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Abstract

This thesis explores the architectural evolution and verification methodologies associated
with modern GPUs, with a particular focus on their role in high-performance and
data-intensive applications. General purpose registers are integral to every digital
design, thus ensuring reliable read and write functions is crucial. Transitioning
from deprecated methodologies, like OVM, to contemporary methodologies, like
UVM, aims to enhance e!cacy, reduce manual e"ort, and improve scalability for
future designs. The objective is to profile both current and previous methodologies
to identify flow limitations and improve the register verification process through
automation of design data capture and processing. This migration seeks to eliminate
technical debt, ensure scalability, and increase overall e!ciency.

The main focus is the verification of memory-mapped registers, crucial for hardware-
software communication. GPUs serve as the case study due to their complexity
and relevance in machine learning and graphics. The methodology explains UVMs
modularity and reusable components, contrasts RGM (limited flexibility) with RAL,
which provides an abstract, consistent register model supporting frontdoor and
backdoor access.

Three strategies are compared: RGM sequencer, RAL frontdoor, and RAL
backdoor, using Synopsys VCS for simulation and profiling. Results show RAL
backdoor significantly reduces simulation time in frequent polling scenarios, though
with slightly higher memory usage. RGM and RAL frontdoor o"er better protocol
realism but are slower. Introducing delays can improve synchronization.

RAL backdoor access is identified as a strong candidate for performance-sensitive
verification tasks, especially when protocol overhead can be minimized. Future
improvements may include adaptive polling strategies and dynamic access method
selection, with potential extensions into power consumption analysis for a more
comprehensive evaluation.
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Introduction

In todays rapidly evolving world of digital design, making sure hardware works
correctly is very important. One key part of this is checking memory-mapped
registers. These registers help software and hardware talk to each other, by controlling
and report the status of di"erent parts of a chip or System On Chip (SoC). Its
important to make sure these registers can read and write data correctly, start with
the right values, and follow access rules like read-only or write-only. This helps keep
the system working well and safely.

This thesis looks at moving from older ways of checking registers, like OVM
(Open Verification Methodology), to newer and more standard methods like UVM
(Universal Verification Methodology). The goal is to make the process easier, faster,
and more scalable by reducing manual work and avoiding outdated practices. By
using automation to collect and process design data, the verification process becomes
smoother and more e!cient.

The thesis begins by describing how Graphics Processing Units (GPUs) have
evolved over time. Initially designed to handle graphics tasks, GPUs have become
powerful and flexible processors capable of performing many operations at once.
This makes them suitable for areas such as machine learning, scientific computing,
and real-time graphics. Due to their complexity and widespread use, it is essential to
apply strong verification methods to ensure they function correctly. This relevance
is further supported by the fact that the work presented in this thesis was carried
out within the GPU verification team, providing direct exposure to the challenges
and requirements of verifying such systems.

Next, the thesis explains how UVM works. UVM is built to be modular, scalable,
and reusable. It uses standard parts like drivers, monitors, sequencers, and scoreboards
that work together through clear interfaces. This setup makes it easier to build test
environments that are flexible and easy to maintain, even for di"erent types of
designs.
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2 Introduzione

One of the earlier methods used for register verification was RGM (Register
and Memory Model). RGM was developed under the older OVM framework and
later adapted for UVM. It introduced a way to model registers and memory using a
centralized database and symbolic access. This helped automate consistency checks
and made it easier to reuse components. However, RGM had limitations, it is harder
to learn, lacked documentation, and didnt support some advanced UVM features like
layered sequences or dynamic reconfiguration. As designs became more complex,
RGM struggled with performance and integration, especially with third-party IPs.
These challenges led to the development of more flexible and standardized solutions
like RAL.

RAL gives a consistent way to model and access registers. It hides the technical
details of how registers are built, so engineers can write tests that work across
di"erent designs. RAL supports both frontdoor access (through the bus) and backdoor
access (directly through HDL), giving flexibility in how tests interact with the
hardware.

To see how di"erent methods work in practice, the thesis compares three ways to
access registers: RGM sequencer, RAL frontdoor, and RAL backdoor. Each method
uses a di"erent level of abstraction and interacts with the hardware in its own way.
The comparison looks at things like simulation time, memory use, and profiling
overhead to help decide which method is best.

The tests use Synopsys VCS, a powerful tool for simulating and verifying hardware.
VCS has profiling tools that help analyze how simulations run, including how long
operations take and how much memory is used. By using a dedicated plus argument,
the simulation collects data that helps find ways to improve performance and spot
problems.

A key idea in the thesis is to keep memory profiling and time profiling separate.
Mixing them can cause inaccurate results. Memory profiling adds extra work that
can slow down timing, while time profiling needs to run smoothly to give correct
performance data. Keeping them apart helps get better insights.

The results show that using RAL backdoor access can make simulations faster,
especially when there are lots of register operations or polling. Since it skips the
usual protocol steps and directly changes register values, it saves time. But it does
use a bit more memory because of the extra layers involved.
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On the other hand, RGM sequencer and RAL frontdoor methods give more
realistic modeling of how the bus works. The sequencer uses less memory but takes
longer to run. The frontdoor method balances realism and speed but can be slowed
down by protocol rules.

The thesis also looks at how test setup a"ects results. For example, adding
a delay before polling can help match the timing of hardware responses, reducing
errors. These small changes show how important it is to design tests that reflect
real-world conditions.

In the end, the thesis finds that RAL backdoor access is a good choice for tests
that need to run fast and match real hardware behavior. It works best when protocol
steps can be skipped and quick results are needed. But its success depends on how
complex the test is, how polling is set up, and the environment it runs in.

Future improvements could include smarter polling and choosing access methods
based on profiling during the test. These changes could make simulations even faster
and more flexible. Also, adding power usage analysis could give a fuller picture of
the trade-o"s in hardware verification.





Chapter 1

Background

1.1 GPU

1.1.1 Introduction to GPU

In contemporary computer architecture, the Graphics Processing Unit (GPU) has
emerged as one of the most critical hardware components. Originally developed
to accelerate the rendering of complex 3D scenes in real-time applications such
as video games, GPUs were designed to o#oad image generation tasks from the
central processing unit (CPU). Their initial role was limited to converting binary
data streams into visual output for display.

Over time, however, GPUs have undergone a significant transformation. They
have evolved from fixed-function graphics accelerators into highly programmable,
general-purpose parallel computing engines. This evolution has been driven by
their architectural strengths, particularly their ability to perform high-throughput
floating-point operations and vector arithmetic across large datasets[2].

Today, GPUs are not only indispensable in graphics rendering but are also
widely used in domains such as big data analytics, scientific computing, machine
learning, and artificial intelligence. Their massively parallel structure makes them
exceptionally well-suited for executing algorithms that require simultaneous processing
of large volumes of data.

At the core of a GPUs traditional role is the task of synthesizing images from
scene descriptions at high frame rates, typically 60 frames per second or more. These
scenes are composed of geometric primitives, lighting models, material properties,
and camera perspectives. The computational demands of real-time rendering, particularly
the need to process millions of vertices and pixels per second, have driven the

5



6 1. Background

development of highly parallel GPU architectures. These architectures are capable
of executing thousands of threads.

The graphics rendering pipeline is a structured sequence of stages that transforms
3D models into 2D images. It is typically divided into three key stages[3]:

• Vertex shading

• Rasterization

• Fragment shading

Figure 1.1: GPU stages

1.1.2 Vertex Shading

In the vertex shading stage of the graphics pipeline, the GPU processes the geometric
data that defines the structure of a scene. Most real-time rendering systems operate
under the assumption that all objects are composed of triangles. Consequently, any
complex shape is first decomposed into a mesh of triangles to simplify processing
and ensure compatibility with the pipeline[4].

Developers typically use computer graphics libraries to submit these triangles to
the GPU one vertex at a time. The GPU then assembles the vertices into triangles as
needed. Each triangle is defined by three vertices, and each vertex carries essential
spatial information, its position in 3D space represented by coordinates (x, y, z).
Additionally, vertices may include supplementary attributes such as color, texture
coordinates, and surface normals, which are crucial for subsequent stages like lighting
and shading.

To project these 3D vertices onto a 2D screen, the GPU applies a series of
geometric transformations. These include translation, rotation, and scaling, all of
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Figure 1.2: Vertex Shading Example

which are performed using transformation matrices. These matrices encapsulate
both the object’s local coordinate system and the camera’s viewpoint. Through
matrix-vector multiplication, the GPU e!ciently transforms each vertex from object
space to world space, then to camera space, and finally to screen space. The use of
homogeneous coordinates enables these hierarchical transformations to be executed
in a single, unified operation.

Figure 1.3: Object Transformations

The result of this transformation process is a set of screen-space coordinates and
depth values (z-values) for each vertex. These values determine the position and
orientation of each triangle on the display, ensuring that the scene is rendered from
the correct perspective.

Once all triangles are transformed into a common coordinate system, typically
one where the viewer is positioned at the origin and the viewing direction aligns
with the z-axis, the GPU proceeds to compute lighting e"ects. The color of each
triangle is determined based on a lighting model, which may involve multiple light
sources. The GPU evaluates lighting equations using vector operations, such as dot
products, to calculate the contribution of each light source to the final appearance
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of the surface.

These lighting calculations are performed repeatedly and e!ciently using hardware-
accelerated multiply-add operations. This parallelism allows the GPU to handle
complex lighting scenarios in real time, contributing to the realism and visual fidelity
of modern graphics applications.

1.1.3 Rasterization

The rasterization stage is a fundamental component of the graphics rendering pipeline.
Its primary function is to determine which pixels on the screen are covered by each
triangle in a 3D scene. After a triangle has been transformed into screen space during
the vertex shading stage, the GPU analyzes its vertex coordinates to identify the
corresponding region on the display grid. This process converts geometric primitives
into fragments, which are groups of pixels originating from the same triangle and
sharing common attributes such as color, texture coordinates, and surface normals.

Figure 1.4: Rasterization Example

One of the key advantages of rasterization is the independence of pixel calculations.
Each pixel can be processed in isolation from others, enabling highly parallel execution.
This characteristic has driven GPU architectures toward increasingly parallel designs.
Modern GPUs leverage this parallelism to evaluate millions of pixels simultaneously,
significantly accelerating the rendering process and enabling real-time graphics performance
[5].

To enhance visual realism, the color of each pixel is not solely derived from
lighting calculations. Instead, textures, predefined images mapped onto surfaces,
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are frequently applied to simulate fine surface detail. These textures are stored
in high-speed memory, and the GPU accesses them during fragment shading to
determine the final appearance of each pixel. Because adjacent pixels often access
nearby texture locations, GPUs employ specialized cache mechanisms to reduce
memory latency and maintain high throughput. In many cases, multiple texture
samples are required per pixel to prevent visual artifacts, particularly when textures
are displayed at resolutions di"erent from their native size.

A critical challenge in rasterization is handling visibility when multiple triangles
overlap. Simply writing pixel data in the order triangles are processed would
result in incorrect layering, where the most recently processed triangle appears in
front regardless of its actual position in 3D space. To address this, modern GPUs
implement a depth-bu"er or z-bui"er, which stores the distance from the viewer to
the closest surface at each pixel. When a new fragment is generated, its depth value
is compared to the existing value in the depth bu"er. The pixel is updated only
if the new fragment is closer to the camera, ensuring correct occlusion and depth
perception.

Figure 1.5: z-bu"er

Because triangles exist in three-dimensional space, their vertices typically have
distinct z-values. The GPU interpolates these values across the surface of the triangle
to compute a depth value for each pixel, enabling accurate rendering of intersecting
and overlapping geometry. This pixel-by-pixel depth comparison is essential for
producing visually coherent scenes.

Despite its e!ciency, rasterization is not without limitations. One common
artifact is the appearance of jagged or pixelated edges, which occurs when a triangle
intersects only a small portion of a pixel. In such cases, the entire pixel may be
shaded with the triangles color, leading to harsh transitions. To mitigate this,
techniques such as Super Sampling Antia-Aliasing (SSAA) are employed. SSAA
subdivides each pixel into multiple sampling points, often 16 or more, and determines
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the proportion of those points covered by the triangle. The final pixel color is then
computed as a weighted average, resulting in smoother edges and a more visually
appealing image.

