
POLITECNICO DI TORINO
Department of Electronics and Telecommunications

Master’s Degree in Electronic Engineering

Compact Yet Fast: An Efficient
d-Order Masked Implementation of

Ascon

Supervisor:
Prof. Guido MASERA
Mattia MIRIGALDI

Candidate:
Nico PANINFORNI

Academic Year 2024/2025

Abstract
The proliferation of connected and resource constrained devices in everyday
applications has made hardware security a critical requirement. Ensuring that
cryptographic algorithms can resist physical attacks, such as side-channel analysis,
is essential to guarantee trustworthy and privacy preserving communication in
embedded systems. Side-channel attacks (SCA) represent a major threat to
the secure deployment of cryptographic algorithms on embedded devices, with
power analysis being particularly effective in extracting sensitive information from
hardware implementations. Masking techniques are among the most widely adopted
countermeasures, yet fully masked designs often incur significant area and latency
overhead.
In this work, we present a generic side-channel protected design of Ascon, the
NIST-selected lightweight cryptography standard, that achieves high efficiency by
dynamically reconfiguring the hardware countermeasures during message processing.
Exploiting Ascon’s mode level structure, where bulk operations can be executed
without full protection, we adopt a selective masking strategy, securing only the
most critical phases (initialization and finalization), while accelerating unprotected
bulk processing. To this end, we design a modified masking gadget with dual
functionality: it acts as a countermeasure during sensitive operations and enables
parallel processing paths for enhanced throughput during regular rounds.
Our architecture supports any configurable security order and instantiates only the
minimum hardware resources needed to maximize throughput per round. We also
evaluate an enhanced Ascon architecture based on the Changing of the Guards
technique, which eliminates the need for fresh randomness. Security validation is
performed using fixed-vs-random t-tests on both first- and second-order masked
implementations.
Experimental results demonstrate that the proposed design achieves superior
throughput-to-area ratios compared to state-of-the-art masked implementations,
making it well suited for deployment in resource constrained environments where
both performance and physical security are critical.

Index Terms—Ascon, Hardware, Side-channel attack, Domain- Oriented-Masking,
Mode level implementation

III

“"It’s only through experiencing both victory and
defeat, running wildly and weeping tears, that men
truly grow. Don’t be afraid to cry". ”

Shanks

“Solo sperimentando sia la vittoria che la sconfitta,
scappando e versando lacrime, un uomo diventerà un
uomo. Non avere paura di piangere.”

Shanks

V

Contents

List of Tables IX

List of Figures XII

Acronyms XIII

1 Introduction 1
1.1 Lightweight Cryptography: the Role of Ascon 1
1.2 Authenticated Encryption and Standardization Efforts 2
1.3 Target Applications of Ascon . 3
1.4 Thesis structure . 3

2 ASCON 5
2.1 ASCON: Internal State and Mode of Operation 5
2.2 ASCON: Authenticated Encryption 6
2.3 ASCON: permutation . 11

3 Side-Channel Attacks 15
3.1 Power Measurement and Leakage Modeling 15
3.2 Classification of Attacks . 16
3.3 Non-Profiling Attacks . 17

3.3.1 Simple Power Analysis (SPA) 17
3.3.2 Differential Power Analysis (DPA) 18
3.3.3 Correlation Power Analysis (CPA) 19

3.4 Profiling Attacks . 19
3.5 TVLA . 20

3.5.1 Theoretical Foundations . 20
3.5.2 Pratical Methodology . 21

4 Countermeasures: Masking 23
4.1 Boolean Masking . 23
4.2 Threshold Implementations (TI) . 24
4.3 Domain-Oriented-Masking (DOM) 25

4.3.1 First order DOM-indep multiplier. 26
4.3.2 High order DOM-indep multipliers. 27
4.3.3 Changing of the guards . 29

VII

Contents

5 Hardware Implementation of Ascon Core 33
5.1 High Level Block Diagram . 34
5.2 Data Path Design . 37

5.2.1 Reconfigurable DOM-AND Gadget for Parallel Processing . . 37
5.2.2 Input Network . 39
5.2.3 Output Network . 39
5.2.4 State Register . 40

5.3 Interface & Finite State Machine . 41
5.3.1 Core Interface . 41
5.3.2 Finite State Machine (FSM) 42

5.4 Functional Verification . 51

6 Security Evaluation and TVLA 53
6.1 Integration on FPGA . 53
6.2 Experimental Setup and Trace Acquisition 55
6.3 TVLA Results and Interpretation . 57

6.3.1 TVLA on S-BOX . 57
6.3.2 TVLA on the Complete Architecture 57

7 Results and Analysis 63
7.1 ASIC Area Results . 63

7.1.1 Comparison Against the State of the Art 64
7.2 ASIC Throughput Results . 65
7.3 ASIC TH/Area Results . 68

7.3.1 Comparison Against the State of the Art 69

8 Conclusion and Future Work 73
8.1 Conclusions . 73
8.2 Future Work . 73

A GitHub Directory 75

B Throughput Graphs 77

C FSM state encoding 79

Acknowledgements 85

VIII

List of Tables

1.1 Optimization goals for various authenticated encryption use cases . . 3

2.1 Parameters for recommended authenticated encryption schemes . . . 6
2.2 The round constant cr used in each round i 12
2.3 ASCON’s 5-bit S-box S as a lookup table. 12

3.1 Classification of side-channel attacks based on attacker knowledge. . . 16

4.1 Summary of DOM-independent multiplier variants (single-bit GF(2)
multiply). 28

4.2 First-order: column offsets with row offset 0. 30
4.3 Second-order: column-offset triples with row offset 0. 31

5.1 Maximum usable S-box parallelism for different masking degrees,
enabling masking logic reuse. 34

6.1 Register bank map for the CW305 Ascon integration. 61

7.1 GE breakdown for the first–order masked core (d = 1) at PAR=1 and
PARMAX = 32. 63

7.2 GE breakdown for the second–order masked core (d = 2) at PAR=1
and PARMAX = 22. 63

7.3 Gate–equivalent (GE) counts at PARMAX. Absolute area figures are
omitted due to foundry library NDA. 64

7.4 Gate equivalents (kGE) by masking order d (rows) and work (columns).
‘–‘ denotes not reported. 65

7.5 Throughput (TH) as a function of masking degree and application
(IoT, Wireless, and Ethernet) at PARMAX 67

7.6 Area, throughput (TH) and throughput-per-area (TH/A) vs. masking
degree at PARmax. 69

7.7 Comparison with State-of-the-Art Ascon masked implementations. . . 70

C.1 FSM state encoding for Ascon core. 79

IX

List of Figures

1.1 CAESAR and NIST LWC competitions timelines 2

2.1 Authenticated encryption and decryption procedures 9
2.2 Round constant addition pc . 12
2.3 ASCON substitution layer: (a) S-box S(x), (b) full layer with parallel

instances . 13
2.4 ASCON linear diffusion layer and its application. 14

3.1 Example of power traces for correct, partially correct, and incorrect
passwords. 18

4.1 Classical masked GF (2n) multiplier 24
4.2 First-order DOM-indep GF (2n) multiplier 27
4.3 Second-order secure DOM-indep GF (2n) multiplier 28

5.1 Modified Ascon architecture with 2nd-order masking degree 35
5.2 Ascon architecture at protection order d = 2. Only the blocks used

during the unmasked (bulk) phase are highlighted. 36
5.3 Reconfigurable DOM-AND gadget . 38
5.4 Input Network at PARMAX . 39
5.5 Output Network (Share A) . 40
5.6 Status Register . 41
5.7 Interfaces of the Ascon core and its FSM. 42
5.8 Timing Diagram Initialization phase 43
5.9 Timing Diagram Absorb MSG . 46
5.10 FSM state transition . 47
5.11 PROCESS_MSG exit condition . 50
5.12 FSM output signals . 51

6.1 Experimental Set-up . 53
6.2 Ascon Core integrated on CW305 Artix-7 Board 55
6.3 FSM integrated on FPGA . 56
6.4 TVLA result of the first order masked S-box. 57
6.5 TVLA result of the second-order masked S-box. 57
6.6 TVLA result of the first-order masked implementation. 59
6.7 TVLA result of the first order masked implementation. 60

7.1 Area vs. masking order at PAR_MAX. 64

XI

List of Figures

7.2 Area result (kGE) vs masking order d 65
7.3 Throughput (TH) varying PAR and d for Ethernet application 68
7.4 Throughput (TH) varying PAR and d for IoT application 69
7.5 Comparison of throughput-per-area (TH/A) across masking orders:

absolute values (a) and normalized trends (b). 71

A.1 Repository structure of the ASCON-128 RTL project on GitHub . . . 75

B.1 Throughput (TH) varying PAR and d for Wireless application 77

XII

Acronyms

IoT Internet of Things

SCA Side-Channel Attack

NIST National Institute of Standards and Technology

LWC Lightweight Cryptography

AE Authenticated Encryption

XOF Extendable Output Function

AEAD Authenticated Encryption with Associated Data

CAESAR Competition for Authenticated Encryption: Security,
Applicability, and Robustness

RFID Radio Frequency Identification

TVLA Test Vector Leakage Assessment

DOM Domain-Oriented Masking

TI Threshold Implementation

GF Galois Field

FSM Finite State Machine

MCU Microcontroller Unit

RC Round Constant

AAD Associated Data

MSG Message

LD Linear Diffusion

MUX Multiplexer

PLL Phase-Locked Loop

IO Input/Output

XIII

List of Figures

GE Gate Equivalent

ASIC Application-Specific Integrated Circuit

RTL Register Transfer Level

SCALIB Side-Channel Analysis LIBrary

PRNG Pseudo-Random Number Generator

LFSR Linear Feedback Shift Register

CW305 ChipWhisperer CW305 FPGA Board

SoA State of the Art

TP/A Throughput-to-Area

NDA Non-Disclosure Agreement

MTU Maximum Transmission Unit

MAC Medium Access Control

UDP User Datagram Protocol

IPv4 Internet Protocol version 4

LoRaWAN Long Range Wide Area Network

XIV

1 Introduction

Motivation. The rapid proliferation of resource constrained devices, largely
driven by the widespread adoption of the Internet of Things (IoT), has introduced
new and pressing challenges in terms of security and privacy. Within the IoT-to-
Cloud paradigm, devices typically perform partial local processing before encrypting
and transmitting data to remote servers. As a consequence, cryptographic imple-
mentations must achieve an optimal balance: minimizing hardware footprint while
sustaining sufficient throughput to enable the real-time encryption of substantial
data volumes. At the same time, IoT devices often operate in physically exposed
environments, rendering them particularly vulnerable to side-channel attacks (SCA),
which exploit physical leakages—such as power consumption or electromagnetic
emissions—to extract sensitive information. To mitigate such threats, cryptographic
hardware must integrate dedicated countermeasures. Among the available techniques,
masking has emerged as one of the most effective, providing provable resistance
against side-channel leakage and offering scalability across different security levels.

1.1 Lightweight Cryptography: the Role of Ascon

To address the challenges posed by constrained devices, the National Institute of
Standards and Technology (NIST) launched the Lightweight Cryptography (LWC)
standardization process in 2015, with the goal of identifying algorithms capable of
delivering essential security services while minimizing computational and memory
requirements. After a multi-year evaluation, in February 2023 the Ascon family
was selected as the winner of the LWC competition [1], thereby becoming the new
standard for lightweight cryptographic applications.
Ascon is a versatile suite of cryptographic primitives that includes authenticated
encryption (AE), hashing schemes, and extendable output functions (XOFs). This
broad functionality makes it suitable for a wide range of applications, from embedded
systems to high performance network protocols. A key feature of Ascon is its mode
level design, which facilitates efficient implementations across both hardware and
software platforms while also supporting physical protection mechanisms such as
masking.

1

Introduction

1.2 Authenticated Encryption and Standardization
Efforts

Authenticated Encryption with Associated Data (AEAD) is a cryptographic primitive
that simultaneously guarantees confidentiality and integrity. Unlike conventional
encryption, which secures only message secrecy, AEAD additionally authenticates
both the ciphertext and any unencrypted metadata. This dual functionality is
essential in modern applications, particularly in constrained environments where
robust yet efficient protection is required.
Two major international initiatives have shaped the AEAD landscape. The first was
the CAESAR competition (Competition for Authenticated Encryption: Security,
Applicability, and Robustness), launched in 2013 to identify a portfolio of AEAD
algorithms suitable for diverse use cases, from lightweight embedded devices to
high throughput hardware accelerators. The second was the aforementioned NIST
LWC project, which formally evaluated AEAD candidates (and optionally hashing
functions) against four key criteria [2]:

1. Security: Strong resistance to cryptanalytic attacks and robustness under
misuse conditions (e.g., nonce reuse).

2. Implementation Efficiency: Competitiveness on constrained platforms in
terms of memory, energy, and area.

3. Ease of Protection: Support for efficient countermeasures against side-
channel and fault attacks.

4. Royalty-Free Availability: Open and unrestricted adoption to maximize
deployment.

Ascon emerged as one of the most promising candidates across both initiatives due to
its balanced design philosophy. Not only does it achieve strong cryptographic security,
but it is also tailored for efficient implementation and straightforward integration of
countermeasures.

Figure 1.1: CAESAR and NIST LWC competitions timelines

2

Introduction

1.3 Target Applications of Ascon
The principal application domains of AEAD schemes, and Ascon in particular, span
a wide range of environments [3]:

• High performance servers and network infrastructures, where maximum
throughput is required, often with hardware acceleration.

• RFID tags, especially passively powered ones, where ultra-low power and
minimal area are critical due to energy harvesting constraints.

• Wireless sensor nodes, typically battery powered and long-lived, where
energy efficiency is the dominant metric.

• Embedded systems, widespread in consumer and industrial markets, where
efficiency is measured in throughput per unit of area.

Application Optimization Goal Interface
High performance computing High throughput Custom
RFID tags Low power and low area Custom
Wireless sensor nodes Low energy Memory-mapped
Embedded systems Throughput per area (efficiency) Memory-mapped

Table 1.1: Optimization goals for various authenticated encryption use cases

In addition to these performance driven constraints, modern cryptographic imple-
mentations must also address implementation level security. Side-channel resistance
has thus become a mandatory requirement for practical deployments. Ascon’s flexi-
bility, combined with its ability to support efficient physical countermeasures such
as masking, makes it a particularly strong candidate for secure and efficient use in
embedded systems.

1.4 Thesis structure
This thesis has been developed with the aim of exploring a dedicated digital hardware
architecture for the implementation of the ASCON algorithm, using the SystemVerilog
hardware description language, the work focuses on the design and optimization of
the ASCON structure, addressing both performance requirements and resistance
against side-channel attacks.
After this introductory Chapter 1, the thesis is structured as follows:

• Chapter 2 provides an overview of the state of the art, introducing the internal
functioning of the ASCON algorithm and its main design principles.

• Chapter 3 focuses on side-channel attacks (SCA), with particular attention
to power analysis techniques and the Test Vector Leakage Assessment (TVLA)
methodology for security evaluation.

3

Introduction

• Chapter 4 discusses masking countermeasures against SCA, with a dedicated
focus on Domain-Oriented Masking (DOM) and its applicability to lightweight
cryptographic designs.

• Chapter 5 describes the proposed hardware core, detailing the design process,
architectural optimizations, and the dedicated SystemVerilog implementation
of the ASCON structure.

• Chapter 6 presents the integration of the proposed design on FPGA, including
the measurement setup and interfacing aspects. It also describes the experi-
mental framework adopted for the security validation, with particular focus
on the application of the TVLA methodology to assess the robustness of the
implementation.

• Chapter 7 discusses the main results of the thesis, highlighting performance
metrics such as throughput and area occupation. Furthermore, it provides a
comparison with state of the art implementations, emphasizing the advantages
and trade offs of the proposed architecture.

• Chapter 8 summarizes the main findings of the thesis, highlighting achieved
results, limitations, and possible directions for future work.

