
Politecnico di Torino
KTH Royal Institute of Technology

Heterogeneous CGRA Cells for FFT
acceleration in FMCW radar

systems

Master’s Degree in Electronic Engineering
A.a. 2024/2025

Supervisor:
Saba Yousefzadeh

Examiners:
Andrea Calimera
Ahmed Hemani

Candidate:
Giuseppe Webber

October 2025

Abstract

Efficient and reliable Fast Fourier Transform (FFT) computation is essential
for radar signal processing, especially in real-time millimeter-wave (mmWave)
Frequency-Modulated Continuous-Wave (FMCW) systems where requirements on
throughput, latency, and power consumption are critical. Conventional platforms
such as Digital Signal Processors (DSPs), Application-Specific Integrated Circuits
(ASICs), and Field-Programmable Gate Arrays (FPGAs) inevitably involve trade-
offs, as each technology faces inherent limitations in flexibility, energy efficiency,
silicon area, and development complexity.

This thesis addresses these challenges by designing a reconfigurable FFT acceler-
ator on the Dynamically Reconfigurable Resource Array (DRRA), a coarse-grained
reconfigurable architecture developed by the Silicon Large Grain Objects (SiLago)
team at KTH. The proposed design adapts to varying transform sizes and configura-
tions, achieving high throughput and low latency with reduced power consumption.
The accelerator is mapped onto the DRRA fabric by instantiating dedicated pro-
cessing units, designing efficient memory access schemes, and coordinating the
operations through a resource-centric instruction model. The assembly and simula-
tion of the architecture are performed by Vesyla, a domain-specific toolchain for
DRRA.

Simulation results confirm the functional correctness of the proposed design
by direct comparison with the reference model implemented in MATLAB. A
further evaluation with a Python-based model shows that the proposed design
achieves accuracy levels close to floating-point precision while leveraging fixed-point
efficiency, resulting in a relative error of 0.0857% against the reference data and
outperforming software implementations using the same numeric format.

Synthesis reports indicate that the accelerator, implemented in 22 nm CMOS
technology, operates at frequencies up to 1 GHz and achieves a compact silicon
footprint of 0.24 mm2. Compared with other memory-based reconfigurable FFT
accelerators, this represents a significant reduction in area while maintaining
competitive performance. The design also demonstrates strong power efficiency,
consuming 98.14 mW and achieving 25.3 nJ per 256-point FFT operation, offering
a favorable trade-off between area, throughput, and power consumption.

Overall, this work presents a promising solution for next-generation radar systems
that combines energy efficiency and flexibility in a compact form factor, suitable for
embedded applications. The results demonstrate that the DRRA architecture can
deliver high-performance, reconfigurable FFT acceleration, confirming its suitability
for demanding signal processing tasks and offering a scalable and reusable framework
for future radar and communication systems.

ii

Acknowledgements

I would like to express my sincere gratitude to Professor Ahmed Hemani, head
of the SiLago research group at KTH Royal Institute of Technology, for giving
me the opportunity to work within his team and for the invaluable experience of
contributing to such an inspiring research project.

I would also like to thank Saba Yousefzadeh and the entire SiLago team for
their continuous guidance, support, and collaboration throughout this project.
Their expertise, availability, and constructive feedback have been essential to the
successful development of this work.

A special thanks goes to my friends, who, despite the distance, have always
remained close and made me feel as if I had never left.

To my girlfriend, thank you for your constant support and for all the wonderful
moments we shared throughout this past year. You have been an essential part of
this journey, and your presence has made it so much brighter.

Above all, I am deeply grateful to my parents for their infinite support and
belief in me, without which I would not be where I am today. Making you proud
has been my greatest motivation.

iii

Table of Contents

List of Figures vii

1 Introduction 1
1.1 Background . 1
1.2 Requirements . 2
1.3 Motivation . 5
1.4 Objectives . 6

2 State of the Art 7
2.1 The fast Fourier transform . 7

2.1.1 Decimation of the FFT . 9
2.1.2 The radix of the FFT . 10

2.2 mmWave FMCW radars . 13
2.2.1 The range-FFT . 14
2.2.2 The Doppler-FFT . 15
2.2.3 The angle-FFT . 17

2.3 FFT accelerators . 18
2.3.1 FFT hardware architectures 18
2.3.2 Building blocks . 19
2.3.3 FFT accelerators for mmWave FMCW radar 24

3 Methodology 27
3.1 DRRA . 27

3.1.1 Architecture . 28
3.2 Composable Instruction Set . 30

3.2.1 Controller instructions . 30
3.2.2 Spatial and temporal composability 31

3.3 DRRA component library . 32
3.4 Vesyla toolchain . 36

3.4.1 PASM compilation . 36
3.4.2 Assemble the DRRA fabric 37

v

4 Implementation 39
4.1 DRRA2 FFT architecture . 39

4.1.1 Register File . 40
4.1.2 FFT Address Generation Unit 42
4.1.3 Twiddle Factor Generator 45
4.1.4 Butterfly Unit . 48

4.2 DRRA fabric . 52
4.3 PASM program . 54

5 Results 57
5.1 Simulation . 57
5.2 Synthesis . 61

6 Conclusions 67
6.1 Future work . 68

7 Appendix 69
7.1 PASM program for DRRA FFT . 69

Bibliography 73

vi

List of Figures

2.1 Dataflow of the DIT radix-2 . 9
2.2 Dataflow of the DIF radix-2 . 10
2.3 Dataflow of a 16 points DIF radix-2 FFT 11
2.4 Dataflow of the DIF radix-4 . 12
2.5 Frequency-modulated signal transmitted by the radar 13
2.6 IF signal resulting from the difference between the TX and RX signals 14
2.7 Range spectrum and range-Doppler map with two targets: T1 (r =

16, v = 10) and T2 (r = 7.5, v = −5) 17
2.8 Standard complex multiplier based on 2.29 (left) and optimize com-

plex multiplier with one multiplier less based on 2.30 (right) 21
2.9 Shuffling circuit for serial-serial permutation (left) and serial-parallel

permutation (right) . 23

3.1 Architecture of DRRA-2 fabric [29] 29
3.2 Port interface of a DRRA component 29
3.3 route direction configuration . 33
3.4 IOSRAM component. In black, the top cell path, in blue the bottom

cell path . 34
3.5 Component library structure and assemble workflow of the Vesyla

toolchain [29] . 38

4.1 Block diagram of the FFT Register File 40
4.2 Circuit used for address rotation for a 16-point radix-2 FFT and its

corresponding selection signals. 43
4.3 Rotation operations for each FFT stage 43
4.4 Block diagram of the Twiddle Factor Generator 46
4.5 Twiddle factors sections with the symmetry transformations required 47
4.6 Circuit used for twiddle factor remapping and corresponding selection

signals. 48
4.7 Block diagram of the Butterfly Unit 49

vii

4.8 Layout of the DRRA fabric for the implementation of the FFT
accelerator . 53

5.1 Results comparison between the MATLAB golden model and the
DRRA FFT results . 58

5.2 Input signal and FFT output, with x-axis corresponding to frequency
bins and frequency values . 60

5.3 Area distribution of top-level cells 62
5.4 Area distribution of cell_1_0 . 62
5.5 Power distribution of the fabric, by category 63
5.6 Power distribution of the fabric, by resource 63

viii

Glossary

ACU Accumulation Unit. 24, 25

ADAS Advanced Driver Assistant System. 1

ADC Analog-to-Digital Converter. 15, 16, 52

AGU Address Generation Unit. 35, 40–43, 45, 46, 54, 55

AoA Angle of Arrival. 17, 24

ASIC Application-Specific Integrated Circuit. i, 3, 5, 27, 28, 67

BFU Butterfly Unit. 24

BU Butterfly Unit. 19, 40–44, 52, 54, 55, 67

CADFG Control Address Data-Flow Graph. 36

CFAR Constant False Alarm Rate. 24, 26

CGRA Coarse-Grained Reconfigurable Architecture. 5, 27, 28

CIS Composable Instruction Set. 5, 27, 30, 31, 67

CORDIC Coordinate Rotation Digital Computer. 21, 22, 24, 25

DBF Digital Beam-Forming. 24

DFT Discrete Fourier Transform. 8–10, 12, 20

DIF Decimation in Frequency. 9–11, 20, 39, 41

DIT Decimation in Time. 9, 10, 20

DoA Direction of Arrival. 18

DPU Data Path Unit. 22, 28, 29, 35

ix

DRRA Dynamically Reconfigurable Resource Array. i, 5, 6, 21, 27, 28, 30–37, 39,
52, 54, 57–59, 64, 65, 67, 68

DSP Digital Signal Processor. i, 3, 5, 15, 67

EBE Elementary Bit Exchange. 23

FD-SOI Fully-Depleted Silicon-on-Insulator. 61

FFT Fast Fourier Transform. i, 3–6, 8–26, 29, 39–46, 48, 50–52, 54, 55, 57–59,
61–65, 67, 68

FIFO First-In First-Out. 34

FMCW Frequency-Modulated Continuous-Wave. i, 1–6, 13–18, 24, 39, 52, 67, 68

FPGA Field-Programmable Gate Array. i, 3, 5, 27, 28, 67

FSM Finite State Machine. 31, 41, 42, 50

GF GlobalFoundries. 61

GPU Graphics Processing Unit. 27

HAD Highly Automated Driving. 1

HFP Half-precision floating-point. 4

HLS High-Level Synthesis. 36

HPF Half-Precision Floating-point. 25

HWA Hardware Accelerator. 59

IC Integrated Circuit. 27

IDG Instruction Dependent Graph. 36

IF Intermediate Frequency. 14, 15, 17, 24

IO Input/Output. 28, 33–35, 52, 54

IP Intellectual Property. 28

ISA Instruction Set Architecture. 30, 32, 37

LiDAR Light Detection and Ranging. 1

x

LPF Low-Pass Filter. 15

LSB Least Significant Bit. 10, 22, 43, 58

MIMO Multiple-Input Multiple-Output. 25

mmWave millimeter-wave. i, 1, 2, 6, 39, 67

MPU Magnitude/Phase Calculation Unit. 24

MSB Most Significant Bit. 10, 48

NLOS Non-Line-of-Sight. 2

NoC Network-on-Chip. 28

PASM Pseudo-Assembly. 30–32, 36, 37, 39, 54, 55, 57

PE Processing Element. 19, 25, 28

RF Register File. 28, 29, 34, 35, 39, 41, 42, 52, 54, 55, 67

RISC-V Reduced Instruction Set Computer. 25

ROM Read Only Memory. 20–22, 25, 45, 46, 48, 62

RTL Register Transfer Level. 37, 57

sFFT Sparse Fast Fourier Transform. 25

SiLago Silicon Large Grain Objects. i

SQNR Signal-to-Quantization-Noise Ratio. 4

SRAM Static Random Access Memory. 3, 24, 28, 29, 33–35, 41, 52, 54, 55, 62

SST Structural Simulation Toolkit. 37

SWB Switch Box. 32, 34, 52

TFG Twiddle Factor Generator. 20, 22, 42, 44, 45, 52, 54, 55, 67

UAV Unmanned Aerial Vehicle. 1

USV Unmanned Surface Vehicle. 2

WAR Write-After-Read. 37

WAW Write-After-Write. 37

WMU Window Multiplication Unit. 24

xi

Chapter 1

Introduction

1.1 Background
Radar technologies play a key role in modern sensing systems, providing crucial
information about the environment and moving targets. Among the various radar
technologies, particular attention has been paid in recent years to Frequency-
Modulated Continuous-Wave (FMCW) radars, especially within the millimeter-
wave (mmWave) band, which have emerged due to their versatility.

FMCW radars, compared to other radar technologies, have the great advantage
of being able to simultaneously determine both the range and the radial velocity
of the target, while ensuring high accuracy and range resolution. This capability,
combined with advantages such as its small form factor and low cost compared to
technologies such as Light Detection and Ranging (LiDAR), and its good robustness
to various environmental conditions, has positioned FMCW radars as the sensor of
choice in many demanding applications.

One of the most significant areas where FMCW radar is widely applied is
in the automotive domain. In this field, the reliable detection of obstacles and
road users and, therefore, the robustness to environmental factors, such as rain
and fog, is of fundamental importance. FMCW radar finds wide application
in Advanced Driver Assistant System (ADAS) and is considered a key sensing
technology for Highly Automated Driving (HAD) [1]. Specific functions in ADAS
include adaptive cruise control and lane change assistance [1][2]. Modern high-
performance automotive radar has evolved into imaging sensors capable of mapping
the surrounding environment in multiple dimensions, without incurring privacy
issues, which must be considered with traditional camera-based systems.

Radar FMCW-based systems find extensive applications in robotics and au-
tonomous vehicles. Single-chip mmWave radars, valued for their high integration
and lower price, are used in mobile robots such as wheeled robots, Unmanned

1

Introduction

Aerial Vehicles (UAVs), and Unmanned Surface Vehicles (USVs) [2]. They play
a crucial role in the perception of mobile robots under harsh conditions, in tasks
such as environment mapping, target localization, and object detection [2].

FMCW mmWave radars are also finding their way into novel applications in the
field of health and monitoring, in particular for automatic non-contact monitoring
of respiratory and heart rates [3][4]. Exploiting its high range resolution, this
technology is capable of detecting minute chest displacements caused by breathing
and heartbeat, and thus, the waveforms of vital signals can be extracted and
analyzed. This capability is essential for monitoring vital signals in real-time, with
applications in medical diagnostics, elderly care, sleep monitoring, psychological
wellness, or the detection of infectious diseases [3]. The non-contact detection
ability solves the drawbacks associated with contact-based methods, and radar is
chosen over camera-based systems for its robustness in variable lighting conditions
and for privacy issues [3].

Furthermore, FMCW radars are traditionally employed in target detection and
tracking for indoor and outdoor surveillance [5]. In complex environments, this
extends to classifying moving targets as human vs. non-human, helping to prevent
false alarms caused by pets, fans, or trees, and detecting and localizing the source
of motion [5].

