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Abstract

This thesis addresses the design of a secure-by-design framework for energy com-
munities, with a particular emphasis on communication and the components needed
to ensure its security. The highly interconnected nature of this ecosystem, com-
bined with the criticality of the infrastructure involved, necessitated the development
of a communication model capable of meeting performance and environmental
constraints, while also addressing fundamental security and safety requirements.

Renewable Energy Communities are innovative and participatory models for local
production, sharing and consumption of renewable energy. Their objective consists
in delivering environmental, economic and social value together with the generation
of clean energy. The work starts from the IEC 62443-Based Framework for the
RECs to analyze the message brokers and the MQTT protocol, highlighting their
main characteristics, strengths and vulnerabilities, defining the technological context
within which the research is situated.

The core of the thesis focuses on the design of the components, functionalities and
requirements deployed in the Energy Management System (EMS) platform and
in members premises. In this phase, the high-level requirements defined by the
reference framework are mapped onto the characteristics of the MQTT protocol and
its implementations, integrating aspects related to communication architecture and
the security of exchanged data.

Alongside the theoretical development, a simulator prototype was developed to verify
the validity and applicability of the proposed solutions through testing on a selection
of specific brokers and real-world device abstractions.

In conclusion, the MQTT protocol and its implementations satisfy the various
security and operational requirements. The outcome of the work is an MQTT-based
architecture capable of carrying the communication across the various components of
the REC. The simulations performed on the prototype have confirmed the theoretical
framework.
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Chapter 1

Introduction

1.1 RECs - Renewable Energy Communities

Renewable Energy Communities (RECs) are innovative and participatory models for
the local production, sharing and consumption of renewable energy. They operate as
autonomous entities, based on open and voluntary participation, and are controlled by
their members — citizens, small and medium-sized enterprises and local authorities
— who cooperate to harness the energy resources available in their area.[18][4]

The objective of RECs is not only to generate clean energy, but also to deliver
environmental, economic and social value to both members and the wider commu-
nity. By integrating technologies such as photovoltaics, energy storage systems,
microgrids and digital energy management platforms, RECs promote a more sustain-
able, resilient and distributed model of energy production.

At their core there are prosumers, who generate energy (typically from photovoltaic
plants) and can consume or share it. Surplus energy is stored in household or commu-
nity batteries and redistributed during peak demands or when renewable generation
is low. Energy flows are managed by Energy Management Systems (EMS), which
analyze real-time consumption and production data, optimize energy use and balance
distributed resources. EMS can also integrate smart loads, enabling appliances or
industrial systems to operate when renewable energy is most abundant, reducing
waste and minimizing grid stress.
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Local microgrids further enhance the resilience of RECs, allowing communities to
function as semi-autonomous energy systems, even during disruption of the main
grid. Within these microgrids, peer-to-peer (P2P) energy exchange systems can
be deployed, enabling direct transactions between members, governed by digital
platforms and algorithms.

The adoption of innovative technologies plays a key role in the functioning of
RECs. The Internet of Things (IoT) enables the interconnection of devices and mon-
itoring systems (e.g. sensors), while artificial intelligence supports forecasting and
optimizing both energy production and consumption, as well as managing safety (e.g.
disaster recovery) and security challenges. Finally, distributed ledger technologies
(DLT), such as blockchain, ensure transparency and traceability in energy transaction,
further reinforcing the autonomy of these communities.[2]

This work focuses on analyzing the communication model of IoT networks and
defining a framework that ensures both resilience and security. By investigating the
interactions between devices, data flows and network protocols, the goal is to develop
solutions that can maintain reliable operations even in the presence of fault, cyber
threats or disruptions, thus strengthening the overall performance and robustness of
RECs.

1.2 IEC 62443-Based Framework for Secure-by-Design
Energy Communities

This section presents a survey of the article An IEC 62443-Based Framework for
Secure-by-Design Energy Communities[10]. The study proposes a set of guidelines
to be respected during the design and deployment phase of the REC; the recom-
mendations take into account both the operational requirements of RECs and the
security requirements of the IEC 62443 standard, with the aim of minimizing the
cybersecurity risk from the design phase.
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1.2.1 Reference architecture for RECs

The paper highlights the necessity of software platforms that support the main
functional requirements of RECs. These platforms typically provide:

• Administrative dashboard: supports REC managers in handling member data,
including admission and exit of participants.

• Energy dashboard: enables operators and end-users to monitor, in real time,
community-level energy flows as well as individual consumption and produc-
tion.

• Energy Management System (EMS): optimizes the operation of community-
owned assets and member-integrated resources.

• Financial overview: accessible to all participants, reporting community earn-
ings from grid sales and benefits from internal energy sharing.

These functionalities require the installation of a smart gateway at each member’s
premises. The gateway acts as a local controller, interfacing household devices with
the EMS platform over a secure IP-based connection. It communicates with meters
and sensors, collects data, and can forward control commands from the platform.

Fig. 1.1 Communication architecture of a REC’s member [10].

The authors also present three commercial platforms that already implement this
reference architecture:
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Regalgrid platform [17]

The Regalgrid platform integrates a cloud-based system for the management of
individual RECs with dedicated smart gateways installed at members’ premises. Its
main functionalities include community monitoring, real-time remote control of
smart loads, energy balancing with the optimization of plant efficiency, as well as the
distribution of incentives and the reporting of environmental impact. To enable the
connection of different types of users, Regalgrid offers two smart gateway devices:

• the SNOCU DIN, designed to integrate prosumers into the REC,

• the SNOCU Plug&Play, intended for simple consumers.

ROSE by Maps Energy [9]

ROSE, developed by Maps Energy, is a cloud-based solution aimed at large-scale
REC management. It is organized into three modules: ROSE Designer, which
simulates the economic and energetic performance of both existing and planned
communities; ROSE Promoter, which supports the management and evaluation of
new candidate members; and ROSE Manager, which provides integrated tools to
optimize REC operations from administrative, economic, and energetic perspectives.

ER-Libra CE by Algowatt [1]

ER-Libra CE, proposed by Algowatt, is another cloud-based platform designed for
the comprehensive monitoring and management of RECs. The platform acquire data
from smart meters using protocols such as MQTT or Modbus. The retrieved metrics
about energy production and consumption, together with generation performance
indications, support a detailed analysis process that provides insights both at the
points of delivery (PODs) level and at the community level. Additional features
include forecasting and statistical comparison of REC performance, administrative
and financial management tools, and the supervision of physical community assets
together with other advanced control functionalities.
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1.2.2 Attack model

The authors distinguish two main attack surfaces in the reference REC architecture.
On the one hand, local attacks can target the communication channels or the smart
gateways deployed at members’ premises. These attacks generally affect only a small
subset of devices and mainly result in economic damage. On the other hand, central-
ized attacks may compromise the EMS platform, which supervises the entire REC.
In this case, the consequences are much more severe, since the platform operates
as a SCADA system for distributed resources; a successful breach could propagate
through the whole community and even endanger the stability of the distribution grid.

More specifically, the authors classify three categories of attacks. The first con-
cerns the communication stack, which includes both short-range links between smart
gateways and field devices, and long-range links connecting gateways to the EMS.

Short-range communication relies on local protocols that are vulnerable to jamming,
protocol weaknesses or physical tampering. The impact of these exploits is generally
limited to a single prosumer and remains mostly economic.

Long-range communication, instead, is established via LAN or cellular networks; its
vulnerabilities depend on the generation of mobile technology in use, and may cause
denial of service if availability between gateway and EMS is disrupted.

A second category involves direct attacks on the smart gateway. Being an IoT
device with constrained resources, and often equipped with a web interface for con-
figuration, the gateway is exposed to common cyber threats and physical tampering.
Two risks are especially relevant:

• the possibility of sending malicious commands to local devices, with limited
but tangible economic consequences for a single prosumer

• and the possibility of injecting false or manipulated data into the EMS, which
could compromise the decision-making process of the entire platform.

The third and most critical category is represented by attacks on the EMS platform.
As the central controller of the REC, the EMS has an extensive attack surface, since
it exposes web services and dashboards to operators and members. A successful
intrusion would allow the adversary to alter control commands for a large set of
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generators and loads, potentially causing not only economic losses and denial of
service at community level, but also widespread disruption of the distribution grid.

1.2.3 Mapping RECs architecture to IEC 62443

The paper[10] applies the IEC 62443 methodology to the previously defined REC
reference architecture. Following the standard, the first step is to identify zones and
conduits and the second is to assign the appropriate security level targets (SLTs).
The mapping also considers the Purdue Model, although in this case communication
often relies on public networks, making traditional segmentation less applicable.

Zones

Two main zones are defined:

• Zone 1 corresponds to the local network of a single prosumer, which includes
the smart gateway, the smart meter, and the inverters controlling local generators
and loads. All devices in this zone share the same security requirements since
they collectively contribute to the control of a single member.

• Zone 2 represents the centralized EMS platform that supervises the REC. This
platform is physically separate from prosumer devices, and its violation would
have more serious consequences than the breach into a single member.

Communication between these zones occurs through the public internet, which is
modeled as the conduit connecting them.

Security Levels

• For Zone 1, the authors assign SL-2, which corresponds to protection against
intentional misuse by attackers with limited resources, general skills, and low
motivation. The rationale is that attacks at this level would primarily have
economic consequences and remain limited to a single prosumer.

• For Zone 2, the EMS platform, the assigned level is SL-3, which protects
against more sophisticated attackers with moderate resources and domain-
specific knowledge. A compromise of this zone could affect the entire REC
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and potentially destabilize the wider distribution grid, thus requiring stronger
guarantees.

The public internet acts as the conduit between the zones, and its security level is
determined by the protections enforced at the endpoints.

1.2.4 Practices and Guidelines

The authors adopt a defense-in-depth strategy, structured around four key pillars:
segmentation and perimeter defense, communication security, host security,
and cybersecurity monitoring.

Fig. 1.2 Mapping of the REC reference architecture to the Purdue model [10].
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A. Segmentation and Perimeter Defense

1. Dedicated sub-network for prosumer control devices: Assets at levels 0
and 1 often provide built-in connectivity. In such cases, it is recommended to
create a dedicated control sub-network that encompasses both levels. If the
control network relies on the user’s home network, two logically separated
sub-networks should be deployed, restricting user access to the control sub-
network.

2. Limit wireless communication: Wireless links in the control network should
be minimized, monitored, and used only when strictly necessary. Wired
communication is preferred.

3. Firewalling: The local control network must be protected by a firewall. All
external connections should be denied by default, except for authenticated
traffic originating from the EMS platform.

B. Communication Security

1. Mutual authentication between smart gateway and EMS platform: Secure
communication requires robust identity verification. Recommended mecha-
nisms include:

• Public Key Infrastructure (PKI) with X.509 certificates for strong authen-
tication.

• Transport Layer Security (TLS) for encrypted communication, with TL-
S/PSK as a fallback for constrained devices.

• OAuth2 with token-based authentication to enable temporary, revocable
access credentials.

• Authenticated firmware and software execution on IoT devices to prevent
tampering and unauthorized code deployment.

2. End-to-end encryption: All communications between smart gateways and
the EMS platform must be encrypted from origin to destination, ensuring
confidentiality and integrity.
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3. Authentication on the web server: Access to the EMS platform should be
governed by role-based access control (RBAC). The authors identify three
primary user profiles:

• Member: limited to their own consumption and production data.

• Manager: able to access profiles and data of all community members.

• Operator: responsible for technical operations and with broader system
privileges.

C. Host Security

1. Separation of control and user functionalities: The EMS engine (respon-
sible for control) and the user-facing portal must run on distinct servers,
communicating through well-defined interfaces.

2. Implementation of a DMZ: A demilitarized zone (DMZ) must isolate the
EMS control server (OT domain) from the web server (IT domain). This archi-
tecture ensures strict segregation of operational and user-facing components.

Fig. 1.3 Logical scheme of the EMS platform [10].
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3. Restrict access to the control network: The control network — including
the EMS engine, smart gateways, and smart devices — must be completely
isolated. Access should be limited to administrators and automation engineers
through strong multi-factor authentication (MFA).

4. Secure software development for smart gateways: Software deployed on
smart gateways should follow established best practices (e.g., NIST SP 800-53,
NISTIR 8259A, IEC 62443). This includes secure coding, threat modeling,
vulnerability testing, access control, and firmware signing.

D. Cybersecurity Monitoring

Both the smart gateways and the EMS platform must generate detailed security
logs. A centralized Security Information and Event Management (SIEM) system,
located in the DMZ, should collect, analyze, and correlate these logs for auditing
and real-time detection of anomalies.

The required logs include:

• Web server logs (EMS platform).

• Application logs (EMS platform and smart gateway).

• System logs (EMS platform and smart gateway).

• Authentication and authorization logs (both sides).

• Network activity logs (both sides).

• Security event logs (antivirus, IDS/IPS, EDR/XDR alerts).

• Audit logs (configuration changes and administrative actions).

This monitoring infrastructure enables continuous visibility, automated alerting, and
forensic investigation in the event of a security incident.



Chapter 2

Background

2.1 Message Brokers

In distributed systems, message brokers have become a cornerstone for reliable
communication between decoupled components. Acting as intermediaries, they
receive, store and forward messages between producers and consumers, ensuring
efficient and resilient data exchange.

The use cases of message brokers span from microservices backbones and event-
driven architectures to real-time data processing pipelines.

Conceptually, a broker provides a middleware layer for asynchronous communication.
Producers publish messages without knowing the consumers, while consumers
subscribe to messages of interest without concern for their origin or timing. This
decoupling enables scalability, resilience and flexibility in system design.

2.1.1 Messaging Patterns

Message brokers support different communication patterns that address distinct
interaction needs in distributed systems.
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Publish–Subscribe

In the publish–subscribe paradigm, producers publish messages to well-defined
channels, often referred to as topics, while consumers subscribe to those topics
in order to receive relevant messages. This model provides strong decoupling:
producers remain unaware of how many consumers exist or who they are, while
consumers can independently decide which topics to follow. The pattern is widely
used when multiple components must react to the same event, for example in
notification systems, monitoring pipelines or broadcasting updates to heterogeneous
services. The strength of publish–subscribe lies in its flexibility and its ability to
scale to many consumers with minimal coordination.

Topic 1

Topic 2

Topic 3

Broker

Producer

Consumer 1

Consumer 2

Consumer 3

© Lorenzo Sebastiano Mathis, CINI

Fig. 2.1 Publish–Subscribe messaging pattern

Event streaming

Event streaming extends publish–subscribe by treating the stream of messages as
a durable, ordered log. Producers append new events to this log, and consumers
read them sequentially, typically tracking their own position within the stream. Un-
like transient messaging, event streaming emphasizes persistence and replayability:
consumers can process events in near real-time, re-read past events for recovery or
reprocess data to build new views and analytics. This paradigm underpins event-
driven architectures and stream processing systems, where reproducibility, ordering
and temporal analysis are crucial. Systems such as Apache Kafka are built directly
around this model.
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Producer 1

Consumer 1

Consumer 2

Consumer 3

© Lorenzo Sebastiano Mathis, CINI

Log 1

Log 2

event 1 
event 2 
event 3 
event 4 
event 5 
event 6 

event 1 
event 2 
event 3 
event 4 
event 5 

Producer 2

Broker | Event Stream Platform

Fig. 2.2 Event Streaming messaging pattern

Request–Reply

The request–reply pattern represents a conversational synchronous-like interaction
rather than a one-way dissemination of events. A producer (the requester) sends a
message expecting a specific response, while a consumer (the replier) processes it
and returns the result. The broker mediates this exchange, often by using a temporary
or dedicated reply queue and correlation identifiers to match requests with responses.
This model resembles remote procedure calls but retains the benefits of messaging
middleware, such as reliability, decoupling and resilience to partial failures. It is
useful when synchronous workflows must be integrated into asynchronous systems,
for example to query service state or delegate a task requiring a direct answer.

