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Abstract

The ongoing technological revolution is reshaping the way we live, work and com-
municate, with Artificial Intelligence (AI) emerging as one of the most disruptive and
influential forces behind this evolution. Within this domain, Machine Learning (ML)
enables systems to learn from data and improve performance without explicit program-
ming. Among the most influential architectures in the field of ML, Convolutional Neural
Networks (CNNs) have established themselves as the standard for processing spatially
structured data such as images and videos.

The growing complexity of AI models and the demand for real-time processing high-
light the limitations of relying solely on centralized cloud infrastructures. Edge comput-
ing, in this context, allows data to be processed closer to its source, reducing latency,
bandwidth usage, and energy consumption. Field Programmable Gate Arrays (FPGAs),
with their reconfigurable architectures and highly parallel computations, are particularly
suited for accelerating AI workloads at the edge. Among the most innovative and widely
adopted approaches is High-Level Synthesis (HLS). HLS further simplifies the design of
FPGA-based accelerators, enabling rapid prototyping of application-specific hardware by
allowing designers to describe functionality in high-level languages like C or C++, instead
of traditional Hardware Description Languages (HDLs) such as VHDL or Verilog.

The goal of this thesis, conducted in collaboration with French Alternative Energies
and Atomic Energy Commission (CEA) Saclay, is to prototype and evaluate the code-
generation capabilities of the AIdge ML deployment framework for FPGAs. AIdge is
an open-source deep-learning platform specialized in the design of deep neural networks.
The work comprises selecting an appropriate CNN model, implementing a small set of
layers in C++, and assessing the generated code with Vitis HLS. A detailed investigation
addresses the partitioning of the FPGA’s on-chip memory that stores activations in Height
Width Channels (HWC) format. Partitioning the memory in this manner enables the
convolution units to be supplied with the appropriate unrolling factor, allowing multiple
computations to execute in parallel and thereby increasing throughput. The objective is
to evaluate the viability and efficiency of automatic code generation for FPGA-based CNN
acceleration. In particular, template functions were developed that currently support two
CNN architectures, LeNet and ResNet-18, and are suitable for integration into the AIdge
framework.
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i miei due più grandi sostenitori.

A miei zii e amici,

grazie per essere stati sempre presenti.

IV





Contents

Abstract II

Acknowledgements IV

List of Figures VIII

List of Tables IX

Acronyms X

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Artificial Intelligence & Machine Learning . . . . . . . . . . . . . . 1
1.1.2 CNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 High-Level Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 HLS vs RTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 The Evolution of FPGA . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 FPGA structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.1 FPGA vs ASIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Aidge 13
2.1 NEUROKIT2E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Aidge Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Embedding Thesis Work into the Aidge Framework . . . . . . . . . . . . . 15

3 Memory Partitioning 17
3.1 Strategy adopted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Loop Unrolling & Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Loop Unrolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Parallelization strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1 Preliminary Memory Layout . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 HLS Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.3 Optimized Memory Layout with Channel Parallelism . . . . . . . . 23

3.4 Auto-Partitioning Function Template . . . . . . . . . . . . . . . . . . . . . 24
3.5 Design Constraints and Trade-offs . . . . . . . . . . . . . . . . . . . . . . . 26

VI



4 Hardware Implementation in HLS 27
4.1 ResNet-18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Stride . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Padding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.3 Stride and Padding in the HLS Implementation . . . . . . . . . . . 30
4.2.4 BIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.5 Template Functions for Convolution . . . . . . . . . . . . . . . . . . 32
4.2.6 Hardware Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 ReLU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.1 ReLU in the HLS Implementation . . . . . . . . . . . . . . . . . . . 36

4.4 Pooling Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.6 Structure of the Top Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6.1 Algorithm Block Diagram . . . . . . . . . . . . . . . . . . . . . . . 39
4.7 Tcl Script for Project in Vitis HLS . . . . . . . . . . . . . . . . . . . . . . 41

5 FPGA Design and Synthesis with Vivado 42
5.1 Vivado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Vivado Block Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 PYNQ Overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4 FPGA Device Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5 Dataflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5.1 Ping-Pong Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5.2 HLS Top-Level Control Protocols . . . . . . . . . . . . . . . . . . . 52
5.5.3 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Results on ResNet-18 55
6.1 One Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1.1 Resource Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.2 Performace: Latency . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.3 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Two Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2.1 Resorse Utilaztion . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2.2 Performace: Latency & Throughput . . . . . . . . . . . . . . . . . . 58
6.2.3 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Conclusions 60
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

VII



List of Figures

1 Artificial intelligence vs Machine Learning [2] . . . . . . . . . . . . . . . . . 2
2 CNN architecture [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Example of convolution [9] . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 High-level synthesis workflow [10] . . . . . . . . . . . . . . . . . . . . . . . . 6
5 FPGA structure [11] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6 Artificial Intelligence Development Flow on Embedded Hardware [15] . . . . 14
7 Pipelined vs Non-Pipelined Instruction Execution [16] . . . . . . . . . . . . 19
8 Input and Kernel structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9 Preliminary Memory Layout . . . . . . . . . . . . . . . . . . . . . . . . . . 22
10 Optimized Memory Layout with Channel Parallelism . . . . . . . . . . . . 24
11 Residual block with identity skip connection [18] . . . . . . . . . . . . . . . 27
12 ResNet-18 architecture [19] . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
13 Standard Convolution [19] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
14 Stride effect on Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . 29
15 Padding effect on Convolution . . . . . . . . . . . . . . . . . . . . . . . . . 30
16 Hardware Architecture of Function before the Convolution . . . . . . . . . 34
17 Hardware Architecture of Convolution . . . . . . . . . . . . . . . . . . . . 35
18 Pooling methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
19 Block diagram of the top wrapper function flow . . . . . . . . . . . . . . . 40
20 Vivado Design Suite High-Level Design Flow [22] . . . . . . . . . . . . . . . 43
21 Vivado Block Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
22 AXI Direct Memory Access input configuration . . . . . . . . . . . . . . . 45
23 AXI Direct Memory Access output configuration . . . . . . . . . . . . . . . 46
24 ZCU102 board [23] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
25 Ping-Pong buffer [24] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
26 Ping-Pong buffer [26] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
27 Two bank memory in the waveform signal . . . . . . . . . . . . . . . . . . 52
28 Dataflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
29 Comparison between executions with and without dataflow . . . . . . . . . 54

VIII



List of Tables

1 Device resources and I/O limits [23] . . . . . . . . . . . . . . . . . . . . . . 49
2 Resource utilization ResNet-18 of a single layer . . . . . . . . . . . . . . . 56
3 Latency comparison for different ICH PAR values of one single layer . . . . 56
4 Power and energy comparison for different ICH PAR values of one single

layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5 Resource utilization ResNet-18 of a two layers . . . . . . . . . . . . . . . . 57
6 Latency results vs ICH PAR and number of images of two layers . . . . . . 58
7 Power and Energy results vs ICH PAR and number of images of two layers 59

IX



Acronyms

AI Artificial Intelligence

ML Machine Learning

CNN Convolutional Neural Network

HLS High-Level Synthesis

HDL Hardware Description Language

RTL Register-Transfer Level

FPGA Field Programmable Gate Array

CEA French Alternative Energies and Atomic Energy Commission

GPU Graphics Processing Unit

ASIC Application Specific Integrated Circuit

ANN Artificial Neural Network

ReLU Rectified Linear Unit

FSM Finite State Machine

IC Integrated Circuit

CPU Central Processing Unit

PROM Programmable Read-Only Memorie

PAL Programmable Array Logic

X



PLA Programmable Logic Arrays

SRAM Static Random-Access Memory

OTP One-time Programmable

BRAM Block RAM

LUT-RAM Look-Up Table RAM

CLB Configurable Logic Block

LUT Look-Up Table

DSP Digital Signal Processing

IOB Input/Output Block

MAC Multiply-accumulate

SoC System-on-Chip

PL Programmable Logic

PS Processing System

DDR Double Data Rate

N2D2 Neural Network Design & Deployment

QAT Quantization Aware Training

PTQ Post-Training Quantization

HWC Height Width Channels

XI



DMA Direct Memory Access

ResNet Residual Network

IP Intellectual Property

XDC Xilinx Design Constraints

GUI Graphical User Interface

Tcl Tool Command Language

XII



1 INTRODUCTION

1 Introduction

The goal of the thesis, in collaboration with CEA Saclay, is to prototype and test the
code generation capabilities of the AIdge ML deployment framework for FPGAs. Specifi-
cally, the aim is to implement template functions designed to accommodate various types
of neural network models. Moreover, the assignment required the selection of a suitable
CNN architecture, along with the definition and implementation, using High-Level Syn-
thesis (HLS), of a set of layers to be supported. After implementing the design in Vitis
HLS at a high level (C++), synthesis was performed, RTL was generated, and the In-
tellectual Property (IP) core was exported; the flow then proceeded in Vivado. Vivado
is used to construct the Block Design, where the project IP is connected to existing IP
cores, such as AXI Direct Memory Access, for supplying and capturing input/output data.
Vivado also performs logic synthesis and implementation, and generates the bitstream,
the FPGA configuration file. Subsequently, the design is programmed onto the FPGA
and, after verifying correct operation, data are collected on resource utilization, power
consumption, and performance.

The adopted strategy is based on Filter reuse, as opposed to Input reuse. This ap-
proach is specifically designed for scenarios involving a large number of filters, where all
activations can be stored in memory. To enhance throughput, a memory partitioning
method has been implemented, allowing for more efficient data access and processing.
Specifically, a two-dimensional partitioned memory is created to supply the convolution
with data at the appropriate unrolling factor, enabling computations across one or more
channels to proceed concurrently.

This first chapter provides a general overview of the work undertaken, offering essential
background on the core concepts and technologies that underpin the project. It defines
the scope of the thesis, outlines the research questions addressed, and states the primary
objectives pursued throughout the study. The chapter concludes with a description of the
thesis structure and summarizing the content and purpose of each subsequent chapter.

1.1 Background

1.1.1 Artificial Intelligence & Machine Learning

Artificial Intelligence (AI) and Machine Learning (ML) are often used interchangeably,
but machine learning is a subset of the broader category of AI. Put in context, artificial
intelligence refers to the general ability of computers to emulate human thought and
perform tasks in real-world environments, while machine learning refers to the technologies
and algorithms that enable systems to identify patterns, make decisions, and improve
themselves through experience and data. [1]

1



1 INTRODUCTION 1.1 Background

Figure 1: Artificial intelligence vs Machine Learning [2]

Artificial Intelligence

Artificial Intelligence, the ability of a digital computer or computer-controlled robot to
perform tasks commonly associated with intelligent beings. The term is frequently applied
to the project of developing systems endowed with the intellectual processes characteristic
of humans, such as the ability to reason, discover meaning, generalize, or learn from past
experience. [3]

Alan Turing, a British mathematician and scientist, is widely regarded as the found-
ing figure of artificial intelligence. In 1950, he published the seminal paper Computing
Machinery and Intelligence [4], wherein he introduced the concept of the Turing Test, a
methodological framework designed to assess a machine’s capacity for intelligent behav-
ior comparable to that of a human. In the following decades, the evolution of artificial
intelligence led to the development of artificial neural networks, which introduced a com-
putational paradigm inspired by the biological structure of the brain. The rapid progress
of machine learning algorithms and, more recently, of deep learning was enabled not
only by theoretical advances but also by the exponential increase in available data and
computational power. In particular, the use of Graphics Processing Units (GPUs) and
later specialized architectures such as FPGAs and Application Specific Integrated Cir-
cuits (ASICs) made it possible to train models of unprecedented complexity and scale.
This synergy between algorithmic innovation and hardware acceleration has transformed
artificial intelligence into a mature engineering discipline, establishing the foundation for
the modern field of machine learning.

Machine Learning

Machine learning is a branch of artificial intelligence that enables algorithms to un-
cover hidden patterns within datasets. It allows them to predict new, similar data without
explicit programming for each task. ML finds applications in various fields such as image
and speech recognition, natural language processing, recommendation systems, fraud de-
tection, portfolio optimization, and automating tasks. [5] ML algorithms extract patterns
and relationships directly from large datasets, adapting their behavior as new information
becomes available. This paradigm allows the design of predictive models and decision-

2



1 INTRODUCTION 1.1 Background

making systems that improve their performance with experience, proving particularly
effective in complex scenarios where explicit rule-based programming would be infeasible.

The main categories of ML include supervised learning, where algorithms are trained
on labeled data; unsupervised learning, which seeks to discover hidden structures in un-
labeled data; and reinforcement learning, where agents learn optimal strategies through
interaction with an environment. These methodologies have facilitated significant ad-
vancements across a wide spectrum of domains, including medicine, logistics, and mar-
keting. They have enabled a diverse array of capabilities, such as image classification,
speech recognition, and industrial optimization, while simultaneously establishing the
groundwork for the development of deep learning paradigms.

Deep learning algorithms are based on Artificial Neural Networks (ANNs), which
constitute mathematical constructs designed to replicate the operational principles of
biological neurons.

1.1.2 CNNs
As previously introduced, ANNs are computational architectures composed of multiple

layers of interconnected nodes, commonly referred to as artificial neurons. These networks
typically consist of an input layer, one or more hidden layers, and an output layer, each
serving distinct roles in the processing and transformation of data. In a classical ANN,
each neuron in a given layer is connected to every neuron in the subsequent layer, forming
a densely connected architecture. Although this framework allows for the modeling of
highly complex relationships within the data, it also requires an extremely large number
of parameters and resources. This is one of the critical points of ANNs, and can lead to
scalability issues, an increased risk of overfitting, and high computational costs, especially
when the input data are highly dimensional, such as images or multidimensional signals.

Convolutional Neural Networks (CNNs) are a class of deep learning models, particu-
larly well suited for processing data with a grid-like topology, such as images and videos.
They are widely used in tasks including image classification, object detection, medical
image analysis, and video analysis, due to their ability to automatically learn spatial hi-
erarchies of features through convolutional operations.

One of the key differences is that the neurons that the layers within the CNN are com-
prised of neurons organized into three dimensions, the spatial dimensionality of the input
(height and the width) and the depth. The depth does not refer to the total number of
layers within the ANN, but the third dimension of a activation volume. Unlike standard
ANNs, the neurons within any given layer will only connect to a small region of the layer
preceding it. In practice this would mean that for the example given earlier, the input
’volume’ will have a dimensionality of 64 x 64 x 3 (height, width and depth), leading to
a final output layer comprised of a dimensionality of 1 x 1 x n (where n represents the
possible number of classes) as we would have condensed the full input dimensionality into
a smaller volume of class scores filed across the depth dimension. [6]

CNNs adhere to the same overarching architecture as ANNs, so they have an input
layer, one or more hidden layers, and an output layer. However, the key distinction lies
in the structure of the hidden layers, which are not simply fully connected.