4

2 ASCON

2.1 ASCON: Internal State and Mode of Operation
ASCON, as presented in the submission to NIST in [4] , is a cryptographic suite
designed to provide authenticated encryption with associated data (AEAD) and
hashing capabilities in low-power and resource constrained environments, such as
embedded devices and IoT. The suite includes ASCON-128 and ASCON-128a for
encryption, and ASCON-Hash and ASCON-Xof for fixed and extendable output
hashing.
Both ASCON-128 and ASCON-128a offer 128-bit security and rely on a shared
320-bit permutation. This permutation, structured as a Substitution-Permutation
Network (SPN), includes three steps per round: constant addition (pC), a nonlinear
substitution layer (pS), and a linear diffusion layer (pL). A detailed breakdown of
these transformation steps is provided later in chapter 2.3.
Authenticated encryption algorithms are typically defined by a set of parameters:
the key length k < 160 bits, the data block size (also known as rate) r, and the
number of internal rounds a and b. The encryption process can be represented as:

AE(K, N, A, P) = (C, T) (2.1)

where:

• K is the secret key of k bits,

• N is the 128-bits nonce,

• A denotes the associated data (of arbitrary length),

• P is the plaintext message (also of arbitrary length).

The output of the encryption consist of:

• C, the ciphertext (same length as P),

• T , a 128-bits authentication tag.

The corresponding decryption process is defined as:

AD(K, N, A, C, T) ∈ {P,⊥} (2.2)

where ⊥ denotes a failed authentication. If the tag verification succeeds, the plaintext
P is returned; otherwise, the output is ⊥.

5

ASCON

The Table 2.1 presents the reccommended parameter sets for authenticated encryption,
as proposed in [4].

Name Bit size of Rounds
State (S) Rate (Sr) Capacity (Sc) Key (K) Nonce (N) Tag (T) pa pb

ASCON-128 320 64 256 128 128 128 12 6
ASCON-128a 320 128 192 128 128 128 12 8

Table 2.1: Parameters for recommended authenticated encryption schemes

Compared to ASCON-128, ASCON-128a increases the data block size (rate) from 64
to 128 bits and increases the number of intermediate rounds from 6 to 8, resulting in
higher throughput with only a marginal increase in hardware area.
All variants of the ASCON cipher suite operate on a 320-bit internal state S,
which is iteratively updated using two permutations: pa, applied for a rounds
during initialization and finalization, and pb, applied for b rounds during associated
data and plaintext processing. The permutation based design offers several
advantages [5], including a fixed and well defined state size, the elimination of
complex key scheduling procedures, and low decryption overhead—since encryption
and decryption rely on the same underlying permutation. The state S is logically
divided into two parts: an outer part Sr of r bits, and an inner part Sc of
c = 320− r bits, known as the capacity.
For implementations and round transformation purposes, the state S is represented
as five 64-bit words x0, x1, x2, x3, x4, such that:

S = Sr||Sc = x0||x1||x2||x3||x4 (2.3)

ASCON’s design also accounts for physical attack resilience, particularly against
side-channel attacks (SCA). Its logical simplicity and low algebraic complexity make
it well suited for masked implementations with minimal overhead in both hardware
area and power consumption. The protocol structure supports targeted protections
such as masking only the initialization and finalization phases, while keeping the
intermediate steps lightweight and efficient.
Thanks to this balance of security, efficiency, and modularity, ASCON is a ro-
bust and scalable solution for applications where lightweight devices must perform
cryptographic operations securely and interact with high-performance systems.

2.2 ASCON: Authenticated Encryption
ASCON’s AEAD mode is based on a duplex mode of operation, inspired by construc-
tions like MonkeyDuplex [6]. In the duplex mode, data is absorbed into the state
and then squeezed out (sponge structure). This eliminates the need for a separate
key scheduling process, allowing for high-speed implementations and less memory
requirements.
The encryption and decryption operation are illustrated in Figure 2.1 and specified
in Algorithm 2.2.
The core idea is that the output of the previous permutation is reused: the outer

6

ASCON

part (rate) is combined with the plaintext to produce the ciphertext and also serves
as input for the next round, while the inner part (capacity) is carried over unchanged
between rounds. This approach enables both absorption and output generation
within a unified structure.
The encryption process in ASCON, shown in Figure 2.1a, consists of four main
phases:

• Initialization - The initial state is built using key, nonce and initialization
vector (predefined constant).

• Associated Data Processing - the associated data is absorbed into the
state.

• Plaintext Processing - the plaintext is encrypted to generate ciphertext.

• Finalization - the tag is computed to ensure authenticity.

The decryption follows the same four steps, as shown in Figure 2.1b, with the
plaintext recovered in the third phase by reversing the encryption logic.

7

ASCON

Algorithm 1.2: Authenticated encryption and decryption procedures

1 Input:
2 key K ∈ {0, 1}k, k ≤ 160
3 nonce N ∈ {0, 1}128

4 associated data A ∈ {0, 1}∗

5 plaintext P ∈ {0, 1}∗

6 Output:
7 ciphertext C ∈ {0, 1}|P |,
8 tag T ∈ {0, 1}128

9 Initialization
10 S ← IVk,r,a,b ∥ K ∥ N
11 S ← pa(S)⊕ (0320−k ∥ K)
12 Processing Associated Data
13 if |A| > 0 then
14 Divide A into r-bit blocks

A1 . . . As with padding
15 for i = 1 to s do
16 S ← pb((Sr ⊕ Ai) ∥ Sc)
17 S ← S ⊕ (0319 ∥ 1)
18 Processing Plaintext
19 Divide P into r-bit blocks

P1 . . . Pt with padding
20 for i = 1 to t− 1 do
21 Sr ← Sr ⊕ Pi

22 Ci ← Sr

23 S ← pb(S)
24 Sr ← Sr ⊕ Pt

25 Ĉt ← (Sr)|Pt| mod r
26 Finalization
27 S ← pa(S ⊕ (0r ∥ K ∥ 0320−r−k))
28 T ← (S)128 ⊕ (K)128

29 return C1|| . . . ||Ĉt, T

1 Input:
2 key K ∈ {0, 1}k, k ≤ 160
3 nonce N ∈ {0, 1}128

4 associated data A ∈ {0, 1}∗

5 ciphertext C ∈ {0, 1}∗

6 tag T ∈ {0, 1}128

7 Output:
8 plaintext P ∈ {0, 1}|C| or ⊥
9 Initialization

10 S ← IVk,r,a,b ∥ K ∥ N
11 S ← pa(S)⊕ (0320−k ∥ K)
12 Processing Associated Data
13 if |A| > 0 then
14 Divide A into r-bit blocks

A1 . . . As with padding
15 for i = 1 to s do
16 S ← pb((Sr ⊕ Ai) ∥ Sc)
17 S ← S ⊕ (0319 ∥ 1)
18 Processing Ciphertext
19 Divide C into r-bit blocks

C1 . . . Ĉt

20 for i = 1 to t− 1 do
21 Pi ← Sr ⊕ Ci

22 Sc ← Ci

23 S ← pb(S)
24 P̂t ← (Sr)|Ct| ⊕ Ĉt

25 Sr ← Sr ⊕ (Pt ∥ 1 ∥ 0∗)
26 Finalization
27 S ← pa(S ⊕ (0r ∥ K ∥ 0320−r−k))
28 T ′ ← (S)128 ⊕ (K)128
29 if T ′ = T then
30 return P1|| . . . ||P̂t

31 else
32 return ⊥

Initialization
The initial 320-bit state S in ASCON is constructed by concatenating a predefined
initialization vector (IV), the secret key K, and the 128-bit public nonce N :

S ← IVk,r,a,b||K||N (2.4)

The IV encodes key parameters of the algorithm-namely, the key length k, the rate r,
the number of rounds a used in initialation and finalization phase, and the number

8

ASCON

(a) Encryption

(b) Decryption

Figure 2.1: Authenticated encryption and decryption procedures

of intermediate rounds b. Each of these values is encoded as an 8-bit integer, and the
remaining bits are padded with zeros to reach the required length. The IV values
used for each variant are:

IVk,r,a,b =


80400c0600000000 for ASCON-128
80800c0800000000 for ASCON-128a
a0400c06 for ASCON-80pq

(2.5)

After setting the state, the permutation pa is applied for a round:

S ← pa(S) (2.6)

Finally, the state is XORed with the secret key to complete the initialization:

S ← S ⊕ (0320−k||K) (2.7)

This initialization ensure that the secret key is integrated into the state both before
and after the initial permutation, increasing resistance against key recovery in case
of partial state leakage.
Processing Associated Data ASCON processes the associated data A dividing it
into s blocks of r bits each: A1, A2, ..., As. If the length of A is not already a multiple
of r, the data is padded by appending a single ’1’ bit followed by the minimum
number of ’0’ bits needed to reach the required block size. Formally, this yields:

A1, ..., As ←

r-bit blocks of A||1||0r−1−(|A|mod r) if |A| > 0
∅ if |A| = 0

(2.8)

9

ASCON

Each block Ai is XORed with the outer part Sr of the internal state S, and the result
is passed through the pb permutation :

S ← pb((Sr ⊕ Ai)||Sc), for 1 ≤ i ≤ s (2.9)

If no associated data is present (|A| = 0), this step is skipped entirely. After all
associated data blocks have been absorbed, a 1-bit domain separation constant is
applied by XORing the internal state with a 320-bit vector ending in ’1’:

S ← S ⊕ (0319||1) (2.10)

This domain separation ensures that the internal state reflects whether associated
data was processed or not, which is crucial for the integrity guarantees provided by
the cipher.
Processing Plaintext and Ciphertext
The plaintext P is processed in blocks of r bits, using the same padding rule applied
to associated data. The resulting padded plaintext is then divided into t blocks
P1, P2, ..., Pt:

P1, ..., Pt ← r-bits blocks of P ||1||0r−1−(|P | mod r) (2.11)

Encryption
For each block Pi (where 1 ≤ 1 ≤ t), the encryption operation follows these steps:

1. The block is XORed with the first r bits Sr of the internal state:

Ci ← Sr ⊕ Pi (2.12)

2. For all blocks except the last one, the updated state is passed through the
pb permutation:

S ← pb(Ci||Sc), for 1 ≤ i < t (2.13)

3. For the last block, the permutation is skipped, and the state is simply updated
as:

S ← Ci||Sc (2.14)

To ensure the ciphertext C has exactly the same length as the original plaintext P ,
the last ciphertext block Ci is truncated to match the length of the final unpadded
fragment.
Decryption
Due to the inherent symmetry of the construction, decryption closely follows the
encryption process. In practice, inverting the roles of ciphertext and plaintext blocks
within each step is sufficient to recover the original message.
Finalization
In the finalization phase, the secret key K is XORed with the internal state S, and
the result is processed through the p permutation using a round:

S ← pa(S ⊕ (0r||K||0c−k)) (2.15)

10

ASCON

The authentication tag T is then computed by XORing the last 128 bits of the
updated state with the last 128 bits of the key:

T ← S[319:192] ⊕K[127:0] (2.16)

The encryption procedure outputs the final ciphertext C1||..||C̃t along with the tag
T .
During the encryption, the same operation are performed to recompute the tag.
The plaintext P1||...||P̃t is returned only if the recomputed tag matches the received
tag; otherwise, the output is rejected to preserve authenticity.

2.3 ASCON: permutation

The core of the ASCON family algorithms including ASCON-128 is built upon
two 320-bit permutations: pa and pb. These permutations apply a variable number
of rounds of a common transformation p, which is structured as a Substitution-
Permutation Network (SPN). Each round consists of three sequential steps:

p = pL ◦ pS ◦ pC (2.17)

where:

• pC is the constant addition layer,

• pS is the substitution (non-linear) layer,

• pL is the linear diffusion layer

1. Constant Addition Layer (pC)
In this step, a round dependent constant cr is XORed with the register word x2. The
round index r is computed differently depending on the permutation used:

• For pa : r = i

• For pb : r = i + a− b

The specific values of the cr for different combinstions of a and b are reported in
Table2.2. The core operation performed in this layer is:

x2 ← x2 ⊕ cr (2.18)

11

ASCON

pa=12 pb=8 pb=6 Constant cr

0 - - 0xf0
1 - - 0xe1
2 - - 0xd2
3 - - 0xc3
4 0 - 0xb4
5 1 - 0xa5
6 2 0 0x96
7 3 1 0x87
8 4 2 0x78
9 5 3 0x69
10 6 4 0x5a
11 7 5 0x4b

Table 2.2: The round constant cr used in each round i

Figure 2.2: Round constant addition pc

2. Substitution Layer ps

In the substitution layer, the state S is updated through 64 parallel applications of
5-bit S-box, denoted S(x). The S-boxes used for ASCON are an affine transformation
improves of the χ mapping of Keccak [7]. This transformation operates on each bit
slice across the five 64-bit state words x0, x1, x2, x3, x4,. Specifically, the S-box at
position i takes as input the 5-bit vector x0[i], x1[i], x2[i], x3[i], x4[i].
The structure of the S-box is detailed in Table 2.3 and its effect is illustrated in
Figure 2.3.

Table 2.3: ASCON’s 5-bit S-box S as a lookup table.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 4 b 1f 14 1a 15 9 2 1b 5 8 12 1d 3 6 1c

x 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

S(x) 1e 13 7 e 0 d 11 18 10 c 1 19 16 a f 17

12

ASCON

(a) ASCON’s 5-bit S-box S(x)

(b) Substitution layer ps with 5-bit S-box S(x)

Figure 2.3: ASCON substitution layer: (a) S-box S(x), (b) full layer with parallel
instances

3. Linear Diffusion Layer
The linear diffusion layer pL (Figure 2.4)provides diffusion within each register by
performing two bit-wise rotations and XOR operations. The chosen rotation values
are similar to the SHA-2 q function [8], ensuring strong diffusion properties.

x0 ←
Ø

0(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28) (2.19)
x1 ←

Ø
1(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39) (2.20)

x2 ←
Ø

2(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6) (2.21)
x3 ←

Ø
3(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17) (2.22)

x4 ←
Ø

4(x4) = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41) (2.23)

13

ASCON

(a) Linear diffusion layer

(b) Linear diffusion layer pL application

Figure 2.4: ASCON linear diffusion layer and its application.

14

3 Side-Channel Attacks

Side-Channel Attacks (SCA) are a class of attacks that aim to extract sensitive
information by exploiting physical or behavioral leakages unintentionally emitted
by a device during the computation. Unlike theoretical attacks on cryptographic
algorithms, which target mathematical weakness, SCA focus on real-world imple-
mentations, often bypassing the algorithm’s theoretical security [9].
These attacks operate on the principle that every electronic device, while executing
operations, produces observable signal such as power consumption, electromagnetic
(EM) radiation, execution time variations, acoustic noise, or even physical movements.
Since these signals can depend on the data being processed, including secret keys,
attackers can analyze them to infer sensitive information and significantly reduce
the complexity of breaking the system.
SCA are typically categorized along two axes (a more detailed classification is
presented in [10], [11]):

• Passive vs Active: Passive attacks only observe the device, while active
attacks deliberately interfere with it (e.g., clock/voltage glitching [12], EM
injection [13], Laser/Optical [14], thermal manipulation [15]).

• Invasive, Semi-invasive, Non-invasive: This classification refers to the level
of physical access. Today, the majority of attacks are non-invasive, requiring
no hardware modifications.

As power analysis has matured, attacks have diversified into new side channels such
as electromagnetic (EM) emanations, cache access patterns, and even sensor
readings on mobile devices. Remote SCA techniques now leverage software only
channels to compromise targets at scale—posing serious implications for mobile
security, embedded systems, and cloud computing environments.
In the following chapters, we examine key power-based techniques (SPA, DPA, CPA),
profiling attacks (TA), and evaluation methods (TVLA), outlining their principles,
use cases, and effectiveness in real-world scenarios.