A particularly challenging application is the detection of actionless humans
hidden in Non-Line-of-Sight (NLOS) regions [4]. This capability is highly relevant
for scenarios like fire rescue/earthquake relief to find trapped people and in mili-
tary actions to confirm the presence of individuals hiding behind corners. Since
actionless targets are difficult to distinguish from static objects, detecting vital
signs, particularly breathing, is key to confirming human presence under NLOS
conditions [4].

1.2 Requirements
The wide range of safety-critical applications served by mmWave FMCW radars
places demanding constraints on the radar’s digital signal processing capabilities.
In scenarios such as autonomous driving, real-time and continuous environmental
perception is essential to make immediate and accurate decisions in order to avoid
potential collisions or other hazards [6]. This necessitates that all signal processing
tasks, from data acquisition to target detection, be completed within extremely
tight temporal bounds. Specifically, the complete signal processing chain must
operate within the refresh rate of the input data to avoid data loss and ensure
continuous operation. For example, in a mmWave FMCW radar operating at a
typical frequency of 76-77 GHz, the time frame between consecutive data inputs is
on the order of tens of milliseconds [6].

2

1.2 – Requirements

Traditionally, the high computational demands have been met using multi-
core general-purpose processors, Digital Signal Processor (DSP) cores, or Field-
Programmable Gate Arrays (FPGAs). While these platforms offer flexibility and
ease of development, they frequently encounter limitations in terms of chip area
and power consumption, factors that are especially critical for embedded real-time
systems with constrained power and hardware resources.

Meeting the most stringent timing and power constraints requires the use of
highly optimized, dedicated hardware accelerators. Application-Specific Integrated
Circuits (ASICs), designed explicitly for radar processing tasks, can offer orders-
of-magnitude improvements in both speed and energy efficiency compared to
software-based or programmable alternatives, often resulting in reduced chip area.
Such custom architectures are capable of sustaining the high throughput and low
latency required for continuous, reliable operation in safety-critical radar systems.

Within the signal processing pipeline of FMCW radar systems, the Fast Fourier
Transform (FFT) represents the most computationally intensive operation and must
handle large volumes of data at high speeds. It plays a central role in converting
time-domain radar signals into the frequency domain, enabling the extraction of
target range and velocity. The theory behind this operation will be explained
in more detail in Section 2.1. Due to the high computational load and real-time
processing demands, the implementation of optimized FFT hardware accelerators
is essential. A well-designed FFT accelerator can significantly reduce latency,
increase throughput, and minimize power consumption, all of which are critical
for embedded and automotive radar systems [7]. Several design strategies and
architectural considerations can contribute to the efficiency of FFT accelerators.

FFT accelerators architectures can be broadly categorized into pipelined and
memory-based designs. Pipelined architectures are well-suited for applications
requiring high throughput and low latency, as they allocate dedicated hardware to
each stage of the FFT, allowing data to flow without interruption. However, this
comes at the expense of increased chip area and power consumption, since each
computational stage requires its own resources.

Conversely, in memory-based architectures, the FFT is performed "in-place" or
iteratively, reusing processing elements and memory blocks within the design to
execute the multiple stages of the FFT sequentially. This approach significantly
reduces chip area and is particularly advantageous for longer FFT transforms [8].
However, it typically incurs higher latency and involves more complex control logic
due to the need for repeated memory accesses and data shuffling.

To balance the trade-offs between area efficiency and computational speed,
hybrid architectures have emerged. Static Random Access Memorys (SRAMs)
buffers are incorporated within a pipelined structure, minimizing external memory
bandwidth and optimizing overall resource utilization. This makes hybrid archi-
tectures especially attractive for real-time radar applications with moderate area

3

Introduction

constraints [6].
Given the wide variety of FMCW radar applications, other factors must also be

considered when designing the FFT accelerators, such as the transform length and
the desired numerical precision, to enable adaptation to various system constraints.
These factors directly influence both accuracy and the Signal-to-Quantization-Noise
Ratio (SQNR), which has to be carefully evaluated to avoid potential loss of
information. FFT accelerators typically support variable transform lengths ranging
from 64 to 4096 points. Smaller points transforms may be sufficient for applications
demanding low latency or lower resolution, while longer FFTs are essential when
high range or velocity resolution is required [7]. To maintain efficiency across
different FFT lengths, modern architectures employ mixed-radix algorithms. These
algorithms use combinations of radix-2, radix-4, or higher-order butterfly units to
decompose the FFT into stages that match with the transform size. By dynamically
selecting radix types and stage structures, the processor can minimize the number
of complex multiplications and memory operations, thereby optimizing performance
and resource utilization for any given FFT length [7].

Numerical precision plays a critical role in FFT accelerator design. The choice
between fixed-point and floating-point arithmetic directly impacts computational
accuracy, dynamic range, hardware complexity, and power consumption. Fixed-
point arithmetic is generally preferred in constrained embedded systems due to its
simplicity and low resource usage. However, fixed-point computations are more
susceptible to quantization noise and dynamic range limitations, particularly in
multistage 2D-FFTs, where noise accumulation and signal scaling can significantly
degrade output accuracy. To overcome these limitations, many radar-oriented FFT
accelerators adopt floating-point arithmetic, particularly in stages where precision
is critical. Half-precision floating-point (HFP) formats, which use fewer bits than
standard IEEE-754 single-precision representations, offer a compromise between
accuracy and resource efficiency. HFP supports a broader dynamic range than
fixed-point while requiring fewer logic gates and memory resources compared to
full-precision floating-point [7].

Ultimately, the decision between fixed- and floating-point implementations is
context-dependent. In low-power radar modules with moderate performance, fixed-
point may be sufficient. In contrast, floating-point FFT accelerators are preferred
in high-resolution, high-dynamic-range radar systems, where precision is critical
and energy trade-offs are justified by performance gains.

As FMCW radar systems continue to evolve toward higher resolutions and more
complex signal processing chains, the design of highly efficient dedicated hardware
FFT accelerators will be indispensable for developing low-power, high-speed, and
compact radar systems suitable for demanding applications in automotive, drone,
and wearable device markets.

4

1.3 – Motivation

1.3 Motivation

Given the demands of FMCW radar processing, particularly the need for real-time,
low-latency execution of FFTs combined with flexibility and adaptability to diverse
application scenarios, there is a strong incentive to design specialized accelerators.
Traditional CPU or GPU-based processing may be inadequate for embedded radar
systems due to constraints on power consumption and physical size. While ASICs
offer high efficiency, they lack flexibility. Conversely, FPGAs are reconfigurable
but often inefficient in terms of area and energy consumption for FFT-dominated
workloads.

This motivates the adoption of Coarse-Grained Reconfigurable Architectures
(CGRAs), which strike a balance between performance and flexibility. One notable
CGRA platform is the Dynamically Reconfigurable Resource Array (DRRA),
developed by the Silago group at KTH. The DRRA is designed as a computational
fabric, specifically tailored for signal processing and compute-intensive applications
[9, 10]. Its design vision is to deliver significantly improved performance and
efficiency over FPGAs and DSPs, while offering crucial reconfigurability and shorter
development cycles compared to ASICs, albeit at the cost of slightly lower peak
performance and area density.

The implementation of an FFT accelerator for FMCW radar systems can
greatly benefit from the DRRA architecture, as it aligns well with the requirements
discussed in the previous section. These include exploiting parallelism, efficiently
handling streaming data, and offering advanced configurability and adaptability.
The spatial computing nature of the DRRA enables multi-level parallelism, which,
in the context of an FFT accelerator, translates into the use of multiple butterfly
units and concurrent FFT computations on different chirps, resulting in significantly
faster overall data processing. Furthermore, DRRA is particularly well-suited for
streaming data applications, which are prevalent in FMCW radar signal processing
and often characterized by static loops. This efficiency stems from DRRA’s unique
Composable Instruction Set (CIS), which is based on resource-centric instructions.
In this paradigm, each instruction configures and controls a single resource, leading
to a substantial reduction in control overhead [11]. Finally, the DRRA’s ability to
offer a high degree of configurability and adaptability is a critical feature for evolving
FMCW radar systems. A DRRA-based FFT accelerator can be reconfigured to
meet the needs of diverse operating environments, varying object sizes, and differing
performance requirements, without the need for new hardware fabrication. This
is achieved by dynamically configuring the architecture to process variable FFT
lengths and using different radix combinations.

5

Introduction

1.4 Objectives
This master’s thesis aims to address the critical demand for highly efficient and
adaptable computational solutions in advanced mmWave FMCW radar systems by
developing and evaluating novel hardware accelerators for FFT computations on
the DRRA architecture.

The primary objective of this work is to exploit multi-level parallelism in FFT
implementations using the reconfigurable DRRA fabric. An FFT resource conform-
ing to the DRRA template will be designed and investigated within the context of
2D-FFTs for FMCW radar applications, exploring varying transform dimensions
and degrees of parallelism enabled by the architecture’s inherent flexibility.

The effectiveness of the implemented FFT accelerators will be evaluated using
real-world mmWave radar use-case data, with specific requirements drawn from an
ongoing industrial project. This practical validation will highlight the viability and
advantages of employing reconfigurable architectures to meet the computational
demands of modern radar signal processing workloads.

Ultimately, this thesis seeks to establish the foundation for a flexible DRRA-based
development kit for rapid exploration of the FFT implementation space, providing a
pathway towards more energy-efficient, high-performance, and adaptable hardware
solutions for next-generation FMCW radar systems.

6

Chapter 2

State of the Art

2.1 The fast Fourier transform
Fourier analysis is a fundamental tool in signal processing, enabling the transfor-
mation of a signal from the time domain to its representation in the frequency
domain. Thus, any complex signal can be expressed as the sum of sine waves, each
characterized by its amplitude, frequency, and phase. This decomposition facilitates
spectral analysis, which is the basis for a wide range of modern applications, from
communications to audio, image, and radar processing.

In the continuous domain, the Fourier series allows the representation of a
periodic function x(t) with period T as a sum of harmonically related complex
exponentials:

x(t) =
∞Ø

n=−∞
F (n) ej2πnt/T (2.1)

where the coefficients F (n) quantify the contribution of the n-th harmonic compo-
nent and are given by:

F (n) = 1
T

Ú T

0
x(t) e−j2πnt/T dt (2.2)

For non-periodic signals, this concept is generalized using the Fourier transform,
which describes a signal’s frequency content over a continuous range:

X(f) =
Ú ∞

−∞
x(t) e−j2πft dt (2.3)

x(t) =
Ú ∞

−∞
X(f) ej2πft df (2.4)

The reciprocal and bidirectional relationship between Equations 2.3 and 2.4
defines the Fourier transform. It provides a complete representation of a signal in
both the time and frequency domains.

7

State of the Art

In real-world systems, continuous-time signals are neither infinite in duration
nor continuously observable. Instead, they are sampled and digitized, resulting in
finite-length, discrete-time signals. This transition requires discrete-time analysis
and leads to the formulation of the Discrete Fourier Transform (DFT).

To analyze signals digitally, a continuous-time function x(t) is sampled at regular
intervals, yielding a discrete sequence x[n] = x(nTs), where Ts is the sampling period.
If the signal is band-limited with a maximum frequency fmax, the Nyquist-Shannon
sampling theorem states that the original signal can be perfectly reconstructed
from its samples, without loss of information, provided that the sampling frequency
Fs = 1/Ts satisfies Fs > 2fmax.

The DFT provides a numerical method to evaluate the frequency content of
sampled, finite-length signals. Given a sequence of N samples x[n], for n =
0, 1, . . . , N − 1, the DFT is defined as:

X[k] =
N−1Ø
n=0

x[n] e−j2πkn/N , k = 0, 1, . . . , N − 1 (2.5)

This transformation maps the time-domain sequence x[n] to a frequency-domain
sequence X[k], where each coefficient X[k] corresponds to a discrete frequency bin.
The DFT assumes that the input signal is periodic with period N , and consequently
the frequency spectrum is also periodic with the same length.

Although the DFT is conceptually straightforward, its computational cost is
significant. Computing each of the N output values requires a sum of N terms,
resulting in a total computational complexity of O(N2) [12]. This quadratic
complexity becomes a major bottleneck for large N , particularly in real-time signal
processing applications such as radar. To overcome this limitation, the FFT was
developed.

The FFT is a class of algorithms that compute the DFT efficiently by eliminating
redundant calculations. The most well-known and widely used algorithm is the
Cooley-Tukey FFT [13], introduced in 1965, which is especially efficient when the
sequence length N is a power of two, i.e., N = 2γ.

The Cooley-Tukey algorithm employs a divide-and-conquer strategy to recur-
sively decompose a large DFT into smaller DFTs, leveraging the periodicity and
symmetry properties of the complex exponential functions. This approach sig-
nificantly reduces the number of required operations to O(N log N), resulting in
substantial performance gains.

The FFT operates through a sequence of stages composed of basic addition
and subtraction operations, commonly referred to as butterfly computations. For
an N -point input sequence x[n], each stage combines pairs of inputs with twiddle
factors, which are complex exponentials defined as:

W k
N = e−j 2πk

N (2.6)

8

2.1 – The fast Fourier transform

Twiddle factors are complex numbers that determine the specific angle of a phase
shift. They can be represented as a rotation matrix:

R(θ) =
C
cos θ − sin θ
sin θ cos θ

D
=
C
C −S
S C

D
(2.7)

The complex rotation operation accounts for the phase shifts introduced during
the transformation and is central to the efficient computation of the FFT. The
operation can be described by the following formula:C

X
Y

D
=
C
C −S
S C

D C
x
y

D
(2.8)

where X + jY is the result of the rotation and C, S ∈ Z are the real and imaginary
part of the rotation coefficient C + jS.

