INDEX = 15
782

783 MAX_OFFSET = 10
784 MAX_PIVOT = 20
785

786 MAX_OPERATIONS = 75
787

788

789

790 # Single -task train + test function
791 def solve_task ( fitness = selectors_difference_fitness ) -> tuple[float , str

]:
792

793 # ------------------------ SIZE ESTIMATION ------------------------
794

795 # Image initializing macros
796 init_image_fixed_size = byron.f.macro(
797 ’size_x = {x}\n’
798 ’size_y = {y}\n’
799 ’generated_image = np.zeros (( size_y , size_x ), dtype=int)’,
800 x=byron.f. integer_parameter (1, MAX_FIXED_SIZE ),
801 y=byron.f. integer_parameter (1, MAX_FIXED_SIZE )
802 )
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803 init_image_input_based_size = byron.f.macro(
804 ’scale_x = {sx}\n’
805 ’scale_y = {sy}\n’
806 ’delta_x = {dx}\n’
807 ’delta_y = {dy}\n’
808 ’\n’
809 ’new_size_x = int( input_image .shape [1] * scale_x + delta_x )\n’
810 ’new_size_y = int( input_image .shape [0] * scale_y + delta_y )\n’
811 ’\n’
812 ’if new_size_x < 0:\n’
813 ’\ tnew_size_x = 0\n’
814 ’if new_size_y < 0:\n’
815 ’\ tnew_size_y = 0\n’
816 ’\n’
817 ’generated_image = np.zeros (( new_size_y , new_size_x ), int)\n’
818 ’copy( input_image , generated_image )’,
819 sx = byron.f. choice_parameter ([0.25 , 0.5, 1.0, 1.5, 2.0]) ,
820 sy = byron.f. choice_parameter ([0.25 , 0.5, 1.0, 1.5, 2.0]) ,
821 dx = byron.f. integer_parameter (- MAX_DELTA_SIZE , MAX_DELTA_SIZE +1) ,
822 dy = byron.f. integer_parameter (- MAX_DELTA_SIZE , MAX_DELTA_SIZE +1)
823 )
824

825 # Initializer choice
826 init_image = byron.f.bunch ([
827 init_image_fixed_size ,
828 init_image_input_based_size
829 ])
830

831

832 # Size estimation training + image initialization code extraction
833 evaluator = byron. evaluator . PythonEvaluator (
834 size_fitness ,
835 backend =’joblib ’
836 )
837 image_initialization_code = extrapolate_code (byron.ea. adaptive_ea (
838 init_image , evaluator ,
839 max_generation = MAX_SIZE_GENERATIONS ,
840 max_fitness =byron.fit. Scalar (0.0)
841 )[0])
842

843 # -----------------------------------------------------------------
844

845

846 # ----------------------- IMAGE GENERATION -----------------------
847

848 # Input image selection macros
849 input_select_colors = byron.f.macro(
850 ’{_node} = get_colored_pixels ( input_image , [{ colors }]) ’,
851 colors = byron.f. array_parameter (
852 range (1, 10) ,
853 MAX_COLORS_NUMBER ,
854 ’, ’
855 ),
856 _label = ’’
857 )
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858 input_select_group = byron.f.macro(
859 ’{_node} = get_group ( input_image , {index}, {color })’,
860 index = byron.f. integer_parameter (0, MAX_GROUP_INDEX ),
861 color = byron.f. integer_parameter (0, 10) ,
862 _label = ’’
863 )
864

865 # Input image selections sequences
866 input_selections = byron.f. sequence ([
867 byron.f.bunch ([ input_select_colors ], (0, 10)),
868 byron.f.bunch ([ input_select_group ], (0, MAX_GROUP_INDEX + 1))
869 ])
870

871

872 # Generated image selection macros
873 generated_select_colors = byron.f.macro(
874 ’{_node} = get_colored_pixels ( generated_image , [{ colors }]) ’,
875 colors = byron.f. array_parameter (
876 range (1, 10) ,
877 MAX_COLORS_NUMBER ,
878 ’, ’
879 ),
880 _label = ’’
881 )
882 generated_select_group = byron.f.macro(
883 ’{_node} = get_group ( generated_image , {index}, {color })’,
884 index = byron.f. integer_parameter (0, MAX_GROUP_INDEX ),
885 color = byron.f. integer_parameter (0, 10) ,
886 _label = ’’
887 )
888