3.1 Power Measurement and Leakage Modeling
Power Measurement
Modern encryption algorithms rely on electronic devices that manipulate binary
data (1s and 0s) through operations on transistor. Switching a bit from 0 to 1-or
vice versa-requires applying or removing electrical current, which directly affects the

15

Side-Channel Attacks

overall power consumption of the circuit. Since this consumption is correlated with
the operations and data being processed, power measurements can leak information
about the internal state of the system.
This forms the foundation of power side-channel analysis. Even subtle power fluc-
tuations at level of individual transistor can correlate with cryptographic operations
and thus reveal sensitive data, such as secret key.
To measure power , Ohm’s Law is applied:

I = V

R
(3.1)

By placing a precise, fixed value resistor (known as sense resistor) in the power line
of the cryptographic device, changes in current draw can be observed as voltage
variations. An oscilloscope captures these fluctuactions, producing what is known as
a power trace a time series of voltage readings during encryption or decryption.
The accuracy of this method improves with lower noise and closer proximity of the
probe to the encryption device. Averaging multiple traces can further reduce random
noise, thanks to the normal distribution properties of uncorrelated disturbances.

3.2 Classification of Attacks

Side-channel attacks can be classified along multiple dimensions. While physical
access and attacker interaction are relevant factors (as discussed above in chapter
3), a fundamental distinction lies in whether the attacker has access to a profiling
device (or " clone") during the attack setup.
We distinguish between non-profiling attacks and profiling attacks:

Classification Description Typical Techniques

Non-profiling Attacker does not have access to a
clone device for characterization.
These attacks rely on statistical
analysis of traces from the target
itself.

Simple Power Analysis(SPA), Dif-
ferential Power Analysis (DPA),
Correlation Power Attacks (CPA)

Profiling Attacker has access to a similar
or identical device during a train-
ing phase, allowing them to build
a leakage model used during the
actual attack.

Template Attacks (TA), Deep
Learning (DL)

Table 3.1: Classification of side-channel attacks based on attacker knowledge.

This distinction reflects the amount of knowledge the attacker has prior to the
actual exploitation phase.

16

Side-Channel Attacks

3.3 Non-Profiling Attacks

3.3.1 Simple Power Analysis (SPA)
SPA (Simple Power Analysis) is the most direct form of power side-channel attack.
It involves the visual inspection of power consumption traces collected during
cryptographic operations. These traces, often captured via oscilloscope, reveal how
power usage changes over time and may expose sensitive details about the internal
execution of an algorithm [9]. Each trace corresponds to a sequence of power
samples recorded while the device performs an encryption or decryption. Even small
variations in current (order of microamperes) can reflect meaningful differences
in computation. By examining these variations, an attacker can infer executed
instructions, branching behavior, or even recover parts of the key [16], [17].
Because SPA relies on direct observation, it is highly effective against poorly
implemented algorithms that contain data-dependent branching or lookup tables.
It is typically non-invasive and requires minimal equipment: a power probe, a
sense resistor, and an oscilloscope. It may also overlap with timing attacks, since
execution time often correlates with power usage. While SPA is limited by noise
and requires clearly visible operations, it remains a potent threat, especially in
unprotected or legacy systems.
There are scenarios where SPA directly exposes secret information. A classical
example is code whose control flow depends on secret data, such as password checks.

Algorithm 1: Simple password check function pseudocode
1 function passwordCheck(userPassword):
2 secretPassword ← {1, 2, 3, 4};
3 errorLedOff();
4 if length (secretPassword) ̸= length(userPassword) then
5 errorLedOn();
6 return 0;
7 for position p of the password in range

{0, . . . , length(secretPassword)− 1} do
8 if secretPassword[p] ̸= userPassword[p] then
9 errorLedOn();

10 return 0;

11 return 1;

As illustrated in Fig. 3.1, power traces collected from a password check show distinct
patterns depending on how many digits of the input match the secret. With a
fully correct password, we observe one pattern repetition per character. With a
partially correct input, only the matching prefix is visible. When the length differs,
no comparison is performed, and no pattern appears. Such differences leak valuable
information to the attacker.

17

Side-Channel Attacks

Figure 3.1: Example of power traces for correct, partially correct, and incorrect
passwords.

3.3.2 Differential Power Analysis (DPA)
DPA, introduced by Kocher, Jaffe and Jun in 1999 [18], marked a turning point in
side-channel research. While Simple Power Analysis (SPA), as seen, relies on visual
inspection of individual power traces, DPA uses statistical methods to extract secret
information across many traces, even when no obvious pattern are visible.
DPA automates the attack process by leveraging a leakage model to classify power
traces and isolate differences linked to internal computations involving the secret key.
Attack Principle
The attacker defines a selection function [19], based on a key hypothesis, that
predicts an intermediate value (typically a single bit or byte) of the cryptographic
algorithm. This value is used to split the traces into two classes:

1. One class where the predicted value is 0.

2. One class where the predicted value is 1.

For each hypothesis:

• Traces are grouped according to the selection function.

• The mean trace of each group is computed.

• The difference of means is calculated.

If the key guess is correct, the statistical difference at specific time points will show
a clear peak—revealing information about the secret key.
The selection function is typically constructed using common leakage models:

18

Side-Channel Attacks

• Hamming weight (HW): assumes the power consuptions depends on the
number of 1s in a data byte.

• Hamming Distance (HD): assumes leakage is related to number of bit flips
between two successive values (e.g., register transitions).

These models allow the attacker to correlate hypotheses with measured leakage,
even in the absence of full knowledge of internal device behaviour.

3.3.3 Correlation Power Analysis (CPA)
CPA, introduced by Brier, Clavier, and Olivier in 2004 [20], builds on the foundations
of DPA and enhances it with more robust statistical method: correlation.
While DPA relies on comparing mean traces between groups, CPA analyzes the
correlation between a predicted leakage (based on a key guess and leakage model)
and the actual power traces, across time.
Attack Principle
CPA follows a model based approach using known inputs and power measurements.
The attack works as follows:

1. Known inputs (e.g., plaintext) are collected during encryption.

2. For each key guess:

• A hypothetical intermediate value is computed.
• A leakage model is applied (e.g., Hamming Weight or Hamming Distance)

to predict the power consuption.

3. The Pearson correlation coefficient is computed between the predicted
leakage and the actual measured traces at each time point.

4. The key guess with highest correlation is considered correct.

3.4 Profiling Attacks
Unlike non-profiling attacks, which rely on leakage models (e.g., Hamming Weight,
Hamming Distance) to partition traces into classes, Template Attacks directly exploit
multivariate probability density functions to characterize the leakage distribution. In
prattice, the attacker builds a "dictionary" of the expected side-channel emanations
on a cloned device and then compares this reference with the measurements obtained
from the target device [21].
Attack procedure. A Template Attack can be divided into four main phases:

1. Profiling: using a clone of the target device, the attacker collects tens of thou-
sands of traces while varying both plaintexts and keys, in order to characterize
the leakage associated with each possible subkey value.

19

Side-Channel Attacks

2. Template construction: relevant points of interest (POI) are identified within
the traces, and statistical parameters (typically mean vectors and covariance
matrices) are computed for each subkey hypothesis. The outcome is a set of
multivariate Gaussian distributions that model the device’s behavior.

3. Acquisition from the target: a very limited number of traces are collected
from the victim device.

4. Matching and key estimation: the victim traces are compared against the
templates. For each subkey, the value that maximizes the likelihood under the
statistical model is selected. This process is repeated until the entire secret
key is recovered.

Key characteristics.

• Require only a very small number of traces from the victim device (sometimes
even a single trace).

• The profiling phase is computationally expensive and data intensive, but needs
to be performed only once.

• Achieve high attack success rates provided that the victim device closely
resembles the clone used during profiling. Device-to-device variations may
significantly degrade the effectiveness of the attack.

3.5 TVLA
Side-channel analysis, as seen, has traditionally focused on developing concrete
attacks to recover secret information. In 2011, Goodwill et al. [22] proposed a
complementary approach aimed not at breaking a device directly, but a detecting
whether a cryptographic implementation exhibits exploitable leakages. This methol-
ogy, known as Test Vector Leakage Assessment (TVLA), has since become a
de facto standard for evaluating the side-channel resistance of hardware and software
implementations.

3.5.1 Theoretical Foundations
The main goal of TVLA is to determine whether countermeasures employed in a
device under test (DUT) are effective in suppressing side-channel leakage. Unlike
classical attacks, which target specific operations using a single selection function,
TVLA applies a series of statistical tests to collected traces in order to reveal
differences between carefully defined classes of inputs.

• Non-specific leakage test: compares traces obtained from the DUT while
processing fixed versus random inputs. This test amplifies potential leakages
in a generic way, even when specific attacks are not known in advance.

20

Side-Channel Attacks

• Specific leakage test: traces are divided into classes according to known
sensitive intermediates of the algorithm (e.g., S-box outputs, round states, or
key related variables). The goal is to verify whether these internal computations
correlate with observable side-channel information.

By distinguishing between these cases, TVLA provides both a general vulnerability
assessment and a targeted check against specific leakage points.

3.5.2 Pratical Methodology
In practice, TVLA requires the collection of two datasets:

1. Dataset 1: generated by encrypting a large set of pseudorandom inputs with
random Nonce (NA) and with a fixed key.

2. Dataset 2: generated by repeatedly encrypting a fixed Nonce (NB) under the
same key.

These datasets are then combined and partitioned into two independent groups to
mitigate false positives. Each group is processed using identical statistical procedures,
and leakage is considered valid only if the same test point exceeds the threshold in
both groups.
This methodology ensures that spurious anomalies are discarded and only consistent
leakage points are reported as genuine vulnerabilities
The most widely adopted test in TVLA is the Welch’s t-test, which evaluates the
null hypothesis (H0) that two sets of traces (e.g., Dataset 1 and Dataset 2) are drawn
from the same distribution. A statistically significant difference between their means
indicates the presence of leakage. Conventionally, a threshold of |t| > 4.5 is used to
signal leakage with high confidence. The Welch’s t-statistic for the first order case is
computed as:

t = µA − µBò
σ2

A

NA
+ σ2

B

NB

(3.2)

where µA and µB denote the sample means, σA and σB the sample standard deviations,
and NA and NB the number of traces in groups A and B, respectively.
For higher-order designs, TVLA extends naturally by considering higher statistical
moments.

21

4 Countermeasures: Masking

Masking is one of the most widely adopted countermeasure against Differential
Power Analysis (DPA) and, more generally, side-channel attacks. It core idea is
to decorrelate intermediate computations from the sensitive data being processed
[23], [23]. This is achieved by splitting each sensitive variable into multiple shares

such that observing fewer than all shares reveals no information about the original
secret values. The recombination of the shares over a given field restores the original
value.
Formally, a variable x is split into s = d + 1 shares to provide d-th order security:

x = x1 ⊕ x2 ⊕ · · · ⊕ xs, (4.1)

where ⊕ denotes the XOR operation over F2. Computations are then performed on
each share independently, and the final result is obtained by recombining the partial
outputs:

y = F (x) = F1 ⊕ F2 ⊕ · · · ⊕ Fs. (4.2)
A fundamental security requirement is that every intermediate value must be statis-
tically independent of all unshared sensitive variables. This notion is closely related
to the d-probe model introduced by Ishai et al. [24], which defines an implementa-
tion as d-th order secure if an adversary probing up to d internal signals gains no
advantage in recovering the secret. To build efficient hardware circuits under this
model, different masked solutions were introduced.

4.1 Boolean Masking
In its simplest form, Boolean masking achieves first order security by splitting a
sensitive variable into two shares. For instance, let x = Ax ⊕ Bx and y = Ay ⊕ By

represent two masked inputs over F2n . Their multiplication can be expressed as:

q = x× y = (Ax + Bx)(Ay + B2) = AxAy + AxBy + BxAy + BxBy. (4.3)

Although each partial product is independent of the original inputs, their recombi-
nation may reintroduce dependencies. To mitigate this, a fresh random share Z0
is typically added to one of the partial results to restore statistical independence,
Fig. 4.1. However, this classical Boolean masking scheme is known to be flawed in
practice, while it appears secure in the d-probe model, it is not resistant to glitches
spurious transitions caused by differences in signal propagation times across wires or
transistors. For example, if intermediate signals such as AxAy and AxBy arrive at

23

Countermeasures: Masking

the recombination XOR gate before Z0, the resulting value may momentarily depend
on the secret input y. This timing dependent behavior can lead to first order leakage,
undermining the theoretical guarantees of Boolean masking [25].
As a result, Boolean masking is generally considered inadequate as a standalone coun-
termeasure in hardware implementations, motivating the development of more robust
schemes such as Threshold Implementations (TI) and Domain-Oriented Masking
(DOM), which explicitly address glitch resistance.

Figure 4.1: Classical masked GF (2n) multiplier

4.2 Threshold Implementations (TI)
Threshold Implementation (TI), introduced by Nikova et al. [26], represent a
masking scheme specifically designed to guarantee security even in the presence
of glitches. The key idea of TI is decompose a function into component function,
each satisfying three essential properties: correctness, non-completeness, and
uniformity.

• Correctness requires that the sum of all component functions yields the same
result as the original unshared function.

• Non-completeness ensures that no component function depends on all shares
of any input variable. For first order implementations, each component must
exclude at least one share of each input; more generally, for d-th order security,
up to d component functions must be independent of at least one input share.
This property prevents leakage caused by glitches.

• Uniformity demands that the output shares are uniformly distributed, re-
gardless of the underlying unshared values. This property is often the most

24

Countermeasures: Masking

difficult to achieve and typically requires either the use of additional shares,
correction terms, or fresh randomness.

For linear functions over F2n , first order security can often be obtained with only
two shares. However, for non-linear functions, it is proved that at least three shares
are necessary, even for first order security. In general, the number of shares required
for TI follows the bound:

sin ≥ d · t + 1, (4.4)
where sin is the number of input shares, d the protection order, and t the algebraic
degree of the function. As an example, a first order secure TI of a GF(2) multiplier
can be constructed with three shares per input and one fresh random share [27].
The outputs of the component functions are defined as:

FA = BxBy + BxCy + CxBy + Z0, (4.5)
FB = CxCy + AxCy + CxAy + AxZ0 + AyZ0, (4.6)
FC = AxAy + AxBy + BxAy + AxZ0 + AyZ0 + Z0, (4.7)

where Z0 is a fresh random share used to ensure uniformity.
The first component function FA is independent of all A shares, FB is independent
of all B shares, and FC is independent of all C shares, thereby fulfilling the non-
completeness property. In this way, TI achieves glitch resistance by construction.
However, this security comes at a significant cost. While a classical (unmasked) GF(2)
multiplier requires only four AND gates and four XOR gates, the TI variant in the
above example consumes 13 AND gates, 12 XOR gates, and 3 registers. Consequently,
TI offers strong first order security but incurs high hardware overhead, motivating the
development of more efficient schemes such as Domain-Oriented Masking (DOM).

4.3 Domain-Oriented-Masking (DOM)
Domain-Oriented Masking (DOM), first introduced by Gross et al. [28], represents
an efficient masking scheme tailored for hardware implementation. In contrast to
Threshold Implementation (TI), which are designed at function level, DOM is based
on the concept of share domains. Each share of a variable is associated with a distinct
domain, and computations are organized such that shares from different domains are
kept strictly separated. Using d + 1 shares per variable result in d + 1 domains and
guarantees d-th order security in the probing model.
Moreover, DOM provides a generic masking paradigm with a configurable protection
order, while TI constructions must be crafted for each target function (e.g., an S-box)
and for each security order to satisfy correctness, non-completeness, and uniformity
simultaneously; hence TI is not generic and typically requires re-derivation when the
order changes.
The principle of DOM is straightforward: as long each intermediate signal is confined
to a single domain, it remains independent of the unshared secret. For linear functions,
this requirement is trivially satisfied since they can be evaluated independently on
each share. The critical challenge arises with non-linear function, where domain

25

Countermeasures: Masking

crossings are unavoidable, to prevent information leakage in these cases, DOM
introduces two countermeasures:

• resharing, where cross domain terms are randomized using fresh shares Z.