Modern GPUs have evolved beyond fixed-function hardware, adopting a programmable
architecture centered around unified shader cores. These programmable units, known
as shaders, can perform a wide range of mathematical operations, including matrix-
vector multiplication, exponentiation, and square root calculations. This flexibility
enables e!cient implementation of both traditional graphics tasks and general-
purpose computations. As a result, GPUs have become powerful parallel computing
platforms capable of supporting advanced rendering techniques and high-performance
scientific applications alike.

1.1.4 Fragment Shading

The fragment shading stage represents the final and one of the most visually impactful
phases of the graphics rendering pipeline. At this point, the GPU determines the
final color and appearance of each pixel fragment that corresponds to a triangle
projected onto the screen. While rasterization identifies which pixels are covered by
each triangle, fragment shading is responsible for enriching those pixels with realistic
lighting, texture, and material e"ects.

Assigning a uniform color to all fragments of a triangle may su!ce for basic
rendering, to achieve high visual fidelity, the GPU must simulate the complex
interactions between light and surfaces. This involves evaluating how light behaves
when it strikes di"erent materials, how it reflects, refracts, or di"uses, and how these
e"ects vary across the surface of an object.

Figure 1.6: Fragment Shading Example

A foundational concept in illumination modeling is the dependency of surface
brightness on the angle between the surface and the incoming light. Surfaces that
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face directly toward a light source appear brighter, while those angled away receive
less illumination. This behavior is mathematically governed by the dot product
between the light direction vector and the surface normal vector. The surface
normal, a vector perpendicular to the surface at a given point, plays a crucial role
in determining how light interacts with that point.

In scenes with multiple light sources, the GPU computes the contribution of
each light independently. These contributions are then summed to determine the
total illumination at each fragment. This process allows for dynamic lighting e"ects,
including ambient, di"use, and specular components, which together create a more
nuanced and realistic rendering of the scene.

A challenge in basic shading implementations is the use of a single normal vector
per triangle, resulting in what is known as flat shading. In flat shading, the entire
triangle is shaded uniformly, which can lead to abrupt transitions between adjacent
triangles and a faceted appearance on curved surfaces. While computationally
e!cient, flat shading fails to capture the smooth transitions of light across curved
surfaces, leading to unrealistic visual artifacts.

To overcome this limitation, modern shading techniques employ interpolated
normals. These are derived by averaging the normals of adjacent triangles and
assigning a unique normal to each vertex. During fragment shading, the GPU
interpolates these vertex normals across the surface of the triangle, producing a
smooth gradient of shading. This technique, known as Gouraud shading or Phong
shading depending on the interpolation method, significantly enhances the perception
of curvature and depth.

The interpolation process relies on barycentric coordinates, a mathematical framework
for expressing any point within a triangle as a weighted combination of its vertices.
For each pixel fragment, the GPU calculates its relative position within the triangle
and uses the corresponding weights to interpolate attributes such as normals, texture
coordinates, and colors. The resulting interpolated normal is then used in lighting
equations to compute the final color of the fragment.

Beyond basic lighting, the fragment shading stage supports a wide array of
advanced visual e"ects. Specular highlights simulate the bright spots of light that
appear on shiny surfaces, while texture mapping applies detailed images to surfaces
to mimic complex materials like wood, metal, or fabric. Shadowing techniques
determine whether a fragment is occluded from a light source, adding depth and
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realism to the scene.

Modern GPUs feature programmable shader cores that allow developers to write
custom fragment shaders[6]. These shaders can implement physically based rendering
models, simulate subsurface scattering, perform real-time reflections, and more. The
flexibility of programmable shaders has transformed fragment shading from a fixed-
function operation into a rich domain for artistic and scientific innovation.

1.1.5 Qualcomm’s GPU Adreno

Qualcomm has played a pivotal role in shaping the mobile GPU landscape through
its Adreno series, which has become a cornerstone of its Snapdragon processors.
The history of Qualcomm’s GPU technology is marked by continuous innovation,
performance enhancements, and architectural refinements aimed at delivering high-
e!ciency graphics processing for mobile devices.

The Adreno GPU lineage traces back to ATI Technologies, which originally
developed the Imageon graphics processors for mobile devices. After AMD acquired
ATI, the Imageon division was sold to Qualcomm in 2009, marking the inception of
the Adreno brand, an anagram of Radeon [7]. Qualcomm integrated Adreno GPUs
into its Snapdragon SoCs, enabling a unified platform for mobile computing and
graphics.

Over the years, Qualcomm has introduced several architectural improvements to
the Adreno GPU. These enhancements include increased shader cores, a specialized
processing units within a GPU, better memory bandwidth utilization, and support
for advanced graphics APIs such as Vulkan and OpenGL ES. Each generation of
Adreno has brought significant gains in rendering performance and power e!ciency,
crucial for mobile gaming and augmented reality applications [8].

The performance trajectory of Adreno GPUs has been impressive. According to
Forbes, Qualcomm’s mobile GPU innovations have consistently pushed the boundaries
of mobile gaming, enabling console-quality graphics on smartphones [1]. The integration
of heterogeneous computing elements and AI acceleration has further expanded the
capabilities of Adreno GPUs, making them suitable for complex tasks like real-time
image processing and neural network inference.

Qualcomm’s Snapdragon platform, which houses the Adreno GPU, has become
synonymous with high-performance mobile gaming. The company’s whitepaper on
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Figure 1.7: Performance evolution of Qualcomm’s GPU Architecture over time [1]

mobile gaming highlights how Snapdragon processors deliver superior frame rates,
reduced latency, and immersive experiences through optimized GPU performance
[9].



14 1. Background

1.2 UVM

1.2.1 Background and Evolution of the Universal Verification Methodology
(UVM)

The Universal Verification Methodology (UVM) is a widely accepted framework used
in the semiconductor industry to verify digital designs. It provides a structured and
reusable way to build test environments, used to ensure that the hardware behaves
as expected before manufacturing.

UVM is designed to be flexible and scalable. This means it can be used for
small modules, such as a simple logic block, or for large and complex SoCs that
include many interconnected components. Regardless of the size or complexity of
the design, UVM o"ers tools and guidelines that help verification teams manage
their work e!ciently.

UVM is built upon SystemVerilog classes, designed to facilitate the development
of robust and reusable testbenches for verifying complex digital designs. It leverages
key verification techniques such as object-oriented programming, constrained random
stimulus generation, functional coverage, and assertion-based validation to ensure
comprehensive and scalable verification environments.

At its core, UVM provides a rich set of libraries, base classes, and guidelines
that enable to construct modular and portable testbenches. These components are
designed to promote consistency and reusability across projects, thereby reducing
development time and improving verification quality.

It originated from the Open Verification Methodology (OVM), which served as
the foundational blueprint for its architecture. The initial release, UVM 1.0EA
(Early Adopter), launched in 2010, was largely a direct port of OVM, incorporating
only minor modifications and enhancements [10]. This early version laid the groundwork
for what would become a rapidly evolving methodology.

As UVM matured, it began to integrate proven concepts from other methodologies.
One of the most significant additions was the Register Abstraction Layer (RAL),
which brought a standardized approach to modeling and verifying memory-mapped
registers. UVM also absorbed best practices from both formal documentation and
ad hoc verification strategies developed across the industry.

Over time, UVM has continued to evolve, introducing new paradigms for testbench
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architecture and test development. While the methodology has embraced modern
techniques and tools, it has also maintained backward compatibility with earlier
practices. This dual-layered evolution, preserving legacy support while advancing
new capabilities, has allowed UVM to remain both robust and adaptable.

1.2.2 Testbench components

A UVM testbench is composed of a set of components, each fulfilling a distinct role
in the functional verification of a digital design. These components are instantiated
and interconnected using standardized base classes provided by the UVM library.
Figure 1.8, illustrates the interconnection of these components within a typical UVM
testbench architecture.

At the highest level, the UVM testbench is organized hierarchically, beginning
with the UVM Test, which serves as the top-level entity. This component is responsible
for configuring the testbench, initiating simulation phases, and defining the test
scenario. It acts as the entry point for the verification process and typically includes
logic to select and configure the environment, sequences, and DUT interfaces.

Beneath the test layer lies the Environment (env), which acts as a container for all
other verification components. The environment encapsulates agents, scoreboards,
coverage collectors, and other subcomponents. It provides a structured context in
which these elements can be instantiated and connected. By centralizing control
and configuration, the environment ensures that all components operate cohesively
and according to the test plan.

Within the environment, Agents are responsible for managing the verification of
specific interfaces or subsystems. Each agent typically includes three subcomponents:
the Driver, the Monitor, and the Sequence [11]. These elements work together to
generate stimulus, observe DUT behavior, and coordinate test execution.

The Driver plays a critical role in translating high-level transaction objects into
low-level signal activity. It interfaces directly with the DUT, applying stimulus
in accordance with the protocol specifications. The driver ensures that the DUT
receives valid and meaningful input, and it is often protocol-aware, meaning it
understands the timing and sequencing requirements of the interface it drives.

Complementing the driver is the Monitor, which passively observes the signals
on the DUT interface. The monitor reconstructs transactions from observed signal
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activity and forwards them to other components such as the scoreboard or coverage
collector. This passive observation is essential for non-intrusive verification, allowing
the testbench to validate DUT behavior without a"ecting its operation.

The Sequencer is responsible for generating and randomizing sequences of transactions.
It coordinates with the driver to deliver stimulus to the DUT in a controlled and
repeatable manner. Sequencers can be programmed to produce directed tests,
constrained-random scenarios, or corner-case conditions, to achieve coverage goals.

To validate the correctness of DUT behavior, the testbench includes a Scoreboard.
This component compares the actual output of the DUT with expected results, which
may be generated by a reference model or derived from the input stimulus. The
scoreboard performs checks on data integrity, protocol compliance, and functional
correctness. It is a key component in determining whether the DUT meets its
specification.

Communication between the testbench and the DUT is facilitated through Interfaces,
which encapsulate the physical and logical connections. Interfaces define the signal
declarations, timing constraints, and protocol-specific logic required for interaction.
They provide a clean abstraction layer that separates the testbench from the implementation
details of the DUT.
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Figure 1.8: Overview of UVM Components
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1.2.3 UVM Structural Organization and Phasing Mechanism

In UVM, the construction and execution of a testbench follow a well-defined structure.
The components are typically declared in a bottom-up hierarchy. This means that
lower-level classes such as sequencer, driver, and monitor are defined first. These are
then grouped into an agent, which is subsequently instantiated within the top-level
verification component (VC).

Each component is instantiated inside its parents constructor. For example, the
agent creates instances of the sequencer, driver, and monitor, while the VC creates
an instance of the agent. This bottom-up declaration ensures that compilation
dependencies are resolved correctly and that the testbench is built in a modular and
maintainable fashion.

To support hierarchical navigation and debugging, UVM components include
two important properties:

• Instance Name: A string identifier that typically matches the handle name of
the component. This helps in identifying components during simulation and
reporting.

• Parent Pointer: A reference to the component that instantiated the current
component. This allows traversal of the component hierarchy from any point
in the testbench.

These properties enable components to generate their full hierarchical path,
which is particularly useful for logging, diagnostics, and error tracing.

Beyond structural organization, each component follows a structured sequence
of simulation phases. This sequence is governed by the UVM phasing mechanism,
which ensures that all components in the testbench operate in a synchronized and
predictable manner throughout the simulation lifecycle[12].

The primary phases include:

• Build Phase: Components are instantiated and configured. This phase sets
up the testbench structure, including the creation of agents, drivers, monitors,
and sequencers.

• Connect Phase: Hierarchical and functional connections between components
are established. Drivers are linked to sequencers, monitors are connected to
scoreboards and so on.
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• Run Phase: The actual test scenario is executed. Stimulus is generated,
transactions are driven to the Design Under Test (DUT), and responses are
monitored and analyzed.

• Report Phase: Results are summarized. This may include printing statistics,
coverage data, and pass/fail status.

In addition to these core phases, UVM supports optional phases such as pre-run,
post-run, pre-reset, and post-reset, which allow for custom behavior to be inserted at
specific points in the simulation. These phases are particularly useful for initializing
data structures before execution or performing cleanup and analysis afterward.

The phasing mechanism is essential for maintaining order and consistency across
all components. It provides a timeline for simulation activities and supports modular
development, easier debugging, and enhanced reusability. Furthermore, UVM allows
users to define custom phases, enabling tailored simulation flows that meet specific
project requirements.

