
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering - Artificial
Intelligence and Data Analytics

Master’s Degree Thesis

Design and Implementation of a Custom

Multi-Agent Platform for LLM-based

AWS Cloud Orchestration

Supervisors

Prof. Paolo GARZA

Ing. Mariagrazia CARDILE

Candidate

Sergio LAMPIDECCHIA

10/2025





Summary

This thesis investigates how Large Language Models (LLMs) can be combined
with agent-based architectures to overcome their limitations in managing long-term
tasks, preserving context, and interacting with external tools.
Developed in collaboration with Data Reply, the project focuses on building a
Multi-Agent System (MAS) where LLM-based agents collaborate in a structured
workflow.
The system is organized around three core agents: a planner, which interprets
natural language instructions and decomposes them into actionable steps; an
extractor, responsible for identifying and structuring the relevant parameters and
contextual information; and an executor, which interacts with AWS cloud services.
Platform’s main goal is to autonomously interpret natural language instructions
and manage AWS cloud services, deploying, configuring, and monitoring resources,
thus supporting developers in the software development lifecycle.

ii





Table of Contents

List of Tables vi

List of Figures vii

Acronyms ix

1 Introduction 1

2 Foundations 3

2.1 Large Language Models (LLMs) . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Transformer Basics . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Intelligent Agents with LLMs . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 The LOMAR Framework . . . . . . . . . . . . . . . . . . . . 7

2.3 Multi-Agent Systems (MAS) . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Software Development Life Cycle (SDLC) . . . . . . . . . . . . . . 19

3 System Design 21

3.1 Design Goals and Principles . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Communication and Collaboration . . . . . . . . . . . . . . . . . . 27
3.4 Memory and Contextual Reasoning . . . . . . . . . . . . . . . . . . 29
3.5 Human Feedback and Control . . . . . . . . . . . . . . . . . . . . . 32

4 System Implementation 34

4.1 Development Stack and Libraries . . . . . . . . . . . . . . . . . . . 34
4.1.1 LangChain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.2 Pydantic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.3 Boto3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Tools Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Error Handling and Recovery Mechanisms . . . . . . . . . . . . . . 44

iv



5 Evaluation and Testing 46

5.1 Benchmark Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Discussion and Insights . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Conclusion and Future Work 54

6.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A Test 57

Bibliography 67

v



List of Tables

5.1 Overall distribution of success, partial success, and failure outcomes
across 24 tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Performance results by AWS service category . . . . . . . . . . . . 49
5.3 Avg efficiency and robustness metrics calculated over 24 tests . . . . 50
5.4 Comparison of LLM pricing per 1M tokens (USD) . . . . . . . . . . 51

vi



List of Figures

2.1 Transformer architecture. . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Comparison between On-Premises and Cloud service models (IaaS,

PaaS, SaaS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 The Software Development Life Cycle (SDLC) phases. . . . . . . . . 20

4.1 LangChain Logo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Pydantic Logo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Boto3 Logo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vii





Acronyms

AI

artificial intelligence

ix



Chapter 1

Introduction

In recent years, Large Language Models (LLMs) have brought significant progress
in Artificial Intelligence, particularly in the fields of natural language processing.
Beyond simply recognizing and interpreting text, these models can generate outputs
that are both coherent and contextually appropriate, enabling them to perform a
wide range of tasks.

However, while powerful, a single LLM often struggles with managing long-term
tasks, maintaining context across extended interactions, or interacting directly with
external systems and APIs. To overcome these limitations, developers have started
combining LLMs with agent-based architectures, where the LLM is combined with
dedicated components (agents) capable of planning, orchestrating actions, invoking
external tools, and persisting knowledge over time.

Each agent is assigned a specific role or area of expertise and collaborates with
other agents to accomplish more complex tasks. To achieve this, agents can re-
tain relevant information through memory, adapt their decisions based on the
surrounding context, and interface with external tools and services, such as APIs,
file systems, or cloud platforms, to perform concrete actions in the real world.

This thesis project has been carried out in collaboration with Data Reply, a
company within the Reply group specialized in Artificial Intelligence, Big Data
and Quantum Computing. The work is part of a broader research effort on the
application of Generative AI and autonomous agents to the software development
lifecycle (SDLC). It aims to explore how intelligent agents based on LLMs can
support developers by automating infrastructure setup, launching and managing
AWS cloud services, producing documentation, and monitoring cloud resources.

This project is inspired by the idea of building a Multi-Agent System (MAS)

1



Introduction

where several LLM-based agents collaborate to achieve complex objectives. Rather
than operating as a simple chatbot, the system is designed to behave more like an
autonomous assistant that can understand high-level goals expressed in natural
language and coordinate a set of actions to fulfill them.
More specifically, the core objective is to design a system capable of interpreting
natural language instructions and autonomously deploying, configuring, and man-
aging AWS cloud services.

To achieve this, the project is designed around a set of guiding principles.
The coordination of these agents is generally managed by a supervisor agent,
which orchestrates the overall workflow by deciding which agents should be ac-
tivated, how tasks should be delegated, and which reasoning strategies are most
suitable in a given context.
To support more coherent and adaptive behavior, the system incorporates memory
mechanisms at two levels: short-term memory, which maintains the state of
the current session and ongoing tasks, and long-term memory, which preserves
relevant knowledge for reuse across different stages or sessions.
Finally, the system is evaluated systematically through a test suite, designed to
assess its ability to plan effectively, coordinate collaboration among agents, and
accomplish tasks in a robust and interpretable manner.

The thesis is organized as follows:

1. Foundations: Introduces the theoretical background, including Large Lan-
guage Models, intelligent agents (memory, planning, reasoning, learning),
multi-agent systems (MAS), cloud computing, and Software Development
Lifecycle (SDLC).

2. System Design: Outlines the architecture and design principles of the
proposed multi-agent system, describing communication flows, memory man-
agement, reasoning strategies, and human-in-the-loop supervision.

3. System Implementation: Details the development stack, integration of
tools, and the mechanisms for execution, error handling, and system recovery.

4. Evaluation and Testing: Presents the benchmarking methodology, the
experimental setup, and results, followed by an analysis of system performance
and identified limitations.

5. Conclusion and Future Work: Summarizes the key contributions of the
thesis and highlights promising directions for future research and development.

2



Chapter 2

Foundations

2.1 Large Language Models (LLMs)

Large Language Models (LLMs) are a class of advanced deep learning models
designed to process, understand, and generate natural language in a coherent and
contextually relevant way.
Built on transformer-based neural networks [1] and trained on vast corpora of
textual data, these models are capable of capturing complex linguistic patterns,
semantic relationships, and world knowledge.
Thanks to their scalability and generalization capabilities, LLMs have set new
benchmarks in a wide range of Natural Language Processing (NLP) tasks, including
text classification, sentiment analysis, machine translation, summarization, question
answering, conversational agents, and even code generation.

2.1.1 Transformer Basics

The vast majority of modern LLMs are built upon the Transformer architecture.
Unlike previous sequence models such as Recurrent Neural Network (RNNs) and
Long Short-Term Memory networks (LSTMs), which processed data sequentially
and often struggled to model long-range dependencies, Transformers operate entirely
in parallel, enabling both greater efficiency and richer contextual understanding.
At the heart of the Transformer is the self-attention mechanism, which allows each
token in a sequence to direct attend to all other tokens simultaneously, regardless
of their relative position. This parallelism not only enables more efficient training
on modern hardware, but also allows the model to capture richer contextual
relationships between words.
The core building block of a Transformer model is composed of multiple stacked
layers, each integrating two core components:

3



Foundations

• Multi-Head Self-Attention: This mechanism allows the model to consider
multiple representation subspaces simultaneously by computing attention
weights in parallel across multiple "heads". It allows the model to assess the
relevance of each token with respect to the entire input sequence.

• Feedforward Neural Networks: A position-wise fully connected layer
applied after the attention step to refine and transform the intermediate
representations. This component helps the model to learn complex, non-linear
transformations beyond the patterns captured by attention.

In addition to these components, each block also incorporates residual con-
nections, layer normalization and position encodings. These elements are
critical for stabilizing training, improving convergence speed, and enabling the
training of very deep architectures.

Variants of the Transformer

Depending on the task, LLMs can rely on different Transformer architectures,
which are generally grouped into three main categories:

• Encoder-Decoder: This architecture is suitable for sequence-to-sequence
tasks such as machine translation, abstractive summarization, and dialogue
generation. The encoder processes the input sequence to build a rich contex-
tual representation that captures its meaning, while the decoder generates
the target sequence step by step, attending both to the encoder’s output and
to its own past predictions.

• Encoder-Only: These models are primarly designed for understanding and
representation tasks where the goal is to extract meaning from the input
rather than generate new text. By capturing bidirectional context, they are
especially effective for applications such as classification, sentiment analysis,
and named entity recognition. Well-known examples include BERT and
its derivatives, which leverage deep bidirectional self-attention to produce
high-quality contextual embeddings.

• Decoder-Only: These models are specifically optimized for generative tasks
such as language modeling, code generation, and conversational agents. They
operate in an autoregressive fashion, generating text one token at a time while
conditioning each prediction solely on the tokens that precede it. This is
achieved through the use of causal (masked) self-attention, which prevents the
model from accessing future information during training or inference. GPT and
its successors are the most prominent examples of this family, demonstrating
state-of-the-art performance in open-ended text generation.

4



Foundations

Transformer Layer Components

The internal architecture of Transformer-based LLMs is modular, comprising
multiple stacked layers. Each layer is built from specialized subcomponents that
collaboratively encode, process, and generate natural language. Their primary role
is to transform raw input tokens into rich contextual representations, enabling the
model to capture dependencies and reason effectively over text.
The following section outlines the core elements typically found within a Transformer
layer:

• Embedding and Positional Encoding: Input tokens are first mapped
into dense vector embeddings that capture their semantic meaning. Since the
Transformer has no inherent notion of sequence order, positional encodings
are added to the embeddings, allowing the model to incorporate information
about token positions.

• Self-Attention and Multi-Head Attention: Self-attention enables each
token to dynamically focus on other tokens within the sequence, assigning
weights based on contextual relevance. Multi-head attention extends this by
computing several attention patterns in parallel, with each head capturing
different types of dependencies (e.g., syntactic vs. semantic). This mechanism
allows the model to represent both local and global relationships.

• Feedforward Network: Following the attention layers, each token repre-
sentation is processed independently through a feedforward neural network,
usually composed of two linear transformations separated by a non-linear acti-
vation (ReLU or GELU). This step enriches the representation and increases
the model’s expressiveness.

• Add & Norm Layers: Residual connections combined with layer normal-
ization are applied around both the attention and feedforward blocks. These
operations stabilize training, preserve information across layers, and ensure
gradient flow even in very deep models.

• Masked Self-Attention in Decoders: In decoder architectures (e.g., GPT),
the self-attention mechanism applies a causal mask that blocks access to future
tokens. This enforces autoregressive generation, ensuring that each token is
predicted solely based on past context.

• Cross-Attention (Encoder–Decoder Models): In sequence-to-sequence
tasks such as translation, the decoder also includes a cross-attention layer.
Here, the decoder attends to the encoder’s output, allowing it to condition
token generation on the full input sequence.

5



Foundations

Figure 2.1: Transformer architecture.

2.2 Intelligent Agents with LLMs

Intelligent agents are autonomous systems capable of perceiving their environment,
reasoning about the information they acquire, and take actions aimed at achieving
specific goals.
Historically, they have been a central topic in Artificial Intelligence, often realized
through symbolic reasoning, decision trees, or domain-specific machine learning
techniques.
The integration of modern Large Language Models (LLMs) has significantly ex-
tended the capabilities of these agents, enabling the development of generalist
agents capable of perception, reasoning, and action across a wide range of domains
[2].

6



Foundations

By embedding an LLM at their core, intelligent agents gain the ability to un-
derstand and respond to natural language instructions with remarkable flexibility,
making interactions with them feel intuitive and human-like. They can interpret
unstructured information, such as free-form text or conversational input, and distill
it into relevant, actionable knowledge.
Finally, their capacity to interface with digital tools, APIs, and external systems en-
ables them to extend their capabilities far beyond standalone reasoning, effectively
bridging human intent with a wide range of computational resources [3].