Producer
(Requester)

Request queue

Response queue

Broker

Consumer/Executor
(Replier)

© Lorenzo Sebastiano Mathis, CINI

Fig. 2.3 Requrest–Reply messaging pattern
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2.1.2 Delivery Strategies and Mechanisms

Beyond high-level patterns, brokers differ in how they distribute and deliver mes-
sages.

Distribution models:

• Point-to-point – each message is delivered to a single consumer.

• Broadcast/cooperative – multiple consumers receive distinct copies of the same
message and process them independently.

Retrieval models:

• Pull-based – consumers explicitly poll the broker for new messages at their own
pace. This makes back-pressure explicit and supports heterogeneous consumers,
while the broker takes a passive role.

• Push-based – the broker delivers messages proactively to the consumers as they
arrive. Back-pressure is managed by higher-level mechanisms such as QoS
levels and in-flight message limits. This approach favors immediate delivery
without polling.

Delivery guarantees:

• At-most-once: messages may be lost, but are never redelivered. This is a
fire-and-forget model with minimal overhead.

• At-least-once: each message is redelivered until acknowledged by the consumer.
Messages are guaranteed to arrive but may appear multiple times if acknowl-
edgments are lost. Consumers must handle duplicates if operations are not
idempotent.

• Exactly-once: each message is delivered once and only once. This requires
two-phase acknowledgment and coordination, ensuring no duplicates but at the
cost of computational and network overhead.
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2.1.3 Message semantic

Message semantics describe the intent of exchanged messages. While not strictly
defined by the broker, the broker’s features influence how effectively these semantics
are supported. Broadly, messages fall into two categories: commands and events.

Command. A command is a directive issued by a producer to one or more con-
sumers, instructing them to perform a certain operation. Its essence is something
that should happen in the future.

Commands are often transmitted via point-to-point channels (sometimes multicast).
Push-based delivery with exactly-once semantics, if not idempotent, is preferred to
ensure minimal latency and avoid inconsistencies.

Event. An event is a notification indicating that something has occurred. It does
not mandate a specific reaction but informs receivers of a past occurrence. Its essence
is something that has already happened in the past.

Events are typically broadcast and generally tolerate looser requirements in terms of
latency and delivery guarantees, depending on the application.

2.1.4 Advanced Message Queuing Protocol – AMQP

The Advanced Message Queuing Protocol (AMQP) is an open, standardized messag-
ing protocol designed to enable reliable and interoperable communication between
distributed systems. AMQP defines both the wire-level format and the messaging
semantics, making it protocol-agnostic with respect to programming languages and
platforms.

Main Characteristics [5]

• Standardization: AMQP is governed by the OASIS consortium and has a stable
specification.

• Interoperability: Applications developed in different programming languages
and running on different middleware can exchange messages seamlessly.
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• Flexibility: Supports multiple messaging patterns, including publish–subscribe,
request–response and work queues.

• Reliability: Provides built-in delivery guarantees depending on broker configu-
ration and client cooperation.

• Security: Natively supports TLS (encryption) and SASL (authentication).

AMQP Model

AMQP defines a logical messaging model composed of:

• Producers: send messages to the broker.

• Exchanges: route messages based on defined rules.

• Queues: store messages until they are consumed, with support for durability
and persistence.

• Bindings: define the relationship between exchanges and queues for message
routing.

• Consumers: retrieve and process messages.

AMQP Routing [3]

Messages are first published to an exchange, which can be viewed as a post office.
The exchange then routes each message to one or more queues, which can be viewed
as mailboxes.

The routing behavior of an exchange depends on its type:

• Direct exchange: the message is sent to the queue(s) whose binding key exactly
matches the routing key (queue.binding == message.routing_key).

• Fanout exchange: the message is broadcast to all queues bound to the exchange.

• Topic exchange: the message is sent to queues whose binding key matches a
pattern defined by the routing key (queue.binding.match(message.rout-
ing_key)). Wildcards allow flexible matching (e.g., logs.* matches all keys
starting with logs).



2.1 Message Brokers 17

• Headers exchange: the message is routed based on header attributes rather than
the routing key, enabling custom routing mechanisms.

RabbitMQ [16]

RabbitMQ is one of the most widely adopted open-source message brokers and
the most popular implementation of AMQP. Originally developed by Rabbit Tech-
nologies in 2007 and now maintained by VMware, RabbitMQ supports the AMQP
0.9.1 specification as its core protocol. Over time it has also introduced support for
additional protocols, such as MQTT and STOMP, through plug-ins.

RabbitMQ provides:

• A robust and battle-tested implementation of AMQP, with strong community
and enterprise adoption.

• Rich routing capabilities via exchanges and bindings, including support for
direct, fanout, topic, and headers exchanges.

• High availability and fault-tolerance through clustering and queue mirroring.

• Extensibility via a plug-in architecture (e.g., protocol adapters, monitoring,
federation, shoveling).

• Management and observability features, including an HTTP API and a web-
based management interface.

RabbitMQ is widely used in cloud-native architectures, microservices communica-
tion and enterprise integration scenarios where reliability and interoperability are
critical.
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2.2 MQTT protocol [12] [13]

MQTT is an asynchronous, lightweight messaging protocol that utilizes TCP/IP
to connect and control remote small, constrained devices in unreliable network
environments. It supports both data sharing and device management/control.

MQTT employs a publish–subscribe model that meets the IoT systems requirements:
as the client does not need updates, it remains in idle saving both computational and
network resources.

2.2.1 MQTT Messaging model

MQTT messaging model consists of two major components:

• The message broker – it is a program or device based on MQTT that acts as a
message hub, receiving published messages and delivering them to subscribed
clients. Its responsibilities encompass the management of the client connection,
client subscription, message exchange (publishing, storing and delivering).

• The clients – they can be any IoT device that sends messages or uses applications
to process the received messages. A client transmitting messages is called
publisher, while one receiving messages is called subscriber; note that the
two roles are not mutually exclusive, a client may act as both publisher and
subscriber.

MQTT is a bi-directional communication protocol where messages are organized in
topics and allows both data acquisition (data flows from the IoT devices) and device
management and control (data flows to the IoT devices). The main concepts are:

• Message – the data that moves through the service. A message has standard
format composed by a fixed header, an optional variable header and an optional
payload.

• Topic – a named entity that denotes a feed of messages. It functions like a
mailbox.

• Subscription – it represents the interest by a subscriber in receiving messages
from a specific topic.

• Publisher – it is a client that produces messages and publish them into a topic.
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• Subscriber – it is a client that subscribes to topics and receives messages from
them.

The MQTT client initializes a MQTT session opening a TCP/IP connection with the
broker, the standard uses two ports:

• TCP/1883 for unencrypted traffic,

• TCP/8883 for TLS-encrypted traffic.

2.2.2 MQTT Packet format

The MQTT packets reside on top of the plain or encrypted TCP protocol in the OSI
model – application level. The packets are composed by three parts:

• 2-bytes fixed header – The first byte identifies the packet type and its control
flags, while the second byte indicates the remaining length of the packet.

• Variable header (optional) – Provides additional information specific to the
packet type and supports protocol extensions.

• Payload (optional) – Contains the application data being transmitted.

Control Header

Type Flags

Length
Variable Header

(optional)

Payload

(optional)

Fixed Header

1 byte 1 byte variable variable
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DUP QoS RET

Fig. 2.4 Structure of an MQTT packet.

2.2.3 MQTT Features

Beyond its lightweight design, MQTT provides several features that enhance relia-
bility and flexibility in message delivery, such as Retained Messages, Will Messages,
QoS Levels, Clean Session flag and Keep-Alive parameters. These features can be
configured both when establishing the connection to the broker and during publish/-
subscribe actions.
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Retained Messages. By default, the MQTT broker discards messages once they
are delivered or if no subscriber is present. The retained messages feature instructs
the broker to store the most recent retained message along with its topic. If available,
the broker transmits this message immediately to any client that subscribes to the
topic. To retain a message, the publisher must set the retain flag (RET) in the fixed
header of the PUBLISH packet.

Will Messages. Known as the Last Will and Testament (LWT), this feature allows
a client to specify a special message by setting the Will flag in the header of the
CONNECT packet, including the message as payload and indicating the target topic. If
the client disconnects unexpectedly – i.e., without sending a DISCONNECT message –
the broker broadcasts the LWT message to all clients subscribed to the topic.

QoS Levels. MQTT defines three levels of Quality of Service (QoS): QoS 0 pro-
vides at-most-once delivery, QoS 1 ensures at-least-once delivery by retransmitting
the message until acknowledged and QoS 2 guarantees exactly-once delivery through
a four-step handshake. Higher QoS levels increase both network and computational
overhead.

Clean Session. The MQTT specification defines the Clean Session flag, which
allows a client to instruct the broker on whether to maintain its state across multiple
connections. It is specified in the header of the CONNECT packet. When set to 1,
the client requests a persistent session: the broker retains its subscriptions and all
unacknowledged and future QoS 1 or 2 messages, delivering them upon reconnection.
When set to 0, the broker treats each connection as independent and discards any
stored state.

Keep-Alive Parameters. MQTT includes a Keep-Alive mechanism to detect
inactive clients and avoid half-open TCP connections. When connecting, the client
may specify a keep-alive interval in seconds in the header of the CONNECT packet.
This value defines the maximum allowed interval between two messages. If no
data is exchanged within this period, the broker and client use special messages —
PINGREQ and PINGRESP — to confirm that the connection remains active.
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2.2.4 MQTTv5.0

So far, we have referred to MQTT version 3.1.1. In 2018, MQTT 5.0 was released,
bringing improvements in performance, error reporting, small client support, and
authentication, among others. Key new features include Flow Control, Shared
Subscriptions, Server Redirection, User Properties, Session Expiry Interval, and
Enhanced Authentication.

For this work, after considering the benefits of the new features, the support provided
by the state of the art and the potential security risks associated with an expanded
attack surface, I have chosen to use MQTT version 3.1.1.

2.2.5 Comparison with other IoT application protocols

In the literature, several works have compared MQTT with other IoT application-
layer protocols. Among them, Lakshminarayana et al. [12] provide a detailed
comparison with CoAP, AMQP, XMPP, DDS, WebSockets, and RESTful HTTP.

CoAP. The Constrained Application Protocol (CoAP) is a lightweight request–response
protocol designed for constrained environment and operates over UDP and supports
only two levels of reliability (confirmable and non-confirmable messages). Security
is not natively integrated into the protocol and relies on DTLS to provide confiden-
tiality, integrity and authentication. However, the combination of UDP and DTLS
introduces significant limitations: unstable packet delivery, fragmentation overhead
and expensive handshakes. With respect to MQTT, it provides less QoS options and
less protection with higher overhead: performance evaluations show that CoAP over
DTLS incurs a bandwidth overhead of approximately 1000%, whereas MQTT over
TLS requires only 74–200%.

AMQP. The Advanced Message Queuing Protocol (AMQP) was developed to
support reliable, enterprise-level messaging, offering various communication patterns
and authentication with SASL and encryption via TLS. Studies shows that AMQP
performs poorly in low-bandwidth environment due to its significant computational
and memory overhead.
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XMPP. The Extensible Messaging and Presence Protocol (XMPP) is a XML-based
standard primarily designed for instant messaging, online gaming and telepresence
applications. Security is built into the specification and is guaranteed using SALS
for authentication and TLS for encryption. The protocols lacks of QoS, requires
higher processing costs due to XML parsing, with respect to the lighter approach of
MQTT that does not impose any payload format.

DDS. The Data Distribution Service (DDS) is a data-centric middleware standard
developed for real-time and embedded systems. It offers advanced QoS settings and
can be carried on both UDP and TCP. Security is enforced via DTLS/TLS and it
provides a Security Model and Service Plugin Interfaces. However, the protocol
is heavyweight and introduces high overhead, increasing power consumption and
latency.

WebSockets. WebSockets, part of the HTML5 standard, enable real-time, bidi-
rectional communication over a single TCP connection. Security is provided via
TLS or SSL. However, WebSockets were not designed specifically for constrained
environments, do not offer native QoS and generally consume more resources then
MQTT.

RESTful HTTP RESTful HTTP is an architectural style based on standard HTTP
methods and is widely supported on modern devices, making it easy to implement.
It lacks of native QoS mechanisms and requires polling from clients to maintain
updates, which increases latency, energy consumption and network overhead.

Conclusions

Table 2.1 summarizes the main features of IoT application protocols, with the best-
performing values highlighted in bold.

MQTT v3.1.1 stands out as the best-performing protocol across most of the con-
sidered metrics. Its major limitation lies in the security mechanisms defined by the
standard: it only specifies username–password authentication and does not include
authorization policy enforcement. These shortcomings of the specification require
the use of TLS and other security mechanisms to make the protocol suitable.
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Table 2.1 Comparison of Communication Protocols [12].

However, when analyzing MQTT broker implementations, discussed in Section 2.4,
many of these security lacks can be mitigated. Most brokers support TLS with X.509
certificates and mutual authentication, where the Common Name is used as the client
identity (see Section 3.5).

Authorization policies are typically enforced at the broker level, often through
ACLs. State-of-the-art MQTT brokers also provide more advanced authorization
mechanisms (see Section 3.5.2).

2.2.6 MQTT Bridges [19]

An MQTT broker manages its own independent namespace of topics, creating an
isolated MQTT network. For example, in a smart home setup with multiple central
nodes (brokers), each broker can have the same topic structure and logical functions,
but the topics of one broker are not visible to another. As a result, clients connected
to different brokers cannot exchange messages directly.

In many cases, this isolation is either irrelevant or even desirable, as it provides
a clear boundary between systems. However, in some scenarios — such as when
multiple brokers need to collaborate, share data, or provide redundancy — it can be
useful to interconnect them. To address this need, many MQTT implementations
provide a mechanism called bridging, which allows brokers to exchange messages
across their topic spaces.
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Fig. 2.5 MQTT bridge architecture

Bridging can be achieved either through the built-in mechanisms offered by several
brokers or through custom implementations. In this way, each broker can serve as
an isolated MQTT sub-network, while bridges interconnect these sub-networks to
enable higher-level data exchange and to improve both reliability and scalability.
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Command & Control
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Fig. 2.6 Network partitioning with MQTT bridges.

2.3 MQTT Vulnerabilities and attacks

Lakshminarayana et al. [12] work has produced a classification of both MQTT
protocol vulnerabilities and attacks against MQTT communication. The following
section tries to summarize the outcome of that work.
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2.3.1 MQTT Vulnerabilities

The MQTT vulnerabilities, as highlighted in Figure 2.7, can be broadly classified
into two families according to their root cause:

• Weak protocol specification: vulnerabilities that originate from limitations or
missing features in the protocol design itself.

• Weak implementation practices: vulnerabilities arising from insecure config-
urations or flawed software implementations of the protocol.

Fig. 2.7 A taxonomy of MQTT vulnerabilities [12].

2.3.2 Attacks against MQTT

MQTT-based IoT systems are exposed to multiple attack vectors. Attacks can either
exploit known vulnerabilities in the protocol or its implementation, or leverage
legitimate protocol features in ways that compromise the system. While the former
largely overlaps with vulnerabilities discussed in Section 2.3.1, the latter represents
attacks that can be executed even in well-configured and up-to-date systems.
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Exploiting MQTT Vulnerabilities

Attacks exploiting known vulnerabilities often target weak protocol specifications or
poor implementation practices. Examples include unauthorized access due to weak
authentication, eavesdropping or message tampering when payload encryption is
not enforced, and denial-of-service (DoS) or command injection attacks exploiting
software flaws. These attacks typically require the presence of unpatched vulnera-
bilities or misconfigurations, and are largely mitigated when recommended security
practices are applied. Nevertheless, they remain a primary threat in many real-world
deployments.