• register stage, which block glitches from propagating across domain.

DOM-indep vs. DOM-dep. Two variants of DOM multipliers were proposed:

• DOM-indep, which assumes independently shared inputs and offers clear
advantages in terms of randomness consumption and gate count.

• DOM-dep, which relaxes the independence requirement but incurs larger
hardware overhead and was later shown to be insecure for masking orders of
two or higher.

Since our work focuses on efficient and secure higher order designs, we only consider
the DOM-indep construction.

4.3.1 First order DOM-indep multiplier.
A fist order secure DOM-indep GF(2n) multiplier is illustrated in Fig. 4.2. The inputs
x and y are split into two independent shares each: x = Ax ⊕Bx and y = Ay ⊕By.
The multiplier produces two output shares Aq and Bq, such that q = x · y = Aq⊕Bq.
The multiplier operates in three phases:

1. Calculation: Inner domain products (AxAy, BxBy) and cross domain products
(AxBy, BxAy) are computed. Inner domain terms are trivially secure, while
cross domain terms require protection.

2. Resharing: Each cross domain product is masked by adding a fresh random
share Z0, ensuring its statistical independence from the inputs. The resharing
step concludes with a register stage to suppress glitches.

3. Integration: Reshared cross domain terms are reassigned to domains and
combined with inner domain terms to produce the output shares.

Formally, the output shares of the first order DOM multiplier are:

Aq = AxAy ⊕ (AxBy ⊕ Z0), (4.8)
Bq = BxBy ⊕ (BxAy ⊕ Z0). (4.9)

Unlike classical Boolean masking, which is vulnerable to first order leakages due to
glitches, the DOM-indep scheme ensures that any intermediate value depends on at
most one share per variable. Thus, according to the d-probe model, an adversary
must combine multiple probes across domains to extract sensitive information.

26

Countermeasures: Masking

Figure 4.2: First-order DOM-indep GF (2n) multiplier

4.3.2 High order DOM-indep multipliers.
The DOM-indep construction generalizes naturally to higher order by using d + 1
shares per variable and distributing fresh random shares among the cross domain
products. A d-th order multiplier requires exactly d(d+1)/2 fresh random bits and at
least d(d + 1) registers to guarantee that all intermediate values remain independent
in the probing model.
The generalized GF(2n) multiplication can be expressed as:

q = x · y =
A

dØ
i=0

xi

B
·

 dØ
j=0

yj

 =
dØ

i=0

dØ
j=0

ti,j, (4.10)

where ti,j = xiyj denotes the partial product between the i-th share of x and the
j-th share of y. The diagonal terms ti,i correspond to inner domain products, while
off-diagonal terms represent cross domain products, which are reshared using fresh
random masks.

Aq = AxAy ⊕ (AxBy ⊕ Z0) ⊕ (AxCy ⊕ Z1) ⊕ (AxDy ⊕ Z3) ⊕ (AxEy ⊕ Z6) ⊕ . . . (4.11)
Bq = (BxAy ⊕ Z0) ⊕ BxBy ⊕ (BxCy ⊕ Z2) ⊕ (BxDy ⊕ Z4) ⊕ (BxEy ⊕ Z7) ⊕ . . . (4.12)
Cq = (CxAy ⊕ Z1) ⊕ (CxBy ⊕ Z2) ⊕ CxCy ⊕ (CxDy ⊕ Z5) ⊕ (CxEy ⊕ Z8) ⊕ . . . (4.13)
Dq = (DxAy ⊕ Z3) ⊕ (DxBy ⊕ Z4) ⊕ (DxCy ⊕ Z5) ⊕ DxDy ⊕ (DxEy ⊕ Z9) ⊕ . . . (4.14)
Eq = (ExAy ⊕ Z6) ⊕ (ExBy ⊕ Z7) ⊕ (ExCy ⊕ Z8) ⊕ (ExDy ⊕ Z9) ⊕ ExEy ⊕ . . . (4.15)

Each output share Fi can then be written in closed form as:

Fi = ti,i +
Ø
j>i

3
ti,j ⊕ Z j(j−1)

2 +i

4
+
Ø
j<i

3
ti,j ⊕ Z i(i−1)

2 +j

4
, (4.16)

27

Countermeasures: Masking

where Zk denotes the fresh random shares assigned to cross domain products.
Table 4.1 reports the hardware costs of a generic-order DOM multiplier. As can be
seen, the overall hardware complexity scales quadratically with the protection order
d.

Table 4.1: Summary of DOM-independent multiplier variants (single-bit GF(2)
multiply).

DOM-indep DOM-indep + resharing

Related input sharing no yes
Register stages 1 2
Fresh random shares d(d+1)

2
d(d+1)

2
GF multipliers (d + 1)2 (d + 1)2

XORs d(d + 1) d(d + 1) + (d + 1)
Registers d(d + 1) d(d + 1) + (d + 1)

In Fig. 4.3 is shown an example of a second order DOM multiplier.

Figure 4.3: Second-order secure DOM-indep GF (2n) multiplier

Security and cost. DOM-indep provides the same glitch resistance as Threshold
Implementations but with significantly reduced hardware cost. While a TI multiplier
requires 13 AND gates, 12 XOR gates, and 3 registers for first order security, the
DOM-indep multiplier achieves the same level of protection with only 4 AND gates, 4
XOR gates, and 2 registers. The trade-off lies in the resharing phase, which requires
additional randomness and registers that grow quadratically with the protection
order. Nevertheless, DOM-indep currently represents one of the most efficient and
scalable masking schemes for hardware cryptography.

28

Countermeasures: Masking

4.3.3 Changing of the guards
Changing of the Guards (CotG) [29] is a technique originally introduced in the
context of Threshold Implementations, with the goal of reducing or even eliminating
the need for fresh randomness during computation. The method exploits the fact that
shares of neighboring S-boxes are, by construction, uniformly distributed random
variables. These shares can be reused as additional randomness to obtain a correct,
uniform, and secure sharing of intermediate values.
In the context of Ascon, adopting CotG is particularly attractive because the ran-
domness generation for re-sharing in DOM-AND gadgets typically requires dedicated
hardware, contributing to area and energy overhead. By reusing neighboring shares
as Guards, it is possible to minimize or eliminate this overhead, enabling lightweight
masked implementations.
In this work we build on the result of [23], which explains how shares of neighboring
S-boxes can be used as a source of randomness. Since not all bits are statistically
independent from the bit currently being computed, the choice of the Guards must
follow specific rules to guarantee probing security. For Ascon, this selection problem
can be formalized in terms of row and column offsets, which identify the S-box
position and bit used as Guard.

First-order (one Guard per DOM-AND). At first order, each DOM-AND
requires a single Guard. To derive valid positions, we analyze the interaction and
displacement introduced by the linear diffusion layer and the (low-latency) linear part
of the S-box. For simplicity and without loss of generality of the method, we fix the
row offset to 0 and derive conditions on the column offset of the Guard. (Choosing
a different row offset would change the admissible column offsets accordingly.)
Notation. Let Ri be the set containing the two rotation constants {ri0, ri1} of row
xi (for i ∈ {0, 1, 2, 3, 4}). Let G be the set of admissible Guard column offsets.
Conditions to obtain Guard column offsets.

(C1) Avoid using rotation constants directly as Guard offsets:

∀g ∈ G, ∀rij ∈ Ri : g ̸= rij.

(C2) Avoid the pairwise differences of a row’s rotation constants:

∀g ∈ G, ∀rij ∈ Ri : g ̸= (ri0 − ri1) mod 64, g ̸= (ri1 − ri0) mod 64.

(C3) Avoid cross-row differences between x0 and x4 (due to the S-box linear layer
added for low latency):

∀g ∈ G, ∀j ∈ {0, 1} : g ̸= (r0j − r4j) mod 64, g ̸= (r4j − r0j) mod 64.

After applying (C1)–(C3) with row offset fixed to 0, we obtain 29 admissible column
offsets. These are listed in Table 4.2. In practice, we further avoid offsets that are
not coprime with 64 to prevent long-term correlations across multiple rounds (e.g.,

29

Countermeasures: Masking

we discard {32}). In our implementation we pick the first coprime value, namely
{11}, highlighted in the table.

Table 4.2: First-order: column offsets with row offset 0.

Column offsets for 1 guard (first order)

{2} {4} {8} {11} {14} {15} {16} {18} {20} {24}
{26} {27} {29} {31} {32} {33} {35} {37} {38} {40}
{44} {46} {48} {49} {50} {53} {56} {60} {62}

Second order (three Guards per DOM-AND). At second order, each
DOM-AND requires three Guards, which significantly increases the complexity of
the selection. Independence must be preserved both among the Guards themselves
and with respect to the masked variables. As before, we keep the row offset fixed to 0
for the derivation; other row offsets lead to analogous (but different) admissible sets.
Due to the number of constraints, we cast the problem as a constraint-satisfaction
instance and solve it using a SAT solver (we used Z3), obtaining the valid triples
reported in Table 4.3.

Notation. Let G = {g1, g2, g3} be the three Guard column offsets to be connected
to a given S-box (position 0), and let Ri = {ri0, ri1} be as above.

Generic constraints (row-offset independent).

• (C1), (C2) from the first-order case still apply to each g ∈ G.

• (G1) No pair of Guards should combine (sum mod 64) to the target position
(here, 0):

∀k ̸= ℓ ∈ {1, 2, 3} : gk + gℓ ̸≡ 0 (mod 64).

• (G2) Adding any rotation value must not map one Guard into another:

∀i, ∀j ∈ {0, 1}, ∀k ̸= ℓ : gk + rij ̸≡ gℓ (mod 64).

• (G3) Guard–rotation combinations must not collide across the two rotations of
any row:

∀i, ∀k ̸= ℓ : gk + ri0 ̸≡ gℓ + ri1 (mod 64).

Constraints specific to the chosen row offset (0).

• (C3) from first order still applies (cross-row differences between x0 and x4).

• (R1) Also avoid cross-row differences between {x1, x2} and {x3, x4}:

∀j ∈ {0, 1} : g ̸= (r1j − r2j) mod 64, g ̸= (r3j − r4j) mod 64.

30

Countermeasures: Masking

The full (row-dependent) constraint set is more extensive; here we summarized the
key ones used for encoding at row offset 0. Solving the constraints with a SAT
solver yields the admissible triples in Table 4.3. As in the first-order case, additional
heuristics (e.g., coprimality with 64) can be applied to reduce long-term correlations
across rounds.

Table 4.3: Second-order: column-offset triples with row offset 0.

Column offsets for 3 guards (second order)

{2,16,18} {2,20,46} {2,46,48} {2,46,50} {2,48,50}
{4,18,44} {8,24,26} {8,24,35} {8,24,48} {11,35,37}
{14,16,18} {14,16,32} {14,18,32} {15,31,35} {16,18,32}
{16,18,62} {16,27,53} {24,26,53} {24,32,48} {24,48,62}
{27,29,53} {31,35,49} {31,46,62} {32,46,48} {32,46,50}
{32,48,50} {46,48,50} {46,48,62}

Shifted-domain trick (second order). In the second-order case we have three
domains (A, B, C). Beyond choosing the column offsets, it is also beneficial to decide
how to connect the domains to the random-bit locations of a DOM-AND gadget. We
adopt the shifted-domain trick: connect Guard from domain A (GA

1) to Z0, domain
B (GB

2) to Z2, and domain C (GC
3) to Z1 (notation as in Figure 1). This introduces

symmetry, relaxes some constraints, and allows any permutation of a valid triple from
Table 4.3 to be used in practice, thereby increasing the number of usable solutions.

Beyond second order. For higher orders, CotG has not been systematically
extended: deriving complete, order-generic conditions that guarantee statistical
independence for the bits reused as randomness becomes significantly more complex.

31

5 Hardware Implementation of As-
con Core

The designed presented in this work addresses the fundamental trade-off between
security and efficiency in cryptographic hardware implementations. Fully masked
design, while offering strong resistance against side-channel attacks (SCA), introduce
significant area and latency overhead, which is particularly detrimental in resource
constrained platforms. To overcome this limitation, our architecture exploits Ascon’s
mode level structure, selectively applying countermeasures only where strictly neces-
sary.
In particular, we adopt a selective masking strategy:

• critical phases, such as Inizialization and Finalization, are executed with
full masking protection;

• bulk operations, which do not require complete protection against differential
power analysis, are processed without masking, thereby reducing latency and
improving throughput.

This selective approach is enabled by a modified masking gadget DOM-AND
with dual functionality (Fig. 5.3). During sensitive phases, the gadget acts
as a side-channel countermeasure ensuring protection up to the desired security
order. During bulk processing, the same hardware is reconfigured to support parallel
execution of multiple data paths, effectively amortizing the masking overhead and
achieving superior throughput-to-area ratios.
The main design goals of the proposed Ascon core can be summarized as follows:

1. Side-Channel Resistance: provide robust protection against first- and higher-
order attacks through masking, applied only to security critical operations.

2. Reconfigurability: enable dynamic switching between masked and unmasked
modes depending on the phase of computation

3. Efficiency: maximize throughput-to-area ratio by reusing hardware resources
and instantiating only the minimum logic required for each security order.

4. Scalability: support configurable masking orders without without alterning
the overall architecture.

33

Hardware Implementation of Ascon Core

5. Reduced Randomness Requirements: integrate the Changing of the
Guards (CotG) technique to minimize or eliminate the consumption of the
fresh randomness.

In summary, the proposed design leverages selective masking and reconfigurable
hardware to achieve an optimal trade-off between security and efficiency. A high
level block diagram of the architecture is presented in the next section, illustrating
the structural modifications required to support dual-mode operation.

5.1 High Level Block Diagram
Building on the design objective introduced in the previous section, we now present the
main characteristics of our generic architecture. The architecture is parameterizable
with respect to the parallelism degree and can be therefore be instantiated for any
value of parallelism. Certain configurations are of particular interest:

• Parallelism = 1, when minimizing area overhead is the primary goals;

• Maximum parallelism (see Table 5.1), when targeting the highest throughput
during unmasked phases while still preserving a minimal area overhead.

These configuration offer the best trade-off in terms of throughput-to-area ratio
(Th/Area), which represents a key efficiency metric for our design.

Table 5.1: Maximum usable S-box parallelism for different masking degrees, enabling
masking logic reuse.

Masking Degree Max Parallel S-Boxes (PARMAX)
d

ì
64

d+1

í
1 32
2 22
3 16
5 11

Note that PARMAX corresponds to the degree of parallelism that allows processing
of the entire 64-bit state in a single cycle during the unmasked phases.
As previously noted, the proposed architecture guarantees full masking during both
the initialization and finalization phases, while enabling higher throughput in the
intermediate processing bulk data phase. The control of the Ascon core is handled
by a synchronous finite state machine (FSM), which will be described in detail
in the next section (5.3).
The architecture is organized into the following main blocks:

1. Input Network
This block handles the integration of the round constant and other operations

34

Hardware Implementation of Ascon Core

required during the algorithm, such as absorbing associated data (AD) or mes-
sage (MSG) blocks, and key XORs. A schematic highlighting the responsibilities
of the input network is provided in Section 5.2 in Fig. 5.4.

2. Share Creation
The share creation unit generates the (d + 1) shares xoring the internal state
with randomness provided by the RNG.

3. S-Box Layer
We instantiate PAR S-Boxes in parallel. The internal DOM-AND primitive
is redesigned to be both masked and capable of processing multiple bits in
parallel Fig. 5.3. This dual functionality directly reflects the dual nature of
the architecture.

