
Politecnico di Torino

Master’s degree in Computer Engineering 2024/2025
Graduation Session 10/2025

Graph Neural Networks for
Relational Databases Analysis

Relatori:
Paolo Garza
Luca Colomba
Daniele Loiacono

Candidati:
Andrea Mirenda

Acknowledgements

To my parents and my brothers, constant sources of strength and support, who
believed in me even when I did not.

To my grandparents, who anchored me in honesty and taught me the simple,
enduring value of doing the right thing, of working on my own with perseverance,
and of never giving up or complaining.

To my supervisor, Professor Paolo Garza, and to Luca Colomba, whose trust
and insight shaped this work, allowing me to explore this fascinating line of research
with unwavering support.

ii

Table of Contents

List of Figures vi

1 Introduction 1

2 Related Works 5
2.1 The RelBench Benchmark . 5
2.2 Tabular Models . 8

2.2.1 Technical Structure of Tabular Models and the Role of Fea-
ture Engineering . 9

2.3 Graph Neural Networks . 10
2.3.1 What is a Graph? . 10
2.3.2 Learning on Graphs . 13
2.3.3 Core Challenges in Applying Deep Learning to Graph 16
2.3.4 What is a GNN? . 20

2.4 Node Connectivity in Graphs . 21
2.5 Popular GNN architectures . 23
2.6 Explainable GNNs . 33

2.6.1 Meta-path based models . 37
2.7 End-to-End Modelling in RelBench 47

2.7.1 Graph construction from normalised schemas 47
2.7.2 Feature encoding: HeteroEncoder 48
2.7.3 TemporalHeteroEncoder: Injecting Time into Node Features 49
2.7.4 Mini-batching with NeighborLoader 50
2.7.5 Message-passing backbone 53
2.7.6 Prediction head and loss functions 54
2.7.7 Strengths, limitations, and outlook 54

3 Proposed Method 56
3.1 Model selection . 56

3.1.1 Heterogeneous Graph Attention Network 57
3.1.2 Heterogeneous Graphormer 58

iv

3.2 Pre-training strategies . 71
3.2.1 Masked Attribute Prediction (MAP) Pretraining 73
3.2.2 Variational Graph Autoencoding Pretraining 79
3.2.3 Data Augmentation via Relational Aware Edge Dropout . . 88

3.3 XMetaPath: A Self-Explainable Meta-Path Graph Neural Network 91
3.4 Model’s details . 92

3.4.1 MetaPathGNNLayer (single-hop update) 96
3.5 Meta-path selection . 99

3.5.1 Extension 1: Greedy Meta-Path Selection by Direct Validation102
3.5.2 Extension 2: LLM based selection 104
3.5.3 Extension 3: Reinforcement Learning based selection 111

4 Experiments 120
4.1 Model selection . 122

4.1.1 Human effort . 125
4.2 Pre-training strategies . 128

4.2.1 Edge Dropout . 129
4.2.2 Variational Graph Auto-Encoder (VGAE) pre-training . . . 130

4.3 XMetaPath model . 130

5 Conclusions 133

Bibliography 136

v

List of Figures

2.1 Statistics of RELBENCH datasets. Datasets vary significantly in
the number of tables, total number of rows, and number of columns.
Image taken from Robinson et al.[4]. 7

2.2 Example of a character co-occurrence network inspired by Les Mis-
érables, generated using the Les Misérables dataset (77 characters,
254 weighted undirected edges). Each node represents a character,
and edges are weighted by how frequently the characters co-appear.
Node size and layout reflect connectivity structure. Although the nu-
merical values are not displayed, the edge thickness visually encodes
the weights, with thicker links indicating more frequent coappear-
ances. (Image taken from[16]). 11

2.3 Example of weighted graph for a Protein-Protein Interaction Net-
work. A weighted edge in this case may indicate the strength of the
association between two proteins[18]. Image taken from[19]. 12

2.4 MLP on graph via concatenation: limitations 17
2.5 Example of applying CNN to graph 18
2.6 On the left, we see the image of a dog. On the right, the same

image is shown, but with its pixels (i.e., nodes) in a random order.
Although the pixel values remain the same, changing their order
completely alters the result. A CNN architecture relies on this
positional bias to perform classification and is therefore not invariant
to the order of input nodes. 19

2.7 Example of a GNN structure. It is composed of several permutation
equivariant layers, followed by a final permutation invariant layer
that produces a single output. Notice that this is an example of a
graph classification task, where a single output is required for the
entire graph. 19

2.8 Computation graph of node A . 20

vi

2.9 This image illustrates how quickly the receptive fields grow as GNN
layers are added. This becomes problematic because, once the
receptive field covers the entire graph, all nodes tend to aggregate
the same information, leading to the well-known over-smoothing
problem. 22

2.10 Overview of the RelBench pipeline. The process starts from a re-
lational database, from which features are extracted and encoded
(e.g., using GloVe for text or categorical embeddings). Temporal
information is separately encoded and combined with the original
feature space. The result is a heterogeneous graph, where each
node represents an entity and edges represent typed relations (in-
cluding timestamps, when available). This graph is then processed
by a Graph Neural Network (GNN) architecture, followed by an
MLP head that performs prediction (classification, regression, or
recommendation) on the target nodes. 49

3.1 Graphical representation of an Autoencoder neural network. It’s
composed of an encoder sub-module, which compresses the input
dimensionality to mantain only the most essential informations of
the input feature space; and a decoder sub-module, which tries to
de-compress the input data as close as possible to the original one.
Image taken from[67]. 80

3.2 An overview of the proposed framework. At each timestep t, the
agent receives the current state of the environment (the current
metapath) and selects an action (the next relation to add to the
metapath). The XMetapath model uses the newly generated metap-
ath as input, and the resulting performance gain is used to update
the agent. 113

vii

Abstract

Relational databases are the backbone of modern data infrastructure, supporting
much of the digital economy. Despite their importance, their rich relational infor-
mation is often overlooked. Most predictive pipelines, in fact, still flatten relational
schemas into a single table, discarding higher-order relational structure, cross-table
dependencies, and forcing reliance on costly and fragile feature engineering, sensitive
to expert skill.

This thesis embraces a graph native learning alternative: we cast relational
schemas into heterogeneous temporal graphs. Each table in the relational schema
becomes a node type, rows become nodes and foreign keys become typed edges.
Some node types are associated with time attributes, representing the timestamp
at which a node appears. Crucially, the graph construction is schema agnostic and
automatic: given any relational database, we derive its heterogeneous temporal
graph and train a single pipeline for node level regression and classification tasks.

Guided by the goal of efficient and transparent prediction for heterogeneous
temporal graphs, this thesis advances the field in three complementary ways: (i) we
evaluate self-supervised pre-training strategies tailored to heterogeneous temporal
graphs; (ii) we conduct a systematic exploration of graph-model architectures,
training regimes, and design choices to surface robust configurations; (iii) we
introduce XMetaPath, a self-explainable GNN that aggregates information over a
compact set of X meta-paths and provides faithful explanations for each prediction.

On top of this, we conduct a systematic study of meta-path selection and
implement three methods that automatically discover meta-paths: greedy based,
LLM guided scoring, and a reinforcement learning agent that leverages model
feedback to prioritize task relevant relational patterns.

We evaluate these contributions on RelBench, which is a benchmark of real-
istic multi-table relational datasets with standardized tasks and splits, and we
achieve competitive results while introducing a self-explainable model that provides
transparent reasoning.

Taken together, our experiments yield two distinct takeaways. First, self-
supervised pre-training offers reliable gains in this setting. Second, a self-explainable,
meta-path–based model provides transparent rationales while matching, and some-
times surpassing, the predictive power of strong non interpretable baselines.

Chapter 1

Introduction

The widespread adoption of relational databases across domains such as e-commerce,
finance, healthcare, and scientific research has led to the accumulation of vast
amounts of structured, interlinked data[1][2]. This, in turn, has made relational
databases the most prevalent data management model, often serving as the de facto
substrate for both operational and analytical workloads across many sectors. This
prevalence is not accidental: relational databases offer robustness, scalability, and
powerful query languages (e.g., SQL) that enable expressive retrieval across multiple
tables[3], these databases are not only widespread, but also semantically rich,
encoding both local attributes (columns) and high-level structural constraints (keys,
schemas, and timestamps). Relational database management systems (RDBMSs)
remain the backbone of enterprise data management. Recent well-known studies
across diverse verticals reinforce this centrality of relational data over a huge variery
of different fields. Relational datasets are not merely commonplace: they are
mission-critical across healthcare, finance, retail, high-energy physics, and a broad
variety of domains. Consequently, any machine-learning method able to
exploit native relational structure can expect immediate cross-domain
impact.

These datasets are typically organized in multiple tables connected via primary
and foreign key relationships.

Because relational databases often contain both timestamped records and inter-
entity links, the predictive tasks they enable tend to be both temporal and
relational in nature. For instance, forecasting future product sales, anticipating
customer churn, or modeling patient outcomes over time[4].

Given the central role of relational databases, it is essential to examine how
we manage them and assess whether we truly leverage their full potential and
relational richness. Today, most machine learning pipelines still operate on a
flattened view of the data. This process, commonly referred to as manual
propositionalization or feature extraction, typically involves manually joining

1

Introduction

multiple tables into a single “flattened” table, a step that discards structural
and relational information, introduces redundancy, and, critically, demands
substantial domain knowledge to perform the flattening correctly[4].

The reason this flattening ritual is so pervasive is that standard ML toolchains
expect a single, fixed-width feature matrix. Consequently, practitioners first collapse
the database into one ‘analysis table’ by joining along selected PK–FK paths and
aggregating temporal histories into fixed-length summaries. This flattening-based
strategy has formed the basis of enterprise analytics because the resulting flattened
dataset, now reduced to a single table with one row per prediction unit (e.g., one
row per customer), is compatible with tabular machine learning models such as
decision tree ensembles. Widely-used algorithms like XGBoost[5] and LightGBM[6]
are typically employed on these inputs due to their strong empirical performance
and robustness across a wide range of use cases.

Enterprises have not merely adopted flatten-and-learn pipelines: they have
turned them into highly-optimised, industrial assets. Data-engineering teams have
invested thousands of engineer-hours in hardening these ETL DAGs against schema
drift, automating incremental back-fills, and optimising storage costs. Any proposal
to abandon flattening therefore seems, at first glance, to throw away years of
optimisation and operational know-how, a clear step backward in maturity.

Yet this very success hides a ceiling: all this optimization comes at the cost of
discarding much of the relational structure[7], introducing approximations
through aggregation, and embedding strong inductive biases via the manual
choice of features. Moreover, the feature engineering phase often dominates the
total development time in real-world ML pipelines, and is highly sensitive to domain
expertise and historical knowledge about the dataset[8].

This flattening process manually joins multiple tables, aggregates information
over time, and designs handcrafted features that aim to capture key relational
and temporal dependencies. For example, a customer churn prediction model
may include features such as the number of purchases in the past 30 days, the
average order value, or the time since last interaction. These are all features
that are not directly present in any single table, but computed by navigating
the underlying foreign-key relationships and temporal columns. These operations
are often implemented through complex SQL queries, data pipelines, or feature
engineering scripts maintained over time. This process is not only time-consuming
and resource-intensive, but also inherently brittle and difficult to reproduce. The
final outcome often depends on a series of ad-hoc decisions made by the domain
expert, which may vary from one execution to another. As a result, the quality
and consistency of the extracted features are subject to human bias, intuition,
and domain-specific knowledge, making the process highly sensitive to individual
interpretation and prone to variability across different runs.

Even a sophisticated feature store invariably represents an implicit hypothesis

2

Introduction

about which interactions matter, because every engineered column collapses one or
more joins and time windows into a single scalar. Such design choices are well suited
to capturing first-order statistics, such as “total spend in the last 30 days,” “mean
rating per user,” and so on, but they struggle to encode higher-order dependencies:
the chained influence of a friend’s purchase on a user’s subsequent review, the subtle
seasonality that modulates demand only when a specific marketing campaign is
active, or the multi-step referral paths that tie communities of customers together.
These patterns emerge from multi-hop, context-dependent relations that
span several tables and timestamps; once the schema is flattened, their connective
tissue is irrevocably lost. As a result, the engineered view can look perfectly
“complete” while still omitting the very relational signal that drives the
target variable. Any downstream model is then forced to learn from a depiction
of the world that is both narrower and more deterministic than the data truly are,
an invisible ceiling on predictive performance.

Another important drawback of this strategy is that a single denormalised table
can be orders of magnitude larger than the base tables from which it is derived,
because every dimension tuple is replicated for each matching fact row, inflating
both storage and compute resources. Furthermore, flattened pipelines hard-code
column positions and names; when upstream schemas evolve (columns added, types
changed), the join logic and feature mappings break.

In summary, while this flattened-data paradigm has historically enabled pre-
dictive modeling over relational databases, it relies heavily on human effort and
domain heuristics, limiting scalability, reusability, and automation.

At this point it is worth pausing to ask a simple but uncomfortable question:
is flattening truly the only viable route for learning over relational
databases? Must we always compress a web of entities connected by primary
and foreign key constraints into a single rectangular view, accepting the loss of
structure as a necessary cost? Or could there be an automatic and immediate
representation that preserves the native semantics and link structure, one
that lets models reason with relations rather than in spite of them, and that
carries multiplicities, directions, and cardinalities into the learning pipeline without
hand crafted shortcuts?

An innovative answer is to represent the database itself as a heterogeneous
temporal graph. In this view, each table becomes a node type, each row becomes a
node, and each primary to foreign key reference induces a typed edge that connects
the corresponding nodes. Attributes live as node or edge features, temporal
information can be attached where it belongs, and the schema’s constraints appear
not as obstacles to be flattened away but as first class signals that guide inference.
The richness that was previously squeezed into a single table is now expressed
directly in the topology and labels of the graph, so that learning can exploit the
very structure that the relational model was designed to capture.

3

Introduction

Building on this representation, Relational Deep Learning (RDL)[9] advances
beyond manual feature engineering and tabular modeling by using Graph Neu-
ral Networks (GNNs)[4] as the core predictive model over heterogeneous graph
views of relational databases, where nodes represent entities from different tables
and edges capture typed relationships defined by the database schema. These
models bypass the need for flattening or handcrafted aggregation by directly
leveraging the relational structure, enabling end-to-end learning from multi-table
data in its native form. By treating relational data as a graph with multiple node
and edge types, GNNs can effectively capture multi-hop dependencies, semantic
hierarchies, and relational patterns that are often diluted or lost in traditional
tabular representations.

More generally, Graph Neural Networks (GNNs) [10] provide a framework
for learning representations over graph-structured data. Unlike standard neural
networks that assume inputs to be vectors or sequences, GNNs are designed to
operate on arbitrary graphs, where both nodes and edges may carry features and
vary in size or connectivity. In its typical form, a GNN layer updates each node’s
representation by combining its current features with aggregated messages from its
direct neighbors, this mechanism is often referred to as message passing [11]. This
architecture allows GNNs to model local structural patterns and context-dependent
node semantics. Over multiple layers, GNNs can capture broader, multi-hop
interactions within the graph.

Having established the context, we now outline the structure of this work.
Chapter 2 surveys related work on tabular models, graph neural networks, node
connectivity, popular architectures, explainable graph neural networks with a focus
on meta path based methods, and the RelBench[4] end to end modeling pipeline.
Chapter 3 presents the experimental study. It compares backbones including a
heterogeneous graph attention network and a heterogeneous temporal Graphormer,
develops three in domain self supervised pretraining strategies (masked attribute
prediction, a variational graph autoencoder, and relationally aware edge dropout),
introduces XMetaPath with its single hop MetaPathGNNLayer, and studies meta
path selection through greedy validation, a large language model based scorer,
and a reinforcement learning policy. Chapter 4 presents the complete empirical
evaluation, reporting the full set of experimental results for all proposed models
and approaches on RelBench, together with baseline comparisons, and a critical
analysis of strengths and limitations. The work closes with the conclusions, future
work, and the bibliography.

4

Chapter 2

Related Works

2.1 The RelBench Benchmark
A central challenge in advancing Relational Deep Learning (RDL) is the lack
of standardized benchmarks that faithfully reflect the complexity and variety of
real-world relational databases. To address this gap, RelBench[4, 9] (Relational
Deep Learning Benchmark) was proposed in 20241, which contains 7 realistic,
large-scale, and diverse relational databases spanning domains including medical,
social networks, e-commerce and sport. Each database has multiple predictive
tasks defined, each carefully scoped to be both challenging and of domain-specific
importance. It provides full support for data downloading, task specification and
standardized evaluation in an ML-framework-agnostic manner[4].

RelBench provides a collection of diverse datasets and learning tasks derived
directly from real-world relational databases. Rather than relying on synthetic or
graph-centric datasets, RelBench is constructed from multi-table tabular data, where
each dataset includes a rich schema with multiple entities, attributes, timestamps,
and foreign-key relationships. The benchmark aims to evaluate the performance of
models that can reason over this structure without flattening or manual feature
engineering.

Dataset Construction and Schema
Each dataset in RelBench consists of a collection of interrelated tables, connected
via primary and foreign key constraints, as commonly found in normalized relational
databases. Based on this inherent structure, each dataset can be systematically
transformed into a heterogeneous graph, where:

1It was primarily developed and launched by researchers at Stanford University.

5

Related Works

• Each row in an entity table is represented as a distinct node.

• A foreign key constraint referencing a primary key in another table is then
reinterpreted as a directed, typed edge connecting the corresponding node
instances.

• Node attributes are directly derived from the columns of the corresponding
table, and may include categorical, numerical, or temporal features.

This graph representation is not handcrafted or dataset-specific, but rather
emerges deterministically from the relational schema itself. The resulting graph
is heterogeneous, temporal, and attributed, faithfully preserving both the content
and the structural relationships defined in the original database. This allows
graph-based models to fully exploit the underlying relational context in a principled
and reproducible way.

The key goal of RelBench is to enable fair and realistic comparisons between
different modeling paradigms:

• Tabular models: such as XGBoost and LightGBM [12, 13], applied to
flattened data with engineered features.

• Relational GNNs: including relational message-passing architectures and
heterogeneous graph attention networks [14].

• Hybrid architectures: such as transformers with relational context [15], or
models that combine column-wise encoders with GNN propagation.

RelBench further reports metrics like ROC-AUC, MAP, and MAE depending
on the task, and provides leaderboards for standardized comparisons.

Task Types in RelBench
RelBench defines three primary categories of predictive tasks that reflect common
real-world objectives in relational data applications. These task types are:

• Entity Classification
In these tasks, predicting the class label for a single entity (row) is required,
where the target variable y is binary, i.e., y ∈ {0,1} (e.g., churn prediction).
Evaluation is typically performed using the Area Under the ROC Curve
(AUROC).

• Entity Regression
These tasks involve predicting a continuous numeric value for a single entity, i.e.,
y ∈ R (e.g., predicting lifetime value or total amount sold). The performance
is usually measured using Mean Absolute Error (MAE).

6

Related Works

• Link-level Prediction (Recommendation)
Here, the goal is to predict a relationship between two entities, such as a
user-item interaction, rather than properties of a single entity. These tasks
are commonly referred to as recommendation tasks. Evaluation is often based
on ranking metrics such as Mean Average Precision (MAP).

These category distinctions align well with diverse real-world relational learning
scenarios and are central to the structure of RelBench, which comprises 30 tasks
across 7 datasets (e.g., entity classification, regression, and recommendation).

RelBench Datasets and Tasks
Below is a comprehensive summary of all datasets in RelBench, including structural
statistics and task definitions.

Figure 2.1: Statistics of RELBENCH datasets. Datasets vary significantly in the
number of tables, total number of rows, and number of columns. Image taken from
Robinson et al.[4].

Task Definitions
While RelBench defines a broad suite of tasks, in this work we focus on those
most relevant to our setting. We first provide a concise description of the tasks
considered here, and then restrict our empirical study to node-level prediction, both
node classification and node regression, evaluated on a representative subset of
RelBench datasets. This selection balances domain coverage and dataset scale,
enabling thorough hyperparameter tuning, and statistical validation under a fixed
compute budget; the remaining tasks and larger corpora are left to future work.

rel-avito

• user-visits, user-clicks (node classification): predict if a user will visit/click
more than one ad in the next 4 days. Evaluation metric: AUROC.

• ad-ctr (node regression): predict the click-through rate for each ad (given it
will be clicked) in the next 4 days. Evaluation metric: MAE.

rel-f1

7

Related Works

• driver-position (node regression): predict average finishing position in next 2
months. Evaluation metric: MAE.

• driver-dnf, driver-top3 (node classification): predict DNF or top-3 qualification
in next 1 month. Evaluation metric: AUROC.

rel-trial

• study-outcome (node classification): predict if clinical trial achieves primary
outcome. Evaluation metric: AUROC.

• study-adverse, site-success (node regression): predict number of adverse pa-
tients or site success rate. Evaluation metric: MAE.

2.2 Tabular Models
As already mentioned in the introduction, tabular systems refer to the conventional
learning approach in which all input data is represented as a single flat table, which is
a matrix where each row corresponds to an instance (e.g., a customer, a transaction)
and each column corresponds to a scalar feature (e.g., age, total purchases, number
of clicks). This format assumes that every instance is independent, identically
distributed (i.i.d.2), and fully described by its feature vector.

Tabular systems are widely used across industry and research due to their
simplicity, interpretability, and compatibility with mature, high-performance al-
gorithms such as gradient boosted decision trees (GBDT). Among these systems
XGBoost[5] and LightGBM[12] are probably the most adopted ones.

In a tabular pipeline, relational or multi-table databases must first be transformed
into a single denormalized table through flattening: a process that involves joining
tables (typically via foreign-key relationships) and aggregating related records into
fixed-length numerical features. This step requires substantial manual effort and
domain expertise, as the quality of the resulting features has a direct impact on
model performance.

While powerful and practical, tabular systems cannot natively represent struc-
tured or relational dependencies between instances, such as repeated interactions,

2The i.i.d. (independent and identically distributed) assumption considers all data points as
independent and identically distributed. Standard machine learning tasks (supervised, unsuper-
vised, and semi-supervised) usually assume that each sample is statistically independent from
the others, in order to avoid considering dependencies between data points. They also assume
that data points are identically distributed to ensure mathematical guarantees of generalization
to unseen samples. This assumption does not hold for relational data: as the name suggests,
relations are preeminent, and entities are highly interdependent rather than independent.

8

Related Works

temporal sequences, or graph-like relationships, and therefore rely entirely on the
expressiveness of the engineered features to capture higher-order patterns.

The widespread success of tabular models can be largely attributed to their
scalability and the extensive algorithmic optimizations that enable fast and efficient
execution[5].

One of the most impactful advancements in gradient boosting methods has been
the introduction of XGBoost, a scalable and highly efficient tree-based learning
system. Its effectiveness was rapidly recognized in real-world applications and
competitive settings: according to Chen and Guestrin (2016)[13], XGBoost was
used in 17 out of 29 winning solutions published on the Kaggle blog in 2015, with 8
solutions relying exclusively on it and many others combining it with deep neural
networks in ensembles. As mentioned in[5], it was also adopted by all top-10
winning teams in the KDDCup 2015, highlighting its dominant role in tabular data
modeling.

2.2.1 Technical Structure of Tabular Models and the Role
of Feature Engineering

Tabular models such as XGBoost and LightGBM are based on gradient boosting
decision trees (GBDT), an ensemble learning technique that builds a strong predictor
by combining multiple weak learners (typically shallow decision trees) through a
stage-wise additive process. At each iteration, a new tree is trained to minimize
the residual errors (i.e., gradients) of the current ensemble with respect to a
differentiable loss function, such as mean squared error for regression or log-loss for
classification.

A typical tabular learning pipeline starts from a structured relational database,
often composed of multiple interrelated tables (e.g., users, transactions, products).
In order to use GBDT models, these tables must be transformed into a single
denormalized table.

The resulting flat table has a matrix structure, where each row corresponds to
an instance and each column to a scalar feature. This representation assumes that
instances are independent and identically distributed (i.i.d.) and that all relevant
information is encoded in the feature vector.

Once the feature matrix is constructed, the GBDT model is trained to predict
a target variable. For example, in a fraud detection scenario, each row might
correspond to a transaction, with features such as transaction amount, time
since last transaction, and customer age. The model learns complex non-linear
relationships between features by building a sequence of decision trees, each focusing
on reducing the prediction error of the previous ensemble. XGBoost and LightGBM
differ in their implementation details: LightGBM uses a histogram-based splitter
and leaf-wise tree growth, while XGBoost by default grows trees level-wise (with

9

Related Works

an option for leaf-wise).

Despite their high performance, these models have intrinsic limitations: they
do not capture dependencies between instances (e.g., temporal or relational links),
and rely entirely on the expressiveness of the engineered features. This makes them
suboptimal in scenarios where inter-instance interactions are critical, such as social
networks, recommendation systems, or time-evolving processes.

2.3 Graph Neural Networks

Graph Neural Network (GNN) refers to any Neural Network working on a graph
data. Unlike traditional neural networks that assume a fixed-size input (e.g.,
vectors, images, sequences), GNNs are capable of learning representations from
data where entities (nodes) are connected via arbitrary relationships (edges), such
as social networks, molecular structures, knowledge graphs, or interaction networks.
The key idea behind GNNs is to iteratively update the representation of each
node by aggregating and transforming information from its local neighborhood,
thereby capturing both attribute-level information and relational inductive bias.
This makes GNNs particularly powerful for tasks such as node classification, link
prediction, and graph-level regression or classification.

2.3.1 What is a Graph?

Before delving into machine learning on graphs, it is important to briefly clarify
what graphs are and what we mean by graph-structured data.

Due to their ability to model entities and, most importantly, the relationships be-
tween them, graphs have become a ubiquitous data structure capable of representing
a wide variety of domains and scenarios.

10

Related Works

Figure 2.2: Example of a character co-occurrence network inspired by Les Misérables,
generated using the Les Misérables dataset (77 characters, 254 weighted undirected
edges). Each node represents a character, and edges are weighted by how frequently the
characters co-appear. Node size and layout reflect connectivity structure. Although the
numerical values are not displayed, the edge thickness visually encodes the weights, with
thicker links indicating more frequent coappearances. (Image taken from[16]).

Graphs are more than just a data structure: they offer a mathematical formalism
that can be adopted to analyze almost all real-world complex relational systems.
Graphs are so powerful and flexible that we could consider other data types,
such as images and texts, as simplifications of graph-data3[17]. Therefore,
graph structures can be employed in the majority of application areas, including
proteomics, image analysis, relational databases (which is the focus of this thesis),
scene description, software engineering, natural language processing, and many
more, as noted in [10]. The main challenge is to unlock the full potential of this

3In fact, images can be viewed as grids of nodes with RGB attributes, while text can be
organized into tree- or graph-structured information.

11

Related Works

data structure and to improve the learning process over such a mathematical
representation, so that we can automatically and simultaneously address tasks in a
wide range of applications.

Formally, a graph G=(V, E) is defined by a set of nodes V and a set of edges E
between these nodes.

Let G = (V, E) be a graph with n = |V | nodes. Its structure can be described
by an adjacency matrix A ∈ Rn×n, defined as:

Aij =

1 if there is an edge from i to j

0 otherwise
To represent a graph using an adjacency matrix, we first need to assign a fixed

ordering to the nodes so that each row and each column of the matrix corresponds
to a specific node in the original graph.

From the definition of the adjacency matrix provided above, we can state
the following: undirected graphs produce symmetric adjacency matrices, whereas
directed graphs do not.

Graphs can also be weighted, meaning that instead of simply using 0,1 values in
the adjacency matrix, we can have arbitrary real-valued entries that express the
strength of the connections.

Figure 2.3: Example of weighted graph for a Protein-Protein Interaction Network. A
weighted edge in this case may indicate the strength of the association between two
proteins[18]. Image taken from[19].

Most of the times adjacency matrix is not able alone to provide all the useful
details about a given network, but we usually need to have attribute or feature
information associated with the graph. Usually we use a real-valued matrix
X ∈ R|V|×n, where n is the embedding size for a given node4.

4To maintain consistency in the representation, we set the order of X equal to the one of the

12

Related Works

In this work, we focus on heterogeneous graphs, which contain multiple types of
nodes and/or multiple types of edges, each representing different kinds of entities
and relationships. Formally, the node set can be expressed as:

V = V1 ∪ V2 ∪ · · · ∪ VT , with Vi ∩ Vj = ∅ ∀i /= j,

where each Vt corresponds to a distinct node type. Similarly, the edge set is
composed of different types of relations:

E =
Û

r∈R
Er,

where R denotes the set of relation types. Such structures are particularly useful for
modeling complex, multi-relational systems such as knowledge graphs, bibliographic
databases, or relational information networks. Each relation r ∈ R is typically
associated with a separate adjacency matrix A(r) ∈ {0, 1}|V|×|V|, allowing the
model to preserve the semantics of individual edge types. Alternatively, the set of
adjacency matrices can be represented as a 3D tensor A ∈ R|V|×|R|×|V|.

Moreover, nodes of different types often come with distinct attribute spaces.
For instance, papers and authors in a bibliographic network may have completely
different sets of features, requiring type-specific encoding strategies.

2.3.2 Learning on Graphs
Machine Learning tasks are usually classificated as supervised, unsupervised and
semi-supervised. When considering graph data types, the situation is not that
different, but this distinction is not necessarily the most useful for representing the
type of machine learning task on graphs[18]. We, therefore, need to provide a brief
overview of the categories of tasks for graph.

• Node classification: Node classification is one of the main tasks for graphs.
In this setting, the goal is to predict the label yu for each node u ∈ U . The
label yu may represent a type, category, or attribute. In this setting, we are
only given the true labels for a training set of nodes. Usually, the number of
labeled training samples is limited; besides these, the node classification task
also considers unlabeled test samples. For such nodes, we do not know the
true label, but we are given the relationships they have with other nodes.
That said, node classification represents a distinctive type of machine learning
task. While it resembles standard supervised learning where the goal is to
predict labels for individual nodes, only a subset of the nodes in the graph

adjacency matrix.

13

Related Works

have ground-truth labels available during training. This partial supervision
naturally places node classification within the broader class of semi-supervised
learning problems.

Although node classification is often described as a semi-supervised learning
task (since only a subset of nodes has ground-truth labels during training) it
departs from the typical assumptions used in many standard SSL settings. As
noted in[18], in classical machine learning theory, semi-supervised methods are
frequently analysed under the i.i.d. assumption, where samples are considered
independent and identically distributed. This assumption, however, is violated
in graphs: nodes are not independent, as their features and labels are correlated
through the graph structure. Consequently, node classification can be seen as
a semi-supervised problem on non-i.i.d. data, where modeling the relationships
between samples is central to the learning process.

Node classification encompasses both binary and multi-class classification
tasks.

A typical example of node classification is predicting the category of users in
a social network (e.g., student, researcher, engineer, artist), where each node
can belong to one of multiple classes based on its features and connections.
In a binary classification setting, one may instead predict whether a user is
a spammer or not, based on both their profile information and interaction
patterns within the network.

• Node regression: Business statistics for reselling companies (such as Amazon)
often rely on tasks that require estimating the total amount of budget a user
is likely to spend on the platform in the future. Such analyses are inherently
regression-oriented and can be addressed through a node regression task over
a graph structure that captures all relevant information from the company’s
dataset.

Formally, in a node regression task we are given a graph G = (V , E), where V
is the set of nodes (or vertices) and E ⊆ V × V is the set of edges. Each node
u ∈ V is associated with a feature vector xu ∈ Rd, and only a subset of nodes
Vtrain ⊂ V have known continuous target values yu ∈ R. The goal is to learn a
function f : G, xu → ŷu ∈ R that can accurately predict the continuous label
yu for unseen nodes u ∈ Vtest = V \ Vtrain.

As in node classification, the learning process typically leverages both the
node features and the graph structure (i.e., the connectivity encoded in E) to
make predictions. The objective is usually to minimize a loss function over
the training nodes, which is most commonly the Mean Squared Error (MSE):

14

Related Works

LMSE = 1
|Vtrain|

Ø
u∈Vtrain

(yu − ŷu)2 .

Node regression is thus the continuous counterpart of node classification, and
is particularly useful in scenarios where target values are real-valued quantities,
such as prices, ratings, or user spending estimates.

• Link prediction: Recommender systems [20, 21] aim to suggest items to
customers, and can be formulated as a link prediction task, where the link
has the semantics of indicating a user’s interest in a specific product.
Formally, the link prediction task consists in estimating the likelihood of the
existence of a link between two nodes u, v ∈ V in a given graph G = (V , E),
where V is the set of nodes and E ⊆ V ×V is the set of observed edges. Given
a pair of nodes (u, v), the model must output a score s(u, v) ∈ R representing
the strength or probability of the existence of an edge between them. The score
function s(·, ·) is typically parameterized by a neural network that leverages
both node features xu, xv and structural information from the graph.
The task is commonly trained using a binary classification objective: positive
samples are node pairs (u, v) such that (u, v) ∈ E, while negative samples
are sampled from (u, v) /∈ E. The loss function often used is the binary
cross-entropy:

LBCE = −
Ø

(u,v)∈D
yuv log σ(s(u, v)) + (1− yuv) log(1− σ(s(u, v))),

where σ is the sigmoid function and yuv ∈ {0,1} is the ground truth label
indicating the presence or absence of the edge. Link prediction is particularly
useful in recommendation settings, where the nodes u and v can represent
users and items respectively, and the predicted link expresses a potential
interaction, such as a purchase or a rating.
The complexity of this kind of task is highly dependent on the structure of the
graph itself. For example, heterogeneous graphs, which may include hundreds
of different relation types, are typically more complex to handle.
One of the most influential approaches to link prediction in knowledge graphs
is the TransE model [22], which represents both entities and relations as
vectors in a continuous embedding space. The core idea of TransE is to model
a relation as a translation between head and tail entities, such that for a true
triple (h, r, t), the embedding of the head entity h translated by the relation
vector r is close to the embedding of the tail entity t; formally, h + r ≈ t.

15

Related Works

This method provides an efficient and scalable way to perform link prediction
by learning to score the plausibility of triples via simple vector operations.

• Graph classification, regression and clustering: Another important
category of graph tasks involves using entire graphs as input and producing a
label for each of them. The label can be a real-valued output (in which case
we have a graph regression task) or a categorical value (a graph classification
task).
The aim is to train a model using many independent and labeled graphs,
in order to improve its ability to assign the correct label to unseen inputs
effectively learning a mapping function from whole graphs to labels. Graph
regression and graph classification are perhaps the most direct analogues to
standard supervised learning, as each graph is treated as an i.i.d. datapoint
associated with a label.
Graph clustering, on the other hand, is an unsupervised task where the goal
is to group nodes into clusters based on their structural or feature similarity,
without the need for labeled data.

2.3.3 Core Challenges in Applying Deep Learning to Graph
When it comes to applying Neural Networks to graphs, we can think about simply
using the standard Neural Network architectures over these data structures.

To assess whether standard Deep Learning architectures can be applied to
graphs, let us assume we are given a graph G, where:

• V is the vertex set

• A is the adjacency matrix (assume binary)

• X ∈ Rm×|V | is a matrix of node features

• v: a node in V

• N(v): the set of neighbors of v.

The easiest way to apply a standard Deep Learning model in this context would
be to concatenate the node features with the adjacency matrix, so that each row
contains both the features of a node and its adjacency information.

We can then apply a Multi-Layer Perceptron (MLP) to this matrix to initiate
the learning process.

Despite being a very simple and straightforward application, this approach
presents several issues:

16

Related Works

• No flexibility with respect to graph dimensionality: this approach requires
a fixed number of input neurons, making it unsuitable for graphs of varying
sizes or structures.

• The result depends on the ordering of the matrix: this method is sensitive to
the specific order of the nodes in the adjacency matrix. Any permutation of
the node ordering can lead to different predictions. As we will see later, this
approach does not satisfy the permutation invariance property.

Figure 2.4: Applying an MLP to a graph by concatenating the adjacency matrix A
with the node features X (i.e., [A |X]). This naïve approach suffers from two drawbacks:
(i) it requires a fixed input size, making it incompatible with graphs of varying order or
structure; and (ii) predictions depend on the arbitrary node ordering in A.

In general, using other famous Deep Learning architectures would not change
this result: Standard Deep Learning architectures cannot be directly applied to
graph. This is primarily due to the permutation invariance property of graph
data, which renders traditional neural network architectures ineffective without
substantial modification.

Permutation invariance means that the output of the learning process should be
independent of the order in which we represent the graph5.

Let X = {x1, x2, . . . , xn} be a set of elements (e.g., node features), and let
f : X → Y be a function that maps a set to an output. We say that f is
permutation invariant if for any permutation π of the indices {1, . . . , n}, the
following holds:

f(x1, x2, . . . , xn) = f(xπ(1), xπ(2), . . . , xπ(n)).

In other words, the output of f remains unchanged regardless of the order in
which the inputs are provided. Operations like sum, mean, and max are therefore
permutation invariant, since they provide the same output for every node order.

Another key property when dealing with graphs is the permutation equivari-
ant property.

5For instance, if we model the graph through an adjacency matrix, the output that a certain
Machine Learning model provides should be independent of the order of the nodes in the matrix.

17

Related Works

Figure 2.5: Example of applying a fixed-size kernel CNN architecture to a graph.
Several challenges emerge:
– Fixed-size window: Choosing the appropriate window size is difficult, as the number of
nodes covered may vary depending on the graph’s structural properties.
– No fixed locality: Graphs do not have a regular notion of locality or a sliding window
mechanism, making it non-trivial to define how the kernel should move across the input.

Let f : Rn → Rn be a function, and let π ∈ Sn be a permutation from the
symmetric group Sn, which can be represented as a permutation matrix Pπ ∈ Rn×n.

The function f is said to be permutation equivariant if for every permutation
π ∈ Sn and every input x ∈ Rn, it holds that:

f(Pπx) = Pπf(x)

This property guarantees that permuting the input vector and then applying the
function yields the same result as applying the function first and then permuting
the output.

Example: The elementwise doubling function

f(x) = 2 · x

is permutation equivariant because:

f(Pπx) = 2 · (Pπx) = Pπ(2 · x) = Pπf(x)

18

Related Works

Figure 2.6: On the left, we see the image of a dog. On the right, the same image is
shown, but with its pixels (i.e., nodes) in a random order. Although the pixel values
remain the same, changing their order completely alters the result. A CNN architecture
relies on this positional bias to perform classification and is therefore not invariant to the
order of input nodes.

Are other Neural Network Architectures (e.g. MLP, CNN and RNN) permutation
invariant/equivariant?

No, because switching the order of the input leads to different outputs as
illustrated in picture2.6. For example, convolutional neural networks (CNNs) are
well-defined only over a grid-structured input (such as the images), while reccurent
neural networks (RNNs) are well-defined only over sequences.

For this reason, a specific neural network architecture needs to be properly
designed to handle graph-structured data. This architecture is called Graph Neural
Network, and it consists of multiple permutation equivariant and/or invariant
functions.

Figure 2.7: Example of a GNN structure. It is composed of several permutation
equivariant layers, followed by a final permutation invariant layer that produces a single
output. Notice that this is an example of a graph classification task, where a single
output is required for the entire graph.