Exploiting MQTT Protocol Features

Several attacks exploit the intended features of the MQTT protocol to disrupt services,
compromise data confidentiality or exhaust system resources. Notable examples
include:

Flooding Attacks. MQTT control packets, such as CONNECT, PUBLISH or
SUBSCRIBE messages, can be sent in large volumes to overwhelm the broker,
causing denial-of-service (DoS) conditions. High-quality-of-service (QoS) messages
or large payloads further increase computational and memory load on brokers and
clients.

Abuse of Retain Flag. Attackers can publish retained messages on topics, forcing
brokers to store messages indefinitely. This can be exploited to exhaust storage or
CPU resources or to deliver malicious messages to future subscribers.

Exploitation of Will Messages. The MQTT Last Will and Testament (LWT)
feature can be manipulated to trigger unexpected actions or floods when clients
disconnect unexpectedly. This allows attackers to indirectly control IoT devices or
initiate service disruption.

Misuse of Keep-Alive and Clean Session Flags. By setting extreme keep-alive
times or preventing session cleanup, attackers can maintain persistent connections
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that consume broker resources, leading to slow DoS attacks or allowing revoked
clients to remain connected and receive messages.

Payload-based Attacks. Maliciously large payloads can overwhelm clients and
brokers, potentially causing buffer overflows, DoS or degraded performance. Attack-
ers can craft messages that appear legitimate, making detection difficult.

2.3.3 Securing MQTT

As previously discussed, the MQTT protocol is not free from security flaws. While
certain attacks that exploit inherent protocol features cannot always be prevented
directly, their behavioral patterns can be monitored and strong authentication and
authorization mechanisms can significantly reduce the attack surface. By contrast,
protocol-level weaknesses can be mitigated by integrating MQTT with complemen-
tary security solutions.

MQTT can be actively hardened in three main areas, which are addressed by the
proposed solution in Section 3.5:

1. Authentication,

2. Authorization, and

3. Encryption.

2.4 MQTT Implementations

A MQTT network is composed by two kind of entities:

• broker(s),

• clients.

A broad overview of available MQTT implementations can be found on the Wikipedia
page Comparison of MQTT implementations[20], while more detailed comparative
analyses, focusing on performance and features, have been provided by Lakshmi-
narayana et al.[12] and Mishra and Kertesz [13].
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2.4.1 MQTT Broker

MQTT brokers may adopt either centralized or distributed architectures.

• Centralized brokers operate as a single instance responsible for all message
routing and topic management. While they offer simplicity in deployment, they
may present a single point of failure and may introduce bottlenecks; thus are
less suitable for mission-critical or large-scale environments.

• Distributed brokers implement clustering or bridging techniques to improve
scalability, fault tolerance and geographical redundancy. Cluster-based so-
lution provide higher resilience and horizontal scalability, whereas bridging
approaches reduce traffic overhead and resource usage but may introduce in-
creased latency and reduced resiliency.

The evaluation of MQTT brokers considered various factors, such as:

• Licensing model – in this work we considered only open-source products.

• Supported MQTT version and protocol-specific features.

• Scalability and clustering capabilities.

• Security features.

The comparative analysis is presented in Table 2.2

Table 2.2 Comparison of open-source MQTT brokers
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Among the examined implementations, Mosquitto is distinguished by its lightweight
footprint and extensive documentation, making it particularly well-suited for resource-
constrained devices and development environments.

VerneMQ offers clustering capabilities and horizontal scalability, facilitating its
deployment in distributed and high-availability systems.

EMQ X, along with its lightweight variant NanoMQ, provides an enterprise-oriented
solution featuring a comprehensive plugin system for integration with external
authentication, authorization, and monitoring infrastructures.

HiveMQ CE is primarily designed for large-scale industrial applications, whereas
RabbitMQ, ActiveMQ, and Artemis extend their general-purpose messaging frame-
works to support MQTT-based communication. FlashMQ represents a minimalistic
alternative with a selectively implemented feature set. It is noteworthy that HiveMQ
CE, ActiveMQ, and Artemis are Java Virtual Machine (JVM)-based, which may
introduce additional overhead and is generally less suitable for deployments in highly
constrained environments.

A comprehensive list of currently available MQTT brokers is maintained on GitHub [14].

2.4.2 MQTT Client Libraries

Complementary to brokers, client libraries implement the MQTT protocol stack
for resource-constrained devices, edge gateways and cloud applications. Table 2.3
outlines a selection of open-source MQTT client libraries, their language support,
protocol version compatibility and licensing status.

Table 2.3 Comparison of open-source MQTT client libraries
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The Eclipse Paho MQTT project has emerged as a de facto standard client library in
both research and commercial projects, owing to its comprehensive language support,
active community and alignment with both MQTT 3.1.1 and 5.0 standards.



Chapter 3

MQTT-Based framework for
Secure-by-Design Energy
Communities

This thesis focuses on the design of a Secure-by-Design framework for communica-
tion within Energy Communities based on the MQTT protocol, presented in Chapter
3, and on the development of a simulation framework prototype for testing Energy
Community devices, discussed in Chapter 4.

This chapter is structured as follows. Section 3.1 introduces the overall architecture
of the proposed framework. Section 3.2 maps the practices and guidelines — defined
by Gaggero at al., see Section 1.2.4 — to MQTT features and concepts. Section 3.3
presents the abstraction layer designed to unify the interaction between smart and
traditional devices in Renewable Energy Communities (RECs), providing guidelines
and defining a common interface. Section 3.4 defines the communication model,
while Section 3.5 analyzes the authentication and authorization mechanisms that
ensure secure interactions among devices.
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3.1 Framework architecture

The proposed framework builds upon the reference architecture defined by Gaggero
et al.(see Section 1.2.1). In particular, it extends this foundation by designing a REC
architecture relying on message brokers and MQTT communication protocol.

In particular, the framework:

• defines a global architecture centered on MQTT-based messaging,

• details the Energy Management System (EMS) platform, its components, roles,
and interactions,

• specifies the REC member structure, including its local components and com-
munication mechanisms.

3.1.1 Architecture and base components

The REC backbone network, built upon MQTT bridges between the central broker
[1.c] hosted in the EMS platform and the local brokers[3.b] deployed with the smart
gateways at each REC member premises. This design enables a flexible and scalable
communication fabric.

Building on the high-level overview in Figure 3.1, this section discusses the archi-
tecture in details, progressively analyzing different deployment scenarios and their
control implications.

MQTT-bridged network backbone

The backbone of the REC network — shown as yellow links in Figure 3.1 — consists
of MQTT bridges that selectively share topics between the central broker and local
brokers.

The bridge can be implemented using different approaches:

1. Relying on built-in broker features. Most MQTT brokers available on the
market provide varying degrees of bridging capabilities. In this approach, the
smart gateway connects only to the local broker.
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Fig. 3.1 REC network overview. The numbered labels [n.x] correspond to the components referenced
in the text.

2. Embedding the bridging logic within the smart gateway. The gateway connects
to both the local and remote brokers and handles the routing of data flows.

3. Developing a custom, independent bridging module that connects the central
and local brokers. The smart gateway interacts only with the local broker.

Each approach has advantages and limitations. Broker-native bridging is lightweight
and simplifies deployment, but its capabilities depend on the specific broker imple-
mentation, which can reduce transparency and interoperability in heterogeneous
environments.

The latter two approaches provide greater flexibility and customization. Embedding
the bridge logic in the smart gateway reduces the number of components in the
network, decreasing potential points of failure, but increases the gateway’s complex-
ity. A standalone bridge module decouples network management from local logic,
improving transparency and interoperability, especially when brokers are heteroge-
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neous. The trade-off is additional implementation, deployment and configuration
effort.

Ideally, the bridging mechanism should support secure multi-hop failover, allowing
traffic to be rerouted through a neighboring broker if a direct link fails. Although
optional, this feature is critical to ensure reliability in REC communications.

Broker support varies:

• Mosquitto provides a basic mechanism that binds to a single bridge link mul-
tiple addresses: the first is used as primary, while the other as fallback. The
mechanism does not natively support multi-hop rerouting.

• NanoMQ, instead, offers hybrid bridging with dynamic failover, enabling multi-
hop forwarding via bridge-specific topic filters.

No implementation provides a way to notify when traffic is rerouted from a direct link
to a multi-hop fallback, causing the central node to infer it from connection identifiers
or other metadata. Each hop relies on a separate TLS connection for encryption
and authentication. However, the security of messages within intermediary brokers
depends on their configuration; therefore, it is recommended to implement end-
to-end protections at the protocol level, such as encrypting or signing the MQTT
payload to prevent interception or impersonation during multi-hop forwarding.

Single REC scenario

The simplest case consists of a single REC [2], where the EMS engine orchestrates
the community through the central broker:

• The central broker[1.c] aggregates all the data streams originating from the local
brokers in the members’ premises.

• The EMS engine[1.b] processes these data and issues control commands to
manage REC resources.

• Users, according to their assigned roles and permissions, interact with the REC
through web-based interfaces.
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Multiple RECs scenario

The same architecture extends naturally to multiple RECs coexisting under the same
EMS platform[1]. Two edge scenarios can be identified:

• Independent RECs, where each community operates autonomously, managed
by a shared EMS platform.

• Collaborative RECs, where multiple communities interconnect, exchanging
information and resources. In this case, the EMS engine also acts as mediator
between domains.

This flexibility makes the architecture suitable for both localized communities and
larger cooperative networks.

Aggregation layers

Beyond single- and multi-REC levels, the architecture can incorporate aggregation
layers at district, regional or functional levels. Such layers group multiple RECs,
enabling hierarchical control strategies and distributed decision-making. This de-
sign improves scalability and prepares the platform for large-scale optimizations,
potentially extending toward regional or national coordination.

Main components

The core architectural components are:

• The EMS central broker[1.c], the backbone message hub connecting the local
brokers with the EMS engine.

• The EMS engine[1.b], the computational core of the platform responsible for
data processing, decision-making and orchestration.

• The EMS web interfaces[1.a], the user-facing modules enabling visualization,
monitoring and interaction with the REC environment.

• Smart gateway[3.a] and local brokers[3.b], the edge components deployed at
each REC member’s site, responsible for local data acquisition and secure
communication with the central broker.
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3.1.2 EMS Platform architecture

The EMS platform is built on a microservice-oriented architecture, illustrated in
Figure 3.2. Each service is responsible for a specific subset of functionalities. At the
core of the platform lies the EMS engine[3] and its Command & Control web inter-
face[4], supported by the security manager service[2] and the PKI management API[5].
The central broker[1], described in the previous section, serves as the messaging hub
of the backbone network.

In addition to these core services, the platform integrates a Log Management System
[6.a] responsible for collecting logs from both EMS services and smart gateways.
Finally, the platform provides three web-based dashboards[7.x], which allow users to
monitor and manage different aspects of REC operations.
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Fig. 3.2 EMS platform overview. The numbered labels [n.x] correspond to the components referenced
in the text.

Central Broker [1]

The central broker is responsible for establishing secure, bidirectional communica-
tion between the EMS Engine and the smart gateways deployed at REC members’
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premises. The EMS Engine is the only service authorized to interact directly with
the gateways, ensuring that all communication is mediated and controlled.

To fulfill this role, the broker must satisfy several security and performance require-
ments:

• (Performance) The broker should provide clustering support to guarantee hori-
zontal scalability and fault tolerance. The risk of central broker downtime must
be minimized and disruptions must be mitigated at the protocol level.

• (Performance) The broker must be capable of handling high traffic volumes and
supporting a large number of concurrent connections.

• (Security) The broker must support TLS with X.509 certificates and enforce
mutual authentication.

• (Security) The broker must implement dynamic authentication and authoriza-
tion mechanisms, either natively or via verified plugins. Static ACL-based
mechanisms are not suitable for the central broker, as they often require broker
restarts, which is unsustainable in a production environment.

Among available MQTT brokers, Mosquitto (with its dynamic security plugin) can be
adequate for small-scale deployments, making it suitable for prototyping and testing.
For production environments, however, more robust solutions such as VerneMQ
(offering similar semantics but superior performance) or EMQX are recommended.

EMS Engine [3]

The EMS Engine is the computational and decision-making core of the entire plat-
form and thus of the REC(s). It is responsible for:

• Collecting data from REC members via the central broker. These data streams
include diagnostic information, device statistics and energy production/con-
sumption metrics.

• Analyzing and aggregating the collected data to support both automatic and
semi-automatic decision-making processes.

• Issuing commands according to predefined operational checklists, as well as
control actions provided by human operators through the command-and-control
interface.
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• Managing security information through the Security Manager service and
handling certificate lifecycles via the PKI management APIs.

The EMS Engine plays a critical role within the REC ecosystem. A successful
compromise of this component would not only endanger the privacy of community
members but could also severely disrupt REC operations—potentially rendering the
entire system instable or inoperative.

Command & Control Web Interface [4]

The Command & Control (C&C) Interface constitutes the primary access point for
human operators to the operational technology (OT) domain of the REC. Through
this interface, authenticated operators can interact with the EMS Engine in order to
monitor, analyze, and control the operational state of the community.

Beyond monitoring and control, the C&C Interface also supports REC configuration
tasks, including:

• registering new components, such as entire RECs, new members within an
existing REC or additional devices for a given member;

• interacting with dedicated security services, e.g., updating security configura-
tions of brokers;

• managing the lifecycle of TLS certificates, which form the foundation of au-
thentication and authorization mechanisms.

The C&C Interface is implemented as a web-based service. Nevertheless, given
its critical role in system operations, it must not be exposed to the public Internet.
Instead, access should be restricted to authorized operators within the local envi-
ronment. Adequate access control must be enforced both at the software level (e.g.,
via OAuth2) and at the physical level. Furthermore, the service should reside on a
network segment isolated from externally exposed components, thereby ensuring
proper separation of concerns and reducing the overall attack surface of the REC
platform.
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Public Key Infrastructure (PKI) [5]

The platform employs a closed, private Public Key Infrastructure (PKI) to manage
authentication and authorization within the energy community network. Its purpose
is to provide role-specific, trusted identities for three main domains:

• the Energy Management System (EMS) components — including the MQTT
central broker and the various MQTT clients deployed within the EMS platform;

• the inter-broker bridging layer, including failover paths;

• the local REC members’ components — local brokers, smart gateways, and end
devices.

Core PKI functions — such as certificate issuance, lifecycle management, revocation,
trust distribution, and identity anchoring using Extended Key Usage (EKU) and
Subject Alternative Name (SAN) conventions — are implemented, but their scope is
intentionally constrained to this closed ecosystem.

Unlike a traditional PKI designed for open, multi-tenant environments, this archi-
tecture is centrally governed by the EMS Engine and does not rely on external trust
anchors or public validation mechanisms. The certification hierarchy consists of a
single RootCA with three functional branches:

• EMSCA, for EMS components,

• BRIDGECA, for the inter-broker bridging layer,

• RECxCA −→ ExCA, for each REC member.

This segmentation is logical rather than organizational, enforcing network compart-
mentalization and enabling multi-tier revocation at the level of an individual device,
a member or an entire REC.

Several canonical PKI components were deliberately excluded or adapted. A ded-
icated Registration Authority (RA) is not employed, as all certificates are issued
within a single administrative domain based on pre-approved asset inventories, mak-
ing third-party identity verification unnecessary. Issuance flows follow a hybrid
model: EMS and bridge certificates can be provisioned automatically, whereas field
device certificates are typically issued manually during scheduled maintenance.