3



1 INTRODUCTION 1.1 Background

Figure 2: CNN architecture [7]

Figure 2 illustrates a generic architecture of a CNN, where there are various layers:

• Convolution layers: This layer is used to extract the feature from the input
dataset. The input data are processed through one or more convolutional layers,
where a set of trainable filters is applied to extract meaningful features. These layers
are designed to identify local patterns such as edges, corners, and textures, which
are essential for understanding the spatial structure of the input.

• Activation function: Activation functions are non-linear mathematical expres-
sions and constitute an integral part of neural networks. It decides whether a
neuron should be activated or not. This implies that the network evaluates the rel-
evance of each neuron’s input during the prediction process, determining whether it
contributes meaningfully to the final output. There are several commonly used ac-
tivation functions, one of the most well-known is the Rectified Linear Unit (ReLU).

• Pooling layers: Pooling layers are added in between two convolution layers with
the sole purpose of reducing the spatial size of the image representation, hence
reducing the memory used while training the network.

• Fully connected layers: The flattened feature maps are then passed through fully
connected layers. They can process high-level features for prediction or classifica-
tion.

1.1.3 Convolution
Convolution played a fundamental role in the preliminary phase of this research. A

detailed understanding of the computational process and data flow was essential for de-
veloping effective strategies for memory management and partitioning. This foundational
knowledge enabled the implementation of parallel computation techniques, ultimately
contributing to improved performance and throughput.

As illustrated in Figure 2, convolution constitutes one of the core operations within
CNNs. In mathematics (in particular, functional analysis), convolution is a mathematical
operation on two functions f and g that produces a third function f ∗ g, as the integral

4



1 INTRODUCTION 1.2 High-Level Synthesis

of the product of the two functions after one is reflected about the y-axis and shifted. [8]

In the context of a CNN, the convolution operation combines the input data, typically
pixel values from an image, with a kernel. The kernel is a small matrix of learnable
weights that is systematically slid across the entire spatial extent of the input. At each
position, it performs an element-wise multiplication with the overlapping region of the
input, and the resulting values are summed to produce a single output value. This process
is repeated across the entire input, generating a feature map that captures local patterns
and spatial hierarchies within the data.

Figure 3 presents a simplified example of a two-dimensional convolution, illustrating
the computational interactions between one single kernel and one single input. This repre-
sentation is essential for understanding the mechanisms underlying memory partitioning.

Figure 3: Example of convolution [9]

In CNNs, the input is a color image, consisting of a multi-channel, multi-filter 2D
convolutions (standard 2D convolution). The input will have three dimensions: height,
width, and depth, which correspond to the RGB in an image.

1.2 High-Level Synthesis

HLS represents a hardware design methodology that enables the description of digi-
tal circuits using high-level programming languages, such as C, C++, or SystemC. This
approach facilitates the automatic translation of algorithmic descriptions into Register-
Transfer Level (RTL) representations, which are compatible with FPGA or ASIC tech-
nologies, thus streamlining the design flow and enhancing productivity.

Figure 4 presents the typical workflow for designing hardware using HLS, outlining
the key stages from algorithm specification to RTL generation.

5



1 INTRODUCTION 1.2 High-Level Synthesis

Figure 4: High-level synthesis workflow [10]

The workflow using HLS has the following steps:

• Write the algorithm at a high abstraction level using C/C++ with a target archi-
tecture in mind;

• Verify the functionality at the behavioral level, writing the Test Bench, using high-
level programming languages (csim);

• Use the HLS tool to generate the RTL for a given clock speed, and design constraints;

• Verify the functionality of the generated RTL (co-sim);

• Explore different architectures using the same input source code.

The final step in the HLS workflow involves generating Bitstream, a binary file that
configures the FPGA hardware. This is accomplished using vendor-specific tools like
Xilinx Vivado, which translate the synthesized RTL into a format suitable for FPGA or
ASIC programming.

1.2.1 HLS vs RTL
HLS serves as a crucial link between software-level algorithm modeling and hard-

ware implementation, effectively abstracting the complexities associated with traditional
hardware description languages. In conventional design flows, engineers are required to
explicitly define architectural components, sequential and combinational logic, registers,
and signal interactions. In contrast, HLS enables designers to focus on the functional
behavior of the system using high-level programming languages, thereby significantly re-
ducing development time and accelerating the prototyping process. Despite the
abstraction offered by High-Level Synthesis, the designer retains the ability to guide the
hardware implementation through the use of constraints and synthesis directives. These
allow the tool to perform a range of architectural optimizations, including pipelining,

6



1 INTRODUCTION 1.3 FPGA

loop unrolling, parallelization, and efficient memory management, thus enhanc-
ing performance and resource utilization.

One of the primary limitations of HLS is that it may not yield hardware implemen-
tations as optimized as those produced through manually written RTL designs. This is
largely due to the reduced level of control over architectural details, which are abstracted
away in the high-level design process. As a result, the designer cannot explicitly define the
underlying structure, including datapaths, control logic, and signal interactions. More-
over, effective use of HLS still demands a solid understanding of hardware architecture, as
the designer must guide the synthesis process through the use of pragmas and directives
to achieve acceptable performance and resource utilization.

In addition to the significant reduction in development time, a notable advantage of
HLS is the abstraction away from manually implementing Finite State Machines (FSMs).
Traditionally, FSMs are essential for modeling the behavior of digital circuits, capturing
how a system transitions between states in response to specific inputs and conditions.
In fact, for complex systems, state machines are often very complex and difficult to
implement. HLS alleviates this burden by allowing designers to describe behavior using
high-level constructs such as loops and conditional statements, with the synthesis tool
automatically generating the corresponding control logic.

1.3 FPGA

An FPGA is a type of Integrated Circuit (IC) that can be reconfigured to perform
specific hardware function. Unlike traditional processors (such as Central Processing
Units (CPUs) or GPUs), which execute predefined instructions, an FPGA allows users
to design and implement custom hardware architectures tailored to specific applications.
FPGAs are ideal for the fastest growing applications today, such as edge computing,
artificial intelligence, system security, 5G, factory automation, and robotics.

1.3.1 The Evolution of FPGA
Before the emergence of FPGAs, digital logic design relied on programmable de-

vices such as Programmable Read-Only Memories (PROMs), Programmable Array Log-
ics (PALs), and Programmable Logic Arrayss (PLAs). These early technologies used
fuse or antifuse mechanisms to permanently configure logic functions, offering limited
flexibility and reusability. The advent of FPGA occurred in 1985, when Xilinx intro-
duced a novel architecture based on Static Random-Access Memory (SRAM), enabling
dynamic reconfiguration of logic circuits. In subsequent years, alternative configuration
technologies were developed, including antifuse-based FPGAs, characterized by One-time
Programmable (OTP) logic, enhanced security, and resistance to radiation, making them
suitable for aerospace and military applications, and Flash-based FPGAs, which are non-
volatile and retain their configuration throughout power cycles.

Modern FPGAs have evolved beyond simple reconfigurable logic arrays. They now
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incorporate a variety of embedded memory resources, such as Block RAM (BRAM),
Look-Up Table RAM (LUT-RAM), and UltraRAM, which support both config-
uration storage and runtime data handling. This integration allows FPGAs to function
not only as collections of logic gates but as fully capable computing platforms capable of
executing complex applications with dedicated internal memory.

1.3.2 FPGA structure
Compared to standard gate arrays, field-programmable gate arrays are larger devices.

The basic cell structure for FPGA is bit more complicated than the basic cell structure
of standard gate array. The programmable logic blocks of FPGAs are called logic blocks
or Configurable Logic Blocks (CLBs). The basic architecture of FPGA consists of
an array of logic blocks with programmable row and column interconnecting channels
surrounded by programmable I/O blocks as shown in Figure 5.

Figure 5: FPGA structure [11]

The main elements of an FPGA are the following:

• CLBs: These are the fundamental building blocks of an FPGA. Each CLB can be
programmed to implement combinatorial, sequential functions and small memories.
These blocks typically include a set of primitive logic elements, such as logic gates,
small Look-Up Tables (LUTs), flip-flops, multiplexers, and other basic components.
Each logic cell within a CLB generally comprises one or more programmable LUTs,
which are responsible for implementing arbitrary Boolean functions. These LUTs
are commonly paired with registers, enabling the storage of intermediate values
and facilitating sequential logic operations. This modular structure allows for the
flexible construction of complex digital circuits by combining multiple logic cells and
configuring their interconnections.

8
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• Programmable Interconnects: The programmable interconnection network con-
stitutes a critical component of FPGA architecture, enabling the dynamic routing of
signals between various internal modules, including CLBs, memory blocks, Digital
Signal Processing (DSP) units, and Input/Output (I/O) blocks. This reconfigurable
fabric allows user to define custom pathways and data flow within the FPGA.

• Input/Output Blocks (IOBs): The IOBs are responsible for managing commu-
nication between the FPGA and external devices. Typically positioned along the
perimeter of the chip, IOBs serve as the programmable interface between the in-
ternal logic, such as CLBs, BRAM, and DSP units and the physical pins of the
device package. IOBs can be configured according to the designer’s requirements
in three distinct modes: input, when receiving signals from the external environ-
ment; output, when transmitting signals generated by the FPGA; and bidirectional,
which allows the same pin to function as both input and output through tri-state
logic. This last mode is particularly useful for implementing shared buses and half-
duplex communication protocols. The flexibility of IOB configuration is essential for
adapting the FPGA to a wide range of application-specific interfaces and standards.

• Dedicated Blocks: In addition to CLBs, modern FPGAs incorporate a variety of
dedicated hardware resources designed to optimize the execution of computationally
intensive and frequently used functions. Among the most significant of these are
the BRAMs, which consist of high-speed SRAM memory blocks embedded directly
within the FPGA fabric. Their proximity to the logic circuitry ensures extremely
low access latency, often in the order of a few nanoseconds, which is significantly
faster than external memory solutions. Another essential component is the DSP
blocks, which are specialized arithmetic units integrated into the FPGA to accelerate
complex mathematical operations. These blocks are optimized for tasks such as
multiplication, accumulation, and Multiply-accumulate (MAC)) operations, making
them particularly valuable in applications involving digital signal processing, image
processing, and machine learning. The presence of these dedicated resources enables
designers to achieve high performance while maintaining efficient use of logic and
memory, contributing to the overall versatility and computational power of modern
FPGA devices.

• Embedded Processors / System-on-Chip (SoC) FPGA: To address the in-
creasing complexity of modern applications and the need to combine hardware flex-
ibility with software processing capabilities, FPGA manufacturers have developed
SoC devices that integrate general-purpose processors directly within the FPGA.
These architectures consist of two main domains: the Programmable Logic (PL),
which includes CLBs, DSPs, BRAMs, and configurable interconnects used to accel-
erate specific algorithms and implement custom peripherals; and the Processing
System (PS), which incorporates one or more processor cores, typically ARM,
along with Double Data Rate (DDR) memory controllers, standard interfaces (USB,
Ethernet, SPI, I2C, UART), and in some cases embedded GPUs. This integration en-
ables the development of heterogeneous systems that combine software programma-
bility with hardware-level performance and parallelism.
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1.4 Problem Statement

Today, many techniques exist for implementing neural networks on an FPGA or ASIC,
and they’re always evolving. Some can be performed at compile time, such as quantizing
weights and activations to reduce numerical precision and use fewer resources, or pruning
and compressing the model, which eliminates insignificant weights or connections (close
to zero), making the model smaller and requiring fewer operations. This thesis focuses
on runtime strategies that optimize how data are processed without altering the model
itself, in order to implement neural networks on an FPGA.

In CNNs, the sheer volume of intermediate data creates a major memory bandwidth
bottleneck. A core runtime technique to combat this is data reuse. Reuse of data in
FPGAs is a key concept in optimizing hardware architectures for computationally inten-
sive applications such as machine learning, signal processing, or computer vision. Simply
put, it involves reusing data already loaded into fast memory (e.g. BRAM, URAM, or
internal FPGA registers) to reduce the number of accesses to external memory (typically
DRAM), which are costly in terms of both latency and power consumption.

Optimization techniques such as parallelism and loop unrolling enable the concur-
rent execution of multiple iterations, while pipelining structures the computation into
sequential stages, allowing a new output to be generated at each clock cycle. High-Level
Synthesis libraries and tools facilitate the transformation of models developed in frame-
works like TensorFlow or PyTorch into efficient FPGA implementations, automating the
trade-offs between parallelism, numerical precision, memory usage, and throughput.

With the rapid advancement of AI and ML, neural networks have become increasingly
complex, resulting in a significant increase in the memory footprint required for weights
and activations. This poses a major challenge when deploying such models on FPGAs,
where resource constraints are a critical consideration. To address this issue, various
optimization strategies have been developed to improve resource utilization. One of the
most widely adopted approaches involves prioritizing input reuse over weight reuse, given
that activations typically consume substantially more memory than convolutional kernels.
Consequently, it is often more efficient to retain weights on-chip and iterate over the input
data. However, due to the limited capacity of on-chip memory resources such as BRAM
and URAM, it is not always feasible to load all kernels simultaneously. In such cases, a
filter tiling strategy is employed, whereby a subset of kernels is loaded into the FPGA,
reused across the input data, and subsequently replaced with the next batch of filters.

1.4.1 FPGA vs ASIC
Among a vast number of NN models, the CNN has a mainstream status in application

such as image and sound recognition and machine decision. The convolution operation
is the most complex and requires acceleration. A practical method is to optimize the ar-
chitecture of the deep learning processor (DLP). The traditional CPU architecture lacks
parallelism and memory bandwidth and is not suitable for CNN operations. Current
researches are focused on GPU, FPGA and ASIC. GPU is the maturest and the most
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widely applied, however it is not flexible and has high cost and energy consumption. Even
though FPGA possesses high flexibility and low energy consumption, it is inferior in
performance, in particular regarding the frequency, lower than CPUs. ASIC, due to tar-
geted design, is advanced in performance and energy consumption. However, it is highly
inflexible. [12]

This thesis focuses on the implementation of a neural network on an FPGA. The
decision to utilize an FPGA instead of an ASIC is driven primarily by the need for
flexibility and rapid development. FPGAs enable testing, validation, and, if necessary,
modification of the architecture within a matter of minute, an advantage not afforded by
ASICs. Although ASICs offer significantly higher performance compared to FPGAs,
they are also more costly and require considerably longer development times. Moreover,
the use of an FPGA facilitates the exploration of various architectural solutions and
the progressive optimization of the design. Specifically, this thesis investigates memory
partitioning as a means to parallelize computations, thereby increasing the number of
operations per clock cycle and enhancing overall throughput.