2.1.1 Decimation of the FFT
Decomposition is the fundamental strategy that reduces computational complexity
and enables faster execution of the FFT. In the Cooley-Tukey algorithm, this is ac-
complished through two main variants: Decimation in Time (DIT) and Decimation
in Frequency (DIF).

In the DIT FFT, the time-domain input sequence x(n) is divided into even-
and odd-indexed samples, resulting in two DFTs of size N/2. These smaller DFTs
are then combined by first multiplying the coefficients of the odd-indexed part by
the corresponding twiddle factors, as defined in Equation 2.6, and subsequently
applying the butterfly operation:

y0 = x0 + x1 · W k
N

y1 = x0 − x1 · W k
N

(2.9)

x0

x1 −1
W k

N

y0

y1

Figure 2.1: Dataflow of the DIT radix-2

A key feature of the DIT implementation is the bit-reversal permutation applied
to the input sequence as a pre-processing step. Specifically, each index i in the

9

State of the Art

sequence 0, . . . , N − 1 is assigned to a new position whose binary representation
is the reverse of the original index (i.e., reading bits from Least Significant Bit
(LSB) to Most Significant Bit (MSB)). This reordering simplifies the recursive
decomposition by enabling efficient separation of even and odd elements once,
before the FFT stages are executed.

In the DIF FFT, the input sequence is split between its first and second
halves, and the size-N/2 DFTs are recursively applied to these two contiguous
segments. Unlike the DIT variant, the input sequence in DIF is already in correct
order, requiring no initial reordering. However, as the recursion progresses, the
intermediate data are interleaved, resulting in the final FFT coefficients being in
bit-reversed order. Consequently, a bit-reversal permutation is required at the
output rather than the input.

The butterfly operation in the DIF case is given by:

y0 = x0 + x1

y1 = (x0 − x1) · W k
N

(2.10)

x0

x1 −1
W k

N

y0

y1

Figure 2.2: Dataflow of the DIF radix-2

Figure 2.3 illustrates the dataflow graph of a 16-point radix-2 DIF FFT, showing
the recursive structure of butterfly operations across its log2 16 = 4 stages.

2.1.2 The radix of the FFT
Up to this point, the discussion has focused on a recursive decomposition into two
sub-FFTs, corresponding to the radix-2 formulation, which is the canonical and most
straightforward version of the Cooley-Tukey algorithm. However, alternative radix
variants offer trade-offs in terms of arithmetic complexity, memory access patterns,
and suitability for hardware implementation. To optimize both computation and
hardware efficiency, several FFT algorithms have been developed, including radix-2,
radix-4, mixed-radix, radix-2i, and split-radix approaches.

These alternative methods often provide advantages such as reduced arithmetic
operations or improved memory locality. However, these benefits come at the cost
of increased control complexity, more intricate memory access schemes, and more
elaborate data permutations.

10

2.1 – The fast Fourier transform

x(0)
x(1)
x(2)
x(3)
x(4)
x(5)
x(6)
x(7)
x(8)
x(9)

x(10)
x(11)
x(12)
x(13)
x(14)
x(15)

X(0)
X(8)
X(4)
X(12)
X(2)
X(10)
X(6)
X(14)
X(1)
X(9)
X(5)
X(13)
X(3)
X(11)
X(7)
X(15)

×
×
×
×
×
×
×
×

×
×
×
×

×
×
×
×

×
×

×
×

×
×

×
×

W 0
16

W 1
16

W 2
16

W 3
16

W 4
16

W 5
16

W 6
16

W 7
16

W 0
16

W 2
16

W 4
16

W 6
16

W 0
16

W 2
16

W 4
16

W 6
16

W 0
16

W 4
16

W 0
16

W 4
16

W 0
16

W 4
16

W 0
16

W 4
16

Figure 2.3: Dataflow of a 16 points DIF radix-2 FFT

Radix-2 FFT is the most basic variant of the algorithm, with its primary advan-
tage being its simplicity of implementation and broad applicability. However, this
comes at the cost of a relatively high number of stages and complex multiplica-
tions, which can limit performance in time- and resource-constrained applications.
Higher-radix FFT algorithms, such as radix-4 and radix-8, extend the concept of
radix-2 by processing more input elements per stage. For example, radix-4 DIF
butterfly operations can be described by the equation:

Y = D(k) F4 x (2.11)

where F4 is the set of radix-4 operations and D(k) the diagonal matrix for twiddle
factor multiplication. So, the corresponding matrix multiplication is as follows:


Y0
Y1
Y2
Y3

 =


1 0 0 0
0 W k

N 0 0
0 0 W 2k

N 0
0 0 0 W 3k

N



1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j



x0
x1
x2
x3

 (2.12)

11

State of the Art

that can also be expressed linearly as:

Y0 = x0 + x1 + x2 + x3,

Y1 = (x0 − jx1 − x2 + jx3) · W k
N ,

Y2 = (x0 − x1 + x2 − x3) · W 2k
N ,

Y3 = (x0 + jx1 − x2 − jx3) · W 3k
N

(2.13)

x0

x1

x2

x3

y0

y1

y2

y3

W k
N

W 2k
N

W 3k
N

−j
−1

j

−1

−1

j

−1
−j

Figure 2.4: Dataflow of the DIF radix-4

If the input size N is a power of the radix used, these algorithms reduce the
total number of stages and arithmetic operations compared to radix-2, resulting
in improved throughput and reduced latency. On the downside, higher-radix
algorithms require more complex butterfly structures and control logic, and they
restrict flexibility in terms of supported FFT sizes.

To overcome these limitations, mixed-radix FFT algorithms have been formu-
lated. It decomposes the FFT length N into a product of smaller, possibly unequal
factors, such as 2, 3, 4, 5, or 8, and applies different radix strategies at each stage.
Mixed-radix FFTs are widely used in general-purpose processors, as they support
arbitrary FFT lengths and enable optimizations based on input characteristics.
However, they introduce additional complexity in scheduling and twiddle factor
management, particularly when implemented in hardware.

The split-radix FFT was developed to combine the radix-2 and radix-4 strategies,
reducing the number of arithmetic operations. This hybrid approach decomposes a
size-N DFT into one DFT of size N/2 and two DFTs of size N/4. It is especially
efficient for real-valued input data and achieves the lowest known operation count
among conventional FFT algorithms [14]. The trade-off lies in the complexity

12

2.2 – mmWave FMCW radars

of its implementation, which demands intricate control flow and twiddle factor
scheduling. Consequently, split-radix FFTs are more common in high-performance
software applications than in fixed-function hardware.

In [15], the radix-22 algorithm, also known as radix-2i, is introduced as an
interesting compromise. It retains the simpler butterfly structure of the radix-2
algorithm while achieving the same multiplicative complexity as radix-4. This
makes it particularly appealing for hardware implementations, where regularity
and structural simplicity are often prioritized over minimal arithmetic operation
counts.

2.2 mmWave FMCW radars
An FMCW radar operates by transmitting a sequence of linearly modulated
frequency signals, called chirps. Each chirp is characterized by its start frequency
fc, bandwidth B and duration Tc. The instantaneous frequency of a sawtooth
waveform, commonly used in fast-ramp FMCW systems, can be expressed as:

f(t) = fc + St (2.14)

where S = B/Tc is the slope of the chirp and defines the rate at which its frequency
increases over time, as shown in Figure 2.5

B
S

t

f

Tc

fmin

fmax

t

A

Figure 2.5: Frequency-modulated signal transmitted by the radar

This signal is generated by a synthesizer and transmitted by the TX antenna.
The chirp reflects off an object and is subsequently received by the RX antenna
after a round-trip delay τ = 2d/c, where d is the distance to the object and c is
the speed of light. In an FMCW radar system, a mixer combines the transmitted

13

State of the Art

and received signals, producing an output signal xout. Given the input signals:

x1 = sin(w1t + ϕ1)
x2 = sin(w2t + ϕ2)

(2.15)

the mixer operation yields:

xout = sin[(w1 − w2)t + (ϕ1 − ϕ2)] (2.16)

Thus, the output sinusoid has a frequency equal to the difference between the input
frequencies and a phase equal to the difference in their phases. In the FMCW
context, the mixer output is referred to as the Intermediate Frequency (IF) signal,
which contains information about the range, velocity, and angle of the target [16].

TX chirp RX chirp

∆f

t

f

Tc

∆fτ

.....IF signal

t

f

Tf

Figure 2.6: IF signal resulting from the difference between the TX and RX signals

2.2.1 The range-FFT
For a single object at distance d, the IF signal results in a constant-frequency tone,
with frequency directly proportional to the object’s range:

fIF = S2d

c
(2.17)

where S is the chirp slope and c is the speed of light.
The FFT converts the time-domain IF signal into the frequency domain, pro-

ducing a peak at the frequency tone corresponding to the target range. For this
reason, this first FFT is known as the range-FFT.

14

2.2 – mmWave FMCW radars

When multiple objects are present in the radar field of view, the RX antenna
receives multiple reflected signals for the same chirp, resulting in multiple tones in
the IF signal. The resulting frequency spectrum will exhibit multiple peaks. In
this case, an important parameter is the range resolution dres, which refers to the
radar’s ability to distinguish between two closely spaced targets [16].

If two targets are separated by a distance ∆d, the frequency difference in their
respective IF signals is:

∆f = S2∆d

c
(2.18)

Given the frequency resolution of the FFT ∆f = 1/T , we obtain:

∆f >
1
Tc

⇒ S2∆d

c
>

1
Tc

⇒ ∆d >
c

2STC

⇒ c

2B
(2.19)

Thus, the range resolution dres of an FMCW radar depends solely on the chirp
bandwidth B: increasing the bandwidth swept by the chirp improves resolution.

Another important design consideration is the maximum detectable range dmax.
The maximum frequency in the IF signal fIF max is directly linked to dmax, as
evident from Equation 2.17. To enable digital processing, on a DSP or hardware
accelerator, the IF signal must be digitized, typically using a Low-Pass Filter (LPF)
followed by an Analog-to-Digital Converter (ADC). The ADC samples the signal
at a fixed rate Fs, which limits the IF bandwidth and consequently the maximum
detectable range:

dmax = Fsc

2S
(2.20)

2.2.2 The Doppler-FFT
So far, only static targets have been considered. However, in practical applications,
detecting moving objects is essential, whether they are fast-moving vehicles or slow
periodic motions such as breathing. In some cases, such as medical monitoring, the
frequency shift in the IF signal caused by small displacements may be too small
to detect in the spectrum. For this reason, the phase of the IF signal must be
considered.

As shown in Equation 2.16, the phase of the IF signal corresponds to the phase
difference between the TX and RX signals. If the round-trip delay between two
consecutive chirps changes by a small amount ∆τ , the resulting phase change ∆ϕ
is:

∆ϕ = 2πfc∆τ = 4π∆d

λ
(2.21)

For millimeter-wave radars, a displacement of a few millimeters corresponds to a
significant phase shift, on the order of π = 180°. Therefore, by observing the phase

15

State of the Art

difference ω between the peaks in the frequency spectrum of successive chirps, the
target velocity v can be estimated as:

ω = 4π∆d

λ
= 4πvTc

λ
⇒ v = λω

4πTc

(2.22)

In a frame composed of N equally spaced chirps, analyzing the time evolution of
the phase across chirps enables the estimation of small displacements and periodic
signals, such as heartbeat or respiration.

The maximum measurable velocity vmax is constrained by the chirp repetition
interval Tc:

vmax = λ

4Tc

(2.23)

So, to measure higher velocities, more closely spaced chirps (smaller Tc) are needed.
When multiple targets in the same range but with different velocities are in the

radar field, they cannot be separated using only the range-FFT. To resolve them,
a second FFT is applied to the sequence of phasors from the range-FFT peaks.
This operation, called Doppler-FFT, extracts the phase variation ω between chirps,
revealing the target motion.

As with the range-FFT, it is essential to evaluate the velocity resolution vres,
i.e., the minimum velocity difference ∆v that can be distinguished. From the FFT
resolution in the frequency domain:

∆ω = 2π

N
rad/sample (2.24)

and using Equation 2.22, we find:

∆ω = 4π∆vTc

λ
⇒ ∆v >

λ

2NTc

(2.25)

Hence, the velocity resolution is:

vres = λ

2Tf

(2.26)

where Tf = NTc is the frame time. The longer the frame duration, the finer the
velocity resolution.

In FMCW radar systems, the collected data is typically structured in a radar
matrix, where each row corresponds to a chirp, represented as a data vector after
ADC sampling. The range-FFT is applied across each row, while the Doppler-FFT
is performed column-wise on the range-FFT output. This two-stage process is
known as 2D-FFT processing, and yields the range-Doppler map, which localizes
objects in a 2D space of range and velocity [16]. In Figure 2.7, a simulation of the
range-Doppler spectrum is shown.

16

2.2 – mmWave FMCW radars

0 2 4 6 8 10 12 14 16 18 20

Range (m)

0

100

200

300
M

a
g

n
it
u

d
e

Range Spectrum

Range-Doppler Map

0 2 4 6 8 10 12 14 16 18

Range (m)

-10

0

10

V
e

lo
c
it
y
 (

m
/s

)

0

10

20

30

40

M
a
g
n
it
u
d
e
 (

d
B

)

Figure 2.7: Range spectrum and range-Doppler map with two targets: T1 (r =
16, v = 10) and T2 (r = 7.5, v = −5)

2.2.3 The angle-FFT
For complete 3D localization, essential in applications such as autonomous driving,
the Angle of Arrival (AoA) of each target must also be estimated. Most FMCW
radar systems achieve this by using multiple spatially separated RX antennas.
When a target reflects the transmitted signal, the wavefront reaches each RX
antenna at slightly different times because of their physical separation. This delay
introduces a phase shift in the IF signals received which can be analyzed to estimate
direction. The phase difference ω is related to the AoA θ by:

ω = 2πda sin(θ)
λ

(2.27)

where da is the physical distance between the RX antennas. Solving for the angle:

θ = sin−1
A

λω

2πda

B
(2.28)

Using this relationship, an angle-FFT can be applied to the sequence of complex
phasors corresponding to the peaks in the 2D range-Doppler map. The result is a

17

State of the Art

range-Doppler-angle cube, often referred to as a radar data cube, which enables
spatial localization of multiple objects in the environment. Angular estimation,
commonly known as Direction of Arrival (DoA) estimation, further enhances radar
capability by resolving targets that may overlap in range and Doppler but are
spatially separated. This is essential for applications such as autonomous driving,
gesture recognition, and medical monitoring [16].