Certificate Revocation Lists (CRLs) are used as the sole revocation mechanism,
as they provide robust and predictable behaviour in intermittently connected and
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resource-constrained environments; Online Certificate Status Protocol (OCSP) re-
sponders were deemed unnecessary overhead.

Finally, the PKI applies minimal Extended Key Usage (EKU) and Subject Alternative
Name (SAN) policies — ServerAuth for brokers/listeners and ClientAuth for
clients/bridges — rather than complex policy OIDs, aligning with the authorization
capabilities natively provided by the broker implementations and their underlying
mechanisms.

This design results in a PKI that is tightly integrated with the MQTT backbone,
operationally lean and easily scalable: adding a new REC member requires only the
creation of an ExCA under the appropriate RECxCA, without requiring modifications
to EMS or bridging trust anchors.

The platform design includes a Management API [5], responsible for handling op-
erational tasks. In the diagram, it is depicted as a separate entity, but it can also be
integrated within the Security Manager 3.1.2.

Security Manager [2]

The Security Manager is a dedicated service responsible for managing all aspects
related to authentication and authorization within the REC platform.

Two distinct domains fall under its scope:

• User-facing access control — The platform exposes various dashboards, either
externally or internally, each providing a different subset of data. Access to
these interfaces must be restricted to authenticated users and granted based on
their role within the REC.

• Broker-level access control — On the broker must be defined fine-grained rules
determining where and what each client — including devices, smart gateways,
bridges, and internal services — can publish or subscribe to.

The first domain can be implemented using established identity and access manage-
ment (IAM) standards and tools, such as OAuth 2.0 in combination with a platform
like Keycloak. Strong authentication and role-based access control (RBAC) are
required to ensure appropriate data segregation across users and roles.
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The second domain is more challenging to standardize, as each broker implementa-
tion provides its own mechanisms for authentication and authorization configuration.
Examples include dynamically managed local file storage (e.g., the Dynamic Secu-
rity Plugin for Mosquitto), database-backed systems (e.g., VerneMQ, EMQX) or
HTTP-based services (e.g., EMQX, NanoMQ).

To address this heterogeneity, the Security Manager should expose a unified API
that allows the EMS Engine to configure broker-specific mechanisms without being
aware of their internal details. The service acts as an abstraction layer, translating
a generic authorization model into the appropriate configuration format for each
broker.

Specifically, the Security Manager should:

• Provide connectors for the authentication and authorization mechanisms of all
brokers deployed or deployable within the REC network.

• Maintain an up-to-date database mapping each REC member to its respective
broker implementation.

• Expose a secure, authenticated API to the EMS engine. This interface must
abstract the broker-specific technology, enabling the EMS Engine to configure
a client’s authentication and authorization rules in a standardized manner.

A suggested approach for defining client authentication and authorization policies
is to embed them within the extension fields of the X.509 certificate. The EMS
Engine would generate the certificate signing request (CSR) and issue the certificate
via the PKI management interface. The Security Manager would then extract and
interpret the information contained in the X.509 certificate according to a well-
defined convention, translating it into broker-specific authentication and authorization
rules. Finally, the certificate is delivered to the client. Although this approach
slightly increases the certificate’s size, it ensures that authentication and authorization
information is securely and consistently propagated along with the certificate itself.

SIEM and Log Extraction System [6.x]

The distributed and interconnected nature of energy communities, comprising numer-
ous heterogeneous devices that continuously exchange critical data, necessitates the
implementation of robust monitoring and security mechanisms. The diverse array
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of components involved — such as smart devices, gateways, management systems
and web servers — generates a continuous and voluminous flow of events and logs.
These logs originate from various operational contexts and often differ in format and
semantics, posing challenges for centralized analysis and response.

To effectively manage this complexity, a comprehensive Log Management System
(LMS) is essential. An LMS serves as the foundational layer for collecting, storing
and analyzing log data from disparate sources within the network. Its primary
functions include:

• Log Collection and Aggregation: systematically gathering log data from multi-
ple sources, including smart devices, gateways and other networked components,
to centralize information for analysis.

• Data Normalization: standardizing log data into a consistent format to facilitate
efficient analysis and correlation across heterogeneous systems.

• Storage and Retention: managing the storage of log data in compliance with
organizational policies and regulatory requirements, ensuring data integrity and
availability for auditing purposes.

• Analysis and Correlation: employing analytical tools to identify patterns, detect
anomalies and correlate events across different sources to uncover potential
security incidents or anomalies.

In the context of energy communities, the architecture involves smart devices generat-
ing logs that are collected by smart gateways via MQTT. The gateways process these
logs, pushing critical logs in real-time to the LMS, while less critical information
logs are stored locally and periodically transmitted to the LMS to reduce network
load.

Other components within the network, primarily deployed within the EMS platform,
also generate a wide variety of logs. These are integrated into the LMS, providing a
centralized repository for all log data within the system.

The LMS does not operate in isolation but is cooperation with additional security
mechanisms to enhance overall system security and safety. Integration with a Secu-
rity Information and Event Management [6.b] (SIEM) system allows for advanced
analysis and real-time threat detection by correlating log data with known threat
intelligence. Furthermore, the LMS interfaces with the EMS engine to provide
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contextual information for energy management decisions and supports other network
security mechanisms [6.c] (e.g., IDS/IPS or dynamic firewalls).

This integrated approach ensures a holistic security and safety framework within
energy communities, enabling proactive detection and response to both security
incidents and operational anomalies while maintaining efficiency.

Dashboards and UI [7.x]

This architecture incorporates the web dashboards proposed by Gaggero et al. [10],
integrating them with the components defined in the EMS platform. These dash-
boards include:

• Administrative Dashboard: supports REC managers in handling member data
and administrative operations, such as the enrollment of a new REC member.
Note that this refers only to administrative and legal enrollment; the technical
onboarding is handled by the command and control interface.

• Energy Dashboard: enables real-time energy monitoring and can provide sug-
gestions or request modifications to the REC energy state. For example, a user
may request activation of an EV charging station.

• Financial Overview: supports the financial and economic management of the
REC.

Since these dashboards are exposed externally, it is essential to protect them from
unauthorized access and to isolate them from the rest of the platform to mitigate
potential security vulnerabilities. Interactions between their backend and the REC
database should be mediated through appropriate protection mechanisms, potentially
using a two-tier architecture in which the web server communicates with a service
layer that enforces controlled access to the underlying data.

3.1.3 REC Member architecture

Each REC Member hosts a local ecosystem of devices and software components that
operate in coordination with the wider REC network. The objective of this architec-
ture is to enable local management of energy production, storage and consumption
while maintaining seamless interaction with the central REC backbone.
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The core components deployed at each member’s premises include:

• a local MQTT broker[1],

• the smart gateway[2],

• local data storage for logs and member-specific information,

• the interface to the DSO[3],

• a set of smart controllers[4.a], smart devices[4.b] and energy probes [4.c].
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Fig. 3.3 REC member overview. The numbered labels [n.x] correspond to the components referenced
in the text.

Smart Gateway

The Smart Gateway[2] is a compact hardware device deployed at the premises of
each REC Member. Its primary role is to interconnect the local energy network with
the remote REC platform, while at the same time managing the sub-community of
devices within the member domain.
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From an architectural perspective, the Smart Gateway represents the integration
point of multiple functions:

• it embeds the core REC management logic, enabling local decision-making
aligned with the global control strategy;

• it hosts the local broker, which acts as the internal communication hub for all
devices and controllers;

• it may incorporate additional modules or services required for communication,
monitoring and security.

From a deployment perspective, the Smart Gateway hardware hosts several of the
components highlighted in Figure 3.3, including the local databases, the optional
security storage, the local broker and the gateway logic itself. This co-location of
services within a single device simplifies integration and deployment, while reducing
the number of devices required on the member’s premises.

The local broker[1] is a lightweight MQTT broker instance that enables publish and
subscribe messaging among smart components. It is also connected to the REC
backbone via an MQTT bridge, as detailed in Section 3.1.3. This configuration
ensures structured bidirectional communication with the central broker while pre-
serving isolation of local traffic. Depending on the selected bridging strategy, the
local broker may also handle message forwarding between the member domain and
the central EMS platform and the failover mechanism.

The Smart Gateway’s primary function is to coordinate local energy operations in
accordance with the directives issued by the central decision-making node — the
EMS engine (Section 3.1.2). This includes translating globally scoped controls into
device-specific commands, relaying direct instructions, collecting and processing
device data, and ensuring the secure integration of the member into the broader REC
ecosystem.

Together with the bridging module, the Smart Gateway is also responsible for
detecting failures of the primary bridge link and redirecting communication through
neighboring gateways within the same REC. To guarantee the confidentiality and
integrity of long-range communication, it additionally should provide end-to-end
protection of exchanged data.
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A further essential feature of the Smart Gateway is its ability to autonomously
manage local devices whenever the REC member becomes temporarily isolated from
the community, for instance due to public network unavailability. This functionality
is fundamental to guarantee both safety and availability: the sub-community must
always preserve a stable configuration, even under exceptional conditions such as
natural disasters or other disruptive events.

MQTT bridge implementation

The choice of the MQTT broker, especially for the local broker, is critical for
supporting bridge functionality and the failover mechanism described in Section 3.1.1.
As previously introduced, two brokers are primarily considered in this work for the
local implementation: Mosquitto and NanoMQ.

Neither broker provides a native or robust failover mechanism. Both are capable of
rerouting traffic to a secondary MQTT bridge, but this redirection was not originally
designed with failover semantics in mind.

Since bridge-level and member-level TLS certificates are issued by different certifi-
cation authorities (see Section 3.1.2), the broker must configure two distinct listeners,
one for each CA. Both Mosquitto and NanoMQ support this configuration, but
authorization mechanisms require careful consideration (see Section 3.5.2).

As highlighted in Section 3.1.1, the MQTT bridging mechanism can be implemented
either through ad hoc logic embedded within the gateway or via a dedicated module.
This discussion focuses on the dedicated module approach, although the same
reasoning applies if the functionality is integrated into the smart gateway that provides
greater security guarantees.

The bridging module is responsible for establishing the primary bridge[PB] and for
managing failover when this link becomes unavailable. If deployed close to the smart
gateway logic (either embedded within it or as a service running on the same device),
the bridging module can also act as a security terminator, implementing end-to-end
communication protection (see Section 3.5.3).

The module uses its certificate, issued by the BRIDGECA, to connect to both the local
broker[1.a] and the central broker[1.b]. Its core functionality is straightforward: it
subscribes to the outgoing side of a topic and republishes the messages on the corre-
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Fig. 3.4 Bridging and failover scheme. The labels [L] correspond to the references in the text.

sponding topic of the opposite side. Additional features — such as custom protection
mechanisms, topic mapping or message buffering — can also be implemented.

The failover mechanism relies on a preliminary signaling phase triggered by the
entity detecting the link failure, which may be either the central broker or the
bridging module. Figure 3.4 illustrates the procedure initiated by a member, with a
symmetric process followed when the failure is detected on the central broker side.
The procedure consists of the following steps:

1. The bridging module[2] detects the failure of the primary link.

2. The bridging module broadcasts a signaling message[S.1] to a predefined list of
neighboring modules. This message indicates the failure of the primary link,
provides the identity of the requesting member and lists possible alternative
paths.

3. Neighboring bridging modules forward the signaling message to the central
broker.

4. The central broker receives the signaling message (possibly duplicated due
to broadcasting), selects the failover path and responds with a signaling mes-
sage[S.2]. This message instructs both the member’s bridging module and the
selected intermediary modules to establish the failover bridge link[FOB].
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5. The failover bridge is established and traffic is redirected to it.

When the primary link becomes available again, communication is seamlessly mi-
grated back to it. To prevent abuse, the signaling exchange must implement replay
protection and enforce strong message security, including authentication and, where
appropriate, encryption. From the perspective of an intermediary node, only two
updates are required:

1. the access control configuration of the neighboring local broker[1.c] must be
updated to grant both bridging modules access to the failover channel; this
update is performed by the Security Manager;

2. the bridging module configuration must be extended to create and maintain
the failover bridge; this update is managed by the signaling protocol.

Note: bridging modules are MQTT clients, and therefore cannot exchange messages
directly. If the signaling protocol is implemented over MQTT, it requires a pre-
authorized broadcast channel. Alternatively, it can be deployed over a side channel
using protocols such as WebSocket or another lightweight application protocol. Since
signaling is only required during exceptional scenarios, the overhead introduced by
these mechanisms is minimal and limited to a small number of messages.

DSO interface

The DSO interface[3] acts as an abstraction layer for the standard DSO hardware
installed on the member’s premises. Functionally, it corresponds to the energy meter,
while the interface extends its capabilities by enabling secure communication with
the Smart Gateway through the local broker. In this work, the communication link
between the meter and the DSO is considered out of scope and is assumed to be
inherently secure.

Devices, Controllers and Energy Probes

Within the member premises, both smart and traditional devices coexist. To provide
a uniform abstraction, three categories of smart connectors can be identified:
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• Native smart devices[4.b] — these devices are inherently designed for connec-
tivity and remote control. In practice, some implementations may require a
lightweight interface to connect with the local broker. However, MQTT support
is widely available across most modern smart devices.

• Smart controllers[4.a] — these units transform traditional devices into smart
ones, enabling both remote control and monitoring (i.e., data acquisition).

• Energy probes[4.c] — when a traditional device does not support or does not
require remote control, energy probes allow the acquisition of consumption
metrics. They serve purely for monitoring purposes.

This categorization is based on the operational role of devices within the REC
ecosystem. A more detailed analysis is provided in Section 3.3.

Having outlined the framework architecture and its main components, the next step
is to relate this design to the practices and guidelines presented in Section 1.2.4.
Although these practices served as the conceptual foundation of the framework,
they are introduced here after the architecture, so that the mapping between abstract
principles and concrete design choices can be followed more clearly.

3.2 Practice and guidelines mapping

The practices and guidelines proposed by Gaggero et al. [10] and discussed in
Section 1.2.4 are now systematically mapped onto the architectural elements and
protocol features described in the previous section.

A. Segmentation and Perimeter Defense

1. Dedicated sub-network for prosumer control devices: the proposed architec-
ture relies on large-scale public connectivity. Providing a physically dedicated
sub-network for control devices would require an unsustainable deployment
effort. Instead, the adopted solution introduces logical-level isolation, which
is enforced at two levels:
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• Between the external world and the REC network, through a TLS-
enforced MQTT network.

• Between each local member network and the global REC network,
through a two-layer MQTT broker hierarchy and the MQTT bridge back-
bone (see Section 3.1.1). Segmentation is further reinforced at the TLS
level using the PKI (see Section 3.1.2).

2. Limit wireless communication: the proposed architecture does not prescribe
any specific physical-level connectivity. Instead, it addresses network parti-
tioning at two levels: link failures on the MQTT backbone (see Section 3.1.3)
and local link failures between devices and their local broker (see Section 3.3).

3. Firewalling: firewalls play a critical role in the architecture. Even though they
are not explicitly depicted in the diagrams, every component must implement
network protection strategies:

• EMS platform components must integrate firewalls and IDS/IPS solutions,
in line with the architecture proposed by Gaggero et al., as illustrated in
Figure 1.3.

• The device (or set of devices) hosting the smart gateway, local broker and,
if present, the bridging module, must be exposed to the public network
only behind a firewall. Any connection attempts from entities other
than the central broker, security manager or pre-authorized neighboring
bridging modules must be blocked.