1.5 Objectives

The primary objective of this thesis is to develop a method for partitioning input
memory in such a way that an optimal unrolling factor is achieved. This enables the
computation of an entire kernel window on the input data within a single clock cycle,
thereby maximizing throughput. When combined with pipelining, this approach facili-
tates a continuous and efficient flow of data through the processing pipeline.

The proposed strategy involves storing the entire input and a single kernel within the
FPGA, performing all necessary computations, and subsequently loading the next kernel
for processing. This technique is particularly effective when the number of kernels is large
but the input data can be fully accommodated within the FPGA’s on-chip memory. Al-
ternatively, a hybrid approach may be adopted: input reuse can be applied in the initial
layers of the network, where input dimensions are substantial and the kernel-by-kernel
strategy can be employed in later stages, where input sizes are reduced.

To support the implementation of various CNN components on FPGA, a set of tem-
plated functions, covering operations such as convolution, ReLU activation, and max
pooling, has been integrated into the CEA Saclay framework. A suitable neural network
architecture should be selected, a subset of its layers implemented, and resource utilization
evaluated to validate the effectiveness of the proposed methods.

1.6 Thesis Structure

This thesis is composed of 7 chapters:

• Chapter 1: Introduction
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This chapter provides an introduction to the work done, provides background and
clarifications on the aspects developed in the thesis, specifies the problems in the
strategies used nowadays and specifies the objectives of the thesis.

• Chapter 2: Aidge
This chapter explains what CEA Saclay’s Aidge project consists of, and how the
work of this thesis is integrated into their framework.

• Chapter 3: Memory Partitioning
This chapter addresses one of the main objectives of the thesis: the study of par-
titioning the memory containing activations. It also shows how it is implemented
and the importance of partitioning for improving performance and throughput.

• Chapter 4: Implementation
This chapter provides an explanation of how the implementation of some layers of
the neural network is structured, in particular, the templated functions used such
as convolution, ReLU and maxpool.

• Chapter 5: FPGA Design and Synthesis with Vivado
This chapter addresses the FPGA implementation of the project. The workflow in
Vivado is described in detail: construction of the Block Design by connecting the
IP generated with Vitis HLS to existing IP cores (e.g., AXI Direct Memory Access,
AXI Interconnect), an explanation of each block’s role, and the overall Vivado flow.
In particular, the chapter covers logic synthesis, implementation, and bitstream gen-
eration, the configuration file used to program the FPGA. It then explains how the
bitstream is loaded and how the software drivers for FPGA interfacing are created
using PYNQ. The characteristics of the target FPGA are summarized. Finally, the
chapter details the dataflow among the various functions using a ping–pong buffer
and presents Vivado waveforms that validate the implementation.

• Chapter 6: Results on ResNet-18
This chapter presents the results obtained by implementing layers of a ResNet-18 on
an FPGA (AMD ZCU102). It reports resource utilization from the post-synthesis
report generated by Vivado. In addition, it details board-level power consumption
and performance metrics, specifically latency and throughput.

• Chapter 7: Conclusions
This chapter provides a comprehensive summary of the research conducted, outlin-
ing the potential applications of the developed solution. It presents the key results
achieved, critically examines the limitations inherent in the proposed methodology,
and suggests possible directions for future improvements and refinements.
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2 Aidge

The CEA Paris-Saclay center is one of nine centers belonging to the French Alternative
Energies and Atomic Energy Commission (CEA). One of the projects of which CEA is
coordinator is NEUROKIT2E.

2.1 NEUROKIT2E

NEUROKIT2E is a European project that aims at proposing a Deep Learning Plat-
form for Embedded Hardware around an established European value chain (providing AI
hardware and software). This open-source platform will provide the necessary tools for
Europe to play on the same level with its American and Chinese competitors, and take
the lead on a competitive aspect (still underdeveloped but which will quickly prove to be
essential): embedded AI. [13] NEUROKIT2E is a European Union funded initiative under
the Horizon Europe program (Chips Joint Venture), involving five member states, France,
the Netherlands, Austria, Germany, and Italy, and a consortium of universities, research
institutions, and private enterprises. The project is coordinated by CEA, with partici-
pation from leading European companies including Thales, Infineon, STMicroelectronics,
TTTech Auto AG, and Dolphin Design SAS.

The overarching objective of NEUROKIT2E is to develop an open-source platform for
deep learning on embedded hardware, capable of rivaling existing American and Chinese
solutions in the domain of edge AI. The project aims to strengthen European technolog-
ical sovereignty by equipping industry with advanced tools for the design, optimization,
and deployment of neural networks on resource-constrained devices. At its core, the plat-
form builds upon Neural Network Design & Deployment (N2D2), a framework
developed by CEA for neural network modeling and implementation. A key ambition
of NEUROKIT2E is to integrate hardware-level abstractions with neural network archi-
tectures, enabling holistic optimization and providing a unified, end-to-end development
pipeline tailored for embedded AI applications.

2.2 Aidge Framework

NEUROKIT2E emerged as a natural continuation and expansion of the work pre-
viously carried out by CEA Saclay on the N2D2 framework, an open-source platform
dedicated to the design and deployment of neural networks on embedded hardware. The
project’s ambition was to industrialize this technology and enhance its accessibility by de-
veloping a more comprehensive and modular ecosystem. As part of this evolution, CEA
introduced AIDGE within the NEUROKIT2E initiative, positioning it as the successor
to N2D2 and laying the foundation for a next-generation platform tailored to the demands
of edge AI.
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Aidge is an open-source deep learning platform specialized in the design of deep neural
networks intended to operate in systems constrained by power consumption or dissipa-
tion, latency, form factor (dimensions, size, etc.), and/or cost criteria. [14]

The rise of AI and Deep Learning has revolutionized data processing paradigms. Tra-
ditionally in the cloud, neural networks are now destined to be embedded directly in
the device making them intelligent and autonomous. However, this shift presents a sig-
nificant challenge: how can large and complex models be adapted for deployment on
resource-constrained hardware? Moreover, what trade-offs must be considered to opti-
mize performance in terms of computational resources, development time, and overall
project cost? Aidge is a software solution for optimizing and deploying neural networks
on embedded targets. It is interoperable with standard AI and modular for easy inte-
gration and scalability. Aidge offers innovative quantisation and compression techniques
to reduce model complexity and memory requirement for optimal use of architecture re-
source, whether on an MCU, GPU, FPGA, or ASIC solutions.

In addition, Aidge promotes code transparency and offers full control over applica-
tion development, minimizing reliance on proprietary tools and enhancing flexibility for
developers and system integrators.

In Figure the Aidge project workflow is depicted in a clear and structured way.

Figure 6: Artificial Intelligence Development Flow on Embedded Hardware [15]

The image shows a flowchart illustrating the main steps for designing, quantizing, and
deploying AI models on resource-constrained hardware platforms. The process is divided
as follows:

• Data Conditioning: This involves preprocessing the raw data, with operations
such as normalization, noise reduction, and formatting, to make it suitable for model
training.

• Modeling: This phase defines the neural network architecture, selecting the type
of layers, activation functions, depth, and complexity of the model based on the
task at hand.

• Learning: This is the actual training process, during which the model learns from
the data through optimization and backpropagation algorithms.
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• Testing: After training, the model undergoes a validation phase to verify its per-
formance on unseen data, evaluating metrics such as accuracy and precision score.
This step is crucial before proceeding with quantization.

• Next, there are two quantization techniques:

– Quantization Aware Training (QAT): A technique that incorporates quan-
tization directly into the training process. It simulates the effects of precision
reduction (e.g., from float32 to int8) during training, allowing the model to
adapt and maintain high performance even after conversion.

– Post-Training Quantization (PTQ): Applied to already-trained models,
this technique converts weights and activations into low-precision formats with-
out retraining. It is simpler to implement, but can result in a greater loss of
accuracy than QAT.

• Finally, there is hardware deployment:

– Hardware Design: The model is adapted to the specifications of the target
device, taking into account available resources (memory, computing power,
bandwidth) and architectural characteristics.

– Code Generation: Aidge automatically generates code optimized for the
target hardware, reducing development time and minimizing manual errors.
Deploying the model across different types of embedded hardware: MCU, GPU,
FPGA, or ASIC.

2.3 Embedding Thesis Work into the Aidge
Framework

This thesis contributes to the Aidge project by integrating custom HLS code
for the implementation of various neural network components on FPGA-based embed-
ded platforms. Specifically, a set of templated functions has been developed to support
core operations commonly found in convolutional neural networks, including convolution,
ReLU activation, and max pooling. These functions are designed to be modular and
reusable, aligning with Aidge’s scalable architecture.

The following sections detail the practical work carried out, beginning with an analysis
of memory partitioning strategies to optimize data access and parallelism. A filter reuse
strategy was adopted, wherein all input data is stored within the FPGA’s internal memory
to minimize external memory access and improve throughput. To support the deployment
of larger networks and enhance performance, a hybrid approach was implemented: input
reuse was applied in the initial layers, where input dimensions are large, and kernel reuse
was introduced in later layers, where kernel size begins to dominate memory usage.

To validate the proposed methodology, several layers of a ResNet-18 architecture
were implemented and tested. The results include a detailed evaluation of resource utiliza-
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tion (e.g., BRAM, DSPs, LUTs) and performance metrics, demonstrating the feasibility
and efficiency of the integration within the Aidge framework.
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3 Memory Partitioning

This chapter outlines the methodology adopted for memory partitioning. Following
an initial investigation of convolution operations and data movement, aimed at optimizing
resource utilization and computational efficiency, a strategy was defined to partition the
input memory. This approach enables parallel execution of operations and contributes
to improved system performance. The ultimate objective of this work is the implementa-
tion of neural network layers on an FPGA. Although FPGAs generally offer lower perfor-
mance compared to ASICs, they provide greater flexibility and faster development cycles.
To mitigate performance limitations, optimization strategies such as parallelization and
pipelining are employed, enabling more efficient computation and improved throughput.

3.1 Strategy adopted

Among the runtime strategies for implementing neural networks on FPGAs, one of the
most commonly used is data reuse. Specifically, this thesis adopts weights reuse. This
choice stems from the adoption of a mixed approach to implementing a neural network.
This type of approach consists in using the input reuse strategy at the beginning, where
the input is large (and cannot be entirely stored on the FPGA due to hardware resource
limitations) and the number of kernels is small. Toward the end, where the input becomes
smaller and the number of kernels too large to be stored on the FPGA, the strategy on
which this thesis is based is adopted, an innovative form of weights reuse. This consists in
storing the entire input in the internal memory of the FPGA, avoiding external reads from
slower external memory, and loading one kernel at a time. This allows all computations
to be performed with the available kernel, and subsequently loading the next one into
internal memory.

The advantages of this approach lie in the significant reduction of external mem-
ory accesses, which have notable implications on performance, energy consumption,
and latency. In particular, latency becomes a critical factor, as external memories such
as DDR exhibit considerably longer access times compared to BRAM or URAM, which
are embedded within the FPGA. Furthermore, when the system relies heavily on external
memory, it becomes challenging to maintain deep pipelines or perform parallel computa-
tions without encountering execution stalls.

3.2 Loop Unrolling & Pipelining

Among other runtime optimization techniques, in addition to data reuse, there exist
methods that govern how data is processed and restructure the hardware architecture to
achieve enhanced performance, while accommodating the simultaneous use of multiple
resources. Notable among these are loop unrolling and pipelining, which are widely
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adopted to increase parallelism and reduce execution latency in FPGA-based implemen-
tations. Furthermore, Vitis HLS enables the implementation of these techniques through
the use of directives, also referred to as ”pragmas”, which are discussed in greater detail
in the following sections.

3.2.1 Loop Unrolling
Loop unrolling is a widely used technique in programming and is based on the trans-

formation of a loop. Specifically, as the word itself suggests, it involves unrolling the loop
to optimize execution speed by performing multiple operations in parallel, while accepting
the use of multiple resources. Indeed, with more hardware, the compiler can perform the
loop operations in a single clock cycle. If the loop consists of many iterations and the
hardware resources to perform all the operations simultaneously are not available, loop
unrolling can be applied with a ”k” factor, so that the compiler performs k operations in
a single clock cycle.

The transformation can be undertaken manually by the programmer or by an op-
timizing compiler. In Vitis HLS, loop unrolling can be applied through the use of the
<#pragma HLS UNROLL> directive, which is placed inside the loop intended for un-
rolling. This directive instructs the compiler to replicate loop iterations, enabling parallel
execution and improving performance during hardware synthesis. The following examples
illustrate two loop unrolling strategies in Vitis HLS. Listing 1 demonstrates a full unroll,
where all iterations are expanded, while Listing 2 applies partial unrolling with a factor
of 4, enabling a balance between performance and resource utilization.

Listing 1: Complete Unrolling
for(int i = 0; i < 8; i++) {

#pragma HLS UNROLL
c[i] = a[i] + b[i];

}

Listing 2: Unrolling with factor 4
for(int i = 0; i < 8; i++) {

#pragma HLS UNROLL factor=4
c[i] = a[i] + b[i];

}

Although both approaches yield the same computational result, they differ signifi-
cantly in terms of hardware resource utilization and execution latency. Without loop
unrolling, the compiler schedules one operation per clock cycle, resulting in a total of 8
cycles to complete the loop. In contrast, applying full unrolling enables the compiler to
execute all 8 operations in parallel, reducing the execution time to a single cycle and effec-
tively eliminating the loop structure. When hardware resources are constrained, partial
unrolling can be employed. For instance, specifying an unroll factor of 4 allows the com-
piler to perform 4 operations concurrently, completing the loop in 2 cycles and offering a
balanced trade-off between performance and resource consumption.