2.2.1 The LOMAR Framework

To support structured development and analysis of intelligent agents powered by
LLMs, the LOMAR framework provides a conceptual blueprint that captures
their essential components and operational principles.

LOMAR stands for Language Model, Objective, Memory, Actions, Rethink, and of-
fers a systematic way to reason about how such agents can interpret goals, maintain
context, interact with external tools, and refine their behavior over time.

• LLM: The core reasoning engine. It interprets user input, formulates plans,
and generates context-aware responses based on pre-trained knowledge and
context-specific information.

• Objective: The agent’s driving goal or task. It defines the problem space and
drives the decomposition of tasks, determining the direction of the planning
and execution strategies.

• Memory: Allows the agent to retain and retrieve relevant information from
prior interactions. Memory is essential for preserving context, maintaining
coherence in multi-step reasoning, supporting and personalization or long-term
adaptation.

• Actions: Constitute the set of operations that the agent can perform to
interact with its environment. These may include invoking external tools,
calling APIs, executing code, manipulating data, or accessing cloud services.
Through actions, the agent translates intentions into real-world effects.

• Rethink: A reflective component that enables the agent to evaluate its
previous decisions and outputs, adapt its strategies, and review decisions using
internal assessments, environmental feedback, or human input.

7



Foundations

Agent Roles

The effectiveness and realism of an intelligent agent depend not only on its func-
tional capabilities, but also on its role profile, which defines the agent behavior,
interaction style, and reasoning patterns.
Depending on the application, an agent may adopt roles, such as teacher, devel-
oper, assistant, or domain expert. A role profile generally encompasses several
dimensions:

• Basic Information: Demographic and background attributes such as age,
gender, professional expertise, language skills, or domain specialization. Al-
though not strictly necessary for functionality, these elements help align the
agent’s behavior with user expectations, especially in simulated or instructional
settings.

• Psychological Traits: Personality characteristics influence how an agent
communicates and makes decisions. Attributes such as assertiveness, empathy,
or analytical thinking affect its interaction style and perceived trustworthiness.
Communication preferences, such as formality, tone, or degree of verbosity,
can also be configured to better suit the target user. In addition, agents may
be designed with specific cognitive style.

• Social Context: Agents rarely operate in isolation. Their roles relative to
users (e.g., mentor, peer, or subordinate) and other agents (e.g., team leader or
collaborator) influence how they behave in multi-agent environments. Socially
aware agents may exhibit cooperation, negotiation, or even conflict resolution
behaviors, depending on the structure and dynamics of the system they are
part of.

Memory and Context Management

In LLM-based agents, memory plays a crucial role in maintaining continuity,
coherence, and context-awareness across multi-step tasks.
Unlike traditional stateless pipelines, agent-based orchestration systems benefit
from memory mechanisms that allow agents to recall prior inputs, reuse previously
generated outputs, and adapt their behavior dynamically throughout the session.
The memory structure adopted in this system is inspired by cognitive psychology,
where memory is typically divided into distinct layers based on function and
duration.
Similarly, the agent’s internal memory can be categorized into different levels, each
serving a specific purpose during the orchestration process.

8



Foundations

• Short-Term Memory (STM): Covers the contextual information available
within a single session (e.g., current conversation). STM allows the agent
to understand follow-up instructions, avoid repeating actions, and adapt to
ongoing context.

• Long-Term Memory (LTM): Refers to persistent knowledge across multiple
sessions. It includes specific task histories and outcomes (episodic memories),
as well as general knowledge, learned strategies, or reusable configurations
(semantic memory).

• Hybrid Memory: Combines STM and LTM to offer access to both recent and
persistent knowledge. This design supports dynamic adaptation, allows cross-
session reasoning, and enables more intelligent decision-making in complex
workflows.

Memory Formats

The structure and format of memory also play a crucial role in how information is
stored, retrieved, and applied.
Different formats are employed depending on the type of data and its intended
purpose:

• Natural Language Text: Human-readable format commonly used for storing
conversational history, user instructions, or logs in human-readable form.

• Vector Embeddings: High-dimensional representations that capture seman-
tic meaning, enabling similarity-based retrieval and contextual matching.

• Structured database: Relational or document-based formats that organize
information using predefined schemas, allowing precise and efficient access to
specific fields or entities.

• Hierarchical structures: Formats such as JSON or YAML allow the storage
of nested, context-rich information, useful for representing decision paths or
agent states.

• Multi-format systems: Hybrid approaches that integrate different formats
(e.g., text, vectors, and structured elements) to balance both interpretability
with computational efficiency.

Memory Operations

In intelligent agents, memory revolves around two fundamental operations: read-
ing and writing. These operations enable the agent to retrieve past experiences

9



Foundations

while continuosly integrating new information into its internal state.

Reading allows the agent to recall previously stored information in order to guide
current decisions, predict outcomes or interpret user instructions. The effectiveness
of this operation depends on several factors such as the recency of the information,
its relevance to the current context, and its overall importance for the agent’s
objectives.

Writing, on the other hand, refers to storing new information or the updating
existing entries. To remain efficient, the agent should minimize redundancy by
refining or merging previously stored knowledge rather than duplicating it. Writing
also requires managing memory limitations, which may involve deciding whether
to retain, summarize, or discard specific pieces of information. In some cases, this
process extends to reflexive updates, where the agent records evaluations of its own
performance in order to refine future decision-making.

Planning and Reasoning

In an intelligent agent system, planning is the cognitive process that transforms a
user’s high-level intent into a coherent and executable sequence of actions. It acts
as the bridge between natural language input and system behavior, allowing the
agent to interpret complex instructions, decompose them into atomic operations,
and determine the appropriate execution order.
Effective planning is essential for orchestrating multi-step tasks, resolving resources
dependencies, and ensuring that actions are both feasible and contextually consis-
tent.
In this system, the planning process is closely integrated with the reasoning capa-
bilities of the underlying language model. The model segments the prompt, assigns
meaningful descriptions to each subtask, and identifies the relationships among
them. Two main strategies are used to support this capability:

Planning without Feedback

• Single-Path Reasoning: Executes a predefined linear sequence of steps. It
prioritizes efficiency but lacks adaptability in dynamics scenarios.

• Multi-Path Reasoning: Evaluates multiple alternative paths at each decision
point, enabling more flexible and informed choices.

• External Planner: Transforms high-level goals into formats compatible with
external planners, such as symbolic reasoning engines or automated planning
tools.

10



Foundations

Planning with Feedback

• Environmental Feedback: Adapts the agent strategy based on real-time
responses or environmental conditions.

• Human Feedback: Integrates user interventions such as corrections, clarifi-
cations, or direct supervision to iteratively improve behavior and outcomes.

• Model Feedback: Performs internal self-assessments to refine planning and
detect inconsistencies or errors over time.

Advanced Planning Methods

• Chain-of-Thought (CoT): Breaks reasoning into a sequence of natural
language steps to improve interpretability and task performance, particularly
in arithmetic and logic tasks.

• Program-of-Thought (PoT): Represents reasoning through executable code
(e.g., Python scripts), leveraging the precision and modularity of programming
to handle complex tasks.

• Tree-of-Thought (ToT): Builds a tree of potential reasoning paths, allowing
the agent to explore, evaluate, and prune alternatives based on intermediate
decisions or utility scores.

• Self-Ask: Allows the model to generate and answer its own clarifying ques-
tions before reaching a conclusion, mirroring human-like curiosity and doubt
resolution.

• Graph-of-Thought (GoT): Structures reasoning as a graph, modeling
dependencies, casual relationships, and iterative refinement loops among ideas,
concepts, or subgoals.

Actions Execution

Once the planning and reasoning stages have been completed, the system proceeds
to the execution phase.
This stage is responsible for turning the agent’s internal decisions into concrete
operations that interact with the external environment. These actions are typically
goal-oriented and reflect the agent’s ability to operationalize its understanding in
real environments, whether digital or physical.
Agent actions usually fall into one of the following categories:

1. Task Execution: Performing well-defined tasks, such as writing documents,
answering queries, generating code, translating text, or solving problems.

11



Foundations

2. Communication: Exchanging information with other agents and users, which
may involve negotiation, clarification, or collaborative task management.

3. Exploration and Learning: Interacting with the environment to acquire
new knowledge, test hypotheses, and refine internal models.

The form of action execution largely depends on the degree of integration with
external systems or resources.
The system supports multiple execution modes, including:

• Tool and API Integration: The agent may invoke external tools or API
(e.g., HuggingGPT, WebGPT, Gorilla, ToolFormer, and API-Bank) to perform
specialized tasks, which allow the agent to delegate reasoning steps, perform
real-time data retrieval, or trigger remote procedure.

• Database Access: Actions may involve querying structured (e.g., SQL
databases) or semi-structured (e.g., knowledge graphs, document stores)
sources. This enables the agent to validate information, retrieve contextual
data, or answer fact-based queries reliably.

• Standalone Reasoning: In some scenarios, the agent relies solely on its
internal capabilities without accessing any external resource. This mode is
useful when actions must be fast, lightweight, or completely self-contained.

Learning

Learning defines how an agent adapts to its environment and improves its perfor-
mance over time. It represents the mechanism through which the agent evolves
beyond static programming, gradually refining its strategies and behaviors based
on experience.
Different learning paradigms provide complementary ways for agents to improve,
depending on the nature of the task, the context in which they operate, and the
type of data available.

Learning without Fine-Tuning

This paradigm doesn’t involve changing the model’s internal parameters but instead
leverages prompt conditioning and in-context learning.

• Prompt Engineering: The model learns from the data provided in the
prompt, relying on examples or task descriptions provided in real time [4].

12



Foundations

◦ Zero-Shot: The model is provided with only the task description, and
it generates an answer without any specific examples. This approach
assumes that the model has implicitly learned how to perform the task
prior to training.

◦ Few-Shot: The prompt includes a series of demonstrations consisting
of input-output pairs that represent the desired behavior. This helps the
model better understand the user’s intent and what kind of output is
expected.

◦ Instruction Prompting: The task is described through natural language
instructions rather than examples. This often requires being detailed and
explicit to guide the model’s behavior effectively.

Learning with Fine-Tuning

Here the model’s internal weights are updated to better align with domain-specific
tasks or user preferences. This is typically achieved through:

• Supervised Fine-Tuning: Training on labeled datasets to specialize in
particular tasks (e.g., medical QA, legal reasoning).

• Reinforcement Learning from Human Feedback (RLHF): The agent
learns optimal behaviors through iterative feedback loops with human evalua-
tors or reward models.

2.3 Multi-Agent Systems (MAS)

Multi-Agent Systems (MAS) are computational frameworks composed of multiple
autonomous agents operating in a shared environment. Each agent is capable of
making decisions, perceiving changes in its surroundings, and performing actions
either independently or in coordination with others.
Depending on the context, agents may pursue their own goals or collaborate to
achieve a share objective.
MAS architectures enhance scalability, fault tolerance, and task specialization,
making them suitable for complex, distributed scenarios.

Architectures and Communication

The structure of a Multi-Agent System (MAS) plays a crucial role in determining
how agents coordinate, share information, and divide responsibilities.
Different architectural models define how agents interact and how control flows
through the system. The choice of architecture depends on the complexity of the

13



Foundations

tasks, the level of autonomy required, and the scale of the system [5]. The most
common MAS architectures include:

• Flat Architecture: In this model, all agents operate at the same level, and
communicate using a peer-to-peer protocol. No single agent holds global
control, which promotes decentralization, flexibility, and rapid interaction.
This architecture is well-suited for small to medium-sized systems that require
agility and distributed decision-making.

• Hierarchical Architecture: Agents are organized in multiple levels, forming
a top-down control structure. Higher-level agents (often referred to as super-
visors or coordinators) manage and delegate tasks to lower-level agents. This
model supports clear responsibility distribution and is particularly effective in
complex systems that require centralized planning with distributed execution.

• Team-Based Architecture: Agents are grouped into specialized teams, each
responsible for a specific subtask. Within each team, agents collaborate closely,
while coordination between teams ensures alignment with global goals. This
structure encourages specialization, modularity, and dynamic role allocation.

• Hybrid Architecture: Combines elements of the above models to support
flexible and adaptive coordination strategies. For example, a system may
use a hierarchical structure for task assignment while enabling peer-to-peer
communication within teams. Hybrid architectures are particularly useful
in dynamic environments where agent roles, communication patterns, and
workloads change over time.