By adhering to this phased approach, UVM ensures that verification environments
are not only organized but also scalable and adaptable to a wide range of design
complexities.

1.2.4 Reusability in UVM

One of the most powerful features of the UVM is its emphasis on reusability.
In modern digital design verification, where projects often span multiple teams,
technologies, and timelines, the ability to reuse components across di"erent environments
is essential for maintaining e!ciency, consistency, and scalability. UVM promotes
reusability through its object-oriented architecture and modular design principles
[13].

Components such as agents, drivers, monitors, and scoreboards can be reused
across multiple projects with minimal modification, significantly reducing development
time and e"ort.

To maximize the reusability of UVM components, it is essential to follow a set of
design principles that promote modularity and flexibility. One important practice is
the use of virtual interfaces instead of hardwired connections. By declaring interface
variables as virtual and assigning them dynamically, components can be reused
across di"erent interface instances without modification. This approach decouples
the component from specific interface names and allows for greater adaptability in
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various testbench configurations.

Another key strategy is to implement shared functionality in a base class. Common
properties and methods can be defined once in this base class and inherited by
derived components, ensuring consistency and reducing code duplication. This
not only simplifies maintenance but also enhances the clarity of the verification
architecture.

Furthermore, matching instance names with their corresponding handle names
improves readability and facilitates hierarchical navigation, especially during debugging
and reporting. Avoiding assumptions about the depth or structure of the component
hierarchy also contributes to portability, allowing components to be integrated into
di"erent environments without requiring structural changes.

Together, these practices enable to build robust, scalable, and reusable testbenches
that can be e!ciently adapted to new designs and reused across multiple projects.

UVM provides several built-in mechanisms that further enhance reusability:

• Factory Pattern: The UVM factory allows components to be created dynamically
at runtime [14]. This enables testbenches to override default implementations
with custom versions without modifying the original source code. The factory
pattern supports polymorphism and late binding, which are key principles of
object-oriented design.

• Configuration Database: The configuration database provides a centralized
way to pass parameters and settings between components. This avoids the need
for deep constructor argument lists and allows components to be configured
externally, improving modularity and reuse.

• Parameterization: UVM components can be parameterized to support di"erent
data types, protocols, or configurations. This allows a single component
definition to be reused in multiple contexts by simply changing the parameter
values.

• Scalability Through Reuse: Reusability in UVM also contributes to scalability.
As designs grow in complexity, verification environments must scale accordingly.
UVM supports this through hierarchical composition and modular design.
For example, in a typical SoC verification project, the testbench may include
multiple agents for di"erent interfaces such as AXI, APB, and UART. Each
agent contains its own driver, monitor, and sequencer tailored to the specific
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protocol. The top-level environment coordinates these agents, collects coverage
data, and manages interactions between subsystems. Scoreboards validate
data transfers across interfaces, ensuring that the DUT behaves correctly
under various conditions. Because each component is modular and reusable,
the testbench can be extended or modified without disrupting the overall
architecture.





Chapter 2

Case Study: Register
Verification

2.1 Introduction

Register verification is a foundational component of digital design verification, especially
in systems where software interacts with hardware through memory-mapped registers
[15]. These registers serve as control and status interfaces for various subsystems
within a chip or SoC, enabling configuration, monitoring, and command execution.

The verification process ensures that each register behaves according to its
specification, responding correctly to read and write operations, initializing with
the correct reset values, and enforcing access permissions such as read-only or write-
only constraints. It also validates that the register map aligns with the design
documentation and that interactions with the registers do not introduce unintended
side e"ects.

E"ective register verification involves modeling the register architecture, generating
stimulus to exercise di"erent access patterns, and checking the correctness of responses.
This includes verifying address decoding, data integrity, and error handling mechanisms.

Coverage metrics are often employed to assess how thoroughly the register space
has been tested[16], ensuring that all fields, access types, and edge cases are accounted
for. As designs grow in complexity, the need for scalable, reusable, and automated
register verification methodologies becomes increasingly critical.

23
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2.2 Common Register Verification Techniques

To ensure comprehensive validation of register behavior, a diverse set of targeted
techniques must be systematically applied throughout the verification process. These
techniques are essential for identifying and mitigating potential issues that may
compromise the reliability, security, and correctness.

The following sections present a selection of register verification techniques commonly
employed in hardware design and validation. These techniques are integral to
ensuring that digital systems conform to their functional, performance, and reliability
specifications, and are supported by both simulation-based and formal verification
methodologies.

The write-then-read test serves as the foundational method for register validation.
This technique involves writing a predetermined value to a register and immediately
reading it back to confirm that the value has been accurately stored and retrieved.
It is primarily used to verify the correctness of address decoding, the integrity of
the data path, and the enforcement of read/write access permissions. Additionally,
this method helps detect issues such as bus contention, incorrect register mapping,
and unintended data corruption. It is often employed as an initial smoke test
during bring-up phases and is integrated into automated regression suites to ensure
consistent behavior across design iterations.

Bitbashing is a granular and exhaustive technique that targets individual bits
within a register. It involves writing and reading back a series of carefully selected
bit patterns to evaluate the behavior of each bit independently. Common patterns
include all zeros (0x0000...), all ones (0xFFFF...), and alternating bits such as
(0xAAAA..., 0x5555...). These patterns are instrumental in detecting stuck-at
faults, which are hardware defects where a signal line remains permanently fixed at
a logical high or low state. Such faults may arise due to fabrication anomalies, layout
parasitics, or signal integrity degradation. Bitbashing also helps identify coupling
e"ects between adjacent bits, unintended toggling due to clock domain crossings,
and violations of bit-level isolation [17]. It is particularly e"ective in designs with
high-density register banks and mixed-signal interfaces.

Walking ones and walking zeros tests provide a systematic approach to validating
bit isolation and register width correctness. These tests involve writing a single
logical 1 or 0 to each bit position in a register sequentially and reading back the
value to confirm accuracy. For example, walking ones may include patterns such
as 0x0001, 0x0010, 0x0100, and so forth, while walking zeros may include 0xFFFE,
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0xFFFD, 0xFFFB, etc. These patterns help confirm that each bit can be independently
controlled and observed, and that no unintended interactions occur due to bit
masking, shifting, or encoding logic. This technique is particularly valuable in
verifying the correctness of register width declarations and ensuring that no bits
are inadvertently omitted, aliased, or misaligned. It also aids in detecting synthesis
or optimization artifacts that may alter bit-level behavior.

Access permission checks are essential for enforcing the intended access restrictions
of registers. Registers may be configured as read-only, write-only, or read-write, and
these configurations must be rigorously validated. The verification process includes
attempts to perform illegal accesses, such as writing to a read-only register or reading
from a write-only register, and confirming that such operations are appropriately
blocked or ignored. Additionally, legal accesses must be verified to ensure they
produce the expected results and side e"ects, such as status flag updates, interrupt
triggers, or configuration changes. These checks are critical for maintaining system
security, preventing unauthorized modifications, and ensuring predictable behavior
in multi-threaded or multi-core environments.

Reset value verification is a fundamental aspect of design initialization. Upon
hardware reset, registers are expected to initialize to known default values as specified
in the design documentation. This test confirms that the reset mechanism functions
correctly, that no residual data from previous operations persists, and that the
register values align with the expected post-reset state. This verification is particularly
important in systems with power-on-reset sequences, where timing and sequencing
of reset signals can a"ect the initialization behavior. It also helps detect issues
related to asynchronous resets, metastability, and improper reset propagation across
hierarchical modules.

Illegal access testing extends the scope of validation to include out-of-spec operations
[18]. These operations may involve accessing undefined addresses, writing to reserved
fields, or performing operations that violate protocol specifications. The objective
of this testing is to confirm that the design handles such cases gracefully, either
by ignoring the operation, triggering appropriate error responses, or entering a safe
recovery state. This form of testing is crucial for ensuring robustness and fault
tolerance in safety-critical and mission-critical applications. It also validates the
implementation of error reporting mechanisms such as exception flags, error codes,
and system logs.

Field-level testing focuses on the validation of individual fields within a register,
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especially when registers contain multiple fields with distinct access types, update
mechanisms, or encoding schemes. This method involves verifying that each field
can be accessed independently, that field-level granularity is maintained, and that
encoding and decoding of field values are performed correctly. Field-level testing is
particularly important in control registers where multiple configuration options are
packed into a single register, and incorrect field interactions can lead to unpredictable
system behavior. It also ensures that field boundaries are respected, that reserved
bits remain una"ected, and that field-specific side e"ects are correctly triggered.

Coverage-driven verification complements the aforementioned techniques by providing
a quantitative measure of the verification e"ort. This approach involves tracking
which registers, fields, and access types have been exercised during simulation.
Functional coverage models are employed to ensure that all relevant scenarios,
including edge cases and corner conditions, are adequately tested. These models
may include cross-coverage between fields, temporal coverage of access sequences,
and conditional coverage based on system states. Coverage analysis helps identify
gaps in the verification plan and guides the development of additional test cases
to achieve comprehensive validation. It also supports metrics-based reporting for
verification closure and compliance audits.

2.3 RGM vs RAL

The evolution of register verification methodologies has mirrored the broader shift in
hardware verification from ad hoc scripting to standardized, reusable frameworks.
Early approaches relied heavily on manual testbench coding and protocol-specific
sequences, which were di!cult to scale and maintain. As verification complexity
increased, the industry began adopting abstraction layers and reusable components
to streamline the process.

One of the earliest structured solutions was the Register and Memory Package
(RGM), developed for use with the Open Verification Methodology (OVM)[19].
RGM introduced a centralized database and basic modeling constructs that allowed
to simulate register behavior and automate access sequences. While innovative for
its time, RGM lacked standardization and flexibility, prompting the need for a more
robust solution.

This led to the development and adoption of the UVM, which formalized register
modeling through a standardized framework and introduced the Register Abstraction
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Layer (RAL) [20]. RAL built upon the concepts pioneered by RGM but added
significant enhancements in modularity, coverage integration, and runtime configurability.

While both RGM and RAL aim to simplify and structure register verification,
they di"er significantly in design philosophy, capabilities, and industry adoption.
RGM, as a legacy solution, laid the groundwork for abstraction but is now considered
limited in scope and flexibility. RAL, on the other hand, is part of the UVM standard
and o"ers a comprehensive, scalable, and reusable approach to register modeling.

In the following sections, we will explore each methodology in detail examining
their architecture, features, and practical implications before presenting a comparative
analysis to highlight their strengths and limitations.

2.4 RGM

2.4.1 Introduction

In the realm of digital design verification, the accurate modeling and validation
of register and memory behavior is a cornerstone of functional correctness. The
Register and Memory Model, commonly referred to as RGM, was conceived to
address this need by providing a high-level abstraction layer that simplifies the
interaction with these critical components. Initially developed under the Open
Verification Methodology (OVM) and later refined for the Universal Verification
Methodology (UVM), RGM has become a foundational element in modern verification
environments [21].

The UVM implementation of this model, known as uvm_rgm, o"ers a comprehensive
framework for modeling, accessing, and verifying registers and memory structures
within a design [22]. It enables to define register maps and memory blocks in a
structured manner, allowing for symbolic access, automated consistency checks,
and seamless integration with testbenches. This abstraction not only enhances
readability and maintainability but also facilitates reuse across projects and teams.

One of the key strengths of uvm_rgm lies in its ability to mirror the internal state
of the DUT[23]. By maintaining a synchronized model of the register and memory
contents, it becomes possible to perform high-level operations such as randomized
configuration, functional coverage collection, and assertion-based validation. Moreover,
the framework supports both address-based and name-based access, which significantly
improves the clarity and intent of test scenarios.
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During the verification process, uvm_rgm initializes the DUT, injects randomized
values, and monitors register activity throughout simulation. This includes not only
performing read and write operations but also validating the DUTs behavior against
expected outcomes and reference models. The ability to trace and debug register
interactions at this level of abstraction is invaluable, particularly in complex systems
where manual tracking would be error-prone and ine!cient.

Furthermore, uvm_rgm provides a methodology that encourages automation and
modularity. It supports the definition of hierarchical address maps, register files,
and memory arrays, all of which can be accessed through reusable sequences. This
modularity is essential for scaling verification e"orts across large SoCs, where consistency
and repeatability are paramount [23].