4. Register Layers
A set of (d + 1) registers, each of 320 bits, ensures correct separation across
shares, as described in the masking Chapter 4. Additionally, several layers of
flip-flops are required:

• 5 · (d + 1)2 · PAR flip-flops within the S-Boxes, to avoid leakage caused
by glitches (detailed in the DOM-AND Section 4.3);

• 5 · (d + 1) · PAR flip-flops immediately before each S-Box, to guarantee
statistical independence of the S-Box inputs.

5. Linear Diffusion Layer (LDL)
Applied after completing the non-linear layer, once the full 64-bit state column
is available.

The modified Ascon architecture for a masking degree d = 2 is shown in Fig. 5.1.

Figure 5.1: Modified Ascon architecture with 2nd-order masking degree

35

Hardware Implementation of Ascon Core

Note: The two State Register Stages shown in the Fig. 5.1 actually represent the
same set of registers. They have been duplicated in the illustration only for clarity,
in order to present a cleaner and more readable structure.
The data processing sequence proceeds as follows:
Initialization: The IV, Key, and Nonce are first loaded. Depending on the
RNG size, one or more cycles are required to generate the (d + 1) shares. Then
the encryption starts with 12 initialization rounds (Table 2.1), processing PAR
bits per cycle. The resulting share-separated state is stored in (d + 1) shift
registers, each capable of shifting PAR bits per cycle (and, during unmasked
phase , PAR · (d + 1) bits). Special handling is required when 64 mod PAR ̸= 0
or 64 mod (PAR · (d + 1)) ̸= 0, in which case additional shift type are necessary.
Before applying the Linear Diffusion Layer, the design waits until all 64 bits of a
column have been processed by the Round Constant (RC) addition and S-Box stage.
For this reason, dedicated counters are instantiated: one to track the current round
and one to track the number of processed bits.
Associated Data (AD) and Message Processing: At the beginning of AD
processing, before applying the XOR with the AD block and the round constant, the
shares are recombined. This enables the hardware to process not only PAR bits,
but up to PAR · (d + 1) columns in parallel with the available resources. In this
configuration, the inputs of the S-boxes are generalized: instead of receiving the
d + 1 shares of a single column, each S-box processes d + 1 independent columns
of the state. As a result, each cycle handles PAR · (d + 1) columns, effectively
increasing throughput. This requires a modification of the S-box logic, see Fig.
5.3, which must dynamically adapt to interpret its inputs either as shares (for
initialization/finalization) or as independent columns (for AD/message processing) .

Figure 5.2: Ascon architecture at protection order d = 2. Only the blocks used
during the unmasked (bulk) phase are highlighted.

36

Hardware Implementation of Ascon Core

Finalization: The finalization phase mirrors the initialization. The architecture
reverts to masked mode, where the S-box layer operates on shares, and the state
is processed in (d + 1) registers of width 320 bits each, ensuring proper domain
separation.
This dual-mode operation requires the insertion of additional multiplexers to dy-
namically select whether the S-box operates on shares or columns, as well as (d + 1)
parallel Round Constant Addition blocks (one per domain/column) to preserve
masking consistency across all phases, which represent the principal overhead of
our modified (highlighted in red in 5.1). A critical requirement during both share
creation and DOM-AND computation is the use of fresh randomness at each round to
ensure side-channel resistance. In our second-order masked implementation, we adopt
the Changing of the Guards technique (see Section 4.3.3) to eliminate the need for
fresh randomness in DOM-AND computations. However, fresh randomness remains
mandatory during share creation, as the initial generation of masks cannot rely on
Guards. Extending this technique to higher order masking remains challenging due
to the rapid growth in Guard interactions with d.

5.2 Data Path Design
Representing the full Ascon data-path at the required level of detail would
result in an excessively complex diagram. For this reason, in this section
we focus on those components that have been significantly modified with re-
spect to the original Ascon architecture, as highlighted in the high level block diagram.

5.2.1 Reconfigurable DOM-AND Gadget for Parallel Pro-
cessing

The S-Box constitutes the most critical building block of the architecture, as it
implements the non-linear operations and directly impacts both performance and
side-channel resistance. In the original Ascon design, the DOM-AND gadget is
instantiated to securely compute the masked AND between the (d + 1) shares of
a single state bit. In our architecture, this block has been redesigned to support
reconfiguration, thereby enabling parallel processing in message related phases where
masking is not required.
The central idea is to reuse the hardware resources to perform multiple in-
dependent AND operations in parallel. Specifically, during the initialization and
finalization phases, the DOM-AND operates in masked mode, processing the (d + 1)
shares of a single variable according to the classical scheme. In contrast, during the
message phases the gadget is reconfigured so that the d + 1 columns of the state are
directly mapped to the domains and treated as independent variables. This strategy
enables efficient multi-column computation and significantly increases throughput.
For the first order case (d = 1), shown in (Fig. 5.3), the modified architecture allows
two columns to be processed simultaneously, thus doubling the throughput compared

37

Hardware Implementation of Ascon Core

to the serialized baseline. More generally, throughput gains scale linearly with the
masking degree d, since the reconfiguration enables up to (d + 1) columns to be
processed in parallel without altering the fundamental structure of the gadget. The

Figure 5.3: Reconfigurable DOM-AND gadget

main modifications with respect to the classical DOM-AND design (see Fig. 4.2)
are highlighted in red in Fig. 5.3. The most significant change concerns the input
mapping during unmasked operation: instead of receiving the (d+1) shares of a single
variable (A, B), the inputs to the S-Box are connected to different state columns
(e.g., 2j and 2j + 1). This functionality is enabled by the additional multiplexers
instantiated in the data block (see Fig. 5.1).
Another modification is the relocation of the affine layer XOR. In the original scheme,
the affine XOR is applied sequentially after the randomness XOR performed during
the resharing phase. In our implementation, these two operations are executed
in parallel, which effectively saves one XOR stage in the processing pipeline [23].
Finally, the non-masked outputs are produced in (d + 1) parallel streams.
In principle, it would be possible to further exploit the remaining DOM-AND in-
stances to process up to (d + 1)2 columns simultaneously. However, such an approach
would significantly increase control complexity and routing overhead. Instead, the
adopted design strikes a balance, achieving meaningful throughput improvements at
minimal additional cost. This reconfigurable DOM-AND gadget therefore ensures
higher order security during masked operation while delivering substantial throughput
gains in unmasked phases, making it a practical and efficient solution for protected
cryptographic implementations.

38

Hardware Implementation of Ascon Core

5.2.2 Input Network
The input network does not undergo any modification compared to the standard
case. In the masked configuration, the input networks corresponding to shares 1 . . . d
are not used, and the multiplexers always select the path where the output is equal
to the input. This behavior is due to the fact that the sharing operations are applied
only to Share A; otherwise, if the number of shares were even, the XOR would cancel
out. In contrast, during unmasked operation, each input network correctly XORs
the corresponding bits as required by the algorithm.
Fig. 5.4 shows the input network for the PARMAX case. The number of input
networks are always (d + 1), but this configuration is presented because it allows
the use of the index j—representing the share number—without requiring additional
offsets. For example, in the case d = 2, the first input network XORs bits 0 : 21, the
second one XORs bits 22 : 43, and the last one XORs bits 44 : 63. In the general
case, however, it is also necessary to take into account the number of processed bits.
This requires the introduction of an offset expressed as (j ·PAR + i ·PAR)+ : PAR,
where j is the share index and i is the bit counter, i.e., the number of executed shift
operations. Note the key is required to perform the XOR operation before entering
the finalization round Fig. 2.2.

Figure 5.4: Input Network at PARMAX

5.2.3 Output Network
The output network follows the same organization as in the unmasked case. In the
masked configuration, each of the (d+1) output paths contains the linear diffusion
layer, which is always applied to the state words. In addition, the output network

39

Hardware Implementation of Ascon Core

of Share A includes a dedicated XOR network that enables the key and domain
additions required by the algorithm: (i) the XOR of x3 and x4 with the key at the
end of the initialization phase, and (ii) the XOR of x4 with 063 ∥1 at the end of the
AAD processing phase. In the masked mode only Share A performs these external
additions, while the remaining d output paths propagate the corresponding state
words, preserving correctness and the masking invariants.
Fig. 5.5 shows the output network for the Share A; as for the linear diffusion layer,
it operates on the full 320-bit state (x0, . . . , x4).

Figure 5.5: Output Network (Share A)

5.2.4 State Register
Figure 5.6 shows one of the status registers of size d + 1. First, we can observe
the inputs: on the 320-bit interface the State_in is received, which represents
the initialization state composed of IV, KEY, NONCE. In addition, the output
of the output network LDL_out is provided, together with the input data (MSG,
AAD), which are absorbed into the state through an xor operation (Absorb_data).
Furthermore, inputs of PAR bits are foreseen in the masked execution, or
PAR · (d + 1) bits in the unmasked execution.
As for the outputs, the complete 320-bit state is always available, while a dedicated
(d + 1) · PAR-bit output provides a reduced portion of data when needed. The
selection of the correct data path is handled by the sel_masked_round signal, which
allows the proper number of processed bits to be extracted.

At the top of the figure, the internal structure of the register is depicted. The

40

Hardware Implementation of Ascon Core

state is divided into five 64-bit words (x0, x1, x2, x3, x4), on which shifts may be
applied. In particular, the possible shifts are:

• PAR bits,

• PAR · (d + 1) bits,

In some cases, the following may also be required:

• 64 mod PAR,

• 64 mod (PAR · (d + 1))

It should be emphasized that the actual value of the applied shift depends on
the control signals shift_type and last_cycle, and a shift is performed only if
shift_en = 1.
A specific example is illustrated in the figure, while a particular case arises for
PAR = 3 and d = 2: in this scenario, the required shifts are 3, 6, 1, and 4. Finally, it
is important to highlight that all state words are always shifted by the same amount:
although all possible shifts are shown in the figure for completeness, different words
are never shifted by different amounts.

Figure 5.6: Status Register

5.3 Interface & Finite State Machine

5.3.1 Core Interface
The top-level interface of the Ascon core is depicted in Fig. 5.7a.
Inputs

41

Hardware Implementation of Ascon Core

The data-path inputs comprise the secret key (key_1, key_2), the public nonce
(nonce_1, nonce_2), and the initialization vector (IV), each provided as a 64-bit
word. Message data are supplied through the data_in port (128 bits), together with
the valid_data_in signal, which indicates the availability of either associated data
(AAD) or plaintext/ciphertext blocks. The valid_bytes signal specifies the number of
valid bytes in the final word, while the last_block signal identifies whether the current
AAD block is the last one, after which the core transitions to plaintext/ciphertext
processing. The EOT (End of Transmission) signal marks the termination of the
input stream. The control interface includes the global clock (clk), asynchronous
reset (reset_n), and the start signal, which initiates the initialization phase. A
dedicated load_data signal is also provided to preload key and nonce values prior to
starting the permutation.

Outputs
The cryptographic outputs include the ciphertext stream (ciphertext), accompanied
by its validity flag (ciphertext_valid), as well as the authentication tag, split across
tag_1 and tag_2, with the corresponding ready_tag signal. The done signal asserts
at the end of the encryption or decryption process.
To facilitate streaming integration, the core further provides handshake signals. The
ready_for_data signal asserts when the core is ready to accept new input, while
the read_data signal indicates that the current input block has been successfully
consumed.

(a) Ascon Core Interface (b) FSM Interface

Figure 5.7: Interfaces of the Ascon core and its FSM.

5.3.2 Finite State Machine (FSM)
The control of the Ascon core is managed by a synchronous finite state machine
(FSM) driven by the global clock (clk) and asynchronous reset (reset_n). The

42

Hardware Implementation of Ascon Core

Figure 5.8: Timing Diagram Initialization phase

Note: the corresponding FSM state encoding is reported in Appendix C.

43

Hardware Implementation of Ascon Core

FSM orchestrates the datapath through all phases of the algorithm: initialization,
absorption of associated data (AAD) and message blocks, finalization, and tag
generation.
The FSM exposes a set of control, status, and handshake signals that connect it
both to the datapath and to the external microcontroller (MCU) interface.
The FSM interface is shown in Fig. 5.7b.

Input signals

The FSM receives the following inputs:

• clk, reset_n – global synchronous clock and asynchronous reset.

• load_data – indicates that the secret key, nonce and IV are avaible at the input
of the core.

• start – command from the MCU that triggers the transition from LOAD DATA
phase to INITIALIZATION SHIFT.

• valid_data_in – asserts when a block of AAD or message/ciphertext is available
at the input.

• last_block – signals that the current AAD block is the final one, after which
the FSM can proceed with message processing. In many implementations,
an alternative approach is adopted where a message_type signal explicitly
distinguishes between AAD and message blocks, while EOT is consistently
used to indicate the end of the transmission. The functionality is conceptually
equivalent, with only the naming convention of the signals differing.

• valid_bytes[3:0] – specifies the number of valid bytes in the last input word,
enabling padding management.

• EOT (End Of Transmission) – marks the end of the input stream and triggers
the finalization phase.

Output and status signals

The FSM produces the following status outputs:

• done – asserted when the encryption or decryption process is fully completed.

• tag_valid – indicates that the authentication tag is available.

• ciphertext_valid – signals that ciphertext/plaintext output data are valid.

• ready_for_data – asserts when the FSM is ready to accept new input blocks.

• read_data – acknowledgement that the current input block has been consumed.

• extra_padding_ff – internal flag used to handle the case where an additional
padding block must be inserted, i.e., when the end of transmission of either
AAD or message data coincides exactly with a full 128-bit block.

44

Hardware Implementation of Ascon Core

Control signals toward the datapath

To drive the datapath, the FSM generates the following control signals:

• shift_en, shift_type, last_cycle – control the internal shift network. Specifically,
shift_en enables shifting, shift_type selects whether to shift PAR bits (masked
mode) or PAR× (d + 1) bits (unmasked mode), and last_cycle identifies the
final shift in a round, as already explained in part Initialization of Section
5.1, see Fig. 5.6.

• write_en – enables parallel load of the internal state register.

• reg_key1_load, reg_key2_load – control loading of the key registers during
initialization.

• sel_init_load – selects loading of initialization data (IV, nonce, keys).

• sel_masked_round – selects between masked rounds (12, indices 0–11) and
unmasked rounds (reduced, indices 4–11), used also to drive the multiplexer to
select the S-boxes inputs and outputs.

• sel_mux_LD_out - selects between the raw output of the linear diffusion (LD)
stage and the post-XOR path; see Fig. 5.5. When deasserted (0), both x3 and
x4 are taken directly from the LD stage. When asserted (1), x4 is taken from
the XOR path, while x3 is taken from the XOR path only when sel_xor_signal
requests a key addition (init); otherwise x3 still bypasses the XOR and uses
the LD output.

• sel_padding - enables the padding logic when the last block is incomplete, or
when an extra padding is required because the last block of the transmission is
128 bits.

• sel_xor_signal - selects which XOR is applied to x4: either x4⊕K (key addition
at the end of initialization/finalization) or x4 ⊕ (063 ∥1) (domain constant at
the end of AAD); see Fig. 5.5.

• sel_absorb_data – enables absorption of AAD or message data into the state.

• sel_first_round enables the generation of the shares during the first round
of the INITIALIZATION and FINALIZATION phases, and it controls the
recombination process during the first round of the PROCESS_AAD phase.

MCU integration

The FSM is designed to be seamlessly integrated as a memory mapped accelerator
within a microcontroller environment. Once started, the FSM autonomously drives
the internal datapath through all phases of the Ascon algorithm, from initialization
to finalization. Throughout execution, the MCU interacts only through simple
handshake and status signals: ready_for_data and read_data regulate the input
stream, while ciphertext_valid, tag_valid, and done indicate the availability of output

45

Hardware Implementation of Ascon Core

data and the end of processing. When the FSM reaches the DONE state, de-asserting
start returns the machine to IDLE, ready for a new encryption or decryption
session. This design minimizes software overhead, as the MCU is only responsi-
ble for providing input blocks and reading back the ciphertext and authentication tag.

Figure 5.9: Timing Diagram Absorb MSG

Note: the corresponding FSM state encoding is reported in Appendix C.