3.2.2 Pipelining
Pipelining is a widely adopted optimization technique in HLS. It involves partitioning

the execution of an operation into multiple sequential stages, thereby enabling concur-
rent execution of multiple loop iterations, each occupying a distinct stage within the
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pipeline. In a non-pipelined loop, iterations are executed sequentially, with each iteration
commencing only after the previous one has completed. By contrast, pipelining allows
iteration i+1 to begin while iteration i is still in progress, effectively overlapping execution
and increasing throughput. Although pipelining does not reduce the latency of individual
operations, it significantly decreases the overall execution time of the loop. Unlike loop
unrolling, which replicates hardware to achieve parallelism, pipelining preserves the orig-
inal loop structure and achieves performance gains with minimal hardware duplication.

The figure 7 illustrates the timing requirement for a pipelined and a non-pipelined
implementation.

Figure 7: Pipelined vs Non-Pipelined Instruction Execution [16]

In the example presented, each instruction requires a time duration of t for execution.
In the non-pipelined implementation, the instructions are executed sequentially, resulting
in a total execution time of 3t for three operations. In the pipelined implementation,
the operations are distributed across multiple pipeline stages, allowing overlapping exe-
cution. As a result, the total time required to complete the same three instructions is
significantly reduced to approximately 1.6t. This demonstrates the advantage of pipelin-
ing in improving throughput by enabling partial parallelism, even though the latency of
individual instructions remains unchanged.

Pipelining can be implemented in HLS through the use of the directive <#pragma
HLS pipeline II=1>, placed within the loop to be optimized. Parameter II, which stands
for Initiation Interval, defines the number of clock cycles that must elapse before a
new iteration of the loop can be initiated within the pipeline. A lower initiation inter-
val corresponds to a higher frequency of iteration launches, thus increasing the overall
throughput of the design. Specifically, setting II = 1 allows a new iteration to begin at
every clock cycle, indicating that the pipeline is operating at its maximum capacity. This
configuration enables efficient parallelism while preserving the loop structure, making it
particularly advantageous in resource-constrained hardware environments.
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3.3 Parallelization strategy

This section outlines the strategy adopted to partition the internal activation memory
of the FPGA. As discussed previously, one challenge with FPGAs is limited resources,
especially in terms of BRAM. The use of FPGAs in conjunction with HLS enables the
implementation of various optimization techniques, such as loop unrolling and pipelining,
which were introduced in the previous section.

Vitis HLS is a development tool capable of translating high-level programming lan-
guages, such as C++, into RTL. In order to facilitate effective optimization and minimize
synthesis and generation time, it is crucial that the developer possesses a conceptual
understanding of the target hardware architecture and the behavior of the applied opti-
mization techniques. This awareness is particularly important when adhering to design
constraints. For example, in the context of pipelining, if I choose II=1 as the target, it
implies that new data must be available at every clock cycle. Failure to meet this require-
ment results in II violations, indicating that the desired throughput cannot be sustained
and leading to a degradation in overall performance.

To understand the strategy adopted for partitioning the internal memory of the FPGA,
it is first necessary to examine the convolution operation (as described in Section 1.1.3),
which constitutes one of the fundamental building blocks of CNNs. The primary objective
is to ensure that the data required for each convolutional kernel window are distributed
across multiple memory blocks, allowing the computation of a full window of activations
within a single clock cycle. A key challenge addressed in this context was the mitigation of
data dependencies and a strategically placing activation data in distinct memory locations,
in order to enable parallel access and efficient computation of convolutional windows.

3.3.1 Preliminary Memory Layout
The following example provides a visual and conceptual representation of how memory

partitioning is performed. In CNNs, the input is typically derived from an image and is
therefore structured as a three-dimensional tensor comprising height, width and depth.
As a result, the convolution operation is inherently three-dimensional. The data is orga-
nized in HWC format, a convention widely adopted in computer vision and deep learning
applications. Where HWC stands for height, the number of rows in the image; width, the
number of columns; and channels, the number of feature channels. This format facilitates
efficient access and manipulation of image data during convolutional processing. Figure
8 illustrates the input and kernel structure:
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Figure 8: Input and Kernel structure

The input dimensions, denoted as IH × IW × ICH , can be observed on the left
side of the figure. In this simplified example, the input tensor has dimensions 9×9×4, cor-
responding to the height, width, and input channels, respectively. For ease of debugging,
the input data were entered in sequential order starting from 0. In this way, it was easier
to identify errors in the final memory. On the right side, a convolutional kernel is depicted
with dimensions F H × F W × ICH , which in this case is equal to 3×3×4. This kernel
operates across the spatial and channel dimensions of the input, enabling the computation
of a single output activation through element-wise multiplication and accumulation. The
goal is to store all the data used in the convolution in separate memories. Therefore, for
the first window, given that the filter is 3 × 3, nine distinct memories are required. This
applies to the first channel, and the same holds for the other channels. Specifically, it
can be observed that the data contained in the first 3 × 3 input window are all stored in
distinct memory locations (highlighted in yellow). Furthermore, a specific pattern can be
noticed: the first memory vector contains the first pixel of the first four channels, since
ICH = 4 (containing 0, 1, 2, and 3). Subsequently, the first pixel is stored at position 4 ×
3 = 12, which corresponds exactly to the first pixel of the input window shifted by three
positions, as FW = 3. In this way, it is evident that even when considering the data from
the second window, highlighted in red, they are still mapped to distinct memory locations.

Figure 9 shows the partitioned memory of the example analyzed in this case. It can be
represented as a 2D memory, where the height is determined by the formula F W × F H ,
since it depends on the kernel size, which in this case is 3 × 3. The other dimension
is given by the formula INP UT SIZE/(F W × F H). Where INPUT SIZE =
FW × FH × ICH × WINDOW IN2.
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Figure 9: Preliminary Memory Layout

An important note is that, to avoid complicating the computational indexing, the on-
chip memory was dimensioned with a small overhead by assuming that the input size is
an integer multiple of the filter size, even when it is not. This is achieved by introducing
the parameter WINDOW IN, which effectively counts how many times the filter fits
into the input tensor; if the division is not exact, it is rounded up to the next integer. For
clarity, consider two examples with a 3 × 3:

1. Input multiple of the filter: size 9 × 9, in this case 9/3 = 3. Being multiple no
memory overhead.

2. Input not multiple of the filter: size 7 × 7; here 7/3 = 2, 33, which is rounded
up to ⌈7/3⌉ = 3

In this way, a small area overhead is accepted in order to keep the index calculations for
memory reads/writes simple, while aiming to minimize DSP usage.

Another aspect to note is that the numbers in the first input window have been
highlighted in yellow, to emphasize that they are all stored in different memories. The
same applies to the second window, highlighted in red, where it can be observed that
the data not previously considered are still located in separate memories, such as the
numbers 12, 48, and 84. The selection of data to be loaded into memory for performing
the convolution is carried out through a specific calculation within the code, designed to
account for all possible cases.

3.3.2 HLS Partitioning
As previously mentioned, the memory is two-dimensional. To ensure that the com-

piler recognizes them as separate memories, Vitis HLS provides the specific directive
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#pragma HLS ARRAY PARTITION. This partitioning generates RTL with mul-
tiple small memories rather than a single large one. It also improves performance by
enabling simultaneous access and thus a more efficient pipeline, reducing the initiation
interval.

The pragma must be inserted into the C source code within the scope of the function
where the array variable is defined, with the following options:

#pragma HLS array_partition variable=<name> type=<type>
factor=<int> dim=<int> off=true

In which:

• variable=< name >: specifies the name of the variable to be partitioned.

• type=< type >: specifies the type of partitioning; by default, it is complete.

– Complete: complete partitioning decomposes the array into individual ele-
ments.

– Cyclic: cyclic partitioning creates smaller arrays by interleaving elements from
the original array. The array is partitioned cyclically by placing one element
into each new array before returning to the first array, repeating the cycle until
the array is fully partitioned.

– Block: block partitioning creates smaller arrays from consecutive blocks of the
original array. This effectively splits the array into N equal blocks, where N is
the integer defined by the factor= argument.

• factor=< int >: specifies the number of smaller arrays to be created. [17]

• dim=< int >: specifies which dimension of a multi-dimensional array to partition.
It is given as an integer from 0 to N, for an array with N dimensions. If 0 is chosen,
all dimensions of the multi-dimensional array are partitioned using the specified
type and factor options.

• off=true: disables the ARRAY PARTITION feature for the specified variable. It
cannot be used with dim, factor, or type.

3.3.3 Optimized Memory Layout with Channel Par-
allelism

To maximize the utilization of the FPGA for performing more parallel compu-
tations and thereby increasing throughput, another parameter called ICH PAR was
introduced. As the name suggests, this parameter specifies the degree of parallelism of
the input channels. Setting its value to 1 corresponds exactly to the case previously con-
sidered. However, increasing its value raises the number of distinct memories required
to carry out the computations. The formulas presented earlier have been modified to
incorporate the ICH PAR parameter.
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Figure 10: Optimized Memory Layout with Channel Parallelism

Figure 10 shows the memory partitioning implemented with ICH PAR. The kernel
remains unchanged from the previous case. What differs here is that the memories are
doubled; in fact, the computation is performed on two channels at a time rather than
on a single channel. As a result, the computation time decreases and the throughput
increases, thereby improving overall performance. In this case, the height is calculated
using the formula F H × F W × ICH P AR. Setting the ICH PAR parameter to 2
results in twice the number of memory banks compared to the previous case. As for
the depth of the memories, it is naturally reduced, since the other dimension has been
increased of ICH PAR times.

3.4 Auto-Partitioning Function Template

A templated function, called input 2conv, has been implemented to output parti-
tioned memory according to the specified parameters. The complete function is available
in the GitHub repository referenced in Appendix 7.1, while the function template is shown
below:

1 template< int ICH, int IW, int IH,
2 int FW_IN, int FH_IN,
3 int OCH, int OW, int OH,
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4 int ICH_PAR_IN,
5 int WINDOW_IN>
6 void input2conv(hls::stream<mem_in_t>& memory_in_stream, memory_in_conv_t<CONV_0_FW,

CONV_0_FH, CONV_0_ICH_PAR, CONV_0_ICH, WINDOW_IN>& memory_in_local)

The template parameters represent:

• ICH: number of input channels in the tensor.

• IW, IH: width and height of the input tensor.

• FW IN, FH IN: width and height of the kernel.

• OCH: number of output channels.

• OW, OH: width and height of the output feature map.

• ICH PAR IN: parallelism on the input channels (i.e., how many channels can be
read simultaneously).

• WINDOW IN: spatial parallelism on the windows (i.e., how many windows can
be processed in parallel).

In this thesis, the input data are in HWC format and are supplied to the input function
through a stream from external memory. Since the stream handles one data point at a
time, the function can achieve an initiation interval of 1, thereby reading and processing
one data point per clock cycle without the need to wait for all the data to be loaded. The
input data type, mem in t, is defined as a ap uint < 8 >. The data type ap uint < 8 >
is an unsigned arbitrary-precision integer of width 8 bits, provided by the HLS library. It
is widely used in HLS because, unlike the standard uint8 t, it synthesizes to RTL ports
and buses with an exact width of 8 bits. Furthermore in this way, the data type has been
made generic, and if a modification is required, it is sufficient to change this data-type in
the file parameter.h, which contains all the parameters and data types used in the various
functions.

As noted earlier, the function returns the partitioned memory, which is then pro-
vided to the convolution by another routine that adds stride and padding (see Sec-
tion 4.2.3). This routine is likewise defined with a template parameter and yields a
two-dimensional structure, exactly as described previously: the vertical dimension is
FW × FH × ICH PAR, while the horizontal dimension is given by FW × FH ×
ICH PAR/(FW × FH × ICH PAR × WINDOW IN2). In which the filter dimen-
sions (FW and FH), the input channel parallelism and the number of channels (ICH PAR
and ICH), and finally the parameter WINDOW IN was introduced to handle cases where
the input dimensions are not multiples of those of the kernel. Specifically, it represents
how many times the filter fits into the input and has been useful in avoiding computa-
tional complexity in the calculation of the memory index when this condition occurs.

The body of the function aims to increment two indices in order to properly place the
data in memory. Particular attention is given to positioning the data so that the required
convolution calculations can be performed in a single clock cycle, also taking into account
the input parameters.
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3.5 Design Constraints and Trade-offs

The partitioning strategy was determined by several design constraints inherent to
FPGA implementations. In particular, the limitations in the number of available BRAM
and DSP resources required a careful balance between maximizing parallelism and main-
taining overall resource feasibility. Moreover, the design was conceived to achieve an
initiation interval of 1, thereby ensuring the absence of data dependencies in convolution
and other functions. These considerations highlight the intrinsic trade-off between perfor-
mance and resource utilization: although aggressive partitioning and parallelization can
enhance computational efficiency, they may also result in excessive hardware consump-
tion. Consequently, the adopted design represents a compromise that guarantees both the
functional correctness of the system and the practical feasibility of its implementation on
the selected FPGA device.

In the subsequent chapters, the convolutional neural network implemented in this work
is presented, with particular attention devoted to ResNet-18. The template functions are
described in detail, along with an explanation of the various parameters that characterize
the implemented layers. Finally, the design is synthesized and deployed on the FPGA in
order to assess both the resource utilization and the resulting performance.
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4 Hardware Implementation in HLS

In this section, the hardware implementation of CNN is described using HLS. HLS
allows FPGA circuits to be designed directly from high-level C++ descriptions, signifi-
cantly reducing development effort and enabling rapid design-space exploration compared
to hand-written RTL. The implementation focuses on ResNet-18, one of the most widely
used convolutional neural networks, particularly in the field of computer vision. Special
attention is then given to the operations comprising the implemented layer and to the
overall dataflow between them. The implemented functions also support other neural
networks, including LeNet. However, because ResNet-18 exhibits greater complexity, it
was selected as the primary case study for this thesis.

4.1 ResNet-18

ResNet-18 is a member of the Residual Network (ResNet) family, built from resid-
ual blocks that alleviate the vanishing-gradient problem and allow training of deeper
architectures. Vanishing gradients arise during backpropagation when derivatives shrink
as they are propagated toward earlier layers, particularly in very deep networks, so those
layers receive near-zero updates and learning stalls. As its name suggests, ResNet-18 com-
prises eighteen weighted layers and is the shallowest of the standard ImageNet ResNets,
making it a common baseline for rapid experimentation, deployment on modest hardware,
and instructional use. Rather than forcing each block to learn an entirely new mapping
H(x), ResNets learn a residual function F(x) = H(x) - x and produce the output y = x +
F(x) via identity skip connections that bypass one or more layers; these shortcuts preserve
gradient flow and simplify optimization. Figure 11 shows the block diagram of the skip
connection mechanism.