However, despite its many advantages, RGM is not without its limitations.
One of the most prominent challenges lies in its steep learning curve, mastering
RGM can be a daunting task. The framework introduces a rich set of concepts,
abstractions, and APIs that require a solid understanding of both UVM principles
and register modeling practices. Unfortunately, the availability of comprehensive
learning resources is limited. Unlike other widely adopted verification tools, RGM
lacks extensive documentation, tutorials, and community-driven support.

Moreover, as designs scale in complexity, RGM may encounter performance
bottlenecks, particularly when managing large and frequently changing register
maps. The regeneration and validation of models in such environments can become
a significant maintenance burden. Integration with third-party IPs also presents
di!culties, especially when those components follow di"erent modeling conventions
or lack compatibility with the RGM infrastructure. Additionally, while RGM aligns
well with standard UVM components, it does not natively support some of the more
advanced features of UVM, such as layered sequences or dynamic reconfiguration,
which may limit its flexibility in sophisticated verification environments.

2.4.2 IP-XACT

The process of defining register and memory models within the RGM framework
begins with the construction of a uvm_rgm model. This model serves as the backbone
of register-level verification and encapsulates several key components, including
register fields, register files, address maps, and the central register database. These
elements collectively form a hierarchical and structured representation of the memory-
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mapped architecture of the design.

To facilitate this modeling process, designers typically rely on IP-XACT, a
standardized XML-based format developed to describe and integrate design intellectual
property (IP) [24]. IP-XACT provides a formal and machine-readable way to capture
the metadata associated with registers and memories, such as their addresses, access
types, reset values, and structural relationships. This format has become a cornerstone
in the automation of register modeling, enabling tools to generate consistent and
reusable verification components directly from specification files.

An IP-XACT file organizes information into arrays of memory maps, each representing
a distinct address space within the design. Within these maps, designers can define
memory blocks, register files, and individual registers, along with their constituent
fields. Each field can be annotated with attributes that govern its behavior, such
as read/write permissions, default values, and volatility [25]. This level of granularity
ensures that the verification environment accurately reflects the intended functionality
of the hardware.

Figure 2.1 illustrates a typical IP-XACT description of a memory map. The
hierarchical structure shown in the XML snippet highlights how register files are
composed of registers, which in turn contain fields. This organization mirrors the
physical layout of the design and allows to interact with the model in a logical and
intuitive manner.

The adoption of IP-XACT within the RGM framework not only streamlines
the creation of register models but also enhances consistency across teams and
projects. By abstracting the register definitions into a standardized format, it
becomes possible to automate the generation of UVM components, reduce manual
errors, and ensure alignment between design and verification. This methodology
is particularly valuable in large-scale systems, where the complexity and volume of
registers can quickly become unmanageable without a structured approach.

2.4.3 RGM_DB

Once the IP-XACT register description file has been authored, a dedicated parser
utility is employed to translate its contents into a set of SystemVerilog (SV) classes
tailored for register verification[26]. This automated conversion process extracts
the structural and behavioral information encoded in XML, such as register fields,
address maps, and access attributes and instantiates corresponding SV objects that
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Figure 2.1: IP-XACT description of a register file hierarchy used in RGM

can be integrated into the testbench environment.

Once the register model has been automatically generated from the IP-XACT
description, the next critical phase involves its integration into the UVM testbench
environment. This step is essential for enabling structured and scalable register-level
verification. At the heart of this framework lies the centralized register database,
known as RGM_DB. This database plays a pivotal role in maintaining shadow copies of
the DUTs registers, e"ectively mirroring their state throughout the simulation. By
doing so, it allows the verification environment to perform consistency checks, detect
mismatches, and ensure that register accesses conform to the expected behavior
defined in the model.

The database is used for coverage collection and functional analysis. By monitoring
register activity, such as which registers have been accessed, how often, and under
what conditions, RGM_DB contributes to the generation of meaningful coverage metrics.
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These metrics help assess the thoroughness of the verification e"ort and guide the
refinement of test scenarios to ensure complete functional exploration.

The next step is to integrate the necessary components into the UVM testbench
environment. These components include the register database (RGM_DB), the
register sequencer, and the interface bus Universal Verification Component (UVC),
all provided as part of the uvm_rgm package. The integration process involves the
following steps:

• Instantiate the Register Database (RGM_DB): Place the RGM_DB component
within the testbench to serve as the central repository for register and memory
definitions. This database will be referenced by other components during
simulation to access register metadata and perform verification tasks.

• Extend the Interface Bus UVC Master Sequencer: Modify the master sequencer
of the interface bus UVC to include the necessary infrastructure for register
transactions. This involves adding support for adapter sequences that translate
high-level register operations into protocol-specific transactions.

• Create an Adapter Sequence: Develop a custom adapter sequence that interfaces
with the modified master sequencer. This sequence acts as a bridge between
the register model and the bus protocol, ensuring that register read/write
operations are correctly interpreted and executed.

• Instantiate and Connect Register Components: Instantiate the register model
components within the testbench and establish Transaction-Level Modeling
(TLM) connections between them. This includes linking the register sequencer
to the adapter sequence and connecting the register model to the RGM_DB
and interface bus components.

By following these steps, the testbench is equipped to perform structured and
automated register verification. This setup enables consistent access to register
definitions, supports protocol-specific transactions, and facilitates scalable verification
across di"erent design configurations

Figure 2.2 for an overview of the connection between DUT and shadow register.

During typical register-level activity in a verification environment, several types
of interactions with the device under test (DUT) are commonly required. These
operations include:

• Initial Configuration: Driving the DUT into a valid operational state by
writing to control registers that enable specific modes or features.
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Figure 2.2: DUT and shadow register

• Dynamic Reconfiguration: Modifying the device configuration multiple times
during a simulation run. For example, a Direct Memory Access (DMA) controller
may be reconfigured to perform di"erent tasks sequentially within the same
test scenario.

• Runtime Transactions: Performing standard read and write operations to
transfer values between registers and memory locations, often as part of functional
stimulus or data flow validation.
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To facilitate these tasks, it’s typically preferred to access registers using symbolic
names or addresses, which improves readability and maintainability of the verification
code. The uvm_rgm framework supports this by leveraging the standard UVM
sequence mechanism. Sequences can be defined to perform register read and write
operations using the uvm_rgm_register_operation class. This abstraction allows
for flexible modeling of both directed and randomized scenarios, enabling comprehensive
coverage of register behavior.

By encapsulating register transactions within reusable sequences, the methodology
promotes modularity and scalability. It also simplifies the integration of register-level
stimulus into larger verification environments, ensuring that register interactions are
consistent, traceable, and aligned with the overall testbench architecture.

An example of a uvm_reg architecture is shown in the Figure 2.3, it highlights
the modular structure recommended by UVM, where monitoring components are
decoupled from the randomization and stimulus generation logic. This separation of
concerns ensures that coverage collection and functional checking are performed
independently of the mechanisms responsible for injecting transactions into the
DUT. Specifically, the monitoring infrastructure observes register activities during
simulation and triggers coverage and consistency checks based on these observed
events. This architectural approach enhances the clarity, reusability, and maintainability
of the verification environment, while also supporting more accurate and comprehensive
validation of register behavior.

As illustrated in the diagram, RGM_DB serves as the repository for all register-
related metadata and runtime state information. It encapsulates key modeling
constructs such as uvm_rgm_address_map, uvm_rgm_register_file, and uvm_rgm_memory,
each of which contributes to a hierarchical and comprehensive representation of the
DUTs memory-mapped architecture.

2.4.4 Modeling and Validation of DUT Registers Using the RGM
Framework

The Register and Memory Database (RGM_DB) serves as the central component
of the Register and Memory (RGM) framework used in UVM-based verification
environments. It functions as the core data structure that encapsulates the entire
shadow model of the Design Under Test (DUT), e"ectively mirroring the state of
the DUTs registers and memory. Once the memory and register models are defined,
they are instantiated and stored within the RGM_DB, which acts as the root of the
register model hierarchy. When a register is written or read via the bus interface,
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Figure 2.3: uvm_rgm architecture

the RGM_DB is updated accordingly. This shadow model enables:

• Scoreboarding: Comparing DUT responses against expected values.

• Coverage: Tracking which registers and fields were accessed.

As a subclass of the uvm_component base class, the RGM_DB inherits all
standard UVM functionalities. These include integration with the configuration
database mechanism, participation in the UVM testbench phase flow, and control
over messaging and reporting. By centralizing the register and memory models,
the RGM_DB ensures consistent access, configuration, and monitoring across the
verification environment. This architectural approach not only enhances modularity
and reusability but also supports scalable and maintainable register-level verification.

Scoreboards act as reference models that track and validate the behavior of the
DUT by comparing expected outcomes, derived from the testbench’s internal models,
with the actual results observed during simulation. This comparison is essential for
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identifying discrepancies and ensuring that the DUT adheres to its specification.

Let’s see how this is performed in details. The following steps outline the
verification plan:

1. Reference Model Development: Construct a comprehensive reference model
that accurately represents the register map. This model should include details
such as register addresses, sizes, reset values, and access policies. Additionally,
it must incorporate memory block representations to facilitate validation of
basic memory access operations.

2. Stimulus Generation via HBUS UVC: Utilize the HBUS Universal Verification
Component (UVC) to generate read and write transactions targeting the router
registers. Existing sequences from the HBUS UVC library may be reused or
adapted to suit the specific requirements of the register.

3. Monitor Integration and Shadow Register Updates: Connect the reference
model to the analysis port of the HBUS UVC monitor to capture and interpret
HBUS transactions. The model should update shadow registers in accordance
with the register’s functional specification.

4. Register Value Comparison: After each stimulus sequence, compare the values
of the registers in the DUT against those in the reference model to ensure
consistency and correctness.

Within the RGM framework, this validation process is tightly coupled with the
register and memory models. When a write operation is performed on a register or
memory location, the RGM updates its internal shadow model to reflect the new
state. Conversely, when a read operation is detected on the bus, the RGM accesses
its internal model and compares the expected value with the data returned by the
DUT. This mechanism ensures that any deviation from the expected behavior is
promptly flagged and can be analyzed further.

The scoreboard itself is typically connected to the RGM database through a
Transaction-Level Modeling (TLM) interface. This setup allows the scoreboard to
receive real-time updates about register transactions, enabling it to maintain an
accurate and synchronized view of the DUTs state. In more complex environments,
such as those involving multiple bus protocols (e.g., APB, AXI), custom adapters are
used to bridge the communication between the DUT and the RGM infrastructure.
These adapters ensure that protocol-specific nuances are correctly handled, and that
the scoreboard receives consistent and protocol-agnostic transaction data.
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Moreover, the RGM sequencer, which orchestrates register-level sequences, is
often linked to the scoreboard through response ports. This connection facilitates
the monitoring of transaction outcomes and supports advanced features such as
automatic consistency checks and coverage collection. In multi-master environments,
the scoreboard must also account for concurrent accesses and ensure that the register
model remains coherent across all access points.

In the uvm_rgm framework, register sequences are derived from standard UVM
sequences but are tailored to provide greater automation and convenience for register-
level verification. Each sequence operates on a data item of type uvm_rgm_reg_op,
which encapsulates all the necessary information for a register transaction. This
includes the target register, its address, the direction of the operation (read or
write), and the access mode, whether the transaction is performed through the bus
interface (frontdoor) or directly via the HDL path (backdoor). These abstractions
allow users to interact with registers using symbolic names or addresses, significantly
improving code clarity and maintainability.

The uvm_rgm package also provides built-in checking capabilities that are both
flexible and adaptable to a wide range of verification strategies. One of the key
features supporting this is the shadow model, which resides within the RGM_DB
component. This model maintains a mirrored view of the DUT’s register state
and is automatically updated or compared against real-time DUT activity. The
synchronization between the DUT and the shadow model is facilitated by a dedicated
component known as the Module UVC.

The Module UVC acts as an intermediary between the interface UVC monitor
and the register model. It is responsible for processing each register transaction
detected by the monitor. When a write operation is observed, the Module UVC
invokes the update() method, passing along the address, data, and any applicable
byte-enable masks. This ensures that the shadow model reflects the most recent
state of the DUT. Conversely, when a read operation is captured, the Module UVC
calls the compare_and_update() method. This function compares the value read
from the DUT with the expected value in the shadow model and updates the model
accordingly. Any discrepancies are flagged as verification errors, unless explicitly
masked.