B. Communication Security

1-2. Mutual authentication between smart gateways and the EMS platform
and end-to-end encryption: by default, the proposed architecture ensures
mutual authentication and payload encryption on each individual MQTT link
through the TLS protocol. Two deployment scenarios must be distinguished:

• Without failover: mutual authentication and end-to-end encryption re-
quirements may be considered satisfied by TLS. Data are encrypted
between the bridging component in use (built-in, embedded in the gate-
way or handled by a dedicated module; see Section 3.1.3) and the central
broker, with both peers mutually authenticated.
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• With failover: the TLS layer provides mutual authentication and encryp-
tion only on a per-link basis. The failover bridge[FOB] spans two or three
distinct TLS segments, depending on the chosen bridging strategy. Re-
ferring to Figure 3.4, the three-segment case includes: (i) the member’s
bridging module to the neighbor’s local broker, (ii) the neighbor’s local
broker to the neighbor’s bridging module, and (iii) the neighbor’s bridg-
ing module to the central broker. Since TLS cannot ensure end-to-end
security across multiple segments, this scenario requires an additional
mechanism that applies end-to-end protection at the MQTT payload level.

Section 3.5 discusses security-related concerns in more detail.

3. Authentication on the web server: authentication of both external and inter-
nal web interfaces follows a standard pattern commonly adopted in modern
architectures. Section 3.1.2 analyzes the Security Manager and introduces an
authentication and authorization mechanism based on IAM and OAuth2.

C. Host Security

The EMS platform is designed as a microservice-based architecture, which enables
a high level of decoupling between services. The separation of control and user
functionalities (1) is achieved through compartmentalization, with each function
encapsulated into dedicated services that interact via well-defined interfaces (APIs
or intermediary services).

Each microservice can be deployed either on customer-premises physical machines
or in a cloud environment. Both deployment models support network segmentation
and the implementation of a DMZ (2).

Segmentation is organized into three main domains:

• An isolated internal network hosting the central broker, the security manager,
PKI management APIs and the EMS engine.

• An internal, human-accessible network hosting the log management system and
the command & control interface, available only through dedicated operator
terminals.

• An externally exposed network providing dashboards accessible to authenticated
users.
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The MQTT network provides unidirectional channels for both data acquisition
(device → gateway → EMS engine) and remote control (EMS engine → gateway
→ device). Read/write capabilities on these channels are strictly regulated by the
authentication and authorization mechanisms of the architecture, enforcing a logical
restriction on the control network (3).

Secure software development for smart gateways (4) is delegated to the final product
developers. Implementations must rely on a proper MQTT client library and ensure
full support for all required features (see Sections 3.4 and 3.5).

D. Cybersecurity Monitoring

The EMS platform includes a log management system (see Section 3.1.2) responsible
for collecting, storing and analyzing logs generated by the various devices. This
system is integrated with a SIEM for security-related events and interacts with the
EMS engine to enable rapid responses to operational anomalies.

3.3 Smart and traditional devices abstraction

The Energy Communities ecosystem comprises a heterogeneous landscape of devices
located within member premises. The specific nature, capabilities and implementa-
tion details of these devices fall beyond the scope of this work.

The platform must therefore accommodate this heterogeneity, where smart and
traditional devices not only must coexist, but in many cases already do. Some
devices are natively equipped with smart capabilities and may expose an MQTT-
compatible interface, over which the communication model guidelines can be directly
applied. Others may expose different interfaces, requiring adapters in order to be
integrated into the ecosystem. Furthermore, the platform must be able to interoperate
with a wide range of traditional devices that are already deployed or lack smart
capabilities, relying on ad hoc interfaces for monitoring and, where possible, control.

Such devices may include brand-new commercial products, legacy products adapted
by the manufacturer or devices integrated through third-party solutions.

To establish a baseline, this work categorizes devices, as introduced in Section 3.1.3,
into three groups:
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• native smart devices,

• smart controllers interfacing with controllable traditional devices,

• energy probes connecting to passive traditional devices.

This classification reflects the intrinsic nature and capabilities of the devices.

Independently of this categorization, all devices must implement the communication
model described in Section 3.4 and comply with the security requirements specified
by the security model in Section 3.5.

From an operational perspective, devices fall into three main superclasses which
define the operations they can perform and the data they are expected to share:

• Generators: devices capable of producing and supplying energy. They are
regarded as pure producers. In addition to standard logs, diagnostic information
and state data, they provide metrics related to their energy production.

• Loads: devices that consume energy. They are regarded as pure consumers.
Alongside logs, diagnostic information and state data, they provide metrics on
their energy consumption. This abstraction covers both proactive (controllable)
and passive (non-controllable) devices. In both cases, devices must behave
deterministically and predictably: controllable devices must react consistently
to valid commands, while non-controllable devices must reject any command
with an appropriate error notification, without leading to crashes or undefined
behaviors.

• Accumulators: devices designed to store energy. They can operate both as
generators and as loads. In addition to logs, diagnostic information, and state
data, they provide metrics describing the battery’s status and the amount of
energy absorbed or delivered, depending on whether they are in charging or
discharging mode.

Network partitioning and device isolation

In the proposed REC architecture (see Section 3.1.3), devices connect to the local
broker via network links that may vary in nature and reliability. Wired connections,
e.g. IEEE 802.3 (Ethernet) or power-line communications (PLC), are generally
preferred, as they provide greater stability, resilience, isolation and security. However,
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for practical reasons or contextual constraints, wireless connections - such as IEEE
802.11 (WiFi), or low-power technologies - may be used to implement the links,
increasing the risk of disconnection due to environmental or malicious interference.

MQTT-SN (MQTT for Sensor Network) is a variant of MQTT designed for devices
relying on non-IP/non-TCP network stacks, such as IEEE 802.15.4 - ZigBee, XBee,
and Bluetooth Low Energy - BLE. The design of the proposed architecture concen-
trates on standard MQTT over TCP/IP, the adoption of MQTT-SN represents an
interesting case study and a potential extension of the framework.

Given the instability of wireless links, devices must be able to handle temporary
isolation from the broker—and, by extension, from the wider network. Each device
should therefore maintain a consistent and reliable local state, ensuring that its oper-
ation remains safe and autonomous. This requirement prevents disconnections from
leading to failures or anomalous behaviors that could harm the overall performance
or stability of the energy community.

3.4 Communication model — Protocol and Conven-
tions

The framework adopts a communication model structured around MQTT topics,
which encompasses both monitoring and control data flows. Four high-level cate-
gories of data flows have been identified:

• Device and Gateway Status Signaling,

• Energy Metrics,

• Logs Propagation and Extraction,

• Member and Device Remote Control.

Each data flow is mapped on a specific MQTT topic or pattern convention. This
approach also improve model extensibility: a new data flow can be added simply by
introducing a new convention.

The devices should connect to the broker with the Clean Session flag set to false.
This instructs the broker to establish a stateful connection, maintaining the client’s
subscriptions and storing QoS 1 and QoS 2 messages directed to the device. Although
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this introduces some overhead on the local broker, it ensures that control messages
are not lost during short-lived disconnections.

3.4.1 Device and Gateway Status Signaling

The status signaling convention is designed to provide an early alert mechanism for
both operational and infrastructural status changes. It is composed of three MQTT
topics:

1. the status flag,

2. the status information channel,

3. the diagnostic information channel.

1. Status Flag

The status flag indicates the state of the MQTT connection between a client and its
broker. By convention, a device should publish the value online immediately after
a successful connection and offline just before disconnecting.

Messages must be published with the RETAIN flag enabled and a QoS level 1 or
higher. This guarantee that the status flag remains available on the topic after the
initial delivery and that subscribers receive the message reliably.

In addition, devices should register a Last Will and Testament (LWT) message with
the value offline on the flag topic during connection setup. This mechanism
guarantees that, if the client disconnect abruptly (e.g., crash or network failure), the
broker automatically updates the status flag, enabling control logic to detect and
react to the failure.

The topic conventions1 are defined as follows:

• Devices publish to the local broker on the topic:
/device/<device-id>/status

• Smart gateways publish to the local broker on the topic:
/smart-gateway/status

1If the bridge functionalities are embedded within the smart gateway, the smart gateway status convention is slightly
different, the flag can be directly published on both brokers.
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• Bridge clients publish to both the local broker and the central broker respectively
on the topic:

/bridge/status
/<rec-id>/<member-id>/bridge/status

• The local flag information are automatically propagated to the central broker by
the bridge:

• from /device/<device-id>/status
to /<rec-id>/<member-id>/device/<device-id>/status

• from /smart-gateway/status
to /<rec-id>/<member-id>/smart-gateway/status

2. Status Information

The status information channel serves as an additional channel for clients to provide
additional details regarding status changes or operational sub-states.

Devices may use this channel to communicate information such as:

• the reason for a voluntary disconnection (before disconnecting),

• details of an involuntary disconnection,

• information about connection retries (after reconnection),

• other relevant status details.

The semantics of this channel can be extended; however, the convention recommends
avoiding the use of this channel for issues related to energy-related operational status.

Similar to the status flag, messages on this channel should be published with the
RETAIN flag enabled and a QoS level of 1 or higher, to guarantee persistence and
reliable delivery. Since the information published may lose relevance over time, de-
vices must include temporal metadata or explicitly clear outdated data by publishing
an empty message with the RETAIN flag set.

The topic conventions adopt the same structure as the status flag, with messages
published under the sub-topic /<...>/status/info.
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3. Diagnostic Information

The diagnostic information channel is intended for retrieving diagnostic and system-
related data. Devices publish messages on this topic in response to specific commands
or events. Due to the critical nature of the information, messages on this channel
must be published with a QoS level of 1 or higher and the RETAIN flag must never
be set.

The specific content of the messages is defined case-by-case, depending on the
physical device and the deployment context. The convention recommends using
this channel for system information, such as software version, memory state (and
optionally memory hashes), CPU state and other relevant diagnostic metrics.

This channel is automatically propagated from the local broker to the central broker
via the bridge mechanism; smart gateways do not need to access this information.

The diagnostic procedure is triggered by two types of events:

• A direct, authenticated diagnostic command issued by the EMS engine.

• Following an update or reset of the device, such as during an OTA update
procedure (if applicable).

The topic conventions are defined as follows:

• Devices publish to the local broker on the topic:
/device/<device-id>/diagnostic

bridged to
/<rec-id>/<member-id>/device/<device-id>/diagnostic

• Smart gateways publish to the local broker on the topic:
/smart-gateway/diagnostic

bridged to
/<rec-id>/<member-id>/smart-gateway/diagnostic

• Bridge clients publish to the central broker on the topic:
/<rec-id>/<member-id>/bridge/diagnostic
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3.4.2 Energy Metrics

The energy metrics convention provides a guideline for the standardized sharing of
energy-related information. The model is based on two distinct data exchanges:

• the device → smart gateway data flow,

• the smart gateway → EMS platform data flow.

This channel is used to propagate energy production, consumption and accumulation
metrics from devices, through the smart gateway, up to the EMS engine enabling
informed decision-making.

Devices share information with the smart gateway via the local broker. The smart
gateway aggregates and processes this information, enabling local decision-making,
and then publishes the relevant energy state of the member to the EMS engine through
the bridge and central broker. The exact choice of metrics and the appropriate level
of detail are determined by domain experts.

The convention prescribes the following topic hierarchy for organizing metrics:

• Devices publish to the local broker on the topic:
/device/<device-id>/metrics/#

• Smart gateways subscribe to:
/device/+/metrics/#
to receive metrics from all devices.

• Smart gateways publish to the local broker on the topic:
/platform/metrics/#
bridged to:
/<rec-id>/<member-id>/metrics/#

3.4.3 Logs Propagation and Extraction

Section 3.1.2 highlighted the need to deploy a Log Management System (LMS)
integrated with security components and the EMS engine. The communication
model integrates the LMS with the MQTT functionalities.

The proposed architecture relies on MQTT to collect the logs from each member
device to the smart gateway. The smart gateway is responsible to store locally the
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logs (i.e. maintain a database where these logs are stored) and forward them to the
LMS on the remote platform.

The smart gateway can be considered a less-constrained device with respect to
the other member devices and it is already exposed to the public network. Log
propagation to the EMS platform can be performed using the MQTT network or
other solutions. To avoid overloading the MQTT network, this solution analyze
non-MQTT alternatives, relying eventually on the LMS-specific features.

A implementation-agnostic solution deploys a parallel message broker — oriented to
event processing (i.e. Apache Kafka) — on the EMS platform. The smart gateway
connects to it pushing the logs, then the LMS consumes them. This approach com-
pletely decouples the gateway and LMS implementations but requires the deplyoment
of an additional message broker on the EMS platform.

Alternatively, log collection can rely on LMS-specific mechanisms. For example,
Splunk provides a lightweight agent — the Universal Forwarder — or an agent-
less option over HTTP(s), both secured with mTLS. Similarly, the ELK stack and
Graylog2 support both gateway-based agents and agent-less configurations.

The communication model addresses the collection of logs from member devices
through the local MQTT network. Each smart device should implement a logger
capable of publishing the log message on MQTT topics, optionally mirroring local
log solution (e.g. file based). The model recommends to maintain small log buffer on
the device to handle temporary disconnections and facilitates auditing after incidents.

The convention prescribes the following topic hierarchy for organizing logs:

• Devices publish to the local broker on the topic:
/device/<device-id>/log/<level>

• Smart gateways subscribe to:
/device/+/log/+
to receive the logs from all devices.

Log levels should be standardized. A suggested hierarchy is:

1. DEBUG — Troubleshooting and debugging, collected only within the member
if enabled for maintenance or deployment phases.
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2. INFO — General information, collected by the gateway and forwarded asyn-
chronously to the LMS.

3. WARN — Low-importance anomalies, collected and processed by the gateway.
Logs of this level are downgraded to INFO if resolved locally, otherwise
upgraded to ERROR.

4. ERROR and CRITICAL — Medium- and high-importance anomalies, collected
by the gateway and forwarded in real-time to the LMS.

5. FATAL — Critical anomalies causing operational interruption, collected by the
gateway and forwarded in real-time to the LMS.

3.4.4 Member and Device Remote Control

The remote control scheme is based on the exchange of messages — commands
and command acknowledgments — over the MQTT network. Three representative
scenarios are identified:

1. The EMS platform issues commands to control the behavior of an entire
member.

2. The EMS platform issues commands targeting a specific device within a
member’s ecosystem.

3. The smart gateway issues commands to one of its member’s devices.

Scenarios (2) and (3) can be considered as specializations of scenario (1). Conse-
quently, the first scenario is analyzed in detail, while the other two are discussed as
its variations.

Remote Control Procedure

The control convention defines an acknowledged command exchange based on
two topics allowing the EMS engine to issue member level controls[1] to the smart
gateway, which are processed and translated in opportune device level commands[2],
then sent to the specific device. Upon receiving a command and executing the
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requested action, devices respond to the smart gateway with a command response[3].
The smart gateway aggregates all the command responses and produces a member-
level control response[4].

Both member-level and device-level command responses are subject to timeouts to
avoid the sender to wait indefinitely for missing acknowledgments. The timeout
values must be carefully configured: tight timeouts may break network latency and
operational constraints, while bigger values may delay reaction times and retard the
platform’s ability to respond promptly to critical events.

EMS Engine Gateway Device 1 Device 2

[1]

Process the

command

Execute the

command

Execute the

command

Process the

responses

© Lorenzo Sebastiano Mathis, CINI

[2]

[2]

[3]

[4]

Fig. 3.5 Message Sequence Chart for Member Remote Control
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This message exchange is mapped onto specific MQTT topics as follows:

• The EMS platform publishes the member level controls on the central broker to
the topic:

/<rec-id>/<member-id>/control
bridged to:

/platform/control

• Smart gateways subscribe on the local broker to the topic:
/platform/control

to receive controls from the platform.