Figure 11: Residual block with identity skip connection [18]

In this thesis, following an analysis of memory partitioning strategies, the core opera-
tors of ResNet-18 are implemented. Figure 12 presents a block-level overview of the entire
network. The study focuses on the final residual stage, which comprises 512 filters.
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Figure 12: ResNet-18 architecture [19]

4.2 Convolution

The operating principle of convolution was introduced in Section 1.1.3. In ResNet-18,
the operator is a standard 2D convolution (multi-channel and multi-filter): the kernel
slides over the two spatial dimensions (H and W) while spanning the entire input-channel
dimension.

Figure 13 illustrates an example of a 2D convolution with ICH input channels and
OCH output channels. The number of input channels matches the channel dimension
of the filters, since each filter aggregates weighted sums across all input channels and
projects the result into a single value for each sliding window position. Furthermore,
there are OCH distinct filters, and each filter produces a partial-sum feature map of size
OW × OH (output width and output height). Finally, all partial results are collected to
form the final output tensor of dimension OCH × OW × OH .

Figure 13: Standard Convolution [19]
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The dimensions of the output feature map are given by the following equations:

OW = IW + 2 × PADDING − FW

STRIDE
+ 1 (1)

OH = IH + 2 × PADDING − FH

STRIDE
+ 1 (2)

Two additional parameters appear in these expressions: stride and padding. When
used together in convolutional layers, they provide fine-grained control over both the
spatial size of the output and the ability of the filter to capture contextual information.
The following subsections describe these parameters in detail and indicate how they have
been integrated into the implementation.

4.2.1 Stride
The stride parameter defines the step size with which the kernel moves across the

input. During convolution, the stride specifies how many positions the filter shifts at each
step. The operation typically begins with the convolution window placed at the top-left
corner of the input tensor, and the kernel is then slid across all positions, both horizon-
tally and vertically. While a stride of one corresponds to shifting the window by a single
element at a time, in practice larger strides are often employed, either for computational
efficiency or to intentionally reduce the spatial resolution by skipping intermediate posi-
tions.

Figure 14: Stride effect on Convolution
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Figure 14 shows two examples where stride is set to 1 and 2, respectively, highlighting
how the output dimensions are affected. From Equations 1 and 2, it can be observed
that there is an inverse relationship between the stride and the spatial size of the output
feature map.

The choice of stride impacts several aspects of the convolution. First, as noted, it
determines the spatial resolution of the output. In addition, it affects computational
efficiency: a stride greater than 1 increases the step size of the kernel, which reduces
the number of operations and thus the computational cost. However, this efficiency gain
comes at the expense of potential information loss. By skipping positions in the input,
the kernel may fail to capture fine-grained features that could be important for accurate
representation.

4.2.2 Padding
As can be observed from Equations 1 and 2, the dimensions of the output feature

map tend to shrink when padding is not applied. The primary goal of the network is
to extract meaningful features from the image through convolutional layers. However,
important features may lie near the image borders, where the kernel is applied less fre-
quently, potentially leading to information loss. Padding addresses this issue by extending
the input with artificial pixels along its borders, thereby preserving the original dimen-
sions and reducing the risk of losing peripheral information.

Padding can be applied in two common ways:
• Valid Padding (“No Padding”): no padding is added to the input feature map,

and the resulting output feature map is smaller than the input.

• Same Padding: zeros are added around the input feature map so that the spatial
dimensions of the output match those of the input.

Figure 15 shows an example where a padding of 1 is applied to a 3 × 3 input.

Figure 15: Padding effect on Convolution

4.2.3 Stride and Padding in the HLS Implementation
The combination of stride and padding, previously analyzed, allows balancing com-

putational efficiency with the perceptual depth of the model. It is crucial to implement
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these parameters, as they are present in all modern convolutional networks to achieve ef-
ficient performance and accurate results. In this thesis, stride and padding were explicitly
integrated with the goal of minimizing internal resource utilization.

For instance, regarding padding, the idea of implementing it directly in the input2conv
function, responsible for producing partitioned memory, was discarded. Storing the entire
input together with the padded elements would have significantly increased BRAM usage.
Instead, both stride and padding were implemented inside the mem conv2stream function.
This function retrieves data from partitioned memory and provides them to the convolu-
tion engine with the appropriate unrolling factor. Specifically, it delivers data packets of
size FW ×FH ×ICH PAR, ensuring that at each clock cycle the convolution receives the
inputs required for computation. By passing stride and padding as template parameters,
the function fetches the correct data from memory, inserts the necessary padding, and
streams the result to the convolution operator.

An excerpt of the implementation, available in the GitHub repository in Appendix
7.1, is provided below:

1 const int ih_real = s_oh * STRIDE + s_fh - PADDING;
2 const int iw_real = s_ow * STRIDE + s_fw - PADDING;
3 const bool valid = !(ih_real < 0 || ih_real >= IH || iw_real < 0 || iw_real >= IW);
4

5 const int s_mem_i_depth = (iw_real / FW_IN) * (ICH / ICH_PAR_IN) + (ih_real / FH_IN) *
(ICH / ICH_PAR_IN) * WINDOW_IN + s_ich / ICH_PAR_IN;

6 const int s_mem_i = (iw_real % FW_IN) + (ih_real % FH_IN) * FW_IN + s_ich_par * FW_IN
* FH_IN;

7 ap_uint<MEM_IN_T_BIT_WIDTH> read_data = 0;
8 if (valid) {
9 // valid: read from memory

10 read_data = memory_in[s_mem_i][s_mem_i_depth];
11 }
12 current_packet((packet_element_idx + 1) * MEM_IN_T_BIT_WIDTH - 1, packet_element_idx *

MEM_IN_T_BIT_WIDTH) = read_data;
13 packet_element_idx++;

In the first lines, the stride is applied: iw real and ih real represent the reconstructed x
and y coordinates of the input image. These coordinates are computed from the output
indices (s oh, s ow), the filter indices (s fh, s fw), and the padding value.

In the following lines, padding and memory indexing are handled. First, the code
checks whether the current position are not lies at the image border; in such a case,
the appropriate memory element is fetched using the indices s mem i depth and s mem i,
taking into account that the partitioned memory is organized as a two-dimensional array.
Otherwise, a zero is written, implementing the padding.

4.2.4 BIAS
In every convolutional operation, the kernel computes a weighted sum of the input

pixels. In some cases, a constant term called the bias is added to this sum, acting as an
offset before the activation function is applied. Formally, if a convolutional filter produces
an output value y from a local subset of input values x and the corresponding kernel
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weights w, the computation is given by:

y =
NØ

i=1
(xi · wi) + b (3)

In addition to shifting the activation function, biases enable convolutional filters to
better adapt to the data by introducing a constant term that can activate or suppress a
feature regardless of the input. As a result, they provide greater model flexibility, improve
training stability, and contribute to faster convergence.

In this design, the bias values are stored internally in the FPGA BRAMs. This
choice is motivated by the fact that the number of biases required for this layer is relatively
small and does not lead to significant BRAM utilization. However, if resource usage were
to become critical, the biases could instead be stored in external DDR memory and
accessed through a Direct Memory Access (DMA) implemented in HLS, as is already
done for activations, kernels, and outputs.

4.2.5 Template Functions for Convolution
The following section presents C++ function template that implements the con-

volution operator, which represents the core operator within a CNN. The template pa-
rameters of the function are first described, followed by an explanation of the input and
output interfaces: the partitioned input feature maps, the kernels and biases, and the
output feature maps produced by the convolution engine.

1 template<int ICH, int IW, int IH,
2 int FW, int FH,
3 int OCH, int OW, int OH,
4 int ICH_PAR,
5 int STRIDE,
6 int WINDOW_IN,
7 int ICH_PAR_OUT,
8 int FW_OUT, int FH_OUT, int OCH_OUT,
9 int WINDOW_OUT,

10 int RELU>
11 void conv(hls::stream<conv_packet_t<FW, FH, ICH_PAR>> &conv_data_stream,
12 filter_stream_t& filter_stream, //default ap_int<8>
13 const ap_int<32> bias[OCH],
14 memory_out_conv_t<FW_OUT, FH_OUT, ICH_PAR_OUT, OCH_OUT, WINDOW_OUT>& out_mem)

The template parameters represent:

• ICH: number of input channels in the tensor.

• IW, IH: width and height of the input tensor.

• FW, FH: width and height of the kernel.

• OCH: number of output channels.

• OW, OH: width and height of the output feature map.

• ICH PAR: parallelism on the input channels (i.e., how many channels can be read
simultaneously).
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• STRIDE: applied stride value.

• WINDOW IN: spatial parallelism on the input windows (i.e., how many windows
can be processed in parallel).

• ICH PAR OUT: output channel parallelism, used to generate the partitioned
output memory.

• FW OUT, FH OUT: width and height of the kernel of the subsequent convolu-
tion, used to dimension the partitioned output memory.

• OCH OUT: number of output channels of the subsequent convolution.

• WINDOW OUT: spatial parallelism on the output windows of the subsequent
convolution, used to properly size the partitioned memory of the next stage.

• RELU: Control parameter that specifies whether the ReLU activation is applied
internally to the convolution operator.

The following section focuses on the inputs and outputs of the convolution function.
The first input argument represents the input tensor data packet retrieved from

the partitioned memory. This packet is dimensioned to allow the convolution engine to
perform the required computations with the proper unrolling factor, indeed, its size is
FW × FH × ICH PAR, identical to the vertical dimension of the partitioned memory,
which contains the input sub-window and, depending on the value of ICH PAR, selects
the subset of channels involved in the computation.

This type is an HLS FIFO stream (hls::stream, from the HLS library) is em-
ployed, ensuring pipelined communication: while one data packet is being processed, the
next can already enter the stream. Notably, a packet is not a single scalar value but a
group of elements defined as follows: ap uint < FW × FH × ICH PAR × 8 >. Where,
each packet contains a block of unsigned 8-bit integers (uint 8). The definition is fully
parameterized so that modifying the data type or size only requires changing this single
line of code, thereby providing flexibility and scalability.

The second parameter of the function is an FIFO stream of 8-bit elements repre-
senting the kernel coefficients. Specifically, filter stream t is defined as follows hls ::
stream < ap int < 8 >. Here, the data type is an 8-bit signed integer, since kernel
weights can take negative values.

The third parameter is a vector that contains the bias values. In the implemented
layer, the biases were represented as 32-bit integers, as specified by the ONNX model.
These values are incorporated into the convolution according to Equation 3.

The last parameter of the function corresponds to the convolution output. It
is implemented as a partitioned memory, as described in Section 3.3.3. The data type
memory out conv t is a two-dimensional memory whose dimensions are identical to those
analyzed previously, but they refer to the next convolutional stage. If no subsequent
stage is present, simply set the parameters FW OUT and FH OUT to 1 to obtain a single (1-
D) vector. The only difference is in the data width: after convolution, results are stored
in 32-bit integers to avoid overflow or saturation during accumulation.
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4.2.6 Hardware Architecture
This section illustrates, from a hardware perspective, what is expressed at a high level

in HLS. As previously discussed, the inputs to the convolution function are delivered via
an HLS stream packet. A dedicated routine fetches data from the partitioned memory,
applies padding and stride when required, and provides exactly the data needed for a single
clock tick of computation. Consider, for example, a 3 × 3 kernel and ICH P AR = 2,
which determines the degree of channel-level parallelism. The vertical dimension of the
memory is therefore 3 × 3 × 2 = 18, meaning that the data required each cycle are
distributed across 18 distinct memory banks. Assume stride and padding euqal to 1.
Figure 16 shows how the data stream is populated and forwarded to the convolution.

Figure 16: Hardware Architecture of Function before the Convolution

It can be observed that the partitioned memory comprises 18 distinct banks; for
brevity, only the first entries are shown. The subsequent block depicts the data packet
sent to the convolution: the blue zeros correspond to padding, while the yellow values are
read directly from the partitioned memory.

The convolution function is then examined from a hardware standpoint. In practice,
convolution performs a large number of MAC operations: input samples are multiplied
by the corresponding weights, and the products are accumulated across all channels.
Hardware-wise, this entails allocating multipliers and accumulators (with the degree of
parallelism set by ICH PAR), and reducing the partial sums to produce each output
sample.
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Figure 17: Hardware Architecture of Convolution

In Figure 17, the two inputs are shown: the incoming data packet and the weights used
for computation. As indicated, there are 18 accumulators, reflecting that all operations
run in parallel according to the chosen ICH PAR value. Each multiplier reads its operand
from a different memory bank, hence the emphasis in this work on partitioned-memory
design to ensure data reside on distinct banks. This organization enables parallelization,
thus consuming more hardware resources, while achieving a higher throughput.

The advantage of using HLS lies in the fact that, unlike RTL design, where each
hardware block composing the datapath must be instantiated manually, here the algorithm
can be described directly in C++, such as: sum+ = local mem[...][...]∗filter mem[...][...];

The focus therefore shifts to properly organizing the loops and ensuring the absence
of data dependencies. By applying pragmas, such as those introduced in the previous
chapter (e.g., pipelining and unrolling), the Vitis HLS tool can accurately translate the
C++ description into RTL, instantiating the correct number of multipliers and accumu-
lators. Otherwise, the instruction sum += a * b would be synthesized with only a single
multiplier and accumulator, forcing the products to be executed sequentially and thereby
drastically reducing throughput.
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4.3 ReLU

The Rectified Linear Unit (ReLU) is one of the most widely used activation func-
tions in neural networks. An activation function determines whether a neuron should be
active or not, introducing non-linearity into artificial neural networks. This non-linearity
is crucial for modeling complex relationships within data and significantly improves the
representational power of the network. ReLU is formally defined as:

ReLU(x) = max(0, x) (4)

In essence, this function returns the input itself if it is positive, and zero otherwise. In
addition to being extremely efficient to compute, ReLU alleviates the vanishing gradient
problem and, by producing many zero outputs, also reduces the computational load in
subsequent operations.

4.3.1 ReLU in the HLS Implementation
In most networks, the ReLU activation is placed immediately after the convolution

to break the linearity of consecutive convolutions; otherwise, stacking multiple convo-
lutions without activation would reduce the representational capacity of the model. In
ResNet-18, however, as observed in the ONNX model, ReLU is not always present after
every convolution. For this reason, a template parameter was added to the convolution
function to indicate whether ReLU should be applied or not.