889 # Generated image selections sequences
890 generated_selections = byron.f. sequence ([
891 byron.f.bunch ([ generated_select_colors ], (0, 10)),
892 byron.f.bunch ([ generated_select_group ], (0, MAX_GROUP_INDEX + 1)),
893 ])
894

895

896 # Input image reassignment macros
897 reassign_input_color_selection = byron.f.macro(
898 ’\n{ref} = get_colored_pixels ( input_image , [{ colors }])\n\n’,
899 ref = byron.f. global_reference ( input_selections ),
900 colors = byron.f. array_parameter (
901 range (1, 10) ,
902 MAX_COLORS_NUMBER ,
903 ’, ’
904 )
905 )
906 reassign_input_group_selection = byron.f.macro(
907 ’\n{ref} = get_group ( input_image , {index}, {color })\n\n’,
908 ref = byron.f. global_reference ( input_selections ),
909 index = byron.f. integer_parameter (0, MAX_GROUP_INDEX ),
910 color = byron.f. integer_parameter (0, 10)
911 )
912
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913 # Input image reassignments sequences
914 reassign_input_selection = byron.f.bunch ([
915 reassign_input_color_selection ,
916 reassign_input_group_selection
917 ])
918

919

920 # Generated image reassignment macros
921 reassign_generated_color_selection = byron.f.macro(
922 ’\n{ref} = get_colored_pixels ( generated_image , [{ colors }])\n\n’,
923 ref = byron.f. global_reference ( input_selections ),
924 colors = byron.f. array_parameter (
925 range (1, 10) ,
926 MAX_COLORS_NUMBER ,
927 ’, ’
928 )
929 )
930 reassign_generated_group_selection = byron.f.macro(
931 ’\n{ref} = get_group ( generated_image , {index}, {color })\n\n’,
932 ref = byron.f. global_reference ( input_selections ),
933 index = byron.f. integer_parameter (0, MAX_GROUP_INDEX ),
934 color = byron.f. integer_parameter (0, 10)
935 )
936

937 # Generated image reassignments sequences
938 reassign_generated_selection = byron.f.bunch ([
939 reassign_generated_color_selection ,
940 reassign_generated_group_selection
941 ])
942

943

944 # Image manipulation macros and frames
945

946 # Frame - Connect operator + alignment operator
947 connect_aligned_pixels = byron.f. sequence ([
948 ’px = None ’,
949 byron.f.bunch ([
950 byron.f.macro(
951 ’if len ({ ref }) == 1:\n’
952 ’\tpx = {ref }[0] ’,
953 ref = byron.f. global_reference ( generated_selections )
954 )
955 ], (0, 2)),
956 byron.f.bunch ([
957 byron.f.macro(
958 ’colors = None ’
959 ),
960 byron.f.macro(
961 ’colors = [{ colors }]’,
962 colors = byron.f. array_parameter (range (1, 10) , 9, ’, ’)
963 )
964 ]),
965 ’\n’,
966 ’for px1 , px2 in get_aligned_pixels ( generated_image , px , colors ):’

,
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967 byron.f.bunch ([
968 byron.f.macro(
969 ’\ tcolor = {color}’,
970 color = byron.f. integer_parameter (1, 10)
971 ),
972 byron.f.macro(
973 ’\ tcolor = get_image_value ( generated_image , {px})’,
974 px = byron.f. choice_parameter ([’px1 ’, ’px2 ’])
975 )
976 ]),
977 ’\n’,
978 ’\ tconnect_pixels ( generated_image , px1 , px2 , color)’
979 ])
980

981 # Frame - Connect operator (with selections global reference
parameters )