19

Related Works

2.3.4 What is a GNN?
A Graph Neural Network (GNN) is a neural framework designed to generate the
representation of nodes, also considering the structure of the graph.

The key novelty is that node embeddings are based on local network neighbor-
hoods. In fact, to take into account the graph-structured information, GNNs use a
process that can be described in two steps:

1. Computational graph construction: During this step, a new graph for
a given target node is built to define how the information should be passed
through the graph, allowing each node to aggregate information from its
neighbors. Each node defines its own computational graph.

2. Message passing: prepare and aggregate informations between nodes based
on the constructed computational graph.

Figure 2.8: Computation graph for a single node (A) induced by the input graph. The
embedding of node A is obtained by aggregating information from its neighbors and,
recursively, from their neighbors across L message-passing layers (i.e., within its L-hop
neighborhood).

The fundamental element that is passed through the graph is called a message.
A message is the unit of information that a node receives from its neighbors during
the learning process. It contains relevant features of the neighboring nodes. The
entire GNN model can be seen as a process of message exchange and message
aggregation between neighbor nodes.

Message passing refers to the full computational process that occurs in a
Graph Neural Network layer, which typically includes three main steps: message
generation, where messages are computed based on the features of neighboring
nodes, node features and edge attributes; message aggregation, where the messages
from all neighbors are combined in a permutation-invariant way; and node update,
where the node’s embedding is updated based on the aggregated message and its
previous state.

20

Related Works

Regardless of the specific GNN architecture, the definition of a GNN is that
it uses a form of neural message passing in which vector messages are exchanged
between nodes, aggregated, and used to update the nodes’ embeddings using neural
networks [11].

The essential idea of GNNs is to iteratively update node representations
by combining their neighbors’ messages with their own representations from the
previous time step.

During each message-passing iteration in a GNN, a hidden embedding h(k)
u is

computed for each node u, considering u’s computational graph neighborhood
N (u).

We can provide a general formalization of the GNN learning procedure. We
start by initializing the representations for all nodes in the graph with their input
features, so that h(0) = X. Then, at each iteration, each node receives messages
from its neighbors and aggregates them to update its embedding:

ak+1
v = AGGREGATEk

1î
hk

u : u ∈ N (v)
ï2

(2.3.1)

hk+1
v = UPDATEk+1

1
hk

v , ak+1
v

2
(2.3.2)

So, the new embedding for a node v at each iteration is given by:
hk+1

v = UPDATEk
1
hk

v , AGGREGATEk
1î

hk
u | u ∈ N (v)

ï22
(2.3.3)

Note that UPDATE and AGGREGATE are arbitrary differentiable functions, and
N (v) denotes all the neighbors of node v.

At each iteration k of the GNN, the AGGREGATE function takes as input the set
of embeddings from the node’s neighborhood N (v) and generates a message mk

N (v)
based on the aggregated information. The UPDATE function then combines the
message mk

N (v) with the previous embedding hk
v of node v to produce the updated

embedding hk+1
v .

After running K iterations of the GNN message passing, we can use the output
of the final layer to define the embedding for each node:

zu = hK
u , ∀u ∈ V

Is crucial to notice that the AGGREGATE function must be defined over a set of
input messages, rather than a sequence. This requirement makes it permutation
invariant, as it guarantees that the aggregation result does not depend on the order
in which the input messages are received.

2.4 Node Connectivity in Graphs
An important question to consider is: how far can a message travel through the
network? In other words, how many hops away can a node receive information
from?

21

Related Works

The answer lies in the depth of the GNN, specifically in the number of message-
passing layers it employs.

In a GNN with k layers, each node aggregates information from its immediate
neighbors at each layer. As a result, after k iterations of message passing, a
node’s representation will have incorporated information from all nodes
that are within k hops in the graph. This means that the effective receptive
field of a node, which is the portion of the graph it can access, grows with the
number of layers.

Therefore, the deeper the GNN (i.e., the higher the value of k), the farther a
message can propagate in the graph.

The number of GNN layers should be chosen based on the maximum distance
that messages are expected to propagate across the graph.

Similarly to other neural network architectures, one might assume that increas-
ing the number of layers leads to improved performance. However, this is not
always true for Graph Neural Networks (GNNs), which suffer from the so-called
over-smoothing problem[23, 24]: as the number of layers increases, the node
embeddings tend to converge to similar or even identical values, thereby losing
discriminative power. This phenomenon is rooted in the structural semantics of
GNN layers: a GNN with k layers allows each node to aggregate information from
nodes at most k hops away. When k approaches the diameter of the graph, the
receptive field of each node essentially includes the entire graph. As a result, the
receptive fields of different nodes increasingly overlap and, since the embedding
of a node is determined by its receptive field, this leads to indistinguishable node
representations.

Figure 2.9: This image illustrates how quickly the receptive fields grow as GNN layers
are added. This becomes problematic because, once the receptive field covers the entire
graph, all nodes tend to aggregate the same information, leading to the well-known
over-smoothing problem.

The structural information of the graph is naturally encoded in the message
passing mechanism, as messages are exchanged only along the edges present in

22

Related Works

the graph. In addition to capturing the graph topology, after k iterations of GNN
message passing, each node’s embedding also incorporates the features of all nodes
within its k-hop neighborhood.

2.5 Popular GNN architectures
So far, we have discussed the general GNN framework. To instantiate it as a
concrete architecture, we must specify the Aggregate and Update functions.

The first generalized GNN framework was proposed by Scarselli et al. [10] in
2009.

Let G = (V, E) be a graph, where V is the set of nodes and E the set of edges.
Each node v ∈ V is associated with:

• a feature vector xv ∈ Rd,

• a hidden state (embedding) hv ∈ Rq to be learned.
The model defines a state transition function (applied locally to each node):

hv = fw
1
xv, {xu}u∈N (v), {hu}u∈N (v)

2
(2.5.1)

where N (v) denotes the neighbors of v and fw is a neural function with param-
eters w. A common non-positional instance is

hv =
Ø

u∈N (v)
F (xv, xu, hu) (2.5.2)

with F implemented as an MLP. Unlike modern GNNs, this framework updates
node states by repeatedly applying the transition until a fixed point is reached.

In contemporary layer-wise GNNs, message passing proceeds for a fixed number
of layers. A basic formulation is

h(k)
u = σ

W(k)
selfh(k−1)

u + W(k)
neigh

Ø
v∈N (u)

h(k−1)
v + b(k)

 (2.5.3)

where W(k)
self, W(k)

neigh ∈ Rd(k)×d(k−1) are trainable matrices and σ is a nonlinearity
(e.g., tanh or ReLU). Thus, at layer k each node updates its embedding using its
previous representation and the aggregated representations of its neighbors from
layer k−1.

The most basic neighborhood aggregation operation [18] simply sums a node’s
neighbor embeddings. However, the sum is highly sensitive to node degrees6 and can

6Meaning that nodes with a high number of neighbors will present a much higher magnitude
of
q

v∈N (u) h(k−1)
v .

23

Related Works

also cause numerical instability and divergence during optimization. To mitigate
these issues, one typically averages the contributions of the node’s neighborhood.
There are several formulations that try to improve equation (2.5.3), but the simplest
one is to just take an average rather than the sum:

h(k)
u = σ

W(k)
selfh(k−1)

u + W(k)
neigh

1
|N (u)|

Ø
v∈N (u)

h(k−1)
v + b(k)

 (2.5.4)

Once node embeddings are computed for each of the nodes, they can be used
for downstream tasks.

What we have seen so far is a brief introduction and intuition about how a
GNN works mathematically. Several different implementations of GNNs have been
proposed; for simplicity, we will primarily focus on the most influential ones in the
following paragraphs.

Graph Convolutional Network (GCN)

One of the most commonly used GNN networks is the Graph Convolutional Network.
This model employs a slightly different normalization of the neighbors messages
defined as: Ø

v∈N (u)

hvñ
|N (u)| |N (v)|

(2.5.5)

This type of normalization is known as symmetric normalization, and it is
applied to mitigate the effect of node degree imbalance. Each neighbor’s embedding
hv is scaled by the factor 1√

|N (u)| |N (v)|
, where |N (u)| and |N (v)| denote the degrees

of the target node u and the source node v, respectively. This ensures that
information coming from high-degree nodes does not disproportionately dominate
the aggregation process.

By applying this symmetric normalization scheme, the message passing function
is computed as follows:

h(k)
u = σ

W(k) Ø
v∈N (u)∪{u}

h(k−1)
vñ

|N (u)||N (v)|

 , (2.5.6)

In this equation, each neighbor (including the node itself) contributes to the
new representation of node u with a weight inversely proportional to the geometric
mean of their degrees. This prevents high-degree nodes from overwhelming the
aggregation and stabilizes the optimization.

Note that this formulation does not include an explicit bias term. Although a
bias vector b(k) can be added after the aggregation step to improve expressiveness.

24

Related Works

In summary, the GCN model introduced a simple yet powerful framework for
learning on graph-structured data through layer-wise propagation and symmetric
normalization. Despite its effectiveness in various tasks, the standard GCN has
some limitations, such as its inability to handle edge features, its reliance on a fixed
aggregation scheme, and its limited receptive field due to shallow architectures.
Another important drawback of this model lies in its transductive setup: In the
standard semi-supervised setting, a GCN is trained with the full normalized
adjacency Â of the entire graph. As a result, the representation of a labeled node
depends (within K hops) also on unlabeled/test nodes, so the model is conditioned
on that specific graph and does not directly handle new nodes/graphs without
rebuilding Â and re-running propagation 7.

These drawbacks have motivated the development of more flexible and expressive
models, such as Graph Attention Networks (GATs), GraphSAGE, and other variants
that we will explore in the following sections.

GraphSAGE

GraphSAGE (Graph Sample and Aggregate)[25] is a framework for inductive
representation learning on large graphs. Unlike transductive methods like GCNs,
which require access to the entire graph structure during both training and inference
time, GraphSAGE learns a set of aggregator functions that can generalize to unseen
nodes or even entirely new graphs. At each layer k, the representation of a node
v is computed by aggregating the representations of its neighbors N (v) from the
previous layer k − 1, together with its own representation:

h(k)
v = σ

1
W (k) · AGGREGATE(k)

1
{h(k−1)

u ,∀u ∈ N (v)} ∪ {h(k−1)
v }

22
Here, h(k)

v denotes the embedding of node v at layer k, σ is a non-linear activation
function (e.g., ReLU), and W (k) is a learnable weight matrix. The aggregation
function can be a simple mean, a pooling operation, or even a recurrent function like
LSTM. GraphSAGE enables scalable training by sampling a fixed-size neighborhood
for each node instead of considering all neighbors, which is especially useful in graphs
with high-degree nodes. This inductive approach makes GraphSAGE particularly
well-suited for dynamic or evolving graphs, and for tasks where generalization to
unseen data is crucial.

7Transductive learning uses the test inputs (here, the structure and features of test nodes)
at training time, though not their labels. Inductive learning instead learns a local aggregation
function that can be applied to unseen nodes/graphs without access to them during training (e.g.,
GraphSAGE-style sampling).

25

Related Works

Graph Attention Network (GAT)

One of the most promising approches has been to try to adapt the self-attention
mechanism[26] in order to improve the aggregation phase in GNN.

The first GNN architecture to adopt the self-attention mechanism was Veličković
et al.[27] in 2018. They defined the Graph Attention Network (GAT), which uses
a self-attention mechanism8 to compute attention scores for each neighbor of a
node. These weights indicate the importance to be given to each of the neighbours
of a node. In the previous formulation, the weights assigned to the neighbors are
implicit, yet still present. In Equation (2.5.6), in fact, the weights are equal for
all nodes and are given by 1√

|N (u)||N (v)|
. Consequently, the attention scores in this

case are determined solely by the structural properties of the graph, by the node
degrees. Self-attention mechanism improves this mechanism allowing the network
to decide which are the neighbours that are more influentials for obtaining the
output.

To provide a simpler interpretation of the attention mechanism adopted in the
GAT architecture we can rewrite formulation(2.5.6) as:

h(k)
u = σ

 Ø
v∈N (u)∪{u}

αuvW(k)h(k−1)
v

 , (2.5.7)

Where:
αuv = 1ñ

|N (u)||N (v)|
(2.5.8)

This corresponds to the weighting factor (or importance) of node v’s message to
node u and is defined explicitly based on the node degree property. It is important
to notice that all neighbors of node v are equally important in the GCN architecture.

Attention is inspired by cognitive attention and is based on the idea that a
Neural Network should devote more computing power on the most significative and
discriminative part of data[26]. What is the most important part of data should be
learned during the training process.

The main improvement introduced by the attention mechanism in GNN message
passing lies in the idea that the attention assigned to each neighbor should be
learned during training and it should take into account both the source and
destination node features, rather than being constant.

8Note that this mechanism is not canonical Transformer self attention[26]: GAT uses an
additive, edge local scoring restricted to 1 hop neighbors with a single linear projection and a
learned attention vector, rather than separate Q, K, and V with a global scaled dot product.
This simplification reduces computation to O(|E|) and aligns the operation with the sparsity of
graph structure.

26

Related Works

To compute these coefficients, we associate each edge (u, v) with a learnable
attention score euv, which expresses how relevant node v is to node u. At first, we
assume that these scores euv are already available. To ensure that the attention
weights are comparable across different neighborhoods, we normalize them using
the softmax function obtaining the attention scores αuv:

αuv = exp(euv)q
k∈N (u)

exp(euk) (2.5.9)

These normalized attention coefficients αuv, are then used to compute a
weighted aggregation over the neighborhood of u.

But how do we actually compute the attention scores euv?
There are multiple ways to define the function that computes euv from the input

features of nodes u and v.
A straightforward strategy consists in concatenating the linearly transformed

embeddings of the source and destination nodes, and then passing the result through
a single-layer neural network:

euv = a(Wlhl−1
u , Wlhl−1

v) = Linear(Concat(Wlhl−1
u , Wlhl−1

v)) (2.5.10)

where Wl is a learnable weight matrix shared across all nodes.
The parameters of the function a are trained jointly in an end-to-end fashion.
This approach is agnostic to the specific choice of the attention mechanism a,

meaning that we can implement a in various ways. The model remains valid as
long as:

1. The function a returns a single real-valued score;

2. The attention scores can be normalized using the softmax function.

In the original paper[27], the authors adopted an approach in which they first
concatenated the transformed node embeddings and then applied a linear projection
followed by a non-linear activation (LeakyReLU).

Since attention scores are sometimes difficult to make converge, we can further
define and use a multi-head attention mechanism, which helps stabilize the
learning process of the attention itself. This consists in applying multiple inde-
pendent attention mechanisms (or “heads”), each with its own set of learnable
parameters. Each head computes separate attention coefficients and transforms
the neighbor embeddings accordingly.

Let K be the number of attention heads. For each head i ∈ {1, . . . , K}, a
different attention coefficient α(i)

uv and weight matrix W(i) are used. The output of

27

Related Works

each head is computed independently as:

h(l)[i]
v = σ

 Ø
u∈N (v)

α(i)
vuW(i)h(l−1)

u

 (2.5.11)

The final output of the layer is obtained by aggregating the outputs of all heads:

h(l)
v = AGG

1
h(l)[1]

v , h(l)[2]
v , . . . , h(l)[K]

v

2
(2.5.12)

where AGG denotes an aggregation function, which can be either concatenation,
summation, or others, depending on the specific implementation or position within
the architecture (e.g., summation is commonly used in the final layer).

This design improves the model’s expressiveness and robustness by capturing
information from multiple perspectives.

The GAT model presents several key advantages with respect to the previously
presented ones:

• Differentiated neighbor weights: the neighbour weights depend on their
importance for the downstream task.

• Time- and space-efficient: A key difference between a GAT and how self-
attention layers work in other neural architectures, such as Transformers[26], is
that in the latter, the attention score is computed for every pair of nodes, not
just adjacent ones9. This computation is much more expressive, as it allows the
model to immediately capture the importance of any node relative to another,
even if they are far apart in the graph structure. However, it is also extremely
time-consuming and requires a large amount of memory to store all pairwise
computations. In contrast, GATs compute attention scores only between a
node and its immediate neighbors at every iteration, effectively ignoring the
rest of the graph. This leads to significantly more efficient computations in
both time and space.

• Permutation-invariant: as previously discussed, permutation invariance
is a key property that any aggregation operation over a graph should satisfy.
Whenever an operation aggregates node-level information into a single repre-
sentation, this property should hold. The attention mechanism used in GATs
preserves this property.

• Parallelization: Multi-head attention improves stability without requir-
ing significantly more execution time. This operation can, in fact, be fully
parallelized.

9By adjacent nodes we mean nodes that are directly connected through (at least) one edge.

28

Related Works

GAT models with multihead self attention are very closely related to Transformer
architectures[26]. The Transformer architecture is one of the most important across
many fields and has been a key driver of large state of the art NLP systems such as
BERT[28]. In fact, if we consider a fully connected graph10 a GAT layer becomes
functionally equivalent to a Transformer encoder provided that the attention scoring
uses the scaled dot product with distinct query, key, and value projections (rather
than the additive score with a single projection and an attention vector), the value
projection is not tied to the key projection, and the usual residual, normalization,
and positionwise feed forward blocks are included. Under these conditions both
models rely on multihead self attention to compute contextualized representations
by aggregating information from all other elements (nodes in GAT, tokens in
Transformers). The key components in both cases are the computation of attention
coefficients, softmax based normalization, and aggregation via weighted sums of
linearly projected inputs. The remaining structural difference is connectivity:
Transformers assume full pairwise interaction, whereas standard GAT restricts
attention to a node’s 1 hop neighborhood given by the graph topology. In this sense
a Transformer encoder can be viewed as graph attention on the complete graph,
and a GAT layer as its sparse, topology restricted counterpart that generalizes the
computation to arbitrary graphs.

This architecture has significantly advanced the state of the art in Graph Neural
Networks, not only because of its expressive power, but also, and perhaps more
importantly, due to the radical shift in perspective: leveraging an architecture
that already performs well in another domain (such as the Transformer in Natural
Language Processing) and adapting it to work effectively with graph-structured
data.

Attention mechanism allows model to focus on the most salient part of data. It
has been demonstrated the effectiveness in a variety of applications, such as text
analysis[29], knoledge graph[30] and image processing[31].

Building on this intuition, several models have since explored how to integrate
the self-attention mechanism directly within the Graph Neural Network paradigm.
One notable line of research involves the development of Transformer-based models
for graphs, such as Graphormer [32]. Unlike traditional GNNs like GAT [27],
which restrict attention to a node’s immediate neighbors, Graphormer removes
this constraint and enables global attention across all nodes in the graph. To
compensate for the lack of topological locality, structural biases are introduced
through encoding schemes that inject distance (e.g., shortest-path), centrality, and
edge-type information directly into the attention computation.

Graphormer achieves state-of-the-art performance on large-scale benchmarks by

10A fully connected graph is a graph where each node is connected to every other node.

29

Related Works

leveraging these structural encodings to inform the attention weights, effectively
allowing each node to attend to all others in a way that remains sensitive to the
graph’s geometry. This general strategy has inspired a variety of other architec-
tures11 which differ in the specific structural biases they encode or the ways they
limit the attention scope to preserve sparsity and computational efficiency. These
approaches collectively mark a shift toward bridging the gap between message-
passing GNNs and fully attention-based models, aiming to combine the strengths
of both paradigms.

That said, the original GAT model was designed to operate only on homogeneous
graphs, where all nodes share the same type and all edges represent the same
kind of relation. While this simplifies the design and computation of the attention
mechanism, it also imposes strong limitations in scenarios where data naturally
exhibit multiple types of entities and relations. In many real-world applications,
such as knowledge graphs, recommendation systems, and multi-relational networks,
the graph is inherently heterogeneous: nodes may represent different entity types
(e.g., users, items, events) and edges may encode various semantic relations (e.g.,
purchase, review, attend).

In the following section, we will discuss an extension of the GAT model for
heterogeneous graphs, capable of explicitly modelling and leveraging the diversity
of node types and relation types present in the data.

Heterogeneous Graph Attention Network (HAN)

The heterogeneity introduces rich semantic concepts and poses significant challenges
for designing a graph neural network.

HAN[33] tries to extend the attention mechanism defined in GAT into heteroge-
neous graph using a hierarchical attention mechanism. Differently from GAT,
instead of only considering the node-level attention, which aims to learn the
importance of node’s neighborhood, HIN also adopt a semantic-level attention
mechanism.

The idea can be expressed as follows:

• We begin with a set of meta-paths, which are predefined before applying
the model. A meta-path Φ in a heterogeneous information network (HIN) is
defined as a path composed of a sequence of node types and edge types in the
form:

Φ : A1
R1−→ A2

R2−→ . . .
Rl−→ Al+1

where Ai ∈ A are node types and Ri ∈ R are relation types. A meta-path
defines a composite semantic relation between nodes of type A1 and Al+1

11Sometimes referred to as Graph Transformers.

30

Related Works

by chaining together atomic relations R1, R2, . . . , Rl. It is also required that
A1 = Al+1 = Atarget, i.e., the meta-path starts and ends on the target node
type. For instance, the meta-path APA (Author–Paper–Author) defines a
relation between two authors who have co-authored a paper.

• For each meta-path Φ, a corresponding meta-path-based homogeneous
graph GΦ is constructed, where all nodes are of the same target type. An
edge exists between two nodes in GΦ if there is a path between them in the
original heterogeneous graph that follows the meta-path Φ. This induced
homogeneous graph allows attention-based message passing to operate within
a well-defined semantic context.

• Before performing meta-path-based aggregation, it is necessary to align the
feature spaces of the different node types present in the original heterogeneous
graph. This is not done to make the graph structurally homogeneous, but
rather to ensure that node representations from different types are comparable
and can be processed with shared parameters in subsequent attention and
aggregation steps.
The authors achieve this alignment through a node-type-specific transfor-
mation:

h′
i = Wϕ(i)hi (2.5.13)

where:

– hi ∈ RFϕ(i) is the original input feature vector of node i,
– Wϕ(i) ∈ Rd×Fϕ(i) is a learnable transformation matrix specific to the node

type ϕ(i),
– h′

i ∈ Rd is the transformed feature vector in the shared latent space of
dimension d.

By applying node-type transformations each node type share a common feature
space that allow them to be comparable.

• Node-level attention: for each meta-path, we consider its corresponding
homogeneous graph and apply the standard GAT model to compute attention
over neighboring nodes. For a meta-path Φ, the attention coefficients are
computed as:

eΦ
ij = attnode(h′

i, h′
j; Φ) (2.5.14)

Where attnode denotes the deep neural network which performs the node-level
attention. Given meta-path Φ, attnode is shared for all meta-path based node
pairs.

31

Related Works

These scores are then normalized using the softmax function, as in the original
GAT formulation [27]:

αΦ
ij =

exp(eΦ
ij)q

k∈N Φ
i

exp(eΦ
ik) (2.5.15)

The final node representation for meta-path Φ is obtained by aggregating
information from neighbors:

zΦ
i = σ

 Ø
j∈N Φ

i

αΦ
ij · h′

j

 (2.5.16)

Here zΦ
i indicates the learned embedding of node i for the meta-path Φ.

In the original paper, the authors further extended this mechanism to multi-
head attention, by repeating the node-level attention computation K times
and then concatenating the results, as follows:

zΦ
i = ∥K

k=1σ

 Ø
j∈N Φ

i

αΦ
ij · h′

j

 (2.5.17)

• Semantic-level attention: after applying node-level attention for each
meta-path Φ ∈ P , every node i is associated with a set of meta-path-specific
embeddings {zΦ

i }Φ∈P . Since different meta-paths capture different semantic
relations in the heterogeneous graph, not all of them are equally informative
for the downstream task. The goal of semantic-level attention is to learn a
global importance weight for each meta-path and aggregate the corresponding
embeddings accordingly.
First, for each meta-path Φ, we compute an importance score wΦ as:

wΦ = 1
|V |

Ø
i∈V

q⊤ · tanh
1
W · zΦ

i + b
2

(2.5.18)

where:

– W ∈ Rd′×d and b ∈ Rd′ are learnable parameters of the semantic attention
layer,

– q ∈ Rd′ is a learnable query vector shared across all meta-paths,

These scores are then normalized across all meta-paths using a softmax:

βΦ = exp(wΦ)q
Φ′∈P exp(wΦ′) (2.5.19)

32

Related Works

where βΦ represents the normalized semantic-level attention weight for meta-
path Φ.
Finally, the semantic-level aggregation produces the unified node representation
by weighting and summing the meta-path-specific embeddings:

Z =
Ø
Φ∈P

βΦ · zΦ
i (2.5.20)

This mechanism allows the model to automatically identify which meta-paths
are most relevant for the task, effectively combining multiple semantic contexts
into a single, discriminative embedding. For example, in a bibliographic
network, a metapath capturing co-authorship relations (Author–Paper–Author)
might be more predictive for collaboration analysis than one capturing shared
publication venues (Author–Paper–Venue–Paper–Author), and the semantic
attention mechanism will learn to assign higher weight to the former.

This architecture not only enables the modeling of heterogeneous graphs12, but
also enhances interpretability. By leveraging semantic-level attention, it becomes
possible to identify which meta-paths contributed most significantly to the final
prediction (i.e., those with the highest attention scores), and within those paths,
which neighboring nodes had the greatest influence.

Despite its strengths, the HAN model presents a significant limitation that must
be acknowledged: the meta-paths are assumed to be predefined and fixed. The
model does not provide any guidance or mechanism for automatically discovering
or selecting the most appropriate meta-paths for a given task or dataset. This is
a critical issue, as the quality and robustness of the learned node representations
are highly dependent on the choice of meta-paths. Poorly chosen meta-paths may
lead to suboptimal performance or even degrade the effectiveness of the attention
mechanism. As such, the success of the model relies heavily on expert knowledge
or prior domain insights to define meaningful and semantically rich meta-paths.
This assumption introduces a non-trivial manual component into an otherwise
fully learnable architecture, limiting its applicability in settings where such domain
knowledge is unavailable or difficult to formalize.

2.6 Explainable GNNs
Graph Neural Networks (GNNs) have become the de facto standard for many
predictive tasks involving relational data. They have been increasingly applied to a
wide range of domains where data can be represented as a network, such as social

12Please note that real-world graphs typically involve multiple types of nodes and edges.

33

Related Works

networks [34, 35], recommender systems [36], physical systems [37], knowledge
graphs [38], drug discovery [39], and many others.

Despite their rapid development, success, and widespread adoption, GNNs often
exhibit a black-box nature in their predictions. The lack of interpretability in GNN
models poses a critical challenge in domains where transparency, accountability, and
trustworthiness are essential. While GNNs are capable of learning complex relational
patterns and achieving state-of-the-art performance, their internal reasoning process
is often opaque to human observers. This opacity hinders the ability of stakeholders
to understand why a given decision has been made, making it difficult to detect
biases, validate correctness, or ensure compliance with regulatory requirements.

In safety-critical domains, such as healthcare or drug discovery, this issue can have
significant consequences. Consider, for example, the use of GNNs in drug discovery
for predicting potential drug-target interactions [39]. A GNN might predict that a
specific compound has a high likelihood of binding to a protein associated with a
given disease. However, without an interpretable explanation of which molecular
substructures or interaction pathways led to this conclusion, medicinal chemists are
left without the necessary insights to assess the plausibility of the prediction. This
not only limits the utility of the model for guiding experimental validation, but also
increases the risk of pursuing costly and time-consuming laboratory experiments
based on spurious correlations learned from the training data.

Similarly, in recommender systems [36] deployed in social networks, the lack of
interpretability can result in user distrust and reputational damage. For instance,
if a GNN-based system recommends politically sensitive or potentially harmful
content to a user, platform operators may be unable to provide a satisfactory
justification for why that recommendation was made, heightening the risk of
perceived discrimination and bias, which can lead to reputational harm for the
company.. In regulated sectors, such as financial services, this opacity could directly
conflict with explainability requirements imposed by legislation (e.g., the European
Union’s AI Act or the General Data Protection Regulation’s “right to explanation”).

Therefore, despite their predictive power, the “black-box” nature of GNNs
presents a significant barrier to their adoption in domains where human oversight,
compliance, and informed decision-making are non-negotiable. Addressing this
limitation requires the development of interpretable GNN architectures that can
provide faithful, human-understandable explanations of the model’s predictions
even if this means sacrificing performance.

In this context, interpretability refers to the ability to understand and trace
how the model produces its results, both at the individual and at the global level.

Interpretability can be categorized into two main families, depending on the
granularity of the explanation:

• Local interpretability, which concerns understanding the prediction for a

34

Related Works

specific node. In the context of GNNs, this can be achieved by identifying
which specific relations and neighboring nodes contributed most to a certain
output, along with their associated attention weights and structural statistics.
Such analysis makes it possible to trace exactly which edges and intermediate
nodes influenced the prediction and to what extent. In particular, given a
certain node embedding, one can trace back and identify the most influential
relational connections that the model exploited during the message-passing
phase, thereby reconstructing the “relational logic” that the network con-
sidered most relevant for building that embedding. Furthermore, applying
self-attention mechanisms enables the assignment of an importance score to
each node within the aggregation process. This allows not only for a precise
explanation of the most influential relations (edges) for a given output, but
also for a quantification of the contribution of each individual node to that
output.

• Global interpretability, which aims to understand the model’s behavior
across the entire dataset. Unlike local interpretability, the goal here is not
to explain why a specific node received a particular embedding, but rather
to identify which types of relations and structural patterns are generally the
most influential for the model. This can be achieved by tracking the frequency
of usage and overall impact of different relation types or structural motifs
during training. Such analysis provides a high-level view of the relational
structures that the model relies on, allowing researchers and practitioners to
extract domain-relevant knowledge and validate modeling assumptions. This
capability is particularly valuable for extracting dataset-level statistics, as it
enables practitioners to determine which tables, features, and instances are
most relevant in a general sense.

Regardless of the chosen granularity, explanations are generally classified into
two broad categories: (1) Factual and (2) Counterfactual. As noted in [40], factual
methods aim to find an explanation in the form of input features that exert the
greatest influence on the prediction. In practice, they describe why the model made
a certain prediction. Counterfactual methods, on the other hand, describe how the
input graph should change in order to alter the prediction. In the following, we
will focus on factual explanations, as our main objective is to explain the reasoning
of the model after a prediction.

Both factual and counterfactual approaches can be further classified into: (i)
post-hoc explainability methods, which aim to interpret model predictions after
training, most often at the instance level, by analyzing the factors that led to a
specific prediction; and (ii) self-explainable models, which are designed to provide
explanations as part of their prediction process.

35

Related Works

Post-hoc Interpretation Post-hoc interpretation refers to a family of techniques
applied after a model has been trained, with the goal of explaining its predictions
without altering the underlying architecture. These methods can also be categorized
as white-box or black-box, depending on whether they require access to the
model’s internal parameters. In white-box settings, the explainer needs information
about the model’s internal parameters and architecture, while in black-box settings,
explanations are derived solely from the model’s inputs and outputs without such
access.

Typical examples of post-hoc interpretability include GNNExplainer [41], PG-
Explainer [42], and gradient-based saliency methods, all of which aim to highlight
important subgraphs, features, or node neighborhoods that significantly influenced
the output. All these methods fall under the white-box category, since they require
access to the model’s internal representations, such as gradients. In particular,
decomposition-based methods explain a prediction by decomposing it into contri-
butions from individual input components (e.g., nodes, edges, features), whereas
gradient-based methods compute the sensitivity of the output with respect to the
inputs by backpropagating gradients through the model.

An example of a black-box approach is given by surrogate methods, which do not
require access to the model’s internal parameters. Instead, they approximate the
behavior of the target model by training an interpretable surrogate model (e.g., a
decision tree or a simpler GNN) on the same input–output pairs. The explanations
are then derived from the surrogate model, under the assumption that it faithfully
mimics the original model’s decision boundaries.

In practice, post-hoc GNN explainers often operate by masking parts of the input
graph and measuring the impact on the model’s output. For instance, GNNEx-
plainer learns continuous masks over edges and features within the computational
subgraph relevant to the target node or prediction. These masks are optimized to
retain only the smallest set of edges and features that preserve the model’s original
output with high fidelity. The resulting high-weight edges and features form a
human-interpretable explanation, pointing to the specific relationships and node
attributes that most strongly influenced the decision.

Post-hoc techniques offer the advantage of being model-agnostic: they can be
applied to any existing trained model without the need for re-design or re-training.
However, their explanations are not intrinsically tied to the model’s decision-making
process; instead, they approximate it based on the observed behaviour. Therefore,
the explanation may not faithfully represent the true reasoning process of the model.
Post-hoc methods often identify correlations rather than causal relationships. Small
changes in the input can lead to significantly different explanations, undermining
their reliability. Furthermore, since these architectures are applied after the actual
training, they require additional optimization loops, which can be computationally
expensive when dealing with large graphs or when explanations are needed for

36

Related Works

many instances.

Self-explainable models A model is considered self-explainable (also said "ante-
hoc") when its decision making process is inherently transparent, such that the
reasoning behind each prediction can be directly derived from the model’s internal
computations, without the need for external, post-hoc interpretability techniques.
In other words, the model is designed in such a way that the same mechanisms
used to produce the output also generate a faithful and human-understandable
explanation of that output.

In traditional machine learning and deep learning settings, most models are not
self-explainable. Their internal representations and intermediate computations are
opaque, and understanding why a specific prediction was made typically requires
the use of external (post-hoc) methods, but these methods usually produce an
explanation that is plausible but not necessarily faithful to the exact reasoning
of the model. This approach suffers from the well-known faithfulness problem:
the explanation might not perfectly align with the true internal logic used during
prediction. In contrast, a self-explainable model integrates interpretability
by design. Its architecture and computation steps are explicitly structured so
that intermediate outputs are semantically meaningful and directly linked to the
final decision. This means that the path from input to prediction is not a black
box, but rather a sequence of transparent, interpretable transformations. In the
case of graph neural networks, self-explainability often involves mechanisms that
explicitly identify which structural patterns, node features, or relational connections
contributed most to the prediction.

Self-interpretable methods are usually composed of two modules: a subgraph
extraction module, which identifies an informative subgraph Gs from the input
graph G, and a prediction module, which uses Gs to produce the final prediction.
The advantage of this approach is that Gs serves both as the basis for prediction
and as a direct source of interpretability. Both modules are trained jointly, avoiding
the need for additional computation to explain a given prediction. However, this
improved interpretability and computational efficiency often comes at the cost of
predictive performance.

2.6.1 Meta-path based models
There are many ways to inject interpretability into GNNs; inspired by HIN [33],
we now focus on meta-path based GNN architectures.

Meta-paths are not only designed to improve the performance of the model, but
also to build interpretable models. They can, in fact, enhance model performance
by guiding the message-passing process along semantically meaningful relational
patterns. In practice, this means constraining the flow of information in the GNN so

37

Related Works

that each node aggregates messages only from neighbors connected through specific
sequences of relations, rather than from the entire heterogeneous neighborhood. By
restricting the message-passing operation to these well-defined relational subspaces,
the model focuses on information that is most relevant to the task, thereby reducing
the influence of noisy or irrelevant edges, capturing long-range dependencies more
effectively, and incorporating domain-specific knowledge directly into the structural
representation of the graph. This not only facilitates more stable and data-efficient
learning, but also enables the GNN to better exploit high-level semantic relationships
that may be difficult to capture through generic graph convolutions alone.

By acting as inductive biases that guide the learning process, meta-paths,
implicitly serve as interpretable and semantically meaningful explanations of the
model’s relational reasoning. Each meta-path, infact, explicitly encodes a chain of
typed relations, it enables a form of structured interpretability that highlights which
types of interactions are most relevant to the model’s predictions. This includes
both local interpretability by identifying which meta-paths and intermediate nodes
contributed to a specific prediction and global interpretability by analyzing which
relational patterns are generally most informative across the dataset.

By analyzing the selected meta-paths, the associated attention weights α(k)
v ,

and the contribution of intermediate nodes along the path, we can trace precisely
which relational evidence led to a specific prediction. This level of interpretability
is particularly valuable in high-stakes or data-sensitive domains, where model
transparency is crucial.

For example, in a bibliographic network, a meta-path such as Author–Paper–
Venue–Paper–Author might strongly contribute to predicting collaboration like-
lihood between two researchers. By inspecting the attention weights and the
intermediate nodes (specific papers and venues), it becomes possible to explain the
prediction in human-understandable terms: "The model predicts a high collaboration
probability because both authors have published in the same venue through related
papers".

By leveraging meta-paths in this way, we move from opaque reasoning to fully
transparent, white-box relational inference.

The results obtained when using meta-paths for heterogeneous graphs strongly
depend on the informativeness of the chosen meta-paths. In order to build a
powerful GNN model based on meta-paths, we should design meta-paths that,
on their own, are able to produce rich node embeddings that can readily support
accurate predictions. The performance therefore heavily depends on the quality of
these paths, as message passing in the GNN will operate exclusively along them.
An important point of discussion concerns how to select informative meta-paths.

Existing approaches typically rely on domain experts to manually define relevant
meta-paths in advance [33, 43, 44, 45].

Since the main aim of our approach is to avoid manual feature engineering and

38

Related Works

to implement an automatic and effortless solution applicable to any real-world
scenario and any relational task, a sort of “film perfectly adhering to the relational
context, ready to be applied in any setting”, we cannot rely on domain knowledge
and manual meta-path design, as this would completely invalidate our objective.

Therefore, our method should be designed to operate directly on raw re-
lational data. This eliminates the need for manual preprocessing and enables
seamless adaptation across diverse domains. In this setting, flexibility is not
just desirable, it is essential. A truly general-purpose model must be capable of
reasoning over arbitrary relational structures without requiring expert intervention
or task-specific tuning.

To date, only a limited number of studies[50, 46, 49, 48, 47] have explored the
problem of automatic meta-path selection.

MPS-GNN

Among the few attempts to automate meta path discovery, we were fascinated
by the work of Ferrini et al. [50], MPS GNN (Meta Path Selection Graph Neural
Network), which stands out as a fast, effective and fully-automated approach.
Instead of relying on manually defined meta-paths, MPS-GNN introduces a task-
driven mechanism for discovering informative meta-paths and encoding them into
a self-explainable message-passing architecture.

In MPS-GNN, self-explainability is achieved through the meta-path selection
and attention mechanisms. During the forward pass, the model selects a subset of
meta-paths that it deems most relevant for a given task. Each meta-path defines a
structured message passing scheme, along which information flows from neighbour
nodes to the target node. The importance of each meta-path is quantified through
learned attention weights, which reflect the model’s assessment of its predictive
value. Since these meta-path choices and attention scores are produced as part
of the normal prediction process, they inherently explain the model’s reasoning.
There is no need to introduce any auxiliary interpretability module or post-hoc
analysis: the explanation is built into the model’s operation and is guaranteed
to be faithful. As a result, the model does not only produce an embedding or a
prediction, but also a structured and verifiable account of why that embedding or
prediction was obtained.

Each meta-path P induces a multi-hop semantic adjacency matrix A(P) defined
such that:

A(P)
uv = 1 if there exists a path from u to v following P , else 0

MPS-GNN performs a selection of the most useful meta-paths for the downstream
task, without requiring the model to be trained on every possible combination of
relations, which would be too costly in terms of computational efficiency. Let C be

39

Related Works

the set of all meta-paths up to length L. The model selects a subset M⊂ C of K
meta-paths that yield the highest prediction performance.