FSM state transition diagram The overall behavior of the FSM is summarized in
the state transition diagram shown in Fig.5.10. Each rectangle corresponds to one
of the macro-states described above (initialization, absorption, message processing,
finalization), while the edges represent the logical conditions and control signals that
trigger the transitions.
For graphical compactness, the evolution of the FSM has been represented through
macro-states:

• IDLE,

• LOAD_DATA,

• INITIALIZATION,

• PROCESS_AAD,

46

Hardware Implementation of Ascon Core

• PROCESS_MSG,

• FINALIZATION,

• DONE

However, the main phases INITIALIZATION, PROCESS_AAD, PRO-
CESS_MSG, FINALIZATION are themselves subdivided into multiple
sub-stages. In Fig. 5.10, the sub-states of the initialization phase
are explicitly shown, which are analogous to those of the finalization
phase: INIT(FIN)_ROUND_SHIFT, INIT(FIN)_ROUND_SHIFT_LAST,
INIT(FIN)_DIFFUSE, INIT(FIN)_DIFFUSE_LAST. A similar structure applies
to the process of AAD and MSG, which differ exclusively in the exit condition
from their respective states (see Fig. 5.11, where the exit condition for the
PROCESS_MSG replaces the highlighted condition in PROCESS_AAD, marked
with an asterisk). Analyzing the state evolution in detail, in the IDLE state no

Figure 5.10: FSM state transition

operation is performed; registers are reset and the system waits for the load_data
signal. Once asserted, the FSM transitions to the LOAD_DATA state, where the
input data (IV,KEY, NONCE) are loaded. After this, the system waits for the start
signal, which initiates the INITIALIZATION macro-states.
The INITIALIZATION phase consists of permutation A and is internally divided
into the sub-states INIT_ROUND_SHIFT, INIT_ROUND_SHIFT_LAST,
INIT_DIFFUSE, and INIT_DIFFUSE_LAST. Since the architecture is fully

47

Hardware Implementation of Ascon Core

parametric, a bit_counter keeps track of how many groups of PAR bits have been
processed.
Once the last group of bit is reached, the FSM transitions to INIT_ROUND_SHIFT_LAST.
This distinction is required because in the last cycle the shift may not be equal
to PAR if 64 mod PAR ̸= 0. Afterward, the system proceeds to INIT_DIFFUSE
(if the round counter is less than 11, i.e., we are not yet at the 12th
round) or to INIT_DIFFUSE_LAST otherwise. Both INIT_DIFFUSE and
INIT_DIFFUSE_LAST apply the linear diffusion layer and subsequently activate
the write enable signal of the (d + 1) registers to store the updated shares. The only
difference is that, in INIT_DIFFUSE_LAST, the rst_cnt_4 signal is also activated.
This resets the round counter to 4 instead of 0, as the absorption phases of AAD
and MSG must consist of 8 rounds. To compute the correct round constant (RC),
the round counter must therefore start from 4.
The main differences with respect to the FINALIZATION phase are that neither
the rst_cnt_4 nor the sel_mux_ld_out signals are asserted, indeed during
FINALIZATION, the rst_cnt_4 signal is not required, while the sel_mux_ld_out
signal remains inactive as well; the only control signal that is specifically asserted in
this phase is tag_valid. This behavior is also highlighted in Fig. 5.12, where signals
exclusively related to INITIALIZATION are shown in blue and marked with (I),
whereas those belonging only to FINALIZATION are depicted in red and marked
with (F).
After the state INIT_DIFFUSE_LAST, the FSM enters the PROCESS_AAD
phase, starting from the ABSORB_AAD state. In this state, the signal write_en[0]
is asserted, enabling only state register 0. This is because the absorption of AAD
is performed in an unmasked fashion, as explained earlier in this Chapter 5, and
thus the additional d registers dedicated to the shares are not used. At this stage,
the control signal sel_first_round is also relevant, as it determines whether the
shares need to be recombined immediately after the INITIALIZATION phase or not.
Subsequently, the signal sel_absorb_data is asserted, which selects the correct data
for loading into the state register, while the padding logic is enabled in case the
input valid_bytes is less than 16. The system remains in this state until either a
valid input block is received or the extra_padding_ff flag is asserted. The latter
indicates that the last processed AAD block is the last one (so last_block was equal
to 1) and consisted of 16 valid bytes, thus requiring the addition of an extra block of
the form 1||0∗ to be XORed with the state.
It is worth noting that the padding is handled automatically: if the input valid_bytes
is smaller than 16, the input block is padded as 1||0128−b−1, where b is the number of
valid input bits.
After this, the FSM transitions to the AAD_ROUND_SHIFT state. The behavior
of this state is analogous to the SHIFT phase in INITIALIZATION, except that
the signal shift_type is not asserted, since the shift always processes PAR · (d + 1)
bits per clock cycle. A bit counter tracks the number of processed bits, and once
it reaches num_bit_unmasked = ⌈64/((d + 1) · PAR)⌉, the FSM transitions to
AAD_ROUND_SHIFT_LAST. In this state, the signal last_cycle is asserted
to handle the final shift of 64 mod (PAR · (d + 1)) bits, which may differ from
PAR · (d + 1).

48

Hardware Implementation of Ascon Core

The next step is the diffusion phase: the FSM transitions either to AAD_DIFFUSE
(if the round counter < 11) or to AAD_DIFFUSE_LAST (if the round counter
= 11). The main difference with respect to INITIALIZATION is that only
write_en[0] is asserted, rather than all (d + 1) registers, since the computation is
performed without shares. Moreover, in the state AAD_DIFFUSE_LAST, the
signal sel_mux_ld_out_x4 is asserted if the last AAD block is being processed and
no extra padding is required (extra_padding_ff = 0). This enables the state register
to load the value XORed with 0319||1. In this case, the signal sel_xor_signal is not
asserted, meaning that the XOR path selects 0127||1 applied to x3 and x4 instead of
the alternative Key[127 : 0], see Fig. 5.5.
After completing PROCESS_AAD, the FSM proceeds to the PROCESS_MSG
phase. The state transitions are very similar to those of PROCESS_AAD, with only
minor differences in the output signals. Specifically, in the ABSORB_MSG state,
the signal ciphertext_valid is asserted (unless extra_padding_ff = 1), as highlighted
in figure 5.12. In the MSG_DIFFUSE_LAST state, the signals sel_mux_ld_out_x4
and rst_cnt_4 are not asserted, since the FSM must proceed with all 12 rounds of
the finalization phase.
The main structural difference is that the last state of the message processing phase
is not MSG_DIFFUSE_LAST, but rather ABSORB_MSG, as highlighted in Fig.
5.11. Specifically, the FSM transitions to FINALIZATION either when a valid input
block is received without requiring extra padding (valid_bytes < 16), or when the
extra_padding_ff flag is asserted.
Finally, the system enters the FINALIZATION phase, which has already been
described in detail in relation to the INITIALIZATION phase.

49

Hardware Implementation of Ascon Core

Figure 5.11: PROCESS_MSG exit condition

50

Hardware Implementation of Ascon Core

Figure 5.12: FSM output signals

5.4 Functional Verification
The functional verification of the proposed architecture was performed through a
dedicated testbench implemented in C++, named tb_auto.cpp. The complete script
will be made available in the public GitHub repository of this work (see Appendix
A).
The testbench was designed to automate the entire verification flow. In particular, it
performs the following tasks:

• it generates random values and lengths for both the AAD and MSG inputs;

• it feeds the generated data to the hardware core under test;

• it compares the produced output file with the results of the Python-based
golden model, verifying that no mismatches occur.

This methodology ensured full functional coverage by testing the architecture under
a wide range of random inputs, while guaranteeing correctness with respect to the
official reference model.

51

6 Security Evaluation and TVLA

To assess whether a cryptographic implementation leaks sensitive information, the
most widely adopted methodology is the Test Vector Leakage Assessment (TVLA),
which relies on Welch’s t-test. In this approach, two independent sets of side-channel
traces are collected: one using a fixed nonce and the other using random nonce.
In order to perform such an evaluation, power consumption traces of the design must
be collected. This requirement naturally leads to the integration of the cryptographic
core on FPGA.

6.1 Integration on FPGA
We integrated the Ascon core on the CW305 Artix-7 target to enable controlled
power measurements under realistic operating conditions, see Fig. 6.1 for the
measuring set-up. The design adopts the ChipWhisperer USB front-end as a

Figure 6.1: Experimental Set-up

minimal memory mapped bus, exposing a dedicated register bank. A clocking
module derives the crypto clock from the on-board PLL; resets are provided both in
hardware (pushbutton) and software (rstn_sw), see Fig. 6.2.
The register bank, implemented in the USB clock domain, manages the key, nonce,
associated data (AD), and message (MSG) buffers, and provides the interface to the
crypto core. It also generates a synchronized start pulse and latches the main status

53

Security Evaluation and TVLA

signals (busy, ciphertext valid, tag ready, done). For completeness, the detailed
functionality of each register is summarized in Table 6.1.
A small FSM operating in the crypto clock domain orchestrates the sequence of
operations.The FSM is internally kept simple, as it is designed to support only
a minimal functionality: both AAd and the MSG are assumed to be at most 16
bytes long. This design choice is motivated by the fact that, for the purpose of the
TVLA evaluation, the primary interest lies in verifying that the critical phases of
the algorithm, namely the initialization and finalization, do not exhibit any
side-channel leakage. Consequently, the length of AAD and MSG can be arbitrary,
so we opted for the simplest possible implementation.
In the Idle state the FSM remains inactive. Once the host asserts the load_data
signal, the FSM transitions to the Load_Data state, during which the initialization
data (IV, key, nonce) previously stored in the register bank are transferred into the
core’s internal state registers. It should be noted that the register bank must be
loaded before the start of the operation since, as illustrated in Fig. 6.2, the data bus
is only 8 bits wide and therefore constitutes a bottleneck.
After the Load_Data state, the FSM enters the Process_AD state, where
the trigger signal for the oscilloscope is asserted (see Section 6.2). In this state,
msg_valid and msg_last are activated, under the assumption that both AAD and
MSG are exactly 128 bits. Subsequently, the FSM moves to the Process_Msg
state, which is analogous to the previous one, and finally transitions to the Done
state.
During the execution, the Ascon core produces the ciphertext, the authentication
tag, and a 320-bit snapshot of the internal state, all of which can be retrieved over
the USB interface for debugging and leakage analysis. Storing the ciphertext and
tag also allows us, during the TVLA campaign, to validate that the core is operating
correctly and that the cryptographic functionality is preserved while side-channel
properties are being assessed.
This architecture provides a clean separation between control/IO (USB domain) and
cryptographic processing (crypto domain), with explicit clock domain crossing and a
stable trigger, which are essential to obtain high quality side-channel traces for TVLA.

54

Security Evaluation and TVLA

Figure 6.2: Ascon Core integrated on CW305 Artix-7 Board

6.2 Experimental Setup and Trace Acquisition

Measurements were carried out on the CW305 Artix-7 board with traces captured
using a PicoScope 5000-series oscilloscope. The FPGA was clocked at 10 MHz, while
the oscilloscope sampled at 100 MS/s, corresponding to 10 samples per FPGA clock
cycle.
Trace acquisition was automated by means of a Python script (sca_test.py). This
script first programs the FPGA with the correct bitstream, then loads the relevant
inputs (key, nonce, AAD, and MSG) into the register bank via dedicated Python
functions. Once all data have been written, bit 0 of the REG_CRYPT_GO register is
set to 1, initiating the encryption operation. The oscilloscope trigger, as previously
mentioned, is generated internally by the FPGA wrapper, thus avoiding the capture
of power activity caused by register loading.
For our analysis, a total of 100,000 traces were collected: 50,000 with random nonces
and 50,000 with a fixed nonce. In order to reset the core after each execution without
clearing the register bank and the LFSR (used as a PRNG), an additional reset
signal was introduced. This ensured that the randomness contribution differed across
executions, while preserving the inputs already stored in the register bank, only the
nonce is resend at each execution.
The t-scores were computed online using SCALIB [30].

55

Security Evaluation and TVLA

(a) FSM state transition (b) FSM output signals

Figure 6.3: FSM integrated on FPGA

56

Security Evaluation and TVLA

6.3 TVLA Results and Interpretation

6.3.1 TVLA on S-BOX
In the first phase of development, the TVLA test was performed exclusively on the
S-box and the share generation module. The results demonstrate that both the first
order and second order designs are secure, with no evidence of leakage in either
architecture, see Fig. 6.4, 6.5. This preliminary evaluation was carried out to ensure
that the modified S-box, presented in Fig. 5.3, did not introduce side-channel leakage
prior to integrating it into the complete design.

(a) 1st-order t-test (b) 2nd-order t-test

Figure 6.4: TVLA result of the first order masked S-box.

(a) 1st-order t-test (b) 2nd-order t-test

Figure 6.5: TVLA result of the second-order masked S-box.

6.3.2 TVLA on the Complete Architecture
Subsequently, the TVLA test was extended to the complete encryption architecture,
both for the first-order and second order implementations. In this phase, the attack
was carried out over the entire cryptographic computation, including initialization,
absorption of AAD and message, and finalization.
Both architectures were instantiated with PAR_MAX:

• for the first order case with PAR = 32,

• for the second order case with PAR = 22.

57

Security Evaluation and TVLA

The number of samples required during the initialization/finalization phase was
estimated as:

nsamples_init =
3

12 ·
3

sup
3 64

PAR

4
+ 3

4
+ 1

4
· fsample

fclock

while for the absorption of AAD and MSG:

nsamples_process =
A

8 ·
A

sup
A

64
PAR · (d + 1)

B
+ 2

B
+ 1

B
· fsample

fclock

where:

• PAR denotes the parallelism factor,

• d represents the protection order,

• fsample is the sampling frequency,

• fclock is the design clock frequency.

Numerical Results

Case d = 1, PAR = 32:

nsamples_init =
3

12 ·
3

sup
364

32

4
+ 3

4
+ 1

4
· fsample

fclock
= 61 · fsample

fclock

nsamples_process =
A

8 ·
A

sup
A

64
32 · (1 + 1)

B
+ 2

B
+ 1

B
· fsample

fclock
= 25 · fsample

fclock

It is worth noting that, while for the initialization and finalization phases the
computed number of samples matches the experimental value (i.e., the point at which
the sel_masked_round signal goes to 0), highlighted by the first vertical line in Fig.
6.6, the duration of the PROCESS_AAD phases appears to be approximately twice
as long. This behavior is nevertheless correct, since in the case where both AAD
and MSG consist of 16 bytes, an additional round of extra_padding is required,
effectively doubling the processing time, instead for the MSG is not required beacouse
after the ABSORB of the extra_padding the pB permutation are not required.
It is worth noting that, while for the initialization and finalization phases the
computed number of samples matches the experimental value (i.e., the point at
which the sel_masked_round signal goes to 0), highlighted by the first vertical line
in Fig. 6.6, the duration of the PROCESS_AAD phase appears to be approximately
twice as long. This behavior is nevertheless correct, since when both AAD and
MSG consist of 16 bytes, an additional round of extra_padding is required, thereby
effectively doubling the processing time. Conversely, for the PROCESS_MSG phase the
additional round is not required, as after the absorption of the extra_padding the
pB permutation is not executed.

58

Security Evaluation and TVLA

(a) 1st-order t-test

(b) 2nd-order t-test

Figure 6.6: TVLA result of the first-order masked implementation.

From a theoretical perspective, one would expect that the second-order TVLA
applied to the first-order architecture should reveal leakage, thus indicating insecurity.
However, as can be observed in both figures (Fig. 6.6), during the initialization and
finalization phases the designs appear secure, since no significant leakage is detected.
On the other hand, during the PROCESS_AAD and PROCESS_MSG phases, the TVLA
values exceed the threshold. This result is nevertheless consistent with the theoretical
model: these phases do not induce sensitive leakage related to the secret key. Indeed,
the TVLA test is a non-specific statistical method aimed at detecting differences in
power traces rather than demonstrating the feasibility of an attack. In this case, the
observed differences are explained by the fact that the processed data depends on
the NONCE, which is fixed in one half of the trace and variable in the other. Since
the shares have been recombined and are no longer refreshed with randomness, it is
expected that the TVLA highlights such variations as a form of apparent “leakage,”
even though it does not compromise key security.