However, not all registers are expected to remain static. Certain registers, such
as status or read-only registers, may be modified by the DUT during simulation. In
such cases, the shadow model may fall out of sync with the actual hardware state.
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While masking these comparisons can suppress false error reports, it does not address
the underlying challenge of verifying these dynamic registers. To overcome this, a
reference model or predictor is often employed. This model estimates the expected
register values based on the simulation context and DUT behavior. Depending on
the verification goals, the predictor can be cycle-accurate, updating the shadow
model in real time, or partially accurate, validating only specific registers or time
windows.

To support these advanced verification strategies, the uvm_rgm containers o"er a
suite of utility functions for setting and retrieving register values programmatically.
This allows the reference model to interact with the shadow model in a controlled
and predictable manner.

Additionally, the uvm_rgm framework provides two hook methods, pre_access()
and post_access(), to handle side e"ects associated with register access. The
pre_access() hook is triggered before any update, fetch, or compare operation,
giving access to the original register value and the parameters of the transaction.
This can be used for legality checks or logging. The post_access() hook, on the
other hand, is invoked after the operation completes and can be used for post-
processing tasks such as validation or reporting.

This architecture provides a robust and scalable solution for register verification,
enabling precise control, automated checking, and seamless integration with the
broader UVM environment.

2.4.5 Backdoor

In addition to frontdoor access via the bus interface, the uvm_rgm framework supports
backdoor access to registers, fields, and memories. This mechanism allows direct
interaction with the DUT through its hierarchical HDL structure, bypassing the bus
protocol and enabling more e!cient or targeted verification operations.

Each uvm_rgm object, whether a register, register file, or address map, contains
an hdl_path field, which stores the HDL path as an associative array of strings.
The full HDL path of an object is computed by concatenating the HDL paths of
all its parent containers, forming a complete reference to the objects location in the
DUT hierarchy. For register fields, the HDL path can be explicitly defined using the
final argument of the uvm_rgm_fld_macro.
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Figure 2.4: HDL Backdoor Path

Typically, the HDL path is set per instance within its container. For example,
a register file instance such as rf_1 should invoke the set_hdl_path() method for
each contained register. However, this configuration is flexible and can be modified
from any point in the testbench environment by calling object.set_hdl_path().

Backdoor write operations are implemented as tasks, meaning they do not consume
simulation time. If the forced value needs to persist on the signal for a specific
duration, the user can set the static variable force_time to the desired interval.
The backdoor force will remain active for that duration and will be automatically
released afterward.

To enable backdoor access, the HDL path must be correctly assigned to the
target register or field. Additionally, the register sequence must be configured to
use the backdoor mechanism. This is achieved by setting the hdl_connection field
of the sequence to BACKDOOR. When this setting is applied, the register sequencer
accesses the DUT using the HDL path rather than the bus interface.

This approach is particularly useful for verifying read-only registers, injecting
values for fault simulation, or bypassing protocol constraints during early-stage
verification. It also enables faster access and more precise control over register
behavior, making it a valuable tool in complex verification environments.

2.5 RAL

Before the introduction of the Register Abstraction Layer (RAL), the Register
and Memory Model (RGM) served as the primary methodology for modeling and
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verifying register-level behavior in digital designs. RGM provided a structured
framework for defining registers, memories, and address maps, and enabled simulation
environments to mirror and validate the state of the DUT. However, as verification
methodologies evolved and the complexity of SoC designs increased, several limitations
of RGM became apparent.

One of the key challenges with RGM was its tight coupling to specific verification
environments and its limited flexibility in adapting to diverse design flows. RGM
required significant manual e"ort to integrate with UVM components, and its learning
curve was steep due to the scarcity of comprehensive documentation and examples.
Moreover, RGM lacked native support for some of the advanced features introduced
in UVM, such as layered sequences, callbacks, and dynamic reconfiguration of register
models.

To address these limitations, the Accellera Systems Initiative introduced the
Register Abstraction Layer (RAL) as part of the UVM standard. RAL was designed
to provide a more unified, extensible, and user-friendly approach to register modeling.
It abstracts the underlying register implementation and o"ers a consistent API for
accessing and manipulating register contents, regardless of the bus protocol or DUT
architecture. This abstraction enables to write portable and reusable test sequences,
simplifies integration with UVM components, and enhances automation in register-
level verification [27].

RAL also introduced improved support for functional coverage, and predictive
modeling, making it more suitable for modern verification environments. By standardizing
the way registers are defined, accessed, and validated, RAL has become the preferred
methodology in UVM-based testbenches, e"ectively superseding RGM in many
practical applications [28].

RAL was designed with three pragmatic goals in mind[27]:

1. Abstraction and Reuse: RAL enables stimulus and checking to be written
against logical register names and access policies, rather than physical addresses
or bus-specific details. This abstraction allows test sequences and checkers to
remain valid even as the address map or bus interface changes, promoting
reuse across both IP and integration levels.

2. Protocol-Agnostic Access: RAL introduces a standard API (read, write,
peek, poke, update, etc.) that decouples the intent of register operations
from the underlying transport mechanism. Adapters bridge RAL operations
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to any bus functional model (BFM), supporting both frontdoor (bus-based)
and backdoor (direct HDL path) accesses. This protocol independence is
crucial for supporting a wide range of bus architectures and for enabling direct,
instantaneous register updates or observations when needed.

3. Predictable Mirrors and Checking: RAL standardizes the semantics of register
mirroring, supporting actual, mirrored, and desired values for each register. It
provides both implicit and explicit prediction mechanisms, as well as built-in
sequences and coverage hooks. This standardization addresses portability and
consistency issues that previously plagued ad-hoc register libraries, ensuring
that register checking and coverage collection are robust and comparable across
projects.

2.5.1 RAL Register Model

In addition to other auxiliary attributes, four primary properties are used to manage
field values within the UVM Register Abstraction Layer (RAL):

1. Desired: This property stores the intended value for a register field. It enables
e!cient updates by allowing the register model to be preloaded with the
required values, which can then be applied to the DUT registers through a
single update method.

2. Mirrored: This property represents the expected value of the DUT register.
The register model attempts to keep this value synchronized with the DUT,
although perfect alignment is not always achievable due to asynchronous updates
or external modifications.

3. Reset: Reset values are maintained in an associative array indexed by strings.
By default, the array contains a single entry at index "HARD", corresponding
to the hardware reset value. Additional reset types (e.g., "SOFT") can be
introduced through vendor-specific extensions, allowing multiple reset states
to be modeled.

4. Value: This is the only publicly accessible property and should be used exclusively
within randomization constraints. Direct access to other properties is discouraged;
instead, the corresponding register methods should be employed for interaction.

Each field also adheres to an access policy, which is derived from the register
specification. UVM provides several standard policies, while vendor extensions and
custom definitions allow for specialized or unique behaviors [29].
Figure 2.5 illustrates the structure of the RAL register model.
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Figure 2.5: RAL Register Model

Register Abstraction Layer or RAL provides originated from UVM, it provides
a set of base classes and methods with a set of rules which eases the e"ort required
for register access.

2.5.2 Backdoor in RAL and Register Access Methods

Frontdoor access initiates a read operation on the register model to retrieve information
such as address and access policy, thereby constructing a generic register transaction.
This transaction is then translated into a DUT-specific operation by the UVC
adapter and executed via the UVC sequencer.

In contrast, backdoor access involves direct method calls that read from or write
to the register variables within the DUT using the hierarchical path specified by
hdlpath.
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For both frontdoor and backdoor operations, the register model’s mirrored and
desired values are updated through prediction to reflect the expected state of the
DUT post-transaction. In the case of frontdoor access, this update is governed by
the current prediction mode. Specifically, under implicit prediction, the update is
performed by the register method itself. For backdoor access, the model update is
consistently executed by the method.

Backdoor access is designed to emulate the behavior of frontdoor operations
while adhering to access policies. For example:

• A backdoor write to a read-only register is ignored.

• A backdoor read of clear-on-read bits results in both the register model and
DUT bits being set to zero.

Consequently, a backdoor read may also trigger a read-modify-write cycle on the
DUT registers.

Figure 2.6: Frontdoor vs Backdoor

The standard access methods for registers are read() and write(). In contrast,
the peek() and poke() methods perform backdoor reads and writes directly on the
DUT register using the hierarchical path specified by hdlpath [30]. These methods
are strictly backdoor and do not initiate any transactions on a UVC.

Unlike conventional backdoor access, peek() and poke() operations disregard
access policies. For instance, it is possible to poke() a read-only register.

The register model is updated based on the value sampled or deposited through
peek() or poke(), ensuring it reflects the actual state of the DUT register.

The poke() method deposits a value directly onto the DUT register variable,
ignoring access restrictions. The value is written to both the DUT and the register



2.5 RAL 43

model. For example, poking a zero into Write-Zero-to-Set bits will clear the bits
instead of setting them. As a result, poke() can assign values to DUT registers that
would be otherwise illegal or impossible under normal operation.

The peek() method samples the current value of the DUT register variable
without modifying it. Access policies are again ignored. For example, peeking at
Clear-On-Read bits does not clear them.

The predict() method allows manual updates to the mirrored and desired
values within the register model. This is particularly useful when setting the expected
value prior to a read() operation, such as in cases where the register is internally
modified by the DUT.

To retrieve the current mirrored value, the get_mirrored_value() method can
be used. This is commonly applied in read-modify-write operations where the
existing value must be accessed before performing an update.

By default, both predict() and get_mirrored_value() bypass register access
policies. For example, predict() can be used to write to a read-only register without
restriction.

The set(), get(), and randomize() methods operate exclusively on the desired
value within the register model. These methods do not interact with the DUT or
any UVC interface. Their primary purpose is to configure the register model with a
set of required values, which can later be applied to the DUT registers using a single
update() method call.

The set() method respects access policies when assigning values to desired. If
necessary, the mirrored value is used as the current register state to compute the
appropriate desired value.

The randomize() method enables the application of random values to a single
field, an individual register, or the entire register model, facilitating flexible and
dynamic test scenarios.

A summary of the register access methods is provided in Figure 2.7, which
outlines the behavior and characteristics of each method.
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Figure 2.7: Register Access Methods

2.5.3 Prediction

Prediction plays a critical role in UVM-based verification by ensuring that the
register model remains synchronized with the actual state of the DUT [31]. This
synchronization enables the register model to serve as a reliable reference for checking
and validation throughout the simulation process.

There are four primary prediction modes: implicit (or auto), explicit, passive,
and manual.

Implicit prediction allows the use of register sequences and built-in tests without
a dedicated predictor component. In this mode, register methods update both the
register model and the DUT. The register adapter is engaged only when register
model access methods are invoked for frontdoor read/write operations. However,
implicit prediction is disabled by default. When enabled, only registers accessed
via register methods are updated in the model. Registers accessed through UVC
sequences are not reflected in the model, which can be problematic when UVC
sequences are required.

Explicit prediction requires integration of the register model with both the
bus UVC sequencers and the corresponding bus UVC monitor analysis ports. In
this mode, implicit prediction is turned o", and updates to the mirrored values
are performed externally by a uvm_reg_predictor component, one for each bus
interface. The predictor receives bus operations observed by a connected bus monitor
via the analysis port, performs a reverse-lookup using the observed address to
identify the accessed register, and then explicitly calls the registers predict()
method to update the model. Although this integration requires additional e"ort, it
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ensures that all bus operations, whether initiated by the register model or a third-
party bus agent, are observed and reflected in the register model.

When the predictor detects a write operation, it updates the register model with
the value written to the DUT register.

Passive prediction also uses a predictor component but does not connect the
register model to the UVC sequencer. Instead, the register model is updated using
UVC transactions captured by the UVC monitor. However, register sequences
cannot be used to initiate transactions on the UVC. Only UVC sequences are
permitted for accessing DUT registers and memory. Due to its limitations and
minimal code savings compared to explicit prediction, passive prediction is rarely
used.

Manual prediction refers to design-specific or custom approaches that complement
or replace the standard UVM prediction modes. These methods are typically implemented
when none of the built-in modes fully address the needs of the design. Manual
prediction may involve user-defined logic to update the register model based on
DUT behavior, and is especially useful in cases where prediction must be tightly
coupled with unique design features or verification strategies.