982 connect_selections = byron.f. sequence ([
983 byron.f.macro(
984 ’if len ({ ref1 }) == 1 and len ({ ref2 }) == 1:\n’
985 ’\tpx1 = {ref1 }[0]\n’
986 ’\tpx2 = {ref2 }[0] ’,
987 ref1 = byron.f. global_reference ( generated_selections ),
988 ref2 = byron.f. global_reference ( generated_selections )
989 ),
990 byron.f.bunch ([
991 byron.f.macro(
992 ’\ tcolor = {color}’,
993 color = byron.f. integer_parameter (1, 10)
994 ),
995 byron.f.macro(
996 ’\ tcolor = get_image_value ( generated_image , {px})’,
997 px = byron.f. choice_parameter ([’px1 ’, ’px2 ’])
998 )
999 ]),

1000 byron.f.macro(
1001 ’\ tleft_px = {px}’,
1002 px= byron.f. choice_parameter ([’px1 ’, ’px2 ’, ’None ’])
1003 ),
1004 ’\n’,
1005 ’\ tconnect_pixels ( generated_image , px1 , px2 , color , left_px )’
1006 ])
1007

1008 # Frame - Copy operator
1009 copy_to_generated = byron.f. sequence ([
1010 byron.f.bunch ([
1011 byron.f. sequence ([
1012 ’im = input_image ’,
1013 ’\n’,
1014 byron.f.bunch ([
1015 byron.f.macro(
1016 ’pixels = None ’,
1017 ),
1018 byron.f.macro(
1019 ’pixels = {ref}’,
1020 ref = byron.f. global_reference ( input_selections )
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1021 )
1022 ])
1023 ]),
1024 byron.f. sequence ([
1025 ’im = generated_image ’,
1026 ’\n’,
1027 byron.f.bunch ([
1028 byron.f.macro(
1029 ’pixels = None ’,
1030 ),
1031 byron.f.macro(
1032 ’pixels = {ref}’,
1033 ref = byron.f. global_reference (
1034 generated_selections
1035 )
1036 )
1037 ])
1038 ])
1039 ]),
1040 ’\n’,
1041 byron.f.bunch ([
1042 byron.f.macro(
1043 ’offset = (0, 0)’
1044 ),
1045 byron.f.macro(
1046 ’offset = ({ offset })’,
1047 offset = byron.f. array_parameter (
1048 range (1, MAX_OFFSET ),
1049 2,
1050 ’, ’
1051 )
1052 )
1053 ]),
1054 ’\n’,
1055 byron.f.macro(
1056 ’copy(im , generated_image , pixels , offset , {cut })’,
1057 cut = byron.f. choice_parameter ([True , False ])
1058 )
1059 ])
1060

1061 # Frame - Symmetry operator
1062 flip_generated = byron.f. sequence ([
1063 byron.f.bunch ([
1064 byron.f.macro(’pixels = None ’),
1065 byron.f.macro(
1066 ’pixels = {ref}’,
1067 ref = byron.f. global_reference (
1068 generated_selections ,
1069 creative_zeal = 1
1070 )
1071 )
1072 ]),
1073 ’\n’,
1074 byron.f.bunch ([
1075 byron.f.macro(’pivot = (-1, -1)’),
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1076 byron.f.macro(
1077 ’pivot = ({ pivot })’,
1078 pivot = byron.f. array_parameter (
1079 range (1, MAX_PIVOT ),
1080 2,
1081 ’, ’
1082 )
1083 )
1084 ]),
1085 ’\n’,
1086 byron.f.bunch ([
1087 byron.f.macro(’flip_x , flip_y = True , False ’),
1088 byron.f.macro(’flip_x , flip_y = False , True ’),
1089 byron.f.macro(’flip_x , flip_y = True , True ’),
1090 ]),
1091 ’\n’,
1092 ’flip( generated_image , pixels , pivot , flip_x , flip_y )’
1093 ])
1094

1095 # Frame - Rotation operator
1096 rotate_generated = byron.f. sequence ([
1097 byron.f.bunch ([
1098 byron.f.macro(’pixels = None ’),
1099 byron.f.macro(
1100 ’pixels = {ref}’,
1101 ref = byron.f. global_reference (
1102 generated_selections ,
1103 creative_zeal = 1
1104 )
1105 )
1106 ]),
1107 ’\n’,
1108 byron.f.bunch ([
1109 byron.f.macro(’pivot = (-1, -1)’),
1110 byron.f.macro(
1111 ’pivot = ({ pivot })’,
1112 pivot = byron.f. array_parameter (
1113 range (1, MAX_PIVOT ),
1114 2,
1115 ’, ’
1116 )
1117 )
1118 ]),
1119 ’\n’,
1120 byron.f.macro(
1121 ’rotate_90 ( generated_image , pixels , {times}, pivot)’,
1122 times = byron.f. integer_parameter (1, 5)
1123 )
1124 ])
1125