2.3 FFT accelerators
In real-time FMCW radar applications, strict timing requirements must be met
to ensure continuous environmental mapping and enable immediate and accurate
decision-making. This means that the system must receive radar data, process it and
return the necessary information within a time interval shorter than the duration
between two consecutive radar chirps. This time constraint heavily depends on
the specific application, which dictates the required resolution and the maximum
detectable range and velocity.

Moreover, timing constraints are not the only ones that need to be addressed.
FMCW radar systems are often deployed in small, low-power embedded platforms,
making area utilization and power efficiency equally important design considera-
tions.

The FFT accelerator forms a core component in real-time FMCW radar systems,
as it is essential for extracting distance, speed, and angle information from the
received signals. Specifically, as previously described in Section 2.2, a 3D-FFT
is employed to process radar data. This involves first applying FFT along the
rows, followed by another FFT along the orthogonal dimension to generate a
range-Doppler map and finally the third FFT for the angular estimation.

Due to demanding performance and energy-efficiency requirements, general-
purpose microcontroller-based solutions often fall short. As a result, there is a strong
preference for dedicated hardware implementations that offer significantly higher
performance with lower power consumption. Consequently, considerable effort
has been dedicated to the development of specialized high-speed FFT accelerators
capable of computing 3D-FFTs efficiently.

2.3.1 FFT hardware architectures
FFT hardware architectures can be broadly categorized into three main types:
fully parallel, iterative, and pipelined architectures [17]. The choice among these
depends primarily on throughput requirements, but power consumption and area
occupation also vary significantly between these implementations.

Fully parallel FFT architectures represent a direct hardware mapping of the
FFT flow graph. Each addition and multiplication operation is implemented with a

18

2.3 – FFT accelerators

dedicated adder or multiplier, resulting in maximal resource usage, with hardware
complexity on the order of O(N log N) [17]. Although this approach provides the
highest degree of parallelism, enabling maximum throughput and minimum latency,
it also incurs the highest cost in terms of area and power.

Iterative FFT architectures, also known as memory-based or in-place FFTs, offer
a more resource-efficient alternative by reusing Processing Elements (PEs) across
multiple iterations. These architectures are based on a central memory or multiple
memory banks from which data are read, then processed by a small number of
butterfly units and rotators, and finally written back. This approach significantly
reduces hardware complexity and is suitable for scenarios in which large data
chunks are transmitted intermittently and the computation has to be performed
between bursts. The throughput and latency of iterative architectures depend
on the number of available PEs and their radix-r configuration. The number of
required iterations is log2 N/ log2 r [17], which means that higher-radix Butterfly
Units (BUs) can be used to increase throughput at the cost of higher hardware
complexity. Efficient memory access is critical in such architectures, typically
achieved through multi-bank memory structures and conflict-free access patterns,
to avoid stalls and ensure sustained computation rates.

Lastly, pipelined FFT architectures consist of several stages connected in series,
each performing a single FFT stage. These architectures can be further divided
into serial-pipelined and parallel-pipelined types. The serial-pipelined version
achieves a throughput of one sample per clock cycle and requires fewer hardware
resources for arithmetic operations, typically on the order of O(log N), while
memory requirements are on the order of O(N). In contrast, parallel-pipelined
architectures increase throughput by processing multiple samples in parallel, at
the expense of higher hardware complexity and power consumption.

Each architectural style presents a trade-off among throughput, latency, power,
and area. The selection of an appropriate architecture heavily depends on the
specific constraints and performance goals of the target application.

2.3.2 Building blocks
Hardware implementations of FFT require mapping the algorithm onto specific
structures designed to meet performance, area, and power consumption require-
ments. The overall operation is decomposed into smaller sub-operations, which
are then mapped onto dedicated building blocks. These hardware blocks perform
the operations more efficiently than general-purpose software solutions. A given
building block can be implemented in different ways using various components,
depending on the specific constraints of the application in terms of speed, power,
and silicon area. For FFT computations, the primary building blocks are butterfly
units, rotators, and shuffling circuits.

19

State of the Art

Butterfly units

The butterfly unit forms the foundation of the Cooley-Tukey FFT, as it combines the
results of smaller DFTs into larger ones or, conversely, decomposes larger DFTs into
smaller components, enabling recursive decimation as described in Section 2.1.1.
Butterfly circuits are characterized by their radix. A radix-r butterfly has r
inputs and r outputs and computes a r-point DFT. From a hardware perspective,
butterfly units consist primarily of adders and rotators, implementing the operations
described by Equations 2.9 and 2.10 for DIT and DIF FFTs, respectively.

However, radix-2 and radix-4 butterfly units typically do not require explicit
rotators, since the corresponding rotation operations involve trivial multiplications.
In the radix-2 case, the only necessary rotation is a multiplication by −1, which can
be implemented by simply inverting the sign. In the radix-4 case, the additional
−j/j rotation can be achieved by signal routing without using multipliers. For these
reasons, radix-2 and radix-4 butterfly units are widely used in hardware designs.
In contrast, higher-radix butterflies require non-trivial complex multiplications,
necessitating the inclusion of rotators and thereby increasing hardware complexity
and cost.

Rotators and Twiddle Factor Generators

Despite the simplifications in lower-radix butterflies, rotations are still essential
between FFT stages to apply the twiddle factors and implement non-trivial stages.
These operations are handled by dedicated hardware blocks known as rotators, for
which various implementation strategies have been proposed in [17].

The most direct implementation of a rotator follows Equation 2.8, which involves
four multipliers and two adders:

X = x C − y S

Y = x S + y C
(2.29)

However, this basic structure can be optimized to reduce arithmetic complexity,
by rewriting the expressions to use only three multipliers:

X = x (C + S) − (x + y) S

Y = x (C − S) + (x + y) S
(2.30)

The circuits used to implement complex multiplication for rotations are shown in
Figure 2.8.

Nevertheless, rotators must be supplied with the appropriate twiddle factor at
each stage of the FFT. There are two common approaches for this: using Read
Only Memory (ROM)-based lookup tables or employing run-time Twiddle Factor

20

2.3 – FFT accelerators

×

×

×

×

C

C

+

+

x

y

X

Y

−

S

S

S

S

C

C

x

y

X

Y

−

−

+

+

+

+

+
×

×

×

Figure 2.8: Standard complex multiplier based on 2.29 (left) and optimize complex
multiplier with one multiplier less based on 2.30 (right)

Generators (TFGs), each with distinct trade-offs regarding memory usage, speed,
computational load, and hardware overhead.

In ROM-based solutions, twiddle factors are precomputed and stored in per-
manent memory. These factors are indexed using the current butterfly count and
the FFT stage. This approach is the simplest and most popular for short FFT
lengths, where the number of twiddle factors is limited and memory usage remains
small. However, for larger FFT sizes, the ROM requirement increases significantly,
leading to higher power consumption and increased chip area.

To mitigate the large ROM footprint, designers have explored ways to reduce
storage requirements by exploiting the inherent symmetry of twiddle factors. Using
trigonometric identities, the total number of factors stored can often be reduced to
N/8 + 1, as the rest can be generated through operations such as sign changes or
exchanging real and imaginary parts [18]. An alternative method is proposed in
[19], where a small ROM and minimal control logic is used to generate the required
twiddle factors at run-time. This technique involves storing only positive angles
and reconstructing the entire set of twiddle factors using quadrant-based rules,
achieving a storage requirement of only N/8 values.

Another approach is to generate twiddle factors on the fly, almost eliminating
memory requirements at the expense of computational complexity. Special hardware
is designed to compute the twiddle factors in run-time exploiting Coordinate
Rotation Digital Computer (CORDIC) algorithms, polynomial-based techniques,
or other mixed approaches.

In [20] the proposed DRRA-based reconfigurable architecture for mixed-radix

21

State of the Art

FFT includes a novel TFG unit that minimizes memory requirements and sim-
plifies hardware. The proposed design is based on a recursive feedback complex
multiplication for computing sine and cosine functions. Unlike ROM-memory
methods, this TFG computes initial values and seed values on-the-fly for each
processing cell using complex multipliers. It also leverages Data Path Unit (DPU)
to internally generate specific twiddle factors, further reducing TFG’s workload.
This approach leads to a reduction in the number of cycles required to compute
a FFT, particularly for higher N values, compared to other ROM-less solutions.
In addition, the complexity with respect to CORDIC based TFG architectures
is lower, often requiring only two multiplication and two addition operations per
output point.

However, recursive approaches present a major drawback, that is, the introduced
error propagation in finite-precision computation, due to their feedback nature.
A solution for this problem is proposed in [21] in which a conventional recursive
sine/cosine function generation algorithm is combined with a small compensation
lookup table. This compensation table solves the error propagation problem by
replacing the LSBs of the generated output with correction values, guaranteeing
full precision.

Shuffling circuits

FFT algorithms require data to be rearranged at each stage to ensure the correct
pairing for subsequent butterfly computations. Specifically, in each stage of an
N = 2n point FFT, butterfly units operate on data pairs whose indices differ in a
specific bit position bn−s for the current stage s. Therefore, correct selection and
routing of the input data at each stage is crucial to guaranty the accuracy of the
final result. This rearrangement is based on bit-dimension permutations, which
reorder a group of 2n data elements by permuting the n bits that represent their
indices.

A systematic representation of bit-dimension permutations is introduced in [22].
Let σ denote a bit-dimension permutation that transforms a point in n-dimensional
space, represented by its binary coordinates un−1, un−2, . . . , u0, into a new point
uσ(n−1), uσ(n−2), . . . , uσ(0) by permuting the bit positions. The original data position
is denoted by P0, and the output position by P1, so that σ(P0) = P1.

Among the wide range of possible bit-dimension permutations, two are partic-
ularly important for FFT computations: the perfect shuffle and the bit reversal.
Specialized hardware circuits have been designed to perform these permutations
quickly and efficiently. Typically, these involve multiplexers that route data between
memory locations, along with registers or buffers used for temporary storage and
synchronization.

22

2.3 – FFT accelerators

The perfect shuffle is a common permutation in FFT algorithms. It per-
forms a circular shift of the bits of the index to the left by one position, i.e.,
σP S(un−1, un−2, . . . , u1, u0) = (un−2, . . . , u1, u0, un−1). This permutation can be de-
composed into Elementary Bit Exchanges (EBEs), which are simpler bit-dimension
permutations that involve only two dimensions at a time [22]. There are three
types of EBEs that differ according to the domain of operation.

The first type, called parallel permutations, swaps data positions in space and
can be implemented with only multiplexers, without the need for delay elements.
The second type, known as serial-serial permutations, uses buffers of length L to
delay one data stream by ∆t = L, allowing reordering in the time domain. The
third type, serial-parallel permutations, reorders data across both time and space
domains by alternating delays and spatial swaps. This type of permutation involves
interchanging groups of data streams by selectively delaying and rearranging them.
The circuits used for these permutations are shown in Figure 2.9.

0

1
1

0

L

S
S

S

S

0

0

1

1

L

L

Figure 2.9: Shuffling circuit for serial-serial permutation (left) and serial-parallel
permutation (right)

Another important permutation in FFTs is bit reversal, which is required either at
the beginning or at the end of the computation depending on the chosen decimation
method, as discussed in Section 2.1.1. This permutation reorders the index bits
as follows: σ(un−1, . . . , u1, u0) = (u0, u1, . . . , un−1). In [23], an optimal hardware
circuit for bit reversal for serial data is proposed using a sequence of blocks, each
composed of two multiplexers and a buffer. The length of each buffer depends on
the number of bits in the index. Alternatively, parallel-parallel implementations
may be used, where the permutation is applied directly to data stored in memory or
buffers. These implementations can be optimal in specific architectural scenarios.

23

State of the Art

2.3.3 FFT accelerators for mmWave FMCW radar

FFT accelerators are the computational backbone of mmWave FMCW radar
systems. Their design significantly influences performance in terms of memory
usage, execution time, and power consumption. Multiple architectural approaches
have been proposed to optimize these aspects and adapt to the diverse constraints
of various applications.

The primary requirement for FFT accelerators in FMCW radar is computational
efficiency and high throughput, particularly in real-time scenarios where large
volumes of data must be processed rapidly to ensure the responsiveness necessary in
safety-critical systems. This section presents an overview of several FFT accelerator
implementations, highlighting different architectural strategies aimed at optimizing
speed, power efficiency, and silicon footprint through specialized hardware and
integrated signal processing functions.

In [24], a processor designed for real-time FMCW radar applications is proposed.
It integrates the entire signal processing pipeline, including a 2D-FFT accelerator,
two-dimensional Constant False Alarm Rate (CFAR) detection, and Digital Beam-
Forming (DBF). The system is implemented using a memory-based architecture,
with intermediate data stored in single-port SRAMs. The radar system has four RX
antennas, each with a dedicated single port SRAM where IF data are stored during
the computation of 2D-FFT. Data is read, processed and rewritten to memory
sequentially, minimizing memory usage. After FFT, CFAR and DBF modules
detect peaks in the Doppler-range map and estimate the target AoA. The 2D-FFT
module comprises a controller for address mapping, a FFT calculator, and four
SRAMs operating in a pipelined scheme that eliminates transfer time overhead
between stages. In total, six SRAMs are used: four to store FFT results and two
for CFAR and DBF processing. The DBF module utilizes the CORDIC algorithm
to estimate target angles, avoiding multipliers and thereby significantly reducing
area and power consumption. The FFT calculator features 128 radix-2 butterfly
units and handles 256-point range FFT and 128-chirp Doppler FFT. Butterflies are
implemented using four real Booth multipliers that perform fixed-point arithmetic
using 48-bit words, with 24 bits each for the real and imaginary components. A
truncation logic reduces each component to 16 bits at the output.