From an implementation perspective, ReLU is computationally straightforward and
has been integrated directly into the convolution function as follows:

1 if (RELU){
2 if (sum < 0) {
3 sum = 0;
4 }
5 }
6 out_mem[s_mem_o][s_mem_o_depth] = sum;

Before writing the result to the partitioned output memory, the value of the template
parameter RELU is checked. If it is enabled, the accumulated sum is clamped to zero when
negative; otherwise, the value is left unchanged.

Integrating ReLU within the convolution avoids a separate processing stage and re-
duces memory transactions between the convolution and activation functions. Further-
more, the implementation relies on conditional statements (if), which the HLS tool maps
to multiplexers and a comparator. As a result, the iteration interval of the convolution
function remains equal to one and is not affected by the added logic.

4.4 Pooling Layer

The pooling layer, ubiquitous in many CNNs, reduces the spatial dimensions of the
input feature maps while preserving the most salient information. By shrinking the feature
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maps, it lowers the computational complexity of the network by reducing the number of
operations. Pooling slides a two-dimensional window over each channel of a feature map
and aggregates the features within the windowed region. The variants used in ResNet-18
and LeNet are:

• Max Pooling: selects the maximum element within the windowed region of the
feature map, yielding an output that retains the most prominent features from the
previous layer.

• Average Pooling: computes the mean of the elements within the windowed region,
producing the average feature value over that area.

• Global Average Pooling: takes each channel of the feature map and averages
over all spatial positions H × W , resulting in a single scalar per channel.

Figure 18 provides a graphical depiction of these three cases.

Figure 18: Pooling methods

4.5 Quantization

Nowadays, with the rapid advancement of artificial intelligence, neural networks are
becoming increasingly complex and demand substantial computational resources for both
training and deployment. Quantization is the process of reducing the precision of a
digital signal, typically from a higher-precision format to a lower-precision format. This
technique is widely used in various fields, including signal processing, data compression
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and machine learning. [20]

In the context of AI, quantization aims to accelerate models by converting their weights
and activations from high-precision floating-point formats, such as 32-bit floats (FP32),
to low-precision data types, such as 8-bit integers (INT8). Reducing the data represen-
tation inevitably decreases precision, introducing what is referred to as quantization error.
Nevertheless, quantization significantly reduces model size and inference latency, enabling
deployment on hardware with limited resources, such as FPGAs.Performing quantization
from FP32 to INT8 is nontrivial. Only 256 distinct values can be represented in INT8,
whereas FP32 can cover a much broader dynamic range. From a mathematical perspec-
tive, and considering uniform quantization, the mapping can be expressed as:

Q(r) = Int
3

r

S

4
− Z (5)

where Q is the quantization operator, r is a real-valued input (activation or weight),
S is a real-valued scaling factor, and Z is an integer zero-point. This function maps real-
valued numbers to their corresponding integer representations.

In addition to improving inference speed, quantization also achieves a significant re-
duction in memory footprint. For instance, converting from FP32 to INT8 leads to an
approximate 4× reduction in storage requirements. From a computational perspective,
low-precision arithmetic can be executed with simpler hardware units (e.g., ALUs and
multipliers), resulting in a considerable decrease in energy consumption, an essential ad-
vantage for embedded applications.

As discussed earlier, quantization entails divisions that often involve floating-point
numbers. At the hardware level, this can increase the utilization of DSP slices, which
are available in limited quantity on FPGAs. For this reason, quantization is frequently
implemented using shift operations: scales and weights are chosen as powers of two, so
multiplications and divisions reduce to shifts that do not consume DSP resources. This
approach may introduce a modest loss in accuracy; however, well-established techniques
such as QAT and bias correction can recover much of the lost precision.

Given the scope and complexity of this thesis, the quantization function was developed
by another student and integrated into the design. The same student is also implementing
the pooling layer so that it can be incorporated into the experiments conducted thus far.

4.6 Structure of the Top Wrapper

To proceed with synthesis, Vitis HLS requires specifying a top-level function. In this
work, it is represented by the function defined in top wrapper.cpp, which invokes the
various routines needed to implement the neural network. The interface is presented be-
low, detailing precisely what the function takes as input and what it produces as output,
in order to implement one layer of ResNet-18, including convolution, ReLU and quanti-
zation. The input/output values are read from and written to a DDR memory external
to the FPGA. Consequently, in Vitis HLS we instantiated as many DMA engines as there
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are parameters of the function.

1 void top_wrapper(hls::stream<mem_in_t> &memory_in_stream,
2 filter_stream_t &filter_val_stream,
3 hls::stream<mem_out_t> &memory_out_stream)

For the implementation of a single layer, the top function exposes the following three
parameters:

• memory in stream: a FIFO stream where mem in t denotes the data type, cor-
responding to ap uint < 8 >.

• filter val stream: a FIFO stream where filter stream t is an ap int < 8 >,
identical to the input data type of the convolution.

• memory out stream: a FIFO stream where mem out t denotes the data type,
corresponding to ap axiu < 8, 0, 0, 0 >. This is an HLS structure for a 1-byte
AXI4-Stream, a point-to-point protocol for transferring data without addresses. In
addition to the payload (TDATA), which in this case is an ap uint < 8 >, it includes
auxiliary fields such as TKEEP and TSTRB, each one bit wide and asserted when
the byte is valid. It also includes TLAST, a bit asserted on the last byte to mark
the end of the packet. In practice, this format is used when one wants HLS to
automatically generate the AXI4-Stream signals and handshaking.

4.6.1 Algorithm Block Diagram
The previously analyzed top level encapsulates the functions required to implement

the selected layer. Figure 19 depicts, on the left, an ONNX excerpt of a ResNet-18 model:
quantized data weights, biases, and inputs, feed the convolution, followed by operations
such as ReLU and quantization. On the right, the workflow executed within top wrapper
is shown. In particular, it highlights the principal functions that constitute ResNet-18
(e.g., convolution and quantization), as reflected in the ONNX graph. Several auxiliary
routines are also included to organize the data and route it correctly to downstream stages.

In the conducted experiments, in addition to the layer under consideration, the subse-
quent convolution (shown in white) was also included. This further increased the design
complexity and enabled a more detailed assessment of resource utilization and perfor-
mance.
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Figure 19: Block diagram of the top wrapper function flow

In particular:

• kernel2conv: this function acts as a buffer between the data arriving from external
memory. Specifically, the data are the filter coefficients, which are read from an
input stream and forwarded to an output stream at one element per clock cycle.
The output stream then feeds the convolution.

• input2conv: as introduced in Section 3.4, this function retrieves the input tensor
via a stream and places it into a partitioned on-chip memory within the FPGA.

• mem conv2stream: this function reads data from the partitioned memory, adapts
them by adding padding and stride, if necessary, and finally transmits a data packet
via stream to the convolution. The packet is shaped according to the chosen un-
rolling factor, in order to parallelize the computations and increase throughput.

• conv: as described in Section 4.2.5, this function performs the convolution between
the input packet and the kernel. The loops are structured to exploit parallelism
according to the input parameters (ICH PAR).

• quant: this function reads the memory produced by the convolution and quantizes
the data, converting them from 32-bit integers to 8-bit integers. In this way, they
are ready to be consumed by another convolutional layer or to constitute the final
output of the network.

• out conv2mem: this function takes the partitioned memory produced by quanti-
zation (which remains a two-dimensional partitioned memory) and serializes it into
an AXI4-Stream. It essentially writes to external DDR a packet that, in addition
to the data payload, also carries fields such as TKEEP, which indicates which bytes
are valid, and asserts TLAST on the last element.
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4.7 Tcl Script for Project in Vitis HLS

To accelerate simulation and debugging, Vitis HLS was not used via the Graphical
User Interface (GUI); instead, the flow was driven from the command line by invoking
a Tool Command Language (Tcl) script that explicitly encodes the same commands one
would issue in the GUI. An example is shown below: it creates a new project (one layer),
sets the top-level function, and adds the source files required for synthesis and simulation.
It also specifies the target FPGA device and the clock period. Finally, it launches, in
order, C/C++ simulation, synthesis, RTL co-simulation, and exports the resulting IP
core for the subsequent steps in Vivado.

Listing 3: Tcl script for launching the Vitis HLS project
1 # Create a project
2 set impl_sel "solution_0"
3 # Open the new project
4 open_project one_layer
5 open_solution ${impl_sel}
6 # Set the top-level function
7 set_top top_wrapper
8 # Add design files for synthesis (remove -tb here)
9 add_files /home/lorenzor/circtvm1/workspace/convolution/top_wrapper.cpp

10 add_files /home/lorenzor/circtvm1/workspace/convolution/top_wrapper.h
11 add_files /home/lorenzor/circtvm1/workspace/convolution/conv.h
12 add_files /home/lorenzor/circtvm1/workspace/convolution/parameter.h
13 # Add testbench file (only for simulation, keep -tb here)
14 add_files -tb /home/lorenzor/circtvm1/workspace/convolution/conv_tb_lenet.cpp
15 # Define technology and clock rate
16 set_part {xczu9eg-ffvb1156-2-e}
17 create_clock -period 5
18 # Run simulation (csim)
19 csim_design
20 # Run synthesis (csynth)
21 csynth_design
22 # Run simulation (co-sim) + export waveform
23 cosim_design -trace_level all
24 # Export IP
25 export_design -flow syn
26 exit
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5 FPGA Design and Synthesis with
Vivado

This chapter presents the Vivado-based synthesis flow and the FPGA implemen-
tation of the project. Vitis HLS enables C/C++ functional simulation (csim), high-level
synthesis to RTL, and RTL co-simulation (cosim). It also provides resource estimates
for the selected FPGA target. The final step is implementation on the specific hardware
platform, in this case an FPGA, using Vivado, which performs logic synthesis and Place &
Route on the target device and, finally, generates the bitstream, that is, the configuration
file used to program the FPGA.

Subsequently, the Vivado Block Design is introduced. It offers a graphical represen-
tation of the hardware system and facilitates the connection and configuration of IP cores
with the custom HDL module. To interface with the FPGA, a Python script based on
AMD’s open-source PYNQ framework was developed, enabling bitstream programming
and data exchange with the programmable logic.

The specific hardware platform used in this thesis is also presented, onto which the
bitstream was loaded and the results were verified. In particular, the AMD ZCU102
board available in the laboratory was employed. This platform integrates ARM CPUs
(PS) and PL within the same SoC, enabling control to be executed on the PS while
hardware accelerators run on the PL. Finally, we describe how the dataflow among the
functions in the top-level function was orchestrated using a ping–pong buffer, and the
resulting waveforms that validate the implementation were presented from Vivado.

5.1 Vivado

Vivado, introduced in 2012 by Xilinx, is a software suite for the synthesis and anal-
ysis of HDL designs and for hardware development on FPGAs and SoCs. The design
flow starts from a VHDL/Verilog description or pre-packaged IP and culminates in the
generation of the bitstream, the configuration file that programs the device. Vivado also
enables the specification of clock and timing constraints and performs logic synthesis and
implementation. The tool automatically manages run data, enabling repeated build at-
tempts with different RTL source revisions, target devices, synthesis and implementation
options, and physical or timing constraints.

With the Vivado Design Suite, you can accelerate design implementation with place
and route tools that analytically optimize for multiple and concurrent design metrics,
such as timing, congestion, total wire length, utilization and power. The Vivado Design
Suite provides you with design analysis capabilities at each design stage. This allows for
design and tool setting modifications earlier in the design processes where they have less
overall schedule impact, thus reducing design iterations and accelerating productivity. [21]

After generating the RTL with Vitis HLS, the design is exported to create an IP core
that can be integrated into the project. The first step in Vivado is to create the Block
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Design, where the exported IP is connected to other pre-existing, configurable IP, such
as the Zynq Processing System, AXI interconnect/controllers, and peripherals. At this
point, synthesis can proceed. Vivado allows you to define design constraints in Xilinx
Design Constraintss (XDCs) files. Both physical constraints (e.g., pin assignments and
the placement/floorplanning of BRAMs, LUTs, and flip-flops) and timing constraints
(clock definitions and target operating frequencies) can be specified. The tool also lets
you select from built, in implementation strategies or define custom ones to optimize for
area, performance, power, or runtime.

After synthesis, the flow proceeds to implementation, which includes all steps required
to place and route the netlist onto the device resources while honoring the project’s log-
ical, physical, and timing constraints. During implementation, Vivado performs physical
optimizations such as retiming, register replication, and buffer tree insertion. For this
reason, the resource figures reported by Vitis HLS should be considered estimates: uti-
lization, especially of LUTs and flip-flops, often changes after physical optimization. In
many cases the resource count decreases, but it may also increase, for example when
register replication or additional buffering is required to meet the target frequency.

Finally, Vivado generates the bitstream, the configuration file used to program the
FPGA. The bitstream specifies LUT functions, internal routing, BRAM/DSP configura-
tion, clocking, and I/O interfaces. The tool produces a ”.bit” file that is then loaded onto
the FPGA.

Figure 20 presents the complete workflow carried out in this work, with particular
emphasis on the steps executed in Vivado: RTL integration, synthesis, implementation
and finally programming and debugging on an hardware device.

Figure 20: Vivado Design Suite High-Level Design Flow [22]

5.2 Vivado Block Design

As discussed earlier, the first step in Vivado is to implement the Block Design, in
which the IP generated with Vitis HLS is connected to other IP blocks to form a com-
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plete hardware system. Vivado recognizes standard interfaces such as AXI and supports
automatic connections for clock and reset, as well as the connections between the various
IPs. Figure 21 shows the Block Design developed to implement a ResNet-18 layer (that
include convolution, ReLU and quantization); and then the role of each individual block
is detailed.

Figure 21: Vivado Block Design

In particular, note the following:

• Top wrapper: located at the center of the Block Design, this is the project IP
exported from Vitis HLS. It corresponds to the accelerator developed in C++ and
converted to RTL by the tool. Its interface exposes the input signals described in
Section 4.6, with the addition of the clock and reset signals.

• Zynq UltraScale+ MPSoC: constitutes the FPGA PS; it provides clock and
reset to the PL. It exposes an M AXI HPM0 FPD master port (PS → PL), used by
software to configure peripherals over AXI-Lite, and S AXI HP* FPD slave ports
through which PL masters (the various DMAs) can read from or write to the PS
DDR.