• Smart gateways publish the device level commands on the local broker to the
topic:

/device/<device-id>/control

• Devices subscribe on the local broker to the topic:
/device/<device-id>/control

to receive commands from the smart gateway.

• Devices publish the command responses on the local broker to the topic:
/device/<device-id>/control/response

• Smart gateways subscribe on the local broker to:
/device/+/control/response

to receive command responses from the devices.

• Smart gateways publish on the local broker to the topic:
/platform/control/response

bridged to:
/<rec-id>/<member-id>/control/response

• The EMS platform subscribes to:
/+/+/control/response

to receive control responses from the smart gateways.

Scenario (2) represents a specialization of the general control scheme. In this case,
the EMS engine, within the member-level control[1], specifies low-level operations
that must be executed by a particular device in the member ecosystem. The overall
message exchange remains unchanged; however, the smart gateway simply adapts
the control message and forwards it to the designated device.
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Scenario (3) can be represented by excluding the EMS engine from the exchange.
Here, the smart gateway issues a command directly to one of its devices by specifying
a device-level command[2]. Devices respond to the smart gateway in the usual
manner, but in this case the response propagation terminates at the smart gateway
and is not forwarded to the EMS platform.

Member and Devices Control Protocol

The following protocol describes, step by step, the exchanges between the parties
and defines a JSON-like message format to support the remote control procedure
presented in Section 3.4.4.

The protocol relies on four message types:

• member control message[1] — the member-level control,

• device control message[2] — the device-level command,

• device control response[3] — the device’s response to a command,

• member control response[4] — the gateway’s response to a control.

The responses indicate to the message issuer the status of the processing at each
stage.

The protocol proceeds as follows:

1. The EMS engine constructs a member control message.

2. The EMS engine publishes[1] the member control message to the central
broker to:

/<rec-id>/<member-id>/control
and, via the bridge, to:

/platform/control
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Fig. 3.6 Message Sequence Chart for Member and Devices Control Protocol

3. The smart gateway receives and validates the member control message,
then publishes[2] a member control response with status RECEIVED to:

/platform/control/response

4. The smart gateway translates the member control message into one or more
device control messages and records them in its local command log.

5. The smart gateway publishes[3] a member control response with status
EXECUTING to:

/platform/control/response
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and sends[4] the device control messages to the respective devices topic:
/device/<device-id>/control

6. Each device receives and validates the device control message, then pub-
lishes[5] a device control response with status RECEIVED to:

/device/<device-id>/control/response
The smart gateway updates its local command log with the new status.

7. Each device executes the requested operation and, then, publishes[6] a device
control response with status COMPLETED or FAILED to:

/device/<device-id>/control/response

8. The smart gateway waits for all device control messages to complete, or
for their timeout to expire. If any command ends with FAILED, the gateway
applies its retry strategy.

9. After processing all commands, the smart gateway aggregates the individ-
ual device control message outcomes into a single member control
response and publishes[7] it to:

/platform/control/response
and, via the bridge, to:

/<rec-id>/<member-id>/control

10. The EMS engine waits for the final member control response, or for its
timeout to expire. If the received status is COMPLETED, the operation was
successful; otherwise, the EMS engine reacts accordingly.
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Message format and structure

1 {
2 "control_id": UUID ,
3 "target": {
4 "member_id": string ,
5 "device_ids": [string]
6 },
7 "type": string ,
8 "intent": "idempotent" | "non -idempotent",
9 "params": object ,

10 "issued_by": string ,
11 "issued_at": timestamp ,
12 "expire_at": timestamp ,
13 "sequence": int ,
14 "retry_policy": {
15 "max_retries": int ,
16 "backoff": {
17 "initial": int ,
18 "exponential": bool
19 }
20 }
21 // authentication data
22 }

Listing 1 — member command message JSON-like format.

1 {
2 "control_id": UUID ,
3 "command_id": UUID
4 "device_id": string ,
5 "type": string ,
6 "params": object ,
7 "issued_by": string ,
8 "issued_at": timestamp ,
9 "expire_at": timestamp ,

10 "sequence": int ,
11 // authentication data
12 }

Listing 2 — device command message JSON-like format.
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1 {
2 "command_id": UUID ,
3 "device_id": string ,
4 "status": "RECEIVED" | "EXECUTING" | "COMPLETED" |

"FAILED",
5 "exit_code": int ,
6 "issued_at": timestamp ,
7 "details": object | string
8 // authentication data
9 }

Listing 3 — member command response JSON-like format.

1 {
2 "control_id": UUID ,
3 "gateway_id": string ,
4 "status": "RECEIVED" | "EXECUTING" | "SUCCESS" |

"PARTIAL" | "FAILED",
5 "details": {
6 "general": string | null ,
7 "per_device": [
8 {
9 "device_id": string ,

10 "status": "SUCCESS" | "FAILED",
11 "exit_code": int ,
12 "details": object | string ,
13 "executed_at": timestamp
14 },
15 // ...
16 ]
17 },
18 "issued_at": timestamp ,
19 // authentication data
20 }

Listing 4 — device command response JSON-like format.
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Controls and Commands

The communication model developed in this work places its main emphasis on the
infrastructural, communication and security layers of RECs. The precise set of
controls and commands to manage a REC are not addressed here and should be
determinate by domain experts.

The model explicitly introduces only a single command, the diagnostic command.
The semantic and technical details of this command are described in Section 3.4.4.

In the proposed protocol, the terminology distinguishes between two types of mes-
sages: those issued by the EMS engine, referred to as controls, and those sent by the
smart gateway, referred to as commands. This distinction is intended to underline
the different logical scopes at which they operate:

• EMS engine controls: these are typically directed to REC and REC member
scopes, providing controls on that level, such as increasing energy produc-
tion, reducing network load or preparing for specific operating conditions (for
instance, if a period of cloudy or rainy weather is expected, solar power pro-
duction may be temporarily increased to charge the accumulators in advance).
There are also cases where the EMS engine needs to address a single device
directly (e.g., activating an electric vehicle charging station, causing a localized
consumption peak); such interactions are supported by the protocol.

• Smart gateway commands: these operate on the member’s devices, providing
commands such as switching off a specific device, enabling energy generation
on an individual photovoltaic unit or setting a given accumulator to discharge
mode. They may be issued as a consequence of local decision-making or derived
by a member-level control.

Diagnostic Command

The diagnostic command is a special control issued exclusively by the EMS engine
specifying the device. The command is used to initiate the diagnostic procedure and
obtaining, through the diagnostic information channel (see Section 3.4.1), low level
system state diagnostic information (software versions, firmware version and hash,
memory maps, CPU snapshots, etc).
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Given the highly sensitive nature of data published by the device in response to this
command. Data authentication must be increased, also considering as untrusted
the smart gateway. The command payload must be extended to include end-to-end
authentication and integrity from the EMS engine to the end device. Each smart
device, smart controller or energy probe should be able to handle this command
providing the capability of verifying the authenticity of the command: it must be
signed by the EMS engine.

3.5 Security model — Authentication, Authorization
and Encryption

This section analyses the core security mechanisms of the proposed framework. The
design chooses Transport Layer Security (TLS) as the baseline protection for all
communication links. This choice is supported by three main considerations:

• TLS provides strong, well-tested security features and is the de facto standard
for securing TCP-based communication.

• It is supported by the majority of devices operating over the TCP/IP stack.

• It is natively integrated with the MQTT specification and is supported by most
of all MQTT brokers.

At this point, a brief digression is warranted to clarify the applicability of TLS to
highly constrained devices. In Section 3.3, the possible use of UDP instead of TCP
or even non-IP network stacks, has been discussed, with reference to the MQTT-SN
protocol. However, its applicability within this framework is not straightforward and
would require dedicated extensions. Since TLS is not included in its specification, the
adoption of such protocols necessarily implies the design of alternative mechanisms
capable of ensuring an equivalent level of security.

Furthermore, as highlighted from multiple perspectives, there are communication
paths where TLS alone does not provide sufficient protection. In particular, the link
between the EMS platform and the Smart Gateway — especially when failover paths
are enabled — requires stronger guarantees: an end-to-end encryption mechanism is
included at application layer to ensure confidentiality and integrity beyond individual
communication hops.
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3.5.1 Mutual Authentication

Since the REC scenario uses MQTT only for machine-to-machine (M2M) communi-
cation, mutual authentication becomes a primary security requirement, as both the
client and the broker must be able to prove their identity before any data is exchanged.
Otherwise, an attacker could impersonate either the client or the broker, gaining
unauthorized access the REC data and remote control exchanges.

MQTT offers different authentication mechanisms: the simplest method relies on
including client username and password in the CONNECT message; while, the more
robust mechanisms employ Transport Layer Security (TLS) and mutual TLS (mTLS)
with X.509 certificates.

Username and password method transmits the credentials in plain text within the
CONNECT message, providing only client authentication. Even leaving aside the
security risks associated with this kind of credentials, this approach does not provide
server authentication and exposes sensitive information over the network. Conse-
quently, this mechanism sill requires the usage of TLS to authenticate the broker and
protect the transmission of credentials.

However, password-based authentication suffers from well-known limitations, in-
cluding the secure password storage and rotation challenges, and the vulnerability
to brute-force attacks. As consequence of this issues and considering that TLS is
required anyway, the transition to mutual TLS (mTLS) results as a natural evolution:
offering robust, bidirectional authentication through the use of X.509 certificates.

Securing REC communications with mTLS

The framework adopts mTLS as principal security mechanism which provides mutual
authentication, per-link encryption and a solid base over which authorization and
access control can be enforced.

The network is segmented in various authentication domains, each one served by a
dedicated certification authority (see. Section 3.1.2). The MQTT brokers indulge
the segmentation providing a dedicated listener for each network segment, accepting
connections only from clients providing a valid X.509 certificate issued by the
competent certification authority.
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The client identity is derived from the Common Name and, possibly, other infor-
mation specified inside the certificate. The access control mechanism described in
Section 3.5.2 relies on this information, considering them as trusted.

All broker implementations considered in this work — Mosquitto and NanoMQ
for local brokers, and VerneMQ and EMQ X for the central broker — support
the configuration of multiple listeners, each associated with its own certification
authority, and can extract the client identity from the presented X.509 certificate.

Authentication using TLS/PSK

TLS-PSK is an alternative authentication mechanism supported by the TLS protocol,
based on pre-shared symmetric keys. This approach should be considered only for
devices that are unable to manage X.509 certificates.

While the framework does not include TLS-PSK by default, its integration can be
contemplated in environments where it is strictly required. In such cases, TLS-PSK
should be regarded as a fallback option, used only when no other authentication
method is feasible.

This approach has several security and operational limitations:

• Pre-shared keys must be securely delivered to and stored on the device.

• According with the constrained nature of the client, key rotation and secure
delivery over an online channel are generally impractical, often requiring out-
of-band distribution (e.g., physical delivery with a defined update procedure).

• Not all brokers support TLS-PSK, and some others may require a dedicated
listener for this authentication mode.

Mosquitto supports TLS-PSK but does not allow it to be mixed with X.509-based
mTLS and requires a separate listener. PSKs and the corresponding identities are
stored in the same password file used for password-based MQTT authentication;
however, unlike passwords that can be hashed, PSKs must be stored in plain text or,
ideally, in encrypted storage — a feature that Mosquitto does not provide.

NanoMQ does not support TLS-PSK. For brokers lacking native support, a proxy
can be deployed to provide TLS termination in front of a dedicated plain listener.
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However, separating who performs authentication from the one handling the commu-
nication protocol introduces significant security risks and must be carefully managed.

In conclusion, TLS-PSK mechanism can be considered in scenarios with highly
constrained operational environments. Its use cannot be standardized across the
various implementations and may introduce serious security vulnerabilities. Its
adoption is strongly discouraged except as a last-resort fallback.

3.5.2 Authorization and Access Control

Within a set of authenticated users, the authorization mechanism enforces access
control by defining the set of actions (permissions) that a client can perform at the
topic or pattern level.

A first layer of authorization is provided by TLS. The compartmentalization of
network segments into different authority domains allows the broker to reject TLS
connections, without arriving to the access control level, from clients that belong to
the REC ecosystem but are only authorized to communicate with a different listener
(e.g., bridge side vs. internal side) or with a different broker (e.g., isolation between
members).

Each MQTT broker considered in this work provides heterogeneous authorization
mechanisms. The proposed solutions differ in both their approach and the amount of
information that can be used to identify the client.

The discussion begins with the common aspects of topic-based authorization. Re-
gardless of the implementation, access control consists of binding a client’s identity
to:

• a topic filter — a specific topic or a pattern containing wildcards and, possibly,
parameters; and

• a permission — i.e., read or write.

The basic mechanism to implement access control in an MQTT broker is the defini-
tion of one or more ACL files. Many brokers also support per-listener ACLs. In the
context of this framework, this approach presents several security and operational
limitations:
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1. Access control information is stored without strong protection on the filesys-
tem.

2. Updating the configuration requires file modification, that complicates central-
ized management by the Security Manager.

3. Some brokers, such as Mosquitto, require a service restart to reload the ACLs.

To address these limitations, three principal approaches have been identified:

MQTT-based access control configuration

This approach relies on the MQTT protocol itself to configure access control through
the existing communication network. It does not require additional services or
dedicated storage: the Security Manager uses special topics to remotely configure
broker ACLs. Access to these topics must be pre-authorized and restricted to the
manager client, which should connect directly to the broker to avoid interference
from intermediary nodes in the bridged path.

The reference implementation is the Mosquitto Dynamic Security Plugin [7], avail-
able in Mosquitto v2.0+. This plugin eliminates the need to restart the broker when
updating security configurations, enabling dynamic user and ACL management
during runtime.

The configuration is stored in a JSON file. At present, this file is stored in plain text
at a configurable path in the filesystem, meaning limitation (1) is not resolved. Since
the plugin is open source, integration with OpenSSL or similar libraries is feasible
and could be considered in the future.

The key concepts of Dynamic Security are clients, roles and groups:

• Role: a set of ACLs identified by the rolename attribute.

• Client: any entity able to connect to the broker and perform operations. Each
client is identified by its username, as provided in the CONNECT packet, or, if
TLS is enabled and configured, by the Common Name. Optionally, a client may
include a password; when TLS is enabled this can be empty. The clientid
may also be used to prevent multiple connections with the same credentials.
Each client maintains its own list of roles and groups.
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• Group: a set of clients that share a common subset of roles, identified by the
groupname.

Each ACL represents a single permission and consists of the acltype (permission
type), the topic, a priority value and the allow value (allow or deny). Supported
permissions include:

• publishClientSend — allows the entity to publish on the topic or pattern.
Default: deny.

• publishClientReceive — allows the entity to receive published messages
on the topic or pattern. Default: deny.

• subscribe — allows the entity to subscribe to the topic or pattern. Default:
deny.

• unsubscribe — allows the entity to unsubscribe from the topic or pattern.
Default: allow.

The publishClientSend permission defines the capability of a client to send a
PUBLISH packet to the broker, i.e., to send application data on a topic.
The publishClientReceive and subscribe permissions relate to the client’s abil-
ity to receive data from a topic. Their semantics overlap: the first grants permission
to receive a PUBLISH packet, while the second allows the client to send a SUBSCRIBE
packet. To effectively receive data from a topic, both permissions must be granted.
The unsubscribe permission defines the capability of a client to send an UNSUBSCRIBE
packet to the broker.