To evaluate the informativeness of each candidate relation at each step of the
greedy meta-path construction, MPS-GNN adopts a weighted multi-instance
classification approach based on the concept of bags of nodes.

In practice, the algorithm starts by initializing a bag vector whose elements
correspond to the features of the instances in the target table13. At the same
time, a label vector of the same length is created, where each entry stores the
ground-truth label yv of the corresponding target node v. Importantly, this label
vector remains fixed across all iterations of the algorithm, since the prediction
target for each instance does not change as the meta-path is extended.

At iteration t = 0, each element of the bag vector contains a single node: the
corresponding target node v from the target table. The algorithm then considers all
possible relations (edge types) that originate from the current node type present in
the bags. For every candidate relation r ∈ R, it creates a new temporary meta-path
by appending r to the current prefix Pt, producing an extended path:

Pt+1 = Pt + r.

For each candidate relation r, the extension process is applied to all target nodes
in parallel. Starting from a target node v, the algorithm follows the relation r
to retrieve all nodes that are directly reachable from v along that relation type.
These reachable nodes form a bag Bv associated with v. From a data structure
perspective, in the bag vector, the position previously occupied by the single node
v is now replaced with the set of nodes {u1, u2, . . . , uk} reached via the one-step
traversal defined by r.

Repeating this for every target node in the training set yields a complete bag
vector for the extended path Pt+1. Each bag Bv inherits the label yv from its
original target node v in the fixed label vector, ensuring that all instances within
the same bag are associated with the same prediction objective. This process is
repeated iteratively, with each new iteration considering further one-step extensions
of the meta-path, while the label vector continues to provide a consistent mapping
between bags and target outputs throughout the entire procedure.

Each bag is then evaluated using a bag-level scoring function F (Bv), defined
as a weighted sum of the individual node-level predictions f(u) over the instances
u ∈ Bv:

13The target table contains the entities for which we want to make predictions. For example,
in a driver position prediction task for Formula 1 pilots each target instance would be a specific
driver for which we want to predict the final race ranking.

40

Related Works

F (Bv) =
Ø

u∈Bv

α(u, Bv) · f(u).

Here, f(u) is a trainable scoring function that estimates how indicative a
single node u is for the target label, while α(u, Bv) is a trainable attention weight
expressing the relative importance of node u within its bag. Intuitively, f(u)
measures the degree to which the presence of node u supports the prediction of the
target label for the original target node v, and α(u, Bv) acts as a normalization or
prioritization factor, ensuring that more informative nodes contribute more strongly
to the final bag score.

For example, in a driver position prediction task, suppose Bv is the bag corre-
sponding to a specific driver, and the bag contains all races in which this driver
has participated in the current season. Here, f(u) might estimate how much a
particular race result u suggests that the driver will finish in the top 3 in the
upcoming race. If a certain race outcome is highly predictive (e.g., a first-place
finish against strong competitors), the model will learn a higher f(u) and α(u, Bv)
for that node, increasing its impact on F (Bv). Less relevant races (e.g., races with
incomplete data or low competition) will receive lower attention weights and/or
lower scores.

Ideally, the discriminant function F (·) should separate the classes such that for
any positive bag B+ ∈ S+ and any negative bag B− ∈ S−, we have:

F (B+) > F (B−).

In other words, all positive bags should have a higher aggregated score than all
negative bags. This problem would be trivial, for example, in the case where
every positive bag contains a node v that has an r-successor which is not also an
r-successor of any node in a negative bag. In that scenario, assigning a weight of
1 to all such distinctive r-successor nodes, and a weight of 0 to all others, would
perfectly separate the classes.

In realistic settings, however, the complex connectivity patterns of relational
data preclude such simple solutions. Relations and node occurrences often overlap
between positive and negative bags, noisy patterns emerge, and perfect separation
is generally impossible. Therefore, the model must learn to combine multiple
partially informative signals, weighting each according to its estimated contribution
to the target prediction, rather than relying on a single decisive node or relation.
The model is trained to assign higher scores to positive bags than to negative ones
by minimizing a pairwise ranking loss:

L =
Ø

B+∈S+,B−∈S−

σ
1
F (B−)− F (B+)

2
41

Related Works

where σ is the sigmoid function, and S+ and S− are the sets of positive and
negative bags respectively.

After computing the classification loss for each candidate extension r, the relation
with the lowest validation loss is selected to extend the current meta-path:

r∗ = arg min
r∈R

min
Θ,w
L(r, Θ, w)

This process is repeated iteratively until a maximum meta-path length is reached
or the loss no longer improves significantly. At each step, the bags are updated by
recursively propagating node-level importance weights α from the previous iteration
to the current one, thereby maintaining the interpretability of the constructed
path.

Let score(M) be the validation performance of a lightweight GNN trained on
the semantic views induced by meta-paths inM. At each iteration k, the algorithm
selects the meta-path P∗ that provides the maximum marginal improvement:

P∗ = arg max
P∈C\M

score(M∪ {P})

and updates the selected set:

M←M∪ {P∗}

until |M| = K.
The algorithm also includes an additional stopping criterion based on the

marginal improvement that a candidate relation r brings to the prediction score.
In practice, if appending a new relation to the current meta-path does not improve
performance beyond a predefined threshold14, the meta-path selection process
terminates.

The process is detailed in the following Algorithm:

14In the original paper, this threshold is set to 30% of the previous performance, meaning that
the newly extended meta-path must achieve at least 30% of the improvement obtained in the
previous step in order to be considered.

42

Related Works

Algorithm 1 MPS-GNN Learning
procedure LearnMPS-GNN(G,R,Y , LMAX, η)

mp∗ ← [], F ∗
1 ← 0, S ← Y , A← 1

while |mp| < LMAX do
r∗ ← arg minr L(r)
if minr∈R L(r) ≥ ηInit(r) then

return mp∗

end if
mp← mp + r∗

gnn← Train(MPS-GNN(mp),G,Y)
F1 ← Test(gnn)
if F1 > F ∗

1 then
mp∗ ← mp, F ∗

1 ← F1
end if
A, S ← New-Targets(S, r∗)

end while
return mp∗

end procedure

The algorithm illustrated above outlines the complete MPS-GNN procedure for
the single meta-path case. In the full version, however, the model selects more
than one meta-path. This is achieved by employing a beam search strategy over
the learned meta-paths, ranking them according to their predictive performance
and retaining the top candidates as a final step.

The algorithm takes as input:

• G: the input graph;

• R: the set of edge types present in the graph;

• Y : the set of labels for the target nodes.

• Lmax: the maximum number of relations (edge types) allowed in a meta-path;

• η: the improvement threshold;

The procedure starts with an empty meta-path and initializes the set of targets
S to contain the target nodes, each in its own singleton bag, along with their
associated attention values A set to 1. At each iteration, all possible one-step
extensions of the current meta-path are considered by appending a candidate
relation r ∈ R. The candidate that minimizes the loss function L(r) is selected
and temporarily added to the meta-path. If no relation achieves an improvement

43

Related Works

greater than the threshold η, the search process terminates and the current best
meta-path is returned.

Whenever a relation is appended, the MPS-GNN is trained15 (through the
execution Train(MPS-GNN(mp), G, Y)) using the extended meta-path to predict
the target labels Y from the graph G, and its performance is evaluated on a
validation set using the F1 score. If this score surpasses the best score obtained so
far, the current meta-path and its score are stored as the new best meta-path. The
set of target bags S and attention values A are then updated.

Finally, the embeddings produced by each of the K selected meta-paths are
concatenated to form the final representation of node v at layer (l + 1):

h(l+1)
v =

...K

k=1
h

(l+1)
(v,k) , (2.6.1)

where h
(l+1)
(v,k) denotes the embedding of node v obtained by aggregating information

along the k-th meta-path, and ∥ represents the concatenation operator. This
concatenated representation is then passed to the subsequent layers of the model
or directly to the prediction layer, allowing the GNN to jointly exploit multiple
complementary relational patterns.

This approach allows the model to exploit multiple complementary relational
patterns while keeping the search space tractable. Note that a naive search algorithm
that simply tests all possible meta-paths would have a polinomial compexity, making
it impossible to be used for a big amount of edge types.

This technique, instead, by leveraging the scoring function, reduces the time
complexity to liear O(|R| · L). Here, |R| denotes the number of relation types in
the graph, and L denotes the maximum meta path length (number of hops)16.

Once the meta-paths have been automatically constructed, each meta-path
r1, . . . , rL defines a multi-relational GNN with L layers, where each layer corresponds
to one specific relation in the meta-path. The first layer processes the initial node
type of the meta-path, and the computation proceeds sequentially until the final
relation rL is applied.

For a single meta-path, the forward propagation from layer l to layer l + 1 for a

15Note that a weighted multi-instance classification approach is employed to both improve
predictive performance and accelerate the meta-path selection process. Without this mechanism,
the MPS-GNN model would need to exhaustively evaluate every possible relation, resulting in
significantly higher computational cost.

16As mentioned in[50], this improvement is due to the fact that at each step, one relationship
is added to the meta-path under construction.

44

Related Works

node v is given by:

h(l+1)
v = σ

W
(l)
0 h(l)

v + W
(l)
neigh

Ø
u∈N

rL−l
v

h(l)
u + W

(l)
1 h(0)

v

 , (2.6.2)

where N rL−l
v denotes the set of neighbors of node v connected through the

relation rL−l, h(l)
v is the embedding of node v at layer l, and h(0)

v = xv is the
initial feature vector of node v. The matrices W

(l)
0 , W

(l)
neigh and W

(l)
1 are learnable

parameters, while σ(·) denotes a non-linear activation function.
The term W

(l)
1 h(0)

v acts as a skip connection from the input features to the
(l + 1)-th layer, allowing the model to directly access the original node attributes
at every step. This design choice is crucial for enabling the MPS-GNN to capture
node-level information corresponding to the statistical terms computed during
meta-path construction.

When multiple meta-paths are selected (as in the beam search setting), the
embeddings obtained from each meta-path are concatenated to form the final node
representation following equation(2.6.1). The resulting concatenated representation
is then used in the final prediction layer.

A key advantage of MPS-GNN is that the entire meta-path selection and
attention process is explicitly exposed.

This enables clear and detailed explanations of the relational reasoning per-
formed by the model. Moreover, since the model operates in a fully differentiable
and end-to-end fashion, it can be trained using standard backpropagation with
supervision from a downstream task-specific loss.

Despite its strong performance in binary node classification tasks, MPS-GNN
exhibits limitations when applied to more general settings. In particular, the
meta-path selection process relies on a greedy evaluation strategy that is optimized
for classification accuracy on binary tasks. This focus restricts its applicability
in multi-class classification scenarios, where semantic diversity among classes may
require a richer and more balanced set of meta-paths. More critically, MPS-GNN
is not designed for node-level regression tasks, where the model must capture
fine-grained continuous variations in target values rather than discrete class bound-
aries. In such cases, the discrete meta-path selection procedure and downstream
aggregation mechanisms may fail to capture the nuanced structural dependencies
required for accurate predictions.

As a result, despite being very effective in revealing salient relational semantics
for classification, MPS-GNN limits its generalization to a broader range of tasks in
relational learning.

Furthermore, while MPS-GNN learns attention weights to quantify the relative
importance of each selected meta-path, it does not include a second-level attention
mechanism to assess the contribution of individual intermediate paths within a

45

Related Works

meta-path occurrence. This limits the granularity of interpretability to the meta-
path level, making it less suited for scenarios where fine-grained, node-specific
explanations are required. Finally, this approach lacks a formalized interpretability
framework or systematic method for extracting human-readable explanations17.

Enhancing Interpretability through LLMs

A promising line of research focuses on leveraging large language models (LLMs)
to enhance interpretability by verbalizing meta-paths into natural language ex-
planations. One notable work, Metapath of Thoughts: Verbalized Metapaths in
Heterogeneous Graph as Contextual Augmentation to LLM [51], exemplifies this
approach.

In this framework, meta-paths are first learned by training a FastGTN[47], which
assigns importance weights to different high-order relationship patterns. The top-K
meta-path types (starting from the target node type) are selected according to
these learned weights.

Each meta-path type is verbalized via an LLM prompt template that encodes
node types, relation semantics, and structure, producing a coherent natural-
language description. For each target node, instances of the selected meta-path
types are sampled proportionally to their importance weights, and each instance is
transformed into a narrative prompt by filling the verbalized template with the
specific nodes, edges, and their textual attributes.

Additionally, a small set of semantically similar, labeled nodes is retrieved to
serve as in-context examples. The final input to the LLM includes the target
node’s textual attributes, the collection of verbalized meta-path instances, and the
retrieved examples, followed by a structured reasoning prompt that elicits both a
prediction and a human-readable explanation.

This approach shows how LLM calls can turn structural meta-path semantics into
intuitive, context-rich narratives, offering clearer interpretability than traditional
saliency or attention-based explainers and pointing toward a powerful integration of
graph structure learning and language-based reasoning in relational deep learning.

Example: In a bibliographic network, instead of showing the symbolic meta-
path P-A-P (paper–author–paper), the model verbalizes it as:

“The target paper shares an author with Paper X, which discusses deep
learning on heterogeneous graphs.”

17In fact, even if MPS-GNN inherently exposes interpretable components, such as the selected
meta-paths, it does not provide a user-friendly explanation that allows any user to understand
the reasoning process adopted by the model. It only provides the meta-paths that were used to
make the predictions, but without a verbalized and clear reason about why the model performed
a certain prediction.

46

Related Works

and pairs it with additional paths such as:

“The target paper is published in the same conference as Paper Y, which
focuses on graph representation learning.”

By embedding these narrative instances along with the textual attributes of the
connected papers, the explanation becomes accessible and meaningful even to users
without prior knowledge of graph notation. This narrative, example-driven format
offers a clearer and more relatable justification of the prediction than numeric
attention weights or symbolic meta-paths alone, making the model’s reasoning
process transparent to both technical and non-technical stakeholders.

2.7 End-to-End Modelling in RelBench
The RelBench benchmark[4, 9] is more than just a collection of datasets; it
is also a reference pipeline that demonstrates how modern graph representation
learning can be executed directly on relational schemas without flattening or
manual propositionalisation [4], by using Graph Neural Networks over temporal
and heterogeneous graphs. This section gives a technical walk-through of that
pipeline and places it in the context of earlier work on relational deep learning.

2.7.1 Graph construction from normalised schemas
Starting from a relational database, RelBench builds a heterogeneous graph that
preserves all information in the original schema: no rows, columns, or relationships
are lost.

The result of this transformation is a heterogeneous, attributed, and tem-
poral graph that faithfully mirrors the original relational database structure.
Each node belongs to a specific type corresponding to its source table, and each
edge encodes a primary–foreign key relationship.

Concretely, each row in every table becomes a node whose type is the name of
that table. This design allows different node types to carry distinct attribute sets,
mirroring the column layouts of their source tables. Every primary–foreign-key
constraint is converted into a typed, directed edge. Multiple constraints therefore
yield multiple edge types, each encoding a different semantic relation.

Formally, the output graph G consists of:

• a node set V = g
τ∈T Vτ , partitioned by node type;

• an edge set E = g
r∈R Er, where each Er corresponds to a distinct relation

type (i.e., foreign-key constraint);

47

Related Works

• node attributes stored in a dictionary x_dict, where each entry maps a node
type to its feature matrix;

• edge connectivity stored in edge_index_dict, a dictionary mapping each edge
type to a tensor of shape [2, num_edges];

The entire transformation is deterministic, schema-agnostic, and runs in time
linear in the number of tuples, guaranteeing reproducibility across organisations
and hardware.

The runtime scales linearly with the number of tuples, and the output graph
is byte-for-byte reproducible: two independent users running the converter on the
same dump will obtain identical node IDs, edge lists and feature matrices.

The entire transformation is fully automated: once a database dump and
its schema are provided, no further human intervention is required. Because the
algorithm relies solely on the formal definition of primary and foreign keys, and
never on domain-specific heuristics, it works unchanged for any dataset and any
task-type.

2.7.2 Feature encoding: HeteroEncoder
Given a set of TensorFrames18 objects, one for each table of original schema, Rel-
Bench first applies HeteroEncoder. Each of the TensorFrames stores all nodes
of a given type19. More specifically, it stores their raw feature columns, and the
corresponding data-type (e.g., numerical, categorical, textual, temporal). Het-
eroEncoder converts these heterogeneous columns into a PyTorch tensor containing
the embeddings for the nodes and returns a dictionary that stores a d-dimensional
vector representation for every node20 of every table. The result is a dictionary of
node embeddings:

x_dict =
î

node_type → Xτ ∈ RNτ ×d
ï
, (2.7.1)

This dictionary contains, for each node type21, a tensor of shape Nτ × d. Here,
Nτ denotes the number of nodes of type τ , and d is the shared embedding dimension

18TensorFrame is a data structure introduced in PyTorch Frame [52] designed to represent
heterogeneous tabular data in a tensor-friendly format for deep learning. It stores raw column
values together with their semantic types (e.g., numerical, categorical, textual, temporal) and
supports efficient materialization into PyTorch tensors, enabling column-wise encoding and
interaction before aggregation into dense row embeddings.

19We can also say that it stores all the records of a specific table of the relational schema.
20Notice that each node is an instance of the relational database.
21Corresponding to the name of the table from which the instances originate

48

Related Works

across all node types. Each row of this tensor represents a single node instance,
and each row vector of length d stores the learned embedding obtained by encoding
and aggregating its original attributes.

For every node type τ , columns are partitioned by semantic type: Cτ = g
s∈S Cτ,s.

Each semantic type s has an encoder Es applied column-wise and row-wise.
For each row (node) i, the per-column embeddings are concatenated and fed to

a small residual MLP, denoted “ResNet” in TorchFrame22 applied row-wise, which
produces a d-dimensional node embedding:

è
z(c1)

i ∥ z(c2)
i ∥ · · ·

é
ϕτ−−→ x(τ)

i ∈ Rd, i = 1, . . . , Nτ ,

with z(c)
i ∈ Rdc for c ∈ Cτ .

where ϕτ denotes the per-type fusion network (e.g., residual blocks + LayerNor-
m/activation + final linear).

Figure 2.10: Overview of the RelBench pipeline. The process starts from a relational
database, from which features are extracted and encoded (e.g., using GloVe for text
or categorical embeddings). Temporal information is separately encoded and combined
with the original feature space. The result is a heterogeneous graph, where each
node represents an entity and edges represent typed relations (including timestamps,
when available). This graph is then processed by a Graph Neural Network (GNN)
architecture, followed by an MLP head that performs prediction (classification, regression,
or recommendation) on the target nodes.

2.7.3 TemporalHeteroEncoder: Injecting Time into Node
Features

Relational tasks in RelBench are explicitly temporal: each training instance is
associated with a prediction time tpred. To enable the GNN to exploit temporal
informations, TemporalHeteroEncoder augments the static node embeddings
produced by HeteroEncoder with relative time information.

22Here, “ResNet” means a row-wise fully connected residual network for tabular features
(Linear–Norm–ReLU–Linear with a skip connection), not the convolutional ResNet for images.

49

Related Works

At run time it receives three inputs: (i) a vector of reference times for the T seed
nodes, seed_time ∈ RT ; (ii) a dictionary of per-node timestamps, time_dict =
{τ → tτ ∈ RNτ}; (iii) a dictionary of seed assignments, batch_dict = {τ → bτ ∈
{0, . . . , T−1}Nτ}, which maps each sampled node to the index of its owning seed
in the current mini-batch. The encoder outputs

rel_time_dict =
î

τ → Rτ ∈ RNτ ×d
ï

τ∈T time
V

.

For a node u of type τ , let s = bτ [u] be its seed index, tref = seed_time[s] the
corresponding reference time, and tu = tτ [u] its timestamp. The encoder computes a
time-based vector ru = hτ (tref , tu) ∈ Rd and sets the u-th row of Rτ equal to ru; the
map hτ is implemented inside the module and is designed to produce d-dimensional
representations aligned with the static embeddings. In the model, these temporal
representations are added elementwise to the outputs of the HeteroEncoder:

Xτ ← Xτ + Rτ (τ ∈ T time
V),

so that each node embedding incorporates its time information while preserving
shape RNτ ×d and the interface expected by the downstream heterogeneous GNN.
Node types not in T time

V do not appear in rel_time_dict and their embeddings
remain unchanged.

2.7.4 Mini-batching with NeighborLoader

Relational graphs extracted from enterprise databases typically contain hundreds of
thousands of nodes and millions of edges. Training GNNs on the entire graph at once
is computationally infeasible and unnecessary. For this reason, RelBench adopts a
mini-batch training strategy based on the NeighborLoader module from PyTorch
Geometric. Performing mini batch sampling on graph is hard, especially when
dealing with temporal instances. In this context we need to avoid any possible data
leakage, which means considering future instances durign training and testing
when making prediction on previous instances.

The NeighborLoader performs layer-wise neighborhood sampling during train-
ing. Given a set of seed nodes23 for a prediction batch, the loader recursively samples
a fixed number of neighbors at each hop, constructing a subgraph around the
seed nodes that can be processed efficiently by the model. The number of neigh-
bors per hop can be configured as a list (e.g., [15, 10]24), where each element
corresponds to the maximum number of neighbors sampled at that layer.

23We call ’seed nodes’ the nodes for which we want to make a prediction.
24That is, we sample up to 15 first-hop neighbors and up to 10 second-hop neighbors.

50

Related Works

By default, RelBench uses uniform sampling in the NeighborLoader. In this
sampling strategy, at each hop, and for each seed (or frontier) node, it first collects
the set of eligible neighbors (respecting any temporal constraint, e.g. neighbors
whose timestamp is not later than the reference time of the seed). From this
candidate set, it then draws up to the requested budget of neighbors at random
and without replacement, giving every candidate the same chance of being selected.
If fewer neighbors are available than the requested ones, all available neighbors are
taken. In heterogeneous graphs, the same rule is applied independently for each
edge type. The procedure is repeated hop by hop, and the union of the sampled
nodes and edges forms the mini-subgraph for the current batch. For example, with
num_neighbors = [15, 10] and temporal_strategy = "uniform", the loader
picks up to 15 first-hop and up to 10 second-hop neighbors uniformly at random
among those that satisfy the temporal constraint.

The loader returns, at each iteration, a mini-batch subgraph B as a HeteroData
object. Given a sampling budget num_neighbors for H hops (a list of length H,
or, in heterogeneous graphs, a dictionary keyed by edge type), the loader iteratively
expands the frontier: at hop h ∈ {1, . . . , H} it selects up to the prescribed number
of neighbors for every frontier node, according to the chosen strategy (e.g., uniform
or most-recent in temporal mode), and forms the induced mini-subgraph on the
union of seeds and sampled neighbors. The returned B contains all node/edge
attributes restricted to the sampled indices and uses local indexing. Only neighbors
that satisfy the temporal constraint (e.g., timestamp not later than a reference
time) are eligible at each hop

Among other data structures, the HeteroData object contain:

• tf_dict: A dictionary mapping each node type to a TensorFrame containing
the raw features of the sampled nodes.

• edge_index_dict: A dictionary mapping each edge type to its sampled edges.

• batch_dict: A mapping from sampled nodes to their corresponding seed node
index.

• time_dict: A timestamp vector for each node type, used for temporal encod-
ing.

This approach enables scalable training across heterogeneous and temporal
graphs, while maintaining compatibility with modular encoders like the HeteroEncoder
and HeteroTemporalEncoder. It supports arbitrary relational schemas and large-
scale datasets without manual engineering.

As a concrete example, we instantiate a separate NeighborLoader for each split
(train, val, test) as follows:

51

Related Works

loader_dict[split] = NeighborLoader(
data,
num_neighbors=[num_neighbours for _ in range(2)],
input_nodes=table_input.nodes,
input_time=table_input.time,
transform=table_input.transform,
batch_size=batch_size,
temporal_strategy="uniform",
shuffle=split == "train",
num_workers=0,
persistent_workers=False,

)

Each argument plays a crucial role in constructing efficient and correct subgraphs
for mini-batch training:

• data: The full HeteroData object representing the entire heterogeneous and
temporal graph extracted from the relational database.

• num_neighbors: A list specifying the number of neighbors to sample per layer.
For example, [15, 10] samples up to 15 neighbors at the first hop, and 10
at the second. Here, a constant value num_neighbours is broadcast to both
layers, enabling uniform sampling depth.

• input_nodes: A tuple (node_type, node_indices) that identifies the tar-
get nodes for the prediction task. These nodes act as seeds from which
neighborhoods are sampled.

• input_time: A vector tseed ∈ RB specifying the prediction time associated
with each seed node. It is used to apply temporal constraints to the sampled
neighbors (i.e., only neighbors with timestamps t < tseed are considered valid).

• transform: A callable used to apply custom transformations (e.g., feature
preprocessing, timestamp normalization) to the sampled subgraph before it is
passed to the model.

• batch_size: The number of seed nodes sampled per mini-batch. This controls
the overall subgraph size and training throughput.

• temporal_strategy: Specifies the strategy for time-aware neighborhood sam-
pling. "uniform" applies uniform sampling among temporally valid neighbors.

• shuffle: When set to True, the seed nodes are shuffled before batching. This
is typically enabled during training and disabled for evaluation.

52

Related Works

• num_workers Controls how many subprocesses the underlying PyTorch DataLoader
uses to load and collate mini-batches. A value of 0 performs all loading work
in the main process (simpler, lower memory overhead, but single-threaded
I/O and preprocessing). A value num_workers > 0 spawns that many worker
processes, enabling parallel fetching, decoding, and transformations, which
can increase throughput at the cost of higher RAM usage and inter-process
communication overhead.

• persistent_workers: If set to True (and only effective when num_workers >
0), worker processes are kept alive across successive iterations/epochs, avoiding
the startup/teardown cost at every epoch and thus reducing latency in long
trainings. If False, workers are shut down when the iterator is exhausted.
This flag is useful when data loading/transforms are non-trivial and the loader
is re-iterated many times; it has no effect when num_workers = 0.

By controlling both the relational neighborhood and the temporal constraints,
the NeighborLoader enables efficient and causally consistent training over dynamic,
relational data structures without the need to load the entire graph in memory.

2.7.5 Message-passing backbone
The core component of the RelBench pipeline is a relational Graph Neural Network
tailored to heterogeneous graphs. In particular, the default architecture employs a
multi-layer variant of GraphSAGE [25] adapted to relational domains. The resulting
module, called HeteroGraphSAGE, supports distinct message-passing schemes for
each edge type and incorporates layer normalization and non-linearities per node
type.

Each layer in the HeteroGraphSAGE stack applies an update rule for the k-th
layer, which is given by:

h(k)
v = σ

Wself h(k−1)
v +

Ø
r=(τs→τt)

1
|Nr(v)|

Ø
u∈Nr(v)

Wr h(k−1)
u

,

where:

• Nr(v) denotes the set of r-type neighbors of node v.

• Wr ∈ Rd×d is the relation-specific weight matrix for edge type r.

• Wself ∈ Rd×d is the shared self-loop transformation.

• σ is a non-linear activation function, typically ReLU.

53

Related Works

This design allows different edge types to contribute differently to the repre-
sentation of a given node, capturing heterogeneous semantics in the neighborhood
structure.

After the aggregation step, each node embedding is passed through a LayerNorm
module applied per node type, followed by a ReLU activation. Formally:

h(k)
v ← ReLU(LayerNormτ (h(k)

v)),

where τ is the type of node v and the normalization parameters are learned
independently for each type. This design helps stabilize training and mitigate
internal covariate shift across different node domains.

2.7.6 Prediction head and loss functions
The final node embeddings h(L)

v ∈ Rd produced by the GNN backbone are fed to
a task-specific prediction head implemented as an MLP, whose architecture and
output dimensionality depend on the task. For example, in binary classification
we set MLPθ : Rd→R and apply a sigmoid σ to obtain p(y=1 | v) = σ(MLPθ(h(L)

v));
in multi-class classification we use MLPθ : Rd→RC followed by a softmax over
C classes; in single-target regression the head maps Rd→R; in multi-task
regression it maps Rd→Rk for k targets; and in recommendation it outputs a
real-valued score per item (e.g., r̂v,i ∈ R for ranking).

The appropriate loss function and evaluation metric are automatically selected
by the RelBench framework based on the task specification.

2.7.7 Strengths, limitations, and outlook
The pipeline operates on heterogeneous temporal graphs using HeteroData and
tabular TensorFrames, and requires only minimal task-specific glue. Temporal
neighbor sampling (time_attr, optional input_time, and a temporal strategy)
enforces causal correctness by admitting only time-consistent neighbors at each
hop. The design is modular: static encoders (HeteroEncoder), temporal encoders
(HeteroTemporalEncoder), the sampler (NeighborLoader), the GNN backbone (e.g.,
HeteroGraphSAGE), and the prediction head are separable components and can
be swapped or ablated independently. Subgraph mini-batching with multi-hop
sampling allows training on graphs that are too large for full-batch processing,
while still exposing a controllable receptive field around seed nodes.

However, nodes without incident edges in the sampled subgraph (or with very
sparse neighborhoods under the chosen sampling budget) contribute little relational
signal and are represented mainly by their tabular encodings; performance on such
“cold-start” cases therefore hinges on feature quality and the static encoder. This

54

Related Works

is not a limitation of the pipeline; rather, it is a scenario in which relational deep
learning tends to underperform.

The behavior and cost of the method depend materially on sampler hyperparam-
eters (number of hops, per-hop budgets, and the temporal strategy): small budgets
can truncate useful context, whereas large budgets increase memory/latency and
may introduce more temporal staleness and model’s design space (type of GNN,
number of layers, etc.).

55

Chapter 3

Proposed Method

As relational data form the backbone of modern data infrastructure, establishing
a strong baseline for this setting is more than an academic exercise: it is a lever
that can translate directly into efficient, automated solutions to many real-world
problems. By casting relational databases into heterogeneous temporal graphs,
relational deep learning provides a flexible foundation with significant potential.
Yet it remains an emerging, innovative field with boundaries only beginning to take
shape and potential still largely unexplored.

A wide range of choices, including temporal encoding, pre-training protocols,
GNN architectures, and evaluation design, remains unexplored to develop a robust,
reproducible solution for node-level tasks. Thus, we conducted experiments to
enhance various aspects of the current pipeline.

3.1 Model selection

As a first step toward that goal, we focus on the architectural backbone of the
GNN, examining how message-passing mechanisms shape performance.

We chose to begin by exploring the model design, as it is the most influential and
impactful architectural decision, shaping the model’s inductive bias and capacity,
and providing a stable foundation for comparing subsequent choices. Once this
backbone is clarified, we can systematically investigate complementary dimensions.

As discussed, RelBench proposes the use of a modified version of the GraphSAGE
model[25] designed to work on Heterogeneous graphs; however, this model is
relatively simple, and it is reasonable to assume that alternative architectures,
which have shown superior performance in other contexts, could yield better results
in this one as well.

56

Proposed Method

3.1.1 Heterogeneous Graph Attention Network
Our implementation of the heterogeneous GAT model extends the idea of Graph At-
tention Network to heterogeneous temporal graphs by assigning a distinct GATConv
layer to each relation type in the graph. Formally, let T denote the set of node
types and R ⊆ T ×L×T the set of edge types, where L denotes the set of relation
labels. For each edge type r = (s, rel, d) ∈ R, we maintain an independent GAT1

module with parameters W(r) and attention vector a(r).
Given input node embeddings X(s) ∈ Rns×Fs and X(d) ∈ Rnd×Fd , the GAT

associated with relation r computes messages as:

h
(r)
j = σ

 Ø
i∈N (r)(j)

α
(r)
ij W(r)xi

 ,

where N (r)(j) denotes the neighbors of node j under relation r, σ is a non-linear
activation, and the attention coefficients α

(r)
ij are defined as:

α
(r)
ij =

exp
1
e

(r)
ij

2
q

k∈Nr(j) exp
1
e

(r)
kj

2 ,

Where e
(r)
ij is the raw score, defined as:

e
(r)
ij = LeakyReLU

3
(a(r))⊤[W (r)

s xi ∥W
(r)
d xj]

4
,

In practice, α
(r)
ij is the attention weight assigned to neighbor i when aggregating

into node j for relation r. It is a softmax over the raw scores e
(r)
ij computed only

across the neighbors of j under relation r, so qi∈Nr(j) α
(r)
ij = 1.

Here, a(r) is the learnable attention vector for relation r, W (r)
s and W

(r)
d are

the linear projections for source and destination node features, xi and xj are the
input features, Nr(j) is the neighbor set of j under relation r, and ∥ denotes
concatenation.

We can also write:

α
(r)
ij =

exp
3

LeakyReLU
1
(a(r))⊤[W (r)

s xi ∥W
(r)
d xj]

24
q

k∈Nr(j) exp
3

LeakyReLU
1
(a(r))⊤[W

(r)
s xk ∥W

(r)
d xj]

24 .

1We rely on the standard implementation of GATConv provided by PyTorch Geometric, which
follows the original GAT formulation[27].

57

Proposed Method

Since a node type d may receive incoming messages from multiple relations Rd =
{(s, rel, d) ∈ R}, we employ the HeteroConv operator to aggregate the outputs of
each relation-specific GAT. For node j ∈ Vd, the aggregated representation is:

hj = AGGREGATE
1
{h(r)

j | r ∈ Rd}
2

,

where AGGREGATE denotes a chosen combination function (e.g., sum, mean, max,
or concatenation)2.

Stacking multiple layers of such relation-aware attention allows nodes to iter-
atively refine their embeddings by integrating information from multi-relational
neighborhoods, while keeping the attention mechanism specific to each edge type.

This approach is fundamentally identical to the one adopted in the RelBench
baseline [4, 9], with the only difference being that we employ GATConv layers instead
of SAGEConv3.

This design allows us to extend the original GAT[27] to heterogeneous graphs. We
have already discussed an extension to heterogeneous graphs known as HAN[33]; in
contrast, our approach does not rely on metapaths, which are a common bottleneck
because they typically require metapaths crafted by domain experts.

The advantage of this implementation over a standard HAN [33] model lies in
the fact that, in our case, we do not need to rely on hand-crafted metapaths.

3.1.2 Heterogeneous Graphormer
The Transformer [26] has established itself as one of the most powerful neural
architectures for modeling sequential data. In recent years, several efforts have been
made to extend the Transformer model to the graph domain, among which the
Graphormer architecture [32] has emerged as one of the most promising approaches.

Graphormer is directly built upon the standard Transformer model and achieve
state-of-the-art performances on homogeneous graph structures.

To appreciate the innovative design of Graphormer, we first need a solid under-
standing of the Transformer architecture.

The Transformer Architecture

In this section, we do not focus on the entire Transformer model, but mainly on its
encoder component, which is the part most relevant to our analysis.

The Transformer [26] is a neural architecture designed to model sequential data
by relying on attention mechanisms, dispensing with recurrence and convolution.

2In our experiments we used the max function.
3Which follow the definition of GraphSAGE as introduced in the original paper [25]

58

Proposed Method

Its core building block is the self-attention mechanism, which enables each token
in a sequence to directly attend to all others.

Given a sequence of n tokens (x1, x2, . . . , xn), each token is embedded into a
dmodel-dimensional vector:

X = [x1, x2, . . . , xn] ∈ Rn×dmodel .

Since Transformers were originally developed for natural language processing, where
token order is crucial, positional information is injected by adding a positional
encoding pi to each token embedding xi(this makes the Transformer architecture
non–permutation-invariant):

zi = xi + pi, Z = [z1, . . . , zn].

Each token embedding zi ∈ Rdmodel is linearly projected into the query, key, and
value spaces via learned projection matrices WQ, WK , WV ∈ Rdmodel×dqkv :

qi = ziWQ, ki = ziWK , vi = ziWV .

Stacking all tokens gives the matrices Q = ZWQ, K = ZWK , and V = ZWV ,
with Z = [z1, . . . , zn] ∈ Rn×dmodel .

with WQ, WK , WV ∈ Rdmodel×dk .
The unnormalized attention score between token i and token j is:

αij =
qi · k⊤

j√
dk

.

These scores are normalized using the softmax function:

aij = exp(αij)qn
j′=1 exp(αij′) .

The attention output for token i is then:

hi =
nØ

j=1
aijvj.

In matrix form, for all tokens:

Attention(Q, K, V) = softmax
A

QK⊤
√

dk

B
V.

Instead of a single attention function, H attention “heads” are computed in
parallel:

headh = Attention(QWQ
h , KWK

h , VWV
h).

59

Proposed Method

The outputs are concatenated and projected:

MHA(Q, K, V) = Concat(head1, . . . , headH)WO.

where W O is the output projection matrix that maps the concatenated attention
heads back to the model dimension.

This allows the model to capture different types of dependencies simultaneously.
Each position is independently passed through a two-layer feedforward network:

FFN(z) = max(0, zW1 + b1)W2 + b2.

An encoder block consists of:

Z′ = LayerNorm
1
Z + MHA(Z, Z, Z)

2
,

Z′′ = LayerNorm
1
Z′ + FFN(Z′)

2
.

Thus, residual connections and normalization stabilize training.
The Transformer replaces recurrence with global self-attention, enabling paral-

lelization and effective modeling of long-range dependencies. Multi-head attention
enriches representational capacity, while residual connections and normalization
ensure stable training.

The Graphormer architecture

The Transformer has become a central architecture in modern machine learning,
yet its native formulation assumes an ordered sequence and lacks an explicit notion
of graph topology, which prevents a direct application to graphs; this motivates
architectures that adapt attention to the irregular, permutation invariant structure
of graphs, such as Graphormer.

Graphormer modifies the self-attention mechanism by integrating structural
properties of the graph, thereby accounting for node connectivity.

Let G = (V, E) be a graph with |V | = n nodes. We denote the hidden
representation at layer ℓ as h

(ℓ)
i ∈ Rd and collect them row-wise into H(ℓ) ∈ Rn×d,

with H(0) = X (the node’s features).
Graphormer injects graph structure into the attention logits through three

encodings: (i) Centrality encoding; (ii) Spatial encoding; (iii) Edge encoding.
The self-attention computation described in the Transformer architecture[26]

does not account for the relative importance of each node. However, node impor-
tance is a key aspect in graphs, largely due to their scale-free nature [53]. As noted
in [32], highly connected nodes (e.g. celebrities with a large number of followers)
can be decisive in predicting the evolution of a social network. Among the many
possible centrality measures, Graphormer adopts degree centrality and encodes it by

60

Proposed Method

assigning to each node two real-valued embedding vectors: one for its indegree4 and
one for its outdegree5. These embeddings are simply added to the node features:

h(0)
i = xi + z−

deg−(vi)
+ z+

deg+(vi)
,

where xi ∈ Rd denotes the original node feature vector, and z−
k , z+

k ∈ Rd are
learnable embeddings indexed by the indegree and outdegree values, respectively6.

As already discussed, a key advantage of the Transformer architecture is its use
of global self-attention7.

Graphormer adapts this mechanism to the graph domain by removing the
Transformer’s positional encoding to ensure permutation invariance, thus making
the model suitable for graph-structured data. However, when computing attention
scores between nodes, it is crucial to inform the model about their actual proximity
in the graph. In other words, a spatial encoding mechanism is required to
obtain well-calibrated attention scores over all node pairs by incorporating their
relative graph distance. By doing so, the model downweights interactions between
nodes that are distant or poorly connected, preventing spurious high attention on
structurally unlikely pairs.