• AXI Direct Memory Access (axi dma 0 and axi dma 1): both supply the
top-level inputs activations and kernels, respectively, via their M AXIS MM2S stream
interfaces. The M AXI MM2S ports fetch buffers from DDR, while the S AXI LITE
interfaces expose control registers (address, length) programmed by the PS. They
are configured in read-only (MM2S) mode, since they read from DDR and drive the
input streams. Figure 22 illustrates the configuration of the DMA for the activa-
tions:
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Figure 22: AXI Direct Memory Access input configuration

It can be observed that, in addition to enabling only the read channel, the Width of
Buffer Length Register was set to 26; consequently, the maximum length per single
transfer is 226 − 1 = 67.108.863 (≈ 64 MiB). This is sufficient to load the entire
input tensor, even when the batch size is greater than one. The Memory Map Data
Width is set to 32, indicating 32-bit words on the AXI memory-mapped master. The
Stream Data Width is set to 8 bits, since the input data are 8-bit. The Max Burst
Size is 16 beats, in this way the DMA will not issue bursts longer than 16 beats
on the memory side. Finally, the Enable Scatter Gather Engine option is disabled,
meaning the core operates in Simple Mode: the DMA reads blocks from memory
and streams them out on an 8-bit AXI4-Stream interface. Stream continuity is
managed in software using a ping–pong buffer (see Section 5.5.1), preventing the
stream from stalling unless the input data are exhausted.

• AXI Direct Memory Access (axi dma 2): this DMA, placed on the right of
the Block Design, receives the results from the top. It is configured in write-only
(S2MM) mode, it accepts a stream on S AXIS S2MM (the memory out stream
from the top) and writes to memory via M AXI S2MM. The S AXI LITE interface
manages the control registers. Figure 23 illustrates the configuration of the DMA
for the output:
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Figure 23: AXI Direct Memory Access output configuration

In this case, the key difference is that only the write channel (S2MM) is enabled.
Scatter Gather is disabled, so the DMA operates in Simple Mode. The Width
of Buffer Length Register is set to 15. For the implemented ResNet-18 layer, the
output size is 512×7×7 = 25 088 elements; with 8-bit outputs (1 byte/element), the
entire output feature map fits within a single transfer, ensuring correct end-to-end
writing.

• AXI SmartConnect: manages the interconnections for the DMAs’ memory-mapped
channels. It is termed “Smart” because it automatically inserts data-width/protocol
conversions (and CDC bridges when enabled) and arbitrates transfers among mul-
tiple IP.

• AXI Interconnect: handles the control-path interconnections; it receives AXI-
Lite transactions from the PS and forwards them to the DMAs’ S AXI LITE ports,
thereby programming buffer addresses and transfer lengths.

• Processor System Reset: receives a reset input and the PL clock, and generates
reset signals synchronized to the PL clock domain. This improves robustness by
asserting releases only when the clock is stable.

5.3 PYNQ Overlay

PYNQ is an open-source AMD project that streamlines application development on
Xilinx/AMD Zynq and Zynq UltraScale+ SoCs by leveraging both the PL and the PS. It
enables embedded designers to exploit Adaptive Computing platforms without resorting
to ASIC, oriented design tools for programmable logic development. In practice, PYNQ
provides facilities to interface with the FPGA, create the drivers required to supply input
data, and load the bitstream that configures the device. PYNQ also supports Python
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for programming both the embedded processors and the overlays, reusable, configurable
hardware libraries implemented in the PL.

After creating the Block Design, running synthesis and implementation, and generat-
ing the bitstream, the FPGA deployment was carried out via a Python script using PYNQ.
The board is first provisioned with the .bit file (Vivado bitstream) and the corresponding
.hwh file, which provides an object model of the hardware, including IP hierarchies, AXI
addresses, and interconnections. Selected excerpts of the Python script (inference.py) are
presented and explained below.

As mentioned, PYNQ supports Python programming and allows the use of libraries
such as Overlay (to load and manage an overlay: .bit + .hwh), allocate (to allocate
memory buffers), Clocks (to configure PS clock frequencies), and PL (to query the state
of the Programmable Logic).

1 import pynq
2 from pynq import Overlay
3 from pynq import allocate
4 from pynq import Clocks
5 from pynq import PL

Subsequently, the programmable logic is reset to avoid conflicts with previously loaded
overlays. The batch size, the number of images to be processed, is then configured. Finally,
the bitstream and the associated .hwh file are loaded from the overlay directory.

1 PL.reset() #resetto la PL per evitare conflitti con overlay precedenti
2

3 NR_IMG = 1 #numero di immagini da processare
4

5 #caricamento overlay (bitstream + hwh) FPGA
6 print("Loading overlay", flush=True)
7 BITFILE = ’/root/lorenzor/overlay/design_1_wrapper.bit’
8 overlay = Overlay(BITFILE)
9 print("Loaded overlay", flush=True)

After loading the bitstream and the .hwh file, the DMA peripherals are mapped.
Care must be taken to ensure that the instance names match those used in the Vivado
Block Design. Three DMAs are employed: two inputs, handling activations and kernels,
respectively, and a third for the output.

1 # Mappo le periferiche DMA
2 dma_input = overlay.axi_dma_0
3 dma_kernel1 = overlay.axi_dma_1
4 dma_output = overlay.axi_dma_2

In the following code, the dimensions of the input tensor, the kernel, and the output
are configured, and the corresponding buffers are allocated. Note that, for both input and
output, two types of buffer are created: one that spans the entire input/output tensor
and another that holds only the single image processed at a time. Naturally, if only one
image is to be processed, these two buffers coincide.

1 W, H, C = 7, 7, 512 # Dimensioni delle immagini
2 PIXELS_PER_IMAGE = W * H * C
3 N_PIXELS = PIXELS_PER_IMAGE * NR_IMG # Numero totale di pixel per batch
4 input_buffer = allocate(shape=(N_PIXELS,), dtype=np.uint8) # Buffer per input

immagini
5 single_image_buffer = allocate(shape=(PIXELS_PER_IMAGE,), dtype=np.uint8) # Buffer per

una singola immagine
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6

7 # FILTER 1 buffer: shape (OCH, ICH, KH, KW)
8 f1_size = 512 * 512 * 3 * 3
9 f1_buf = allocate(shape=(f1_size,), dtype=np.int8)

10

11 out_size_per_image = 512 * 7 * 7
12 out_size = out_size_per_image * NR_IMG
13 single_output_buffer = allocate(shape=(out_size_per_image,), dtype=np.uint8) # Buffer

per un singolo output
14 out_buf = allocate(shape=(out_size,), dtype=np.uint8)

After defining and populating the input and kernel buffers, the procedure proceeds
with DMA transfers and output collection. A loop iterates over the feature maps to be
processed, and the receive-side DMA for the output is started. Using the allocate library,
the methods .sendchannel (to transmit data via a DMA) and .recvchannel (to receive
data via a DMA) are employed.

In the case of multiple images, the portion of the batched input buffer corresponding
to the image to be processed is extracted and transmitted through the input DMA.
The kernels are then sent, and the system waits for the output to be received on the
output DMA. Finally, the collected outputs are concatenated into an array so they can
be compared against the ONNX model outputs to verify correctness.

1 for i in range(NR_IMG):
2 print(f"\n--- Processing Image {i+1}/{NR_IMG} ---", flush=True)
3

4 # Avvio il DMA in ricezione per l’output
5 print("Starting DMA for output.", flush=True)
6 dma_output.recvchannel.transfer(single_output_buffer)
7 print("DMA for output started.", flush=True)
8

9 start_idx = i * PIXELS_PER_IMAGE
10 end_idx = (i + 1) * PIXELS_PER_IMAGE
11 single_image_buffer[:] = input_buffer[start_idx:end_idx]
12 # Invio dati input al DMA
13 dma_input.sendchannel.transfer(single_image_buffer)
14 # Aspetta che i dati siano stati inviati
15 dma_input.sendchannel.wait()
16 print("Input data sent.", flush=True)
17

18 # Invio i filtri ai DMA dei kernel
19 dma_kernel1.sendchannel.transfer(f1_buf)
20 print("Filter data sent to DMA 1.", flush=True)
21 # Aspetta che i filtri siano stati inviati
22 dma_kernel1.sendchannel.wait()
23 print("Filter data sent to both DMAs.", flush=True)
24

25 # Avvio il primo kernel
26 dma_output.recvchannel.wait()
27 print("Output data received.", flush=True)
28 all_outputs.append(np.copy(single_output_buffer)) # Copia il buffer di output per

ogni immagine
29

30 final_result_array = np.array(all_outputs)

This Python script is transferred to the FPGA’s PS together with the bitstream and
the .hwh file, and is then executed with the following command python inference.py.
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5.4 FPGA Device Used

The FPGA selected for this thesis is AMD’s ZCU102, widely used in domains such
as surveillance, advanced driver-assistance systems (ADAS), computer vision, augmented
reality (AR), unmanned aerial vehicles, and medical imaging. In the context of neural-
network deployment, FPGAs are achieving substantial success due to their flexibility and
ability to be tailored to specific tasks. They enable low latency operation with low power
consumption, features that are especially important for embedded applications.

Figure 24 shows the FPGA platform used in this work; its availability in the laboratory
enabled the hardware implementation of the proposed design.

Figure 24: ZCU102 board [23]

At the center of the board is the Zynq UltraScale+ MPSoC, which integrates the
Processing System (PS) and the Programmable Logic (PL). Table 1 summarizes the
resources available on the ZCU102. Having a clear view of the available resources is
crucial because they are inherently limited; this focuses attention on the HLS strategies,
such as the pragmas discussed in previous chapters, that boost performance, often at the
cost of additional hardware.

Table 1: Device resources and I/O limits [23]

System logic cells (K) 600
DSP units 2520
Memory (Mb) 32.1
Max I/O pins 328
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5.5 Dataflow

In this section, a topic that is central to HLS, dataflow, is addressed. This optimiza-
tion enables the various tasks (functions) within an algorithm to execute concurrently.
Rather than waiting for a sequential turn, each task starts as soon as its input data are
available and its output can accept additional data. Figure 26 shows an example of a
function that contains three subfunctions.

Figure 25: Ping-Pong buffer [24]

On the left, the data path without dataflow is shown: functions A, B, and C execute
strictly in sequence for a total of 8 clock cycles. On the right, the same computation is
organized with dataflow. In this case, the functions do not start one after another; each
begins as soon as its input data are available and its output can accept new data. The
first three operations complete in 5 clock cycles, compared with 8 in the sequential case.
It follows that dataflow reduces latency, while one stage computes, the others can read
or write data, and increases throughput: after the pipeline warm-up, a new result can be
produced every clock cycle (assuming loop initiation interval II=1). Overall, this yields a
substantial performance improvement.

A crucial note is not to conflate pipelining with dataflow. Pipelining accelerates a
loop or a single function by overlapping successive iterations of the same computation,
whereas dataflow runs different blocks concurrently, connected via streams or FIFOs.

In HLS, the <#pragma HLS dataflow> directive is used to implement dataflow ex-
ecution across multiple tasks (functions), allowing them to run concurrently as soon as
their input data are available. ”When the DATAFLOW pragma is specified, the HLS tool
analyzes the dataflow between sequential functions or loops and creates channels (based
on ping pong RAMs or FIFOs) that allow consumer functions or loops to start operation
before the producer functions or loops have completed. This allows functions or loops
to operate in parallel, which decreases latency and improves the throughput of the RTL.
If no initiation interval (number of cycles between the start of one function or loop and
the next) is specified, the HLS tool attempts to minimize the initiation interval and start
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operation as soon as data is available.” [25]

5.5.1 Ping-Pong Buffer
Within the HLS code, dataflow is realized by connecting tasks through FIFOs im-

plemented as hls::stream channels. This decouples the tasks: a producer writes data
and stalls only when the FIFO is full, while a consumer reads when data are available
and otherwise waits. If the FIFOs are undersized, a deadlock can occur due to a cycle
of dependencies, specifically, when processes inside a DATAFLOW region contend for
the same channels in a way that prevents further reads or writes, causing all involved
processes to block. Deadlocks can be detected during C/RTL co-simulation, where the
tool reports an error in the log. They can also manifest on hardware: for example, the
system may hang when attempting to receive data on the output DMA channel because
the expected stream never arrives.

In addition to using FIFO-based hls::stream channels, which enable the compiler to
realize dataflow between functions, a ping–pong buffering scheme (also known as dou-
ble buffering) was adopted. The approach alternates between two on-chip buffers: while
one buffer (ping) is being filled from memory (e.g., via DMA), the other (pong) is si-
multaneously consumed by the compute kernel (e.g., a convolution). When processing
completes, the roles swap. This overlapping of data movement and computation hides
memory latency, prevents stalls, and sustains high throughput within the DATAFLOW
region. Figure 26 illustrates the ping–pong buffering scheme.

Figure 26: Ping-Pong buffer [26]

Two modules and two memory blocks are employed; particular attention should be
paid to the direction of the arrows. While the first task fields one buffer (ping) with
new data, the second task can read the data processed by the other buffer (pong) . This
arrangement increases throughput, improves overall system performance, and prevents
bottlenecks.

An important note is that, in HLS, the source code does not explicitly define two
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distinct memory banks across the different functions. Considering the functions convo-
lution and quantization in Figure 19, the convolution stage produces an output array,
out mem, which is subsequently read by the quantization stage. This results in an implicit
ping–pong buffer: although only a single memory is declared in the code, Vitis HLS auto-
matically realizes a ping–pong scheme by creating two banks. This behavior is evident in
the waveform signals shown in Figure 27, where the two ports q0 and q1 of out mem are
highlighted. In practice, when generating the RTL, Vitis HLS splits the array into two
banks to decouple producer and consumer, thereby implementing the ping–pong buffering
mechanism.

Figure 27: Two bank memory in the waveform signal

5.5.2 HLS Top-Level Control Protocols
In HLS, three control protocols define how a Vitis kernel executes, and they influence

dataflow behavior:

• ap ctrl hs (handshake): exposes the control signals ap start, ap done, ap idle, and
ap ready. The kernel processes one transaction per ap start assertion and signals
completion with ap done. This mode is convenient when the kernel is orchestrated
by software.

• ap ctrl chain (daisy chain): uses the same handshake signals as above, with the
addition of ap continue (and ap ready used for chaining) to automatically trigger
the next kernel in a sequence without a central controller. Suitable for sequential
hardware pipelines.

• ap ctrl none (free-running): no handshake signals. The kernel remains active con-
tinuously; execution is governed by AXI4-Stream handshaking (TVALID/TREADY/T-
LAST) and internal FIFOs. This can maximize dataflow when producers/consumers
are well-balanced.