Among these modes, explicit prediction is generally recommended. It supports
the use of register methods for improved readability and abstraction, and enables
UVC register access transactions, which are often necessary for vertical reuse and
system-level simulation.

It is important to note that accurate prediction may not be feasible for certain
registers, such as read-only status registers set internally by the DUT. These are
referred to as volatile registers.

2.5.4 Active Monitoring for volatile registers

In advanced SystemVerilog UVM-based verification, maintaining an accurate mirror
of the DUT register state within the register model is essential for robust checking
and coverage. While most registers can be predicted using standard UVM prediction
modes (implicit, explicit, passive, or manual), certain registers, notably read-only
status or interrupt registers set internally by the DUT, are inherently volatile.
Their values may change asynchronously, outside the scope of bus transactions,
making them unpredictable by conventional means. For such cases, UVM provides
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a mechanism known as active monitoring, which leverages user-defined backdoors to
automatically update the register model whenever the DUT register changes value
[27].

Active monitoring is implemented by attaching a custom backdoor to the register
model. This backdoor observes the DUT register variable and updates the mirrored
value in the register model as soon as a change is detected. This approach is
particularly useful for a small number of key volatile registers whose values may
influence other registers or the overall DUT behavior.

The process involves:

• Defining a user backdoor class that extends uvm_reg_backdoor.

• Overriding the read_func() method to sample the DUT variable and update
the register model.

• Implementing a wait_for_change() task that blocks until the DUT variable
changes, triggering an update.

• Optionally, overriding is_auto_updated() to indicate that the register is
actively monitored.

A typical user-defined backdoor for active monitoring might look as follows:

class active_monitor_bkdr extends uvm_reg_backdoor;
function new(string name = "");

super.new(name);
endfunction

function void read_func(uvm_reg_item rw);
rw.value = new[1];
rw.value[0] = DUT.reg_six; // Hierarchical path to DUT register
rw.status = UVM_IS_OK;

endfunction

local task wait_for_change(uvm_object element);
@(DUT.reg_six); // Wait for value change event

endtask

function bit is_auto_updated(uvm_reg_field field);
return 1;

endfunction
endclass
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The backdoor is then instantiated and attached to the relevant register in the
testbench:

active_monitor_bkdr r6_bd = new("r6_bd");
reg_rm.registers.reg_six.set_backdoor(r6_bd);
r6_bd.start_update_thread(reg_rm.registers.reg_six);

While the above example hardwires the backdoor to a specific DUT variable,
this approach can be limiting if multiple registers require active monitoring or if
the backdoor needs to be packaged for reuse. To address this, the backdoor can
be generalized using SystemVerilog virtual interfaces. The interface encapsulates
the register variable, and the backdoor accesses the variable through the interface,
allowing for scalable and reusable active monitoring across multiple registers.

Active monitoring is best reserved for a small number of volatile registers due
to the simulation overhead of monitoring value changes. It is not intended as a
replacement for standard prediction modes for all registers. Registers that are
actively monitored should not be updated by other prediction mechanisms to avoid
inconsistencies.





Chapter 3

Backdoor implementation

3.1 Backdoor Access

From this point forward, a comparative analysis is conducted to evaluate three
distinct register access methodologies employed in hardware verification environments.
These methods di"er primarily in the mechanism used to interact with the register
model, while the underlying test logic and verification objectives remain consistent
across all cases. The purpose of this comparison is to assess the behavioral and
performance implications of each access mode under controlled test conditions.

The access methods under evaluation are as follows:

• RGM sequencer

• RAL frontdoor

• RAL backdoor

Each method represents a di"erent abstraction level and access path to the
register model. The RGM sequencer operates within the Register Generation Model
framework, typically using sequences that interact with the register database through
protocol-compliant transactions. The RAL frontdoor method utilizes the UVM
Register Abstraction Layer to perform register accesses via the bus interface, simulating
real-world interactions with the design under test (DUT). In contrast, the RAL
backdoor method bypasses the bus interface and directly manipulates register values
within the simulation environment, o"ering faster execution and simplified access
for certain verification tasks.

To ensure a fair and consistent comparison, two test scenarios are defined,
referred to as Test T1 and Test T2. These tests di"er in the number of polling

49
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accesses issued to a specific status register.

Polling is a technique commonly used in hardware verification to monitor the
state of a device or component by repeatedly reading a register until a desired
condition is met. This condition may reflect readiness, completion, or error status,
and is typically encoded in a dedicated status field. Polling involves issuing successive
read operations to the target register field, evaluating the returned value against
an expected condition, and continuing the process until the condition is satisfied.
This approach enables synchronization between the testbench and the DUT without
relying on interrupt-driven mechanisms. However, polling can introduce performance
overhead due to repeated bus transactions and may increase simulation time, particularly
if the condition requires many cycles to be fulfilled.

In this analysis, each access method, RGM sequencer, RAL frontdoor, and RAL
backdoor, is employed to perform status register reads during the polling process. To
maintain consistency and control timing behavior, a configurable delay is introduced
between each polling attempt. This delay is passed as a command-line argument
during test execution and stored in a variable referred to as polling_delay.

The implementation of each access method is illustrated using simplified pseudocode
examples, highlighting the procedural di"erences and structural characteristics of the
respective approaches.

The expected outcome of this comparative analysis is that the use of RAL
backdoor access will result in a reduction in both simulation time and overall test
duration. This is primarily attributed to the nature of backdoor access, which
bypasses the standard bus interface and directly manipulates register values within
the simulation environment. By eliminating protocol-level transactions and associated
signal activity, backdoor access significantly accelerates register interactions, making
it particularly advantageous in scenarios involving frequent polling or large-scale
register operations.

In contrast, both RAL frontdoor and backdoor access methods are expected
to incur higher memory and computational overhead. This is primarily due to the
additional tasks and components that these access methods introduce into the UVM
testbench. During the build phase of the simulation, these tasks are instantiated
and integrated into the testbench infrastructure, resulting in increased memory
usage. Furthermore, the presence of these tasks contributes to greater simulation
complexity, as they involve additional layers of abstraction, transaction handling,
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and callback mechanisms that must be managed throughout the test execution.

Therefore, while frontdoor and sequencer accesses o"er higher fidelity and protocol
realism, backdoor access provides a more e!cient alternative for performance-sensitive
verification tasks. The trade-o" between accuracy and e!ciency must be carefully
considered based on the specific objectives and constraints of the verification campaign.

3.2 Synopsys VCS profiling

The Synopsys VCS® (Verilog Compiler Simulator) is a high-performance simulation
and verification platform widely adopted in the semiconductor industry. It provides
advanced simulation capabilities, constraint-solving engines, and profiling tools that
enable e!cient debugging, performance tuning, and verification closure [32].

These features allow users to analyze simulation behavior at both compile-time
and runtime, enabling data-driven decisions for improving verification e!ciency.

The profiling tools allow users to visualize coverage hotspots, correlate them
with simulation performance, and prioritize test development accordingly. Intelligent
Coverage Optimization (ICO) further enhances this process by identifying redundant
tests and focusing resources on under-covered areas [33].

In the context of this thesis, VCS profiling will be employed to analyze simulation
performance and identify potential ine!ciencies in the testbench and register access
mechanisms. Profiling will be enabled by passing the vcs_profiling argument to
the simulation run command. This directive activates the internal profiling engine
of VCS, allowing for the collection of detailed runtime statistics and performance
metrics. The resulting data will be used to support the comparative analysis of
access methodologies and to guide optimization e"orts.

When conducting simulation profiling using VCS, it is considered best practice
to perform memory profiling and time profiling in separate simulation runs. This
separation is recommended due to the potential for interference between the two
profiling modes, which can lead to inaccurate or misleading results.

Memory profiling in VCS typically involves tracking dynamic memory allocations,
object instantiations, and peak memory usage across the simulation timeline. This
process introduces additional instrumentation and logging overhead, which can significantly
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alter the timing behavior of the simulation. As a result, any time measurements
collected during a memory profiling run may not accurately reflect the true performance
characteristics of the testbench or DUT.

Conversely, time profiling focuses on capturing execution latency, transaction
durations, and simulation throughput. It requires minimal interference with the
simulation flow to ensure that the collected timing data is representative of actual
performance. Introducing memory profiling instrumentation during this process can
distort the timing profile, particularly in high-activity or memory-intensive scenarios.

To ensure the integrity of both profiling analyses, this thesis adopts the approach
of isolating memory and time profiling into distinct simulation runs. This methodology
allows for more accurate diagnostics and enables targeted optimizations in each
domain without cross-contamination of results.

3.3 RGM sequencer pseudocode

The analysis begins by examining how register access is implemented using the
RGM sequencer. This method operates within the RGM framework and utilizes
UVM sequences to perform protocol-compliant register transactions. The sequencer
coordinates the execution of read and write operations, interacting with the register
model and the DUT through a structured and reusable sequence interface.

Below is a pseudocode representation of the polling logic implemented using the
RGM sequencer. This logic is designed to repeatedly read a status register until a
specified condition is met or a timeout threshold is reached:
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if (polling counter_override is set)
polling counter = polling counter override

else if (polling counter is passed via command line)
polling counter = value from command line

initialize match = false
initialize count = 0

while (not match):
count += 1
Wait for a short time defined by polling_delay
read data from register
compare masked bits of read data with expected value
if match:

exit loop
else:

if data is stable:
increment mismatch counter

else:
reset mismatch counter

if mismatch counter reaches polling counter:
if scenario is disabled:

log info and exit
else:

report error and dump debug info
exit loop
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The polling logic illustrated above is designed to monitor a hardware register
until a specific condition is satisfied or a timeout occurs. The process begins by
determining the maximum number of polling attempts, which is either overridden
by a predefined value or passed dynamically via a command-line argument. This
value is stored in the variable polling_counter.

Once the polling configuration is established, the algorithm initializes a match
flag and a counter to track the number of polling iterations. It then enters a loop
where it waits for a short delay, defined by the variable polling_delay, before
issuing a read operation to the target register. The read value is masked and
compared against the expected condition. If a match is detected, the loop terminates
successfully.

If the condition is not met, the algorithm evaluates the stability of the read data.
Stable mismatches increment a mismatch counter, while unstable readings reset
it. This mechanism helps distinguish between transient fluctuations and persistent
mismatches. If the mismatch counter reaches the polling threshold, the algorithm
checks whether the scenario is configured to tolerate such failures. If tolerance is
enabled, the system logs the event and exits gracefully; otherwise, it reports an
error, dumps relevant debug information, and terminates the loop.

This polling strategy enables synchronization between the testbench and the
DUT without relying on interrupt-driven mechanisms. It also provides configurable
control over timing and error handling, making it suitable for a wide range of
verification scenarios.

3.4 RAL Frontdoor and RAL Backdoor pseudocode

In the context of the RAL framework, the polling implementation is designed to
support both frontdoor and backdoor access methods through a unified codebase.
The selection of the access method is determined dynamically at runtime via a
command-line argument provided during test setup. This approach promotes flexibility
and reuse, allowing the same test logic to be applied across di"erent access paths
without duplicating code.

The pseudocode shown below illustrates the polling mechanism implemented
using RAL. It demonstrates how the testbench conditionally selects the appropriate
access method and performs repeated reads of a status register until a match is
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found or a timeout occurs.

Set count = max_count

Loop:
Wait for polling_delay
If using RAL_backdoor:

If register is target register:
Read register using backdoor
Adjust read value

Else:
Read register using RAL_frontdoor

Else:
Read register using RAL_frontdoor

Apply mask to read value

If masked value equals expected value:
Exit loop

If count == 1:
Report fatal error and exit

Else:
Decrement count
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Similar to the RGM-based implementation, this pseudocode defines a polling
loop that repeatedly reads a register until its masked value matches an expected
condition or the maximum number of polling attempts is exhausted. The process
begins by initializing a counter to the maximum allowed attempts, referred to as
max_count.

During each iteration, the testbench waits for a predefined delay, specified by the
variable polling_delay, before performing a read operation. If the backdoor access
method is selected and the register being polled is the designated target, the register
is accessed using the backdoor mechanism. This may involve direct manipulation
of the register model without engaging the DUTs bus interface, and the read value
may be adjusted to account for simulation-specific conditions.