The subscribe and unsubscribe permissions are further divided into four sub-
types: subscribeLiteral, subscribePattern, unsubscribeLiteral and
unsubscribePattern. The -Literal types enforce literal matching between the
ACL-defined topic filter and the one present in the packet, while the -Pattern types
allow wildcard-based pattern matching.

The Dynamic Security Plugin satisfies most authentication and authorization require-
ments defined by the framework, with one exception: it does not support per-listener
configuration. This creates a potential vulnerability: an attacker compromising one
certification authority could forge a certificate with a Common Name that collides
with ACLs intended for another CA’s listener. For example, a malicious certificate
with the bridge’s Common Name could gain the same permissions as the bridge,
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bypassing the smart gateway. Similarly, if the plugin is used on the central broker,
a malicious bridge certificate could obtain EMS engine permissions, resulting in a
severe access control breach.

In the framework scenario, (1) the CA and signing service are located in the EMS
platform, completely isolated from the external world, and (2) the assignment of
Common Names is controlled by the EMS engine or Security Manager, without
device involvement. The described attack becomes realistic only if the CA or signing
service is compromised, or if weak keys or algorithms are used — all of which
would break the entire PKI. The recommendation is to adopt a standardized format
for Common Names, e.g.:

• rec_<rec_id>_<member_id>_<device_id>,

• bridge_<rec_id>_<member_id>, or

• ems_<service_id>.

HTTP-based access control

This approach delegates access control decisions to an external service that allows
or denies client operations via HTTP requests. If the service does not reside on the
same host (requests only on localhost), communication must be protected with
TLS.

When supported, this mechanism is suitable for both central and local broker de-
ployments. For the central broker, the HTTP endpoints can be integrated into the
Security Manager or exposed by a dedicated middleware service.

For local brokers, it is recommended to host a dedicated REST API within the smart
gateway, alongside the broker. This reduces network overhead, delays and mitigate
network disconnections. The Security Manager can then push configuration updates
through a secure HTTPS endpoint.

The REST API design includes a small set of HTTP endpoints accessible only from
localhost, and one external HTTPS endpoint where the Security Manager pushes
updates, all the endpoint should implement authentication and authorization. Local
configurations can be stored in lightweight databases such as SQLite and in-memory
caching can be used to reduce the database accesses.
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This solution is supported by NanoMQ and EMQ X and is suggested as the primary
authorization (and potentially authentication) mechanism for NanoMQ [15].

NanoMQ requires two endpoints: one for authentication and one for ACL requests.
For authentication, the broker can provide a subset of information, including client
ID, username, password, IP address, protocol, port, Common Name and subject.
Particularly relevant to this framework are the port (to identify the listener), and the
Common Name and subject from the X.509 certificate (to retrieve client identity).
For authorization, the broker shares client ID, username, access type, IP address,
protocol, topic and mountpoint. Authorization is based on the topic, access type and
client ID, while the mountpoint can be used to identify the network segment (e.g.,
EMS internal, bridge, or local member network).

Database-backed access control

This approach stores ACL configuration in a database and relies on the broker
querying the database whenever a client needs authorization. Both communication
and database access must be protected, with write permissions restricted to the
Security Manager.

Each broker supports specific DBMS options (e.g., MySQL, MongoDB, PostgreSQL,
Redis). The broker queries predefined tables to retrieve ACLs.

This solution is supported by EMQ X and VerneMQ and is primarily recommended
for implementing authorization at the central broker. The DBMS can either be a
stand-alone deployment within the EMS platform or integrated into the Security
Manager.

Using this approach on smart gateways is heavier than the HTTP-based solution.
If the HTTP microservice implements effective in-memory caching, it can provide
faster responses while relying on lightweight databases such as SQLite.

EMQ X provides a table-based structure where each database entry corresponds
to a specific action on a topic filter, identified by an ID and indexed by user-
name. VerneMQ, instead, offers per-user ACLs, each record identified by the triplet
(mountpoint, clientid, username), containing both publish and subscribe ACLs.

EMQ X allows mapping the username to the common name, the subject or even
the entire certificate (comprehensive but quite large). VerneMQ, however, only
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supports mapping the username to the Common Name, mountpoints can be used to
enforce isolation in such cases. If improperly handled, the limited support to X.509
information mapping may lead to security risk caused by possible collisions between
clients with certificates with the same Common Name, but issued by different CAs.

Access control rules convention

The proposed communication model defines structured communication channels
mapped to specific topic patterns. Each pattern represents a unidirectional data flow,
with exactly one producer and one consumer. The producer requires only write
permissions (publish action), while the consumer requires only read permissions
(subscribe action, and possibly publishClientReceive).

Topic structures follow a hierarchical scheme:

• The EMS platform identifies channels to a specific REC member using the
prefix: /<rec-id>/<member-id>.

• The Smart Gateway identifies channels to a specific device using the prefix:
/device/<device-id>.

• The Smart Gateway identifies channels from the EMS platform using the prefix:
/platform.

• Data flows from devices directly bridged to the platform are mapped by the
bridging module by adding the prefix /<rec-id>/<member-id>.

Access control rules are applied according to this structure, following the principle
of least privilege. Exact matches are preferred over wildcards whenever possible.

3.5.3 Data-in-Motion Protection

The ecosystem described by the framework generates significant network traffic
across various MQTT paths. The data transmitted — whether device metrics, member
consumption and production statistics or commands issued by the EMS engine — is
highly sensitive and requires guarantees of both integrity and confidentiality.

This section focuses on the need to extend the guarantees provided by TLS imple-
menting end-to-end protection and on what should be the ends of such protection.
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The adoption of TLS ensures data-in-motion security — in terms of mutual peer
authentication, data integrity and confidentiality — over a single inter-node connec-
tion. Up to now, the various network components have been considered trusted, but
several aspects require closer attention:

1. The security of the central broker, that, even if located near the EMS engine,
remains a distinct service to which the engine connects.

2. The security of the bridging mechanism and the access control concerns that
its nature involves.

3. The multi-hop nature of failover paths.

4. The security of connections between devices and the smart gateway through
the local broker.

The use of end-to-end encryption extends TLS guarantees across the entire commu-
nication path between the EMS engine and each member, relying on a per-member
secret.

The failover mechanism described in Section 3.1.3 is based on the cooperative
behavior of REC members. Its primary goal is to improve reliability; however, it also
introduces potentially insecure nodes into the communication path. For instance, an
attacker who compromises a node could force other members to send data through it
by disrupting their network connection. This risk introduces a second requirement:
communication over a failover path must remain equivalent — both functionally and
in terms of security — to a direct connection between the member and the central
broker.

From a security perspective, end-to-end encryption addresses these concerns and
reduces the trust required of intermediate components:

• On the EMS engine side, all outgoing traffic to a member is encrypted with its
symmetric key, independently of the communication path. Incoming traffic is
decrypted using the symmetric key of the member expected to publish on that
channel.

• On the member side, the bridging module is responsible for decrypting the
traffic addressed to it and, if failover is active, forwarding the encrypted traffic
to the designated recipient via that path.
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This mechanism lighten the central broker of responsibility, since all traffic passing
through it is encrypted. The EMS engine represents the natural terminator of the
end-to-end communication.

On the other side, the smart gateway and the local broker can be treated as a single
entity, as they are hosted on the same device. Communication with local devices is
always established directly through TLS and is considered secure.

Nonetheless, the mechanism has limitations. While end-to-end encryption guar-
antees that messages remain opaque to neighboring nodes, it cannot fully prevent
vulnerabilities such as denial of service (e.g., a non-cooperative neighbor refusing to
forward traffic) or side-channel attacks (e.g. traffic analysis or inference attacks).

The bridging module is a particularly critical element of this ecosystem. Due to its
role, the bridge requires extensive permissions to move messages between brokers.
In this framework, reference is often made to a dedicated bridging module so that
the various functions can be analyzed independently. However, this architectural
separation introduces an intermediate node that may itself become a source of
vulnerabilities.

The key question is therefore where the end-to-end protection should terminate:

• If the mechanism is embedded within the smart gateway or implemented through
broker functionalities, the terminator is unambiguously the gateway.

• If delegated to a dedicated bridging module, the terminator may be either the
smart gateway or the module itself.

The most robust approach is to always terminate protection at the smart gateway.
Deploying a dedicated bridging module remains feasible to manage failover paths
and perform MQTT-level bridging in a transparent manner; however, designating the
module as the terminator introduces significant security weaknesses.

Having discussed the need for an end-to-end protection layer on top of MQTT and
its functional boundaries, it is now necessary to outline how such protection can be
concretely realized. The design involves two aspects: symmetric key establishment
and the traffic encryption.

Key Exchange and Delivery. Establishing a symmetric key between the EMS
engine and each member can be achieved in more than one way. A first strategy could
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be to let the EMS engine itself generate the key and deliver it to members. In this
case, the key is encrypted with the member’s public key and signed with the engine’s
key, so that authenticity can be verified. This solution places the responsibility for
key generation entirely within the platform and can be integrated directly into the
Security Manager.

A second approach is to negotiate the key through ephemeral Elliptic Curve Diffie–
Hellman (ECDHE). Here, the smart gateway and the EMS engine derive the secret
during the exchange. To protect against man-in-the-middle attacks and to support
both forward secrecy and structured key rotation, each side should also maintain a
long-term key pair used to sign the ephemeral parameters.

Traffic Encryption. After that, the actual traffic can be protected with an Authen-
ticated Encryption with Associated Data (AEAD) scheme. Among the practical
options are AES-GCM and AES-CCM, both of which combine confidentiality and
integrity in a single primitives. In some deployments, however, these may not be
ideal: if the hardware lacks efficient AES support or if the gateway require lighter
implementations, ChaCha20-Poly1305 is often the preferred alternative because of
its speed and portability.

It is also possible to avoid treating key exchange and traffic encryption as two distinct
phases. Hybrid constructions such as the Elliptic Curve Integrated Encryption
Scheme (ECIES) wrap together elliptic-curve key exchange, a key derivation step,
symmetric encryption and message authentication. The result is a unified mechanism
that provides confidentiality and integrity while at the same time establishing the
session key.



Chapter 4

K8s-based simulation framework

4.1 Introduction

During the framework design phase, it became necessary to test and prototype some
of the theoretically defined features discussed in Chapter 3, such as the bridging
mechanism and, more simply, get in touch with the MQTT functionalities.

Docker containerization quickly emerged as the most effective way to integrate the
various components and maintain a stable, isolated testing environment. This choice
was further motivated by the need to deploy multiple instances of the same program
— with different parameterizations — by packaging it into a Docker image.

Several existing solutions for simulating IoT environments were evaluated, including
MIMIC IoT Simulator, HiveMQ Swarm and IoTIFY. However, their capabilities
and operational constraints were too restrictive or offered only marginal benefits
compared to a custom-built approach.

HiveMQ Swarm, for instance, enables the creation of a simulation environment
running on Kubernetes, based on a master/slave architecture. A central node (the
commander) distributes workload blocks, defined via XML or YAML, to its agents.
These agents emulate MQTT clients that connect to the existing system under test.
While effective for performance testing, this solution does not provide real support
for implementing agent or device logic.

IoTIFY, on the other hand, is a cloud-native IoT simulation platform also designed
to run on Kubernetes. It is capable of simulating IoT devices but supports only a
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limited subset of the framework components. Furthermore, device definitions are
highly constrained, as they must be expressed in a JavaScript-like language.

Similarly, MIMIC IoT Simulator provides an abstraction layer for simulating end
devices and testing external infrastructures. Each device is represented as an "agent",
described using the TCL language.

In summary, these frameworks focus exclusively on simulating IoT device networks
and do not offer support for infrastructure simulation. Additionally, their device
definition mechanisms are highly limited, e.g., lacking support for real firmware.

Since a simulator is still required for both the EMS platform and the backbone
network up to the smart gateways, extending it to include device support is straight-
forward and represents a logical step.

The initial development relied on Docker Compose, which remains useful for testing
new configurations or feature subsets. For larger-scale deployment and orchestration,
the simulator now leverages Kubernetes. The current prototype, deployed on Kind
using Helm, is already capable of representing the ecosystem —comprising the EMS
platform and RECs — by implementing a selection of the theorized features.

The development of the simulator itself is planned as part of a future project, with
the goal of extending functionality, supporting comprehensive EMS platform ser-
vices and enabling plug-and-play testing of diverse devices, both through emulated
firmware and higher-level abstractions.

4.2 Kubernetes components and dependencies

When setting up the simulation environment using the docker-compose.yaml file,
services are defined by fetching or compiling container images, mounting volumes
and configuration files, and exposing ports on one or more internal networks. In
contrast, Kubernetes requires a more verbose and structured configuration. Its
functionalities are divided into dedicated resources such as services, deployments
and configmaps, each of which plays a distinct role in application orchestration.

This section first covers some background aspects of Kubernetes and its resources,
then introduces Kind, Helm and Cert-Manager.
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4.2.1 Kubernetes

Kubernetes [11] is an open-source orchestration platform designed to manage con-
tainerized applications across clusters of machines. It provides mechanisms for
automating deployments, scaling and maintaining applications. In the context of
this work, Kubernetes simplifies the orchestration of the various EMS platform
components and supports the deployment of each REC member element (including
gateways, devices and other required services).

In short, the Kubernetes platform is built around five core components:

1. API Server. The API server is the central management component of Kuber-
netes. It exposes the Kubernetes API, which interfaces the platform to administrators,
users and cluster components. All queries and update requests are processed through
the API server.

2. etcd. The etcd is a distributed, highly available key–value store that maintains
all cluster data, such as configurations, states and metadata. It guarantees consistency
and reliability, representing the source of truth for the cluster.

3. Scheduler. The scheduler assigns newly created pods to available nodes within
the cluster. The decision considers the resource requirements, policies and workload
constraints to balance the performances across the cluster.

4. Controller Manager. The manager runs a set of controllers that monitor in
real-time the state of the cluster maintaining it aligned with the desired configuration
(desired state). E.g., if a pod crashes, it ensures that a replacement pod is deployed
automatically.

5. Kubelet and Kube Proxy. The kubelet is an agent running on each node
ensuring that the containers defined in the pod specifications are running and healthy.
The Kube proxy manages the network rules facilitating the communication between
services and pods, and enforcing service discovery and load balancing.



84 K8s-based simulation framework

4.2.2 Kubernetes Resources and Concepts

Kubernetes organizes deployments into a set of resources, each corresponding to a
specific concept. The following overview briefly introduces the most relevant ones,
clarifying the terminology used throughout this work.

Pods and Containers. Pods are the smallest deployable units in Kubernetes. A pod
can host one or more containers that share resources such as storage and networking.
In practice, pods act as an abstraction layer above containers, integrating them with
the broader Kubernetes environment.

Services and Ingresses. Services and ingresses are the two main resources that
address networking in Kubernetes. A service provides a stable network endpoint
for accessing pods, which may be short-lived. Ingresses extends this concept by
managing external access to services, typically through HTTP or HTTPS, and adding
routing as well as load-balancing capabilities.

Persistent Volumes and Persistent Volume Claims. Kubernetes provides abstrac-
tions for data persistence, allowing information to survive beyond the life-cycle of
a container. Persistent Volumes (PVs) represent storage resources made available
within the cluster, while Persistent Volume Claims (PVCs) allow applications to
request storage in a decoupled way, increasing flexibility.

ConfigMaps and Secrets. Configuration management is demanded to dedicated
resources, separating configuration data from the application code. ConfigMaps
store key–value pairs, which can be exposed as environment variables or mounted
as configuration files within a pod. Secrets extend this mechanism to sensitive
information — such as passwords, TLS certificates or API keys — ensuring secure
storage and access.