Agent Relationships

In a Multi-Agent System (MAS), agents interact with each other in different ways
based on the alignment or divergence of their individual goals.
These relationships significantly influences system behavior, coordination mecha-
nisms, and overall performance.
The most common types of agent relationships are:

• Cooperative: Agents collaborate toward a shared goal, contributing their
capabilities to maximize collective success. Cooperation may occur through
unconditional assistance or more deliberative forms, where agents critically
evaluate proposals before reaching consensus. These systems often rely on trust,
mutual support, and coordinated strategies to maximize global performance.

• Competitive: Agents pursue independent or even conflicting goals, often
competing for limited resources, attention, or rewards. Competition is typical

14



Foundations

in adversarial environments, game-theoretic environments, or market-based
simulations, where agents aim to outperform one another.

• Mixed: In many real-world scenarios, cooperation and competition coexist.
Agents may form temporary alliances or collaborate on shared subgoals while
still pursuing individual interests. This setting is typical in multi-agent games,
negotiation frameworks, and economic simulations where strategic behavior
and alliance formation play a key role.

Communication Strategies

Communication is a key component of agent collaboration. The strategy chosen to
manage communication affects how quickly agents converge on solutions, how they
interpret shared information, and how they resolve conflicts [5].
The system supports several communication modes:

• One-by-One: Agents communicate sequentially, preserving message order
and context. This approach supports structured reasoning and is particularly
effective for tasks such as collaborative problem-solving or code generation.

• Simultaneous-Talk: All agents communicate simultaneously without waiting
for other, promoting the rapid exchange of diverse ideas. This strategy is useful
for tasks requiring brainstorming, voting, or aggregating multiple viewpoints.

• Simultaneous-Talk with Summarizer: In this variation, a dedicated sum-
marizer agent reviews all inputs after each round and produces a consolidated
message. This helps reduce redundancy, align contributions, and guide the
discussion forward with improved clarity.

Evaluation Approaches

Assessing the performance of a Multi-Agent System involves measuring its effec-
tiveness, reliability, and alignment with expected outcomes.
Several evaluation criteria are commonly used:

• Success Rate: Measures how often agents successfully complete the as-
signed task. This is particularly useful in structured tasks such as planning,
negotiation, or gameplay.

• Operational Cost Analysis: Evaluates the computational and resource cost
of running the system, including token usage in LLMs and API calls. This is
essential for assessing scalability and sustainability

15



Foundations

• Simulation Coherence: Checks whether the overall agent behaviors ap-
pears realistic and internally consistent with respect to the environment and
objectives.

• Validity Testing: Verifies that agent outcomes reflect known real-world dy-
namics, especially in simulations involving decision-making or policy outcomes.

• Information Propagation: Analyzes how information spreads among agents
over time, identifying knowledge flow and the emergence of shared beliefs.

• Diffusion Speed: Measures how quickly a message, signal, or idea spreads
throughout the system.

• Source Influence: Quantifies the actual impact of individual agents or
entities on the system’s final outcomes, highlighting leadership or bias.

• Sensitivity Analysis: Studies how small changes in input (e.g., prompt,
context, initial configuration) affect overall system behavior.

• Robustness and Stability: Assesses whether the system behaves consistently
across repeated runs or under minor variations in setup.

• Applicability: Evaluates whether the system is useful in practice, with
respect to the needs of specific stakeholders such as researchers, policymakers,
or commercial users.

2.4 Cloud Computing

Cloud computing refers to the delivery of computing services, such as servers,
storage, databases, networking, software over the Internet, commonly referred
as "the cloud". This paradigm enables organizations and individuals to access
scalable and flexible IT resources without the need to purchase or maintain physical
infrastructure directly. Services are typically offered on a pay-as-you-go basis, with
cloud providers managing the underlying infrastructure transparently.

One of the most significant advantages of cloud computing is its cost efficiency.
By leveraging economies of scale, providers are able to reduce the unit cost of
computing resources, and users avoid the large upfront capital expenditures associ-
ated with on-premises infrastructure. Instead, they only pay for the resources they
actually consume.

Equally important is the scalability and elasticity of cloud platforms. Resources

16



Foundations

can be dynamically scaled up or down in response to fluctuations in demand, elimi-
nating the inefficiencies of overprovisioning and allowing organizations to adapt
their infrastructure in real time. This flexibility is complemented by the speed
and agility of the cloud: new resources can be provisioned within minutes, greatly
accelerating the development and deployment of applications.

Cloud computing also enhances productivity. By outsourcing the complex-
ity of maintaining servers and data centers, organizations can concentrate on their
core business functions rather than infrastructure management. At the same time,
reliability is strengthened through mechanisms such as data redundancy, auto-
mated backup, and disaster recovery, which together ensure higher levels of system
availability and fault tolerance.

Cloud Service Models

Cloud computing is typically organized into three main service models, which
differ in the level of abstraction provided and in the division of management
responsibilities between the provider and the user:

• Infrastructure as a Service (IaaS): Delivers fundamental computing
resources such as virtual machines, storage, and networking components.
Users retain control over the operating system, middleware, and applications,
while the cloud provider manages the underlying physical infrastructure. This
model offers maximum flexibility but requires higher technical expertise from
the user.

• Platform as a Service (PaaS): Provides a managed environment for applica-
tion development and deployment. The cloud provider handles infrastructure,
runtime, and platform services, allowing developers to concentrate on writing
code and building functionality. This model accelerates development cycles
and reduces operational overhead.

• Software as a Service (SaaS): Offers complete, ready-to-use applications
delivered over the Internet. Users access the software through a web browser
or API, while the provider manages all aspects of the service, including
infrastructure, updates, and security. This model is ideal for end-users who
prioritize ease of access and minimal management effort.

17



Foundations

Figure 2.2: Comparison between On-Premises and Cloud service models (IaaS,
PaaS, SaaS).

Cloud Deployment Models

Cloud resources can be delivered through different deployment models, each tailored
to specific organizational needs and trade-offs between scalability, control, and cost.

In the public cloud, services are hosted on shared infrastructure and made
available to users over the Internet. The infrastructure is fully owned, operated,
and maintained by third-party providers, who pool resources across multiple cus-
tomers. This model is particularly attractive for its high scalability, flexibility, and
cost-efficiency, since organizations only pay for what they use and do not need to
invest in hardware or ongoing maintenance.

By contrast, the private cloud is designed for exclusive use by a single organization.
The infrastructure can be hosted on-premises or managed by an external provider
but remains dedicated to one entity. This model offers stronger control over data,
enhanced security, and compliance with regulatory requirements, making it suitable
for industries that handle sensitive information such as healthcare, banking, or
government services. However, these advantages come at the expense of reduced
scalability and higher costs compared to public cloud solutions.

The hybrid cloud combines elements of both public and private environments,
enabling organizations to distribute workloads strategically. For example, sensitive
data may remain in the private cloud for security and compliance reasons, while
less critical workloads are offloaded to the public cloud to benefit from elasticity
and cost savings. This approach provides a balance between control and scalability,

18



Foundations

while also supporting greater operational flexibility and resilience.

2.5 Software Development Life Cycle (SDLC)

The Software Development Life Cycle (SDLC) is a structured framework that
defines the stages involved in the creation, deployment, and maintenance of software
systems.
It provides a theoretical and methodological foundation for software engineering,
ensuring that development activities are systematic, repeatable, and aligned with
both user and business needs.
The SDLC is typically divided into the following key phases:

1. Planning: In this initial stage there is the definition of project objectives,
scope, resources, constraints, and risks. This phase establishes the overall
vision and feasibility of the initiative.

2. Analysis: This phase focuses on gathering, examining, and documenting both
functional and non-functional requirements. It establishes a clear understand-
ing of user needs and system specifications, providing the foundation upon
which all subsequent development activities are built.

3. Design: In this phase, the documented requirements are translated into
a coherent technical blueprint. It defines the software architecture, data
structures, user interfaces, and system workflows, ensuring that the solution
is well-structured and ready for implementation.

4. Implementation: During this phase, the system is constructed through
coding. Developers translate design specifications into executable software
using programming languages, frameworks, and tools.

5. Testing & Integration : The developed system is rigorously tested through
unit tests, integration tests, system tests, and acceptance tests, to ensure
functional correctness, performance efficiency, and reliability.

6. Maintenance: After deployment, the software requires ongoing updates, bug
fixes, and enhancements to adapt to changing requirements, technologies, and
operating environments.

19



Foundations

Figure 2.3: The Software Development Life Cycle (SDLC) phases.

From a theoretical perspective, the the Software Development Life Cycle (SDLC)
embodies core principles of process management, risk mitigation, and quality as-
surance. It provides a structured framework for coordinating complex technical
activities, ensuring that development is systematic, traceable, and aligned with
organizational goals.
Over time, several models have been proposed to structure the SDLC.
The Waterfall Model adopts a strictly sequential flow of phases, moving linearly
from requirements analysis to deployment.
The V-Model builds on this approach by explicitly linking each development stage
with its corresponding testing activity, emphasizing verification and validation.
In contrast, more recent Iterative and Agile Approaches emphasize adaptability,
incremental delivery, continuous feedback, and close collaboration with stakeholders.

In contemporary practice, the SDLC serves not only as a methodological guideline
but also as a foundation for integrating emerging paradigms. Examples include
DevOps, which bridges development and operations through automation and shared
responsibility, and Continuous Integration/Continuous Deployment (CI/CD), which
accelerate software delivery while maintaining quality standards.
More recently, Large Language Model (LLM)-based agents have been introduced
as active participants in the SDLC, assisting in tasks such as requirements analysis,
automated code generation, testing, and system monitoring [6].

20



Chapter 3

System Design

This chapter presents the architectural foundations of the system, which enables
the orchestration of cloud infrastructure through natural language interaction. The
primary objective is to provide an intelligent interface between human users and
cloud platforms, capable of translating high-level textual requests into structured,
validated, and executable actions.

At its core, the system is built around a team of specialized agents powered
by Large Language Models (LLMs). The agent-based design promotes modularity,
task specialization, and parallel execution, making the system both flexible and
scalable.

By combining advanced reasoning capabilities with external tool integration and
contextual memory, the system is able to automate complex workflows while pre-
serving human oversight and control.

The following sections describe the design principles, agent architecture, memory
mechanisms, planning strategies, and execution flow that underpin the system.

3.1 Design Goals and Principles

The primary objective of the system is to provide a modular, extensive, and in-
terpretable framework that enables users to automate AWS cloud infrastructure
tasks without writing code or relying on the Management Console. This is made
possible through a multi-agent architecture that integrates Large Language Models
(LLMs) with a library of specialized tools for executing cloud operations.
The design of the system is guided by several core principles.

21



System Design

Modularity ensures that core functions such as planning, parameter extraction,
execution, validation, and logging are encapsulated within dedicated, self-contained
components. This separation ensures that each component can be independently
developed, tested, replaced, or extended without affecting the others.

Closely related is the principle of Separation of Concerns, which enforces
a strict division between responsabilities. Planning determines what needs to be
done; parameter extraction and validation identify which data is required for each
action; and execution carries out the tasks using the appropriate tools.
This clear delineation promotes readability, simplifies debugging, and supports
clean architectural layering.

Another fundamental principle is Parallelism. Although some cloud operations are
inherently sequential due to interdependencies, many steps, particularly planning
and parameter extraction tasks, can be performed concurrently.
The system is designed to exploit this parallelism to reduce latency and improve
responsiveness, especially when handling multi-action prompts.

Equally important is the principle of Traceability. Every decision made by
the system, along with the extracted parameters, the tools invoked, the execution
results, and the resource metadata is systematically recorder.
These logs are exported in both human-readable (Markdown) and machine-readable
(JSON) formats.

Finally, the system enforces Structured Reasoning through the use of Pydantic
models. Each agent is required to produce output that conforms to a predefined
schema, ensuring that all actions are interpretable, predictable, and safe to execute.
This not only reduces the risk of misinterpretation but also enhances the reliability
and correctness of the overall pipeline.