An efficient memory-based FFT accelerator which supports variable lengths
from 64 to 4096 points is presented in [7]. Like the previous design, it integrates
the entire radar signal processing pipeline, including a Window Multiplication Unit
(WMU), a Butterfly Unit (BFU), a Magnitude/Phase Calculation Unit (MPU), and
an Accumulation Unit (ACU). Input data are first processed by the WMU, which
performs windowing using coefficients stored in dedicated SRAM. The BFU executes
radix-4/2 butterfly operations of the FFT for various transform lengths, iteratively
reading and writing data to a dedicated FFT SRAM. After the FFT stage, the MPU

24

2.3 – FFT accelerators

computes the magnitude using approximate techniques involving only shifters and
adders, and calculates the phase using the CORDIC algorithm, avoiding multipliers.
The results are accumulated in the ACU and stored in its corresponding memory.
A notable feature of this design is its use of Half-Precision Floating-point (HPF)
arithmetic. This format mitigates quantization noise, especially relevant in 2D
FFT operations, by offering a balance between precision and hardware cost. The
HPF adder and multiplier process the sign, exponent, and mantissa separately,
employing complex alignment, normalization, and rounding steps.

An alternative approach is proposed in [25], which introduces a low-latency FFT
accelerator tailored for 6G applications. This architecture targets fast 4096-point
FFT computation through massive parallelism, employing 64 parallel branches
in a memory-based setup. A memory bank consisting of 64 parallel memories
stores data in natural order. To manage the complexity of parallelism, the perfect
shuffle permutation is applied, allowing uniform addressing across all memories.
The shuffle is implemented using a sequence of serial-serial, parallel-parallel, and
serial-parallel permutations implemented using optimal circuits, as detailed in
Section 2.3.2. Data are then fed into PEs, each consisting of a radix-2 butterfly
unit and a rotator, implemented with low-area complex multipliers and placed only
at odd-indexed terminals. Rotation coefficients are stored in ROM memories and
shared between multiple stages and rotators, simplifying control logic and reducing
the total rotation memory size to N/2.

In automotive applications, Multiple-Input Multiple-Output (MIMO) systems
are employed to support highly detailed imaging requirements. MIMO radar systems
require high antenna density and therefore the footprint of FFT accelerators must
be limited. To this end, [26] presents a low-footprint FFT accelerator targeting
Reduced Instruction Set Computer (RISC-V) platforms. This design opts for a
memory-based architecture to reuse FFT resources and eliminate the area cost
of the multiple stages of the pipelined approach. The memory system includes
four SRAM banks connected through a custom crossbar that enables simultaneous
read/write access. To further reduce area, the processor employs a dual-radix
butterfly unit. For the range-FFT stage, a radix-4 unit processes 16-bit words
to meet strict timing constraints with reduced resolution. For Doppler-FFT and
angle-FFT stages, a radix-2 unit with 32-bit words provides higher accuracy at
the expense of increased latency, since in this step the time requirements are less
demanding. The area overhead is further reduced through simplified logic and
ultra-compressed twiddle factor ROMs, which exploit trigonometric symmetries
and encoding techniques.

Memory optimization is critical for energy efficiency in embedded systems.
Many different techniques have been proposed to optimize memory usage and
consequently increase power efficiency of FFT computation. A notable contribution
in this direction is [8], which introduces an energy-efficient Sparse Fast Fourier

25

State of the Art

Transform (sFFT) accelerator. The design prioritizes reduced power and area
through two strategies: zero-skipping with dynamic thresholding and compressed
transpose memory. The zero-skipping technique filters out low-magnitude values
using a dynamically calculated threshold, determined as 2σ from the CFAR mean,
calculated using the previous 1D-FFT stage. This prevents unnecessary computa-
tion and speeds up processing. A sparse transpose memory is designed to compress
sparse data after the initial 1D-FFT stage. This addresses the significant challenge
of managing extensive datasets, within the area and power constraints of radar
systems. By assuming and leveraging the sparse features in the data, the design
effectively reduces memory usage by up to 75% compared to dense memory. The
FFT accelerator features a variable-length architecture capable of handling from
128 to 2048 points. A first step involving bit reversed permutation arranges the
data before feeding them to radix-2 butterfly units. The architecture employs
horizontal unfolding, which doubles throughput by splitting computation across
two blocks and using stride permutations to enable parallel execution.

In Table 2.1, the implementation details of some of the works discussed are
presented.

Work # Points Radix Bitwidth Data Architecture

[26] 1024 radix-2/4 16/32 fixed memory
[24] 128-256 radix-2 32 fixed memory
[7] 64-4096 radix-2/4 16 floating memory
[8] 128-2048 radix-2 32 fixed memory
[25] 4096 radix-2 32 fixed memory
[27] 1024 radix-2 32 fixed pipelined

Table 2.1: Implementation details of FFT accelerators in other works

26

Chapter 3

Methodology

This chapter presents the methodology and tools used to implement and simulate
algorithms on the DRRA platform. It provides an overview of the architecture,
the instruction set, and the component library, highlighting how these elements
enable efficient mapping of algorithms on DRRA. The chapter also describes the
CIS programming model and the Vesyla toolchain, which together facilitate the
compilation, scheduling, and verification of algorithms on the reconfigurable fabric.

3.1 DRRA
The DRRA is a CGRA fabric developed to address several challenges in modern
embedded system design, particularly in applications involving high computational
or signal processing demands. Traditional hardware design approaches often
struggle to achieve efficient resource utilization and require many computation
cycles, which can reduce overall system performance. A major limitation of existing
solutions is their use of computation-centric instruction models. These models
process operations sequentially and are not well suited to express complex loop
structures efficiently [11]. As a result, many computation cycles are wasted and
the available hardware resources are not fully utilized.

Graphics Processing Units (GPUs) have been used to accelerate streaming
workloads, but they lack the flexibility needed to adapt to the specific requirements
of different streaming applications. Other platforms, such as ASICs and FPGAs,
also present trade-offs. While ASICs provide high performance and energy efficiency
for fixed tasks, they are expensive to design and lack adaptability. FPGAs offer
more flexibility but suffer from lower silicon and computational efficiency, higher
power consumption, and increased configuration overhead. These issues are mainly
caused by their fine-grain reconfigurability and the large area required for their
interconnect networks [9]. Moreover, the increasing complexity of Integrated Circuit

27

Methodology

(IC) designs negatively affects development time and effort, contributing to the
challenges of time to market [28].

CGRAs work at a coarser level of granularity compared to traditional reconfig-
urable architectures like FPGAs, mapping operations onto an array of tiles, each
functioning as either a PE or a memory tile. They aim to find a balance between
the efficiency of ASICs and the flexibility of FPGAs, offering better computational
efficiency than FPGAs and reducing engineering effort compared to ASICs [9].
The DRRA follows this approach by adopting a resource-centric instruction model,
where instructions are directly linked to hardware resources. This enables more
efficient task scheduling and execution, allowing for better use of resources.

In addition to improving performance, DRRA supports low-cost customization.
Its architecture is composed of predesigned modules that can be reused as Intel-
lectual Property (IP) blocks. These modules follow a common design template,
making it possible to compose the architecture, tailoring the system to specific
application needs, such as the number and type of compute resources, the structure
of the memory hierarchy, and the communication infrastructure.

In general, DRRA presents a flexible and efficient solution that addresses the
limitations of traditional architectures. It helps to close the gap between flexibility
and performance while supporting faster and more cost-effective hardware design.
This makes it especially valuable during the early stages of system development,
where architectural choices have a significant impact on final performance and
implementation costs [9].

3.1.1 Architecture
The DRRA is a coarse-grain spatial computing fabric designed to be flexible and
scalable, with the ability to dynamically reconfigure its internal resources based on
the specific requirements of the mapped application. The fabric is organized as a
matrix of DRRA cells, each interconnected via a nearest-neighbor Network-on-Chip
(NoC) connection scheme [29]. In Figure 3.1 the structure of the fabric and the
interconnections between cells are shown.

Each DRRA cell consists of a single controller, also referred to as sequencer, and
a set of 16 resource slots that serve as placeholders for DRRA components. The
controller is responsible for configuring and managing the internal components of
the cell, issuing instructions to the resources, and controlling their operation during
runtime. The slots are initially unoccupied and provide a function implementation
space, an instruction decoder, and a standardized set of ports, forming the template
on which all DRRA components are built.

DRRA components constitute the basic building blocks for vector processing.
Typical resources include Register Files (RFs), SRAMs, Input/Outputs (IOs),
and DPUs, but additional application-specific blocks can also be integrated. For

28

3.1 – DRRA

Figure 3.1: Architecture of DRRA-2 fabric [29]

instance, in our work, specialized FFT computation units have been designed and
instantiated within the fabric. The seamless integration of different resources is
enabled by a standardized interconnection interface, which ensures compatibility
among components within a cell. The standard component interface, shown in
Figure 3.2, consists of four input/output data ports, divided into word-level and
bulk-level ports, typically 16 bits and 256 bits wide, respectively. Word-level
ports are used for communication within a cell, while bulk-level ports handle
communication between neighboring cells.

0

2

1

3

word_data_in

bulk_data_in bulk_data_out

word_data_out

DRRA resource

Figure 3.2: Port interface of a DRRA component

A resource can occupy one or more contiguous slots depending on its size, which
is determined by factors such as the number of ports and the complexity of its
function logic [29]. Designers can instantiate any supported resource, such as
DPUs, RFs, or SRAMs, making the architecture highly adaptable to a wide range
of application requirements.

29

Methodology

3.2 Composable Instruction Set
The DRRA architecture adopts the CIS model, which is a resource-centric approach
to instruction design [11]. Unlike traditional instruction-centric models that focus
on controlling a central processing unit, the composable model targets individual
hardware resources, such as interconnects, storage units, or computation modules.
Complex operations are therefore built from the collaboration of many small,
independent micro-threads, each controlling a specific hardware resource.

Each Pseudo-Assembly (PASM) instruction is associated with a particular
resource, and the coordinated execution of multiple instructions produces the
desired complex operations. A controller controls each cell, coordinating the activity
of its resource slots and providing fine-grained control over resource behavior and
communication.

The DRRA Instruction Set Architecture (ISA) is divided into two categories:
controller instructions and resource instructions [29]. The cell-level sequencer
decodes controller instructions, which manage the configuration and operation of
the components in the cell. Resource instructions, on the other hand, are forwarded
by the controller to a specific slot within the cell. Each slot contains a simple local
decoder that only needs to recognize the instruction types relevant to the resource
it hosts. This two-stage decoding process greatly reduces the complexity of the
instruction logic [10], as the controller only performs basic dispatching, while the
slot-level decoder executes the instruction.

Instructions in the DRRA are 32 bits wide and are structured as shown in
Table 3.1. The type field indicates whether the instruction is a control or resource
instruction, defining how it will be decoded. The opcode specifies the operation
and enables the necessary hardware resources. For resource instructions, four bits
indicate the slot number, allowing the sequencer to route the instruction payload
to the corresponding resource. The remaining bits form the payload, containing
the specific instruction content used by the target component.

type opcode slot payload
31 30:28 27:24 23:0

Table 3.1: ISA format of the CIS used in the DRRA

3.2.1 Controller instructions
Two key controller instructions in the DRRA are wait and act. These instructions
are used to control the execution of resources by activating them or imposing timing
delays. They ensure proper synchronization of tasks and, consequently, the correct
execution of the program. Unlike resource instructions, controller instructions are

30

3.2 – Composable Instruction Set

automatically inserted by the compiler according to the timing constraints specified
in the PASM program.

The wait instruction, summarized in Table 3.2, uses the mode field to define the
event that triggers its completion. In mode 0, the instruction waits for a specific
number of cycles, while in mode 1 it waits for one event, represented using a 1-hot
encoding of event slots. The cycle field specifies the number of cycles to wait
when mode 0 is selected.

mode cycle
28 27:1

Table 3.2: wait instruction

The act instruction, shown in Table 3.3, enables the Finite State Machine
(FSM) of the target port, activating the resource. The first field of the instruction
specifies the ports to activate using 1-hot encoding. The mode and param fields
define the activation pattern, allowing multiple ports to be enabled simultaneously.
Not all combinations of ports are valid, so careful slot assignment is required when
mapping the application.

ports mode param
28:13 12:9 8:1

Table 3.3: act instruction

3.2.2 Spatial and temporal composability
The DRRA’s CIS model supports both spatial and temporal composability. Spatial
composability allows complex operations to be constructed from multiple simple,
atomic operations distributed across different hardware resources. Temporal com-
posability, on the other hand, enables complex tasks to be built by combining
simple instructions over time [11]. This is achieved through operators such as
repetition (R), which defines loops, and transition (T), which inserts delays between
instruction blocks. These operators allow the DRRA fabric to efficiently accelerate
both simple loops and complex nested loops by modeling FSM-like transition
patterns. In the CIS, the repetition and transition operators are implemented
through two dedicated instructions: rep/repx and fsm.

The rep/repx instruction is used together with resource instructions to repeat
operations according to multi-level loop sequences. Its fields, shown in Table 3.4,
define the loop level, the number of iterations, the iteration step, and the delay
between repetitions.