Deployments, ReplicaSets and StatefulSets. Deployments describe how applica-
tions should be deployed, updated and scaled. ReplicaSets guarantee that a specified
number of pod replicas are always running. StatefulSets extend this providing the
necessary functionality to manage stateful applications reliably.
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4.2.3 Kind, Helm and Cert-Manager

Kubernetes in Docker (Kind) is a tool that allows running a Kubernetes cluster
using Docker containers as nodes. It is particularly useful for testing and small-scale
deployments. Depending on the needs, the framework or its portions are tested on
clusters with 1 to 5 nodes.

Kind does not support natively LoadBalacer services, there are various add-on to
support them. This setup chooses MetalLB.

Helm is a package manager for Kubernetes that simplifies the deployment, man-
agement and life-cycle operations of applications running on it. A Helm Chart
represents a collection of files that describe a related set of Kubernetes resources.
Each chart is organized as a folder with the following structure[6]:

• Chart.yaml — YAML file containing information about the chart.

• values.yaml — Default configuration values for this chart.

• charts/ — Directory containing any chart upon which this chart depends.

• templates/ — Directory containing templates that, when combined with
values, will generate valid Kubernetes manifest files.

The RECs ecosystem is represented by a Chart. The values.yaml file defines
high-level constants and parameters (e.g., DNS names, CA issuers or flags en-
abling/disabling specific services). Each service or group of services belonging to
the EMS platform has its own Chart inside the charts/ folder, as does each REC
member. Each subchart’s values.yaml define the specific component configuration.
The separation was made at the member level rather than the REC level to reduce
the complexity of each subcharts.

Cert-Manager is an X.509 certificate controller for Kubernetes. It supports a
variety of public issuers and provides the functionality required to create a private
PKI, which is the feature needed by this framework. Once installed, new resources
become available in the cluster. Among them, the simulator uses Certificates and
Issuers to build the PKI.
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4.3 Simulator architecture

The simulator is deployed on the Kubernetes cluster using a Helm chart. Each
component is defined as a subchart and, within the simulator release, represents an
isolated deployment unit. The release of the simulator should be carried out through
the main chart, where global configurations are defined. The main values.yaml
file contains flags to enable or disable each module; these boolean values are used to
conditionally enable the corresponding templates.

The modules of the cluster can be grouped into three logical blocks: the EMS
platform services, the PKI and the RECs. Since Kubernetes does not support nested
namespaces, isolation in the cluster is enforced at a lower level: each service defines
its own namespace, the PKI uses the standard cert-manager namespace and each
REC member has its own namespace shared among all its devices.

4.3.1 EMS Platform

In the current version of the simulator, the EMS platform supports:

• A central broker implemented with Mosquitto, with authorization managed
through the Dynamic Security Plugin.

• The Security Manager, implemented as the EMS Dynamic Security Admin, a
stateless API capable of remotely configuring Mosquitto access control via the
Dynamic Security Plugin.

• A CLI providing low-level capabilities to test the communication (e.g., tracing
devices and sending commands).

EMS master broker

The EMS master broker is the instance of the central broker, implemented as a single
Mosquitto service. The image used for this deployment is based on Alpine Linux
and uses Mosquitto 2.0.21. The broker is first built from source, then copied into
the runtime image, which includes only the broker and the dynamic security library.
This process removes unnecessary components and reduces the attack surface.
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The image entrypoint is a Python script responsible for the initial setup and for
starting the broker service. During startup, the script prepares the default dynamic
security configuration and waits for the Security Manager to become available
(to prevent inconsistencies in the cluster). These operations are not related to the
framework itself but are necessary to ensure a consistent cluster startup.

The Mosquitto configuration is provided through a ConfigMap, and general con-
figuration parameters can be modified in the values.yaml file. The configuration
enables both persistence and logging by default. The broker exposes two listeners:

1. The EMS Platform listener on port 8883, which uses TLS with EMSCA
certificates and reachable through a service at
ems-master-broker-ems.ems-master.svc.cluster.local:8883.

2. The Bridge Backbone listener on port 8884, which uses TLS with BridgeCA
certificates and reachable through a service at
ems-master-broker-bridge.ems-master.svc.cluster.local:8883.

The deployment uses three volumes to store broker data: ems-master-broker-data
for the Mosquitto persistence database, ems-master-broker-log for storing log
files and ems-master-broker-dynsec for saving the dynamic security plugin con-
figuration.

The default access control configuration denies all permissions to clients, except
for unsubscribe. To allow remote configuration, the file includes a pre-authorized
role and client (CN: ems-dynsec-admin) for the Security Manager. This enables it
to publish configuration messages to $CONTROL/dynamic-security/v1 and read
responses from $CONTROL/dynamic-security/v1/response.

EMS Dynamic Security Admin

The EMS Dynamic Security Admin is the first prototype of the Security Manager. Its
main purpose is to expose a REST API that allows each device and gateway startup
script to automatically configure its access control rules.

Its current use is to speed up and automate the configuration of the simulation
environment by delegating to each component the setup of its own access control
rules. This procedure does not reflect the intended role of the Security Manager,
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which is to provide such features only to EMS platform administrators; however, the
underlying functionalities remain the same.

The API is implemented using Kotlin and Ktor. It provides both direct mappings
to Dynamic Security commands and higher-level abstractions for standard devices.
Requests are handled as POST requests, where the path specifies the broker URL
and port, the resource and the operation, while the body contains the specific details
of the operation. The API relies on a background service responsible for managing
the request/response exchange with the broker.

For example: POST /api/v1/central.broker.xyz/8883/clients/create

1 {
2 "username": string ,
3 "client_id": string ,
4 "text_name": string | null ,
5 "text_description": string | null ,
6 "groups": [
7 {"group_name": string , "priority": int}
8 ],
9 "roles": [

10 {"role_name": string , "priority": int}
11 ]
12 }

High- and mid-level requests provided through the API are translated into Dynamic
Security Plugin commands (described on GitHub [8]). These commands are then
passed to the background service, which maintains a command queue for each broker.
At the end of each queue, a consumer implements the MQTT client for the target
broker. The consumer sends messages, links them to their corresponding MQTT
response messages and propagates the responses upward, transforming them into
HTTP responses at the API level. Each consumer is created together with its queue;
if the queue does not receive any requests for more than 60 seconds, the client closes
the MQTT connection, terminates the queue and shuts down.
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4.3.2 RECs and REC members

As introduced earlier, the deployment of a REC is carried out by deploying its
members one by one. The main values.yaml file provides flags to enable either the
entire REC or individual members.

The rec-pki subchart extends ems-pki by creating a dedicated certification au-
thority (CA) for each REC. This CA is responsible for signing the per-member
certification authorities.

The definition of a REC consists of creating subcharts for each of its members. The
simulator allows members to be defined with any structure, as long as they follow the
conventions established by the framework. It also provides a template for a standard
member, which can be parameterized or extended as needed.

The standard REC member structure is outlined as follows:

Namespace. Each member defines its own namespace, conventionally composed
as <rec-id>-<member-id>.

Local PKI and certificates. Each member creates its own certification authority,
signed by its RECXCA, and uses it to sign all device and smart gateway local
certificates. The bridge certificate, however, is signed by the BridgeCA.

Smart Gateway. In the current version of the simulator, the smart gateway is an
instance of Mosquitto, configured similarly to the central broker.

Devices. Devices are defined in the local values.yaml. The clients section
specifies common settings such as certificate parameters, environment variables and
Kubernetes resources, followed by the list of devices with their image details and
optional additional environment variables. The clients are automatically deployed by
iterating over this list.
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Smart Gateway

The smart gateway implementation consists of two components: the local broker
and the local control logic. The logic provides only limited functionality, aimed at
testing communication, and does not include decision-making capabilities.

The local broker is implemented with Mosquitto, exposing a single TLS-enforced
listener. Bridging relies on the internal Mosquitto mechanism, configured to accept
incoming commands from the central broker and to forward member information to
the platform, in accordance with the conventions defined in Section 3.4.

The smart gateway logic is responsible for receiving standard commands, which
may target either all devices of a specific category (e.g., generator, load or accu-
mulator) or a specific device. Commands are processed sequentially and include
a basic acknowledgment mechanism: if the gateway receives a command before
completing the previous one, it responds with NACK-BUSY; on success it replies with
ACK-<cmd-id>; and on failure with NACK-<cmd-id>.
Devices send data every 5 seconds, while the gateway collects this data and produces
aggregated reports for the platform every 30 seconds.

Startup script execution consists of two configuration phases:

1. Phase one – create the default configuration for the dynamic security plugin
and wait for the master broker. Then configure the bridge access control rules
on the master side using the Security Manager APIs.

2. Start the local instance of Mosquitto.

3. Phase two – configure the bridge access control rules on the gateway side,
again using the Security Manager APIs.

4. Finally, start the smart gateway logic.

As with the master broker, these configurations are required to set up the cluster
consistently but are not part of the framework itself.
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Smart Devices

The simulator provides three default abstractions for smart devices: the smart gen-
erator, the smart load and the smart accumulator. Each abstraction has its own
set of commands and shared metrics. The diagnostic command is only partially
implemented.

Startup and common aspects. All devices share a common startup script, which
waits for the local broker to become available before configuring access control
rules through the Security Manager APIs. Each device is implemented as a Python3
class, extending the base Device class. Devices have a 15% probability of crashing,
represented by the UNHEALTHY state. The reboot command is used to recover from
this state.

The Device class implements core functionalities such as creating the MQTT client,
establishing the broker connection, handling the on_message logic, decoding com-
mands and providing abstractions for publishing and logging operations. The device
abstraction also includes three auxiliary classes: Command, State and Topic. These
classes can be extended or used directly. Command abstracts device commands,
State represents the device operational state and Topic defines the set of topics
used by the device.

Smart generators and smart loads support four commands: power-on, shutdown,
reboot and diagnostic. Their operational state refers to energy production. When
powered off, they enter an idle mode while remaining connected to the broker. Shared
metrics include status, voltage, current and temperature.

Smart accumulators support six commands: shutdown, reboot, idle-mode,
charge-mode, discharge-mode and diagnostic. Shared metrics include status,
voltage, current, soc (State of Charge) and temperature.

Smart Meter

The smart meter represents the interface to the DSO. The framework does not
prescribe a concrete implementation or strict guidelines for this device, leaving



92 K8s-based simulation framework

flexibility for its design. In the simulator, it is implemented as an MQTT client that
gets data from the smart gateway through the local broker on dedicated topics and
stores them in a JSON file.

4.3.3 Public Key Infrastructure – PKI

The public key infrastructure follows the structure prescribed by the framework and
detailed in Section 3.1.2. In Kubernetes, it is entirely managed by Cert Manager.
The upper part of the certification chain is defined in dedicated charts and confined
to the cert-manager namespace, while member-specific certification authorities
are defined together with the member in the same namespace.

To enforce isolation requirements, the design leverages a combination of Issuers
and ClusterIssuers: the former can issue certificates only within their own names-
pace, while the latter can issue certificates across the entire cluster.

The certification levels are structured as follows:

* The RootCA certificate is signed by a selfSigned Issuer and serves as the root
of trust of the PKI. This certification authority provides an Issuer capable of
signing certificates within the cert-manager namespace.

* The EMSCA is signed by the RootCA issuer and exposes a ClusterIssuer,
which is used to sign EMS platform certificates.

* The BridgeCA is signed by the RootCA issuer and exposes a ClusterIssuer,
intended to sign the certificates used on the bridged backbone.

+ The RECxCA is signed by the RootCA issuer and exposes a ClusterIssuer,
which is intended to sign the member certification authorities (ExCA).

• The ExCA and their Issuers are used to sign local smart gateway and device
certificates.

The ems-pki chart defines the upper levels of the PKI (*), the rec-pki chart defines
the various RECxCA (+), and the ExCA are defined within the corresponding member
charts.



4.4 Evolution and Future Work 93

4.4 Evolution and Future Work

The simulator was initially developed as a test playground for the solutions theoreti-
cally defined in the framework. It is now evolving into a structured simulator project,
providing a comprehensive set of features. Future work focuses on expanding its
functionalities to include different brokers, both in the EMS platform and in the
smart gateways, allowing each member to choose its implementation. The EMS
platform simulation evolves into a testing framework, where implementations can be
compared and integrated as modular building blocks, based on a common interface.

The current implementation includes a Docker image capable of simulating non-
Python devices inside QEMU and integrating them into the cluster, but it testing
is limited. The device model is structured around Docker images that provide a
standard set of configuration data through environment variables.
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Conclusions

The thesis aimed to design a framework for the creation of secure-by-design energy
communities. After analyzing the main message brokers, the MQTT protocol was
identified as a promising candidate for communication. The work then focused on
further exploring the protocol’s limitations and its implementations.

Once the MQTT’s compliance with the expected operational and environmental
constraints was verified, the attention shifted to identifying its weaknesses. The
critical issues concerned the predefined authentication and authorization mechanisms.
Following the guidelines and practices outlined in the framework developed by
Gaggero et al. [10], the work mapped MQTT’s functionalities and design choices
with respect to these specifications, simultaneously analyzing the various components
and placing them within the proposed platform.

Isolation was ensured through two complementary strategies: on the one hand, the
compartmentalization of functionality into microservices with appropriate authenti-
cation and access control mechanisms; on the other, the separation of MQTT network
segments using TLS-enforced bridges and the adoption of a hierarchical PKI struc-
ture. Within each segment, the theoretical access control model was implemented
and validated on concrete solutions. Furthermore, the use of an end-to-end protection
mechanism between the members’ on-premise smart gateways and the EMS engine
hosted on the central platform was suggested.

The proposed framework is based on an MQTT network infrastructure created
through bridges between local brokers and the central one, capable of decoupling
the local management of individual members from the global management delegated



95

to the central platform. The MQTT backbone was designed to support failover
mechanisms, which – by leveraging neighboring gateways belonging to the same
REC – enable the activation of an alternative communication path in the event of a
failure of the direct connection.

Finally, a simulation framework prototype was developed to test some of the proposed
solutions. This prototype used containerization via Docker and, depending on the
needs, Docker Compose or Kubernetes for component orchestration.

In conclusion, the thesis demonstrated that the MQTT protocol, thanks to the features
offered by its implementations, is fully compatible with the operational and security
requirements of the framework, while ensuring broad support and high performance.
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Future work

The framework’s design tried to cover the main aspects and components present in
the Renewable Energy Communities ecosystem. However, several lines of research
and implementation activities remain open and constitute natural developments from
this work.

Of particular interest are the implementation of the Log Management System, in-
cluding the mechanism for extracting logs from smart gateways and their integration
with the platform, and the development of the Security Manager service, the require-
ments of which have been analyzed but not yet implemented. At the same time,
the failover mechanism, based on the MQTT bridge network between community
gateways, requires further refinement, with particular attention to analyzing the
signaling protocol and associated requirements. Furthermore, the implementation of
the various services conceptualized in the EMS platform, their integration within the
infrastructure and the definition of the related internal and external security measures
(e.g., firewalls, IDS/IPS, etc.) remain to be explored in greater depth.

Another research perspective concerns the use of MQTT on different network stacks,
such as UDP or non-IP protocols, as well as the integration of MQTT-SN. These
approaches, still little explored, could significantly expand the communication possi-
bilities between local brokers and devices installed at community members.

Other key features include the design of over-the-air (OTA) update procedures for
smart gateways and, possibly, smart devices. This feature, particularly critical from
a security perspective, requires in-depth study and dedicated implementation.
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Finally, the prototype framework described in Chapter 4 offers considerable scope
for expansion. It could eventually evolve into a full-fledged simulator, capable of
supporting experimentation and comparison between different implementations and
usage scenarios. Of particular interest is the ability to directly test device firmware
by emulating it with QEMU via appropriate containers.
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