1126 # Frame - Pixel - coloring operator
1127 color_generated = byron.f. sequence ([
1128 byron.f.bunch ([
1129 byron.f.macro(’offset = (0, 0)’),
1130 byron.f.macro(
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1131 ’offset = ({ offset })’,
1132 offset = byron.f. array_parameter (
1133 range (1, MAX_OFFSET ),
1134 2,
1135 ’, ’
1136 )
1137 )
1138 ]),
1139 byron.f.macro(
1140 ’color_selection ( generated_image , {ref}, {color}, offset )\n\n’

,
1141 ref=byron.f. global_reference (
1142 generated_selections ,
1143 creative_zeal = 1
1144 ),
1145 color=byron.f. integer_parameter (1, 10)
1146 )
1147 ])
1148

1149

1150 # Bunch frame containing all operator frames .
1151 operations = byron.f.bunch ([
1152 reassign_input_selection ,
1153 reassign_generated_selection ,
1154 connect_aligned_pixels ,
1155 connect_selections ,
1156 copy_to_generated ,
1157 flip_generated ,
1158 rotate_generated ,
1159 color_generated
1160 ], size =(1, MAX_OPERATIONS + 1))
1161

1162 # Final image generation frame , contains all selections and operators
1163 generate_image = byron.f. sequence ([
1164 input_selections ,
1165 ’\n’,
1166 generated_selections ,
1167 ’\n’,
1168 operations
1169 ])
1170

1171

1172 # Final training frame , contains the initialization code previously
evolved and the image generation frame

1173 train = byron.f. sequence ([
1174 image_initialization_code ,
1175 ’\n’,
1176 generate_image
1177 ])
1178

1179

1180 # Image generation training + final code extraction
1181 evaluator = byron. evaluator . PythonEvaluator (
1182 fitness ,
1183 backend = ’joblib ’
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1184 )
1185 final_code = extrapolate_code (byron.ea. adaptive_ea (
1186 train ,
1187 evaluator ,
1188 max_generation = MAX_IMAGE_GENERATIONS ,
1189 max_fitness =
1190 byron.fit. Scalar (1.0) if fitness == pixel_correctness_fitness
1191 else None
1192 )[0])
1193

1194 # -----------------------------------------------------------------
1195

1196

1197 # ----------------------------- TEST ------------------------------
1198

1199 fitness : list[float] = []
1200

1201 for index , test_sample in enumerate ( test_set ):
1202 input_image , output_image = test_sample
1203

1204 # Execute the final code on the test samples
1205 exec(final_code , {
1206 ’np’: np ,
1207 ’sp’: sp ,
1208 ’sign ’: sign ,
1209 ’pixels_list_to_indices ’: pixels_list_to_indices ,
1210 ’get_image_value ’: get_image_value ,
1211 ’get_colored_pixels ’: get_colored_pixels ,
1212 ’get_group ’: get_group ,
1213 ’get_aligned_pixels ’: get_aligned_pixels ,
1214 ’connect_pixels ’: connect_pixels ,
1215 ’get_connected_pixels_groups ’: get_connected_pixels_groups ,
1216 ’copy ’: copy ,
1217 ’flip ’: flip ,
1218 ’rotate_90 ’: rotate_90 ,
1219 ’color_selection ’: color_selection
1220 }, locals ())
1221

1222 # Isolate the generated image , and fit it to the output size
1223 comparison_image = locals ()[’generated_image ’]
1224 if comparison_image .shape != output_image .shape:
1225 comparison_image = np.zeros(
1226 shape= output_image .shape ,
1227 dtype=int
1228 )
1229 copy( locals ()[’generated_image ’], comparison_image )
1230