To encode the structural information of a graph, the authors of Graphormer
introduce a spatial encoding mechanism. Specifically, they compute the shortest
path distance (SPD) between every pair of nodes in the graph and inject this value
as a bias term into the self-attention score. In this way, the attention mechanism is
not only aware of global connectivity but can also distinguish how close two nodes
are in the underlying graph structure.

The attention values are then computed as:

Aij =

1
QiK⊤

j

2
√

d
+ bϕ(i,j) (3.1.1)

Where bϕ(i,j) is a learnable scalar indexed by ϕ(i, j) that contains the shortest
path between node i and node j. Note that this bias term bϕ(i,j) is shared accross
all layers8.

4Which corresponds to the number of in-going edges.
5Which corresponds to the number of out-going edges.
6Note that for undirected graphs, deg−(vi) and deg+(vi) are unified to deg(vi).
7By “global” we mean a dense all-pairs pattern: the model computes an attention score

between every pair of tokens (or nodes, in our setting), rather than restricting attention to
adjacent or local neighbors.

8Because ϕ(i, j) depends only on the shortest path distance between nodes i and j, which is a
fixed structural property of the input graph, it does not change with depth; therefore the same
bias is used in every layer.

61

Proposed Method

In this way, each node can attend to all other nodes in the graph while incorpo-
rating structural information. By introducing the bias term bϕ(i,j), the model is
able to modulate the attention score based on the shortest-path distance between
nodes i and j. As a consequence, nodes that are far apart in the graph are likely
to receive lower attention weights, whereas structurally closer nodes will have a
stronger influence on each other.

Finally, since in many real-world graphs edges also present structural or semantic
features, it becomes crucial to incorporate such information into the model9. For
instance, in social networks edges may carry information such as the interaction type
(friendship, follow, retweet), in citation networks they may encode the publication
venue or the timestamp of the citation, while in knowledge graphs they are explicitly
labeled with semantic relation types. Ignoring these edge-specific properties would
lead to a significant loss of information, since the connectivity pattern alone does
not always capture the full heterogeneity of the underlying system.

In order to integrate edge attributes into the attention computation, the
Graphormer framework extends the attention mechanism by introducing an ad-
ditional edge encoding term. Concretely, given an edge feature vector eij ∈ Rde

associated with the edge between nodes i and j, the model applies a learnable linear
transformation We ∈ Rd×de that projects the edge features into the same latent
space of the attention mechanism. The resulting projection is then combined with
a learnable vector u ∈ Rd, producing a scalar contribution that can be seamlessly
added to the attention score. The modified attention formulation becomes:

Aij = (hiWQ)(hjWK)⊤
√

d
+ bϕ(i,j) + u⊤Weeij, (3.1.2)

where:

• hi, hj ∈ Rd are the hidden representations of nodes i and j,

• WQ, WK ∈ Rd×d are the query and key projection matrices,

• bϕ(i,j) is the spatial bias term encoding the structural distance between nodes
i and j in the graph,

• eij represents the edge feature vector,

• We and u are trainable parameters that allow the model to adaptively weight
edge features in the attention space.

This formulation allows the attention mechanism to jointly exploit:

9Note that in Relbench edges do not come with specific features.

62

Proposed Method

1. the global node-to-node interactions enabled by the standard Transformer
formulation,

2. the structural properties of the graph topology encoded through the spatial
bias bϕ(i,j),

3. the semantic or structural edge information carried by eij.

From a modeling perspective, this design is particularly powerful, as it allows the
network to learn fine-grained relational patterns: nodes can attend more strongly
not only to structurally close nodes but also to neighbors connected by edges with
highly informative features.

While the Graphormer model represents a significant step forward in adapting
Transformer architectures to graph representation learning, it is important to
acknowledge several intrinsic limitations that emerge from its design choices. These
limitations concern both the applicability of the model and its computational
feasibility.

One of the main drawbacks of Graphormer is that it has been primarily designed
and evaluated on homogeneous graphs, where all nodes and edges belong to
the same type and share a common feature space. This design choice simplifies
the formulation of the spatial and centrality encodings but severely limits the
direct applicability of the model to heterogeneous graphs, which are ubiquitous in
many real-world scenarios (e.g., social networks, knowledge graphs, and relational
databases). Extending Graphormer to heterogeneous settings requires non-trivial
modifications to its encoding mechanisms, such as designing type-specific parameters
or incorporating meta-path based reasoning, which are not covered in the original
formulation.

From a computational standpoint, Graphormer inherits the well-known quadratic
complexity of the Transformer architecture with respect to the number of nodes
N . Specifically, the self-attention mechanism requires computing attention scores
for every possible pair of nodes, leading to a cost of O(N2d) in time, where d
denotes the hidden dimension. For large graphs, which are common in domains
such as citation networks or social platforms, this quickly becomes computationally
prohibitive, making Graphormer impractical without heavy sampling or graph
partitioning strategies.

Another limitation lies in the spatial encoding mechanism. In order to model
structural properties, Graphormer introduces learnable bias terms bϕ(i,j) that depend
on the shortest-path distance between node pairs. While effective at encoding
topology, this design results in a very large number of additional parameters,
since a separate embedding must be learned for each possible distance bucket. In
graphs with long average path lengths, this may lead to a dramatic growth in
the parameter count, introducing both storage overhead and a risk of overfitting.

63

Proposed Method

Moreover, computing and storing shortest-path distances for all node pairs is itself
a costly preprocessing step.

The combination of dense global attention, degree centrality embeddings, and
spatial bias terms makes Graphormer challenging to scale beyond medium-sized
graphs. Unlike message-passing graph neural networks (e.g., GraphSAGE or GCN),
which only propagate information locally, Graphormer enforces global connectivity
at each layer. While this design captures long-range dependencies, it also leads
to substantial memory overheads and slower training dynamics. As a result,
Graphormer is often unsuitable for very large-scale relational datasets without
careful optimization or approximation strategies.

Graphormer successfully demonstrates how Transformers can be adapted to
exploit graph-specific inductive biases, but its assumptions and computational
requirements restrict its applicability in heterogeneous and large-scale graph sce-
narios. These limitations motivate the need for lighter, more flexible extensions
capable of handling relational heterogeneity and scaling to massive graphs.

HeteroTemporal Graphormer (HTG)

Building on the limitations discussed for the Graphormer[32], we start from the
observation that, while powerful, it is designed for essentially homogeneous and
static graphs: relation semantics are not distinguished beyond a single structural
prior and time is not used in a pairwise manner. In heterogeneous, timestamped
settings this leaves attention without the signals needed to decide which pairs
are semantically compatible and which are temporally related, so nodes with
similar features but different roles or occurring at very different moments can look
deceptively alike to the model.

Our goal is therefore to tailor the architecture to heterogeneous and temporal
graphs without changing what attention is, or how a Transformer operates: we
keep the standard scaled dot–product, the same softmax–based weighting, and the
usual projection–aggregation pipeline, and we simply expose to the logits10 the
few structural signals that truly matter in this regime. To remain computationally
mindful, we introduce only lightweight terms and minor practical choices that
reduce cost where possible (e.g., restricting queries to seed rows in the final
layer and deliberately omitting all–pairs shortest–path distance biases within each
minibatch, whose computation and storage would be prohibitive), yet we refrain
from altering the mechanics of self–attention[26]. In short, the primary objective

10Here, for “logits” we mean the raw, pre–softmax attention scores: for head h they form a
matrix L(h) with entries ℓ

(h)
ij , one scalar for each pair (i, j), computed as the scaled dot product

of the query of i and the key of j (plus our bias terms) before normalization.

64

Proposed Method

of this architecture is to extend Graphormer (and, therefore, the Transformer
architecture) to heterogeneous and temporal graphs, not to redesign attention
itself.

We do so by adding a small set of trainable priors directly to the attention logits;
by placing structure and time exactly where the decision is taken, these priors
give the model explicit signals about node type compatibility, relation presence,
and relative recency, which lets attention favour pairs that are meaningful in the
graph while still being guided by feature based similarity. We call this architecture
HeteroTemporal Graphormer (HTG).

Let X ∈ RNtot×C be the matrix of node representations for the sampled subgraph,
where each row corresponds to one node in the fused index space and each column
to a feature channel, and where C = HD with H heads and head size D.

Before computing attention we apply pre normalization to stabilize the scale of
each row, that is Y = LN(X). From Y we form three standard linear projections
using learnable weight matrices WQ, WK , and WV ∈ RD×D, which map the input
features into query, key, and value spaces: Q = Y WQ, K = Y WK , and V = Y WV ,
then we reshape them into H heads. For head h we denote by q

(h)
i ∈ RD the query

of row i, by k
(h)
j ∈ RD the key of column j, and by v

(h)
j ∈ RD the value of column

j. The raw similarity for head h between node i and j is the scaled dot product

S
(h)
ij =

⟨q(h)
i , k

(h)
j ⟩√

D
,

which should be read as follows. The inner product ⟨q(h)
i , k

(h)
j ⟩ measures alignment

between what node i is searching for and how node j describes itself, so larger
alignment yields a larger score, and the division by

√
D compensates for the fact

that the inner product sums D terms, keeping scores on a comparable scale so that
the softmax that follows does not saturate. Rows index the nodes that attend and
columns index the candidates they may attend to, hence S

(h)
ij is the score that says

how much node i should consider node j under head h.
This operation is very powerful and is a central component of the transformer

architecture. It learns how much one node should attend to any other node. Taken
in isolation, however, it ignores the topological and temporal structure that enriches
our input graph. As a result, two pairs with similar features may receive comparable
scores even if they are far apart in the graph or far apart in time. By “far apart in
time” we mean a large absolute lag |∆tij| = |tj − ti| between the timestamp of the
attending node i and that of the candidate j. In most temporal prediction problems,
recent evidence (small |∆tij|) is more informative because systems drift, behavior
and context change, and very old events tend to carry weaker or misleading signals.
For example, when ranking which races a driver should attend to, a race from last
week should typically influence the decision more than a race from three seasons
ago, even if their aggregate features look similar.

65

Proposed Method

Similarly, by “structurally distant” we mean that the shortest path distance
dG(i, j) in the sampled graph is large, that is, many edges must be traversed for
information to flow from i to j. Long chains dilute signal and increase the chance
that attention is driven by confounding paths rather than by direct, actionable
relations. For example, for a seed driver node, the most reliable signals come from
its own recent results entries (1 hop) or from the constructor it raced for in those
events (2 hops: driver → results → constructor). By contrast, evidence routed
through a long chain such as driver → results → race → circuit → other race →
results → other driver spans many hops and mixes contexts across circuits and
seasons; even if the distant driver’s features look similar, this path is more likely to
be confounded than informative.

We therefore adopt this operation and introduce learnable bias terms that account
for structural, relational, and temporal factors. In particular, we add three priors
in logit space as bias terms. Doing so we preserve the usual dot product geometry
and the core computation, while the biases act as small priors that gently shift
attention toward pairs suggested as plausible by graph semantics and chronology,
yet still let feature based similarity dominate when it is strongly informative. This
design offers simple and controllable access to node type compatibility, relation
presence, and temporal proximity with a minimal number of extra parameters and
without changing the self-attention mechanism.

First, we introduce a type–pair prior to make explicit, at the level of node
types, who should talk to whom. In heterogeneous graphs, two nodes can look
similar in feature space yet play very different roles; conversely, nodes with distinct
features may routinely interact because their types are complementary. Relying
on the model to infer these regularities only through learned projections of the
features can be data–hungry and brittle: it forces attention to “rediscover” global
type compatibilities from many local examples, and small distribution shifts can
erase that signal. The type–pair prior injects this knowledge directly where the
decision is taken, as a small, learnable log–offset that biases attention toward type
combinations that are known to be meaningful in the domain (e.g., Driver→Race)
and away from those that are usually irrelevant. It is asymmetric by construction,
so it can express that A→B is common while B→A is not, and it is head–specific,
allowing different heads to specialise on different interaction patterns without
competing within the same parameters. Importantly, this prior does not alter the
mechanics of attention (queries, keys, and values are computed exactly as usual)
yet it improves sample efficiency and stability by providing a low–dimensional,
interpretable bias that resolves feature–level ambiguities early.

Let T be the number of node types and let τ : {1, . . . , Ntot} → {1, . . . , T}
map each fused index to its node type; the parameterization that follows encodes
a compatibility score for each ordered (source type, destination type, head) triple
and is learned end–to–end from data while being initialized to zero so as not to

66

Proposed Method

dominate when features are already decisive.
We learn a tensor Btype ∈ RT ×T ×H and define, for head h:

b
(h)
type(i, j) = Btype

è
τ(i), τ(j), h

é
.

This scalar is added to the logit ℓ
(h)
ij , hence

ℓ
(h)
ij ← ℓ

(h)
ij + b

(h)
type(i, j).

Operationally, the calculation is a table lookup indexed by the source type of
row i and the destination type of column j for each head. In vectorized form we
gather Btype with the type vectors of rows and columns to obtain a dense bias
matrix per head, so the cost is negligible. Intuitively, this bias term acts as a small
prior that raises or lowers the baseline score before the softmax according to type
compatibility. The parameters are learned end to end and are initialized to zero, so
when features are strongly informative the scaled dot product dominates, while in
ambiguous cases the prior gently nudges attention toward type compatible pairs.

Second, we add a relation adjacency prior that makes the model aware of which
pairs are actually connected and by which relation. Let R be the number of relation
types and, for each r ∈ {1, . . . , R}, let Er ⊆ {1, . . . , Ntot}2 be the set of directed
edges of relation r. We learn one scalar per relation and per head, collected in
Brel ∈ RR×H , and we add to the logit of head h the term

1
b

(h)
rel

2
ij

=
RØ

r=1
1
î
(i, j) ∈ Er

ï
Brel[r, h].

This is a simple computation with a clear meaning. If there is an edge from i to j

of type r, the score ℓ
(h)
ij receives the constant offset Brel[r, h] before the softmax,

otherwise it receives nothing. In matrix form this is the linear combination

B
(h)
rel =

RØ
r=1

Brel[r, h] Ar, (Ar)ij = 1
î
(i, j) ∈ Er

ï
.

The benefit is twofold. First, the prior injects local topology in the most direct way,
it tells attention that immediate neighbours are special and that their importance
can differ across relation types and across heads. Second, it is parameter efficient
and stable, since it only adds one number per relation and head and it leaves the
dot product geometry untouched, so when features are strongly informative the dot
product still dominates. The parameters are learned end to end and are initialized
to zero, which means the model discovers on its own whether a relation should
amplify or dampen attention for a given head.

A short example clarifies the effect. Suppose nodes of type Driver connect to
nodes of type Race with two relation types, participates_in and won. If driver

67

Proposed Method

i has edges (i, j1) ∈ Eparticipates_in and (i, j2) ∈ Ewon, then for head h the logits
receive

ℓ
(h)
ij1 ← ℓ

(h)
ij1 + Brel[participates_in, h], ℓ

(h)
ij2 ← ℓ

(h)
ij2 + Brel[won, h].

Intuitively, if the objective places greater value on victories than on mere participa-
tion, the learned offsets can reflect this preference by assigning a larger value to
Brel[won, h] than to Brel[participates_in, h] for some heads. In that case, all else
being equal, edges labelled won contribute a larger additive term to the logit and
thus tend to attract more attention. Nothing is hard–coded here: the relation
offsets are initialized near zero and adjusted by the data and the training objective,
so the model adopts such a preference only insofar as it improves the task loss. If
a pair (i, j) has no edge, its logit receives no relation offset and remains governed
by the scaled dot product and by the other priors. In practice the term is applied
sparsely, only at the pairs that appear in the edge lists Er, so it is cheap to compute
and it works in concert with the type pair prior and the temporal prior to guide
attention toward the graph structure that matters.

Finally, we add a seed wise temporal prior that teaches attention to use time in
a direct and pairwise way. In temporal graphs, absolute timestamps inside node
features are often not enough, because the decision of who to attend to depends
on the relative time between the seed node we supervise and the candidate node
(or neighbour) it may look at. We therefore add to the logits a term that depends
on the time difference from the seed row to each neighbour node. Let S be the
set of seed nodes in the current minibatch, let ti denote the timestamp of node i,
and define the directed lag ∆tij = ti − tj , which is always positive11. For each seed
node i and candidate neighbour j, we define the nonnegative lag

dij := ti − tj ≥ 0,

which measures how far in the past node j is with respect to the attending seed
node i. We do not use dij directly because its dynamic range can span orders of
magnitude and the raw scale is sensitive to the choice of time unit and to outliers;
using it as is would either force the model to learn a brittle internal rescaling or
make optimization unstable. Instead, we discretize dij so that very recent events
are resolved finely and very old events are compressed. To turn the continuous,

11By construction of our temporal neighbor sampling, candidate nodes j in each minibatch
are never in the future of the attending seed i (i.e., tj ≤ ti). This prevents data leakage and
implies (ti − tj)≥0 for all pairs considered. In practice we filter out neighbors with tj > ti, so
the temporal prior only needs to parameterize nonnegative lags (with (ti − tj) = 0 allowed for
same–time events). Equivalently, if one defines the lag as ∆tij = tj − ti, then ∆tij≤0 under the
same sampling rule.

68

Proposed Method

nonnegative lag dij = ti− tj into a small number of discrete categories, we bucketize
it into K intervals. Here K ∈ N is an explicit hyperparameter that sets the
temporal resolution of the prior: we partition the (log–compressed) lag axis into K
contiguous bins and assign all lags falling in the same bin the same learned offset.
Formally, this yields an index bucket(dij) ∈ {0, . . . , K − 1} that selects one of K
levels in a head–wise table Etemp ∈ RK×H . A larger K provides finer granularity,
while a smaller K gives a more compact parameterization. A bucket is a closed
interval of lag values, and all lags falling in the same interval share the same learned
offset; this replaces an unbounded continuous input with a few learnable levels,
improving statistical robustness and keeping the computation stable.

Before discretization we apply a logarithmic compression, concretely u(d) =
log(1 + d), so that very recent lags are resolved finely while increasingly distant
lags are progressively compressed. The reason for the logarithm is twofold. First, it
makes the encoding relative rather than purely absolute: the increment u(d + δ)−
u(d) ≈ δ/(1 + d) shows that the same absolute change δ produces a large effect
when d is small (where recency matters) and a vanishing effect when d is large
(where all very old events are similarly uninformative). This illustrates that recency
matters and that very old events are almost equally uninformative. Second, it
greatly reduces sensitivity to the choice of units and to heavy-tailed noise: changing
from days to hours multiplies d by a constant, which becomes an additive shift in
u(d) that is later absorbed by normalization and capping, whereas without the log
the whole scale of the prior would be distorted.

We also introduce a temporal horizon U > 0, which caps the effective range
of lags: any dij > U is treated as “equally old” and mapped to the last bin.
This prevents rare, very large gaps from stretching the scale and ensures that
modeling capacity is concentrated near dij = 0. Operationally, we compress lags
with log(1 + dij), clip them at log(1 + U), and then normalize by the same quantity
so that dij = 0 maps to 0 and all dij ≥ U map to 1 before quantization into the K
bins.

The logarithm scale, plus the (U, K) discretization yields a simple, monotone,
unit-stable representation of recency that allocates modeling capacity where it is
most useful and avoids wasting parameters on the long, uninformative tail of very
old events.

Let U > 0 be a cap (temporal horizon) and let K be the number of buckets; we
map

bucket(dij) =

min
î

log
1
1 + dij

2
, log(1 + U)

ï
log(1 + U) (K − 1)

 ∈ {0, . . . , K − 1}.

Where, log(1 + dij) is a monotone compression of the nonnegative lag dij: it
preserves order, gives fine resolution near 0 where recency matters, and progressively

69

Proposed Method

compresses large lags so that very old events do not dominate. The min{·, log(1 +
U)} applies a hard cap at the temporal horizon U : all lags beyond U are treated as
“equally old”, which prevents rare outliers from creating spurious extra levels and
stabilizes learning. The division by log(1 + U) normalizes the compressed value
to [0,1], making the construction scale-free with respect to the chosen horizon: 0
maps to 0 and any dij ≥ U maps to 1. Multiplying by (K − 1) then rescales [0,1]
to the continuous interval [0, K − 1], so that we have room for exactly K discrete
indices (from 0 to K − 1). Finally, the floor ⌊·⌋ selects the integer index of the
bin: dij = 0 yields bucket 0, any dij ≥ U yields bucket K−1, and intermediate
values are assigned to contiguous bins that grow wider as dij increases (because
the partition is uniform in log(1 + d), not in d). Equivalently, the bin boundaries
in the original time scale are

τm = (1 + U) m/(K−1) − 1, m = 0,1, . . . , K − 1,

so the intervals are [τm, τm+1) and expand geometrically, which is exactly the desired
behaviour for a recency prior: many narrow buckets near 0 and few wide buckets
in the far past. This sequence of capping, normalizing, rescaling, and flooring thus
converts a potentially heavy-tailed, unit-sensitive lag into a small, ordered set of
stable categories that the model can parametrise with one learned offset per bucket.

The bucket index is then converted into a head-specific logit offset via a learned
table Etemp ∈ RK×H :

b
(h)
temp(i, j) = Etemp

è
bucket(dij), h

é
, ℓ

(h)
ij ← ℓ

(h)
ij + b

(h)
temp(i, j).

In words, recent pairs (dij ≈ 0) fall into small-index buckets that the model can
learn to reward, while distant past events are pushed into outer buckets with
coarser resolution. This makes recency an explicit, learnable signal at the very
place where the attention decision is taken, without changing the standard Q–K–V
computation.

The prior is head specific, hence different heads can specialise, for example one
head can focus on very recent evidence, another on medium lags, another on long
term context.

For completeness, we also attempted to add a dedicated spatial bias term on
top of our relation and temporal priors, in the spirit of Graphormer’s structural
encoding: the idea was to inject into the logits an additional bias term derived
from the shortest–path distance dG(i, j) between nodes i and j (e.g., clipping dG

to a radius and mapping it to an embedding Espd[clip(dG(i, j))]). The motivation
is intuitive: small graph distance should gently increase the score, while very
distant or disconnected pairs should not be favored. However, in our heterogeneous,
time–stamped, sampled regime it proved impractical and of limited benefit. Because
each minibatch is a fresh subgraph produced by neighbor sampling, all–pairs

70

Proposed Method

distances cannot be precomputed and reused; one must either recompute many
BFS/SSSP runs on the fly for the batch graph (time–intensive), or materialize a
dense N×N distance map per batch (memory–intensive), both of which scale poorly
as node counts grow. Heterogeneity and directionality make things worse: distances
are undefined for many ordered pairs in directed, disconnected subgraphs, requiring
ad–hoc fallbacks that blur semantics, further increasing complexity. Despite
the considerable computational and implementation complexity, the observed
improvements in our tests were negligible, often within run-to-run noise, and in
several settings statistically indistinguishable from zero. We therefore removed the
shortest–path bias and retained only relation and time priors.

Putting everything together, the attention logits for head h are

ℓ
(h)
ij =

⟨q(h)
i , k

(h)
j ⟩√

D
+ Btype[ti, tj, h] +

RØ
r=1

1{(i, j) ∈ Er}Brel[r, h] +
1
B

(h)
temp

2
ij

,

that is, the usual similarity plus three interpretable log priors. Weights are obtained
by a row wise softmax

α
(h)
ij =

exp
1
ℓ

(h)
ij

2
qNtot

u=1 exp
1
ℓ

(h)
iu

2 ,

which turns logits into non negative coefficients that sum to one on each row, hence
each row forms a probability distribution over columns. The head output is a
weighted average of values

z
(h)
i =

NtotØ
j=1

α
(h)
ij v

(h)
j ,

and the multi head output is zi =
è
z

(1)
i ∥ . . . ∥ z

(H)
i

é
WO,12 followed by dropout

and a residual connection with X, then a position wise feed forward in pre norm.
Intuitively this computation says the model first decides who should talk to whom
via an alignment between queries and keys, then it gently biases that decision with
three small learned terms that encode which types usually interact, whether an
actual edge of a given relation exists, and how recent a node is with respect to a
seed, and finally it aggregates the content of the chosen neighbours through the
values.

3.2 Pre-training strategies
Pre-training, particularly in its self-supervised form, has been widely adopted
across multiple fields. In natural language processing, it has matured into a

12Where W O is the output projection matrix that maps the concatenated attention heads back
to the model dimension.

71

Proposed Method

scalable paradigm for learning general-purpose representations from unlabeled
data, achieving state-of-the-art results. Beyond NLP, pre-training has also been
successfully applied to image classification [54], speech recognition [55], multimodal
vision–language [56], and many others.

In contrast, for graph data, especially in the heterogeneous and temporal-aware
settings, we still lack a comparable, scalable, and consistently effective paradigm,
with objectives and benchmarks that translate into reliable downstream gains [57,
58].

Self supervised pretraining leverages abundant unlabeled interactions to learn
type aware and time aware representations that capture relational structure and
temporal regularities. By training on large historical prefixes of the graph without
manual labels, the encoder integrates information across heterogeneous entities
and relations while remaining grounded in time consistent neighborhoods. The
resulting embeddings provide a reusable substrate for diverse downstream tasks,
reduce the need for task specific supervision, and improve robustness to changes in
the data over time.

Pre-training on graphs is motivated by two persistent challenges. First, standard
GNNs exhibit poor out-of-distribution (OOD) robustness: performance degrades
when topology, attributes, scale, or even label mechanisms shift. These phenomena
are very common in graphs due to non-i.i.d. dependencies, long-range interactions,
and (in heterogeneous settings) type shifts (so performance degrades under distri-
bution shifts between training and test graphs). Second, labeled data are scarce
and costly.

Pre-training addresses this gap by distilling structure-, type-aware priors from
large unlabeled signals, yielding representations that transfer more robustly under
distribution shift and reduce label dependence.

Graph pre-training helps the model building a principled understanding of the
data: it internalizes the graph’s topological structure (who connects to whom and at
which scales), the types of relations (edge semantics and interaction patterns), and
the semantic content of entities and links (node/edge attributes and their meaning).
Consequently, the resulting representations are less brittle under distribution shift,
changes in connectivity, feature marginals, scale and transfer more reliably to new
nodes, relations, or future time steps [59]. By pre-exposing the model to unlabeled
graphs, pre-training teaches it the common patterns of topology, relation types,
and attribute context before any task-specific supervision. This lowers the number
of labeled examples required, reduces sample complexity and improves performance
when labels are scarce. It also stabilizes optimization: a pre-trained initialization
yields better-conditioned losses, faster and more reliable fine-tuning on small or
imbalanced graph datasets.

We developed several self-supervised pre-training schemes that aim to leverage
the raw graph signals. Our pre-training strategies are conducted on the same target

72

Proposed Method

graph (in-graph pre-training), using its structural and temporal signals as self
supervision, before fine-tuning on a small labeled split of that same graph, while
enforcing strict anti-leakage (e.g., temporal splits). Thus, our approach enriches
topological and semantic representations in the GNN, enabling robust learning,
even when the label signal is too weak for the task’s complexity.

Prior works[59, 60] on pretraining on graphs has largely emphasized transfer
across datasets, pretraining on a source graph (or many source graphs) and then
adapting to different target graphs. In this work, instead, we perform in domain self
supervised pretraining restricted to the training split of the same dataset used for
the downstream task; no external graphs or labels are used. This choice is motivated
by three factors. First, there is substantial schema and semantic mismatch across
graph databases, including node and edge types, relation semantics, metapaths, and
keys, which reduces the portability of type aware and structure aware priors. Second,
there are pronounced covariate and temporal misalignments across domains, since
node and edge features often differ in range, sparsity, correlations, and meaning, and
dynamic graphs are sampled at incompatible temporal granularities; As a result,
temporal encoders, positional schemes, and normalizations learned on a source
domain become miscalibrated on the target, which increases the risk of negative
transfer. Third, there are engineering constraints such as schema alignment, feature
unification, and multi domain SSL objectives and samplers that fall outside the
scope of this work.

By learning priors within the same schema, feature space, and timescale as the
downstream task, in domain pre-training produces representations that are better
matched to the target distribution and therefore more label efficient and more
robust under realistic shifts within the domain.

Our focus is therefore to measure the true benefit of in-domain pre-training
while avoiding confounders due to domain shift. All statistics (normalizations,
vocabularies) are estimated on the training split only. We leave the exploration of
cross-dataset pre-training and domain-bridging strategies to future work.

3.2.1 Masked Attribute Prediction (MAP) Pretraining

Building on masked graph autoencoder methods[61, 62, 63, 64, 65], we adopt
masked attribute prediction in our in domain, time aware, heterogeneous setting,
and implement it with batch only masking, sentinel tokens, and column specific
lightweight heads, while keeping the objective restricted to masked positions.

We aim to train the model to reconstruct each masked attribute using the
graph’s topology and the node’s remaining attributes, encouraging it to capture
and internalize the semantic relations encoded in the network.

73

Proposed Method

In each time-consistent mini-batch13 drawn from the training split, we first
choose a subset of node types and columns, then mask some of their attribute
values. The masking process should cover both categorical and numerical fields,
while leaving all other features and the graph topology untouched. The model is
then optimized to reconstruct the masked entries from the remaining features and
the surrounding relational context, with the objective computed exclusively on
masked positions.

Crucially, masking is performed batch-only: we never alter the global database
object, nor normalization statistics, thereby avoiding permanent edits, precluding
cross-iteration leakage, and preserving the in-domain data distribution throughout
training.

The masking policy is task aware. We do not sample mask positions uniformly
across the schema. Although arbitrary sampling would be more onerous in practice,
increasing memory usage and requiring additional preprocessing to maintain per
column vocabularies and normalizers, the central issue is statistical: many columns
are highly noisy, rare, and inconsistently encoded, with substantial missingness and
small effective sample sizes; as a result, distributional estimates and normalizers
become unstable, gradients exhibit high variance, and the model tends to fit
idiosyncratic noise rather than meaningful structure, which degrades generalization
and lowers the signal to noise ratio.

Therefore, we first identify the tables and attributes that carry signal for the
downstream objective and we apply the masking process only to them. In particular,
at the table level, we run ablation studies by retraining the same model while
excluding one table at a time, then we rank tables by the induced drop in the
validation metric. Within each table, we repeat the analysis at the column level by
excluding groups of columns and measuring their marginal effect on the validation
score. We then restrict the maskable pool to attributes whose ablation consistently
degrades validation performance, that is, attributes whose removal produces a
reproducible drop in the validation metric across seeds and splits. In addition to
this ablation based selection, we apply a structural relevance check: we exclude
attributes that are weakly dependent on graph structure or local context, such as
raw identifiers or free form names that cannot be inferred from neighbors or from
other features.

We hope that this careful selection concentrates the pre training signal on
informative variables, produces stronger gradients during reconstruction, and
reduces the risk of a degenerate objective in which the masked value is either
unpredictable or trivially recoverable.

13By time consistent mini batch we mean that, for each seed node at time tv, we construct a
time consistent subgraph that includes only its neighbors with timestamps ≤ tv.

74

Proposed Method

As a concrete example on the rel trial database, we restrict the maskable
attributes to variables that demonstrably contribute to the downstream objective,
as identified through table level and column level ablation on this dataset. In the
studies table this set includes target duration, study type, phase, enrollment, and
the FDA regulation indicator. In the outcomes table it includes outcome type and
parameter type. The same systematic ablation procedure is applied table by table
for every database we use, and each dataset derives its maskable pool from its own
table level and column level analyses.

Importantly, during pretraining, we alternate which attributes are hidden across
iterations; this limits overfitting to any single feature and encourages the encoder to
rely on relational structure and contextual signals. In practice, at each pretraining
epoch, the temporal neighbor sampler produces a time consistent subgraph. We
then restrict masking to the columns and tables designated by the ablation studies
and, for each of these columns, we sample an independent Bernoulli mask over
rows; we apply it to replace the selected entries in the current batch with a sentinel
value, and we store the corresponding ground truth values together with the row
indices of the batch.

Given the masked mini-batch, we pass the data through the encoder pipeline in
three stages. First, the feature encoders map raw attributes to dense vectors while
applying the mask. For masked positions the true values are withheld and replaced
with a type specific sentinel code, that is a dedicated token id for categorical fields
and a reserved numeric code for continuous fields. Encoders treat the sentinel
strictly as an unknown marker. The withheld ground truth is stored separately
and is used only to compute the reconstruction loss. Second, the temporal module
enriches these representations with temporal context14. Third, a heterogeneous
GNN performs message passing over the typed edges to integrate relational context
across neighboring nodes. This sequence produces a node-level embedding zi for
every node i in the batch, which compactly summarizes attribute, temporal, and
structural signals and is then used by the decoder to reconstruct the masked
attributes.

The decoder attaches a simple head for each maskable attribute, defined at
the level of (node type, column)15. For categorical attributes we use a linear layer
Rd → R|C|, where |C| is the number of unique classes computed once on the
training database and then kept fixed; during the reconstruction loss the output is
interpreted with a softmax. For numerical attributes we use a linear layer Rd → R
that produces a scalar prediction, which we compare with the ground truth using a
regression loss such as mean squared error. Heads are instantiated independently for

14Implemented with the HeteroTemporalEncoder described earlier.
15In practice, each masked column in each table uses its own decoder head.

75

Proposed Method

each pair (node type, column), and there is no parameter sharing across attributes
or types. We keep these heads intentionally simple to concentrate modeling capacity
in the encoder GNN, which is the component reused in downstream tasks; this
separation encourages the encoder to internalize structure, type information, and
context, while the heads simply map the shared representation to attribute specific
outputs.

At pre-training time, only the heads corresponding to columns that are actually
masked in the current mini batch are active. Each active head takes the node
embedding zi and produces predictions only for the rows indicated by the mask
indices that are local to the batch. For categorical attributes, the head outputs
class logits and is optimized with cross entropy on the masked entries; for numerical
attributes, the head outputs a scalar and is optimized with mean squared error
on the masked entries. The reconstruction loss is computed exclusively on masked
positions, summed across all active heads in the batch, and backpropagated through
both the decoder heads and the encoder. This objective encourages the encoder to
combine residual feature evidence with relational and temporal context in order to
recover the missing entries, while the heads act as attribute specific readouts.

This design targets the encoder: by optimizing attribute specific heads on a
shared d-dimensional node representation, the pretraining objective drives the
encoder to integrate graph topology, relation types, and contextual semantics into
a transferable embedding. The heads act only as attribute specific readouts, while
the encoder begins to exploit graph structure and accumulates graph aware features
that are reused in downstream tasks. This pretraining strategy is modular and
scalable: the number of additional parameters grows linearly with the count of
maskable attributes, and the simplicity of the heads reduces the risk that decoders
overfit to idiosyncrasies of any single table or column.

For each node type nt, let Snt denote the predefined maskable set. At every training
step, given the sampled mini-batch, we consider only those columns c ∈ Snt that are
present in the batch table for nt. For each such pair (nt, c), we draw an independent
Bernoulli mask with fixed rate p ∈ (0,1) over the batch rows of that table and
hide the selected entries, while caching the corresponding ground-truth values and
their batch-local indices. The rate p is a hyperparameter (we set p = 0.3), and the
mask is resampled at every step, so the locations of the hidden entries vary across
iterations. By rotating which attributes are masked at each pretraining epoch, the
model is prevented from relying on any single feature and is encouraged to exploit
relational and temporal context that transfers more reliably to the downstream
objective.

Formally, lettingM be the set of masked column instances in the current batch,
with items identified by the node type t, the column name c and the masked row

76

Proposed Method

indices It,c, the per-batch objective is

LMAP =
Ø

(t,c)∈M


Ø

i∈It,c

CE
1

gt,c(z(t)
i), y

(t,c)
i

2
if c is categorical,

Ø
i∈It,c

... gt,c(z(t)
i)− y

(t,c)
i

...2

2
if c is numerical,

where gt,c is the linear head attached to column c of node type t, z
(t)
i is the encoder

embedding for the i-th node of type t in the batch and y
(t,c)
i is the ground-truth

attribute value saved before masking.
We now report simplified pseudo-code aligned with our actual code of this

pre-training strategy:

Algorithm 2 MAP-Pretrain (batch-only masking)
procedure MapPretrain(L, pmask, θ, η)

▷ L: mini-batch loader; pmask: Bernoulli rate; θ: params; η: optimizer
for all batch ∈ L do

(batch∗, GT, Mask)←MaskAttributes(batch, pmask)
Z0 ← HeteroEncoder(batch∗)
Zt ← HeteroTemporalEncode(Z0, batch∗)
E ← Edges(batch∗)
H ← HeteroGNN(Zt, E)
Ŷ ←MapDecode(H)
Lcat ← CE

1
Ŷcat[Maskcat], GTcat

2
Lnum ←MSE

1
Ŷnum[Masknum], GTnum

2
Lbatch ← Lcat + Lnum
θ ← Update

1
θ, ∇θLbatch, η

2
end for

end procedure

At each step, a mini-batch is drawn from the training split and passed to
MaskAttributes. This routine samples an independent Bernoulli mask over the
batch rows for each selected (node type, column), caches the corresponding ground-
truth values together with their batch-local indices, and overwrites the entries in
the batch tables with a sentinel.

The masked batch is then processed by the HeteroEncoder, which maps raw
attributes to dense vectors while treating sentinels as unknowns rather than usable
signals. Next, the HeteroTemporalEncoder augments these vectors with time
information. The resulting node features are fed to the heterogeneous GNN
HeteroGNN, as shown above, which yields per-node embeddings zi.

77

Proposed Method

On top of these embeddings, MapDecode instantiates a lightweight, column-
specific decoder head for each masked attribute (node type, column). The heads
share architecture but not parameters, and only those corresponding to columns
actually masked in the current batch are activated. Each active head produces
predictions exclusively at the masked indices: for categorical attributes it outputs
class logits, whereas for numerical attributes it produces a scalar. The decoder
is a small module dictionary indexed by "{node_type}__{col}" with a unified
forward that iterates over the masked fields present in the current batch, gathers
the corresponding node embeddings and accumulates the appropriate loss.

Training uses losses restricted to masked positions. CE denotes the cross-entropy
computed on the masked categorical entries, and MSE denotes the mean squared
error on the masked numerical entries. These terms are summed to form the batch
objective, which is backpropagated through both the decoder heads and the encoder
stack. Finally, Update applies the optimizer step to the model parameters. Because
masking is resampled at every iteration and never written to the global database,
no cross-iteration leakage can occur and the model is compelled to use residual
features, temporal cues, and relational structure to reconstruct the hidden values.
The pretext objective is deliberately asymmetric: the decoder is kept inten-
tionally simple (a small, column-specific head applied only at masked indices) so
that most of the modeling burden falls on the encoder. Because the ground-truth
value of a masked attribute is removed from the input, the model cannot recover
it by copying or memorizing per-row identities. Success is only possible by ex-
ploiting structure available elsewhere: statistical regularities among the remaining
attributes of the same node (co-occurrence patterns and functional constraints),
relational signals that propagate through the heterogeneous graph (information
from typed neighbors and their attributes), and temporal cues injected by the
time encoder (causal ordering and short-term dynamics). The loss is computed
exclusively at masked positions, which prevents the decoder from being rewarded
for trivial predictions on unmasked entries and forces useful information to flow
back through the encoder. As masks are resampled at every step, the task covers
many missingness patterns and consistently pressures the encoder to build denoised,
context-aware representations that generalize to downstream objectives. Masking
inside the batch guarantees that we supervise exactly and only those nodes for
which embeddings were computed in the current forward pass, and that the su-
pervision signal is derived from the training split without any contamination from
the future. Alternating which attributes are hidden across iterations prevents the
trivial solution of memorizing a single column; conversely, avoiding masking all
columns of a node at once ensures a residual signal remains available for meaningful
reconstruction. After a few epochs the encoder has learned to predict missing
attributes from context; we then discard the MAP heads and reuse the pretrained
encoder weights for the downstream task.