31

Methodology

port level iter step delay
24:23 22:19 18:13 12:7 6:1

Table 3.4: rep/repx instruction

The fsm instruction is also associated with other resource instructions and
triggers state transitions among a maximum of four resource configuration. Its
fields define the delay between consecutive stages, as shown in Table 3.5.

port delay_0 delay_1 delay_2
24:23 22:16 15:9 8:2

Table 3.5: fsm instruction

This instruction model has important implications for both hardware and
compiler design. In hardware, each slot only needs to decode one or two simple
instruction types, which simplifies control logic and reduces power consumption.
Control units can also be placed physically close to the resources, reducing wire
lengths and improving energy efficiency. On the compiler side, the model requires
cycle-accurate instruction scheduling. The compiler must carefully order each
PASM instruction to ensure synchronization between resources. Although this
increases compiler complexity, it results in highly efficient execution [11].

3.3 DRRA component library
The DRRA fabric is assembled by filling the free slots of its cells with the resources
available in the drra-components library, following the fabric architecture descrip-
tion file. The library contains the files for each available component. These include
RTL descriptions, the architecture description file (arch.json), the resource-specific
ISA file (isa.json), as well as support files such as C models for simulation and
Bender files that define the hierarchy and dependencies.

The following subsections present some of the basic components available in the
library, highlighting their design, operations, and PASM instructions.

Switchbox

The Switch Box (SWB) manages intra and inter-cell communication by creating
interconnections between internal components and allowing routing to other cells.
The SWB must always be placed in slot 0, as it has a special interface with 16
word-level ports, which ensure connectivity between all slots. Word-level channel
connections are configured with the swb instruction. This instruction allows defining

32

3.3 – DRRA component library

the source and target slots between which a channel is established and supports
up to four configuration options that can be switched at runtime using the fsm
instruction, providing flexible and efficient connection reconfiguration.

option channel source target
24:23 22:19 18:15 14:11

Table 3.6: swb instruction

For bulk-level communication, each cell has four connection interfaces, one for
each adjacent cell. The route instruction is used to configure the connections
between bulk-level IO ports and intra-cell bulk channels. The sr field specifies
whether the connection is for sending or receiving. On the send side, source
indicates the slot number, while target is the 1-hot encoded direction, as depicted
in Figure 3.3. On the receiving side, the roles are reversed, with the direction
specified in the source and the slot in the target field. A single bulk intra-cell
connection between two components is supported by setting both the target and
the source to 4, indicating the "self" cell.

option sr source target
24:23 22 21:18 17:2

Table 3.7: route instruction

8 7 6

5 4 3

2 1 0

NW N NE

W self E

SW S SE

Figure 3.3: route direction configuration

Input/Output SRAM

Another important component is the IOSRAM. It serves as the main storage unit
of DRRA enabling data transfers between the IO buffers and the fabric. IO buffers
serve as external memory elements that provide test data. In synthesis, their

33

Methodology

implementation may take the form of First-In First-Outs (FIFOs), RFs, or SRAM-
based memory structures, depending on the application requirements.. They are
connected to DRRA through the bulk-level input/output data ports of the fabric.
Typically, the input buffer is connected to the top row of the fabric and provides
the input data. The output buffer instead is connected to the bottom row of the
fabric and is used to store the output data of the algorithm. As the SWB, also the
IOSRAM must be placed in a predetermined slot in the cell, slot 1, which is the
only one provided with an IO interface.

0

0

0

1

1

1

2

2

2 3

3

3

32

10

AGU

AGU

AGUAGU

AGU

AGU

SRAM
bulk_out

io_out

io_wr_addrio_rd_addr

io_in

bulk_in
wr_addr rd_addr

rd_addrwr_addr

Figure 3.4: IOSRAM component. In black, the top cell path, in blue the bottom
cell path

The component occupies four slots, primarily due to the large area required by
the SRAM, although only a limited number of ports are actively utilized. Because
read and write operations with the IO buffer depend on the specific cell in which
the component is instantiated, three slightly different implementations are provided:
one for reading data from the buffer, one for writing data to the buffer, and another
supporting both interfaces. Figure 3.4 shows the schematic of the component,
where the two interface types are highlighted.

The ports in the first slot manage IO communication with the buffers, while the

34

3.3 – DRRA component library

bulk-level ports in the second slot handle intra-cell data transfers. Word-level ports
are used to transmit read/write addresses to the IO buffer, while bulk channels
facilitate actual data exchange. Each port is equipped with an Address Generation
Unit (AGU), responsible for generating addresses used to access the SRAM or
transmitted via the word-level ports to the IO buffer. Each AGU is configured
using the dsu instruction. It is used to set the initial address, which can be static
or dynamic (defined via the sd field), and enables the configured ports. Complex
address sequences are generated by combining dsu with the rep/repx instruction,
as described in Section 3.2.2.

sd init_addr port
24 23:8 7:6

Table 3.8: dsu instruction

Register File

The RF component provides local storage within computational cells, enabling
fast access for the DPU and other computational resources. The component
occupies one slot and supports configurable word length and depth. The word
length corresponds to the global parameter WORD_BITWIDTH, while the depth can
be defined in the arch.json description file, in a range between 16 and 256 words.

Two word-level ports are used for read/write operations between resources in
the cell, while the two bulk-level read/write ports are used to efficiently transfer
data between cells, typically between the RF and the IOSRAM. Each port of the
RF includes an AGU that generates addresses based on the access pattern specified
using the dsu and rep/repx instruction combination as seen for the IOSRAM
component.

Data Path Unit

The DPU is the core computational resource for most DRRA applications. It
occupies two slots, allowing operations with two inputs and one output to be
performed. It supports up to 32 different arithmetical and logic operations, defined
by the mode field of the dpu instruction. Common arithmetical operations include
add, mult, mac, div, and exp. Some of them require an immediate value, that is
defined in the correspondent instruction field.

Loop behavior is defined using the rep/repx instruction, while up to four
configuration options can be defined using the option field, and then switched
at runtime using the fsm instruction. This combination enables fast and efficient
computation for applications requiring multiple operation types.

35

Methodology

option mode immediate
24:23 22:18 17:2

Table 3.9: dpu instruction

3.4 Vesyla toolchain
The methodology adopted in this work is based on the Vesyla toolchain, a domain-
specific High-Level Synthesis (HLS) system targeting the DRRA. Vesyla translates
high-level algorithmic descriptions into optimized instruction schedules and map-
pings for DRRA fabrics, providing a coherent methodology for fabric assembly,
program compilation, and design simulation.

3.4.1 PASM compilation
The flow begins with the initialization of a DRRA-style project in Vesyla, containing
all the necessary files to begin the implementation process. Among these, the
arch.json is of particular importance, as it contains the description of the target
architecture. This file is used to define the resources included in the DRRA fabric
for the specific application needs. Another essential file is main.cpp, which provides
a template for defining the functions that implement the algorithm logic. The final
key component is the pasm folder, which holds the PASM code which forms the
low-level representation of algorithms.

The structure of PASM programs reflects the dataflow-oriented nature of the
DRRA. At the highest level, regions such as loop, cond, and epoch define the
iteration and control structures of the program. Within epochs, the programmer
specifies operation regions that can be of three types: resource operations (rop),
such as register file reads or writes; control operations (cop), which are managed
by the cell controllers; and constraints (cstr), which explicitly define timing and
structural dependencies between rops. These constraints guide the scheduler in
translating the high-level program into a realizable instruction timeline, ensuring
that both data dependencies and resource availability on the DRRA fabric are
respected. An example of a PASM program can be found in Appendix 7.1.

To translate algorithmic descriptions onto DRRA, Vesyla introduces the Control
Address Data-Flow Graph (CADFG) as its central intermediate representation.
Unlike traditional control-data flow graphs, CADFG explicitly separates control
flow, data flow, and address computations. This decomposition permits efficient
mapping of algorithmic structures to DRRA resources. CADFGs are refined
further into Instruction Dependent Graphs (IDGs), which introduce edges for both
data transfer and temporal dependencies, bridging the gap between algorithmic
abstraction and instruction-level scheduling. A key step in this refinement is

36

3.4 – Vesyla toolchain

dependency analysis, which identifies hazards such as Write-After-Write (WAW)
and Write-After-Read (WAR) that could affect the correctness of vector operations.
Scheduling builds upon this dependency analysis to produce correct and efficient
instruction timelines. The result is a set of scheduled instructions that respect both
temporal and resource constraints, optimized for the DRRA architecture.

3.4.2 Assemble the DRRA fabric
Once algorithms are compiled through the Vesyla flow, the DRRA fabric must
be assembled to provide a simulation platform for deployment and verification.
This process translates a user-defined architectural description into a fully realized
hardware model, including both the ISA and Register Transfer Level (RTL) repre-
sentations. It is implemented via a CMake-based build hierarchy that automates
resource gathering, model compilation, and simulation setup.

The foundation of the assembly process is the arch.json file. It specifies the
desired fabric configuration, detailing the resources to instantiate, their arrangement
in the cells, and their specific parameters. Upon execution of the assembly command,
Vesyla elaborates this description, expanding it with structural information of each
component to create an elaborated architectural description file. A similar process
is applied to the isa.json file, collecting all supported instructions from the
instantiated components and generating the complete set of instructions available
on the fabric, providing a comprehensive view of its computational capabilities.

The final phase of the assembly process is the generation of the RTL description,
consisting of a collection of SystemVerilog files that describe the hardware imple-
mentation of the fabric instance. The elaborated arch.json guides this process,
ensuring that the RTL description accurately reflects the structural and functional
characteristics of the assembled fabric. The output is a set of SystemVerilog files
that can be synthesized and simulated to verify the hardware design.

During the build phase, Vesyla also compiles Structural Simulation Toolkit
(SST) behavioral and timing models of the DRRA components. These models are
used by the instruction-level simulator to enable cycle-accurate simulation and by
the instruction scheduler to ensure correct timing during compilation of the PASM
program.

Finally, the algorithm is simulated on the assembled DRRA fabric. Input data
are provided through the input buffer, and compiled PASM instructions are issued
to each corresponding cell. After computation, the results are stored in the output
buffer and written to an output memory file, which is then compared with results
obtained from the software implementation of the algorithm. This process verifies
the correctness of the algorithm execution on the DRRA platform.

37

Methodology

Figure 3.5: Component library structure and assemble workflow of the Vesyla
toolchain [29]

38

Chapter 4

Implementation

This chapter presents the library components developed for FFT acceleration on
DRRA. The proposed solutions have been designed and tested to meet the perfor-
mance requirements of the mmWave FMCW radar application, while exploiting
the advantages of the DRRA platform and addressing its inherent constraints.

The implemented FFT accelerator adopts a memory-based architecture and is
built to support DIF radix-2 and radix-4 butterflies. Particular emphasis has been
placed on the memory organization within the system, as memory represents a
key element for efficient FFT computation. The design leverages existing DRRA
components, exploiting their specific characteristics, while additional resources
have been introduced to support the FFT functionality.

The developed components are presented in detail, starting from their theoretical
foundation and progressing to the design decisions made during implementation.
An overview of the complete FFT accelerator is then provided, covering the top,
middle, and bottom cells. Finally, the developed PASM program is introduced,
illustrating how the design is mapped and executed on the DRRA platform.

4.1 DRRA2 FFT architecture
The proposed solution relies on a RF to store the temporary FFT data during
the computation. This approach offers several advantages, such as efficient access
to individual memory words, flexibility in the number of ports, and a simplified
read/write protocol. However, it also presents a significant limitation due to
the restricted maximum number of registers. Single-word access requires complex
address decoding hardware, making deeper memory implementations costly. Despite
this limitation, the maximum depth of the RF, as defined in the synthesis macros,
is 256 registers. This depth is sufficient to meet the requirements of the targeted
application, which is based on a 256-points FFT.

39

Implementation

4.1.1 Register File
The rf_fft_r4 module implements the address generation and memory manage-
ment unit for the FFT computation. Its design is based on the rf component
already available in the component library, described in Section 3.3. The module,
whose schematic is shown in Figure 4.1, provides multiple interfaces for word-level
memory access, supports the bit-reversed addressing required by the FFT algo-
rithms, and integrates several AGUs specialized for radix-2 and radix-4 butterfly
operations. It consists of four slots, each provided with the standard interface that
includes clock, reset, instruction, and enable signals, along with data ports. This
structure enables four parallel and independent access to the register file from the
BUs, thereby supporting efficient and high-throughput butterfly computations.

AGU AGU

AGU FFT AGU FFT

AGU FFTAGU FFT

AGU FFT

AGU FFT AGU FFT

AGU FFT

RF

Reorder LUT
Bit-reverse

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

word_in0

word_in1

word_in2

word_in3

bulk_in

word_out0

word_out1

word_out2

word_out3

bulk_out

Figure 4.1: Block diagram of the FFT Register File

The register file is organized as a two-dimensional array with parametrisable bit
width and depth. Each FFT point is a complex number consisting of a real part
and an imaginary part. Both parts are stored in a single 32-bit register, with the
first 16 bits corresponding to the real part, and the remaining 16 bits representing
the imaginary part. To achieve an adequate resolution of the final result while

40

4.1 – DRRA2 FFT architecture

limiting power consumption and chip area, fixed-point representation has been
adopted. The real and imaginary parts follow the Qx.y format, where x indicates
the number of integer bits and y the number of fractional bits, whose value can
be adjusted through a parameter. In this representation, FRAC_BITWIDTH bits are
assigned to the fractional part, while the remaining 16−FRAC_BITWIDTH bits are
reserved for the integer part.

Memory is updated synchronously on each clock edge, while combinational
logic handles read and write arbitration. Bulk write operations are given priority,
and mechanisms are in place to prevent simultaneous writes to the same address,
ensuring correct and conflict-free memory access. Activation signals, activate_n,
selectively enable the FSMs within each port, initiating the corresponding read
and write operations.