1231 # Compute the pixel - correctness value for the sample
1232 pixel_correctness = 1 - np. count_nonzero (
1233 output_image - comparison_image
1234 ) / output_image .size
1235

1236 fitness . append ( pixel_correctness )
1237
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1238 # Return the mean pixel - correctness across all test samples , as well
as the final code

1239 return np.mean( fitness ), final_code
1240

1241

1242 # Utility function for graph drawing
1243 def draw_gradient_histogram (axis , data: list , title: str):
1244 cm = plt.cm. get_cmap (’RdYlBu_r ’)
1245

1246 _, bins , patches = axis.hist(
1247 data ,
1248 range=np. arange (0.0 , 1.1, 0.1) ,
1249 bins=np. arange (0.0 , 1.05 , 0.05) ,
1250 weights =np.ones(len(data)) / len(data),
1251 edgecolor =’black ’
1252 )
1253 axis.yaxis. set_major_formatter ( PercentFormatter (1))
1254

1255 bins_center = 0.5 * (bins [: -1] + bins [1:])
1256

1257 col = bins_center - min( bins_center )
1258 col /= max(col)
1259

1260 for c, p in zip(col , patches ):
1261 plt.setp(p, ’facecolor ’, cm(c))
1262

1263 axis. set_title (title)
1264 axis.set( xlabel =’Pixel correctness of test samples ’)
1265

1266

1267 # Numpy array to Image converter
1268 def ARC_grid_to_image (grid: np. ndarray ) -> Image:
1269 color_map = {
1270 0: (0, 0, 0),
1271 1: (0, 116, 217) ,
1272 2: (255 , 65, 54) ,
1273 3: (46, 204, 64) ,
1274 4: (255 , 220, 0),
1275 5: (170 , 170, 170) ,
1276 6: (240 , 18, 190) ,
1277 7: (255 , 133, 27) ,
1278 8: (127 , 219, 255) ,
1279 9: (135 , 12, 37)
1280 }
1281

1282 image = Image.new(mode=’RGB ’, size=grid.shape [:: -1])
1283

1284 for y in range(grid.shape [0]):
1285 for x in range(grid.shape [1]):
1286 image. putpixel ((x, y), color_map [grid[y, x]])
1287

1288 image = image. resize (
1289 (image.size [0] * 50, image.size [1] * 50) ,
1290 Image. Resampling . NEAREST
1291 )
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1292 return image
1293

1294

1295 # File execution entry point
1296 if __name__ == ’__main__ ’:
1297 byron. logger . setLevel (byron. logging . CRITICAL )
1298

1299 # Compute test results for all 400 tasks in ’data/ training ’, using the
pixel - correctness fitness function during training

1300 pixel_correctness_fitness_results = []
1301 for filename in tqdm(os. listdir (’data/ training ’)):
1302 train_set , test_set = parse_arc_test_file (
1303 f’data/ training /{ filename }’
1304 )
1305

1306 acc , _ = solve_task ( fitness = pixel_correctness_fitness )
1307 pixel_correctness_fitness_results . append (acc)
1308

1309 # Compute test results for all 400 tasks in ’data/ training ’, using the
pixel - correctness fitness function during training

1310 selector_difference_fitness_results = []
1311 for filename in tqdm(os. listdir (’data/ training ’)):
1312 train_set , test_set = parse_arc_test_file (
1313 f’data/ training /{ filename }’
1314 )
1315

1316 acc , _ = solve_task ( fitness = selectors_difference_fitness )
1317 selector_difference_fitness_results . append (acc)
1318

1319 # Plot results
1320 fig , (ax1 , ax2) = plt. subplots (1, 2)
1321 fig. suptitle (’Samples accuracy distribution ’)
1322 fig. set_size_inches (12.0 , 6.0)
1323

1324 draw_gradient_histogram (
1325 ax1 ,
1326 pixel_correctness_fitness_results ,
1327 ’Pixel - correctness fitness ’
1328 )
1329 draw_gradient_histogram (
1330 ax2 ,
1331 selector_difference_fitness_results ,
1332 ’Selector difference fitness ’
1333 )
1334

1335 plt.show ()
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