78

Proposed Method

3.2.2 Variational Graph Autoencoding Pretraining

In this pretraining strategy we adopted an in-domain, self-supervised approach
based on a variational graph autoencoder[66] trained directly on the time-consistent
subgraphs produced by the temporal neighbor sampler[4].

The variational graph autoencoder proposed by Kipf et al.[66] was designed to
work for homogeneous, undirected and static graphs16. The idea we propose here
is to adapt this framework for relational and temporal graphs.

Before delving into this model design is important to understand all the key
pillar on which this work is built on.

A Variational Graph Autoencoder (VGAE) takes inspiration from the autoen-
coder, which is a neural architecture trained to reconstruct its inputs: an encoder
maps x to a lower-dimensional code h = fϕ(x) and a decoder maps back h to the
initial input space: x̂ = gθ(h). The parameters (ϕ, θ) are learned by minimizing
a reconstruction loss. The reconstruction error is usually measured with a
mean squared error (MSE) between each input xi ∈ Rd and its reconstruction
x̂i = gθ(fϕ(xi)):

Lrec(ϕ, θ) = 1
N

NØ
i=1

1
d

...xi − x̂i

...2

2
.

where N is the number of training examples, d is the feature dimension of each
example, xi denotes the i-th input vector, x̂i its reconstruction, and ∥ · ∥2 is the
Euclidean norm. The factor 1/d is an optional normalization by feature dimension.

Minimizing Lrec encourages the code h = fϕ(x) to capture the salient structure
of the data.

16By static, we mean that no temporal information about the entities is available.

79

Proposed Method

Figure 3.1: Graphical representation of an Autoencoder neural network. It’s composed
of an encoder sub-module, which compresses the input dimensionality to mantain only
the most essential informations of the input feature space; and a decoder sub-module,
which tries to de-compress the input data as close as possible to the original one. Image
taken from[67].

A Variational Autoencoder (VAE) is a probabilistic generative model that
learns a latent variable representation of the data. It places a simple prior over
latents, typically a standard Gaussian p(z) = N (0, I), and specifies a decoder that
defines the likelihood pθ(x | z)17. Because exact Bayesian inference of pθ(z | x)
is not tractable with neural decoders, the model uses an amortized Gaussian
approximation

qϕ(z | x) = N
1
µϕ(x), diag(σ2

ϕ(x))
2
,

with an encoder that outputs the mean and (diagonal) standard deviation of the
latent code for each x.

Rather than deterministically mapping x to a single code, the VAE models a
distribution over codes and trains by maximizing the evidence lower bound (ELBO):

LELBO(x) = Eqϕ(z|x)
è

log pθ(x | z)
é
−KL(qϕ(z | x) ∥N (0, I)) .

Where:

• x denotes the observed data. In VGAE this often means x = (X, A), where
X ∈ RN×d are node features and A ∈ {0,1}N×N is the adjacency.

17Operationally, given a latent sample z, the decoder outputs the parameters of pθ(x | z) (e.g.,
mean or logits). A reconstruction x̃ can be obtained by sampling from this distribution, or by
taking its mean, while training maximizes log pθ(x | z) rather than requiring an explicit sample.

80

Proposed Method

• z are the latent variables (e.g., per-node embeddings Z = {zi}N
i=1, zi ∈ Rdz).

• qϕ(z | x) is the encoder’s approximate posterior, typically Gaussian with
diagonal covariance:

qϕ(z | x) = N
1
z; µϕ(x), diag(σ2

ϕ(x))
2
.

• pθ(x | z) is the decoder likelihood of the observed data given the latents (its
form depends on what we reconstruct).

• p(z) is the prior over latents, usually factorized standard normal p(z) =r
iN (0, I).

• KL(·∥·) is the Kullback–Leibler divergence; the expectation Eqϕ
is estimated

via Monte Carlo using the reparameterization above.

In practice, the first term encourages accurate reconstruction of x from latent
samples z (similar to the original Autoencoder), while the KL term regularizes the
encoder so that its posteriors remain close to the simple prior, yielding a smooth,
well-covered latent space.

To enable end-to-end learning with gradients, point are sampled via the repa-
rameterization trick, z = µϕ(x) + σϕ(x) · ε with ε ∼ N (0, I).

The main difference with a standard autoencoder approach lies in the output of
the encoder module: in the autoencoder version this is a deterministic compressed
representation of the input, while in the variational version the encoder returns
two outputs that parameterize a diagonal Gaussian, namely (i) a mean µ(x) and
(ii) a log-variance log σ2(x).

A Variational Graph Autoencoder (VGAE) is a variational autoencoder
applied to graphs: given a graph with adjacency A (and optional node features
X), the encoder outputs, for each node i, the parameters (µi, log σ2

i) of a diagonal
Gaussian qϕ(zi | A, X). Latents are sampled with the reparameterization trick
zi = µi + σi · ϵi, where ϵi ∼ N (0, I), under a prior p(Z) = r

iN (0, I).
The encoder is a two-layer GCN. A shared first GCN layer produces a hidden

representation for all nodes, and two parallel second layers map it to the parameters
of a diagonal Gaussian posterior:

qϕ(zi | X, A) = N (µi, diag(σ2
i)), µ = GCNµ(X, A), log σ = GCNσ(X, A).

The GCN layers use the symmetrically normalized adjacency Ã = D− 1
2 AD− 1

2 and
ReLU nonlinearity; the two heads share the first-layer weights and differ only in
the second layer. During training, node-wise latent codes are obtained via the
reparameterization trick.

81

Proposed Method

In the original VGAE decoder, the adjacency matrix is reconstructed by mod-
eling each potential edge as an independent Bernoulli random variable, whose
probability is obtained from an inner-product score. Concretely, with node-level
latent representations Z = [z1, . . . , zn], the likelihood factorizes as

pθ(A | Z) =
nÙ

i=1

nÙ
j=1

pθ(Aij | zi, zj), pθ(Aij = 1 | zi, zj) = σ(z⊤
i zj),

so that higher inner products imply higher edge probabilities (standard logistic
Bernoulli model).

Training maximizes the variational lower bound (ELBO),

L = Eqϕ(Z|X,A)
è

log pθ(A | Z)
é
−KL(qϕ(Z | X, A) ∥ p(Z)) ,

where qϕ is the GCN-based encoder and p(Z) = r
iN (0, I). In very sparse graphs,

to handle the strong class imbalance between edges and non-edges, the authors
recommend re-weighting the contributions of present edges (or, alternatively, sub-
sampling zeros); in their experiments they adopt the former option while keeping
the inner-product Bernoulli decoder.

By treating the presence of an edge between two nodes as a probability, the
VGAE decoder becomes a flexible tool for a variety of tasks. The most common use
case is link (edge) prediction: we want to assign high probability to true (but possibly
unobserved) edges and low probability to non-edges. This setting underlies many
recommender-system scenarios (e.g., user–item links), knowledge-graph completion,
and missing-edge recovery in sparse networks.

Conceptually, one holds out a subset of edges as validation/test links, trains the
model to reconstruct the remaining adjacency, and then scores candidate pairs with
the decoder (higher scores ⇒ more likely edge). Because real graphs are sparse,
negatives are not enumerated but sampled: we compare the decoder’s scores on
held-out positives vs. sampled non-edges and report standard ranking metrics (e.g.,
ROC-AUC, Average Precision). This protocol directly measures the model’s ability
to generalize beyond the observed graph.

A second use is graph generation. Thanks to the generative formulation, one
can produce new graphs by: (i) sampling a latent code for each node from the
prior (same prior used at training time), and (ii) decoding edge probabilities
between all pairs, optionally sampling the binary adjacency from these probabilities.
Practically, one may post-process to enforce symmetry and remove self-loops, and
control sparsity via a global bias or threshold on probabilities. This yields synthetic
graphs whose connectivity patterns reflect the structure the decoder has learned
from data.

These applications, however, are outside the scope of our work. Our goal here is
to leverage the same objective as an in-domain, self-supervised pre-training signal.

82

Proposed Method

Concretely, we train the VGAE to reconstruct the observed adjacency of the target
domain (without labels), thereby shaping node-level representations to encode
meaningful structural regularities. The resulting embeddings can then be reused
for downstream tasks in the same domain (e.g., node classification, edge regression,
ranking), either by freezing them and training a lightweight predictor on top, or by
initializing the downstream model with them and fine-tuning end-to-end. In short,
we use the VGAE loss not to evaluate link prediction or to generate graphs, but
to pre-train representations that make subsequent supervised or semi-supervised
learning more sample-efficient and stable.

To use this framework as a pre-training technique, we train the encoder to
capture the (relational) structure and the temporal dynamics of the graph in a self-
supervised manner, using only time-aware subgraphs extracted from the training
set18. We ask the model to assign high probability to pairs of nodes that are truly
connected by an edge in the original graph, and lower probability to pairs that are
not. Then, we reuse the encoder’s learned weights for the downstream task. Our
idea is that this could significantly enhance the model’s representational power:
by learning to reconstruct (and therefore recognize) the correct links (including
the correct relation type, since the graph is heterogeneous) the model will already
be able to understand and operate on relational information. All this is achieved
without requiring a different dataset or any labels.

Our implementation

Building on prior extensions of variational graph autoencoders to heterogeneous
graphs [68], we extend VGAE pretraining to temporal heterogeneous graphs in
RelBench, using it as an in domain, time aware, self supervised objective. To the
best of our knowledge, no prior work has addressed this specific setting.

Encoder To implement an encoder that works properly with heterogeneous
and time-aware subgraphs, we design the encoder as a wrapper class around the
original model. This class takes the original model as input and implements an
encode function that applies the full pipeline till the GNN embedding computation
(HeteroEncoder, HeteroTemporalEncoder, GNN), so that we get an embedding
vector for each node in the batch19.

The forward method then uses this encode function to compute the embeddings
for each seed node20 and projects them through two linear layers: one for the mean

18This avoids any potential data leakage.
19Those returned by the NeighborLoader.
20I.e., the nodes for which a prediction must be produced.

83

Proposed Method

µ and the other for the log-variance log σ2 (for numerical stability). We obtain
latent samples via the reparameterization trick:

σ = exp
1

1
2 log σ2

2
, ε ∼ N (0, I), z = µ + σ ⊙ ε.

A simplified snapshot of the encoder implementation is provided below:

Algorithm 3 Graph–VAE Encoder (pseudocode)
1: function Encode(B, T)
2: H ← fbase.encode_node_types(B, T)
3: zdict ← {}
4: for t ∈ T do
5: h← H[t]
6: µ← h Wµ + bµ

7: log σ2 ← h W + b
8: if training then
9: ε ∼ N (0, I)

10: z ← µ + exp
1

1
2 log σ2

2
⊙ ε

11: else
12: z ← µ
13: end if
14: nid ← B[t].nid
15: zdict[t]← (z, µ, log σ2, nid)
16: end for
17: return zdict
18: end function

The mini-batch B is a sampled subgraph that carries per-type node features and
the mapping nid from batch indices back to global node ids; only the node types in T
(which contains the list of node types present in B) are processed for efficiency. The
base encoder fbase is the graph-aware backbone (heterogeneous/temporal/shallow
stack in our implementation) that performs message passing over B and returns
hidden node representations H(t) for each t ∈ T . Two lightweight linear heads
map these hidden states to the parameters of a diagonal Gaussian: µ(t) and
log σ2 (t), which define the encoder’s approximate posterior for nodes of type t. In
training mode we draw a standard normal noise ε and obtain a latent code by
the reparameterization Z(t) = µ(t) + exp(1

2 log σ2 (t))⊙ ε; in evaluation we use the
mean Z(t) = µ(t) for deterministic embeddings. The tuple (Z(t), µ(t), log σ2 (t), n

(t)
id)

is returned per node type so that downstream decoders can align latent vectors
with global node indices when forming edge pairs.

84

Proposed Method

Decoder The decoder proposed by Kipf and Welling [66] is very simple and
appropriate for the specific setting they considered, but not for ours:

• Implementing the decoder as an inner product enforces a symmetric score and
thus loses the direction of the relationship. In fact, because the dot product is
commutative, the model cannot represent different probabilities for i→j and
j→ i21. This assumption is appropriate in the original work, which deals with
undirected edges, but it is not appropriate for our setting.

• It does not account for relation-specific semantics (edge types): it simply
estimates whether a link exists between two nodes, without identifying which
specific relation holds between them. This is acceptable in homogeneous,
single-relation graphs, but limiting in heterogeneous settings.

To solve the directionality problem, we design a decoder module that for every
pair of nodes builds an edge-wise feature vector by concatenating the source and
destination embeddings together with two simple vector operations:

xij =
è

zi ; zj ; |zi − zj| ; zi ⊙ zj

é
∈ R4d,

and maps xij to a logit sij ∈ R through a small MLP. The probability of the
edge is pij = σ(sij). Because the input is the ordered concatenation [zi; zj; · · ·],
swapping i and j changes xij, so the decoder can model directionality when
needed; in undirected settings one typically evaluates each unordered pair once. In
practice the MLP has input dimension 4d and a single output unit, e.g. MLP(x) =
Linear4d→h◦ReLU◦Linearh→1(x). During training, the same decoder is applied to
positive edges E+ and to sampled negatives E−, producing logits that are then
used in the binary cross-entropy reconstruction loss.

Algorithm 4 Graph–VAE Decoder (pseudocode)
1: function DecodeEdgeLogits(zdict, edge_index, src_type, dst_type)
2: (gs, gd)← edge_index ▷ global source/destination node ids per edge
3: (Zs, _, _, nids)← zdict[src_type]
4: (Zd, _, _, nidd)← zdict[dst_type]
5: maps ← Dict(nids[i]→ i); mapd ← Dict(nidd[i]→ i)
6: i← [maps[gs[e]] for e]; j ← [mapd[gd[e]] for e]
7: zi ← Zs[i]; zj ← Zd[j]
8: x← Concat

1
zi, zj, |zi−zj|, zi ⊙ zj

2
9: ℓ←MLP(x) ▷ one scalar logit per edge

10: return ℓ
11: end function

21Equivalently, computing A ·B or B ·A yields the same result, i.e., z⊤
i zj = z⊤

j zi.

85

Proposed Method

For a batch of candidate edges, the decoder first aligns each global node
identifier in edge_index with its row in the latent matrices by building a fast
lookup from global ids to batch indices for the source and destination node
types. It then gathers the corresponding latent vectors (zi, zj) for every edge
and forms a feature vector by concatenating four components: the two endpoints,
their absolute difference, and their elementwise product. This 4d-dimensional
edge representation is fed to a multilayer perceptron, implemented as a stack
Linear(4d→h)–ReLU–(Linear(h→h)–ReLU)L−2–Linear(h→1), which returns a sin-
gle logit per edge. These logits are used as Bernoulli parameters (after a sigmoid)
in the reconstruction loss for link prediction/training.

Edge sampling function We implement a routine that, given a mini-batch
and a specific relation type (src r−→ dst), extracts positive and negative edges22.
Positives are obtained by reading the batch adjacency for the selected relation and
retaining only those edges whose endpoints are included among the nodes sampled
in the batch (i.e., seed and neighborhood nodes). This ensures that every positive
edge refers to nodes for which the encoder has provided latents in the current
forward pass. Negatives are generated by corrupting one endpoint of each positive:
for a positive (i, j) we sample a replacement node j̃ from the set of observed
destination-type nodes in the batch (or symmetrically a replacement ĩ on the source
side), yielding a candidate (i, j̃). Candidates that coincide with real positives are
discarded and re-sampled until a valid non-edge is obtained; duplicates among
negatives are optionally removed. By default we draw |E−| = |E+| negatives for
class balance, although a configurable ratio ρ = |E−|/|E+| could be used. The
function returns two tensors pos_edges, neg_edges ∈ N2×E (first row: source
indices; second row: destination indices) aligned with the batch’s local indexing,
ready to be scored by the decoder and consumed by the binary cross-entropy
reconstruction loss. To avoid temporal leakage, negative endpoints are sampled
only among nodes observed up to T⋆.

Loss function The encoder defines a diagonal-Gaussian posterior for each
node, qϕ(zi | ·) = N

1
µi, diag(σ2

i)
2
, while the prior is the standard normal p(zi) =

N (0, I). The KL between them has the closed form

KL =
Ø

i

1
2
Ø

k

3
µ2

ik + σ2
ik − log σ2

ik − 1
4

.

This term serves three purposes: it regularizes the encoder to avoid representations
that only fit the training edges, it structures the latent space into a well-behaved,

22By positive we mean existing edges that appear in the batch for the chosen relation; by
negative we mean non-edges (false edges) that are not present in the original graph.

86

Proposed Method

approximately “normal” manifold (improving controllability and interpolation),
and it enables generation by aligning the posterior with a simple prior from which
we can later sample.

The objective minimized in practice is the negative ELBO with an optional
weight β on the KL term,

L = Lrecon + β KL,

often using β = 1 or a short warm-up. Latent codes are sampled with the
reparameterization trick, zi = µi +σi⊙ϵi with ϵi ∼ N (0, I). In our implementation,
Lrecon is computed on the batch’s (time-consistent) positives and on negatives drawn
only from nodes observed in the same batch, ensuring no leakage and making the
model less prone to overfitting the training data.

Pre-training loop The function "train_vgae" performs in-domain, self-supervised
pre-training of the encoder by wrapping the original model in a variational head and
optimizing a VGAE objective on time-consistent mini-batches. First, we instantiate
a VGAEWrapper, which reuses the original encoder to produce one embedding per
node type and then projects these embeddings into the parameters of a diagonal
Gaussian, yielding per-node µ and log σ2; sampling is performed via the reparame-
terization trick z = µ + σ⊙ ϵ. We also instantiate an MLP edge decoder that maps
the concatenated edge-wise features [zi; zj ; |zi−zj|; zi⊙zj] ∈ R4d to a logit sij . The
optimizer is deliberately restricted to the parameters that matter for pre-training:
the encoder pathway of the original model (model.encoder_parameters()), the
two linear projections of the wrapper (µ and log σ2), and the decoder; any task-
specific heads remain frozen.

At pre-training time, for each mini-batch we select a relation type (src r−→ dst)
that is actually present in the batch, then we (i) compute z, µ, log σ2 for the two
node types23 via the wrapper; (ii) extract positive edges E+ of that relation from
the batch and generate an equal number of negative E− by corrupting one endpoint
among nodes observed in the same batch; (iii) score positives and negatives with
the decoder to obtain {sij}; (iv) compute the VGAE loss L = Lrecon + β KL, where
the reconstruction term is a binary cross-entropy on E+ ∪ E− and the KL has
the closed form for diagonal Gaussians; and (v) backpropagate and update the
parameters. Batches that do not contain usable edges for the chosen relation are
skipped; a bounded retry loop avoids wasting compute on empty selections.

23Note that each edge type in our setting connects two distinct node types.

87

Proposed Method

3.2.3 Data Augmentation via Relational Aware Edge Dropout

In this section we adopt DropEdge[69] for structural regularization and introduce
a relation aware variant that independently drops edges per relation type within
our temporal pipeline.

The idea is to regularize the model by injecting stochastic noise into the graph
structure during training.

In a message passing layer, the hidden state of a node is updated by aggregating
messages from its neighbors. With edge dropout, we randomly remove each
edge with probability p independently and then run the same forward pass on the
thinned batch.

This procedure is the structural analogue of the standard dropout. Infact,
in standard dropout the model zeros internal activations within a layer, which
injects noise at the feature level while leaving the neighborhood structure and
all paths between nodes unchanged, so the network must rely on distributed
representations rather than on a few co adapting units. Edge dropout instead
zeros the messages that would travel along selected edges, which injects noise at
the topology level and alters the effective receptive field at every forward pass
because the set of available neighbors and multi hop paths varies stochastically
across iterations. The first major consequence is a reduction of overfitting to
particular connections and to frequent hub shortcuts. Since certain edges and even
entire two hop or three hop routes can be absent in a given iteration, the model
is encouraged to discover patterns that are redundantly supported by multiple
alternative neighborhoods rather than by a single brittle corridor. The second
major consequence is improved robustness to missing edges in deployment. Data
pipelines often yield incomplete or delayed relations, so a model that has been
trained while repeatedly facing randomly thinned connectivity tends to maintain
stable predictions when some links are absent at inference time. In short, standard
dropout removes activations while preserving the graph, whereas edge dropout
removes connections while preserving the task, and this shift from feature noise
to structural noise both regularizes dependency on specific links and prepares the
model for realistic sparsity in observed graphs.

At validation and test time the intact graph is used and the model tends to
perform more robustly since it was trained to cope with partial connectivity. There
is no auxiliary objective that asks the model to detect which edges have been
removed. The task is unchanged and the absence of dropped messages simply
forces the network to rely on whatever information remains.

In practice values of p between 0.1 and 0.3 work well, one can optionally warm
up p from zero over early epochs, and on heterogeneous graphs one can use different
probabilities per relation so that dense or noisy relations are downweighted while
rare or critical ones are preserved. On very sparse graphs p should be small to avoid

88

Proposed Method

excessive disconnections. The net effect, compared to standard dropout, is a shift
from feature noise to structural noise that diversifies which neighbors contribute at
each iteration, mitigates over smoothing and over squashing in dense regions, and
reduces the tendency to memorize idiosyncratic edges or metapaths while keeping
the predictive objective exactly the same.

Algorithm 5 Edge Dropout for GNN (pseudocode)
1: function EdgeDropout(batch, p)
2: out← DeepCopy(batch)
3: for all relation r in out do
4: E ← NumEdges(out[r])
5: if E = 0 then
6: continue
7: end if
8: keep← Bernoulli(1− p) mask of length E
9: if q keep = 0 then

10: set one random entry of keep to True
11: end if
12: out[r].adjacency← out[r].adjacency[:, keep]
13: end for
14: return out
15: end function

Given a mini batch graph batch and a drop probability p, the routine returns a
deep copy out where, for each relation type r, it samples an independent Bernoulli
mask k ∈ {0,1}E with success probability 1− p over the E edges of r. If qk = 0,
one random entry of k is set to 1 to avoid removing the relation entirely. The
adjacency of r is then restricted to the kept indices, and any edge features or
timestamps must be restricted in the same way. This procedure is applied to
all relation types, affects only the current batch, and serves as structural data
augmentation and regularization, since each forward pass observes a randomly
thinned subgraph. In practice, we use p > 0 during training and p = 0 during
validation and test.

89

Proposed Method

Algorithm 6 Training with Edge Dropout (pseudocode)
1: procedure Train(loader, model, p)
2: for all batch in loader do
3: if mode = "train" then
4: batch← EdgeDropout(batch, p)
5: end if
6: ŷ ← model.forward(batch)
7: L ← Objective(ŷ, labels in batch)
8: UpdateParams(model, L)
9: end for

10: end procedure

The procedure iterates over mini batches provided by the data loader. During
training only, it applies EdgeDropout with drop probability p to the current batch,
yielding a thinned subgraph. The modified batch is then passed through the
model to obtain predictions ŷ. A task specific objective L is computed against
the labels contained in the batch, and the model parameters are updated by
backpropagation and an optimizer step. At validation or test time the dropout
branch is skipped (equivalently, p = 0), so predictions are computed on the
unmodified batch. Applying dropout only during training provides structural
regularization and data augmentation, since each epoch observes different random
edge subsets.

To explain the rationale behind this strategy, it is important to understand what
happens to the network at the level of receptive fields. A node’s receptive field is
the set of nodes that can influence a target node through paths available within
the current number of layers; with edge dropout, this set changes randomly at each
iteration. This explains why edge dropout reduces co-adaptation on specific edges
and combats over-smoothing: intuitively, with fewer incoming messages per layer in
each realization, deeper stacks are less prone to homogenize representations across
large connected regions. Moreover, performing the thinning at every iteration yields
an implicit ensemble over exponentially many subgraphs; the shared parameters
must therefore perform well across families of neighborhood realizations, which
improves robustness to spurious or missing links and to sampling variance in
neighbor loaders.

For very sparse relations or those known to be semantically crucial, setting pr

close to zero avoids disconnecting seeds.
Edge dropout is a structural analogue of standard dropout that injects noise

at the topology level, making the receptive field stochastic across iterations and
encouraging distributed representations. This method is simple, architecture
agnostic, and effective at reducing reliance on specific neighbors or paths, which

90

Proposed Method

can improve generalization. Its main limitations arise in sparse regions or for low
degree nodes where excessive dropping may isolate seeds.

3.3 XMetaPath: A Self-Explainable Meta-Path
Graph Neural Network

Modern relational learning systems must not only achieve strong predictive perfor-
mance, but also provide faithful explanations that are native to the computation
they perform. To date, our focus has been on building a robust, automated, and
flexible predictive baseline. We now move beyond this to develop an explainable
model that not only matches black-box performance but also makes its reasoning
explicit.

As already mentioned, there are multiple types of explainable models for GNNs.
Broadly, approaches fall into two wide families: post hoc explainers, which ex-
tract explanations after training (e.g., subgraph or feature attributions), and
self-explainable GNNs, whose architectures are designed to expose an explicit
rationale (e.g., prototype- or concept-based modules).

Although post hoc methods are widely applicable and often model-agnostic, they
can suffer from limited faithfulness, instability under small input perturbations,
and explanations that are plausible but not truly causally relevant to the model’s
prediction.

For these reasons, the model we design is completely self-explainable able
to perform local, as well as global, interpretations. In other words, the same
architectural components that drive prediction, expose also human-interpretable
signals at inference time.

Building a self-explaining pipeline entails a full architectural rethink. Guided
by Ferrini et al.[50, 48], we adopt a meta-path–based design as a principled route
to self-explainability. With this model we set an ambitious yet concrete goal:

• Parsimony through curated meta-paths. In real relational databases,
dozens of linked tables induce a heterogeneous graph with a combinatorial
number of potential paths for aggregation and message passing. Meta-paths let
us focus on the few relations that actually drive the target, pruning irrelevant
nodes and edges; by restricting computation to this small, task-driven subset,
the model remains substantially lighter and more sample-efficient, which is
particularly beneficial in low-data/low-label regimes.

• Explainable model. Meta-paths make the reasoning of the model explicit:
each path is a human-readable sequence of relations (e.g., Driver → Result
→ Race) along which we aggregate informations. The prediction is built by
combining the per–meta-path signals with data-driven weights, so we can state

91

Proposed Method

how much each meta-path contributed (e.g., ’this meta-path mattered most’).
Since each meta path carries its own meaning, the model’s reasoning comes
into view: the prediction rises from a chorus of meta path signals, weighted by
the data, so we can tell how much each one spoke. Because the same weights
that combine the paths are also reported as the explanation, what we show
is faithful to what the model actually used (no post hoc explainable models
needed: the model’s own computation is enough to motivate the reasoning
process). The same internal quantities used at inference time provide faithful
explanations at both local, as well as global level. We offer two complementary
interpretations. Local: for a given instance x, we read the explanation as (i)
the relative importance of each meta-path in the final fusion, and (ii) the
most influential relation/hop within the top meta-path(s). In practice, we
present a short ranked list: which meta-paths supported the prediction for
x, and which relation within them mattered most. Global: at the dataset
level, we summarize the same signals across many instances (e.g., average
importance of each meta-path and how often it is selected as top) together
with the distribution of influential relations/hops. This yields a concise picture
of the relational mechanisms the model relies on overall, without exposing
low-level internals.

Using meta-paths, we restrict message passing to task-relevant, human-interpretable
relation chains. A compact curated set yields computational efficiency while en-
abling intrinsic, inspectable explanations.

3.4 Model’s details
This section presents a complete, top–down description of the self-explainable
model we employ for relational learning on heterogeneous, time-aware graphs.

For now, assume the full set of meaningful meta-paths is given24. In our
setting, meta-paths follow a constrained schema: they always begin with a relation
whose source node type coincides with the prediction’s target node type; for every
subsequent relation, the source type matches the previous relation’s destination
type; and we exclude self-loops (each relation thus induces a bipartite graph).
The core design choice is that each meta-path is handled by a dedicated
GNN. Each GNN processes the meta-path’s hops in reverse order, from the
last relation back to the first. We also flip each relation (U r−→ V) to its reverse
(V r−1
−−→ U) and always apply a “dst-aggregates-from-src” update on each triple of

the meta-path. This ensures a target-last schedule: information is first accumulated

24We will discuss later how to automatically learn task- and dataset-specific meta-paths.

92

Proposed Method

on distant nodes, and the final hop updates the target nodes (e.g., drivers) after
all upstream evidence has been incorporated. The rule is uniform across hops (no
special cases for forward/backward steps), simplifies degree-based normalization on
the updated side, and prevents premature target updates that would miss upstream
contributions.

Consider the 2–hop meta-path starting from the target node Drivers:

(Drivers r1−→ Standings), (Standings r2−→ Races).

We process hops in reverse order and flip each relation:

(Races r−1
2−−→ Standings), (Standings r−1

1−−→ Drivers).

Let HRaces, HStandings, HDrivers be the initial node embeddings of the entities related
to such tables and let Aggr(H) denote the (degree–normalized) message aggregation
for relation r. The two reverse hops proceed in the following way:

1. First reverse hop (Races r−1
2−−→ Standings): HStandings ← Aggr−1

2

1
HRaces

2
.

Here, the destination (updated) node type is Standings. For each standings
node, we aggregate messages from its adjacent Races nodes along r−1

2 , thereby
restricting message passing to the Races–Standings neighborhoods defined by
this relation.

2. Second reverse hop (Standings r−1
1−−→ Drivers): HDrivers ← Aggr−1

1
(HStandings),

using the already–updated HStanding from step 1.

Hence the final driver representation composes the whole chain:

Hout
Drivers = Aggr−1

1

1
Aggr−1

2
(HRaces)

2
(3.4.1)

Eq. 3.4.1 illustrates why reverse order + flip is beneficial: (i) it enforces a
target-last update, so the target (Driver) is updated only after upstream evidence
(Race→Standing) has been incorporated; (ii) it preserves a uniform “dst-aggregates-
from-src” semantics at every hop, simplifying normalization and implementation;
and (iii) it yields faithful meta-path attributions, since the final target embedding
truly reflects the entire path’s contributions. (Processing forward without flipping
would update the target too early, missing the influence propagated from distant
hops.)

XMetapath class
To ground the discussion, we begin with the top-level class, XMetaPath, which
orchestrates the pipeline and instantiates all submodules.

XMetaPath is initialized with:

93

Proposed Method

• data (HeteroData): the graph schema and per–node tables (including
tf_dict with column names and time_dict with timestamps); used only to
configure encoders and to read edge types.

• col_stats_dict: the per–column statistics (means, stds, vocab, etc.) indexed
by node type and column name.

• metapaths: a list of X meta-paths following the aforementioned convention
(we denote by X the number of meta-paths).

• Some hyperparameters.

At inference (and training) time we invoke forward(batch, entity_table):
given the heterogeneous mini-batch and the target node type, XMetaPath runs
a single, coherent pipeline that maps each target seed node to (i) a prediction
(one logit per seed node) and (ii) its motivation, i.e., a faithful per–meta-path
explanation obtained from the very fusion weights used to combine the meta-path
embeddings.

In practice, given a HeteroData batch and the target entity table, the forward
pass first reads the seed time25 from the batch (batch[entity_table].seed_time)
and produces type-specific node embeddings via the HeteroEncoder. Next,
the HeteroTemporalEncoder refines these embeddings by incorporating the
temporal dimension for node types with timestamps (conditioned on the seed time).
Finally, XMetaPath instantiates a bank of meta-path-specific propagators (one
MetaPathGNN per selected meta-path) to perform relational propagation along
each meta-path. Each propagator consumes (xdict, batch.edge_index_dict) and
returns a meta-path-specific embedding of fixed width D for the target nodes; the
result is a tensor of shape [N, X, D] stacked along the meta-path axis, where N is
the mini-batch size and X the number of meta-paths.

The per–meta-path embeddings are fed to a self-attention regressor. For
each target node, the X tokens T ∈ RX×d are first contextualized by a Transformer
encoder. A final multi-head self-attention then produces data-dependent weights
w(x) ∈ ∆X (non-negative and summing to 1). These weights gate the tokens
(T ⊙ w(x)), which are sum-pooled; a small MLP maps the pooled vector to the
output logit. On request, we return w(x) together with the prediction: since the
same w(x) is used to form the prediction, the reported meta-path importances are
faithful by construction.

25The seed time, also called the prediction time, specifies when the target node is to be predicted.
It is used to filter future data and enforce temporal consistency, preventing information leakage.

94

Proposed Method

MetaPathGNN: a path-specific propagation
Having defined XMetaPath and its per–meta-path view, we now zoom into the
MetaPathGNN module. Intuitively, it turns a single meta-path into a controlled
sequence of message-passing steps, aggregating evidence hop by hop and producing
one embedding for the target nodes along that path.

For a single meta-path P = (s1
r1−→ d1, . . . , sL

rL−→ dL) the module maintains two
streams for every node type: a frozen copy of the original features xt (accessible at
every hop) and a current hidden state ht that is updated hop by hop.

Even within this admissible past, timestamps can span very different horizons. It
is therefore useful to weight information by recency, so that recent interactions
contribute more than stale ones, mitigating (i) degree biases driven by old, dense
history, (ii) concept drift26, and (iii) noise from outdated records. Concretely, we
apply an exponential decay e−λℓ ∆t to edge messages, with a learnable rate λℓ per
hop ℓ.

This mechanism is particularly appropriate in domains where relevance naturally
fades over time (e.g., user behavior, transactional/market dynamics, fast-changing
operational states). By contrast, when the graph is dominated by quasi-static
relations (e.g., long-term memberships, physical constraints, canonical metadata)
or when timestamps are sparse/low-fidelity, recency weighting may be unnecessary
or even distortive; in such cases, uniform weighting is preferable. We therefore
implement recency weighting as an optional component, enabled only when the
dataset exhibits meaningful temporal decay.

If enabled, for each edge (u→v) used at hop ℓ, the temporal weight is

wuv = exp
3
− λℓ

∆tuv

time_scale

4
, ∆tuv = max{ t(v)− t(u), 0 }.

where:

• wuv ∈ (0,1] indicates the temporal weight. These are multiplicative coef-
ficient applied to the message sent from u to v. It equals 1 for zero lag and
decays monotonically towards 0 as the lag grows.

• λℓ > 0 is the per-hop decay rate: a learned parameter (one for hop ℓ)
controlling how steeply weights decrease with time. Larger λℓ ⇒ stronger
preference for recent evidence.

• t(u), t(v) are the node timestamps. These are times associated with the
source/destination nodes on this edge, drawn from the batch’s time dictionary.

26Data-generating process changes over time, so the relationship between entities is not station-
ary. Therefore, when we aggregate along meta-paths, very old interactions can dominate simply
by being numerous, even if they reflect an outdated regime.

95

Proposed Method

By construction of the neighbor loader, t(u) ≤ tseed(v), so only causal neighbors
are considered.

• ∆tuv indicates the time lag. It is a nonnegative temporal distance between
sender and receiver on that edge. The max(·,0) acts as a safeguard; with
causal loading it coincides with t(v)− t(u) ≥ 0.

• time_scale > 0 is the unit normalizer. This can be described as a hyperpa-
rameter that rescales time units (e.g., seconds, days) to a convenient range. For
example, the half-life (lag at which wuv = 1

2) is ∆t1/2 = (ln 2) time_scale/λℓ.

If temporal weighting is disabled, we set wuv = 1 for all edges; in this case, all
messages are weighted equally, with no recency preference.

MetaPathGNN instantiates one layer, called MetaPathGNNLayer, per relation
in the meta-path and applies them sequentially under the reverse+flip schedule.
We next describe the single-hop layer that performs the destination update.

3.4.1 MetaPathGNNLayer (single-hop update)
Let us now focus on how to manage and apply a relation-specific message-passing
operation for a single meta-path hop, this is precisely what MetaPathGNN imple-
ments.

In particular, for each retained hop ℓ with typed relation (sℓ
rℓ−→ dℓ), MetaP-

athGNNLayer operate on the relation-induced (bipartite) subgraph and compute a
weighted, degree-normalized aggregation on the destination side:

m̄v =

Ø
(u→v)∈Eℓ

wuv huØ
(u→v)∈Eℓ

wuv

, v ∈ dℓ.

Where:

• ℓ: the current hop of the meta-path, with typed relation rℓ : sℓ → dℓ.

• sℓ, dℓ: source and destination node types for relation rℓ.

• Eℓ ⊆ sℓ × dℓ: the set of directed edges (u→v) for relation rℓ in the (bipartite)
subgraph induced by sℓ and dℓ.

• v ∈ dℓ: the destination node being updated at hop ℓ.

• u ∈ sℓ: a source neighbor of v such that (u→v) ∈ Eℓ.

• hu ∈ RD: the current hidden embedding of source node u (embedding dimen-
sion D).

96

Proposed Method

• wuv ≥ 0: the edge weight for (u→v). With optional recency weighting,

wuv =

exp
1
− λℓ ∆tuv/time_scale

2
, if temporal weighting is enabled,

1, otherwise,

where λℓ is a learnable decay rate and ∆tuv = max{ t(v)− t(u), 0 }.

• m̄v ∈ RD: the weighted, degree-normalized mean of neighbor embeddings (i.e.,
the aggregated message arriving at v).

• q
(u→v)∈Eℓ

wuv: the (weighted) in-degree of v, which normalizes the message
scale across different degrees.

Followed by a gated residual update:

h′
v = Wℓ m̄v + (1− g) W0 hv + g W1 xorig

v , g = σ(γ).

Where:

• h′
v ∈ RD: updated (pre-activation) hidden state of destination node v at hop

ℓ.

• hv ∈ RD: current hidden state of v before applying hop ℓ.

• xorig
v ∈ RD: (time-enhanced) original input features of v used as a frozen prior.

• Wℓ, W0, W1 ∈ RD×D: learnable weight matrices mapping, respectively, the
message m̄v, the prior hidden state hv, and the original inputs xorig

v into the
hidden space.

• g = σ(γ) ∈ (0,1): scalar gate (per hop ℓ) mixing the two residual paths; σ(·)
is the logistic sigmoid and γ ∈ R is a learnable parameter. When g≈0, the
update favors W0hv; when g≈1, it favors W1xorig

v .

After the linear update, we apply nonlinearity and stabilization:

hout
v = Dropout

1
LayerNorm

1
ϕ(h′

v)
22

,

and write back hout
v only for the destination nodes v touched at hop ℓ (using their

original indices).
The edge set Eℓ is constructed after the reverse-order+flip scheduling, so edges

always point from sources to destinations (“dst-aggregates-from-src”). We remap
global ids to compact local indices per relation to restrict computation to the
touched subgraph and avoid leakage. The gate g =σ(γ) is a single learned scalar
per hop.