3.2 Architecture Overview

The system is organized into a set of clearly separated modules, each responsible for a
specific part of the process: from understanding the user’s natural language request,
to extracting the necessary parameters, and finally executing the appropriate AWS
actions. Each module is stored in its own directory, making the codebase clean,
modular, and easy to maintain or extend.
Below is a description of each main component in the architecture.

22



System Design

1. core/ – Main Agents

This folder containts the three core agents that form the reasoning and coordination
backbone of the system:

• planner.py: Receives the user prompt and decompose it into a sequence of
structured AWS actions. It also defines execution order based on dependencies
between actions.

• extractor.py: Extracts the parameters required for each action using an LLM
and returns a validated object conforming to predefined Pydantic schemas.

• executor.py: Executes the planned actions in the appropriate order. It invoke
the corresponding AWS tools, monitors task status, and handles execution
errors.

2. aws_actions/ – AWS Tool Layer

This folder contains the low-level implementations of AWS cloud operations using
the Boto3 Python SDK. Each script corresponds to a specific AWS service or
capability.
Here is a list of the tools currently available:

• bucket.py: Create or reuses an S3 bucket.

• lambda_function.py: Creates a Lambda function.

• handler.py: Generates and uploads Lambda handler code.

• trigger.py: Adds a trigger (EventBridge rule) to schedule Lambda function
invocations.

• iam.py: Create or reuses an IAM role.

• policy.py: Attaches an inline IAM policy to a role.

• permission.py: Adds permissions to allow Lambda invocation.

• api_gateway.py: Exposes a Lambda function through an API Gateway
endpoint.

• dynamo.py: Manages DynamoDB tables and records with operations such as
create, insert, update, retrieve, and delete.

• ec2.py: Manages EC2 instances (launch, start, stop, terminate).

• cost.py: Retrieves AWS cost information using AWS Cost Explorer.

23



System Design

3. schemas/ – Parameter Validation

This folder defines all input validation logic, implemented using Pydantic schemas.
Each schema is associated with a specific AWS tool and specifies the expected
input format, including both required and optional parameters.
These schemas ensure that all mandatory parameters are correctly extracted and
typed before execution begins.
At the same time, malformed or incomplete requests are detected early, ensuring
that tools never receive invalid input.
In addition to validation, the schemas provide strong typing and serve as a form of
documentation for each tool’s interface, making the system both more reliable and
easier to maintain.

4. models/ – Action Definitions

This folder defines shared Pydantic data structure action_schema.py, which
standardizes the representation of AWS actions across the system. The schema
specifies the core fields that describe an action:

• action: Identifies the type of AWS operation to be performed.

• text: Stores the portion of the original prompt associated with the action.

• description: Provides a human-readable explanation of the task, making
logs and documentation more interpretable..

5. my_logging/ – Logging and Reporting

This package implements the logging infrastructure used for both runtime monitor-
ing and post-execution analysis. It includes two main modules

• logger.py: Offers general-purpose logging utilities.

• task_logger.py: Records the history of executed tasks along with the ex-
tracted parameters, execution results and overall system status.

Logs are automatically exported in both JSON and Markdown formats,
including task status, execution timestamps, LLM token usage, and estimated costs
(USD) based on OpenAI pricing.

24



System Design

6. tests/ – Prompt-Based Testing

This folder contains a full suite of 24 prompt-based tests designed to simulate
the real user requests. The goal of these tests is to validate the entire pipeline,
from planning to parameter extraction and execution. All test cases are defined in
the tests.py file, and each run automatically logs its output while producing a
summary report with the corresponding pass/fail status. Through this mechanism,
the test suite provides assurance of correctness and reliability while also serving as
a safeguard against regressions during further development.

Running Example

To illustrate how the modules interact, the following example presents through a
complete workflow in which a natural language request is translated into specific
AWS operations.

Deploying a Scheduled Lambda Function

User request : “Create a Lambda function called LambdaExample that runs
every day at 9 AM, using the provided IAM role, and store its logs in the
specified S3 bucket.”

Assumptions :
• The user has valid AWS credentials with sufficient permissions to manage

the required resources.

• Default values for region and account are either preconfigured or explicitly
provided.

• Existing resources are reused whenever available, following a create-or-
reuse policy.

• All resource names supplied by the user comply with AWS naming con-
ventions.

Planned actions (core/planner.py) :

1. Create or reuse the specified S3 bucket for logs.

2. Create or reuse the specified IAM role with basic execution policy and S3
write permissions.

3. Create the Lambda function associated with the IAM role.

25



System Design

4. Generate and upload the handler code package.

5. Create an EventBridge rule to trigger the Lambda daily at 09:00 AM, and
configure the necessary invocation permissions..

Parameter extraction and validation (core/extractor.py + schemas/)
: During this stage, the system derives all necessary parameters from the
natural language request and validates them against the corresponding Pydantic
schemas.

Parameter Value

Lambda name LambdaExample

Description Executes daily and stores execution logs into the specified
S3 bucket

Handler Deployment package (lambdaexample.zip) containing the
handler script lambdaexample.py

S3 Bucket name Provided by the user

IAM Role name Provided by the user

Policies AWSLambdaBasicExecutionRole + Custom inline S3
write policy

Schedule expression cron(0 9 * * ? *) (daily at 09:00)

Execution mapping (core/executor.py + aws_actions/) :

• bucket.py → Create or reuse S3 bucket for logs.

• iam.py, policy.py → Create or reuse role; attach inline policy for S3.

• lambda-function.py → Create Lambda bound to the IAM role.

• handler.py → Generate and Upload handler code.

• trigger.py → Create EventBridge rule and permission to invoke Lambda.

26



System Design

Outputs, Logging and Traceability (my_logging/) : All operations are
logged to ensure transparency and reproducibility.
The system produces both human-readable (Markdown) and machine-readable
(JSON) reports which include: planned actions, extracted parameters, invoked
tools, execution results, and timings.
Additionally, the logger tracks LLM token usage and estimates AWS API call
costs.

Failure Handling :

• Parameters are validated against Pydantic schemas. If required fields are
missing or invalid, execution is halted and the system requests explicit
user input to correct or provide the missing values.

• The create_or _reuse policy prevents duplication by reusing existing
resources when available.

• Temporary AWS service failures are managed through bounded retries
with exponential backoff, which reduces overload and increases resilience
to intermittent issues.

3.3 Communication and Collaboration

The system relies on the tightly coordinated interaction of three specialized agents:
the planner, the extractor, and the executor. Each agent is responsible for a
distinct stage of the orchestration pipeline:

• Planner: Interprets the user’s natural language request and decomposes it
into a sequence of structured AWS actions ordered according to their logical
dependencies.

• Extractor: Retrieves and validates the parameters required for each action
(e.g., bucket names, Lambda function names, schedules), ensuring completeness
and type safety through Pydantic schemas.

• Executor: Executes each action in the correct order, invoking the appropriate
AWS tools and tracking execution status.

Rather than relying on asynchronous messaging system or external orchestrators,
the agents communicate directly through function calls, exchanging structured data
in the form of validated Pydantic objects.
Each agent completes its task and then explicitly transfers control to the next by

27



System Design

returning structured output.
This approach, referred to as sequential modular delegation, allows each agent to
remain isolated and focused on its specific responsibility, while ensuring smooth
coordination and traceability across the pipeline.

Sequential Interaction Flow

The collaboration between agents is organized as a strictly ordered pipeline.

The process begins with the planner, which interprets the user’s natural lan-
guage request through an LLM and decomposes it into a structured sequence
of AWS actions. The planner’s output is constrained by a predefined schema
(MultiActionSchema), ensuring syntactic correctness and compatibility with down-
stream components.

Once the sequence of actions has been produced, it is passed to the extrac-
tor. At this stage, a second LLM-based invocation derives the parameters required
for each action. Each AWS operation is represented as a validated Pydantic object,
such as BucketSchema or LambdaFunctionSchema, ensuring that all inputs are
complete, consistent and type-safe.

In the final step, the executor receives the complete sequence of action–parameter
pairs and executes them in the correct order. It invokes the corresponding AWS op-
eration, while simultaneously monitoring the execution status to prevent redundant
actions and to ensure the robustness of the workflow.

Orchestration

Although the system doesn’t explicitly include a "supervisor" agent, the planner
implicitly assumes this coordinating role by establishing the correct task order
according to action dependencies. In this way, orchestration emerges naturally
from the planning process itself, which keeps the overall architecture lightweight
while still preserving a coherent global execution strategy.

This design choice brings several advantages. Since each agent operates inde-
pendently and communicates through well-defined input/output schemas, the
system maintains a high degree of modularity. At the same time, the deterministic
flow of information across agents ensures transparency and makes the reasoning
process fully traceable. Finally, the architecture remains inherently extensible, as
new agents or tools can be incorporated without disrupting the existing workflow,
enabling the system to evolve alongside future requirements and technological

28



System Design

advances.

Execution and Tool Invocation

The final stage of the pipeline is the execution layer, where the planned actions
are carried out through a suite of modular tools. Each tool is implemented as an
independent Python function built on top of the Boto3 SDK and is invoked directly
by the executor. To promote clarity and maintainability, tools are organized into
dedicated modules named after the AWS resource they manage (e.g., bucket.py,
lambda_function.py, trigger.py).

A distinctive aspect of the execution layer is its reliance on strict validation:
tools accept only structured and pre-validated parameter objects, ensuring both
syntactic correctness and semantic consistency before execution.

Furthermore, the tools are designed with module isolation in mind, meaning
that each operates independently of the others. This separation not only simpli-
fies debugging but also increases the predictability and robustness of the overall
system. So potential errors are localized and prevented from propagating across
components. At the same time, this design facilitates incremental development
and testing, since individual tools can be updated, replaced, or extended without
introducing unintended side effects in the rest of the pipeline.

Finally, execution errors are managed through a framework of uniform error
handling. Failures are centrally captured and logged in a standardized format,
guaranteeing transparency and traceability. In interactive mode, the user may also
be prompted to provide missing or corrected information, allowing the system to
recover gracefully without compromising reliability.

This design results in a pipeline that is modular, auditable, and robust—bridging
the gap between high-level user intent and concrete infrastructure deployment.

3.4 Memory and Contextual Reasoning

To manage complex, multi-step user requests and ensure consistent execution across
dependent operations, the system employes a lightweight yet powerful memory
mechanism designed to support contextual reasoning, parameter disambiguation,
and dependency resolution, which are essential for coherent execution within a
single interaction cycle.
Although memory is not persisted across sessions, its temporary nature is sufficient

29



System Design

to guarantee continuity during short-lived interactive tasks while also safeguarding
user privacy and maintaining real-time responsiveness.

Conversational Memory

The memory is implemented as a structured conversational history, which
evolves dinamically during the session.
Rather than storing only the user’s raw prompts, it captures the entire execution
trace, that includes the original instructions, the sequence of structured actions
generated by the planner (together with their type, description, and associated
text), and the validated parameters extracted by the extractor.
This shared state is passed between all agents (planner, extractor, executor) and
updated at every step. Internally, it is encoded as a sequence of structured messages,
including HumanMessage, AIMessage, and SystemMessage, which are provided as
context to the LLM during each round of parameter extraction.
This enables the model to reason with full awareness of the task sequence and prior
references.

The memory is ephemeral, retained only for the duration of the current session.
It is discarded when the session ends or it is manually reset by the user. This
design choice is motivated by both privacy considerations and a focus on real-time
responsiveness, as the system is primarily intended for short-lived interactive tasks.
Despite its non-persistent nature, the system maintains a task_log.jsonl file
that records all actions, extracted parameters, and timestamps. This log supports
debugging, auditing, and post-hoc analysis.

One of the key benefits of the memory mechanism is its ability to enable contextual
disambiguation. This process resolves ambiguities in user input by drawing on
conversational context, semantic cues, recency, and logical flow.
For instance, when a user states:

“Deploy the Lambda using the same bucket as before.”

the phrase "the same bucket" is ambiguous in isolation. A traditional system
would require the user to explicitly restate the bucket name. By contrast, a
memory-enabled LLM can retrieve prior context, through the full conversation
history, and correctly infer that this is the intended bucket.

Beyond resolving ambiguities, the memory mechanism can also infer missing
details from the recent context. For example, it may automatically use the most
recently created role ARN if one was just generated. In addition, it can adapt to
user corrections or refiniments, such as switching to a newly specified bucket.