The four word-level input/output ports of the component are used to supply
and receive data to/from the BUs, enabling the execution of two radix-2 or one
radix-4 computations per clock cycle. The design instantiates specialized AGUs to
generate the appropriate FFT read and write address sequences. These sequences
are determined on the basis of the parameters that are defined using the dedicated
fft instruction, shown in Table 4.1.

port n_points radix n_bu mode delay
24:23 22:11 10:9 8 7 6:2

Table 4.1: fft instruction

This instruction defines the port to configure and sets the number of points and
radix of the current FFT computation, along with the number of butterflies (if
radix-2 is used), the AGU operation mode and the delay between consecutive read
and write operations. These settings are then used to determine the port index
of the BU and thus generate the correct address sequence. This close integration
between instruction and AGU makes the rf_fft_r4 module highly reconfigurable,
allowing it to adapt to different FFT sizes and radices. For bulk-level data transfers
between RF and SRAM, only the bulk-level ports in slot 0 are used, while the bulk
ports in the other slots remain disabled. In this case, the general purpose AGU
component explained in Section 3.1.1 is used.

As discussed in Section 2.1.1, FFT algorithms require bit-reversed ordering of
the data at the start or at the end of the computation, depending on the decimation.
In this module, which implements the DIF algorithm, bit reversal is necessary
after the final stage, when the data are written back to SRAM. This operation
is performed using two dedicated look-up tables, LUT_init and LUT_init_r4,
pre-initialized with the correct address sequences for radix-2 and radix-4 FFT,
respectively. During bulk reads, the selected look-up table provides the bit-reversed

41

Implementation

address sequence, which is used to access single words in the RF and create the
bulk data packet.

4.1.2 FFT Address Generation Unit
The agu_fft_r4 module provides a rotation-based scalable, radix-flexible address
generation scheme for the FFT accelerator. It is responsible for controlling read
and write access to the rf_fft_r4 register file, as well as generating the address
sequence for the TFG. The design is composed of a top-level AGU module and two
supporting submodules: mux_rotator_r4 and twiddle_addr_r4. Together, these
submodules produce the correct address sequences according to the radix, the BU
configuration, and the current FFT stage.

The AGU is controlled by an FSM that works in conjunction with internal
counters to sequence the address generation process. The FSM cycles through three
states: IDLE, ADDR, and DELAY. In the IDLE state, it waits for an activation signal,
which is triggered by the act instruction issued by the controller. Once activated,
the FSM loads all configuration parameters, obtained from the fft instruction,
into internal registers. The DELAY state is used to insert instruction-configurable
delays between successive address generations, allowing precise timing control for
data movement.

The addressing sequence is primarily managed by internal counters, which
track the current FFT stage and the address within the stage. The counter
values are adjusted according to the transform length, the radix, and the number
of butterflies in use. Based on the main address counter, the two submodules,
mux_rotator_r4 and twiddle_addr_r4, generate the addresses for the FFT data
and the corresponding twiddle factor addresses, respectively. Depending on the
mode specified by the fft instruction, the module then selects one of these outputs
as the final address.

Mux Address Rotator

The mux_rotator_r4 module is responsible for generating memory addresses for
FFT data samples. Its operation is based on rotations of bits of the address counter
received from the top-level module. This transformation maps sequential addresses
into the required access patterns, allowing data to be read from the correct memory
locations and passed to the BU and vice versa, throughout the computation stages.
The core of the module consists of two cascaded rows of multiplexers, as illustrated
in Figure 4.2.

The design supports both radix-2 and radix-4 operations using the same hard-
ware. The number of multiplexers depends on the FFT size N and the radix r,
corresponding to 2(logr N − 1) multiplexers. The circuit rotates groups of k bits,

42

4.1 – DRRA2 FFT architecture

0 0 0

000

1 1 1

111

c0 c1 c2 c3

a3a2a1a0

S1

S2

Stage S1 S2

1 000 000
2 001 001
3 011 010
4 111 100

Figure 4.2: Circuit used for address rotation for a 16-point radix-2 FFT and its
corresponding selection signals.

where k is determined by the radix (k = 1 for radix-2 and k = 2 for radix-4). The
upper row of multiplexers selects the length of the bit field to rotate, while the lower
row routes the LSB to the correct output. Since the required rotation depends on
the current FFT stage, the selection signals S1 and S2 for the upper and lower rows
must be calculated accordingly, as reported in Table 4.2. The rotation operations
for each stage of a 16-point radix-2 FFT are illustrated in Figure 4.3.

Stage 1 Stage 2 Stage 3 Stage 4

a1 a1 a1 a1a0 a0a0 a0a2 a2 a2 a2a3 a3 a3 a3

c1 c1 c1 c1c0 c0 c0 c0c2 c2 c2 c2c3 c3 c3 c3

Figure 4.3: Rotation operations for each FFT stage

Each rf_fft_r4 data port is associated with specific BU input and output
ports, so each mux_rotator must generate the appropriate address sequence for its
designated port. The port_index and bu_index are calculated in the top module
and passed to the respective AGUs. For radix-2, the input sequence is divided
into two parts when a single butterfly is used, or four parts when two butterflies
are active. In radix-4, the input sequence is always divided into four equal parts.
Table 4.2 shows the generated address sequence for a 16-point FFT with a single
radix-2 butterfly, demonstrating how the sequence evolves according to rotation
operations in Figure 4.3.

43

Implementation

Address Counter
(c3c2c1c0)

Address Sequence

Stage 1 Stage 2 Stage 3 Stage 4

0000 0000 0000 0000 0000
0001 0001 0001 0001 0010
0010 0010 0010 0100 0100
0011 0011 0011 0101 0110
0100 0100 1000 1000 1000
0101 0101 1001 1001 1010
0110 0110 1010 1100 1100
0111 0111 1011 1101 1110

Table 4.2: Address sequence generation for a radix-2 butterfly in a 16-point FFT
(port 0)

Twiddle Address Generator

The twiddle_addr_r4 module is responsible for generating addresses for the
twiddle factors, which are used by the TFG component to provide the BU with
the appropriate rotation coefficients at each clock cycle. The design supports both
radix-2 and radix-4 butterflies, with addresses computed through a combination of
shifting and masking operations applied to the address counter.

In the radix-2 case, each butterfly requires a single twiddle factor. The generator
first adjusts the address to account for the number of butterflies within the BU. If
a second butterfly is present, the counter max value is halved and an additional
offset of N/4 is applied. This offset arises because, after the butterfly operation,
only half of the FFT points require non-trivial twiddle factors, and this subset is
further partitioned among the active butterflies. Once the adjustment is complete,
the address is left-shifted and masked according to the current FFT stage.

For radix-4, each butterfly uses a set of three twiddle factors. The generator
begins by masking the input address counter to compute a stage-dependent base
address. This base address is then offset by the port_index of the butterfly, which
selects the local twiddle factor within the three-element set. Finally, the resulting
value is shifted by a number of bits determined by the current FFT stage.

To better illustrate the address sequence, Table 4.3 reports the generated twiddle
factor addresses for a 16-point FFT in radix-2 mode, according to the FFT dataflow
shown in Figure 2.3. The sequence highlights how the masking and shifting
operations evolve across stages, ensuring that the correct coefficients are accessed
at each step.

44

4.1 – DRRA2 FFT architecture

Address Counter
(c3c2c1c0)

Twiddle Address Sequence

Stage1 Stage2 Stage3 Stage4

0000 000 000 000 000
0001 001 010 100 000
0010 010 100 000 000
0011 011 110 100 000
0100 100 000 000 000
0101 101 010 100 000
0110 110 100 000 000
0111 111 110 100 000

Table 4.3: Twiddle factor address generation for a 16-point DIF radix-2 FFT

4.1.3 Twiddle Factor Generator
The tfg module provides the complex exponential coefficients required in the FFT
computation to combine partial results across stages. As discussed in Section 2.3.2,
different design options are available for implementing a twiddle factor generator,
mainly depending on memory usage and power constraints. In this work, a ROM-
based TFG has been implemented, since the maximum FFT size to be supported
is relatively small.

The design principle relies on the definition of twiddle factors. These coefficients,
given by Equation 2.8, are complex numbers representing an angle in the unit circle
through its sine and cosine values. In an N -point FFT, the angles are obtained
by dividing the unit circle into N equal parts. An important observation is that
the set of twiddle factors for an N = 2m FFT already contains all the coefficients
needed for any smaller N = 2p FFT, where m > p. This makes it sufficient to
store only the coefficients for the largest supported FFT size, reducing memory
overhead.

In radix-4 FFTs, however, up to 3N/4 twiddle factors are required, which could
lead to high memory costs if all values were stored directly. To address this, the
implementation exploits the symmetry properties of sin and cos, since the values
of all angles on the unit circle can be derived from those contained in the first
π/8 interval. Thus, only these base values need to be stored in memory, while
the others are reconstructed by applying sign changes or swapping the real and
imaginary components.

The proposed TFG relies on a ROM of size Nmax/8 + 1, corresponding to 32 + 1
complex coefficients of 32 bits each. The module is organized into three parallel
slots, each equipped with an AGU and a ROM, as shown in Figure 4.4.

45

Implementation

instr0

instr1

instr2

out0

out1

out2

Twiddle ROM

Twiddle ROM

Twiddle ROM

AGU FFT

AGU FFT

AGU FFT

Twiddle
Mapper

Twiddle
Mapper

Twiddle
Mapper

addr0

addr1

addr2

tw0

tw1

tw2

0

0

0

1

1

1

2

2

2 3

3

3

Figure 4.4: Block diagram of the Twiddle Factor Generator

This structure allows the simultaneous generation of three independent twiddle
factor streams, which are required by radix-4 butterfly operations. The address
generation for the ROM is handled by the same agu_fft_r4 module described in
Section 4.1.2, here operating in twiddle factor address mode. Alongside the AGU,
two additional submodules, twiddle_rom and twiddle_map, are used to retrieve
the stored values and apply the required transformations.

The component is configured through the fft instructions reported in Table 4.1.
Each of the three data paths can be configured independently and supports different
combinations of radix and number of butterflies. Once the activation signal is
asserted, the AGU generates the addresses of the required twiddle factors for the
selected port. The address is an 8-bit word, of which the five least significant
bits r directly address the ROM, while the three most significant bits q identify
the sector of the unit circle. To ensure correct alignment across FFT sizes, the
generated address is shifted according to the n_points parameter. The retrieved
base coefficient is then passed to the twiddle_map submodule, which applies the
symmetry transformations dictated by q. The final coefficients are stored in pipeline
registers for synchronization with the butterfly stage before being driven to the
outputs.

46

4.1 – DRRA2 FFT architecture

Twiddle factors ROM

The twiddle_rom submodule implements a compact memory that stores the unique
rotation coefficients of the first π/8 interval. The input address from the agu_fft_r4
cannot be used directly, as the sin and cos values of the correspondent angle in
adjacent circle sectors are specular to each other. As illustrated in Figure 4.5, given
that the saved coefficients correspond to the angles in sector 0, this property repeats
in all odd-indexed sectors. Distinguishing whether specular addressing is needed
is straightforward and consists of checking the q0 bit. If q0 = 1, the address is
mirrored by applying a two’s complement operation. The effective memory address
is, therefore, given by:

rom_addr =
r, if q0 = 0

∼ r + 1, otherwise
(4.1)

Im

Re

0

12

3

4

5

Re − jIm

Im − jRe−Im − jRe

−Re − jIm

−Re + jIm

−Im + jRe

Figure 4.5: Twiddle factors sections with the symmetry transformations required

47

Implementation

Twiddle factors mapper

The twiddle_map submodule reconstructs the complete twiddle set from the com-
pact ROM contents. Reconstruction relies only on sign inversion and swapping
between the real and imaginary parts. The MSB part of the address, q, indicates
the section of the circle and, therefore, the operations that must be applied, as
shown in Figure 4.5.

The remapping circuit, shown in Figure 4.6, consists of four multiplexers. Two
of them select between the unchanged or two’s complement versions of the real
and imaginary parts, controlled by signals S1 and S2. The other two multiplexers
handle swapping between real and imaginary components, both controlled by S0.
Table 4.6 lists the control signals required for each unit circle section.

S1

S2

S0

tw_outRe

tw_outIm

tw_inRe

tw_inIm

−

−

0

0

0
1

1

1

0

1

Sec q2q1q0 S0 S1 S2

0 000 0 0 0
1 001 1 1 1
2 010 1 1 0
3 011 0 1 0
4 100 0 1 1
5 101 1 0 0

Figure 4.6: Circuit used for twiddle factor remapping and corresponding selection
signals.

4.1.4 Butterfly Unit
The bu module forms the computational core of the FFT accelerator and is designed
to support both radix-2 and radix-4 butterflies in a flexible, parameterized manner.
The component, shown in Figure 4.7, consists of seven slots, each equipped with
the same input and output interface described in Section 3.1.1. These slots allow
for input and output operations for different butterfly configurations. Specifically,
slots 0 to 3 are dedicated to FFT data channels, while slots 4 to 6 are used for the
input of twiddle factors.

48

4.1 – DRRA2 FFT architecture

R2

R2

R4

r40

r41

r42

r43

in0 in0

in1 in1

in2
in2

in3
in3

r20

r21

r22

r23

r40

r41

r42

r43

tw0

tw1

tw2

r20

r21

r22

r23

radix

radix

radix

radix

×

×

×

in0

in1

in2

in3

tw0

tw1

tw2

out0

out1

out2

out3

0

0

0

0

0

0

0

1

1

1

1

1

1

1

2

2

2

2

2

2

2

3

3

3

3

3

3

3

Figure 4.7: Block diagram of the Butterfly Unit

49

Implementation

The arithmetic operations are carried out by dedicated radix-2 and radix-4
butterflies. The radix-2 butterfly operates on two input samples, producing sum
and difference outputs as defined in Equation 2.10. Two parallel instances allow four
input points to be processed simultaneously, fully utilizing the four data input ports
and increasing throughput. The odd outputs of the butterflies are then multiplied
by the twiddle factors to complete the calculation of the FFT stage. The radix-4
butterfly processes four input samples at the time, producing four transformed
outputs according to the radix-4 algorithm defined in Equation 2.13. The outputs
1 through 3 are then multiplied by the twiddle factors. Three dedicated multipliers
are instantiated, each receiving a butterfly output and the corresponding twiddle
factor from input ports 4 to 6.