97

Proposed Method

Fusion and self-explanations (MetaPathSelfAttention)
The model yields X distinct embeddings27 for each seed node. We then fuse these
representations and produce the final prediction from the aggregated result.

After computing the X path-specific embeddings for each target node, the model
forms a token sequence C ∈ RX×D. A Transformer encoder contextualizes these
tokens into C ′ ∈ RX×D, after which a final multi-head self-attention layer computes
an attention matrix A ∈ RX×X and produces per–meta-path weights

w = softmax
1
meanheads A 1

2
∈ ∆X ,

where 1 sums over the key dimension. The same w gates the tokens, C ′′
i = wi C ′

i,
the gated tokens are pooled by summation, and an MLP maps the pooled vector
to the final prediction. Because w is returned (on demand) during inference, the
per–meta-path importance reported to the user is identical to the weights that
causally shaped the prediction.

This module (the MetaPathSelfAttention module) is an original and important
addition to our approach with respect to the original method[50], because it not
only assess the influence of each meta path on the final decision and reconnects
the exact chain of reasoning behind a given prediction, but also decomposes how
much each single meta-path contributes to the prediction, so the model does not
only decide, it tells its story in a complete way.

A concrete example of explanation. Let us imagine the driver Mario Bianchi
as our node of interest. The model must estimate the probability that Mario will
finish in the top three in the next race. XMetaPath examines the available
information channels and decides how much to rely on each of them. In this case,
two meta paths are at the forefront:

P1 : (Drivers→Standings), P2 : (Drivers→Qualifying→Constructors).

The fusion weights show that the model relies mostly on P1 (for example, α1 = 0.70
and α2 = 0.30). In simple terms, this means that when predicting Mario’s outcome,
the model focuses primarily on his most recent standings, while information that
passes from Mario through Qualifying into Constructors still matters but plays a
smaller role.

At this point, the natural question arises: which standings are actually influ-
encing the prediction? The model identifies these nodes during the aggregation
along P1. Each Standings node connected to Mario contributes with an internal

27Where X is the number of meta-paths.

98

Proposed Method

importance that depends mostly on its recency and on how much its features align
with the target. This produces a set of normalized internal weights that we can
read as an effective influence for each neighbor.

In our example, Mario is connected to three standings nodes s1, s2, and s3.
Without diving into formulas, think of them as the standings the model found most
indicative of Mario’s current trend. Inside P1, each of them gets a share of voice in
the reasoning process. Suppose their approximate shares are

s1 : 50%, s2 : 30%, s3 : 20%.

This tells us that the prediction for Mario is mainly pushed by s1 and s2, while s3
adds a smaller supporting signal. Internally, the model also applies an adaptive
gate that regulates how much new information is admitted. In this case, the gate
is open enough, so most of the evidence from s1 and s2 is retained.

How does this translate into the final prediction. The signal built along P1 is
fused with the longer path P2 through the meta path attention weights. Since
P1 dominates (α1 = 0.70), and within it s1 and s2 have the highest impact, the
overall score for Mario increases, leading the model to predict a high probability
of finishing in the top three. In other words, the reasoning is readable: Mario’s
recent standings, especially s1 and s2, are the main reasons behind the confident
prediction, while the information that flows through Constructors contributes but
does not change the final conclusion.

This interpretation is faithful because the weights we report, the attention
between meta paths and the internal weights along each path, are exactly the values
the model used to compute its prediction. They are not a post hoc explanation,
they are the actual trace of the reasoning process.

Although it falls outside the scope of this work, these ingredients can be passed
to a large language model to produce natural language explanations. By providing
the meta path weights, the selected meta paths, and a few exemplar neighbors with
their timestamps and influence scores, the language model can generate a short
narrative that is easy to understand for non experts. For instance: “This prediction
draws 60% of its support from the Imola Grand Prix standings on June 15, 2025,
where driver Mario Bianchi finished first; it then considers the Monza race from
May 18, 2025, where he finished second. Finally, it also takes into account the
qualifying results of those same races and the relevant constructors’ statistics.” This
step does not alter the prediction, it simply makes the reasoning more accessible.

3.5 Meta-path selection
To date, we have focused on a self-explainable GNN that operates on a fixed set
of predefined meta-paths, but we have not addressed how to learn meaningful

99

Proposed Method

meta-paths yet.
What we are looking for is a robust, flexible, and fully automated solution that

performs reliably across scenarios28 without any human-in-the-loop supervision.
In practice, this means a method that is schema-agnostic (able to accommodate
different node/edge types and temporal attributes), task-agnostic (classification
or regression), and resilient to data idiosyncrasies such as sparsity, noise, and
distribution shift. It should require minimal manual tuning, scale to large graphs,
and adapt automatically. Therefore, we explicitly exclude domain-expert designed
meta-paths: relying on handcrafted priors would undermine our claim of generality
and fully automated operation. The proposed solution must address node-level
classification and regression across arbitrary relational databases without manual,
domain-specific engineering.

To this end, we implemented three complementary, fully automatic approaches
to discover task-relevant meta-paths. Although they share the same objective, each
approach targets a specific operating regime. It is therefore meaningful to present
all three side by side and compare them empirically, in order to clarify when each
method is the most appropriate choice.

For all three approaches, we take inspiration from Ferrini et al.[50]. Specifically,
our methods use their greedy meta-path construction skeleton as the backbone,
while differing in the criterion used to select the next relation to extend the current
meta-path.

As discussed in related work, the principal limitation of Ferrini et al.[50] technique
for meta-path selection is that it is tailored for binary classification. Meta-path
selection is formulated as a weighted multi-instance problem over positive and
negative bags and optimized with a logistic loss, which does not directly extend to
multi-class or regression settings without ad-hoc reductions (e.g., one-vs-rest) and
their attendant drawbacks. While the MPS framework can be generalized beyond
binary classification (e.g., by replacing the logistic MIL surrogate with regression
or multi-class variants) such a generalization opens a non-trivial design space. One
must decide how to form bags and weights, which surrogate to optimize (Huber/MSE
vs. pairwise ranking vs. cross-entropy), how to align the search objective with
the downstream metric (R2/MAE/AUROC), and how to control computational
cost and overfitting during iterative expansion. Rather than committing to a
single instantiation, we evaluate three fully automatic selectors that trade off
task-alignment, accuracy, and execution time: (i) a greedy, GNN-in-the-loop scorer
(task-aligned and faithful), (ii) an LLM-based greedy variant (simple and data-
efficient), and (iii) a reinforcement-learning policy with a task-aligned reward
(escaping greedy myopia and encouraging diversity). Presenting all three clarifies

28Across databases and tasks.

100

Proposed Method

when each is preferable (data-scarce vs. data-rich, strict compute budgets vs. higher
accuracy, stability vs. adaptivity) and avoids over-claiming that a single “natural
extension” suffices across databases and tasks.

This selection algorithm works very well and allow to take into consideration
not only an optimization algorithm29 for the call r∗ ← arg minr L(r), but also
the actual GNN model predictions, in this way we are able to give a much more
robust evaluation of the utility of each single relation in the metapath, and of each
metapath in the pool of the selected ones.

We retain the original hop-by-hop meta-path selection skeleton: at each step we
score all admissible relations and extend the current meta-path with the best one.

Algorithm 7 MPS-GNN metapath search learning
1: procedure LearnMPS-GNN(G,R,Y , Lmax, η)
2: mp∗ ← []
3: F ∗

1 ← 0
4: S ← Y
5: A← 1
6: while |mp| < Lmax do
7: r∗ ← arg minr∈R L(r)
8: if minr∈R L(r) ≥ ηinit(r) then
9: return mp∗

10: end if
11: mp← mp + {r∗} ▷ append r∗

12: gnn← Train(MPS-GNN(mp),G,Y)
13: F1 ← Test(gnn)
14: if F1 > F ∗

1 then
15: mp∗ ← mp
16: F ∗

1 ← F1
17: end if
18: A, S ← NewTargets(S, r∗)
19: end while
20: return mp∗

21: end procedure

This pseudocode summarizes the original metapath selection introduced by
Ferrini et al.[50]. Unlike their approach, we adopt an alternative criterion to
choose the current best relation r∗: we set r∗ ← arg minr L(r), where L(r) is
defined without resorting to a weighted multi instance classification surrogate and

29In the case of the original paper a weighter multi instance classification task.

101

Proposed Method

is therefore not restricted to binary classification. We then specify an extension
specific policy to instantiate L(r) and select the next relation:

(1) Greedy selection. For each candidate relation, we train the GNN model
for few epochs on the extended path and pick the relation that yields the largest
validation improvement on the downstream metric.

(2) LLM based selection. For each candidate, we build a temporally valid
textualization of the local subgraph and query an LLM for a task-oriented score;
we aggregate node/bag scores and select the highest one.

(3) Reinforcement learning selection. We cast relation selection as a
sequential decision making: a policy proposes the next relation, we observe the
validated gain with the extended path, and update the policy accordingly (with
controlled exploration and an early-stop when the marginal gain is negligible).
Diversity and compute constraints are explicitly encouraged.

This preserves the systematicity and universality of the metapath selection
process, while aligning the selection rule with the downstream objective and
practical constraints.

3.5.1 Extension 1: Greedy Meta-Path Selection by Direct
Validation

The original meta-path selection introduced by Ferrini et al.[50] selects the next
relation in a meta-path via a binary surrogate objective L(r) (weighted multi-
instance logistic loss over positive/negative bags). While fast, that surrogate
ties selection to binary classification and may introduce a mismatch between the
proxy and the task metric used at evaluation time. Extension 1 preserves the
robustness of greedy search while making it task-agnostic: at each step, this is
done by replaicing the surrogate with the actual model trained on each candidate
extension for few epochs and select the relation that optimizes the original validation
metric. This trades additional time and space for a faithful estimate of downstream
performance (classification or regression).

We keep the end-to-end pipeline intact (heterogeneous tabular encoding, tempo-
ral encoding, meta-path GNN, task head). The only change is the selection rule:
instead of

r⋆ ← arg min
r∈R

L(r),

where L(r) denotes the weighted multi-instance (MIL) binary objective used in MPS-
GNN, we instantiate and train XMetapath on the tentative metapath çmp = mp ∥ r,
score it on the validation split with a user-specified metric M, and set

score(r) =

maxeM(ŷ(e)
val, yval), (maximize)

mineM(ŷ(e)
val, yval), (minimize)

r⋆ ← arg max
r

score(r).

102

Proposed Method

where e indexes the (few) training epochs used for candidate evaluation.
Basically, starting from the current meta-path, we consider all admissible re-

lations that can further extend the current metapath and select the one that
maximizes the GNN’s validation performance after training for a few epochs.

In practice, we keep the MPS-style, hop-by-hop selection skeleton while aligning
evaluation to the downstream task.

Sequentially, we initialize singleton bags30 and carry them forward as the meta-
path grows, ensuring that instances and labels remain aligned. At each hop we
enumerate all admissible relations from the current node type and prune trivial
loops, immediate backtracking, domain-banned relations. For each surviving
relation we perform a viability check by tentatively expanding the bags31 along
that relation and discarding candidates that do not meet a minimum-coverage
criterion (min_bags); this avoids scoring relations that would provide too little
signal. The remaining candidates are then scored by direct validation: for each
relation we instantiate XMetaPath on the current meta-path extended with that
relation, train the model for a fixed budget of epochs (with early stopping), and
record the best validation score according to the chosen metric and its polarity
(higher- or lower-is-better). We commit the relation that achieves the best validated
improvement, update the meta-path and the propagated bags, keep track of the
best-so-far pair, and log every tested (path, score) into an accumulator for later
ranking. The procedure stops when no viable candidate remains or the maximum
length (Lmax) is reached; finally, we deduplicate the accumulator by path, keep
the best score per unique path, and return both the greedy winner and the Top-K
paths ranked by the selection metric.

Extension 1 preserves the MPS hop–by–hop backbone but drives each selection
with a validated improvement on the downstream metric after briefly training the
model on the extended meta–path. This makes the procedure task–aligned: the
same objective used at evaluation time is used to decide which relation to append.
The approach is simple to implement, reproducible, and naturally accommodates
binary, multi–class, and regression tasks by swapping the metric and loss while
keeping the selection logic unchanged.

At the same time, the method incurs non-trivial computational cost because
each candidate requires a short training run; if reused repeatedly, the validation
split can also become a source of overfitting, and the greedy nature of the search
may overlook combinations that pay off only at later hops. If each level evaluates

30At the beginning each bag contains the node-id of the seed nodes.
31By “expanding the bags” we mean taking one hop along the candidate relation r: each current

bag Bi (initially a singleton seed) is replaced by âBi = {u | ∃v ∈ Bi, (v r−→ u) ∈ E }. The label yi

is kept, instance weights/attentions (if used) are recomputed/normalized on âBi, and empty or
undersized bags are discarded (respecting direction and any temporal constraints).

103

Proposed Method

at most R candidates for E epochs, with a per-epoch training+validation cost
Ctrain, the total cost is O(LmaxRECtrain). This is higher than the surrogate-based
alternative, but yields selection signals that are faithful to the final objective and
support both classification and regression.

Note that this extension procedure does not scale to large datasets with many
tables, since the search space of one hop extensions explodes and the computational
cost becomes prohibitive.

3.5.2 Extension 2: LLM based selection
Large Language Models (LLMs) have achieved state-of-the-art results for many
tasks, such as reasoning[70], answering questions[71], summarizing texts[72], and
creating content[73]. These models have made significant strides in many different
fields due to their ability to process and generate human-like text[74].

That said, their application to predictive tasks in relational databases remains
largely unexplored. As noted by Solanki et al.[51], the primary challenge lies in
aligning fundamentally different data structures: textual vs. graph-based.

We believe that, once this representation problem is solved, LLMs could enable
accurate and explainable prediction over relational databases as well.

Previous works have tried to use LLMs to make predictions over relational
databases[75, 51]. Despite reaching state-of-the-art results, these approaches come
with some important drawbacks. For example, Wydmuch et al.[75] developed
a fascinating data structure that compresses all the relevant information from
the heterogeneous graph induced by the relational database, and this document,
together with the task description, is then passed to an LLM to make a prediction.
This approach demonstrates that LLMs can be effectively leveraged on RelBench-
style tasks, achieving competitive, often state-of-the-art, performance. However,
this approach shows two major drawbacks:

• It is not inherently transparent: the prediction is made by a pre-trained model,
and it is not easy to assess why a certain prediction has been made.

• The input context window passed to the LLMs could easily exceed the mod-
els’ context length, as relational databases usually include large amounts of
information and many records.

The solution we propose tries to solve both problems. In particular, we try
to keep the best of the two architectures (GNNs and LLMs) and allow for a
self-explainable model, while maintaining good predictive results and limiting the
context data passed to the LLM.

In particular, we decided to adopt LLMs to guide the meta-path selection,
but, at the same time, use only the information of the meta-path as context data
for the LLM.

104

Proposed Method

More specifically, we adopt the document instantiation of Wydmuch et al.[75],
but at selection time we restrict the prompt to the neighborhood reachable along the
meta-path under evaluation. This path-scoped context serves two purposes: it keeps
the prompt within the LLM’s context window and makes the score attributable to
the candidate relation r, because the model is asked to predict using only evidence
accessible through mp ◦ r. We do so for each admissible r. We then choose the
relation that maximizes this score.

We still use the XMetapath model for the actual learning and therefore maintain
good predictive capability and explainability, while using the LLM only to guide
the meta-path selection.

In our LLM–guided variant, we replace the selection of the next best relation r∗

with a single API call that evaluates the same candidate extension using a textual
view of the local subgraph. Concretely, for each admissible relation we serialize
the neighborhood induced by the current meta–path (respecting direction and
time constraints) into a compact prompt and ask the LLM for a score indicating
the usefulness of that relation. This eliminates the need to train a model for
every candidate, reduces GPU cycles to near zero within the selection loop, and,
because calls are independent, admits straightforward parallelization across all
one-hop extensions. Beyond speed, LLMs can exploit schema semantics and
human–readable attributes (names, descriptions, roles) that are otherwise ignored
by purely structural surrogates, which is particularly advantageous in data–scarce
regimes.

This substitution does not alter the end–to–end pipeline nor the explainable
nature of the predictor: the LLM is used only as a scorer to prioritize which
relations to explore next. In short, the LLM serves as a lightweight, parallel,
and schema–aware selector that accelerates meta-path discovery while remaining
compatible with our task–aligned evaluation and final, transparent GNN training.

Document Construction

Following Wydmuch et al.[75], we define a document in JSON format that includes
all the relevant information the LLM can use, considering a specific meta-path.
This document is then passed as context to the LLM to make a prediction for
several validation samples, and by comparing the prediction accuracy we choose
the relation that yields the best performance.

We use JSON because prior work shows that JSON performs well as a text
representation of tabular data for LLMs[75].

Following Wydmuch et al.[75], for any sampled seed node from the validation
set32 we build a different document. Each document consists of four components.

32Note that, for candidate scoring, we deliberately use only the validation split. The LLM is

105

Proposed Method

First, we include the task description. This description explains to the LLM the
kind of prediction we are trying to compute. For this reason, we simply use a
pre-stored task description provided by Robinson et al.[4]. These descriptions are
already clear about the specific task (e.g., “For each driver, predict if they will DNF
(did not finish) a race in the next 1 month.”). The second component in the context
document consists of some in-context samples, nmet training samples that give a
conceptual example of the task and of the relational database structure in terms of
primary–foreign key relations. For these nmet samples the label is also provided.
The third part of the document is the entity for which the prediction needs to be
made. Finally, we append a concise instruction that makes the expected output
format explicit. Unlike the original setup, where formatting was left implicit, this
yields consistent and well structured answers across calls and simplifies downstream
parsing and evaluation.

It’s important to notice that the nmet training samples are chosen to be balanced
across labels.

This process is executed for a specific path to be evaluated, and it is computed
for all the seed nodes of the validation set; then the predictive capabilities of
the LLM are used to assess the informativeness of the path.

In the second and third parts of the document, a denormalization process
is needed because much of the important information for the task is usually
stored along the links between rows. We should therefore follow links from foreign
keys to primary keys (as done by Wydmuch et al.[75]); instead, we apply meta-
path–guided denormalization, meaning that we stop the denormalization
process as soon as the paths in the evaluated meta-path end. Basically, we apply
denormalization only for the entities that the meta-path traverses through a relation.
This yields two important advantages:

• It lets us assess the informativeness of a meta-path: if applying meta-path
denormalization for one meta-path yields better predictive results than another,
the former is likely more informative for the task and should be selected.

• It limits the context window substantially, since we do not recursively de-
normalize along all foreign keys present in the schema,33 without exceeding

employed solely to rank meta–path extensions and never sees test instances or labels, nor does it
alter the training process. This keeps metapath selection on the same footing as hyperparameter
tuning and prevents data leakage: consulting the test set, or any future information, during
selection would amount to cheating and would invalidate the evaluation.

33Denormalization is inherently recursive: when traversing foreign keys for an entity A, we
often reach a node B of a different type that exposes further foreign keys to consider. This
quickly becomes memory–expensive as the number of primary–foreign key relations grows. In our
setting, we mitigate this by performing meta-path–guided denormalization: we restrict traversal

106

Proposed Method

LLM’s context limit.

It is important to ensure that the in-context samples are time-consistent to
avoid data leakage. Therefore, for every in-context example v, we require tv < tp,
where p is the entity for which we want to make the actual prediction.

Overview of the selection process

Algorithm 8 MPS-GNN metapath search learning
1: procedure LearnMPS-GNN(G,R,Y , Lmax, η, nmet, higher, task, metric, api_key)
2: mp∗ ← []
3: F ∗

1 ← 0
4: S ← Y
5: A← 1
6: while |mp| < Lmax do
7: r⋆ ← LLM_best_relation(mp, C, n_met, higher, task, metric, api_key)
8: if minr∈R L(r) ≥ ηinit(r) then
9: return mp∗

10: end if
11: mp← mp + {r∗} ▷ append r∗

12: gnn← Train(MPS-GNN(mp),G,Y)
13: F1 ← Test(gnn)
14: if F1 > F ∗

1 then
15: mp∗ ← mp
16: F ∗

1 ← F1
17: end if
18: A, S ← NewTargets(S, r∗)
19: end while
20: return mp∗

21: end procedure

Algorithm 8 outlines our LLM-guided procedure for meta-path discovery. The
routine LLM_find_best_relation (defined below) constructs the prompt,
invokes the LLM, and returns the next relation to append to the current meta-path.
For clarity, the pseudocode is presented in the single-meta-path setting; in our

to the relations specified by the meta-path under evaluation (mp or mp◦r) and cap the number
of neighbors per hop. This avoids the combinatorial blow-up of full denormalization, yielding a
lighter, size–predictable view that fits within the LLM’s context window while remaining aligned
with the task.

107

Proposed Method

implementation we use a beam search that keeps the top candidates at each hop
and returns multiple meta-paths rather than a single one.

Algorithm 9 LLM_best_relation
procedure LLM_find_best_relation(mp, C, n_met, higher, task, metric, api_key)

bestRel← None
if higher then

best← −∞
else

best← +∞
end if
for all r ∈ C do

m̃p← mp ◦ r ▷ try the extension
preds← [] ; gts← []
for all (target ∈ val_set of node_type) do

shots← TakeSamples(G, node_type, n_met) ▷ balanced
json← BuildJSON(G, m̃p, target, nmet, task, shots)
yhat← LLMCall(json, api_key) ▷ LLM call
if yhat /= None then

append yhat→ preds ; append Label(G, target)→ gts
end if

end for
s←Metric(preds, gts, metric)
if Better(s, best, higher) then

best← s ; bestRel ← r
end if

end for
return (bestRel, best)

end procedure

We denote by mp the current meta path and by C the set of admissible one
hop relation types. The integer nmet is the number of training examples used as
in context shots for each validation node. The flag higher ∈ {true, false} specifies
whether larger values of the validation metric are better. The variable task indicates
the prediction task (classification or regression) and is used by BuildJSON to
format the label space and the prompt. The symbol metric names the scalar
validation metric employed by Metric (for example AUROC for classification
or negative MAE for regression). The string api_key provides credentials for the
LLM call.

The algorithm also uses a handle to the heterogeneous graph G, the target node

108

Proposed Method

type node_type, and a validation set val_set ⊆ Vnode_type. For each candidate r ∈ C,
the tentative extension is m̃p = mp ◦ r, where ◦ appends r to the tail of mp. The
routine TakeSamples(G, node_type, nmet) returns nmet shots selected via stratified
sampling to preserve label balance. BuildJSON(G, m̃p, target, nmet, task, shots)
serializes the subgraph around target together with the shots into a compact
JSON prompt. LLMCall(json, api_key) queries the LLM with deterministic
decoding and returns a prediction yhat or None. Metric(preds, gts, metric) com-
putes a scalar score on the accumulated predictions and ground truths, and Bet-
ter(s, best, higher) compares scores according to the higher flag. The vectors preds
and gts store, respectively, the LLM predictions for each validation node and the
corresponding ground truth labels. The variables bestRel and best keep the current
argmax or argmin over candidates, initialized to −∞ if higher = true and +∞
otherwise.

Algorithm 10 BuildJSON
procedure BuildJSON(G, m̃p, target, nmet, shots)

shots← DEORMALIZE(G, shots, m̃p)
evt ← CollectNodeNeigh(G, m̃p, target)
evS ←Map

1
x→ CollectEvidence(G, m̃p, x), shots

2
doc← AssembleDocument(task, m̃p, evt, shots, evS)
return Serialize(doc)

end procedure

DEORMALIZE applies a metapath-based denormalization to the shotted
samples; CollectNodeNeigh extracts the neighborhood along m̃p for the node
for which we want to make the prediction and apply a de-normalization process
based on the metapath m̃p. It also ensures that neighborhood’s seed time satisfies
tex < tp, where "p" indicates the node_id for which we want to make the prediction.
AssembleDocument packs task info, meta-path string, target block, evidence,
and examples into a single JSON schema; Serialize emits the final JSON string
for the LLM. This produces a uniform, schema-aware prompt per validation target
and enables fair comparison across candidate relations.

Conclusions and limitation for LLM-guided extension The LLM-based
selector offers a pragmatic shortcut for meta-path discovery: instead of optimizing
a surrogate loss at each hop, we translate the meta-path–induced neighborhood
of a validation target into a compact JSON prompt and ask the model for a
task-oriented prediction. In practice, BuildJSON performs a meta-path–guided
denormalization of the graph, starting from the source entity, it follows the hops in
mp, while enforcing temporal consistency by keeping only rows with timestamp

109

Proposed Method

below a cut-off. For each target we include nmet training examples that are stratified
across labels, and for time-aware data we only sample examples with tex < tp.

Because calls are independent across candidates and targets, the procedure par-
allelizes naturally; it is also model-agnostic: any base LLM with a sufficient context
window can be substituted without changing the algorithm. In our experiments
we used an open-weights Llama-3–family model (70B, inference-only, 8k context,
deterministic decoding), with prompts comprising a compact JSON plus a short
instruction.

This extension is particularly attractive in low-data regimes34 and when schemas
carry rich, human-readable attributes: the LLM can exploit names, roles, or textual
fields that purely structural surrogates tend to ignore, delivering competitive
selection quality without training a scorer for every candidate. It also reduces
GPU usage within the selection loop to near zero and yields fast iteration, while
preserving the explainable nature of the final predictor, which remains a transparent
meta-path GNN trained and validated in the usual way.

At the same time, there are clear boundaries. The approach incurs monetary
cost if many large prompts are required, and adherence to a fixed token budget may
force aggressive truncation that dilutes signal. Results can be sensitive to prompt
design and, unless decoding is fixed and responses are cached, to stochasticity;
moreover, the JSON view inevitably abstracts away some structural nuance that
a task-aligned GNN might capture better in data-rich settings. In short, the
LLM-guided strategy is a strong choice when data are scarce, schema semantics are
informative, or rapid exploration is paramount; when abundant labeled data and
compute are available, a purely model-based selector (e.g., direct validation with a
lightweight GNN or a learned policy) may provide more stable and fine-grained
control at scale.

34By low–data regimes we mean settings in which labeled supervision is scarce or uneven (few
labeled nodes per class, pronounced class imbalance, limited validation budget, or cold start
entities appearing late in time), often coupled with sparse edges or noisy tabular attributes. In
these conditions, training a scorer for every candidate relation is brittle and compute–inefficient:
small datasets make inner-loop training unstable, amplify variance across seeds, and encourage
overfitting to the validation split.

The LLM–guided extension is preferable precisely because it replaces that inner optimization
with few–shot inference. The prompt pairs a compact, meta–path–scoped view of each validation
target with a handful of stratified training examples, allowing the model to leverage broad
linguistic priors and human–readable fields (names, roles, descriptions) that carry signal even
when the labeled graph is tiny. Selection quality remains competitive without fitting a new model
per candidate, GPU usage in the selection loop drops to near zero, and iteration is fast; at the
same time, the final predictor stays white–box, since we still train and validate a transparent
meta–path GNN once the paths have been chosen. In short, when labeled supervision is limited,
the LLM acts as an informative prior and a cheap oracle for ranking candidate extensions, making
this variant more stable and practical than training-based selectors under the same constraints.

110

Proposed Method

3.5.3 Extension 3: Reinforcement Learning based selection
Reinforcement learning (RL) has achieved great success in a wide range of AI
problems[76, 77, 78]. Motivated by these advances, several works have explored
using RL for meta-path discovery in heterogeneous graph settings; however, many
of them targeted link prediction problems [80, 79, 81]. Our goal, instead, is to
employ a reinforcement learning agent to infer the most meaningful relation from a
source object, without having to consider35 all possible extensions of the current
meta-paths (as in extension 1).

Using an RL agent, we aim to replace exhaustive train–validate loops with a
learned policy that steers evaluation toward promising candidates, reducing the
number of costly model training runs.

In this extension, we deliberately avoid relying on external, pre-trained large
language models or third-party services. Instead, the policy is learned end-to-end
from the task’s own validation signal, keeping the pipeline entirely in-house, self-
contained, and reproducible, with clear privacy and cost advantages. Crucially,
this design is also substantially faster: by steering evaluation toward promising
candidates and pruning unproductive branches early, it sidesteps the combinatorial
burden of exhaustively training and validating all possible relation combinations,
resulting in far fewer model runs, lower compute, and markedly shorter execution
time.

Reinforcement Learning architecture

Reinforcement learning models decision making as a Markov Decision Process
(MDP)M = (S,A, P, R, γ), in which an agent interacts with an environment to
maximize an expected cumulative reward. At each timestep t, the agent observes
a state St ∈ S, selects an action At ∈ A according to a policy π(a | s), the
environment transitions to St+1 and emits a reward Rt+1.

Formally, the components are:

• S, the (measurable) state space, which denotes the set of all possible states
the agent can be in;

• A, the action space, which is the set of all the possible actions an agent can
perform;

• P (· | s, a), a probability distribution on S specifying the transition dynamics
from s under a;

35By “consider” we mean training the XMetapath model and obtaining its validation score.

111

Proposed Method

• R(s, a, s′), the expected immediate reward when taking a in s and moving to
s′, i.e., R(s, a, s′) = E[rt+1 | st = s, at = a, st+1 = s′];

• γ ∈ [0,1), the discount factor, used for two complementary reasons:

1. Mathematical reason. Without discounting the sum of rewards can
diverge.

2. Practical/modeling reason. The future is uncertain: in practice we
assign less weight to rewards predicted to arrive in the far future than to
those in the present or near future, which are more controllable.

The Markov property states that, conditional on the current state and action,
the distribution of the next state and reward does not depend on past history: for
any ht = (s0, a0, . . . , st) and action at,

P(st+1, rt+1 | ht, at) = P(st+1, rt+1 | st, at).

We can summarize this formalism by saying that in a MDP the future is
independent of the past, given the present.

A (stochastic) policy maps states to probability. A policy fully defines the
behaviour of an agent in the environment. In this work we consider only the discrete
case: states are discrete metapath prefixes and, at each state, the set of admissible
actions is finite. Letting A(s) ⊆ A denote the legal actions in state s, we write

π : S → ∆(A(s)), π(a | s) = P(At = a | St = s),

with, for all s ∈ S,Ø
a∈A(s)

π(a | s) = 1, π(a | s) ≥ 0 ∀a ∈ A(s).

In our implementation, A(s) is the finite set of typed relations admissible from the
last destination type of the prefix.

The standard control objective is to maximize the expected discounted return

J(π) = Es0∼d0, π, P

5 ∞Ø
t=0

γt rt+1

6
,

and, in finite MDPs with discounted infinite horizon (γ < 1) or finite horizon, there
exists an optimal stationary policy π⋆ such that V π⋆(s) ≥ V π(s) for all s ∈ S and
all π.

A key challenge in RL is the reward signal: it provides the agent’s primary
learning feedback, yet rewards are often sparse (many actions yield no immediate
signal), delayed (benefits materialize only after several steps), and stochastic (the

112

Proposed Method

same state–action may produce different outcomes due to noise and uncertainty).
Consequently, credit assignment and exploration are central to effective learning,
as actions may have long term consequences and it may be better to sacrifice
immediate reward to gain more long-term reward (E.g. Refueling a helicopter
might prevent a crash several hours later).

Proposed solution

We propose a model-free RL approach to learn the most significant meta-paths
for a given task and database. In a model-free setting, we do not assume access to
the MDP’s transition dynamics or reward function. The agent interacts with the
environment, taking actions and learning directly from episodes of experience.

Figure 3.2: An overview of the proposed framework. At each timestep t, the agent
receives the current state of the environment (the current metapath) and selects an
action (the next relation to add to the metapath). The XMetapath model uses the newly
generated metapath as input, and the resulting performance gain is used to update the
agent.

More specifically, we use a model-free, tabular, off-policy Q-learning ap-
proach with Boltzmann (softmax) exploration.. We select actions according
to a Boltzmann/softmax policy over Q-values:

πτ (a | s) =
exp

1
Q(s, a)/τ

2
q

b∈A(s) exp
1
Q(s, b)/τ

2 ,

113

Proposed Method

where the temperature τ > 0 controls the exploration36–exploitation37 trade-off
(τ ↓ ⇒ greedier; τ ↑ ⇒ more exploratory). We anneal τ down in the final phase.

Annealing τ from a larger to a smaller value smoothly shifts the policy from
exploration to exploitation. We cast metapath construction as a finite-horizon
decision process in which the agent extends a metapath one relation at a time and
learns from actual apisodes.

A state s ∈ S is the current metapath prefix, i.e., an ordered list s = [e1, . . . , eℓ]
with ei ∈ E; the initial state is s0 = ∅. Given s, the set of legal actions (admissible
relations that can extend the prefix) is

A(s) =

 a = (src, rel, dst) ∈ E

src = last_dst(s),
dst /= start_type,

dst /∈ visited_dst(s)

 .

An action is any a ∈ A(s). Applying a induces the transition

s′ =


s⊕ a, if the extension has sufficient support (valid bags)

and passes early-stop checks,
s, otherwise (penalized no-op).

We model metapath construction as an episodic MDP. An episode starts from
an initial state s0 and ends upon reaching a terminal condition.

Episodicity is not a requirement of MDPs. In continuing tasks there are no
terminal states and the process runs indefinitely.

Our problem, instead, is naturally episodic because each episode constructs a
single metapath and then stops according to a termination rule.

Each episode starts at the empty prefix s0 = ∅ and terminates if one of the
following holds:

1. Length limit: |s| = Lmax. We provide the metapath discovery routine with
a hyperparameter Lmax that limits the metapath length, i.e., the maximum
number of relations allowed in a metapath. This limit is particularly useful
when overly long metapaths are known to degrade model performance (or
inflate computation), as it constrains the search to plausible candidates and
improves stability.

36Exploration is the purposeful selection of uncertain or seemingly suboptimal actions in order
to broaden the search space and discover potentially better solutions.

37Exploitation is the choice of the action that currently appears most valuable, aiming to
maximize the expected return based on existing knowledge.

114

Proposed Method

2. No legal actions: A(s) = ∅. This can occur because, at each iteration, we
exclude from the set of possible extensions any relation a = (src, rel, dst) for
which (i) src /= last_dst(s) (type mismatch), (ii) dst = start_type (return-to-
start forbidden), or (iii) dst ∈ visited_dst(s) (no revisits). Since candidates
are drawn from the actual typed edges exposed by edge_index_dict, if the
last destination type has no outgoing relations satisfying these constraints,
the admissible set becomes empty and the episode terminates. (Practically,
candidates that yield insufficient support, as in the case in which there are
too few valid bags, are penalized and skipped; repeated rejections can also
exhaust the viable options at this step.)

3. Early stop / patience: we terminate the episode if the last extension
produces a relative degradation larger than ε for higher-is-better metrics:
J(s′) < (1− ε) J(s); for lower-is-better: J(s′) > (1 + ε) J(s). Otherwise, we
keep a counter of consecutive non-improvements, where a step counts as a non-
improvement if the marginal gain does not exceed a small tolerance δ > 0: for
higher-is-better, ∆J := J(s′)− J(s) ≤ δ; for lower-is-better, J(s)− J(s′) ≤ δ.
The counter is reset whenever an improvement occurs. When the counter
reaches the patience budget P , the episode is stopped.38

It is important to note that the patience-based early stopping decouples the
nominal horizon Lmax from the effective metapath length chosen by the agent. At
step t, let ∆Jt := J(st+1) − J(st) (flip the sign for lower-is-better metrics). We
continue extending the prefix while ∆Jt > δ and no relative degradation beyond ε
occurs; otherwise we increment a counter of consecutive non-improvements. The
episode stops when the counter reaches the patience budget P (or when A(st) = ∅),
yielding the stopping time and the effective length L⋆ := |sτ |. Consequently, Lmax
can be set to a very large value (even conceptually unbounded) without over-
committing to long paths: the agent will automatically stop at the length that
is most beneficial given the data and task. This is particularly useful when the
optimal metapath length is dataset- and task-dependent; rather than hand-tuning
Lmax per setting, we let the procedure select L⋆ adaptively via the (ε, δ, P)
early-stop mechanism by setting Lmax to an high (or infinite) value.

Reward (marginal gain). Each step appends one relation to the current meta-
path. The environment responds by briefly training XMetapath on the candidate
path and measuring the task’s validation metric. The per-step reward is the metric

38In our final configuration we set P = 3. That is, if for three consecutive iterations the relation
chosen by the agent does not increase the validation score by more than δ (and does not violate
the degradation test above) we stop the episode.

115

Proposed Method

improvement induced by the chosen extension (for higher-is-better metrics we use
the metric as is; for lower-is-better metrics, e.g., MAE, we negate it) so that larger
means better. Intuitively:

“If adding this relation improves validation, give a positive reward; if it
worsens it, give a negative reward.”

In practice, after tentatively extending s with a and briefly training/evaluating
the downstream model, we obtain a validation score J(s⊕a). We define a step-wise
marginal reward:

r(s, a) =

J(s⊕ a)− J(s), if J is higher-is-better,
J(s)− J(s⊕ a), if J is lower-is-better.

If the extension yields too few valid bags, we assign a penalty r = −1 and stay in
the same state s′ = s.

Two practical adjustments improve robustness and budget control: (i) invalid
or weak expansions (e.g., too few valid bags or violated constraints) receive a fixed
penalty in lieu of training; (ii) a small per-hop length penalty encourages compact,
informative meta-paths under a fixed compute budget.

Q-learning update (bootstrapped). We maintain a tabular action-value
function Q(s, a), where Q(s, a) stores, for each encountered state–action pair
(s, a), a single number: the estimate of the action value, i.e., the expected
(discounted) return obtained if one takes that action in that state. We update
these value with the standard off-policy Q-learning rule:

Q(s, a) ← (1− α) Q(s, a) + α
5

r(s, a) + γ max
a′∈A(s′)

Q(s′, a′)
6
,

where α ∈ (0,1] is the learning rate and γ ∈ [0,1] the discount factor.

Warm-up (agent pretraining). Before the final discovery of top-X metapaths,
we run a warm-up phase in which a single RL agent is trained over multiple short
episodes to populate its Q-table with informative, data-driven priors. Each warm-
up episode starts from the empty prefix and proceeds step-by-step exactly as in
the main loop (same legality constraints, same marginal reward, same Q-learning
update), but with cheaper evaluations and more exploration: (i) we train/evaluate
the downstream model for only a few epochs (fast, noisy proxy of the validation
signal), (ii) we use a higher temperature τ in the Boltzmann policy to diversify
action selection, and (iii) we keep the same termination rules (length limit, no legal
actions, early-stop/patience). We use a single agent shared across episodes (so its

116

Proposed Method

Q-table accumulates experience), with warm-up settings such as num_episodes= 5,
epochs= 5, and a relatively high temperature (τ ≈ 1.0) together with a faster
Q-learning rate (α = 0.5). After warm-up, we always anneal the temperature to
promote exploitation and we reduce the learning rate for stability, before launching
the final RL episodes and the Top-x selection.