30



System Design

This approach allows the interaction to remain fluid and natural, reducing the need
for repetitive clarification and making the system more adaptive to real conversation
dynamics.

Handling Long Conversations

To support complex interactions, the system includes the entire conversational
history when performing parameter extraction.
Unlike approaches that impose strict artificial truncation or message limit, this
design allows the model to reconstruct the entire request context whenever needed.
This capability is particularly valuable in scenarios where later actions depend on
earlier steps in the dialogue.

Although the current implementation does not yet employ truncation or sum-
marization, the pipeline remains robust thanks to its modular design.
The planner breaks down the requests into smaller, well-designed blocks and the
extractor processes each block independently. This ensures that prompts remains
within manageable bounds while still preserving the continuity of the overall
conversation.

Limitations

Although the current short-term memory mechanism is effective within a single
session, it has inherent limitations.
Most notably, it does not persist information across sessions, which prevents the
system from tracking deployed infrastructure over the long term. In addition, the
mechanism relies exclusively on the language model’s ability to reason over the
conversation history, without the support of symbolic memory or a structured
knowledge base.

Another important limitation concerns scalability in extremely long sessions.
Since the entire conversational history must ultimately be represented within
the model’s context window, very large dialogues may exceed available capacity.
Moreover, even when the window is not fully saturated, longer sessions inherently
make it harder for the model to retrieve and prioritize the most relevant details
from the context. Addressing these challenges would require strategies such as
hierarchical memory or dynamic summarization in order to preserve continuity
without overwhelming the model.

Looking ahead, future iterations of the system could overcome these limitations by

31



System Design

introducing a persistent memory layer capable of storing parameter values, resource
metadata and session context. This would enable multi-session continuity and
team-level collaboration, allowing users to reference infrastructure deployed days
or weeks earlier.

Despite these constraints, the current architecture already demonstrates the strength
of combining a transient but structured conversational memory with a capable
language model. Even without persistent storage, this approach is sufficient to
enable rich, context-aware reasoning within complex, multi-step workflows in a
single session.

3.5 Human Feedback and Control

Although the system is designed to operate autonomously once a natural language
request is received, human input and oversight remain essential for ensuring reliabil-
ity, security and transparency. To this end, the architecture integrates lightweight
humain-in-the-loop mechanisms that provide flexibility, support error recovery, and
reinforce user control without undermining automation.

Authentication and Credential Management

Before any cloud action is executed, the system requires the user to authenticate
by providing their AWS credentials.
These include the AWS_ACCESS_KEY-ID and AWS_SECRET_ACCESS_KEY, which are
collected at the beginning of the session and securely stored in a local .env file.
This approach ensures that credentials remain under the sole ownership of the user
and that no action is taken without explicit authorization. By embedding authen-
tication as a prerequisite step, the system maintains both operational integrity and
user trust, preventing unauthorized access while enabling seamless orchestration
once credentials are verified.

Session Initialization

Once authentication has been successfully completed (as described in the previous
subsection), the system initializes the environment and provides the user with a
welcome prompt.
At this stage, the agent explicitly list the available command and awaits the first
request.

Welcome to the AWS Agent!

How can I help you today?

32



System Design

Available commands:

• ’exit’ → quit the agent

• ’reset’ → reset the conversational context

• ’tokens’ → show GPT tokens used so far and estimated cost

• ’reset tokens’ → reset token and cost counters

Write your request:

This initialization step provides a clear entry point for the user, ensuring
transparency and lowering the barrier to interaction by making the system state
and controls immediately visible.

Interactive Parameter Resolution

In some cases, the extractor may be unable to retrieve or validate the necessary
parameters from the user prompt either because information is missing, ambiguous,
or incorrectly formatted.
When this occurs, the system enters a fallback mode explicitly prompting the user
to supply or correct the required values through an interactive interface. This
guarantees that execution begins only when all parameters are complete, consistent,
and confirmed.

Rather than interrupting the workflow with continuous requests for confirma-
tion, the system follows a principle of semi-autonomous execution.
Once the necessary preconditions are met and all parameters are validated, the
orchestration pipeline proceeds without further intervention. Human interaction is
thus limited to moments where it is strictly necessary, such as resolving ambiguities
or completing initial setup (e.g., authentication).
This design strikes a balance between autonomy and user control, ensuring both
ease of use and robustness in edge cases.

33



Chapter 4

System Implementation

4.1 Development Stack and Libraries

The system is developed in Python, using a modular and folder-based architecture.
Each module encapsulates a specific functionality, enabling the pipeline to be
extended or modified with minimal impact on the rest of the system.
Development is conducted using Visual Studio Code (VSCode), which of-
fers integrated support for Python and integrated tools for version control and
environment management.

4.1.1 LangChain

Figure 4.1: LangChain Logo.

34



System Implementation

LangChain is a powerful open-source framework designed to simplify the devel-
opment of applications based on LLMs by providing high-level abstractions and
integrations.

On the development side, LangChain provides a composable interface for build-
ing agents, chains, tools, and workflows leveraging both the LangChain and
LangGraph libraries. Once a prototype is ready, it can be deployed through the
LangGraph Platform, which transforms experimental prototypes into production-
ready APIs. Finally, the companion tool LangSmith enables developers to monitor
and refine their applications by inspecting execution traces, evaluating performance,
and analyzing agent behavior in detail.

LangChain is composed of several interoperable packages, each contributing to
a specific layer of functionality:

• langchain_core: Defines the fundamental abstractions that underpin the
entire ecosystem, including models, prompts, message objects, and execution
logic.

• langchain_openai, langchain_anthropic, other provider-specific pack-
ages: Provide streamlined integrations with popular LLM providers. These
modules handle the communication between LangChain and external APIs,
abstracting away low-level details and providing developers with uniform
interface for working with different models.

• langgraph: Introduces a graph-based paradigm for agent orchestration, al-
lowing workflows to be represented as nodes and edges. This makes it possible
to design flexible, non-linear reasoning processes where agents can branch,
loop, or converge depending on the task.

• langchain_community: Acts as hub for third-party extensions, tools and
components. It extend’s the framework capabilities beyond its core modules,
providing access to a broad and evolving set of resources tailored for diverse
use cases.

In this project, the language model is accessed primarily through the ChatOpenAI

class provided by the langchain_openai module.
This wrapper provides a high-level interface to OpenAI’s chat-based models, such
as GPT-4, and extends their functionality with features that are crucial for building
robust applications. Among these are support for streaming responses, the ability
to generate structured outputs, and seamless integration with LangChain’s memory
management and tool-calling components.

35



System Implementation

Listing 4.1: LLM initialization using ChatOpenAI

1 from langchain_openai import ChatOpenAI

2 import os

3

4 llm = ChatOpenAI(

5 model="gpt-4o",

6 temperature=0,

7 max_tokens=512,

8 api_key=os.getenv("OPENAI_API_KEY"),

9 timeout=30,

10 retry_settings={"max_retries": 3}

11 )

The constructor supports various parameters:

• model: Defines the name of the model to be used, such as "gpt-4o", "gpt-4"

or "gpt-3.5-turbo". This parameter determines the underlying capabilities,
cost, and performance characteristics of the system.

• temperature: Regulates the degree of randomness in the model’s responses.
Lower values (e.g., 0.0-0.3) make the output more deterministic and repro-
ducible, while higher values (e.g., 0.7-1.0) encourage greater creativity and
variability.

• max_tokens: Sets a limit for the number of tokens that can appear in the
generated output. This parameter is useful for controlling verbosity, ensuring
concise responses, and preventing excessive resource usage.

• api_key: Provides the authentication key required to access OpenAI’s API.

• timeout: Defines the maximum waiting time (in seconds) for a response before
the request is aborted. This prevents the client from hanging indefinitely in
case of network issues or slow responses.

• retry_settings: Configures the retry policy when errors occur, such as
network failures or rate-limit responses. Parameters may include the maximum
number of retries and backoff strategies.

Chat models such as GPT-4 process inputs as a sequence of structured messages,
where each message is associated with a predefined role.
This design is aligned with OpenAI’s API and supports multi-turn, stateful inter-
actions by clearly distinguishing between different types of contributions in the
conversation. The main roles are:

36



System Implementation

• system: Defines high-level instructions and behavior guidelines for the model,
typically used to establish context, enforce constraints, or specify the assistant’s
persona and objectives.

• user: Represents the human input, usually expressed in natural language.
These messages drive the conversation by providing questions, commands, or
clarifications.

• assistant: Contains the model’s responses. Beyond delivering outputs to the
user, these messages also serve to preserve conversational state, allowing the
model to maintain continuity across multiple turns.

Listing 4.2: Basic message exchange with ChatOpenAI

1 from langchain_core.messages import SystemMessage, HumanMessage

2

3 messages = [

4 SystemMessage(content="You are an AWS automation assistant."),

5 HumanMessage(content="Create a Lambda function that writes to an S3

bucket.")

6 ]

7

8 response = llm.invoke(messages)

This message-based architecture enables precise control over conversational
context and enables the model to reason effectively across multiple turns. Such
capabilities are particularly valuable in scenarios that require long-horizon planning
or the retention of agent memory.

One of the most powerful features of LangChain is its support for tool-
augmented reasoning. In this paradigm, a language model is not limited
to text generation alone but can also interact with external tools, APIs or services.
Rather than relying solely on its internal knowledge, the model can dynamically
decide which tool to invoke based on the user query. The tool’s output is then
integrated back into the reasoning process, enabling the model to act as an active
problem solver rather than a passive text generator.

LangChain agents often implement reasoning strategies such as ReAct (Rea-
soning + Acting), which combine step-by-step reasoning with tool invocation in an
iterative loop. In this approach, the model alternates between thoughts (internal
reasoning) and actions (tool calls), using the results of each action as new observa-
tions for the next step. The cycle continues until a final answer is produced.
Concretely, the process can be described as follows:

37



System Implementation

1. Interprets the user query and reason about the next step (Thought).

2. Chooses an appropriate tool if needed (Action).

3. Constructs a valid input and execute the tool.

4. Receive and analyze the tool’s output (Observation).

5. Repeat the reasoning-acting cycle as necessary until the problem is solved.

6. Deliver the final response to the user (Final Answer).

LangChain provides the create_react_agent() helper function, which simpli-
fies the construction of agents based on the ReAct paradigm.
This function binds together a language model, a set of tools, and an optional
memory backend into a fully operational agent.

Listing 4.3: Creating a ReAct agent with LangChain

1 from langgraph.prebuilt import create_react_agent

2 from langchain_tavily import TavilySearch

3 from langgraph.checkpoint.memory import MemorySaver

4

5 tools = [TavilySearch()]

6 memory = MemorySaver()

7

8 agent_executor = create_react_agent(llm, tools, checkpointer=memory)

Once instantiated, the agent can handle multi-turn dialogues, stream intermedi-
ate reasoning steps in real time, and resume prior sessions using thread identifiers.
This makes it possible to preserve context between different user interactions.

Listing 4.4: Streaming a tool-augmented agent interaction

1 input_message = {

2 "role": "user",

3 "content": "Search for the weather in Rome."

4 }

5 config = {

6 "configurable": {"thread_id": "user-session-123"}

7 }

8

9 for step in agent_executor.stream(

10 {"messages": [input_message]},

11 config,

12 stream_mode="values"

13 ):

14 step["messages"][-1].print()

38



System Implementation

4.1.2 Pydantic

Figure 4.2: Pydantic Logo.

To ensure type safety, input validation, and structured output parsing, the sys-
tem employs Pydantic, a Python library for data modeling and schema validation..
Schemas are defined as subclasses of BaseModel, where each class attribute cor-
responds to an expected field. At runtime, Pydantic automatically validates any
data instance against the declared schema, raising errors when the input does not
conform..

In addition to type annotations, the Field function allows developers to enrich
model definitions with metadata, such as descriptions, default values, and con-
straints (e.g., minimum or maximum length).

LangChain natively seamlessly with Pydantic through the with_structured_output()

method. This mechanism enables the LLM to return output directly in a structured
format., eliminating the need for manual string parsing or fragile regex extraction.
As a result, outputs can be consumed immediately as typed Python objects.