They are instantiated with the interface pragma, typically on the function return (top
level), for example pragma HLS INTERFACE ap ctrl hs
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In the developed code, the free-running control protocol was adopted using: < pragma
HLS INTERFACE ap ctrl none >. This choice reflects the fact that data are ex-
changed between functions via streams; thus, task execution is naturally governed by the
AXI4-Stream handshaking signals (TVALID, TREADY, TLAST) rather than explicit
kernel start/stop controls. Keeping the kernel always active facilitates DATAFLOW:
the inter-stage pipeline never stalls, there is no per-transaction or per-batch re-arming
overhead, and throughput is maximized.

5.5.3 Waveforms
To verify that dataflow is correctly applied, the waveforms were inspected in Vivado.

Figure 28 shows the signals for two cascaded convolution stages processing five batches
of images. The first convolution is shown in green, whereas the second is shown in blue.

Figure 28: Dataflow

First, observe that per-transaction handshake lines are absent, no ap done/ap idle,
and only system/control signals such as ap rst (and, in this view, ap start/ap continue)
are present, consistent with the free-running control choice discussed earlier. Moreover,
as soon as the first convolution begins producing output, the second convolution starts
consuming those data while the first convolution immediately proceeds with the next
batch. The shorter execution time of the second convolution reflects an imbalance in
stage throughput; throughput equalization was not targeted here, since the goal of this
experiment was solely to verify that the dataflow mechanism is correctly implemented.

In Figure 29, two timing diagrams are shown to highlight the difference between ex-
ecutions with and without dataflow. In particular, dataflow enables the overlap of work
between the two tasks, in this case, the two convolution, allowing them to operate con-
currently. This naturally leads to improved performance.
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(a) Execution with dataflow

(b) Execution without dataflow

Figure 29: Comparison between executions with and without dataflow

In particular, Figure 29a illustrates the execution where the dataflow pragma is ap-
plied. This behavior closely resembles the waveform captured from Vivado, shown in
Figure 29a. It can be observed that the second convolution processes the first image,
while the first convolution simultaneously begins processing the next image.

In contrast, Figure 29b shows the execution in which the dataflow pragma is not
implemented. In this case, the first convolution must wait for the second to complete
before starting the next image. It is also visually evident that the second case requires
more clock cycles to complete the operations, resulting in a longer execution time and,
consequently, reduced performance.
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6 Results on ResNet-18

This chapter reports the results obtained after executing the full workflow, from the
Vitis HLS project through bitstream generation in Vivado. Results are presented in terms
of resource utilization (LUT, FF, DSP, BRAM), power consumption, and perfor-
mance (latency and throughput). All results refer to a specific FPGA target, the AMD
ZCU102, whose characteristics are summarized in Section 5.4.

Today’s AI workloads demand increasingly complex CNNs. Consequently, it is essen-
tial to measure and optimize the above metrics to achieve higher performance. Compared
with CPUs, FPGAs offer reconfigurable resources that enable greater parallelism; how-
ever, there is a trade-off: pushing parallelism too far can make place & route difficult,
increase interconnect delays, and ultimately reduce the achievable clock frequency. It is
therefore important to keep resource utilization under control, especially when the target
frequency is a key design constraint.

The reported results are related to the implementation of a two specific layers of
ResNet-18, one of the most widely used networks in contemporary computer vision and
object detection. In particular:

• Single layer comprising convolution, ReLU, and quantization, as analyzed in Sec-
tion 4.6.1.

• Two-layers sequence comprising the same functions with an additional convolution
and quantization pair.

Results are reported for ICH PAR=1 and ICH PAR=4 to highlight differences in
performance and resource utilization. All experiments were conducted at a clock frequency
of 200 MHz, which achieves timing closure with a positive worst negative slack (WNS).
The input and output data used in the testbench were extracted directly from the ONNX
model and exported in HWC format via a Python script. This enabled fine-grained,
function-level debugging by capturing intermediate results.

6.1 One Layer

In this section, the results for a single layer comprising convolution, ReLU, and quan-
tization are presented, as illustrated in Figure 19. A comparison across two ICH PAR
settings highlights the impact of channel-level parallelism on resource utilization and per-
formance, underscoring the importance of parallelizing the computations.

6.1.1 Resource Utilization
The first set of results concerns resource utilization, in terms of LUT, Flip-Flop,

DSP and BRAM. The reported values are taken from Vivado post-implementation,
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where the tool applies various optimizations according to the selected strategy. In this
case, the chosen strategy is Performance, which tunes placement and routing to improve
timing closure. Table 2 reports the results extracted from Vivado. In particular, it
compares two settings of ICH PAR, the parameter that controls the parallelization of
computations across the input channels.

ICH PAR kLUT kFF DSP BRAM
1 60.5 (22.2%) 87.6 (16%) 9 (0.4%) 115.5 (12.7%)
4 66.6 (24.3%) 163.4 (29.8%) 36 (1.4%) 127.5 (14%)

Table 2: Resource utilization ResNet-18 of a single layer

A salient observation is that implementing the single layer with a higher degree of par-
allelism (ICH PAR) increases the utilization of all resources. This outcome was expected:
the objective was to improve latency and throughput while accepting a corresponding rise
in resource usage. Particular attention is paid to DSP consumption. With ICH PAR =
4, the number of DSPs increases by approximately 4×. This, too, was anticipated, since
DSPs are used primarily in the mem conv2stream and conv functions; consequently, as
the number of concurrent operations grows, DSP utilization scales accordingly.

6.1.2 Performace: Latency
For the single-layer case, performance is evaluated in terms of latency. Latency

denotes the end-to-end execution time of an inference on a given input, that is, the interval
from when the system accepts the input to when the complete output is produced. It is
reported in milliseconds (ms). Measurement is performed on-board within the PYNQ
script using Python’s time module.

Metric ICH PAR = 1 ICH PAR = 4
Latency [ms] 360.7 90.8

Table 3: Latency comparison for different ICH PAR values of one single layer

Table 3 reports the end-to-end latency for two settings of ICH PAR. The experimental
results show that increasing the degree of parallelism by a factor of four reduces the exe-
cution latency by approximately the same factor (≈ 3.97×). This indicates near-linear
scaling and demonstrates that the system effectively exploits the available parallelism.

6.1.3 Power Consumption
Regarding power consumption, Table 4 reports the execution time, average power,

and energy as a function of the degree of parallelism.
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Metric ICH PAR = 1 ICH PAR = 4
Total time [s] 0.4 0.1
Mean power [W] 2.9 3.2
Total energy [J] 1.1 0.3

Table 4: Power and energy comparison for different ICH PAR values of one single layer

The results show that increasing the degree of parallelism from 1 to 4 reduces both
the execution time by ≈ 4× (from 0.4 to 0.1) and the total energy consumption (from
1.1 J to 0.3 J, a ≈ 3.7× reduction). By contrast, the average power increases by ≈ 1.1×
as parallelism is raised. This behavior stems from the higher resource utilization, which
makes leakage power (transistor leakage current) more significant. Nevertheless, the total
energy decreases with greater parallelism because the shorter execution time delivers a
clear gain in energy efficiency.

6.2 Two Layers

This section reports the results for a two-layers implementation, that is, the previously
analyzed layer plus the subsequent convolutional layer (shown in white in Figure 19).
Beyond enabling assessment of a more complex topology, this setup allows evaluation
of throughput, defined as the number of frames processed per unit time (e.g., fps). To
highlight throughput differences, experiments consider not only two degrees of channel
parallelism (ICH PAR = 1 and 4), but also multiimage runs: specifically, 100 images
processed in batches of 20 (i.e. 20 images per batch).

6.2.1 Resorse Utilaztion
Table 5 reports the resource utilization results for the two-layers implementation.

ICH PAR kLUT kFF DSP BRAM
1 125.1 (45.6%) 238.2 (43.5%) 18 (0.7%) 238.5 (26.2%)
4 133.4 (48.7%) 325.3 (59.3%) 72 (2.9%) 312 (34.21%)

Table 5: Resource utilization ResNet-18 of a two layers

The results show a clear increase in resource utilization compared with the single-
layer case reported in Table 2. As in the previous experiments, increasing the degree
of parallelism (ICH PAR) raises all resource counts. In particular, the number of DSPs
scales proportionally with parallelism (from 18 to 72), i.e., 4× increase. This behavior
is fully consistent with the earlier analysis: adding a second convolutional layer preserves
the 4× DSP scaling with respect to ICH PAR.
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6.2.2 Performace: Latency & Throughput
Consistent with the previous discussion, this section evaluates not only latency but

also throughput as a function of the degree of parallelism. The study considers both
single-image batches and batches of 20 images, for a total of 100 images. A sufficiently
large number of batches is used so that the measured throughput approaches the ideal
steady-state value achieved under a fully pipelined regime.

ICH PAR NR IMG Batch size Latency (end-to-end) Throughput
[ms] [fps]

1 1 1 720.9 1.4
1 100 20 7555.3 2.7
4 1 1 168.7 5.9
4 100 20 1877.7 10.7

Table 6: Latency results vs ICH PAR and number of images of two layers

Table 6 reports end-to-end latency and throughput as functions of both the internal
parallelism (ICH PAR) and the batch size. These metrics are computed on board via a
PYNQ script using Python’s time module, which starts and stops timers at the relevant
code sections. In particular, the batch latency is computed as:

te2e,batch = tout done − tin start

106 (6)

The value reported in the table is the average over batches. Throughput is computed
as the ratio between the total number of frames processed and the sum of the batch times:

fps = batches × batch sizeq
te2e,batch

(7)

Analyzing the results shows that increasing the degree of parallelism yields an ≈ 4×
reduction in latency, matching the 4× increase in parallelism and consistent with the
single-layer case. As the batch size grows, the per-batch latency increases sublinearly
thanks to dataflow execution (overlap of transfers and computation). For example, with
ICH PAR=1, the observed increase is ≈ 10.5×, not 20× (i.e., not proportional to the
batch size of 20).

Regarding throughput, this metric is reported specifically to make the effect of dataflow
explicit. In both configurations, processing a single image yields a lower frames-per-
second (fps) rate than processing 20 images concurrently. This is expected: throughput
measures how many images per second the system processes, and with dataflow correctly
implemented, the downstream stage can consume the results of the previous stage while
the upstream stage already processes the next image, exactly as illustrated in Figure
28. Batching effectively amortizes pipeline fill/drain overhead and better exploits stage
overlap, so the measured throughput with larger batches approaches the steady-state
(dataflow) rate, whereas single-image runs remain penalized by startup and teardown
effects.
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6.2.3 Power Consumption
Table 7 highlights the impact of parallelism and batch size on energy consumption

and average power.

ICH PAR NR IMG Batch size Total energy Total time Mean power
[J] [s] [W]

1 1 1 2.6 0.7 3.6
1 100 20 140.7 37.8 3.7
4 1 1 0.7 0.2 3.9
4 100 20 38.7 9.4 4.1

Table 7: Power and Energy results vs ICH PAR and number of images of two layers

Energy consumption is measured directly on the board by leveraging the on-board
current and voltage sensors (e.g., INA monitors). The reported total energy is obtained
by summing the energies measured for each individual batch, while the average power is
computed as the ratio of total energy to total execution time.

The measurements show that energy per image decreases significantly both when the
degree of parallelism is increased and when larger batch sizes are employed. In particular,
increasing ICH PAR from 1 to 4 reduces the energy per frame by ≈ 3.7×. Moreover,
thanks to the use of dataflow, the overall execution time decreases while the average
power remains essentially unchanged; consequently, there is a substantial reduction in
total energy when moving from processing a single image to processing 20 images per
batch, as in this case.
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7 Conclusions

This thesis, conducted in collaboration with CEA Saclay, presents the design and
realization of a hardware accelerator that supports multiple CNN layers on FPGAs us-
ing High-Level Synthesis. Template functions were implemented that currently support
two neural networks, LeNet and ResNet-18, and are intended for integration into CEA
Saclay’s AIdge framework. Using Vitis HLS, the C++ descriptions were synthesized to
RTL; subsequently, in Vivado, a Block Design was created and taken through synthe-
sis, implementation, and bitstream generation. The resulting bitstream was programmed
onto an AMD ZCU102 FPGA available in the laboratory, where functional correctness
was verified and results were collected in terms of resource utilization (LUTs, flip-flops,
BRAMs, DSPs), performance (latency and throughput), and energy consumption.

The adopted strategy is filter reuse (i.e., weight reuse): the entire input tensor is
buffered on chip, and one kernel at a time is loaded to perform the computation. The
C++ implementation includes the functions required to realize the target layers, specifi-
cally convolution, ReLU, and quantization. Particular emphasis was placed early on se-
lecting an appropriate memory-partitioning scheme. This choice not only enables the full
input tensor to reside in FPGA on-chip memory, but also supplies the convolution with
greater data bandwidth. To exploit channel-level parallelism, a parameter ICH PAR
was introduced to process multiple input channels concurrently. While this increases re-
source utilization, it delivers better performance (lower latency and higher throughput)
and reduces energy consumption thanks to the shorter overall runtime. These effects are
quantified in Section 6, which evaluates several layers of ResNet-18. The thesis also in-
tegrates the work of a colleague who developed the quantization module and is currently
implementing the pooling layer. This integration allows additional layers to be composed,
with the aim, where FPGA resources permit, of implementing an entire neural network
on hardware.

On the other hand, this strategy is limited by the need to store the entire input in
on-chip memory. It is therefore suitable for networks whose dimensions are compatible
with the target FPGA, or it can be used in a hybrid approach toward the later stages of
the network, where the input shrinks while the number of kernels becomes increasingly
significant. The principal bottleneck is the kernels: with the full input and a single kernel
resident on chip, each new kernel must be fetched from external DDR, which inevitably
introduces additional latency. Moreover, convolution biases were stored entirely on the
FPGA, which increases BRAM utilization.

7.1 Future Work

This work can be improved in several respects:

• First, an additional DMA can be added to the interface to supply the biases exter-
nally; this would reduce on-chip resource utilization.
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• Given the benefits obtained by parallelizing computations across input channels,
the same approach can be applied to the output channels (OCH), so that multiple
output channels (i.e. multiple filters) are computed in parallel. This naturally
requires storing not just a single kernel in memory, but as many kernels as specified
by OCH PAR. In this configuration, several filters are processed concurrently while
reusing the same input-activation stream.
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A Source code repositories

• Repository implementation of one single layer of ResNet-18
§ github.com/lorenzorizzo01/conv one layer.git

• Repository implementation of two layers of ResNet-18
§ github.com/lorenzorizzo01/conv two layer.git
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