The warm-up has three main goals: (1) cold-start reduction: initializing Q(s, a)
from actual episodes avoids starting from a flat table (all zeros) and gives the policy
a sensible shape before the more expensive search; (2) variance reduction: multiple
(cheap) episodes average out the noise of short trainings, yielding more reliable
action preferences per state; (3) dataset-specific priors: the agent quickly adapts
to the graph’s local statistics (e.g., which relations tend to create well-supported
bags) without committing to long, costly episodes. Importantly, warm-up does
not decide the final metapaths: we discard the candidate registry collected during
warm-up and only retain the learned Q-values; the final phase then re-runs episodes
with lower τ and fuller evaluations to collect full-length candidates and perform
the Top-X diverse selection.

Top-X diverse metapaths (selection procedure). After the final RL episodes,
we obtain a registry of candidate metapaths with their best validation scores. Let
C be the set of unique candidates and let S(p) ∈ R denote the quality score of p
(the best validation metric observed for p across episodes; sign-flipped if the metric
is lower-is-better). Our goal is to return a set X ⊆ C that is both high-scoring and
diverse.

We rule out trivial redundancy by forbidding the selection of a metapath together
with any of its extensions (or, symmetrically, any prefix of it). Let a path be a
finite sequence of typed relations:

p = (e1, . . . , eL), q = (f1, . . . , fM), ei, fj ∈ E .

We say that p is a (proper) prefix of q, and write p ≺ q, if

L < M and ei = fi for all i = 1, . . . , L.

The no-prefix constraint requires that the returned set X contains no two paths
in a prefix relation:

∀ p /= q ∈ X : ¬
1
p ≺ q ∨ q ≺ p

2
.

During greedy selection, before adding a candidate p we check whether there
exists q ∈ X such that p ≺ q or q ≺ p; if so, we skip p. This filter is applied prior
to the MMR scoring step.

With this check we prevent returning both a pattern and its trivial extension
(e.g., A→ B together with A→ B→ C), which would convey nearly the same
semantic signal and reduce diversity.

117

Proposed Method

Among the remaining candidates, we apply a Maximal Marginal Relevance (MMR)
criterion that trades off score and dissimilarity. Let sim(p, q) ∈ [0,1] be a similarity
between paths (we use a prefix-overlap similarity):

sim(p, q) = #{matching positions from the start}
min(|p|, |q|) .

Given a diversity weight λ ∈ [0,1], at each iteration we add to X the candidate
that maximizes

MMR(p | X) = S(p) − λ ·max
q∈X

sim(p, q),

subject to the no-prefix constraint. λ controls the quality–diversity trade-off (λ = 0
reduces to top-X by score; larger λ promotes dissimilarity).

Conclusions (RL-based meta-path selection). The reinforcement-learning
variant casts meta-path construction as a finite-horizon decision process: the state
encodes the current prefix, actions are the admissible relations (plus an optional
Stop), and the reward is the validated improvement yielded by the extension. A
simple tabular Q-learning agent with Boltzmann exploration learns, across short
episodes, to steer evaluation toward promising candidates, while early stopping and
a final diversity-aware Top–X selection (e.g., via MMR) prevent redundant paths
and keep the outcome interpretable. In practice, this replaces many exhaustive
train–validate loops with a policy that focuses compute where it matters, remains
fully in-house (no external services), and preserves the white-box nature of the
final predictor, which is still a transparent meta-path GNN trained and validated
in the usual way.

This design works best when the search space is large or unevenly informative, so
that blindly training a candidate per hop is wasteful. By reusing experience across
episodes and adaptively balancing exploration and exploitation (via temperature
annealing), the agent typically requires fewer evaluations to surface high-quality and
diverse meta-paths, and it naturally adapts the effective length through patience-
based early stopping rather than a hard, problem-specific choice of Lmax. It is also
a sensible choice when privacy, cost, or platform constraints rule out LLM-based
scoring, since the entire loop depends only on the task’s own validation signal.

At the same time, RL introduces its own trade-offs. The reward can be noisy
(short training budgets), credit assignment is non-trivial, and performance can be
sensitive to hyperparameters such as learning rate, discount, temperature, and
patience; heavy reuse of a single validation split also calls for care (e.g., nested
validation) to avoid selection bias. In very small search spaces, or when evaluation
per candidate is cheap and stable, a direct-validation greedy/beam search may
be simpler and just as effective. Overall, the RL-based selector is a compelling

118

Proposed Method

middle ground: it avoids the monetary and context-window constraints of LLM
scoring, reduces redundant computation compared to exhaustive baselines, and
yields diverse, high-quality meta-paths, provided that the reward is stabilized,
invalid actions are masked, and the stopping criterion is well tuned to the task and
dataset.

119

Chapter 4

Experiments

In this chapter we present an empirical evaluation of the proposed models on
RelBench. We compare backbones under a unified pipeline and study the effect of
self-supervised pretraining strategies. All experiments are run with three random
seeds, and we report the mean and standard deviation across seeds.

Aims and Hypotheses
Our experiments evaluate three hypotheses. First, relational deep learning models
tend to outperform the non relational baseline across tasks and datasets, with
the largest gains precisely in tasks where the relational content is central to
prediction rather than peripheral. When the target mostly depends on interaction
patterns, multi hop dependencies, and cross entity constraints, relational inductive
bias and message passing improve learning by integrating complementary signals
across neighbors and relations, capturing higher order structure, and filtering
noise. By contrast, in regimes dominated by strong per entity attributes, where
most predictive information is already local, the advantage narrows and the graph
contributes only a small incremental signal. This perspective explains where we
expect the largest improvements and aligns with our empirical observations.

Second, pretraining yields a mild, yet consistent, improvement on downstream
performance. The gains are not dramatic on any single task, but they persist across
tasks and seeds, indicating a stable contribution to generalization.

Third, XMetaPath achieves competitive accuracy while providing explanations
that remain faithful to the underlying computations. Because XMetaPath is meta-
path based and self-explainable, it produces both local and global explanations:
a map of the exact relational routes that carried information to a decision and a
summary of which patterns matter across the dataset. Explanations are not an
afterthought, they are a first class output, inseparable from the prediction itself.

120

Experiments

In settings where interpretability is required, from auditing and accountability to
high stakes operations with a human in the loop, such transparency turns the
model into a tool that can be relied on in practice. Yet this clarity does not come
at the expense of predictive power. By selecting and weighting relational paths
with care, the model can rival black box alternatives, and in some cases surpass
them, precisely because the inductive bias keeps attention on the signals that truly
matters through the graph. What the model says it used is what it actually used,
and the path it traces is the path the data followed.

We follow an evaluation protocol that respects temporal causality and uses fixed
validation rules. All models share the same data splits, the same tuning budget,
and the same early stopping procedure.

We follow the RelBench[4] reference exactly in both evaluation and reporting.
For node regression tasks we use Mean Absolute Error (MAE) and we always
print three decimal digits (e.g., 3.870), matching the RelBench tables. For
node classification tasks we use ROC AUC and we always print two decimal
digits (e.g., 75.40), again as in RelBench. This fixed formatting makes our tables
directly comparable to the reference[4]. As usual, we annotate with ↑ metrics to be
maximized (ROC AUC) and with ↓ metrics to be minimized (MAE).

For node regression, following the RelBench evaluation protocol, we report
Mean Absolute Error (MAE), defined for ground truth yi and predictions ŷi on n
evaluation nodes as:

MAE = 1
n

nØ
i=1
|yi − ŷi|

For MAE, lower values indicate better predictions. The score is expressed in
the same unit as the target, so it can be read directly: if the target is lap time in
seconds, a MAE of 0.250 means the predictions are off by a quarter of a second
on average. To keep results strictly comparable, throughout the tables we report
MAE with three decimal digits, exactly as in RelBench.
For binary classification we evaluate how well the model ranks positive nodes
above negative ones using the area under the receiver operating characteristic curve
(AUC-ROC). Each sample receives a real valued score si and we conceptually sweep
a decision threshold t across the entire range to trace the trade off between true
positives and false positives. The rates are:

TPR(t) = TP(t)
P , FPR(t) = FP(t)

N .

Here, TP(t) denotes the number of true positives at threshold t, that is the
instances correctly classified as positive. FP(t) denotes the number of false positives,
that is the negative instances that are incorrectly classified as positive. P and

121

Experiments

N represent the total number of positive and negative instances in the dataset,
respectively.

Consequently, the True Positive Rate (TPR) corresponds to the proportion of
correctly identified positive cases over all actual positives, while the False Positive
Rate (FPR) measures the proportion of negatives that are mistakenly classified as
positive.

The area under the resulting curve equals the probability that a randomly drawn
positive node receives a higher score than a randomly drawn negative node,

AUC = Pr
1
s+ > s−

2
+ 1

2 Pr
1
s+ = s−

2
.

Values range from 0.50 for random ranking to 1.00 for perfect ranking. The
measure is ’threshold free’ because it aggregates performance over all possible
decision thresholds rather than fixing one. Moreover, since it depends only on the
ordering1, not on the absolute values, ROC AUC is typically stable under class
imbalance, which is common in our graphs. The metric evaluates ranking quality
rather than probability calibration.

4.1 Model selection

Table 4.1: Comparison on RelBench tasks. LightGBM and HGraphSAGE numbers are
those reported in the RelBench paper [4]. ↑ means higher is better, ↓ means lower is
better. Best results are highlighted in bold, as in the subsequent tables.

LightGBM HGraphSAGE HTG HGAT

REL F1
Driver Top 3 ↑ (ROC AUC) 73.92 ± 5.75 75.54 ± 0.63 75.49 ± 2.91 78.33 ± 2.14
Driver Position ↓ (MAE) 4.170 ± 0.137 4.022 ± 0.119 3.872 ± 0.151 3.983 ± 0.148
Driver DNF ↑ (ROC AUC) 68.56 ± 3.89 72.62 ± 0.27 75.35 ± 1.33 73.47 ± 1.07
REL TRIAL
Study Adverse ↓ (MAE) 44.011 ± 0.998 44.473 ± 0.209 47.809 ± 0.417 48.846 ± 0.302
Study Outcome ↑ (ROC AUC) 70.09 ± 1.41 68.60 ± 1.01 67.31 ± 2.64 67.07 ± 1.72
Site Success ↓ (MAE) 0.425 ± 0.003 0.400 ± 0.020 0.346 ± 0.091 0.360 ± 0.052
REL AVITO
User Clicks ↑ (ROC AUC) 53.60 ± 0.59 65.90 ± 1.95 65.98 ± 2.34 67.23 ± 2.02
User Visits ↑ (ROC AUC) 53.05 ± 0.32 66.20 ± 0.10 69.00 ± 1.35 66.69 ± 1.61
Ad Ctr ↓ (MAE) 0.041 ± 0.000 0.041 ± 0.001 0.039 ± 0.003 0.039 ± 0.003

1Note infact that this metric is equals to the probability that a randomly chosen positive
receives a higher score than a randomly chosen negative, AUC = Pr(s+ > s−). Any strictly
increasing transformation of the scores preserves this ordering and leaves AUC unchanged. The
ROC curve aggregates true positive rate and false positive rate across all thresholds; both are
rates normalized by the size of their classes, so AUC is typically insensitive to class imbalance.

122

Experiments

We compare four models. (1) A non relational baseline based on LightGBM[12],
which treats RelBench as a tabular prediction problem and does not perform any
explicit message passing2. The reported results for this model are directly taken
from the RelBench paper [4], where LightGBM serves as a strong non relational
reference point. (2) A relational deep learning baseline, HGraphSAGE, proposed
by Robinson et al.[4]; for this model we report the results exactly as released in
their work [4], which we use as our reference. (3) Our HeteroTemporal Graphormer
(HTG). (4) Our Heterogeneous Graph Attention Network (HGAT). All models are
evaluated under the same conditions, using the identical data processing pipeline.

The only difference in the training of the models is that, due to its memory
requirements, HTG was trained with a smaller batch size and neighbor fanout due
to attention memory requirements. In our default setup we use batch size 512 and
neighbor fanout 256, whereas for HTG we use batch size 32 and neighbor fanout
16; this can cap additional gains.
REL F1. Averaged across the three tasks, our attention–based models (HTG and
HGAT) improve over the tabular baseline by ≈ 7.6% and over the RDL reference
(HGraphSAGE) by ≈ 3.7%.3 The gains are consistent: HTG alone is slightly below
HGraphSAGE on Driver Top 3, but HGAT closes the gap and sets the best score,
while both models improve Driver Position and Driver DNF.
REL TRIAL. Performance is clearly task–dependent. The picture is mixed: our
models excel on Site Success (MAE reduced by 19.3% vs. LightGBM and 14.3% vs.
HGraphSAGE), but the tabular baseline remains stronger on Study Outcome and
Study Adverse.

In this database, a large fraction of the predictive signal resides in the textual
attributes of individual nodes. When a task depends on these fine grained local
details, relational aggregation has limited marginal value. Put differently, when
the question is “what kind of trial is this, how is it designed, what criteria and
outcomes does it describe,” the answer lies in the text fields attached to the specific
node rather than in its neighborhood. In such settings, the incremental value of
relational modeling in RDL over competitive tabular models is expected to be
modest and can even be negative when textual features already capture most of
the signal.

This perspective helps explain why, on Study Adverse and Study Outcome,

2LightGBM results are taken from RelBench. In this study, LightGBM is an automatic non
relational baseline: for entity classification and regression it is trained only on the raw features of
the single target entity table. No manual feature engineering is used; training and evaluation are
performed using a LightGBM architecture[12].

3Percentages are computed per task as relative improvement of the better of HTG/HGAT
with respect to the baseline, using higher–is–better for ROC AUC and lower–is–better (relative
error reduction) for MAE.

123

Experiments

non relational baselines such as LightGBM remain ahead. For these tasks the
decisive signals are concentrated in local textual attributes of nodes, and the graph
does not add stable or reusable context, which can even make relational models
more prone to overfitting. In contrast, on Site Success the situation reverses: here
relational information is essential, since site performance reflects patterns shared
across studies, sponsors, facilities, and eligibility populations, which can only be
captured by graph aggregation.

REL AVITO. Here the advantage is pronounced. Our models attain the best
score on all three tasks, with average improvements of ≈ 20.1% over LightGBM
and ≈ 3.7% over HGraphSAGE; HGAT leads on User Clicks, HTG on User Visits,
and both reduce MAE on Ad CTR. 4

Overall, the evidence points to a clear dependency on the nature of the task.
When the target hinges on relational structure, models that aggregate along the
graph unlock substantial gains; when the signal is concentrated in rich local
attributes, especially text fields attached to a single node, tabular models remain
difficult to surpass. In the few settings where we do not observe improvements,
the pattern is consistent with a regime in which the decisive information resides
within the node itself rather than in its connections, leaving limited headroom for
additional relational computation to add value.

Equally important, the value of relational modeling is not only about surpassing
tabular baselines on test performance. It lies, above all, in making relational
reasoning automatic and systematic. Instead of hand crafting features for every
new domain, curating joins by intuition, and encoding expert knowledge case by
case, a single well designed relational pipeline can read the graph as it is and let
structure do the heavy lifting. No domain lore is required to tell the model which
interactions to trust or which paths to follow. The same machinery discovers,
weights, and composes relations across problems, and it does so consistently. Thus,
even when accuracy margins are narrow, the advantage is profound: a pipeline that
travels from dataset to dataset, transforming webs of entities into usable signal
without custom feature engineering, and solving relational problems end to end in
an entirely automatic manner.

Because reusability and automation are central to this claim, we now turn from
predictive accuracy to human effort. In the next section, we compare the expert
data scientist workflow with the relational pipeline, quantifying the marginal hours
of human work and the lines of code required to solve a new task under a fixed
infrastructure.

4Percentages are computed per task as the relative improvement of the better of HTG or
HGAT with respect to the baseline, using higher is better for ROC AUC and relative error
reduction for MAE.

124

Experiments

4.1.1 Human effort
The RelBench[4] study shows that moving from a tabular workflow with manual
feature engineering to a relational deep learning approach reduces the effort required
to solve any given task.

Following RelBench, we report the marginal hours of human work: the number
of hours of human work required to solve any new task, excluding all the reusable
infrastructure (e.g., data loading logic and training scripts)[4]. In other words, it
is the task specific effort a practitioner must invest to take a new task from the
raw database to a trained model under a fixed infrastructure, with all reusable
components excluded. For the tabular pipeline, in RelBench [4] this is measured
as follows: an experienced data scientist executes a five step tabular workflow,
namely EDA5 capped at four hours, one hour of feature ideation, SQL feature
engineering with time unconstrained but recorded, model training using a provided
LightGBM script with comprehensive hyperparameter tuning that searches up to
ten settings, and an optional post hoc inspection; shared tooling is not counted.
For the relational pipeline, only the small task specific supervision specification
and the schema mapping stored in the training table are counted, since the loader,
temporal sampler, trainer, and evaluation scripts are reused among all tasks.

Under this protocol RelBench reports 12.3 ± 1.6 hours per task for the data
scientist workflow versus approximately 0.5 hours for RDL, with the RDL solutions
consistently under one hour.

For relational deep learning, we follow the RelBench definition and compute the
average number of hours required across our implemented relational models under
the same fixed infrastructure, and we observe no significant differences from the
results reported by RelBench. This outcome is expected because all our relational
backbones reuse the same loader, temporal sampler, trainer, and evaluation scripts
described in the RelBench study, while only the supervision specification and the
schema mapping are task specific.

Finally, we take the RelBench estimates for the “data scientist” workflow at
face value. Independently verifying them would be impractical: it would require
recruiting an experienced data scientist for each new task, and carefully controlling
for background, tool familiarity, and time allocation; even then, results would
depend on practitioner specific choices and heuristics. Different experts would
plausibly make different design decisions and achieve different times or scores,
undermining comparability across tasks. For these reasons, we adopt the RelBench

5EDA stands for Exploratory Data Analysis, the initial phase in which the data scientist
quickly explores the dataset and the task to understand the schema, variables, distributions,
outliers, and missing values; clarifies the seed time and temporal splits; and produces simple
visualizations and checks before any feature engineering or modeling.

125

Experiments

figures as the reference point.

Table 4.2: Human work for our tasks under the RelBench user study setting.

0 5 10 15

driver-top3

driver-dnf

study-outcome

Hours human labor for node classification tasks

RDL Data Scientist

0 5 10 15

site-success

study-adverse

driver-position

Hours human labor for node regression tasks

Overall, we observe an average 96% reduction in the hours of human work for
RDL compared to the data scientist workflow.

Relbench[4] also measured the cost in terms of lines of code measured as
number of lines a practitioner must write to solve a new task, with all reusable
components excluded. The tabular workflow counts the EDA and SQL scripts
and the manipulations required to feed the provided LightGBM script. For the
relational pipeline, only the small specification of training supervision and the
schema mapping stored in the training table are counted. Shared infrastructure is
excluded in both cases.

Consistent with the previous table, we follow the same protocol for the lines-
of-code metric: for RDL, we report the mean number of lines required across our
implemented relational models under the fixed infrastructure; for the data scientist
workflow, we adopt the figures reported by RelBench without modification.

The figure below reproduces the RelBench comparison for the tasks we study.

126

Experiments

Table 4.3: Lines of code for our tasks under the RelBench user study setting.

0 200 400 600 800 1,000

driver-top3

driver-dnf

study-outcome

Lines of Code for node classification tasks

RDL Data Scientist

0 200 400 600 800 1,000

site-success

study-adverse

driver-position

Lines of Code for node regression tasks

We can clearly observe that the RDL pipeline requires far fewer lines of code,
reflecting its ability to reuse common components and automate the end to end
workflow.

Given these findings, one might expect that the additional complexity of the
tabular workflow (manual feature ideation and bespoke SQL feature construction)
would translate into clear performance gains. Yet the evidence says otherwise:
RDL achieves higher test set performance on most tasks, as reported by Robinson
et al. [4].

These results show that relational deep learning turns a pipeline into something
we can carry from one problem to the next. Once the schema is mapped, the same
loader, the same temporal sampler, the same trainer and evaluation can be used
again, so the work that usually dissolves at every new task becomes a lasting asset.
Reuse is no longer a hope, it is the default: models change, configurations
change, but the pipeline remains.

At the same time, the relational approach reduces what must be built by hand.
There is less bespoke code, fewer fragile transformations, fewer places where leakage

127

Experiments

can slip in. The path from raw database to a reliable model grows shorter and
cleaner; teams spend their time asking better questions rather than stitching
together joins and summaries. Consistency follows from this discipline. Results
become easier to compare across tasks and seeds, decisions are documented in
configuration rather than scattered across scripts, and the distance between an
idea and its test narrows.

In practical terms, the pipeline becomes easier to maintain, easier to audit, and
easier to extend. New tasks arrive and are absorbed with small, local choices rather
than with weeks of invention. The structure already present in the database carries
more of the load, so the system scales with the data rather than with the number
of hand crafted features. Less code, fewer surprises, better predictions: this is the
quiet advantage that these results make visible.

4.2 Pre-training strategies

We now turn to the results obtained with the pretraining strategies described
earlier. Our aim is to understand when pre-training helps, how large the gains are
in practice, and where it falls short. We proceed by examining each strategy in
turn.

We do not report results for masked attribute prediction (MAP) pre-training
because, in our setting, it produced no measurable gains on downstream tasks
and remained within the variance across seeds. In our setting, infact, pretraining
rests on reconstructing node features, yet many of these features are only weakly
relational, often metadata or local signals with little connection to edge dynamics.
The reconstruction objective then rewards statistical shortcuts, type averages and
co occurrence patterns, rather than forcing the encoder to capture the mechanisms
that govern interactions over time. The model optimizes feature fidelity, not
structure, and the gain does not transfer to downstream tasks. Put simply, we are
searching for relations by reconstructing attributes that do not tell the story of the
relations, and the voice of the graph remains in the background.

128

Experiments

4.2.1 Edge Dropout

Table 4.4: Effect of EdgeDrop on RelBench tasks. LightGBM and HGraphSAGE
numbers are from the RelBench paper[4].

LightGBM HGraphSAGE HTG HGAT
orig. EdgeDrop orig. EdgeDrop orig. EdgeDrop

REL F1
Driver Top 3 ↑ (ROC AUC) 73.92 ± 5.75 75.54 ± 0.63 75.48 ± 0.41 75.49 ± 2.91 76.30 ± 2.05 78.33 ± 2.14 80.35 ± 1.81

Driver Position ↓ (MAE) 4.170 ± 0.137 4.022 ± 0.119 3.910 ± 0.120 3.872 ± 0.151 3.871 ± 0.127 3.983 ± 0.148 3.980 ± 0.134
Driver DNF ↑ (ROC AUC) 68.56 ± 3.89 72.62 ± 0.27 73.11 ± 0.98 75.35 ± 1.33 76.60 ± 1.11 73.47 ± 1.07 72.61 ± 0.36

REL TRIAL
Study Adverse ↓ (MAE) 44.011 ± 0.998 44.473 ± 0.209 44.851 ± 0.391 47.809 ± 0.417 50.802 ± 0.271 48.846 ± 0.302 50.934 ± 0.289

Study Outcome ↑ (ROC AUC) 70.09 ± 1.41 68.60 ± 1.01 68.58 ± 0.65 67.31 ± 2.64 67.88 ± 2.01 67.07 ± 1.72 67.30 ± 0.49
Site Success ↓ (MAE) 0.425 ± 0.003 0.400 ± 0.020 0.382 ± 0.011 0.346 ± 0.091 0.343 ± 0.072 0.360 ± 0.052 0.350 ± 0.055

REL AVITO
User Clicks ↑ (ROC AUC) 53.60 ± 0.59 65.90 ± 1.95 66.68 ± 1.88 65.98 ± 2.34 66.19 ± 2.15 67.23 ± 2.02 67.98 ± 1.64
User Visits ↑ (ROC AUC) 53.05 ± 0.32 66.20 ± 0.10 66.10 ± 0.14 69.00 ± 1.35 69.15 ± 1.12 66.69 ± 1.61 66.45 ± 1.20

Ad Ctr ↓ (MAE) 0.041 ± 0.000 0.041 ± 0.001 0.041 ± 0.001 0.039 ± 0.003 0.038 ± 0.002 0.039 ± 0.003 0.038 ± 0.002

EdgeDrop is enabled only during training and disabled at validation and test. With
p = 0.3 on REL F1, p = 0.1 on REL TRIAL, and p = 0.15 on REL AVITO, it
delivers small yet consistent gains: on average, about one percentage point in ROC
AUC for classification and ranking, and roughly a one to two percent reduction in
MAE for regression. The effect is neutral to positive across GNN backbones, with
only occasional small regressions, and it adds no inference overhead and negligible
training overhead. While EdgeDrop generally improves robustness by preventing
over-reliance on specific edges, we observe a degradation in the Study Adverse
(MAE) task. This task appears to rely on localized and informative relations that
are partially removed during regularization, reducing the model’s ability to capture
fine-grained dependencies.

Since EdgeDrop acts primarily as a structural regularization mechanism, large
performance shifts are not expected when the model does not exhibit clear signs
of overfitting. In our experiments, training and validation scores are already
well aligned, suggesting that the base models generalize adequately even without
additional regularization. Consequently, EdgeDrop mainly provides small but
consistent gains by improving robustness and stability rather than producing major
accuracy jumps.

129

Experiments

4.2.2 Variational Graph Auto-Encoder (VGAE) pre-training

Table 4.5: Effect of VGAE pre-training on RelBench tasks.

LightGBM HGraphSAGE HTG HGAT
orig. VGAE orig. VGAE orig. VGAE

REL F1
Driver Top 3 ↑ (ROC AUC) 73.92 ± 5.75 75.54 ± 0.63 75.81 ± 0.85 75.49 ± 2.91 76.30 ± 2.15 78.33 ± 2.14 80.56 ± 1.98

Driver Position ↓ (MAE) 4.170 ± 0.137 4.022 ± 0.119 3.850 ± 0.134 3.872 ± 0.151 3.870 ± 0.202 3.983 ± 0.148 3.944 ± 0.076
Driver DNF ↑ (ROC AUC) 68.56 ± 3.89 72.62 ± 0.27 73.60 ± 0.38 75.35 ± 1.33 76.55 ± 1.74 73.47 ± 1.07 74.05 ± 0.67

REL TRIAL
Study Adverse ↓ (MAE) 44.011 ± 0.998 44.473 ± 0.209 43.512 ± 0.651 47.809 ± 0.417 48.184 ± 0.626 48.846 ± 0.302 48.202 ± 0.285

Study Outcome ↑ (ROC AUC) 70.09 ± 1.41 68.60 ± 1.01 68.55 ± 1.51 67.31 ± 2.64 67.91 ± 3.57 67.07 ± 1.72 68.32 ± 1.21
Site Success ↓ (MAE) 0.425 ± 0.003 0.400 ± 0.020 0.370 ± 0.022 0.346 ± 0.091 0.340 ± 0.061 0.360 ± 0.052 0.359 ± 0.074

REL AVITO
User Clicks ↑ (ROC AUC) 53.60 ± 0.59 65.90 ± 1.95 66.75 ± 3.19 65.98 ± 2.34 66.35 ± 3.12 67.23 ± 2.02 68.05 ± 1.57
User Visits ↑ (ROC AUC) 53.05 ± 0.32 66.20 ± 0.10 66.35 ± 0.91 69.00 ± 1.35 69.31 ± 2.21 66.69 ± 1.61 66.77 ± 0.98

Ad Ctr ↓ (MAE) 0.041 ± 0.000 0.041 ± 0.001 0.041 ± 0.004 0.039 ± 0.003 0.038 ± 0.003 0.039 ± 0.003 0.038 ± 0.002

VGAE pretraining produces modest but generally positive gains, with the largest
effects on REL F1 and on REL AVITO. On average, we observe about one
percentage point improvement in ROC AUC for classification and roughly one to
two percent reduction in MAE for regression, with only modest variability across
backbones.

A plausible explanation is that VGAE shapes the encoder toward structural
and temporally consistent patterns, improving initialization and robustness, but
its link-reconstruction objective is only partially aligned with downstream goals.
Gains are therefore larger when relational structure is highly informative or labels
are scarce or noisy, and smaller when node features already carry most of the signal.
Occasional regressions likely reflect mismatches between the pretraining objective
and the task, or backbone-specific sensitivities.

The task appears relatively easy in our setting, as the VGAE pretraining quickly
reaches very low reconstruction loss. This suggests a ceiling effect with limited
headroom for representation learning. When the encoder already models most
edges with high confidence, the pretraining objective provides diminishing returns
for downstream tasks. In such cases, modest gains are expected.

4.3 XMetaPath model

We now compare the predictive performance on the test set, placing our black-box
architectures alongside the self explainable model (XMetaPath), to assess whether
the pursuit of explainability diminishes the model’s predictive capacity.

130

Experiments

Table 4.6: Comparison of our black-box attention backbones (HTG, HGAT) with the
XMetaPath self-explainable model. Metrics follow RelBench: ROC AUC is reported with
two decimals and MAE with three.

HTG HGAT XMetaPath

REL F1
Driver Top 3 ↑ (ROC AUC) 75.49 ± 2.91 78.33 ± 2.14 82.50 ± 3.31
Driver Position ↓ (MAE) 3.872 ± 0.151 3.983 ± 0.148 3.760 ± 0.175
Driver DNF ↑ (ROC AUC) 75.35 ± 1.33 73.47 ± 1.07 78.43 ± 1.33

REL TRIAL
Study Adverse ↓ (MAE) 47.809 ± 0.417 48.846 ± 0.302 47.350 ± 0.514
Study Outcome ↑ (ROC AUC) 67.31 ± 2.64 67.07 ± 1.72 67.31 ± 1.78
Site Success ↓ (MAE) 0.346 ± 0.091 0.360 ± 0.052 0.369 ± 0.055

REL AVITO
User Clicks ↑ (ROC AUC) 65.98 ± 2.34 67.23 ± 2.02 62.81 ± 2.87
User Visits ↑ (ROC AUC) 69.00 ± 1.35 66.69 ± 1.61 62.57 ± 2.26
Ad Ctr ↓ (MAE) 0.039 ± 0.003 0.039 ± 0.003 0.038 ± 0.003

Prior to analyzing these results, is important to note that in the rel avito task,
which has the largest number of entities, running the metapath selection with the
same hyperparameters used for the other tasks proved computationally onerous,
requiring substantial GPU resources and long runtimes. Even Extension 3, which
is our default and generally the most efficient variant6, was affected by these
constraints: we could only run a minimal configuration, limiting the number of
episodes and enforcing Lmax = 2. We chose this cap because the bag extension
phase was the most computationally demanding component of the entire pipeline.

This curtailed search likely limited the discovery of stronger metapaths. Conse-
quently, performance on this dataset, especially for the classification tasks, does
not appear to exceed that of the black box models. In short, the performance gap
observed on the REL AVITO dataset is plausibly a consequence of the reduced
compute budget rather than an intrinsic limitation of the self-explainable approach.

Regardless of point gains, what matters is that XMetaPath competes with, and
often surpasses, black box attention backbones, yet every decision comes with a
readable trail. By routing information along a small set of learned meta paths, the
model focuses on relations that carry signal and ignores detours that add noise.
This selective routing acts like a structural prior that sharpens learning rather than
constraining it, which helps explain why accuracy rises while explanations remain

6By contrast, Extension 2 was not viable on rel avito because the dataset complexity inflated
the prompt length beyond the token limits of the free LLM API.

131

Experiments

faithful.
The result is a model that we can trust in two senses at once. It performs at the

level of strong black box alternatives, and it shows its work. For each prediction we
can see which relational routes contributed and by how much, and by aggregating
these attributions we obtain a global map of the patterns that matter across the
dataset. This makes audits, error analysis, and threshold selection practical, and it
turns distribution shifts into visible changes in which paths the model relies on.

Crucially, the metapaths are discovered automatically from the source database.
The pipeline explores the relational schema under temporal constraints, proposes
candidate relation sequences, and learns which ones improve validation performance.
No handcrafted features are required and no domain knowledge is needed to specify
which interactions to test. A single well designed pipeline can be applied as is to
a new graph, learn the useful metapaths, assign their weights, and deliver both
predictions and explanations in a fully automatic and systematic way.

In our implementation, the metapaths used for the reported results come from
Extension 3, which employs reinforcement learning to explore the space of relation
sequences. An agent walks the graph one relation at a time, receives reward from
validation gains and parsimony, and learns to favor the routes that consistently
carry signal. This yielded the most meaningful and discriminative meta paths in
our setting. Extension 2, the LLM guided search, was robust and extremely fast,
but tended to surface less informative metapaths. We attribute this limitation to
the constrained context window available in the free tier of the API, which makes
it difficult to reason over longer or more intricate relational motifs. In addition, for
several tasks this extension was infeasible because the required prompts exceeded the
LLM API’s token limits. Extension 1 achieved accuracy comparable to Extension
3, but it required considerably more time to decide on the meta paths, since it had
to sift through a broad search space with little guidance. In short, reinforcement
learning gave us a principled way to turn structure into policy, letting the model
discover the routes that matter with both efficiency and clarity.

132

Chapter 5

Conclusions

This work began with a simple question: if data arrive already relational, why tear
apart and discard the relational fabric that gives them meaning?

Is it worth flattening a living web of relations into a silent grid of columns merely
to remain within the comfort of tabular models?

Inspired by Robinson et al.[4], we question those assumptions and pursue
an alternative that keeps the relational fabric intact and learns directly from it.
We build on their work and contribute a practical pipeline, two attention based
backbones, an interpretable meta path model, a reinforcement learning procedure
for automatic meta path discovery, and an empirical study of self supervised
pretraining techniques.

To keep relational structure alive, we need a language that can say who is who,
how they connect, and when. The heterogeneous temporal graph is that language.
It preserves entity types, states relations explicitly, and anchors every fact to its
moment in time. Nothing is flattened, nothing inferred by convenience; keys stay
keys, links stay links, time stays ordered. Among data structures it is, arguably,
the only one that can model these data without giving up information.

A graph gives us the representation, but we still need a way to act upon it.
Graph neural networks provide that way. They define learnable functions on nodes
and edges, pass messages along typed relations, and compose evidence across
time. Because they operate on the graph directly, they keep types distinct, respect
temporal order, and capture both local detail and global context. In practice this
turns the database into a machine that learns over structure without handcrafted
joins or summaries.

The goal of this thesis has been to explore a spectrum of relational models
and design choices, to investigate self supervised pre-training, and to fuse these
elements into a robust, reusable pipeline that delivers strong accuracy, together
with other desirable qualities, such as systematicity, automation, and, most notably,
interpretability.

133

Conclusions

Within the RelBench protocol [4], we benchmark against the established reference
models: a tabular learner, LightGBM, and a relational deep learning backbone,
HGraphSAGE. Moving from tabular to relational learning not only reduces manual
feature work, it also raises performance whenever the signal is truly relational.
Building on these baselines, our self attention models, HTG and HGAT, form a
sensible next step. They consistently match or surpass the tabular reference and
improve on the relational baseline of Robinson et al.[4], delivering higher accuracy
while preserving automation and robustness.

Pretraining contributes a mild but steady lift, not spectacular on any single task
yet present across tasks and seeds.

Finally, we wanted a model that does not only predict, it shows its work.
With XMetaPath, explanations are native to the computation: each prediction
arrives with the meta-paths that carried the signal, their learned weights, and
the contribution of the relations within each path. No after the fact tricks, no
surrogate rationalizations. And this clarity does not diminish performance; it often
helps it. The relational inductive bias concentrates learning on the routes that
truly matter; we believe this is why, in our experiments, accuracy rises as the
explanations sharpen. In short, a system built for results and for explainability,
where accuracy and understanding travel together.

Crucially, the meta paths that support these explanations are not handcrafted;
they are discovered automatically from the source database. In our experiments
the most meaningful and discriminative routes come from Extension 3, which uses
reinforcement learning to walk relation sequences under temporal constraints and
rewards those that lift validation while requiring fewer short training runs to obtain
validation signals. Extension 2, the LLM guided search, proved robust yet tended to
surface less informative routes, a limitation we attribute to small prompt window of
the free API. Extension 1 reached comparable accuracy but requires too much time
to select routes, since it sifted a very broad search space with little guidance; its
cost grows sharply with schema size and number of relations, making it impractical
for schemas with many tables.

There are limits and there is room to grow. First, we can explore cross database
pre training, where a model is trained on a large source schema and then fine
tuned on each downstream graph. This may yield stronger invariances, better
sample efficiency, and more stable transfer across domains. Second, we can make
meta path selection faster and more efficient, replacing heavy searches with light
weight policies. Extension 2 was designed precisely for this goal, replacing heavy
searches with fast and parallelizable LLM calls. Future work should test it with
LLMs that offer a larger context window and richer prompts. Third, in the current
XMetaPath the parameter X that controls the number of meta paths is fixed
a priori and chosen before execution; yet the appropriate value should be task
dependent and data dependent, and it is not easy to tune reliably. Finally, we

134

Conclusions

can leverage large language models to produce high level predictions and human
friendly explanations by verbalizing the selected meta paths and by providing a few
representative node instances as structured context for the language model. This
follows recent work that uses verbalized metapaths as contextual augmentation for
LLMs[51], which we can adapt to our domain, turning the selected meta paths,
their learned weights, and a few exemplar neighbors into compact narratives that
reveal where the model looked, why those relations mattered, and how each strand
of evidence nudged the prediction, offering the end user a clear, faithful, and human
readable view of the reasoning, along with gentle what if reflections on what could
have shifted the outcome.

Relational databases are not just everywhere, they are the quiet infrastructure
beneath our daily decisions. They store facts with care, relate entities with purpose,
and speak a language, SQL, that lets us ask precise questions across time and
tables. In this medium, data carry two kinds of meaning at once: local attributes
that describe each record, and structural constraints that bind records together. It
is a world that is both granular and connected, immediate and relational.
Whoever learns to use both facets at once can turn ubiquity into advantage.

Relational modeling is not only about surpassing tabular baselines; it is about
making relational reasoning automatic and systematic, about having a consistent
answers for all problems. A single well designed pipeline can be applied
unchanged to a new graph, learn which routes matter, assign their weights, and
deliver predictions with reasons, without domain knowledge and without bespoke
feature engineering.

This is the promise we explore: to replace manual, domain heavy flattening with
a pipeline that reads the graph as it is, learns from it directly, and returns predictions
with reasons. We compare strong tabular baselines with relational backbones, study
self supervised pretraining, and introduce XMetaPath, a self-explainable model that
learns which routes matter and shows its work. The goal is to build an automatic
and systematic pipeline that delivers strong predictive performance while keeping
the reasoning transparent by design and directly accessible, so the model exposes
its logic and provides faithful local and global explanations, ensuring that every
prediction arrives with a traceable rationale and competitive test scores.

We end where we began. A database is more than a store of records; it is a living
weave of facts and relations, of detail and shape. When learning respects both,
it does more than predict: it brings causal structure into focus. Temporal order
and relational constraints become visible, revealing patterns a flat table would
otherwise hide. In that fidelity we find not only stronger predictions, but also the
shape of cause and effect coming into focus.

135

Bibliography

[1] Kristi Berg, Dr. Tom Seymour, and Richa Goel. «History Of Databases».
In: International Journal of Management Information Systems (IJMIS) 17
(Dec. 2012), p. 29. doi: 10.19030/ijmis.v17i1.7587 (cit. on p. 1).

[2] Alistair E W Johnson et al. «MIMIC-III, a freely accessible critical care
database». In: Scientific data 3.1 (2016), pp. 1–9 (cit. on p. 1).