In practice, the developer begins by defining a schema as a Pydantic class that
specifies the fields required for a given task.
In practice, the developer first defines a schema as a Pydantic class specifying the
fields required for a task (e.g., an Action object). The language model is then instan-
tiated (e.g., via ChatOpenAI) and wrapped with llm.with_structured_output(schema=Action)

When the model produces a response, the system automatically parses it into the
corresponding Pydantic object, ensuring that the output is validated, interpretable,
and directly usable for downstream execution.

39



System Implementation

Listing 4.5: Example of a structured schema for AWS actions

1 from pydantic import BaseModel, Field

2 from typing import Dict, Any

3 from langchain_openai import ChatOpenAI

4

5 class Action(BaseModel): resource: str = Field(..., description="The

type of AWS resource to interact with (e.g., ’s3’, ’ec2’).")

operation: str = Field(..., description="The specific operation to

perform on the resource (e.g., ’create’, ’delete’).") parameters:

Dict[str, Any] = Field(..., description="Optional parameters required

for the operation, provided as key-value pairs.")

6

7 llm = ChatOpenAI(model="gpt-4", temperature=0)

8

9 structured_llm = llm.with_structured_output(schema=Action)

Using Pydantic in this way provides several key advantages in an LLM-based
agent system.
First, it improves robustness and safety: malformed or incomplete outputs raise
validation errors instead of silently propagating through the pipeline.
Second, it enhances clarity and maintainability, since the expected structure of
agent actions is explicitly defined in code, making the system easier to read, validate,
and extend.
Third, the approach supports composability, as different action schemas can be
declared for different resource types (e.g., LambdaAction, DynamoDBAction), de-
pending on the planning context.
Finally, once validation succeeds, the resulting object can be safely executed, which
is particularly important when interfacing with external systems such as AWS,
where reliability and correctness are critical.
By combining schema definition, runtime validation, and structured output parsing,
Pydantic ensures that every step of the orchestration pipeline remains interpretable,
predictable, and trustworthy. This tight integration not only reduces implemen-
tation complexity but also strengthens the overall reliability of the agent framework.

40



System Implementation

4.1.3 Boto3

Figure 4.3: Boto3 Logo.

All interactions with AWS are executed through Boto3, the official AWS SDK
for Python. In the proposed multi-agent system, Boto3 serves as the primary
interface for cloud operations, enabling agents to programmatically interact with a
wide range of AWS resources. It is used not only for direct service operations but
also as the execution backend for the tools integrated within the LangChain agent
framework.

To promote modularity and maintainability, the system organizes AWS service
interactions into a dedicated aws_actions package. Each service is encapsulated
in its own Python module, exposing functions that wrap Boto3 client calls with
additional logic for error handling and interactive fallback. These service-specific
modules are not accessed directly by the user; instead, their invocation is coor-
dinated by a central executor agent, which selects and executes the appropriate
operations based on the user’s request.

At the core of every interaction lies the concept of a client. A Boto3 client
is a low-level object that provides programmatic access to the operations of a
specific AWS service, closely mirroring its API. Clients are created by instantiating
a session with the necessary AWS credentials and region configuration, thereby
establishing a secure and authenticated connection to the service.

41



System Implementation

Listing 4.6: Initializing AWS clients using Boto3 and environment variables

1 import boto3

2 import os

3

4 session = boto3.Session(

5 aws_access_key_id=os.getenv("AWS_ACCESS_KEY_ID"),

6 aws_secret_access_key=os.getenv("AWS_SECRET_ACCESS_KEY"),

7 region_name=os.getenv("AWS_REGION"),

8 )

9 s3_client = session.client("s3")

10 lambda_client = session.client("lambda")

11 ...

12

13 s3_client.upload_file("lambda.zip", "my_bucket", "lambda.zip")

Each Boto3 client provides a dedicated interface to a specific AWS service.
It exposes the full set of API operations for that service while abstracting away
low-level concerns such as authentication, request signing, retries, and HTTP
communication.
Error handling is also standardized through structured exceptions (e.g., ClientError),
which allows failures to be managed in a consistent predictable way.

Within this system, clients for services such as S3, Lambda, IAM, EventBridge,
DynamoDB, EC2, and Cost Explorer are instantiated once at runtime and stored
in a dictionary. This design ensures that service connections are efficiently reused,
while still allowing tool functions to dynamically access the appropriate client
depending on the type of task being executed.

4.2 Tools Integration

Code Generation

The system can automatically generate executable Python code for AWS Lambda
functions starting from high-level natural language prompts.
The code generation logic is implemented in handler.py, where the user’s textual
description of the desired logic is passed to a large language model such as GPT-4o.
The model responds with valid Python code, which is automatically extracted and
saved into a .py file (e.g., lambda.py). The file is then automatically compressed
into a .zip archive and stored locally, making it immediately ready for deployment.
At a later stage, this archive is consumed by the executor, which uses the Boto3
SDK to deploy the Lambda function in AWS.
Although the generated code is not tested or executed directly within the system

42



System Implementation

itself, the toolchain ensures that the output is correctly structured, syntactically
valid, and aligned with AWS deployment requirements.

Operational Tracking

The system exposes its runtime behavior through structured exceptions and uni-
form logging. When interacting with AWS services, errors are returned as typed
exceptions such as ClientError, making it easy to trace a logged action back
to the exact API call and condition that triggered the failure. Since each log
entry includes both the action name and its parameters, developers can readily
reconstruct the request, reproduce the issue, and apply corrective measures or
rollbacks with minimal effort.

Cost Tracking (AWS)

To monitor infrastructure spending, the system integrates with AWS Cost Explorer,
retrieving detailed usage data over a specified time window. Produces a clear
breakdown of costs per service and per day, while omitting zero-cost entries to
keep the report focused. This functionality provides immediate operational insight,
helping validate the financial impact of automated deployments and highlighting
unusual or unexpected spending patterns.

Cost Tracking (LLM Usage)

In addition to AWS costs, the system also monitors the usage of language model
itself, keeping track of both token consumption and the associated expenses for
each request. The text exchanged with the model is tokenized using tiktoken
according to the selected architecture, and the number of input and output tokens
is multiplied by per-thousand pricing defined in a local price table.
To make monitoring practical, the system includes utility functions that print
concise summaries of usage and estimated costs on demand. Additionally, the
system provides a mechanism to reset the token counter manually, allowing users
to start a new cost tracking cycle at any time.

Automated Documentation

Every test or user interaction performed through the system is documented auto-
matically in both JSON and Markdown formats.
For each test session, the system records the test name, the original user prompt,
the full sequence of executed actions, the extracted parameters with their values
and the execution results.It also logs information about language model usage,

43



System Implementation

including token consumption and estimated costs. These metrics are captured both
at the granularity of individual actions and at the level of the entire session, giving
users full visibility over expenses and resource consumption.

4.3 Error Handling and Recovery Mechanisms

Error handling in the system is designed to ensure robustness, fault isolation, and
guided recovery in the face of common AWS failures and input-related issues.
Rather than failing silently or halting entirely, the system incorporates mechanisms
to detect, log and respond to errors in a structured and interactive way.
Each AWS action implements its own error-handling logic. These mechanisms
are defined at the tool level and rely on structured exception management using
botocore.exceptions.ClientError.

For instance, the S3 bucket creation tool is able to distinguish between different error
conditions. If a bucket is already owned by the user (BucketAlreadyOwnedByYou),
the action is marked as complete and execution continues without interruption.
Conversely, if the bucket name is already taken globally (BucketAlreadyExists),
the system resets only that parameter and prompts the user to provide a new name.
In the event of unexpected errors, the failure is reported clearly, logged in detail,
and the workflow terminates gracefully rather than crashing.

A similar strategy is applied in the Lambda creation tool, where specific error
patterns, such as invalid or unusable IAM role ARNs, incorrect handler naming,
malformed or empty deployment packages, or conflicts with existing function names,
are intercepted (InvalidParameterValueException).
Each of these conditions triggers a tailored recovery path: the system resets only the
affected parameter (e.g., role_arn or the zip_path) and requests clarification from
the user instead of restarting the entire process. This localized recovery minimizes
disruption during multi-step executions and preserves continuity across the pipeline.

Whenever possible, the system attempts to recover from errors by leveraging
the conversational memory context. If a parameter cannot be inferred, the user is
prompted interactively to provide a valid value. This fallback behavior provides
resilience against partial failures and ensures that task execution continues with
minimal interruption, while feedback is surfaced immediately through real-time
console output.

To further improve robustness, retry mechanisms are applied at the action level.
Since each task is validated in isolation through its corresponding Pydantic schema

44



System Implementation

and execution state is preserved between modules, failed actions can be retried
independently without re-running earlier steps.
Temporary issues such as throttling or rate limiting can also trigger time-delayed
retries (for example, in response to a TooManyRequestsException), allowing the
system to recover automatically from transient errors.

Before any tool is invoked, input parameters are validated against a strongly
typed Pydantic schema. This upfront validation prevents malformed requests and
allows the system to catch missing or incorrect values early reducing the risk of
cascading failures.
In addition, every user session generates a complete execution trace that captures
both successful operations and failed attempts.
These logs are recorded in a structured format that supports both human readability
and automated analysis.

To support both human readability and automated processing, logs are exported
in two complementary formats: a Markdown report that summarizes the session in
a concise and accessible way, and a JSON file that records the same information in
a structured format suitable for auditing, debugging, or further analysis.

45



Chapter 5

Evaluation and Testing

This chapter presents the evaluation framework used to test the system across a
wide range of cloud-related tasks. The testing phase aimed to validate the system’s
ability to correctly interpret natural language instructions, extract parameters,
select appropriate actions, and execute them via AWS services.
The evaluation focused on both functional correctness and robustness against
incomplete or ambiguous input.

5.1 Benchmark Design

A total of 24 test cases were designed and implemented to rigorously evaluate the
system’s ability to interpret and execute natural language prompts.
The benchmark suite was constructed with the goal of maximizing coverage across
typical AWS use cases, as well as testing edge cases that simulate incomplete,
ambiguous, or multi-action user requests.
Each test corresponds to a distinct scenario designed to mirror real-world cloud
infrastructure requirements.
The test suite covers a variety of AWS services, grouped into the following categories:

• Lambda Functions: Tests in this category validate the system’s ability to
create Lambda functions, generate Python handler code, zip and deploy it.
Some tests intentionally omit parameters (e.g., function name, IAM role) to
evaluate the system’s capability to infer missing details from under-specified
prompts.

• S3 Buckets: Tests in this category validate the system’s ability to create and
configure S3 buckets for storage operations. Several tests omit parameters
(e.g., bucket name) to assess whether the system can correctly recover or
generate them when not explicitly provided.

46



Evaluation and Testing

• API Gateway Integration: Tests in this category validate the system’s
ability to expose Lambda functions through HTTP endpoints. They verify
the correct configuration of routes, methods (GET, POST), and integration
settings. Each test concludes with an endpoint invocation to ensure that
status codes, headers, and payloads match the expected results.

• Triggers (EventBridge): Tests in this category evaluate the system’s ability
to schedule Lambda executions using AWS EventBridge rules. They focus on
interpreting temporal instructions (e.g., “every day at 8 AM”) and correctly
associate them with the appropriate function.

• IAM Role and Policy Management: Tests in this category assess whether
the system can create IAM roles, attach inline policies, and assign these
roles to services. They also examinate role reuse, policy scope, and naming
consistency, particularly when prompts are underspecified.

• DynamoDB Operations: Tests in this category cover a complete CRUD
(Create, Read, Update, Delete) workflow on a sample table. Each operation is
executed independently, verifying parameter extraction, data type correctness,
and error handling in database interactions.

• EC2 Operations: Tests in this category validate system’s ability to manage
EC2 instances, including launching, starting, stopping, terminating, and
checking status. Prompts provide varying levels of detail, requiring the system
to infer sensible defaults or flag missing parameters.

• Multi-action workflows: Tests in this category assess the system’s ability to
handle prompts that require multiple operations within the same pipeline (e.g.,
creating two Lambda functions with shared IAM roles, wiring permissions,
and uploading files to S3 buckets). They evaluate how well the system can
decompose, plan, and orchestrate sequential actions.

• Contextual memory tests: Tests in this category evaluate the system’s
short-term memory. For example, a prompt may create a bucket, while the
subsequent prompt refers to “the previously created bucket.” The system must
correctly retrieve and apply this contextual information.