Case d = 2, PAR = 22:

nsamples_init =
3

12 ·
3

sup
364

22

4
+ 3

4
+ 1

4
· fsample

fclock
= 73 · fsample

fclock

nsamples_process =
A

8 ·
A

sup
A

64
22 · (2 + 1)

B
+ 2

B
+ 1

B
· fsample

fclock
= 25 · fsample

fclock

59

Security Evaluation and TVLA

(a) 1st-order t-test

(b) 2nd-order t-test

Figure 6.7: TVLA result of the first order masked implementation.

60

Security Evaluation and TVLA

Address (hex) Register Purpose / Notes

0x00 REG_CLKSETTINGS Not modified from the original
CW305 wrapper.

0x01 REG_USER_LED Not modified from the original
CW305 wrapper.

0x02 REG_CRYPT_TYPE Not modified from the original
CW305 wrapper (design identifier).

0x03 REG_CRYPT_REV Not modified from the original
CW305 wrapper (design revision).

0x04 REG_IDENTIFY Not modified from the original
CW305 wrapper (board identifier).

0x05 REG_CRYPT_GO Used to assert the load_data signal,
triggering the start of a new opera-
tion in the Ascon core.

0x06 REG_CRYPT_TEXTIN Register used to load the Associated
Data (AD) to the core.

0x07 REG_CRYPT_CIPHERIN Register used to load the ciphertext
when operating in decryption mode.

0x08 REG_CRYPT_TEXTOUT Register used to retrieve the plain-
text produced by the decryption.

0x09 REG_CRYPT_CIPHEROUT Register used to retrieve the cipher-
text produced during encryption.

0x0A REG_CRYPT_KEY Register used to store the secret key.
0x0B REG_BUILDTIME Not modified from the original

CW305 wrapper.
0x0C REG_CRYPT_TAGOUT Register used to store the authenti-

cation tag produced by the Ascon,
readable via the USB interface.

0x0D REG_CRYPT_NONCEIN Register used to store the nonce sup-
plied by the host.

0x0E REG_CRYPT_STATEOUT Register used to expose the internal
state of the Ascon.

0x0F REG_VALID_BYTES_AD Register used to indicate the number
of valid bytes in the AD.

0x10 REG_VALID_BYTES_MSG Register used to indicate the number
of valid bytes in the MSG.

0x11 REG_CRYPT_TEXTIN_BUFFER_MSG Register used to store the MSG.
0x12 REG_CRYPT_STATUS Register exposing status flags: used

both for debugging (e.g., during de-
velopment) and for detecting when
ready_tag is asserted, signaling
that the result can be read.

Table 6.1: Register bank map for the CW305 Ascon integration.

61

7 Results and Analysis

Modern lightweight cryptography must deliver not only provable side–channel ro-
bustness but also competitive silicon efficiency. To quantify the silicon cost of our
masked Ascon designs, we synthesized the RTL with Synopsys Design Compiler
(targeting the tcbn65lplvt 65 nm standard–cell library at the [TT/SS/FF] corner,
[Vdd = 1.2 V] and [T=25 ◦C]. All figures are core-only (I/O pads and memories
excluded). Gate equivalents (GE) are normalized to the two–input NAND cell.1
Synthesis used a single clock domain and a flat hierarchy; unless otherwise stated,
the same constraints and clock–gating options were applied to all variants to ensure
a fair comparison.

7.1 ASIC Area Results
Tables 7.1 and 7.2 report the DC area breakdown for the first– and second–order imple-
mentations at two parallelism points: PAR = 1 (minimal parallelism) and PARMAX
(32 for d=1, 22 for d=2) in Gate Equivalent. The categories follow DC’s report_area
convention: combinational logic, buffer/inverter cells, and non–combinational (se-
quential) cells.

Group kGE (PAR=1) kGE (PAR=32)

Combinational 9.41 15.26
Buffers / Inverters 0.76 1.22
Non–combinational 4.90 9.29

Total 14.31 24.55

Table 7.1: GE breakdown for the first–order masked core (d = 1) at PAR=1 and
PARMAX = 32.

Group GE (PAR=1) GE (PAR=22)

Combinational 11.29 17.54
Buffers / Inverters 1.03 1.48
Non–combinational 6.80 12.71

Total 18.09 30.25

Table 7.2: GE breakdown for the second–order masked core (d = 2) at PAR=1 and
PARMAX = 22.

1Extracted from tcbn65lplvttc.db.alib, cell ND2D0LVT.

63

Results and Analysis

Finally, we provide a compact comparison across masking orders, using the maximum
parallelism we deploy per order (32, 22, 16, 11) for (d = 1, 2, 3, 5), respectively). Fig.
7.1 illustrates how the area grows with the masking order d when configured for
maximum throughput (one round per cycle). Notably, the incremental overhead of
moving from one masking order to the next remains moderate.

Implementation d PARMAX kGE

First–order masked core 1 32 18.09
Second–order masked core 2 22 30.25
Third–order masked core 3 16 33.76
Fifth–order masked core 5 11 47.26

Table 7.3: Gate–equivalent (GE) counts at PARMAX. Absolute area figures are
omitted due to foundry library NDA.

Figure 7.1: Area vs. masking order at PAR_MAX.

7.1.1 Comparison Against the State of the Art
Table 7.4 benchmarks our gate-equivalent (kGE) figures against recent state-of-the-art
(SoA) implementations across masking orders d ∈ {1, 2, 5}. A clear trend emerges:
as the masking order increases, our relative area savings over the SoA become
progressively larger, see Fig. 7.2. This behavior is intuitive for our micro-architecture,
which deliberately reduces the effective parallelism (PAR) at higher orders and thus
instantiates fewer parallel S-boxes; the dominant nonlinear cost is therefore amortized
more aggressively than in highly parallel SoA designs that replicate the S-box network

64

Results and Analysis

per share. While this confirms the expected area efficiency, the more insightful metric
for hardware practicality is the throughput-per-area ratio (Mbps/kGE), which we
analyze in the next subsection.

Order d Our Design [31] [32] [23] [33]

1 24.5 30.42 42.8 26.1 50.4
2 30.2 – 90.9 52.6 102.4
5 47.3 – 339.8 – 3557.7

Table 7.4: Gate equivalents (kGE) by masking order d (rows) and work (columns).
‘–‘ denotes not reported.

Figure 7.2: Area result (kGE) vs masking order d

7.2 ASIC Throughput Results
We report throughput for our ASIC as

TH = processed bits
Ncycles · tcp

= fmax ·
processed bits

Ncycles
, (7.1)

where Ncycles is the total number of clock cycles to complete an AEAD operation under
a given MSG and AAD length, tcp is the critical path (clock period), and fmax = 1/tcp.
Unless otherwise stated, “processed bits” refers to the bits of payload (MSG) and
associated data (AAD) actually absorbed by the AEAD datapath (authentication tag
bits are excluded from the numerator but their generation/verification contributes to
Ncycles). For a sponge/duplex AEAD such as ASCON, Ncycles naturally decomposes
as

Ncycles = Ninit + Naad(|A|) + Nmsg(|P |) + Nfinal, (7.2)

65

Results and Analysis

with |A| and |P | the AAD and plaintext lengths. The initialization and finalization
terms are fixed per operation, whereas Naad and Nmsg scale with the number of
absorbed rate blocks.2 As a consequence, for short packets the fixed Ninit + Nfinal
dominates and depresses the effective throughput, while for long packets the amortized
cost of these phases vanishes and the throughput approaches the architecture’s steady
state limit fmax · (bits per cycle in the processing phase).

Application profiles and lengths. We evaluate three representative profiles that
cover typical AEAD deployment ranges:

• IoT–small (telemetry): very short payloads with compact headers. As a
concrete representative we consider MSG ≈ 16 B (≈ 128 bits) and AAD in the
order of a small MAC/transport/application header (e.g., LoRaWAN MAC
fields) ≈ 13–16 B. This reflects widely used low-power telemetry where messages
are only tens of bytes and the LoRaWAN MAC adds a ≈13 B overhead when
no options are present [33].

• Wireless–medium (Wi-Fi/802.11 data): moderate payloads with MAC
header authenticated as AAD. We adopt AAD ≈ 22–30 B (portions of the
802.11 MAC header treated as AAD in AEAD modes) and a MSG in the
≈ 250–300 B range, representative of small application datagrams that are
common on WLANs [34].

• Ethernet-like (L2/L3/L4 data): full-MTU payload with lower-layer headers
authenticated. A practical composition is Ethernet II (14 B) + IPv4 (20 B min)
+ UDP (8 B)⇒ AAD ≈ 42− 128 B and MSG ≈ 1500 B (classic Ethernet MTU
payload) [34].

Why our reconfigurable core benefits from larger AAD/MSG. Our core
can reconfigure to sustain the maximum absorption/processing rate during both
the AAD and MSG phases. In all three profiles this means that, once initialization
completes, the datapath operates at its highest utilization for the bulk of the work.
The fixed costs of Initialization and Finalization are therefore amortized over more
rate blocks whenever |A| and |P | are larger, yielding (i) higher effective throughput
and (ii) smaller throughput variance across inputs. This effect is most visible in the
Ethernet-like profile and, to a lesser extent, in the wireless-medium profile; it is least
pronounced in the IoT-small profile where Ninit + Nfinal constitutes a larger share of
Ncycles.
For throughput calculation we adopted the theoretical expression in Equation 7.1
and verified its consistency with simulation results by measuring the number of
clock cycles Ncycles between the rising edge of the start signal and the assertion of
tag_valid.
The cycle count was modeled as follows.

2For ASCON-128 and ASCON-128a the data rate r is 64 and 128 bits, respectively, hence Naad
and Nmsg grow with ⌈|A|/r⌉ and ⌈|P |/r⌉.

66

Results and Analysis

Initialization and Finalization. These phases require the full execution of the
12 permutation rounds, with a cycle count given by Eq. 7.3.

Ninit/final = 12 ·
3 64

PAR + LATENCY
4

. (7.3)

Here, PAR denotes the datapath parallelism (i.e., the number of bits processed per
cycle), while LATENCY accounts for the pipeline depth. As illustrated in Fig. 5.1,
and considering the internal flip-flop stage present within the DOM-AND block
during this phase, the LATENCY is fixed to 3.

AAD and MSG absorption. During the absorption phase, each r-bit block
(with r = 64 or 128, depending on the variant) is processed over eight rounds. In
this case, the flip-flop stage inside the DOM-AND is bypassed, which reduces the
effective pipeline depth. Consequently, the cycle count per block is

Nabsorb = 8 ·
 64

PAR · (d + 1) + LATENCY− 1
+ 1, (7.4)

where PAR denotes the datapath parallelism, d the masking degree, and LATENCY
the pipeline depth. The additional +1 term, compared to the Init/Final case,
accounts for the explicit absorption of the message block.
The overall contribution of AAD and MSG phases then scales linearly with the
number of absorbed rate blocks:

Naad/msg = Nabsorb ·
9 |A|

r

:
+ Nabsorb ·

9 |P |
r

:
. (7.5)

At this point, the only remaining parameter required to compute the throughput is
the critical path delay tcp. This value was obtained by issuing the report_timing
command in Synopsys Design Compiler. The resulting tcp values, together with the
corresponding throughput figures, are summarized in Tab. 7.5.

APPLICATION IOT WIRELESS ETHERNET
masking order tcp [ns] Ncycle TH [Gb/s] Ncycle TH [Gb/s] Ncycle TH [Gb/s]
d = 1 0.70 195 0.94 647 5.32 2547 6.74
d = 2 0.78 219 0.75 660 4.60 2569 5.99
d = 3 0.80 243 0.66 693 4.33 2593 5.78
d = 5 0.86 291 0.51 741 3.77 2641 5.28

Table 7.5: Throughput (TH) as a function of masking degree and application (IoT,
Wireless, and Ethernet) at PARMAX .

The results were obtained assuming data blocks of 16 B and 16 B for the IoT case,
30 B and 300 B for the Wireless case, and 42 B and 1500 B for the Ethernet case.

As shown in Fig. 7.3, the throughput (TH) trend as a function of parallelism for
different masking degrees is reported for ETHERNET applications. It can be

67

Results and Analysis

observed that the curves terminate at the maximum supported parallelism, for the
reasons already discussed in Section 5.1. It is also noticeable that, for certain values of
PAR, the curve becomes nearly flat. This behavior is due to the fact that increasing
the parallelism from one value to the next does not reduce the number of required
shifts. For instance, in the case of d = 2, moving from PAR = 16 to PAR = 20
still requires four shifts during the initialization/finalization phase and two shifts
during the message processing phase. We can observe in the IoT case (Fig. 7.4)

Figure 7.3: Throughput (TH) varying PAR and d for Ethernet application

that initialization and finalization phases dominate the overall execution time. This
effect arises because, with only two blocks of AAD and MSG to process, the fixed
initialization cost is amortized over a very small number of blocks. Consequently, the
dominant factor becomes the parallelism itself, which directly determines the number
of cycles required in these phases, while the contribution of the term PAR · (d + 1)
in the message and AAD processing is comparatively less significant.
For conciseness, detailed throughput–parallelism plots for the Wireless profile is

omitted from the main text and reported in Appendix B.

7.3 ASIC TH/Area Results

Having obtained the throughput (TH) and area values, we also report their ratio
Tab. 7.6, TH/A = TH/A (in Mb/s per kGE), as a size-normalized figure of merit.
TH/A quantifies how effectively the architecture converts silicon area into delivered
throughput: the higher the value, the more throughput is achieved per unit area
(equivalently, the smaller the area required per Mb/s). This normalization enables
a fair comparison across masking degrees and parallelism settings, where area may

68

Results and Analysis

Figure 7.4: Throughput (TH) varying PAR and d for IoT application

grow faster than throughput, and will be used in the next section to position our
results against prior masked ASCON implementations.

Table 7.6: Area, throughput (TH) and throughput-per-area (TH/A) vs. masking
degree at PARmax.

TH [Gb/s] TH/A [Mb/s per kGE]

Mask degree Area [kGE] IoT Wireless Ethernet IoT Wireless Ethernet

d = 1 24.5 0.94 5.32 6.74 38.4 217.6 275.5
d = 2 30.2 0.75 4.60 5.99 24.8 152.3 198.3
d = 3 33.8 0.66 4.33 5.78 19.5 128.1 171.0
d = 5 47.3 0.51 3.77 5.28 10.8 79.7 111.7

TP/A is computed as TH/Area with Area in kGE; values rounded to one decimal.

7.3.1 Comparison Against the State of the Art
As shown in Tab. 7.7, the table reports the maximum throughput-to-area ratios
(TH/A) of our architecture compared with state of the art masked Ascon implemen-
tations. While the results may appear very favorable, and in many respects they are,
several important remarks must be made.
First, the table is constructed to highlight the maximum achievable throughput, i.e.,
assuming a continuous stream of data blocks and neglecting the fixed overhead of
initialization and finalization. In other words, the reported values represent the
asymptotic throughput that is reached for sufficiently long messages. This convention

69

Results and Analysis

is widely adopted in the hardware cryptography literature. The throughput values
are obtained using the following expression:

TP = fck · size(Pi)
Latencyround

(7.6)

where size(Pi) is the size of the plaintext block processed per cycle, fck is the
maximum operating frequency, and Latencyround is the number of cycles per round.
Experimental results demonstrate that our design consistently achieves superior
TH/A across all masking orders. This advantage comes from the re-use of the
masking hardware during message processing and from the deeper pipelining of
combinational logic, which shortens the critical path and allows higher maximum
clock frequencies.
It must be emphasized, however, that the initialization/finalization overhead is not
captured by this formula. While this overhead is present in all implementations, it is
more pronounced in our design. This explains why the values in the table should be
interpreted as asymptotic throughput, whereas short-message scenarios (e.g., IoT
profiles) exhibit lower effective throughput.
The most important aspect to highlight, however, is the trend of the throughput to
area ratio (TH/A) as the masking order increases. In competing designs, moving
from first- to fifth-order masking typically results in a reduction of TH/A by a
factor of about 7–8. In contrast, our architecture shows a much milder degradation,
with TH/A decreasing only by a factor of roughly 2.5. This clearly underlines the
efficiency and scalability of our approach, especially when higher-order protection is
required.
Finally, we note that in the Tab. 7.7 the reported latency for our design is written as

Table 7.7: Comparison with State-of-the-Art Ascon masked implementations.