[3] Vijay Prakash Dwivedi, Charilaos Kanatsoulis, Shenyang Huang, and Jure
Leskovec. Relational Deep Learning: Challenges, Foundations and Next-
Generation Architectures. 2025. arXiv: 2506.16654 [cs.LG]. url: https:
//arxiv.org/abs/2506.16654 (cit. on p. 1).

[4] Joshua Robinson et al. RelBench: A Benchmark for Deep Learning on
Relational Databases. 2024. arXiv: 2407.20060 [cs.LG]. url: https://
arxiv.org/abs/2407.20060 (cit. on pp. 1, 2, 4, 5, 7, 47, 58, 79, 106,
121–123, 125–127, 129, 133, 134).

[5] Tianqi Chen and Carlos Guestrin. «XGBoost: A Scalable Tree Boosting
System». In: Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. KDD ’16. ACM, Aug. 2016,
pp. 785–794. doi: 10.1145/2939672.2939785. url: http://dx.doi.org/
10.1145/2939672.2939785 (cit. on pp. 2, 8, 9).

[6] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong
Ma, Qiwei Ye, and Tie-Yan Liu. «LightGBM: A Highly Efficient Gradient
Boosting Decision Tree». In: Advances in Neural Information Processing
Systems. Ed. by I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett. Vol. 30. Curran Associates, Inc., 2017.
url: https://proceedings.neurips.cc/paper_files/paper/2017/
file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf (cit. on p. 2).

[7] Veronica Lachi, Antonio Longa, Beatrice Bevilacqua, Bruno Lepri, Andrea
Passerini, and Bruno Ribeiro. «Boosting Relational Deep Learning with
Pretrained Tabular Models». In: arXiv preprint arXiv:2504.04934 (2025)
(cit. on p. 2).

136

https://doi.org/10.19030/ijmis.v17i1.7587
https://arxiv.org/abs/2506.16654
https://arxiv.org/abs/2506.16654
https://arxiv.org/abs/2506.16654
https://arxiv.org/abs/2407.20060
https://arxiv.org/abs/2407.20060
https://arxiv.org/abs/2407.20060
https://doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf

BIBLIOGRAPHY

[8] Guozhu Dong and Huan Liu. Feature Engineering for Machine Learning and
Data Analytics. CRC Press, 2018 (cit. on p. 2).

[9] Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan,
Joshua Robinson, Rex Ying, Jiaxuan You, and Jure Leskovec. «Position:
Relational Deep Learning - Graph Representation Learning on Relational
Databases». In: Proceedings of the 41st International Conference on Machine
Learning. Ed. by Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian
Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp. Vol. 235. Pro-
ceedings of Machine Learning Research. PMLR, 21–27 Jul 2024, pp. 13592–
13607. url: https://proceedings.mlr.press/v235/fey24a.html (cit. on
pp. 4, 5, 47, 58).

[10] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. «The Graph Neural Network Model». In: IEEE Trans-
actions on Neural Networks 20.1 (2009), pp. 61–80. doi: 10.1109/TNN.2008.
2005605 (cit. on pp. 4, 11, 23).

[11] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and
George E Dahl. «Neural message passing for quantum chemistry». In: In-
ternational conference on machine learning. PMLR. 2017, pp. 1263–1272
(cit. on pp. 4, 21).

[12] Guolin Ke, Qiqi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong
Ma, Qiwei Ye, and Tie-Yan Liu. «LightGBM: A Highly Efficient Gradient
Boosting Decision Tree». In: Advances in Neural Information Processing
Systems (NeurIPS). Vol. 30. Curran Associates, Inc., 2017. url: https:
//proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a1
02fde848669bdd9eb6b76fa-Paper.pdf (cit. on pp. 6, 8, 123).

[13] Tianqi Chen and Carlos Guestrin. «XGBoost: A Scalable Tree Boosting Sys-
tem». In: Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. 2016, pp. 785–794 (cit. on pp. 6,
9).

[14] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and
Philip S Yu. «Heterogeneous graph attention network». In: Proceedings of
the World Wide Web Conference. 2019, pp. 2022–2032 (cit. on p. 6).

[15] Jan Peleska and Zdenek Šır. «Transformers Meet Relational Databases:
Self-Attention for Joint Encoding of Tables and Schemas». In: arXiv preprint
arXiv:2403.01583 (2024) (cit. on p. 6).

[16] Pratt Institute. Visualizing Les Misérables Social Network (1862). Accessed:
2025-10-03. n.d. url: https://studentwork.prattsi.org/infovis/
visualization/visualizing-les-miserables-social-network-1862/
(cit. on p. 11).

137

https://proceedings.mlr.press/v235/fey24a.html
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://studentwork.prattsi.org/infovis/visualization/visualizing-les-miserables-social-network-1862/
https://studentwork.prattsi.org/infovis/visualization/visualizing-les-miserables-social-network-1862/

BIBLIOGRAPHY

[17] Lingfei Wu, Peng Cui, Jian Pei, and Liang Zhao. Graph Neural Networks:
Foundations, Frontiers, and Applications. Singapore: Springer Singapore,
2022, p. 725 (cit. on p. 11).

[18] William L. Hamilton. «Graph Representation Learning». In: Synthesis Lec-
tures on Artificial Intelligence and Machine Learning 14.3 (), pp. 1–159
(cit. on pp. 12–14, 23).

[19] Ruiqi Li, Peishun Jiao, and Junyi Li. «PF2PI: Protein Function Prediction
Based on AlphaFold2 Information and Protein-Protein Interaction». In:
Advanced Intelligent Computing in Bioinformatics. Ed. by De-Shuang Huang,
Yijie Pan, and Qinhu Zhang. Singapore: Springer Nature Singapore, 2024,
pp. 278–289. isbn: 978-981-97-5692-6 (cit. on p. 12).

[20] Yang Li, Kangbo Liu, Ranjan Satapathy, Suhang Wang, and Erik Cambria.
Recent Developments in Recommender Systems: A Survey. 2023. arXiv:
2306.12680 [cs.IR]. url: https://arxiv.org/abs/2306.12680 (cit. on
p. 15).

[21] Robin Burke, Alexander Felfernig, and Mehmet Göker. «Recommender
Systems: An Overview». In: Ai Magazine 32 (Sept. 2011), pp. 13–18. doi:
10.1609/aimag.v32i3.2361 (cit. on p. 15).

[22] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and
Oksana Yakhnenko. «Translating Embeddings for Modeling Multi-relational
Data». In: NIPS. 2013 (cit. on p. 15).

[23] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper Insights into Graph
Convolutional Networks for Semi-Supervised Learning. 2018. arXiv: 1801.
07606 [cs.LG]. url: https://arxiv.org/abs/1801.07606 (cit. on p. 22).

[24] Kenta Oono and Taiji Suzuki. Graph Neural Networks Exponentially Lose
Expressive Power for Node Classification. 2021. arXiv: 1905.10947 [cs.LG].
url: https://arxiv.org/abs/1905.10947 (cit. on p. 22).

[25] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive Representation
Learning on Large Graphs. 2018. arXiv: 1706.02216 [cs.SI]. url: https:
//arxiv.org/abs/1706.02216 (cit. on pp. 25, 53, 56, 58).

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need. 2023. arXiv: 1706.03762 [cs.CL]. url: https://arxiv.org/abs/
1706.03762 (cit. on pp. 26, 28, 29, 58, 60, 64).

[27] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. «Graph attention networks». In: Interna-
tional Conference on Learning Representations (ICLR). 2018 (cit. on pp. 26,
27, 29, 32, 57, 58).

138

https://arxiv.org/abs/2306.12680
https://arxiv.org/abs/2306.12680
https://doi.org/10.1609/aimag.v32i3.2361
https://arxiv.org/abs/1801.07606
https://arxiv.org/abs/1801.07606
https://arxiv.org/abs/1801.07606
https://arxiv.org/abs/1905.10947
https://arxiv.org/abs/1905.10947
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

BIBLIOGRAPHY

[28] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
2019. arXiv: 1810.04805 [cs.CL]. url: https://arxiv.org/abs/1810.
04805 (cit. on p. 29).

[29] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine
Translation by Jointly Learning to Align and Translate. 2016. arXiv: 1409.
0473 [cs.CL]. url: https://arxiv.org/abs/1409.0473 (cit. on p. 29).

[30] Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg,
Ivan Titov, and Max Welling. Modeling Relational Data with Graph Con-
volutional Networks. 2017. arXiv: 1703.06103 [stat.ML]. url: https:
//arxiv.org/abs/1703.06103 (cit. on p. 29).

[31] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville,
Ruslan Salakhutdinov, Richard Zemel, and Yoshua Bengio. Show, Attend
and Tell: Neural Image Caption Generation with Visual Attention. 2016.
arXiv: 1502.03044 [cs.LG]. url: https://arxiv.org/abs/1502.03044
(cit. on p. 29).

[32] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di
He, Yanming Shen, and Tie-Yan Liu. Do Transformers Really Perform
Bad for Graph Representation? 2021. arXiv: 2106.05234 [cs.LG]. url:
https://arxiv.org/abs/2106.05234 (cit. on pp. 29, 58, 60, 64).

[33] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Peng Cui, P. Yu, and Yanfang
Ye. Heterogeneous Graph Attention Network. 2021. arXiv: 1903 . 07293
[cs.SI]. url: https://arxiv.org/abs/1903.07293 (cit. on pp. 30, 37,
38, 58).

[34] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and
Dawei Yin. Graph Neural Networks for Social Recommendation. 2019. arXiv:
1902.07243 [cs.IR]. url: https://arxiv.org/abs/1902.07243 (cit. on
p. 34).

[35] «Graph Convolutional Networks with Markov Random Field Reasoning
for Social Spammer Detection». In: 34 (Apr. 2020), pp. 1054–1061. doi:
10.1609/aaai.v34i01.5455. url: https://ojs.aaai.org/index.php/
AAAI/article/view/5455 (cit. on p. 34).

[36] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamil-
ton, and Jure Leskovec. «Graph Convolutional Neural Networks for Web-
Scale Recommender Systems». In: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery amp; Data Mining. KDD
’18. ACM, July 2018, pp. 974–983. doi: 10.1145/3219819.3219890. url:
http://dx.doi.org/10.1145/3219819.3219890 (cit. on p. 34).

139

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1703.06103
https://arxiv.org/abs/1703.06103
https://arxiv.org/abs/1703.06103
https://arxiv.org/abs/1502.03044
https://arxiv.org/abs/1502.03044
https://arxiv.org/abs/2106.05234
https://arxiv.org/abs/2106.05234
https://arxiv.org/abs/1903.07293
https://arxiv.org/abs/1903.07293
https://arxiv.org/abs/1903.07293
https://arxiv.org/abs/1902.07243
https://arxiv.org/abs/1902.07243
https://doi.org/10.1609/aaai.v34i01.5455
https://ojs.aaai.org/index.php/AAAI/article/view/5455
https://ojs.aaai.org/index.php/AAAI/article/view/5455
https://doi.org/10.1145/3219819.3219890
http://dx.doi.org/10.1145/3219819.3219890

BIBLIOGRAPHY

[37] Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, and
Koray Kavukcuoglu. Interaction Networks for Learning about Objects, Rela-
tions and Physics. 2016. arXiv: 1612.00222 [cs.AI]. url: https://arxiv.
org/abs/1612.00222 (cit. on p. 34).

[38] Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, and Yuji Matsumoto.
«Knowledge Base Completion with Out-of-Knowledge-Base Entities: A Graph
Neural Network Approach». In: Transactions of the Japanese Society for
Artificial Intelligence 33.2 (2018), F-H721˘10. issn: 1346-8030. doi: 10.
1527/tjsai.f-h72. url: http://dx.doi.org/10.1527/tjsai.F-H72
(cit. on p. 34).

[39] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and
George E. Dahl. Neural Message Passing for Quantum Chemistry. 2017.
arXiv: 1704.01212 [cs.LG]. url: https://arxiv.org/abs/1704.01212
(cit. on p. 34).

[40] Jaykumar Kakkad, Jaspal Jannu, Kartik Sharma, Charu Aggarwal, and
Sourav Medya. A Survey on Explainability of Graph Neural Networks. 2023.
arXiv: 2306.01958 [cs.LG]. url: https://arxiv.org/abs/2306.01958
(cit. on p. 35).

[41] Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec.
«GNNExplainer: Generating explanations for graph neural networks». In:
Advances in Neural Information Processing Systems. Vol. 32. 2019 (cit. on
p. 36).

[42] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng
Chen, and Xiang Zhang. Parameterized Explainer for Graph Neural Network.
2020. arXiv: 2011.04573 [cs.LG]. url: https://arxiv.org/abs/2011.
04573 (cit. on p. 36).

[43] Yaomin Chang, Chuan Chen, Weibo Hu, Zibin Zheng, Xiaocong Zhou, and
Shouzhi Chen. «Megnn: Meta-path extracted graph neural network for
heterogeneous graph representation learning». In: Knowledge-Based Systems
235 (2022), p. 107611. issn: 0950-7051. doi: https://doi.org/10.1016/j.
knosys.2021.107611. url: https://www.sciencedirect.com/science/
article/pii/S095070512100873X (cit. on p. 38).

[44] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. «MAGNN: Metapath
Aggregated Graph Neural Network for Heterogeneous Graph Embedding».
In: Proceedings of The Web Conference 2020. WWW ’20. ACM, Apr. 2020,
pp. 2331–2341. doi: 10.1145/3366423.3380297. url: http://dx.doi.
org/10.1145/3366423.3380297 (cit. on p. 38).

140

https://arxiv.org/abs/1612.00222
https://arxiv.org/abs/1612.00222
https://arxiv.org/abs/1612.00222
https://doi.org/10.1527/tjsai.f-h72
https://doi.org/10.1527/tjsai.f-h72
http://dx.doi.org/10.1527/tjsai.F-H72
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/2306.01958
https://arxiv.org/abs/2306.01958
https://arxiv.org/abs/2011.04573
https://arxiv.org/abs/2011.04573
https://arxiv.org/abs/2011.04573
https://doi.org/https://doi.org/10.1016/j.knosys.2021.107611
https://doi.org/https://doi.org/10.1016/j.knosys.2021.107611
https://www.sciencedirect.com/science/article/pii/S095070512100873X
https://www.sciencedirect.com/science/article/pii/S095070512100873X
https://doi.org/10.1145/3366423.3380297
http://dx.doi.org/10.1145/3366423.3380297
http://dx.doi.org/10.1145/3366423.3380297

BIBLIOGRAPHY

[45] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous
Graph Transformer. 2020. arXiv: 2003.01332 [cs.LG]. url: https://
arxiv.org/abs/2003.01332 (cit. on p. 38).

[46] Qingsong Lv et al. Are we really making much progress? Revisiting, bench-
marking, and refining heterogeneous graph neural networks. 2021. arXiv:
2112.14936 [cs.LG]. url: https://arxiv.org/abs/2112.14936 (cit. on
p. 39).

[47] Seongjun Yun, Minbyul Jeong, Sungdong Yoo, Seunghun Lee, Sean S. Yi,
Raehyun Kim, Jaewoo Kang, and Hyunwoo J. Kim. Graph Transformer
Networks: Learning Meta-path Graphs to Improve GNNs. 2021. arXiv: 2106.
06218 [cs.LG]. url: https://arxiv.org/abs/2106.06218 (cit. on pp. 39,
46).

[48] Francesco Ferrini, Antonio Longa, Andrea Passerini, and Manfred Jaeger.
Meta-Path Learning for Multi-relational Graph Neural Networks. 2023. arXiv:
2309.17113 [cs.LG]. url: https://arxiv.org/abs/2309.17113 (cit. on
pp. 39, 91).

[49] Anasua Mitra, Priyesh Vijayan, Sanasam Ranbir Singh, Diganta Goswami,
Srinivasan Parthasarathy, and Balaraman Ravindran. «Revisiting Link Pre-
diction on Heterogeneous Graphs with a Multi-view Perspective». In: 2022
IEEE International Conference on Data Mining (ICDM). 2022, pp. 358–367.
doi: 10.1109/ICDM54844.2022.00046 (cit. on p. 39).

[50] Francesco Ferrini, Antonio Longa, Andrea Passerini, and Manfred Jaeger.
A Self-Explainable Heterogeneous GNN for Relational Deep Learning. 2025.
arXiv: 2412.00521 [cs.LG]. url: https://arxiv.org/abs/2412.00521
(cit. on pp. 39, 44, 91, 98, 100–102).

[51] Harshvardhan Solanki, Jyoti Singh, Yihui Chong, and Ankur Teredesai.
«Metapath of thoughts: Verbalized metapaths in heterogeneous graph as
contextual augmentation to LLM». In: (2024). url: https://www.amazon.s
cience/publications/metapath-of-thoughts-verbalized-metapaths-
in-heterogeneous-graph-as-contextual-augmentation-to-llm (cit.
on pp. 46, 104, 135).

[52] Weihua Hu, Yiwen Yuan, Zecheng Zhang, Akihiro Nitta, Kaidi Cao, Vid
Kocijan, Jinu Sunil, Jure Leskovec, and Matthias Fey. PyTorch Frame: A
Modular Framework for Multi-Modal Tabular Learning. 2024. arXiv: 2404.
00776 [cs.LG]. url: https://arxiv.org/abs/2404.00776 (cit. on p. 48).

[53] Lun Li, David Alderson, Reiko Tanaka, John C. Doyle, and Walter Willinger.
Towards a Theory of Scale-Free Graphs: Definition, Properties, and Implica-
tions (Extended Version). 2005. arXiv: cond-mat/0501169 [cond-mat.dis-nn].
url: https://arxiv.org/abs/cond-mat/0501169 (cit. on p. 60).

141

https://arxiv.org/abs/2003.01332
https://arxiv.org/abs/2003.01332
https://arxiv.org/abs/2003.01332
https://arxiv.org/abs/2112.14936
https://arxiv.org/abs/2112.14936
https://arxiv.org/abs/2106.06218
https://arxiv.org/abs/2106.06218
https://arxiv.org/abs/2106.06218
https://arxiv.org/abs/2309.17113
https://arxiv.org/abs/2309.17113
https://doi.org/10.1109/ICDM54844.2022.00046
https://arxiv.org/abs/2412.00521
https://arxiv.org/abs/2412.00521
https://www.amazon.science/publications/metapath-of-thoughts-verbalized-metapaths-in-heterogeneous-graph-as-contextual-augmentation-to-llm
https://www.amazon.science/publications/metapath-of-thoughts-verbalized-metapaths-in-heterogeneous-graph-as-contextual-augmentation-to-llm
https://www.amazon.science/publications/metapath-of-thoughts-verbalized-metapaths-in-heterogeneous-graph-as-contextual-augmentation-to-llm
https://arxiv.org/abs/2404.00776
https://arxiv.org/abs/2404.00776
https://arxiv.org/abs/2404.00776
https://arxiv.org/abs/cond-mat/0501169
https://arxiv.org/abs/cond-mat/0501169

BIBLIOGRAPHY

[54] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A
Simple Framework for Contrastive Learning of Visual Representations. 2020.
arXiv: 2002.05709 [cs.LG]. url: https://arxiv.org/abs/2002.05709
(cit. on p. 72).

[55] Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli.
wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Represen-
tations. 2020. arXiv: 2006.11477 [cs.CL]. url: https://arxiv.org/abs/
2006.11477 (cit. on p. 72).

[56] Alec Radford et al. Learning Transferable Visual Models From Natural
Language Supervision. 2021. arXiv: 2103 . 00020 [cs.CV]. url: https :
//arxiv.org/abs/2103.00020 (cit. on p. 72).

[57] Beatrice Bevilacqua, Joshua Robinson, Jure Leskovec, and Bruno Ribeiro.
«Holographic Node Representations: Pre-training Task-Agnostic Node Em-
beddings». In: The Thirteenth International Conference on Learning Rep-
resentations. 2025. url: https://openreview.net/forum?id=tGYFikNONB
(cit. on p. 72).

[58] Quang Truong, Zhikai Chen, Mingxuan Ju, Tong Zhao, Neil Shah, and Jiliang
Tang. A Pre-training Framework for Relational Data with Information-
theoretic Principles. 2025. arXiv: 2507.09837 [cs.LG]. url: https://
arxiv.org/abs/2507.09837 (cit. on p. 72).

[59] Jun Xia, Yanqiao Zhu, Yuanqi Du, and Stan Z. Li. A Survey of Pretraining
on Graphs: Taxonomy, Methods, and Applications. 2022. arXiv: 2202.07893
[cs.LG]. url: https://arxiv.org/abs/2202.07893 (cit. on pp. 72, 73).

[60] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming
Ding, Kuansan Wang, and Jie Tang. «GCC: Graph Contrastive Coding
for Graph Neural Network Pre-Training». In: Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery amp; Data
Mining. KDD ’20. ACM, Aug. 2020, pp. 1150–1160. doi: 10.1145/3394486.
3403168. url: http://dx.doi.org/10.1145/3394486.3403168 (cit. on
p. 73).

[61] Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie
Wang, and Jie Tang. «GraphMAE: Self-Supervised Masked Graph Autoen-
coders». In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. Also available as arXiv:2205.10803. Association
for Computing Machinery, 2022. doi: 10.1145/3534678.3539321. url:
https://doi.org/10.1145/3534678.3539321 (cit. on p. 73).

142

https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://openreview.net/forum?id=tGYFikNONB
https://arxiv.org/abs/2507.09837
https://arxiv.org/abs/2507.09837
https://arxiv.org/abs/2507.09837
https://arxiv.org/abs/2202.07893
https://arxiv.org/abs/2202.07893
https://arxiv.org/abs/2202.07893
https://doi.org/10.1145/3394486.3403168
https://doi.org/10.1145/3394486.3403168
http://dx.doi.org/10.1145/3394486.3403168
https://doi.org/10.1145/3534678.3539321
https://doi.org/10.1145/3534678.3539321

BIBLIOGRAPHY

[62] Zhenyu Hou, Yufei He, Yukuo Cen, Xiao Liu, Yuxiao Dong, Evgeny Khar-
lamov, and Jie Tang. «GraphMAE2: A Decoding-Enhanced Masked Self-
Supervised Graph Learner». In: Proceedings of the ACM Web Conference
2023. Also available as arXiv:2304.04779. Association for Computing Ma-
chinery, 2023. doi: 10.1145/3543507.3583379. url: https://doi.org/
10.1145/3543507.3583379 (cit. on p. 73).

[63] Yijun Tian, Kaiwen Dong, Chunhui Zhang, Chuxu Zhang, and Nitesh V.
Chawla. «Heterogeneous Graph Masked Autoencoders». In: Proceedings of
the AAAI Conference on Artificial Intelligence. Vol. 37. 8. Also available as
arXiv:2208.09957. AAAI Press, 2023. url: https://ojs.aaai.org/index.
php/AAAI/article/view/26192 (cit. on p. 73).

[64] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay
Pande, and Jure Leskovec. «Strategies for Pre-training Graph Neural Net-
works». In: International Conference on Learning Representations. Spotlight;
also available as arXiv:1905.12265. 2020. url: https://openreview.net/
forum?id=HJlWWJSFDH (cit. on p. 73).

[65] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. «DropEdge:
Towards Deep Graph Convolutional Networks on Node Classification». In:
International Conference on Learning Representations. Also available as
arXiv:1907.10903. 2020. url: https://openreview.net/forum?id=Hkx1q
krKPr (cit. on p. 73).

[66] Thomas N. Kipf and Max Welling. Variational Graph Auto-Encoders. 2016.
arXiv: 1611.07308 [stat.ML]. url: https://arxiv.org/abs/1611.07308
(cit. on pp. 79, 85).

[67] IBM Think. Variational Autoencoder (VAE). Accessed: 2025-08-20. n.d. url:
https://www.ibm.com/it-it/think/topics/variational-autoencoder
(cit. on p. 80).

[68] Abhishek Dalvi, Ayan Acharya, Jing Gao, and Vasant G. Honavar. «Varia-
tional Graph Auto-Encoders for Heterogeneous Information Network». In:
NeurIPS 2022 Workshop on New Frontiers in Graph Learning (GLFrontiers).
Poster. 2022. url: https://openreview.net/forum?id=- l2yynwJWtX
(cit. on p. 83).

[69] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. «DropEdge:
Towards Deep Graph Convolutional Networks on Node Classification». In:
arXiv preprint arXiv:1907.10903 (2019). url: https://arxiv.org/abs/
1907.10903 (cit. on p. 88).

143

https://doi.org/10.1145/3543507.3583379
https://doi.org/10.1145/3543507.3583379
https://doi.org/10.1145/3543507.3583379
https://ojs.aaai.org/index.php/AAAI/article/view/26192
https://ojs.aaai.org/index.php/AAAI/article/view/26192
https://openreview.net/forum?id=HJlWWJSFDH
https://openreview.net/forum?id=HJlWWJSFDH
https://openreview.net/forum?id=Hkx1qkrKPr
https://openreview.net/forum?id=Hkx1qkrKPr
https://arxiv.org/abs/1611.07308
https://arxiv.org/abs/1611.07308
https://www.ibm.com/it-it/think/topics/variational-autoencoder
https://openreview.net/forum?id=-l2yynwJWtX
https://arxiv.org/abs/1907.10903
https://arxiv.org/abs/1907.10903

BIBLIOGRAPHY

[70] Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-Inference:
Exploiting Large Language Models for Interpretable Logical Reasoning. 2022.
arXiv: 2205.09712 [cs.AI]. url: https://arxiv.org/abs/2205.09712
(cit. on p. 104).

[71] Hossein Bahak, Farzaneh Taheri, Zahra Zojaji, and Arefeh Kazemi. Evaluat-
ing ChatGPT as a Question Answering System: A Comprehensive Analysis
and Comparison with Existing Models. 2023. arXiv: 2312.07592 [cs.CL].
url: https://arxiv.org/abs/2312.07592 (cit. on p. 104).

[72] Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown,
and Tatsunori B. Hashimoto. Benchmarking Large Language Models for News
Summarization. 2023. arXiv: 2301.13848 [cs.CL]. url: https://arxiv.
org/abs/2301.13848 (cit. on p. 104).

[73] Arkadeep Acharya, Brijraj Singh, and Naoyuki Onoe. «LLM Based Gen-
eration of Item-Description for Recommendation System». In: Proceedings
of the 17th ACM Conference on Recommender Systems. RecSys ’23. Sin-
gapore, Singapore: Association for Computing Machinery, 2023, pp. 1204–
1207. isbn: 9798400702419. doi: 10.1145/3604915.3610647. url: https:
//doi.org/10.1145/3604915.3610647 (cit. on p. 104).

[74] Long Ouyang et al. Training language models to follow instructions with
human feedback. 2022. arXiv: 2203.02155 [cs.CL]. url: https://arxiv.
org/abs/2203.02155 (cit. on p. 104).

[75] Marek Wydmuch, Łukasz Borchmann, and Filip Graliński. Tackling pre-
diction tasks in relational databases with LLMs. 2024. arXiv: 2411.11829
[cs.LG]. url: https://arxiv.org/abs/2411.11829 (cit. on pp. 104–106).

[76] Julian Schrittwieser et al. «Mastering Atari, Go, chess and shogi by planning
with a learned model». In: Nature 588.7839 (Dec. 2020), pp. 604–609. issn:
1476-4687. doi: 10.1038/s41586-020-03051-4. url: http://dx.doi.
org/10.1038/s41586-020-03051-4 (cit. on p. 111).

[77] Dmitry Kalashnikov et al. QT-Opt: Scalable Deep Reinforcement Learning
for Vision-Based Robotic Manipulation. 2018. arXiv: 1806.10293 [cs.LG].
url: https://arxiv.org/abs/1806.10293 (cit. on p. 111).

[78] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and
Dario Amodei. «Deep Reinforcement Learning from Human Preferences».
In: Advances in Neural Information Processing Systems. Ed. by I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R.
Garnett. Vol. 30. Curran Associates, Inc., 2017. url: https://proceedings.
neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df24
0d0cd4e49-Paper.pdf (cit. on p. 111).

144

https://arxiv.org/abs/2205.09712
https://arxiv.org/abs/2205.09712
https://arxiv.org/abs/2312.07592
https://arxiv.org/abs/2312.07592
https://arxiv.org/abs/2301.13848
https://arxiv.org/abs/2301.13848
https://arxiv.org/abs/2301.13848
https://doi.org/10.1145/3604915.3610647
https://doi.org/10.1145/3604915.3610647
https://doi.org/10.1145/3604915.3610647
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2411.11829
https://arxiv.org/abs/2411.11829
https://arxiv.org/abs/2411.11829
https://doi.org/10.1038/s41586-020-03051-4
http://dx.doi.org/10.1038/s41586-020-03051-4
http://dx.doi.org/10.1038/s41586-020-03051-4
https://arxiv.org/abs/1806.10293
https://arxiv.org/abs/1806.10293
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf

BIBLIOGRAPHY

[79] Wentao Ning et al. «Automatic Meta-Path Discovery for Effective Graph-
Based Recommendation». In: Proceedings of the 31st ACM International
Conference on Information amp; Knowledge Management. CIKM ’22. ACM,
Oct. 2022, pp. 1563–1572. doi: 10.1145/3511808.3557244. url: http:
//dx.doi.org/10.1145/3511808.3557244 (cit. on p. 111).

[80] Guojia Wan, Bo Du, Shirui Pan, and Gholameza Haffari. «Reinforcement
Learning Based Meta-Path Discovery in Large-Scale Heterogeneous Informa-
tion Networks». In: Proceedings of the AAAI Conference on Artificial Intel-
ligence 34.04 (Apr. 2020), pp. 6094–6101. doi: 10.1609/aaai.v34i04.6073.
url: https://ojs.aaai.org/index.php/AAAI/article/view/6073
(cit. on p. 111).

[81] Wentao Ning et al. Automatic Meta-Path Discovery for Effective Graph-
Based Recommendation. 2022. doi: https://doi.org/10.1145/3511808.
3557244. arXiv: 2112.12845 [cs.IR]. url: https://arxiv.org/abs/
2112.12845 (cit. on p. 111).

[82] Shaina Raza, Mizanur Rahman, Safiullah Kamawal, Armin Toroghi, Ananya
Raval, Farshad Navah, and Amirmohammad Kazemeini. A Comprehensive
Review of Recommender Systems: Transitioning from Theory to Practice.
2025. arXiv: 2407.13699 [cs.IR]. url: https://arxiv.org/abs/2407.
13699.

[83] Veronica Lachi, Antonio Longa, Beatrice Bevilacqua, Bruno Lepri, Andrea
Passerini, and Bruno Ribeiro. Boosting Relational Deep Learning with Pre-
trained Tabular Models. 2025. arXiv: 2504.04934 [cs.DB]. url: https:
//arxiv.org/abs/2504.04934.

[84] Thomas N Kipf and Max Welling. «Semi-supervised classification with
graph convolutional networks». In: International Conference on Learning
Representations (ICLR). 2017.

[85] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with
Graph Convolutional Networks. 2017. arXiv: 1609.02907 [cs.LG]. url:
https://arxiv.org/abs/1609.02907.

[86] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. «MAGNN: Metapath
Aggregated Graph Neural Network for Heterogeneous Graph Embedding».
In: Proceedings of The Web Conference 2020. WWW ’20. ACM, Apr. 2020,
pp. 2331–2341. doi: 10.1145/3366423.3380297. url: http://dx.doi.
org/10.1145/3366423.3380297.

[87] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. «Graph neural networks: A review
of methods and applications». In: AI Open 1 (2020), pp. 57–81.

145

https://doi.org/10.1145/3511808.3557244
http://dx.doi.org/10.1145/3511808.3557244
http://dx.doi.org/10.1145/3511808.3557244
https://doi.org/10.1609/aaai.v34i04.6073
https://ojs.aaai.org/index.php/AAAI/article/view/6073
https://doi.org/https://doi.org/10.1145/3511808.3557244
https://doi.org/https://doi.org/10.1145/3511808.3557244
https://arxiv.org/abs/2112.12845
https://arxiv.org/abs/2112.12845
https://arxiv.org/abs/2112.12845
https://arxiv.org/abs/2407.13699
https://arxiv.org/abs/2407.13699
https://arxiv.org/abs/2407.13699
https://arxiv.org/abs/2504.04934
https://arxiv.org/abs/2504.04934
https://arxiv.org/abs/2504.04934
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://doi.org/10.1145/3366423.3380297
http://dx.doi.org/10.1145/3366423.3380297
http://dx.doi.org/10.1145/3366423.3380297

BIBLIOGRAPHY

[88] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,
and S Yu Philip. «A comprehensive survey on graph neural networks». In:
IEEE Transactions on Neural Networks and Learning Systems 32.1 (2020),
pp. 4–24.

[89] Somdutta Ganguli and Shivam Thakur. «Machine learning based recommen-
dation system». In: 2020 10th International Conference on Cloud Computing,
Data Science & Engineering (Confluence). IEEE. 2020, pp. 660–664.

[90] DB-Engines. DB-Engines Ranking – August 2025. Online; accessed 7 Aug
2025. https://db-engines.com/en/ranking. 2025.

[91] Gyubok Lee, Sunjun Kweon, Seongsu Bae, and Edward Choi. «Overview
of the EHRSQL 2024 Shared Task on Reliable Text-to-SQL Modeling on
Electronic Health Records». In: Proceedings of the 6th Clinical Natural
Language Processing Workshop. Association for Computational Linguistics.
2024, pp. 644–654. url: https://aclanthology.org/2024.clinicalnlp-
1.62.

[92] Sergiu-Alexandru Ionescu, Vlad Diaconita, and Andreea-Oana Radu. «Engi-
neering Sustainable Data Architectures for Modern Financial Institutions».
In: Electronics 14.8 (2025), p. 1650. doi: 10.3390/electronics14081650.

[93] Jannette G. Zapata. «MySQL vs PostgreSQL: A Comparative Analysis
of RDBMS Response Time in Web-based E-commerce». In: International
Journal of Computing Studies (2025). Online: https://doi.org/10.13140/
RG.2.2.24791.69288.

[94] ATLAS Collaboration. «Software and Computing for Run 3 of the ATLAS
Experiment at the LHC». In: European Physical Journal C 85 (2025), p. 234.
doi: 10.1140/epjc/s10052-024-13701-w.

[95] Ruslan Mashinistov, Lino Gerlach, Paul Laycock, Andrea Formica, Giacomo
Govi, and Chris Pinkenburg. «The HSF Conditions Database Reference
Implementation». In: Proceedings of CHEP 2024. Vol. 295. EPJ Web of
Conferences. 2024, p. 01051. doi: 10.1051/epjconf/202429501051.

[96] Wisal Khan, Teerath Kumar, Cheng Zhang, Kislay Raj, Arunabha M. Roy,
and Bin Luo. «SQL and NoSQL Database Software Architecture Performance
Analysis and Assessments—A Systematic Literature Review». In: Big Data
and Cognitive Computing 7.2 (2023), p. 97. doi: 10.3390/bdcc7020097.

[97] Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi,
Luke Zettlemoyer, and Marco Tulio Ribeiro. ART: Automatic multi-step
reasoning and tool-use for large language models. 2023. arXiv: 2303.09014
[cs.CL]. url: https://arxiv.org/abs/2303.09014.

146

https://db-engines.com/en/ranking
https://aclanthology.org/2024.clinicalnlp-1.62
https://aclanthology.org/2024.clinicalnlp-1.62
https://doi.org/10.3390/electronics14081650
https://doi.org/10.13140/RG.2.2.24791.69288
https://doi.org/10.13140/RG.2.2.24791.69288
https://doi.org/10.1140/epjc/s10052-024-13701-w
https://doi.org/10.1051/epjconf/202429501051
https://doi.org/10.3390/bdcc7020097
https://arxiv.org/abs/2303.09014
https://arxiv.org/abs/2303.09014
https://arxiv.org/abs/2303.09014

BIBLIOGRAPHY

[98] Yige Zhao, Jianxiang Yu, Yao Cheng, Chengcheng Yu, Yiding Liu, Xiang Li,
and Shuaiqiang Wang. Variational Graph Autoencoder for Heterogeneous
Information Networks with Missing and Inaccurate Attributes. 2023. arXiv:
2311.07929 [cs.LG]. url: https://arxiv.org/abs/2311.07929.

[99] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay
Pande, and Jure Leskovec. Strategies for Pre-training Graph Neural Networks.
2020. arXiv: 1905.12265 [cs.LG]. url: https://arxiv.org/abs/1905.
12265.

[100] Xunqiang Jiang, Tianrui Jia, Yuan Fang, Chuan Shi, Zhe Lin, and Hui Wang.
«Pre-training on Large-Scale Heterogeneous Graph». In: Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.
KDD ’21. Virtual Event, Singapore: Association for Computing Machinery,
2021, pp. 756–766. isbn: 9781450383325. doi: 10.1145/3447548.3467396.
url: https://doi.org/10.1145/3447548.3467396.

[101] Difan Luo, Wei Cheng, Wenchao Yu, Bo Zong, Jingchao Ni, Haifeng Chen,
and Xiang Zhang. «Parameterized explainer for graph neural network». In:
Advances in Neural Information Processing Systems. Vol. 33. 2020, pp. 19620–
19631.

[102] Weihua Hu and Matthias Fey. TorchFrame: A Unified Library for (Relational)
Tabular Data. GitHub repository. 2024. url: https://github.com/pyg-
team/torch-frame.

147

https://arxiv.org/abs/2311.07929
https://arxiv.org/abs/2311.07929
https://arxiv.org/abs/1905.12265
https://arxiv.org/abs/1905.12265
https://arxiv.org/abs/1905.12265
https://doi.org/10.1145/3447548.3467396
https://doi.org/10.1145/3447548.3467396
https://github.com/pyg-team/torch-frame
https://github.com/pyg-team/torch-frame

	List of Figures
	Introduction
	Related Works
	The RelBench Benchmark
	Tabular Models
	Technical Structure of Tabular Models and the Role of Feature Engineering

	Graph Neural Networks
	What is a Graph?
	Learning on Graphs
	Core Challenges in Applying Deep Learning to Graph
	What is a GNN?

	Node Connectivity in Graphs
	Popular GNN architectures
	Explainable GNNs
	Meta-path based models

	End-to-End Modelling in RelBench
	Graph construction from normalised schemas
	Feature encoding: HeteroEncoder
	TemporalHeteroEncoder: Injecting Time into Node Features
	Mini-batching with NeighborLoader
	Message-passing backbone
	Prediction head and loss functions
	Strengths, limitations, and outlook

	Proposed Method
	Model selection
	Heterogeneous Graph Attention Network
	Heterogeneous Graphormer

	Pre-training strategies
	Masked Attribute Prediction (MAP) Pretraining
	Variational Graph Autoencoding Pretraining
	Data Augmentation via Relational Aware Edge Dropout

	XMetaPath: A Self-Explainable Meta-Path Graph Neural Network
	Model's details
	MetaPathGNNLayer (single-hop update)

	Meta-path selection
	Extension 1: Greedy Meta-Path Selection by Direct Validation
	Extension 2: LLM based selection
	Extension 3: Reinforcement Learning based selection

	Experiments
	Model selection
	Human effort

	Pre-training strategies
	Edge Dropout
	Variational Graph Auto-Encoder (VGAE) pre-training

	XMetaPath model

	Conclusions
	Bibliography