• Minimal prompt handling: Tests in this category evaluate the system’s
behavior under vague or partial instructions. They assess its ability to handle
under-specification, apply fallbacks, trigger clarification logic, or gracefully
fail when necessary.

Each test is executed through the run_test() method of the evaluation module.
This method logs the input prompt, resulting actions, timestamp, and token usage.

47



Evaluation and Testing

5.2 Evaluation Methodology

The evaluation methodology was designed to systematically assess the system’s
ability to interpret natural language input, reason over cloud-related tasks, and
execute them effectively. Each test followed a standardized pipeline designed to
reflect the operational flow of the multi-agent system.
The procedure can be outlined into the following key stages:

1. Prompt Execution: Natural language instructions are submitted to the sys-
tem via the test harness. Prompts range from simple single-action commands
to complex, multi-step workflows.

2. Structured Parameter Extraction: Leveraging predefined Pydantic schemas
tailored to each AWS service, the system parses the prompt and extracts all
relevant parameters. This step ensures both syntactic and semantic validation
before execution.

3. Action Execution and Validation: Once parsing is successful, the system
invokes the appropriate AWS service through the Boto3 SDK. Each action
is monitored to confirm correct completions, with exceptions captured for
debugging and analysis.

4. Result Aggregation: For every test, detailed metadata is recorded, including
the original prompt, extracted parameters, execution outcome (success/failure),
LLM token usage, and timestamp. This information supports both quantitative
benchmarking and qualitative inspection.

5. Documentation and Reporting: All test results are stored in both JSON
and Markdown formats. This dual-format approach enables automatic report
generation while also ensuring human-readable documentation for reproducibil-
ity and traceability.

For robustness testing, several experiments deliberately omitted essential param-
eters to evaluate the system’s fallback strategies and error handling capabilities. In
addition, some prompts combined multiple actions to test sequencing, orchestration,
and context management.

5.3 Results and Analysis

The evaluation demonstrated the system’s ability to accurately interpret and
execute a diverse set of cloud-related directly from natural language instructions.
Overall, the results highlights not only the breadth of supported AWS functionality
but also the robustness of the underlying reasoning and execution framework.

48



Evaluation and Testing

Table 5.1: Overall distribution of success, partial success, and failure outcomes
across 24 tests

Result Type Number of Tests Total Percentage (%)

Fully Successful 21 87.5%
Partial Success 1 4.2%
Complete Failure 2 8.3%

Table 5.2: Performance results by AWS service category

Category Tests Success Rate (%) Failures

Lambda Functions 4 100% 0
S3 Buckets 2 100% 0
API Gateway 3 67% 1
EventBridge 2 100% 0
IAM Management 3 100% 0
DynamoDB Operations 4 100% 0
EC2 Operations 3 100% 0
Multi-action flows 2 50% 1
Contextual memory 1 100% 0

Note: The last column reports only complete failures.

Cases of partial success are excluded from this summary and are discussed in the main text.

Successful Cases

Out of 24 tests, 21 completed fully successfully (87.5%).
Lambda tests consistently managed code generation, handler packaging, and de-
ployment without errors. The system also demonstrated reliability in creating IAM
roles, attaching inline policies, and assigning them to Lambda functions.
S3 buckets operations were equally robust, handling both new bucket creation and
interactions with existing buckets, including storange and retrieval tasks.
DynamoDB operations covered the entire CRUD spectrum with correct parsing of
primary keys, accurate type handling, and precise key-based updates and deletions.
EC2 workflows (launch, stop, terminate, status) executed as expected whenever
valid identifiers were provided.
In more complex, multi-step scenarios, the system correctly decomposed prompts
into ordered actions.
Contextual memory tests further confirmed that conversational state is reused

49



Evaluation and Testing

effectively.
Even under minimal prompts, execution succeeded after the system interactively col-
lected missing parameters. This fallback mechanisms prevented unsafe assumptions
while ensuring correctness by explicitly validating all required inputs.

Failure Cases

Two complete failures (8.3%) and one partial success (4.2%) were observed.
The first complete failure occurred in the multi-action flow scenario. While the
Lambda functions were created successfully, the API Gateway integration failed
with a ResourceNotFoundException.
The second complete failure occurred also in the multi-action flow scenario. Here,
the ambiguous wording led to invalid IAM policy names and a misinterpreted S3
write, preventing end-to-end execution.
The partial success was recorded in a chained DynamoDB workflow. The table
was created successfully, but item insertion was skipped after being flagged as a
duplicate.

Efficiency and Robustness

Table 5.3: Avg efficiency and robustness metrics calculated over 24 tests

Metric Value

Tokens per prompt 1,545
Execution time per test 22.1 s
Orchestration overhead 48.4%
Cost per test $0.00037

Note: Orchestration overhead refers to the share of time spent by the agent in planning, prompt

interpretation, disambiguation, and conversational context management, rather than in the direct

execution of AWS API calls. Cost values vary depending on the LLM used; in this evaluation, all

tests were executed with GPT-4o.

The table reports aggregate efficiency and robustness metrics from the 24-test
benchmark.
On average, each test consumed 1,545 tokens per prompt, accounting for both
inputs and model outputs. Token usage increases naturally with multi-step work-
flows, clarification turns, and verbose tool instructions.
The mean end-to-end runtime was 22.1 s, measured wall-clock from orchestration
start to the final assertion. This duration includes all stages of execution, so not

50



Evaluation and Testing

only AWS API calls, but also planning, parameter validation, logging, and LLM
round-trip latency.

A notable result is the 48.4% orchestration overhead. Roughly half of the total
runtime was spent on reasoning and coordination rather than direct APIs execution.
This overhead reflects activities such as plan construction, contextual retrieval,
disambiguation of underspecified inputs, and retry/backoff handling. These results
point to clear opportunities for latency reduction, including prompt streamlining,
more structured I/O to limit token exchanges, and batching or parallelizing inde-
pendent AWS operations where feasible.

Finally, the average LLM cost per test was $0.00037 (GPT-4o), which is neg-
ligible compared with typical cloud charges for provisioning and data transfer.
Reported costs cover only LLM usage and naturally vary with model choice, net-
work conditions, and AWS service load. The orchestration overhead figure refers
specifically to time, not cost.

LLM Pricing Considerations

An additional dimension of the evaluation concerns the choice of the underlying
LLM model. While the experiments were primarily conducted using GPT-4o,
alternative models offer different trade-offs between accuracy, latency, and cost.
Table 5.4 reports the official pricing (per million tokens) at the time of writing for
several OpenAI models, distinguishing between input and output tokens.

Table 5.4: Comparison of LLM pricing per 1M tokens (USD)

Model Input Price ($) Output Price ($)

GPT-4o 0.0050 0.0200
GPT-4o-mini 0.0006 0.0024
GPT-4.1 0.0030 0.0120
GPT-4.1-mini 0.0008 0.0032
GPT-4.1-nano 0.0002 0.0008
o4-mini 0.0040 0.0160

On average, each benchmark test consumed approximately 1,545 tokens (input
+ output), corresponding to negligible costs even for the most expensive models.
For example, executing one full benchmark run of 24 tests with GPT-4o amounts
to less than $0.01 in LLM usage, economically insignificant when compared with
typical AWS resources charges. Nevertheless, the table also indicate that lighter

51



Evaluation and Testing

models (e.g., GPT-4.1-nano or GPT-4o-mini) can reduce costs by up to one order of
magnitude. While this difference is minor at small scale, it becomes relevant when
executing thousands of automated prompts per day in enterprise deployments.
Consequently, model selection should balance cost efficiency against reasoning
accuracy. Smaller models are well suited for routine orchestration tasks with
predictable patterns, whereas more advanced models remain preferable for complex,
ambiguous, or high-stakes scenarios where accuracy justifies the higher token
expediture.

5.4 Discussion and Insights

The benchmark evaluation highlights the strengths and limitations of the proposed
multi-agent system for cloud orchestration. Overall, the system demonstrated
strong functional accuracy, adaptability, and interpretability in transforming natural
language instructions into concrete, executable cloud operations.
Several important insights emerged from the testing phase:

• Modularity and Extensibility: The modular architecture, which separates
prompt interpretation, parameter extraction, and execution, enables seamless
integration of new AWS services and reasoning strategies without affecting
existing functionality. This design supports both vertical scalability (addi-
tional services) and horizontal scalability (more reasoning strategies), ensuring
maintainability over time.

• Importance of structured prompting: The use of structured intermediate
schemas (e.g., Pydantic classes) proved critical for validating parameters
prior to execution. This approach reduces the risk of errors, hallucinations,
or misinterpretations. Structured prompting also enhances traceability and
debugging, as every decision point in the workflow is explicitly defined.

• Effective Short-Term Memory: Tests confirmed that the system is capable
of maintaining short-term memory across consecutive prompts. This allows the
agent to reference previous operations without requiring redundant information
from the user. Such context retention improves user experience and emulates
natural interaction patterns, where users expect the system to "remember"
prior steps within a session.

• Moderate LLM Usage: Even with complex of many multi-step prompts, to-
ken usage remained moderate throughout the benchmark. This is attributable
to the system’s ability to reuse context, avoid verbose completions, and rely
on tool-based execution rather than generating long textual outputs. Efficient

52



Evaluation and Testing

token consumption ensures the system remains cost-effective when scaled in
production settings.

• Value of Edge Cases: Stress tests with missing parameters, ambiguous
prompts, or conflicting actions, were instrumental in uncovering design lim-
itations and improving system robustness. In particular, minimal prompts
exposed areas where fallback mechanisms were insufficient, suggesting the
need for improved clarification routines or interactive disambiguation. These
tests emphasize that robust NLP-driven systems must be evaluated not only
on typical scenarios, but also on ill-formed or incomplete instructions that
closely resemble real-world usage.

Several directions for improvement emerge from these findings.
A first direction would be to introduce transactional undo and rollback mech-
anisms, allowing failed actions to be automatically compensated preserving infras-
tructure consistency.
In parallel adaptive retry strategies could differentiate between transient errors
(e.g., throttling or network delays) and permanent ones (e.g., invalid parameters),
applying exponential backoff or idempotent re-execution when appropriate.

Another promising avenue is continuous benchmarking. So running the full
extendable test suite regularly in a sandbox environment while at the same time
providing long-term visibility into operational costs and efficiency.

Looking further ahead, the introduction of persistent memory would open
the way to multi-session continuity and collaborative workflows. Such a memory
could also be queried in a RAG way, allowing the system to reuse past user prompts
and their outcomes, re-executing actions automatically if previous attempts had
failed.

Finally, advanced visualization tools could make the system more transparent
and user-friendly. Rich interactive dashboards, coupled with graphical representa-
tions of workflows and error traces, would strengthen auditability, compliance, and
user trust.

53



Chapter 6

Conclusion and Future Work

This thesis project has presented the design and implementation of a multi-agent
system capable of orchestrating AWS cloud infrastructure directly from natural
language input.
The core objective was to allow users to launch and manage AWS services through
textual prompts alone, without directly interacting with the AWS Management
Console.
This objective was successfully achieved with the development of a fully functional
prototype that integrates Large Language Models (LLMs) with a set of modular
tools built on the Boto3 SDK.

The evaluation phase, based on 24 carefully designed test cases, confirmed the
system’s effectiveness in interpreting, validating, and executing a broad range of
cloud-related tasks. Strong performance was observed not only in typical use cases
but also in complex multi-action workflows.
Furthermore, the system demonstrated resilience when handling under-specified
prompts, leveraging defaults, contextual memory, and interactive fallback mecha-
nisms to ensure continuity and correctness.
Overall, the results show that intelligent agents powered by LLMs can serve as
a practical and reliable interface for cloud automation, bridging the gap between
high-level natural language instructions and low-level infrastructure deployment.

6.1 Limitations

While the results are encouraging, several limitations emerged during the project
that should be acknowledged.

• Prompt Sensitivity: Parameter extraction remains strongly dependent on
the clarity and specificity of user prompts. Vague or ambiguous instructions,

54



Conclusion and Future Work

may lead to misinterpretations or invalid parameters generation.

• Error Handling: Although basic fallback mechanisms and retry strategies
were implemented, the system lacks more advanced recovery capabilities such
as automated rollback in the event of partial or failed deployments.