Protection
Order

Area Randomness Latency TH TH/A
Work [kGE] [bit/cycle] [cycles/round] [Gbps] [Mbps/kGE]

Our Design
1-order 24.5 0∗ 2+1 7.31 298.4
2-order 30.2 0∗ 2+1 6.56 217.2
5-order 47.3 4800 2+1 5.95 125.8

[31] 1-order 30.42 4 2 3.77 124

[33]
1-order 50.4 320 1 4.35 79.8
2-order 102.4 960 1 4.02 39.3
5-order 3557.7 4800 1 3.34 9.3

[32]
1-order 42.8 2048 1 2.77 64.8
2-order 90.9 4608 1 3.34 52.2
5-order 339.8 18432 1 2.99 8.8

[23] 1-order 26.1 0∗ 2 n.d. n.d.
2-order 52.6 0∗ 2 n.d. n.d.

* Obtained with changing of the guards technique

“2+1”. This notation indicates that during the message processing phase only two

70

Results and Analysis

sequential stages (flip-flops/state registers) are traversed, while in the initialization
and finalization phases one additional register stage must be accounted for, corre-
sponding to the internal register of the DOM-AND gate.
The same trends are visualized in Fig. 7.5, which presents two complementary
views. The Fig. 7.5a a reports the absolute throughput-per-area (TH/A) across
masking orders for our design and prior masked ASCON implementations. Fig. 7.5b
normalizes each curve to its own first–order value, so as to emphasize the relative
degradation with increasing masking order rather than absolute magnitude. The
normalized view makes the trend immediately comparable across architectures and
corroborates the discussion above: state-of-the-art designs typically lose a larger
fraction of TH/A when moving to higher orders, whereas our architecture exhibits a
markedly milder decline.

(a) Absolute TH/A vs. masking order. (b) TH/A normalized to the d=1 value of
each architecture.

Figure 7.5: Comparison of throughput-per-area (TH/A) across masking orders:
absolute values (a) and normalized trends (b).

71

8 Conclusion and Future Work

8.1 Conclusions
This thesis presented an efficient hardware implementation of ASCON-128/ASCON-
128a that is fully parameterizable in the datapath parallelism (PAR) and in the
masking degree (d). The proposed architecture reuses masking hardware during both
AAD and MSG phases and employs deeper pipelining on the non-linear layer, which
shortens the critical path and enables higher fmax. An analytical cycle model was
developed and validated against simulation to derive throughput across representative
IoT, Wireless, and Ethernet profiles.
When compared with prior masked ASCON designs, our core attains competitive
and often superior throughput-per-area (TH/A), particularly for larger payloads
where initialization/finalization costs are amortized.

8.2 Future Work
(1) Exploit all (d+1)2 masked ANDs to increase effective parallelism.
In the current core the masked non-linear layer exploits (d+1) parallel DOM-ANDs
per cycle. An alternative is to utilize all (d+1)2 pairwise ANDs available in DOM,
thereby reducing the number of S-box instances required per 64-bit rate from
⌈64/(d+1)⌉ to ⌈64/(d+1)2⌉. This could further increase TH/A at higher orders. The
approach, however, requires a non-trivial refactoring of the core.
(2) One-cycle reduction per round via register placement and scheduling.
A second direction is to reorganize the round pipeline so that the masked DOM-
AND is applied immediately after the state registers. By doing so, the flip-flop layer
currently used to guarantee input independence for the DOM-AND could be removed,
reducing the per-round latency from (L) to (L−1) clock cycles (in our prototype,
from 3 to 2). The expected benefit is higher throughput at the same PAR and d.
This optimization must be weighed against a likely increase of the critical path; it
also demands a new Python golden model to trace intermediate masked states and
a refreshed verification flow (functional, formal where applicable, and side-channel
leakage assessment).

73

A GitHub Directory

§ NicoPaninforni/myAscon128-A

Figure A.1: Repository structure of the ASCON-128 RTL project on GitHub

rtl/ Register-transfer-level source code (Verilog/SystemVerilog) for the ASCON-128
core. Includes design parameters (e.g., ascon_params.sv) used by simulation
and synthesis.

tb/ Testbench sources for RTL simulation with Verilator (e.g., tb_auto.cpp). The
testbench generates randomized inputs, drives the DUT, and checks outputs
against the Python golden model.

fpga/ FPGA-oriented wrapper and integration files, with a dedicated testbench
in fpga/tb/. The current wrapper targets up to 128-bit AAD and message
lengths and produces waveform dumps for inspection.

plots/ Staging area for figures and analysis artifacts (e.g., plots or summaries
produced during verification or synthesis evaluation).

.gitignore Ignore rules for build artifacts, generated files (e.g., VCD/FST traces,
netlists), and other temporary outputs.

README.md High-level usage notes and workflow overview for simulation, synthesis,
and verification.

ascon.core FuseSoC core description: declares file sets, targets (simulation/synthe-
sis), and tool backends, enabling reproducible builds of the ASCON core.

75

https://github.com/NicoPaninforni/myAscon128-A.git

GitHub Directory

fusesoc.conf Local FuseSoC configuration (e.g., core library paths and backend
options) used by the automated flow.

makefile Entry points for the automated flow (simulation, ASIC synthesis, and post-
synthesis simulation), orchestrating FuseSoC/Verilator and Design Compiler
runs.

76

B Throughput Graphs

Figure B.1: Throughput (TH) varying PAR and d for Wireless application

77

C FSM state encoding

Code (hex) State

0x00 IDLE
0x01 INIT_LOAD
0x02 INIT_ROUND_SHIFT
0x03 INIT_ROUND_SHIFT_LAST
0x04 INIT_ROUND_DIFFUSE
0x05 INIT_ROUND_DIFFUSE_LAST
0x06 ABSORB_AD_DATA
0x07 PROCESS_AD_SHIFT
0x08 PROCESS_AD_SHIFT_LAST
0x09 PROCESS_AD_DIFFUSE
0x0A PROCESS_AD_DIFFUSE_LAST
0x0B ABSORB_MSG_DATA
0x0C PROCESS_MSG_SHIFT
0x0D PROCESS_MSG_SHIFT_LAST
0x0E PROCESS_MSG_DIFFUSE
0x0F PROCESS_MSG_DIFFUSE_LAST
0x10 FINALIZATION_SHIFT
0x11 FINALIZATION_SHIFT_LAST
0x12 FINALIZATION_DIFFUSE
0x13 SQUEEZE_TAG
0x14 DONE

Table C.1: FSM state encoding for Ascon core.

79

Bibliography

[1] National Institute of Standards and Technology. Lightweight Cryptography.
Accessed: 2025-08-22. 2023. url: https : / / csrc . nist . gov / projects /
lightweight-cryptography.

[2] Mattia Mirigaldi et al. “The Quest for Efficient ASCON Implementations:
A Comprehensive Review of Implementation Strategies and Challenges”. In:
Chips 4.2 (2025), p. 15.

[3] Hannes Gross et al. “Ascon hardware implementations and side-channel evalu-
ation”. In: Microprocessors and Microsystems 52 (2017), pp. 470–479.

[4] Christoph Dobraunig et al. “Ascon v1. 2: Lightweight authenticated encryption
and hashing”. In: Journal of Cryptology 34.3 (2021), p. 33.

[5] H Dobbertin, A Bosselaers, and B Preneel. “International Workshop on Fast
Software Encryption”. In: (1996).

[6] Guido Bertoni et al. “Duplexing the sponge: single-pass authenticated encryp-
tion and other applications”. In: International Workshop on Selected Areas in
Cryptography. Springer. 2011, pp. 320–337.

[7] Guido Bertoni et al. “Keccak specifications”. In: Submission to nist (round 2)
3.30 (2009), pp. 320–337.

[8] Secure Hash Standard. “Secure hash standard”. In: FIPS PUB (1995), pp. 180–
1.

[9] François-Xavier Standaert. “Introduction to side-channel attacks”. In: Secure
integrated circuits and systems. Springer, 2009, pp. 27–42.

[10] Raphael Spreitzer et al. “Systematic classification of side-channel attacks: A
case study for mobile devices”. In: IEEE communications surveys & tutorials
20.1 (2017), pp. 465–488.

[11] Mark Randolph and William Diehl. “Power side-channel attack analysis: A
review of 20 years of study for the layman”. In: Cryptography 4.2 (2020), p. 15.

[12] Colin O’Flynn. “Fault injection using crowbars on embedded systems”. In:
Cryptology ePrint Archive (2016).

[13] Sébastien Ordas, Ludovic Guillaume-Sage, and Philippe Maurine. “Electro-
magnetic fault injection: the curse of flip-flops”. In: Journal of Cryptographic
Engineering 7.3 (2017), pp. 183–197.

81

https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography

Bibliography

[14] Jasper GJ Van Woudenberg, Marc F Witteman, and Federico Menarini. “Prac-
tical optical fault injection on secure microcontrollers”. In: 2011 Workshop on
Fault Diagnosis and Tolerance in Cryptography. IEEE. 2011, pp. 91–99.

[15] Michael Hutter and Jörn-Marc Schmidt. “The temperature side channel and
heating fault attacks”. In: International Conference on Smart Card Research
and Advanced Applications. Springer. 2013, pp. 219–235.

[16] Data Encryption Standard et al. “Data encryption standard”. In: Federal
Information Processing Standards Publication 112.3 (1999).

[17] Morris J Dworkin et al. “Advanced encryption standard (AES)”. In: (2001).
[18] Paul Kocher, Joshua Jaffe, and Benjamin Jun. “Differential power analysis”.

In: Annual international cryptology conference. Springer. 1999, pp. 388–397.
[19] Carolyn Whitnall, Elisabeth Oswald, and François-Xavier Standaert. “The

myth of generic DPA. . . and the magic of learning”. In: Cryptographers’ Track
at the RSA Conference. Springer. 2014, pp. 183–205.

[20] Eric Brier, Christophe Clavier, and Francis Olivier. “Correlation power analysis
with a leakage model”. In: International workshop on cryptographic hardware
and embedded systems. Springer. 2004, pp. 16–29.

[21] Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. “Template attacks”. In:
International workshop on cryptographic hardware and embedded systems.
Springer. 2002, pp. 13–28.

[22] Benjamin Jun Gilbert Goodwill, Josh Jaffe, Pankaj Rohatgi, et al. “A testing
methodology for side-channel resistance validation”. In: NIST non-invasive
attack testing workshop. Vol. 7. 2011, pp. 115–136.

[23] Srinidhi Hari Prasad et al. “Efficient low-latency masking of ascon without
fresh randomness”. In: Cryptology ePrint Archive (2023).

[24] Yuval Ishai, Amit Sahai, and David Wagner. “Private circuits: Securing hard-
ware against probing attacks”. In: Annual International Cryptology Conference.
Springer. 2003, pp. 463–481.

[25] Stefan Mangard and Kai Schramm. “Pinpointing the side-channel leakage
of masked AES hardware implementations”. In: International Workshop on
Cryptographic Hardware and Embedded Systems. Springer. 2006, pp. 76–90.

[26] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. “Threshold imple-
mentations against side-channel attacks and glitches”. In: International con-
ference on information and communications security. Springer. 2006, pp. 529–
545.

[27] Begül Bilgin et al. “Threshold implementations of small S-boxes”. In: Cryptog-
raphy and communications 7.1 (2015), pp. 3–33.

[28] Hannes Groß, Stefan Mangard, and Thomas Korak. “Domain-oriented masking:
Compact masked hardware implementations with arbitrary protection order”.
In: Cryptology ePrint Archive (2016).

82

Bibliography

[29] Joan Daemen. “Changing of the guards: A simple and efficient method for
achieving uniformity in threshold sharing”. In: International conference on
cryptographic hardware and embedded systems. Springer. 2017, pp. 137–153.

[30] Gaëtan Cassiers and Olivier Bronchain. “Scalib: A side-channel analysis library”.
In: Journal of Open Source Software 8.86 (2023), p. 5196.

[31] Hannes Groß et al. “Suit up!–made-to-measure hardware implementations of
Ascon”. In: 2015 Euromicro Conference on Digital System Design. IEEE. 2015,
pp. 645–652.

[32] Hannes Groß, Rinat Iusupov, and Roderick Bloem. “Generic low-latency mask-
ing in hardware”. In: IACR transactions on cryptographic hardware and em-
bedded systems (2018), pp. 1–21.

[33] Rishub Nagpal et al. “Riding the waves towards generic single-cycle masking in
hardware”. In: IACR Transactions on Cryptographic Hardware and Embedded
Systems (2022), pp. 693–717.

[34] Luan Cardoso dos Santos, Johann Großschädl, and Alex Biryukov. “FELICS-
AEAD: benchmarking of lightweight authenticated encryption algorithms”. In:
International Conference on Smart Card Research and Advanced Applications.
Springer. 2019, pp. 216–233.

83

Acknowledgements

Al Professore Guido Masera, relatore di questa tesi, per la disponibilità, la guida
costante e i preziosi consigli che hanno reso possibile la realizzazione di questo
lavoro.
A Mattia Mirigaldi per il supporto tecnico e scientifico, e per gli stimoli ricevuti
durante tutto il percorso. Desidero in particolare esprimere la mia sincera gratitudine
al relatore, al Professore Maurizio Martina e a Mattia per la pazienza, i consigli e
l’aiuto che mi hanno guidato e sostenuto anche nella scelta del mio percorso futuro.

85

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Lightweight Cryptography: the Role of Ascon
	Authenticated Encryption and Standardization Efforts
	Target Applications of Ascon
	Thesis structure

	ASCON
	ASCON: Internal State and Mode of Operation
	ASCON: Authenticated Encryption
	ASCON: permutation

	Side-Channel Attacks
	Power Measurement and Leakage Modeling
	Classification of Attacks
	Non-Profiling Attacks
	Simple Power Analysis (SPA)
	Differential Power Analysis (DPA)
	Correlation Power Analysis (CPA)

	Profiling Attacks
	TVLA
	Theoretical Foundations
	Pratical Methodology

	Countermeasures: Masking
	Boolean Masking
	Threshold Implementations (TI)
	Domain-Oriented-Masking (DOM)
	First order DOM-indep multiplier.
	High order DOM-indep multipliers.
	Changing of the guards

	Hardware Implementation of Ascon Core
	High Level Block Diagram
	Data Path Design
	Reconfigurable DOM-AND Gadget for Parallel Processing
	Input Network
	Output Network
	State Register

	Interface & Finite State Machine
	Core Interface
	Finite State Machine (FSM)

	Functional Verification

	Security Evaluation and TVLA
	Integration on FPGA
	Experimental Setup and Trace Acquisition
	TVLA Results and Interpretation
	TVLA on S-BOX
	TVLA on the Complete Architecture

	Results and Analysis
	ASIC Area Results
	Comparison Against the State of the Art

	ASIC Throughput Results
	ASIC TH/Area Results
	Comparison Against the State of the Art

	Conclusion and Future Work
	Conclusions
	Future Work

	GitHub Directory
	Throughput Graphs
	FSM state encoding
	Acknowledgements