For all other cases, including non-target registers or when backdoor access is not
selected, the register is accessed using the RAL frontdoor method. This involves
issuing a transaction through the bus interface, simulating real hardware behavior
and ensuring protocol compliance. After the read operation, the value is masked
and compared against the expected result. If a match is detected, the loop exits
successfully.

If the condition is not met, the counter is decremented. Once the counter reaches
one and no match has been found, the testbench reports a fatal error and exits the
loop. This mechanism ensures that the polling process does not continue indefinitely
and provides clear feedback in the event of a failure.

It is important to note that within the first conditional block, backdoor access
is only applied to the specific target register. This limitation arises because the
HDL path required for backdoor access has not been configured for other registers.
As a result, the implementation defaults to using the RAL frontdoor method for
all non-target registers. This fallback ensures compatibility and avoids simulation
errors, as frontdoor access does not require explicit HDL path configuration and can
be applied uniformly across the register model.

3.5 Pseudocode for fixed case delay

In this type of test, the polling task has been slightly modified to improve its
e"ectiveness and alignment with the expected timing behavior of the hardware.
Rather than initiating the first read operation immediately upon invocation, the
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task introduces a short fixed delay before polling begins. This initial delay is
approximately equal to the time typically required by the sequencer to complete
a read transaction.

Only after this fixed delay, the task proceed to apply the variable delay defined
by the polling_delay parameter. This adjustment helps mitigate the risk of early
mismatches that may occur if the register is read prematurely, before the status
value has been updated by the hardware. By deferring the first read operation,
the polling mechanism is better synchronized with the hardwares response latency,
thereby reducing the likelihood of false negatives and improving the reliability of the
test outcome.

It is important to note that the RGM sequencer-based polling task does not
require this initial fixed delay prior to initiating the first read. This is because, in
UVM, register reads performed through the sequencer inherently consume simulation
time due to the transaction-based nature of the access. Specifically, the sequencer
initiates a sequence item that is processed by the driver, which then interacts with
the DUT through the appropriate protocol interface. This interaction introduces a
natural delay before the read operation completes.

As a result, the polling task implemented using the RGM sequencer applies the
variable delay defined by polling_delay only after the first read operation, rather
than before it. This behavior ensures that the timing characteristics of the polling
loop remain consistent with the underlying access mechanism and avoids redundant
delays that could otherwise extend the simulation unnecessarily.

The following section outlines the specific modifications introduced in the two
versions of the polling pseudocode, highlighting the di"erences in timing behavior
and access sequencing between the RAL and RGM implementations.
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• RGM sequencer:

if (polling counter_override is set)
polling counter = polling counter override

else if (polling counter is passed via command line)
polling counter = value from command line

initialize match = false
initialize count = 0

while (not match):
count += 1
read data from register
compare masked bits of read data with expected value
if match:

exit loop

else:
if data is stable:

increment mismatch counter
else:

reset mismatch counter

Wait for a short time defined by polling_delay

if mismatch counter reaches polling counter:
if scenario is disabled:

log info and exit
else:

report error and dump debug info
exit loop
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• RAL frontdoor/backdoor:

Set count = max_count

Wait for fixed delay

Loop:
If using RAL_backdoor:

If register is target register:
Read register using backdoor
Adjust read valuea

Else:
Read register using RAL_frontdoor

Else:
Read register using RAL_frontdoor

Apply mask to read value

If masked value equals expected value:
Exit loop

If count == 1:
Report fatal error and exit

Else:
Decrement count
Wait for polling_delay





Chapter 4

Results

4.1 Test T1 - Normal case

The first test serves as a preliminary validation of the GPU functionality and can be
considered a hardware-level equivalent of a Hello World test. Its primary objective
is to confirm that the basic register interactions and status signaling mechanisms are
functioning correctly. In this test, approximately ten polling attempts are performed
on a designated status register to monitor its transition to a ready or completed state.
Successful execution of this test establishes a baseline for subsequent performance
evaluations.

Following this initial validation, performance analysis can be conducted using
profiling tools integrated into the verification environment. These tools enable
detailed measurement of simulation behavior across multiple dimensions, including
execution time and memory usage. To ensure accuracy and isolate the impact of
each factor, it is essential to perform time profiling and memory profiling in separate
test runs.

Time profiling focuses on measuring execution latency, capturing the duration of
register transactions, polling loops, and overall test completion. This analysis helps
identify bottlenecks in transaction handling, synchronization delays, and ine!cient
polling strategies.

In contrast, memory profiling evaluates the resource footprint of the testbench,
including memory consumed by instantiated components, register models, sequences,
and logging mechanisms. It provides insight into the scalability of the verification
environment and highlights areas where memory usage can be optimized.

Running these analyses independently avoids interference between timing and
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memory behaviors, which could otherwise obscure the root causes of performance
issues. For example, memory-intensive components may slow down simulation time,
while timing-sensitive sequences may trigger additional memory allocation. By
separating the profiling tasks, more precise diagnostics can be achieved, enabling
targeted optimizations in both execution speed and resource e!ciency.

Notice that when performing time profiling, the focus will be on both simulation
time and total duration of the test:

• Simulation Time: This represents the design’s own time base that advanced
during the run (e.g., µs/ns or clock cycles of the DUT).

• Total Duration of the Test (Wall-Clock Time / Elapsed Time): This refers to
the real time consumed by the job from start to finish on the host machine
(including UVM build/reset, polling loops, DPI/PLI operations, logging, etc.).

4.1.1 Time profiling

In this initial phase of the analysis, a slight performance advantage was observed
when employing the RAL backdoor access method compared to the RAL frontdoor.
As illustrated in Figure 4.1, the results demonstrate a clear trend, the RAL backdoor
exhibited a marginal decrease in simulation time, measured at approximately 0.05%,
relative to the frontdoor approach. This suggests that, under the given test conditions,
the backdoor mechanism may o"er a more e!cient alternative in terms of simulation
runtime.

Additionally, it was noted that the sequencer activity is temporally aligned with
the RAL frontdoor operations. The corresponding plot reveals that the sequencer
execution is e"ectively superimposed on the frontdoor timeline, indicating that both
mechanisms require an equivalent duration to complete the test sequence. This
alignment implies that, despite the minor di"erence in overall simulation time, the
procedural execution of the test remains consistent across both access methods.

The total duration required to complete a simulation test is significantly influenced
by the characteristics of the cluster on which the test is executed. In the context of
distributed computing environments, a cluster refers to a collection of interconnected
compute servers that operate collectively to execute jobs submitted by users. These
clusters are typically managed by job scheduling systems such as LSF (Load Sharing
Facility), which allocate resources based on queue configurations, host types, and
user-defined constraints. Each cluster may di"er in terms of available memory,
CPU performance, queue policies, and resource allocation strategies, all of which
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Figure 4.1: Test T1 normal case - Simulation Time

contribute to variations in simulation runtime.

Empirical measurements conducted during the evaluation revealed that the RAL
backdoor access method yields a notable improvement in total test duration when
compared to other access mechanisms. Figure 4.2 provides a visual representation of
the observed behavior. Specifically, the backdoor approach demonstrated an average
reduction of approximately 11.58% in total test duration relative to the sequencer-
based method, and a less substantial reduction of 2.82% when compared to the
RAL frontdoor method. These results underscore the importance of both access
methodology and cluster configuration in optimizing simulation e!ciency.

4.1.2 Memory profiling

An evaluation of memory usage across the three access methodologies, sequencer,
frontdoor, and backdoor, reveals notable di"erences in resource consumption. As
anticipated, the sequencer-based approach exhibits the lowest memory footprint
among the three. This outcome aligns with expectations, given the streamlined
nature of sequencer operations which typically involve fewer protocol layers and
reduced transaction overhead.

In contrast, both the frontdoor and backdoor methods demonstrate comparable
levels of memory consumption, with only marginal di"erences observed between
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Figure 4.2: Test T1 normal case - Test Total Duration

them. Quantitative analysis indicates that the sequencer method achieves a memory
saving of approximately 0.928% when compared to the backdoor approach. Additionally,
the backdoor method is found to be 0.153% more memory-intensive than the frontdoor
method. The data shown in Figure 4.9 supports the previously discussed hypothesis.

Figure 4.3: Test T1 normal case - Peak Memory Summary
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4.2 Test T1 - Fixed delay case

4.2.1 Time profiling

Compared to the baseline scenario discussed in the previous chapter, the current
test configuration reveals a more pronounced di"erence in simulation performance
across the evaluated access methods. As anticipated, the RAL backdoor approach
consistently demonstrates superior e!ciency, requiring less simulation time on average
than both the sequencer-based and RAL frontdoor methods.

This improvement can be attributed, in part, to modifications introduced in the
polling task used within this test. This adjustment mitigates the risk of premature
register reads, which could otherwise result in early mismatches if the hardware
has not yet updated the status value. By deferring the first read, the polling task
achieves improved synchronization with the hardware’s response latency, thereby
enhancing the reliability of the test outcome.

Quantitative results from this test indicate that the RAL backdoor method
achieves a reduction in simulation time of approximately 1.10% compared to the
sequencer, and 0.04% compared to the RAL frontdoor. A graphical summary is
presented in Figure 4.4. These findings reinforce the e!ciency of the backdoor
approach, particularly in scenarios where precise timing alignment and reduced
simulation overhead are critical.

Figure 4.4: Test T1 fixed case - Simulation Time

The total duration of simulation remains strongly influenced by the characteristics
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of the cluster on which the test is executed. In the present test scenario, the RAL
backdoor method demonstrated a reduction in total test duration of approximately
17.26% when compared to the sequencer-based approach. This result is consistent
with expectations, given the reduced protocol overhead typically associated with
backdoor accesses.

However, an unexpected outcome was observed when comparing the backdoor
method to the RAL frontdoor. Specifically, the backdoor exhibited an increase in
total test duration of approximately 3.47% relative to the frontdoor. The results
are depicted in Figure 4.5. While this result deviates from the anticipated trend, it
is not considered anomalous. The discrepancy is likely attributable to the inherent
variability introduced by the cluster environment, which can a"ect job scheduling
and resource contention in unpredictable ways.

These findings reinforce the importance of considering cluster-specific factors
when interpreting simulation performance metrics, particularly in comparative analyses
involving di"erent access methodologies.

Figure 4.5: Test T1 fixed case - Test Total Duration

4.2.2 Memory profiling

The memory profiling results obtained in this test configuration exhibit a high
degree of consistency with those observed in the previous case. This outcome was
anticipated, given the structural and procedural similarities between the two test
setups.

In this instance, the RAL backdoor method demonstrates a slightly higher
memory usage compared to the other approaches. Specifically, it consumes approximately
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1.06% more memory than the sequencer-based method and 0.184% more than the
RAL frontdoor. Figure 4.9 highlights the key aspects of the analysis. These di"erences,
while minor, are consistent with the expected behavior of backdoor accesses, which
may involve additional internal handling or bypass mechanisms that contribute to
increased memory utilization.

Overall, the results reinforce the notion that memory consumption remains
relatively stable across comparable test configurations, with only marginal variations
attributable to the specific access methodology employed.

Figure 4.6: Test T1 normal case - Peak Memory Summary

4.3 Test T1 - Real application case

4.3.1 Time profiling

The results obtained in this test scenario, which closely resembles real-world operating
conditions of the device, provide some of the most significant insights into the
comparative performance of the access methods under evaluation. In particular,
the behavior of the system under high values of the parser_poll_delay parameter
reveals a substantial advantage associated with the RAL backdoor approach.

For instance, when parser_poll_delay is set to 3400, the RAL backdoor method
achieves a reduction in simulation time of approximately 3% compared to the sequencer-
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based method, and 0.62% compared to the RAL frontdoor. These improvements are
consistent with expectations, as such delay values are representative of the timing
conditions encountered during normal operation of the hardware. The backdoor
method benefits from its ability to bypass protocol overhead, thereby reducing
latency and improving simulation e!ciency.

On average, across the range of tested delay values, the RAL backdoor demonstrates
an improvement of approximately 0.772% relative to the sequencer. However, when
compared to the RAL frontdoor, the average improvement is negligible. The outcome
is captured in Figure 4.7. This suggests that while the backdoor method o"ers clear
advantages in specific timing scenarios, its overall performance may converge with
that of the frontdoor under certain conditions.