• Scope Restriction: The prototype currently supports only AWS services.
Despite the modularity of the architecture, extending support to other cloud
providers (e.g., Azure or Google Cloud) would require additional development
and validation effort.

• Evaluation Scale: The evaluation relied on 24 test scenarios designed for
functional coverage. Broader testing with larger prompt sets and diverse user
groups would be necessary to fully assess scalability, robustness, and real-world
applicability.

6.2 Future Work

Building on this foundation, several promising directions can be explored to extend
both the practical applicability and the research contributions of this work:

• Multi-cloud support: Extending the tool layer beyond AWS to include
providers such as Microsoft Azure and Google Cloud Platform would broaden
applicability and enables comparative studies of orchestration strategies across
different environments.

• Graphical user interface with multimodal interaction: A user-friendly
front-end could make the system accessible to a wider audience by comple-
menting natural language with visual infrastructure diagrams and interac-
tive dashboards. Enabling multimodal interaction through voice commands,
sketches, or hybrid methods, would further enhance accessibility for both
technical and non-technical users.

• Rollback, recovery and validation: Introducing undo mechanisms and
automated rollback for failed operations would improve reliability and prevent
inconsistent infrastructure states.

• Long-term memory and context management: While short-term memory
was effective, persistent memory across sessions could support more complex
multi-step projects and continuity in collaborative workflows.

• Integration with DevOps pipelines: Connecting the system to CI/CD
tools would embed natural language orchestration into established software

55



Conclusion and Future Work

engineering workflows, bridging conversational interfaces with automated
infrastructure delivery.

• Cost optimization and monitoring: Integrating agents capable of analyz-
ing and suggesting cost-efficient alternatives would help align infrastructure
automation with financial constraints.

• Security and compliance: Automatic enforcement of IAM best practices,
role management policies, and regulatory compliance checks would strengthen
system trustworthiness.

• Research opportunities: Academically, the system could serve to benchmark
the robustness of LLM-based agents in structured orchestration tasks, explore
human–agent collaboration in DevOps workflows, and explore explainability
in multi-agent reasoning pipelines.

In summary, this thesis demonstrated the feasibility of using LLM-driven agents
as intelligent orchestrators for cloud infrastructure.
By addressing current limitations and pursuing the proposed extensions, future work
could evolve this prototype into a production-ready platform while contributing to
ongoing research in AI-assisted software engineering.

56



Appendix A

Test

Test 1 — Lambda Function + Bucket S3

Involved services: Lambda, IAM, S3

Prompt

Create a Lambda function named LambdaTest1 using IAM role
arn:aws:iam::849107555072:role/AdminLambda and write "Test 1 OK"

to test1.txt in the existing bucket bucket-test1-uno.

Result

SUCCESS.
Handler generated, Lambda created and executed, file correctly written in
the S3 bucket.

Test 2 — Lambda Function + API Gateway

Involved services: Lambda, IAM, API Gateway

Prompt

Create a Lambda function named LambdaTest2 using IAM role
arn:aws:iam::849107555072:role/AdminLambda, return "Test 2 OK",
and expose it via API Gateway at path /test2 with method GET.

57



Test

Result

SUCCESS.
Lambda created and deployed. API Gateway endpoint exposed successfully.

Test 3 — Lambda Function + Bucket S3 + Sched-
uled Trigger

Involved services: Lambda, IAM, EventBridge, S3

Prompt

Create a Lambda function named LambdaTest3 using IAM role
arn:aws:iam::849107555072:role/AdminLambda; trigger it every day
at 08:00 and write "Test 3 OK" to test3.txt in existing bucket
bucket-test3-tre.

Result

SUCCESS.
Lambda created and scheduled via EventBridge. Daily trigger runs as
expected.

Test 4 — Lambda Function + Bucket S3 + Trigger
+ API Gateway

Involved services: Lambda, IAM, EventBridge, API Gateway, S3

Prompt

Create a Lambda function named LambdaTest4 using IAM role
arn:aws:iam::849107555072:role/AdminLambda. Every day at 08:00
write "Test 4 OK" to test4.txt in existing bucket bucket-test4-quattro.
Expose the function via API Gateway at /test4 with method GET.

58



Test

Result

SUCCESS.
Bucket accessed, handler generated, Lambda created, trigger configured, and
API Gateway exposed.

Test 5 — DynamoDB — Create Table

Involved services: DynamoDB

Prompt

Create a DynamoDB table named Utenti with primary key user_id of type
String.

Result

SUCCESS.
Table Utenti created with PAY_PER_REQUEST billing mode.

Test 6 — DynamoDB — Put Item

Involved services: DynamoDB

Prompt

Insert a new item into table Utenti with user_id = "123" and name =

"Mario".

Result

SUCCESS.
Item inserted correctly.

Test 7 — DynamoDB — Get Item

Involved services: DynamoDB

59



Test

Prompt

Retrieve the item from table Utenti where user_id = "123".

Result

SUCCESS.
Item retrieved successfully.

Test 8 — DynamoDB — Update Item

Involved services: DynamoDB

Prompt

Update the item in table Utenti with user_id = "123" by adding stato

= "attivo".

Result

SUCCESS.
Item updated successfully.

Test 9 — DynamoDB — Delete Item

Involved services: DynamoDB

Prompt

Delete the item from table Utenti where user_id = "123".

Result

Result: SUCCESS. Item deleted successfully.

Test 10 — S3 — Create Bucket

Involved services: S3

60



Test

Prompt

Create a new S3 bucket named bucket-test10-dieci.

Result

SUCCESS.
Bucket created successfully.

Test 11 — EC2 — Launch Instance

Involved services: EC2, IAM, Security Group

Prompt

Launch an EC2 instance with AMI ID = ami-0022eedc61881ccdc, type =

t2.micro, ssh-key = chiavi-sergio, security-group = allow_ssh.

Result

Result: SUCCESS. EC2 instance launched correctly.

Test 12 — EC2 — Start Instance

Involved services: EC2

Prompt

Start the EC2 instance with ID = i-092f6bda6f9f310fa.

Result

FAILURE.
InvalidInstanceID.NotFound — instance not found.

Test 13 — EC2 — Stop Instance

Involved services: EC2

61



Test

Prompt

Stop the EC2 instance with ID = i-092f6bda6f9f310fa.

Result

SUCCESS.
EC2 instance stopped successfully.

Test 14 — EC2 — Terminate Instance

Involved services: EC2

Prompt

Terminate the EC2 instance with ID = i-092f6bda6f9f310fa.

Result

SUCCESS.
EC2 instance terminated successfully.

Test 15 — EC2 — Check Status

Involved services: EC2

Prompt

Check the status of the EC2 instance with ID = i-092f6bda6f9f310fa.

Result

SUCCESS.
Status retrieved successfully.

Test 16 — IAM Role + S3 Policy + Lambda

Involved services: IAM, Lambda, S3

62



Test

Prompt

Create an IAM role named RoleTest16 for a Lambda function. Add a
write policy for an S3 bucket to the same role and assign it to function
LambdaTest16.

Result

SUCCESS.
IAM role created, S3 policy attached, role assigned to Lambda.

Test 17 — IAM Policy for Lambda Role

Involved services: IAM

Prompt

Add an inline policy granting full access to an S3 bucket to IAM role
RoleTest16.

Result

SUCCESS.
Inline policy attached successfully.

Test 18 — Multi-Actions — Two Lambda Function
writing to bucket S3

Involved services: Lambda, IAM, S3

Prompt

Create two Lambda functions:
– LambdaTest18-Uno writes "Message 1" to multi1.txt in bucket
bucket-test18-diciotto

– LambdaTest18-Due writes "Message 2" to multi2.txt in the same bucket.
Both use IAM role arn:aws:iam::849107555072:role/AdminLambda.

63



Test

Result

SUCCESS.
Both Lambdas created and able to write to the S3 bucket.

Test 19 — Multi-Actions — Two Lambda Function
exposed via API Gateway

Involved services: Lambda, IAM, API Gateway

Prompt

Create two Lambda functions:
– LambdaTest19-Uno, exposed via API Gateway at /log1 with method GET,
returns "Log1"

– LambdaTest19-Due, exposed via API Gateway at /log2 with method GET,
returns "Log2".
Both use IAM role arn:aws:iam::849107555072:role/AdminLambda.

Result

FAILURE.
Both Lambdas created, but API Gateway exposure failed (ResourceNot-
FoundException: function not found).

Test 20 — Contextual Memory — Create Bucket
S3

Involved services: S3

Prompt

Create a bucket named bucket-test20-venti.

Result

SUCCESS.
Bucket created successfully.

64



Test

Test 21 — Contextual Memory — Lambda uses
previous Bucket S3

Involved services: Lambda, IAM, S3

Prompt

Create a function named LambdaTest20 using IAM role
arn:aws:iam::849107555072:role/AdminLambda that writes "Test

20 OK" to test20.txt in the bucket created in Test 20.

Result

SUCCESS.
Lambda created and writing to S3 bucket.

Test 22 — Chained Actions — DynamoDB create
and insert

Involved services: DynamoDB

Prompt

Create a DynamoDB table LogTable with partition_key = ID of type
String, then insert an item with ID = "log1" and name = "Francesco".

Result

PARTIAL SUCCESS.
Table created but item insertion failed ("Action already executed").

Test 23 — Minimal Prompt — Create Bucket S3

Involved services: S3

Prompt

Create a bucket named bucket-test23-ventitre.

65



Test

Result

SUCCESS.
Bucket created successfully.

Test 24 — Minimal Prompt — Lambda Function
with Daily Trigger

Involved services: Lambda, EventBridge

Prompt

Create a Lambda function and connect it to a trigger that runs every day at
10:00.

Result

SUCCESS.
Lambda created and scheduled daily trigger at 10:00 configured.

66



Bibliography

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. «Attention Is All You
Need». In: Advances in Neural Information Processing Systems (NeurIPS).
2017, pp. 5998–6008. url: https://arxiv.org/abs/1706.03762 (cit. on
p. 3).

[2] Zhenfeng Fan, Jinhao Duan, Yawen Zeng, Weiming Lu, and Xiangnan He.
«Large Language Models as Generalist Agents». In: arXiv preprint arXiv:2309.14365
(2023). url: https://arxiv.org/abs/2309.14365 (cit. on p. 6).

[3] Lei Wang et al. «A Survey on Large Language Model based Autonomous
Agents». In: Frontiers of Computer Science (2024). doi: 10.1007/s11704-

024- 40231- 1. url: https://doi.org/10.1007/s11704- 024- 40231- 1

(cit. on p. 7).

[4] Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat
Mondal, and Aman Chadha. «A Systematic Survey of Prompt Engineering
in Large Language Models: Techniques and Applications». In: arXiv preprint
arXiv:2402.07927 (2024). url: https://arxiv.org/abs/2402.07927 (cit. on
p. 12).

[5] Yifan Yu et al. «Communication Strategies in Multi-Agent Systems with
Large Language Models». In: arXiv preprint arXiv:2502.14321 (2025). url:
https://arxiv.org/abs/2502.14321 (cit. on pp. 14, 15).

[6] Xiang Xie, Boyang Li, Chuanqi Zhang, Xin Xia, Zhenchang Xing, David
Lo, and Ahmed E. Hassan. «Software Engineering meets Large Language
Model Agents: A Survey». In: arXiv preprint arXiv:2408.02479 (2024). url:
https://arxiv.org/abs/2408.02479 (cit. on p. 20).

67


	List of Tables
	List of Figures
	Acronyms
	Introduction
	Foundations
	Large Language Models (LLMs)
	Transformer Basics

	Intelligent Agents with LLMs
	The LOMAR Framework

	Multi-Agent Systems (MAS)
	Cloud Computing
	Software Development Life Cycle (SDLC)
	System Design
	Design Goals and Principles
	Architecture Overview
	Communication and Collaboration
	Memory and Contextual Reasoning
	Human Feedback and Control

	System Implementation
	Development Stack and Libraries
	LangChain
	Pydantic
	Boto3

	Tools Integration
	Error Handling and Recovery Mechanisms
	Evaluation and Testing
	Benchmark Design
	Evaluation Methodology
	Results and Analysis
	Discussion and Insights

	Conclusion and Future Work
	Limitations
	Future Work

	Test


	Bibliography