These findings underscore the importance of aligning test configurations with
realistic hardware behavior in order to accurately assess the e!ciency of di"erent
access methodologies.

Figure 4.7: Test T1 real case - Simulation Time

The evaluation of total test duration in this test configuration yields results that
are consistent with those observed in previous scenarios. Although the overall trend
remains similar, the performance gap between the RAL backdoor and the sequencer-
based frontdoor approach is less pronounced in this case.

Quantitative analysis indicates that the RAL backdoor method achieves a reduction
in total test duration of approximately 3.10% when compared to the RAL frontdoor,
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and a more substantial improvement of 6.556% relative to the sequencer. These
results rea!rm the e!ciency of the backdoor access mechanism, particularly in
minimizing simulation overhead. Figure 4.8 serves to illustrate the main findings.

The reduced di"erence with the frontdoor method may be attributed to specific
test conditions or cluster-related factors that influence execution time. Nonetheless,
the consistent advantage of the backdoor approach across multiple configurations
highlights its suitability for scenarios where simulation performance is a critical
consideration.

Figure 4.8: Test T1 real case - Test Total Duration

4.3.2 Memory profiling

As stated in earlier sections, memory consumption across di"erent access methodologies
tends to remain relatively stable when the underlying test structure and operational
flow are preserved. The current configuration continues to support this observation,
with results that align closely with those previously reported.

In this particular case, the RAL backdoor method exhibits a marginal increase
in memory usage compared to the other approaches. Specifically, it consumes
approximately 0.177% more memory than the RAL frontdoor and 0.951% more
than the sequencer-based method. The pattern can be discerned from Figure 4.9.
Nonetheless, the overall trend confirms that memory usage remains largely consistent
across comparable test setups, with only minor deviations influenced by the access
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strategy employed.

Figure 4.9: Test T1 normal case - Peak Memory Summary

4.4 Test T2 - Normal case

As stated in earlier sections, the complexity of a test configuration has a direct
impact on both simulation duration and profiling strategy. The test referred to
as T2 represents a significantly more intricate scenario compared to the previously
analyzed cases. This increased complexity arises primarily from the higher number
of polling attempts directed at the targeted status register, which intensifies the
simulation workload and amplifies the sensitivity to access method e!ciency.

Given this setup, it is reasonable to anticipate a more pronounced performance
advantage for the RAL backdoor method relative to the sequencer and RAL frontdoor
approaches. The reduced protocol overhead and direct memory access characteristics
of the backdoor mechanism are expected to yield measurable improvements in simulation
time under such demanding conditions.

Due to the substantial runtime associated with executing T2, the scope of profiling
has been deliberately limited. Only timing profiling has been conducted, and exclusively
for the baseline configuration and the fixed delay variant. This decision reflects the
practical constraints imposed by the test’s duration and the extensive e"ort required
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for comprehensive analysis.

The results obtained from this focused profiling are intended to provide representative
insights into the behavior of the access methods under high-load conditions, while
maintaining feasibility within the overall verification workflow.

However, the results obtained reveal that the average improvement associated
with the RAL backdoor method is slightly lower than initially expected. This
reduction in relative gain is attributed to the considerable overhead introduced by
other operations performed during the test, which diminish the impact of access
method optimization. Despite this, the backdoor approach continues to demonstrate
consistent e!ciency, particularly in scenarios where polling intensity is high and
protocol simplification is beneficial.

4.4.1 Time profiling

The outcomes of the initial test indicate that the substantial overhead introduced
by additional polling operations on unrelated registers diminishes the observable
performance gains. This phenomenon is consistent with expectations, as such overhead
can obscure the benefits of targeted optimizations. Nevertheless, the enhancement
provided by the RAL backdoor mechanism, when compared to access via the Sequencer,
remains evident. This improvement was quantified at 0.13%. On average, the
performance metrics of the RAL backdoor and RAL frontdoor approaches are approximately
equivalent, with the latter demonstrating a marginal advantage of 0.092%. A
detailed view is available in Figure 4.10.

Regarding the total test duration, certain anomalies were observed during measurement.
These irregularities are likely attributable to the overhead introduced by concurrent
tests or system-level factors. Specifically, the total time required to complete a
test is significantly influenced by the characteristics of the cluster on which the
test is executed. These clusters allocate computational resources based on queue
configurations, host specifications, and user-defined constraints. Variations in available
memory, CPU performance, queue policies, and resource allocation strategies across
clusters contribute to inconsistencies in simulation runtimes.

In the present case, it was observed that the RAL backdoor access method
incurred a longer execution time compared to both the RAL frontdoor and Sequencer-
based access methods. Quantitatively, the RAL backdoor was measured to be
21.21% more time-consuming than the RAL frontdoor, and 6.97% more time-consuming
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Figure 4.10: Test T2 normal case - Simulation Time

than the Sequencer-based access. The graphical output in Figure 4.11 complements
the textual explanation

Figure 4.11: Test T2 normal case - Test Total Duration
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4.5 Test T2 - Fixed case

4.5.1 Time profiling

In this test scenario, a performance improvement was observed when compared to the
baseline case, which aligns with expectations. Specifically, the RAL backdoor access
method demonstrated a measurable enhancement over the Sequencer-based access,
with a recorded gain of 0.406%. Despite this, the RAL frontdoor approach exhibited
a slightly superior performance relative to the backdoor, with an average advantage
of 0.08%. Figure 4.12 encapsulates the core result of this section. These results
suggest that while the RAL backdoor o"ers benefits over traditional Sequencer
access, the frontdoor method remains marginally more e!cient under the tested
conditions.

Figure 4.12: Test T2 fixed case - Simulation Time

In the second test scenario, a more pronounced improvement was observed.
Although the total execution time associated with the RAL backdoor access method
remained higher than that of both the RAL frontdoor and Sequencer-based approaches,
the performance gap was notably reduced compared to previous measurements.
Specifically, the RAL backdoor was found to be 3.62% more time-consuming than the
RAL frontdoor and 4.94% more time-consuming than the Sequencer-based access.
This represents a significant improvement relative to the earlier test, where the RAL
backdoor exhibited a 21.21% and 6.97% increase in total duration compared to the
RAL frontdoor and Sequencer-based methods, respectively. Figure 4.13 outlines the
results of the analysis. These findings suggest that under certain conditions, the
e!ciency of the RAL backdoor can approach that of the alternative access methods.
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Figure 4.13: Test T2 fixed case - Test Total Duration

These observations suggest that, had a realistic scenario also been implemented
for test T2, a more substantial performance improvement could have been achieved.
This enhancement would likely have manifested in both the simulation runtime and
the overall duration of the test. The implication is that the current test configuration
may not fully capture the potential benefits of the proposed access method, and that
further gains could be realized under conditions that more closely resemble practical
deployment environments.
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Conclusion

This thesis has presented a comprehensive evaluation of three distinct register access
methodologies, RGM sequencer, RAL frontdoor, and RAL backdoor, within the
context of hardware verification environments. The analysis was conducted through
a series of structured test scenarios, each designed to isolate and measure the
behavioral and performance characteristics of the access methods under varying
operational conditions.

The comparative study began with the implementation of a baseline test (Test T1
- Normal Case), which served as a foundational reference for subsequent evaluations.
In this scenario, the RAL backdoor method demonstrated a marginal improvement
in simulation time over the RAL frontdoor, while maintaining comparable memory
usage. The sequencer-based approach, although slightly slower in simulation time,
exhibited the lowest memory footprint. These findings confirmed the hypothesis
that backdoor access can o"er performance benefits by bypassing protocol overhead,
albeit with a modest increase in memory consumption.

Subsequent tests introduced refinements to the polling mechanism, including the
addition of a fixed delay to better align with hardware response timing (Test T1 -
Fixed Case). This modification resulted in a more pronounced performance gain for
the RAL backdoor, which achieved a 1.10% reduction in simulation time compared
to the sequencer. However, an unexpected increase in total test duration relative
to the frontdoor method was observed, likely due to variability in cluster resource
allocation. These results highlighted the sensitivity of simulation performance to
environmental factors such as job scheduling and compute node characteristics.

The real application scenario (Test T1 - Real Case) provided the most representative
conditions for assessing access method e!ciency. Under these conditions, the RAL
backdoor consistently outperformed the sequencer and, in most cases, the frontdoor
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method. The average simulation time improvement over the sequencer was measured
at 0.772%, with a peak gain of 3% observed at higher polling delay values. These
results underscore the suitability of the backdoor approach for realistic verification
workloads, where protocol simplification and reduced latency are critical.

In contrast, the more complex test configuration (Test T2) introduced a higher
number of polling operations, thereby increasing the simulation workload and amplifying
the impact of access method e!ciency. In the normal case, the RAL backdoor
exhibited only a slight improvement over the sequencer (0.13%) and was marginally
outperformed by the frontdoor (0.092%). Moreover, the total test duration revealed
a significant overhead for the backdoor, which was 21.21% and 6.97% more time-
consuming than the frontdoor and sequencer, respectively. These results suggest
that the benefits of backdoor access may be diminished in high-load scenarios where
other sources of overhead dominate.

However, the fixed delay variant of Test T2 demonstrated a recovery in backdoor
performance. The simulation time improvement over the sequencer increased to
0.406%, and the performance gap with the frontdoor narrowed to 0.08%. Additionally,
the total duration overhead was reduced to 3.62% and 4.94% compared to the
frontdoor and sequencer, respectively. These findings indicate that with appropriate
timing adjustments, the e!ciency of the backdoor method can be restored even in
complex test environments.

The analysis also revealed that memory usage remained relatively stable across
all test configurations, with only minor variations attributable to the access method
employed. The sequencer consistently consumed the least memory, while the backdoor
and frontdoor methods exhibited slightly higher usage due to additional abstraction
layers and internal handling mechanisms.

Overall, the results of this study support the conclusion that the RAL backdoor
access method provides a viable and e!cient alternative for performance-sensitive
verification tasks. Its advantages are most evident in scenarios that closely mirror
real-world hardware behavior, where protocol overhead can be minimized and simulation
latency reduced. However, the e"ectiveness of the backdoor approach is contingent
upon the complexity of the test, the configuration of the polling mechanism, and
the characteristics of the execution environment.

It is also worth noting that the current implementation of Test T2 may not fully
reflect the potential of the RAL backdoor method. Had the test been configured
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to more accurately emulate a realistic application scenario, it is likely that greater
performance improvements would have been observed. Such enhancements would
be expected to manifest in both simulation runtime and total test duration. This
observation reinforces the importance of aligning test environments with practical
deployment conditions to better capture the true benefits of the evaluated methodologies.

Future work may explore the integration of dynamic access method selection
based on runtime profiling, as well as the development of adaptive polling strategies
that further optimize simulation performance. Additionally, extending the analysis
to include power consumption could provide a more holistic assessment of access
method trade-o"s in hardware verification workflows.





Appendix A

Scripts Python

Python script used to generate graphs:

import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import make_interp_spline

title = "Simulation Time - Test T1 Normal"
name = "T1_norm_time_sim"
# Your data
import numpy as np
x = np.array([200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100,

1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100,
2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3100,
3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, 4000])

y1 = np.array([
...

])

y2 = np.array([
...

])

y3 = np.array([
...

])

79



80 A. Scripts Python

# Create a smooth x-axis
x_smooth = np.linspace(x.min(), x.max(), 500)

# Interpolate y-values
y1_smooth = make_interp_spline(x, y1)(x_smooth)
y2_smooth = make_interp_spline(x, y2)(x_smooth)
y3_smooth = make_interp_spline(x, y3)(x_smooth)

# Plotting
plt.figure(figsize=(10, 6))
plt.plot(x_smooth, y1_smooth, label=’Sequencer - Frontdoor’, color=’blue’)
plt.plot(x_smooth, y2_smooth, label=’RAL - Frontdoor’, color=’green’)
plt.plot(x_smooth, y3_smooth, label=’RAL - Backdoor’, color=’red’)

plt.xlabel(’polling_delay [ns]’)
plt.ylabel(’Simulation Time [ns]’)
# plt.ylabel(’Total Duration [s]’)

# plt.ylabel(’Total Duration’)
plt.title(f"{title}")

# Add legend
plt.legend()

# Disable grid
plt.grid(False)

# Titolo e layout
plt.tight_layout()
plt.savefig(f"{name}.pdf", dpi=2400)
plt.show()
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