The routing of the signals to the appropriate butterflies and multipliers depends
on the selected radix, which is provided to the module through the bu instructions.
To ensure timing closure and support higher operating frequencies, intermediate
butterfly results are stored in pipeline registers. These registers capture the results
of the current cycle and provide stable inputs for the multiplier stage, maintaining
throughput and computational efficiency.

The control logic of the bu block is instruction-driven. Each incoming instruction
word is decoded to determine whether it corresponds to a butterfly operation or
an FSM update. The bu instruction, shown in Table 4.4, sets the radix for
the calculation, which is stored in the radix memory at the index specified in
the option field. Configurations can be modified at run time using the fsm
instruction, which drives the state evolution of the module, switching between
different bu configurations according to the defined delays. This mechanism enables
the accelerator to dynamically alternate between radix-2 and radix-4 execution,
enhancing programmability and adaptability.

option radix
24:23 22:21

Table 4.4: bu instruction

Radix-2/4 Butterfly

The radix2_bu is a combinational block that implements radix-2 butterfly opera-
tions. It takes two complex inputs and produces two complex outputs by performing
simple additions and subtractions. Each input is a signed fixed-point complex
number packed into a 32-bit word. The real part occupies the upper half of the
word, corresponding to COMPLEX_BITWIDTH = WORD_BITWIDTH/2 bits, while the
imaginary part occupies the lower half. The module is fully parameterized, allowing

50

4.1 – DRRA2 FFT architecture

flexibility in the word width (WORD_BITWIDTH), which automatically determines
the width of the real and imaginary components (COMPLEX_BITWIDTH).

Each input word is split into real and imaginary components, and the butterfly
operations are applied according to the equations:

out0 = in0 + in1

out1 = in0 − in1
(4.2)

out0r = in0r + in1r, out0i = in0i + in1i

out1r = in0r − in1r, out1i = in0i − in1i

(4.3)

This produces two signed fixed-point complex outputs, encoded in the same
packed format.

The radix4_bu follows the same principle, but processes four inputs to generate
four outputs according to the radix-4 Cooley-Tukey decomposition:

out0 = in0 + in1 + in2 + in3

out1 = in0 − j in1 − in2 + j in3

out2 = in0 − in1 + in2 − in3

out3 = in0 + j in1 − in2 − j in3

(4.4)

Complex Multiplier

The multiplier module performs fixed-point complex multiplication, which is
essential for applying twiddle factors in FFT accelerators. Each input is a packed
signed fixed-point complex number, containing a real and imaginary part. The
multiplier unpacks the inputs, performs the four required real multiplications, and
reconstructs the output using the canonic formula for complex multiplication:

(a + jb) · (c + jd) = (ac − bd) + j(ad + bc) (4.5)

To support fixed-point arithmetic, truncation and rounding are applied after
each multiplication. A fractional bit width parameter (FRAC_BITWIDTH) defines
the binary point position, preserving the proper scaling across operations. Two’s
complement arithmetic is used to handle negative terms, such as −bd. The results
are then recombined into a packed complex output.

The module also detects special rotation coefficients corresponding to 0◦ and
−90◦, which are used in both radix-2 and radix-4 algorithms. In the former case,
the multiplication by 1 can be skipped entirely, since it leaves the value unchanged.
This also resolves an issue of the Q1.15 format, whose range extends from −1.0 to
+0.999969482 and therefore cannot exactly represent 1. Because multiplications
by 1 occur frequently during the FFT computation, even this small quantization

51

Implementation

error could accumulate and degrade the accuracy of the final result. By skipping
the multiplication, this problem is completely avoided. Multiplication by −j can
instead be implemented efficiently by simply changing the sign of the real part and
swapping the real and imaginary components. In addition to improving numerical
accuracy, these optimizations also help reduce power consumption by significantly
reducing the utilization of the complex multiplier.

4.2 DRRA fabric

The final composition of the DRRA fabric for the RF-based FFT accelerator is
illustrated in Figure 4.8.

As introduced in the previous sections, the DRRA architecture is organized into
three rows of cells. The first row (Cell_0) integrates both a switch box and an
IOSRAM, which together enable the acquisition of data from the input buffers and
its temporary storage before transfer to the RF. The second row (Cell_1) is entirely
dedicated to computation, with all resources allocated to FFT processing. Here,
data are stored in the RF, supplied to the BU together with the twiddle factors
generated by the TFG, and the results are written back into the RF. This process
is repeated iteratively until the complete FFT is executed. The interconnections
among the modules, as well as between adjacent rows, are managed by the SWB.
The third row (Cell_2) mirrors the structure of Cell_0, but is instead used to
transfer the processed data from the RF to the SRAM and finally to the output
buffers. This arrangement ensures that data can be efficiently transferred to
the fabric, stored locally, and made immediately available for processing in the
computational row. The middle cell is optimized for throughput, combining RF, BU,
and TFG, with the SWB managing intra-cell routing to minimize data movement
overhead. This top-to-bottom organization establishes a streamlined and efficient
data flow throughout the fabric.

It is important to note that this arrangement corresponds to a single column of
the DRRA fabric. For more demanding applications that require higher throughput,
the inherent scalability of the DRRA can be exploited by replicating this column
multiple times, thereby enabling concurrent execution of several independent
FFT computations. This property is particularly relevant for the FMCW radar
application considered in this work, where large volumes of data are periodically
acquired from the ADC of each antenna, delivering multiple chirps that must be
processed within the short time interval preceding the next sampling period. The
parallelism offered by the DRRA fabric provides an effective means of meeting
these stringent real-time processing requirements.

52

4.2 – DRRA fabric

Input Buffer

Output Buffer

[0,0]

s
e
q
u
e
n
c
e
r_im

p
l

3
1

2
0swb_impl

7
5

6
4

11
9

10
8

15
13

14
12

19
17

18
16

iosram_top_impl

[1,0]

s
e
q
u
e
n
c
e
r_im

p
l

3
1

2
0swb_impl

7
5

6
4

11
9

10
8

15
13

14
12

19
17

18
16

rf_fft_r4_impl

23
21

22
20

27
25

26
24

31
29

30
28

tfg_impl

35
33

34
32

39
37

38
36

43
41

42
40

47
45

46
44

51
49

50
48

55
53

54
52

59
57

58
56

bu_impl

[2,0]

s
e
q
u
e
n
c
e
r_im

p
l

3
1

2
0swb_impl

7
5

6
4

11
9

10
8

15
13

14
12

19
17

18
16

iosram_btm_impl

Figure 4.8: Layout of the DRRA fabric for the implementation of the FFT
accelerator

53

Implementation

4.3 PASM program
The detailed execution flow of the FFT accelerator is programmed through the
PASM code reported in Appendix 7.1. The structure and semantics of PASM
programs were introduced earlier in Section 3.2, where the notions of operation
regions (rop) and constraints (cstr) were defined. Building on that foundation,
each rop in the program corresponds here to one of the functional units instantiated
in the DRRA column shown in Figure 4.8, while the constraints establish ordering
and synchronization rules across them.

The program begins by configuring the routing and data stream units in the first
cell using the instructions route0r, input_r, and input_w. Instruction route0r
(Listing 4.1) establishes a connection between the IO cell input and the IO input
port of the SRAM, enabling data exchange. The AGUs subsequently transmit the
read address to the buffer and generate the write address for the SRAM.

1 rop <route0r > (row =0, col =0, slot =0, port =2){
2 route(slot =0, option =0, sr=0, source =2, target =0 b010000000)
3 }

Listing 4.1: IO routing

Synchronization between read and write operations is enforced through con-
straints associated with individual rop instructions, as shown in Listing 4.2.

1 cstr(" input_r == input_w ")

Listing 4.2: IO read/write constraint

After data are transferred to the SRAM, they are moved to the RF in the
computational cell. The connection between Cell_0 and Cell_1 is created using
route1wr. The transfer process is managed by the AGUs, which generate the read
and write addresses for the SRAM and the write address for the RF.

1 rop <route1wr > (row =1, col =0, slot =0, port =2){
2 route (slot =0, option =0, sr=1, source =1,
3 target =0 b0000000000000010)
4 route (slot =0, option =0, sr=0, source =1, target =0 b010000000)
5 }

Listing 4.3: Routing between SRAM in Cell_0 and RF in Cell_1

In the central cell, a sequence of swb instructions establishes all connections
among the RF, TFG, and BU. Specifically, the first four ports of the RF are
connected to the first four input ports of the BU, while the remaining three ports
are connected to the TFG. The output ports of the BU are then connected to the
inputs of the RF. The input and output AGUs of the RF and BU are configured
for the specific FFT computation by specifying the required parameters.

54

4.3 – PASM program

1 rop <read_d1 > (row =1, col =0, slot =1, port =1){
2 fft (slot =1, port =1, n_points =256 , radix =0, n_bu =1, mode =1,

delay =0)
3 }
4 rop <bu > (row =1, col =0, slot =8, port =0){
5 bu (slot =8, option =0, radix =0)
6 }

Listing 4.4: FFT configuration and start

The computation is then initiated, with the AGUs managing all read and write
operations while the BU processes data until completion. Stream alignment is
enforced by associated constraints; for example, twiddle factors must be read one
cycle before the corresponding butterfly operation to compensate for the delay
introduced by the TFG.

1 cstr(" read_twid1 == read_d1 - 1")

Listing 4.5: Twiddle read contraint

Similarly, the writing process in the RF is delayed by two clock cycles to account
for the computation latency in the BU.

1 cstr(" read_twid1 == read_d1 - 1")

Listing 4.6: RF write delay

At the end of the computation, data in the RF are transferred back to the SRAM
in the bottom cell and then to the output buffer, similarly to the reading process
in the top cell. The completion of the FFT process is controlled by the constraint
in Listing 4.7, which imposes a wait for a predetermined number of cycles before
reading the results from the RF. These timing constants are automatically calculated
and inserted by the compiler based on the timing models of the components.

1 cstr(" read_res > write_d1 + 512")

Listing 4.7: Wait for the end of FFT computation

This programmatic description makes explicit the correspondence between the
hardware architecture and the software-controlled execution model. It demonstrates
how the fabric naturally maps the FFT process into a sequence of communication
and computation regions, with synchronization points ensuring correct execution
order. Compared to a purely hardwired accelerator, this approach allows the same
fabric to be easily reconfigured to support different FFT sizes, radices, or numbers
of butterflies by simply modifying the PASM program.

55

56

Chapter 5

Results

The final DRRA-based FFT accelerator design has been evaluated through sim-
ulation using the Vesyla framework. To assess its correctness and accuracy, the
results obtained from the hardware model were first compared against a golden
reference model developed in MATLAB. In addition, a more detailed validation
was carried out by comparing the accelerator outputs with those produced by a
Python implementation based on standard numerical libraries, as well as with the
results obtained from a Texas Instruments DSP library. This multi-level comparison
ensures both functional correctness and numerical reliability, while also providing a
benchmark against widely used software and hardware solutions. Finally, the design
has been synthesized, allowing the extraction of information about area, power
consumption, and timing, thus completing the evaluation from both functional and
implementation perspectives.

5.1 Simulation
The functional behavior of the proposed FFT accelerator has been evaluated
using the Vesyla toolchain, which provides a complete simulation and verification
environment for DRRA-based designs, as described in Section 3.4. Starting from
the PASM program presented in the previous section, Vesyla translates the abstract
program representation into a cycle-accurate simulation model while simultaneously
assembling the fabric. The final simulation is executed in Questasim, using the
RTL description along with the generated data and instruction memories.

In standard Vesyla test cases, which use predefined library components, the out-
put buffer from the simulation is compared to the outputs generated by model_0 in
C++. A bit-for-bit match indicates that the hardware implementation behaves con-
sistently with the high-level description, validating functional correctness. However,
during the development of the FFT components, this method proved challenging

57

Results

due to fixed-point representations. Differences in rounding and truncation between
the two implementations caused small discrepancies in the least significant frac-
tional bits. These minor differences were interpreted as functional mismatches,
resulting in false verification failures.

To address this limitation, a golden model was implemented in MATLAB. The
input signal was generated and sampled to produce N input samples, which were
then applied to both the MATLAB model and the DRRA implementation. The
outputs were plotted for comparison, allowing verification of functional correctness
while ignoring minor LSB differences. Figure 5.1 shows the comparison between
the MATLAB golden model and the DRRA FFT results.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

M
a

g
n

it
u

d
e

Matlab FFT

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

M
a

g
n

it
u

d
e

DRRA2 FFT

Figure 5.1: Results comparison between the MATLAB golden model and the
DRRA FFT results

The sampled signal is defined as:

x = 0.01 sin(2π · 1200 t) + 0.005 sin(2π · 3000 t) (5.1)

representing two sinusoidal components with frequencies f1 = 1200 Hz and f2 =
3000 Hz, which correspond to the peaks observed in Figure 5.1.

58

5.1 – Simulation

While this method assesses functional correctness, it does not quantify numerical
accuracy. For this purpose, a Python-based evaluation was conducted using two
reference models. The first model uses NumPy library functions to produce
complex64 FFT outputs with 32-bit floating-point precision. The second model
employs the TI DSPLib DSP_fft16x16, which implements a mixed-radix (radix-2
and radix-4) FFT using Q15 fixed-point format.

The outputs from these models, along with the DRRA FFT results, were
compared to reference data from the Texas Instruments radar Hardware Accelerator
(HWA) FFT module [30]. The comparison is summarized in Table 5.1.

Model Max. Difference Relative Error
[%]

FFT_NumPy 9.4868 0.0581
FFT_16x16 53.0000 0.3243
DRRA_FFT_2r2 23.0000 0.1408
DRRA_FFT_r4 14.0000 0.0857

Table 5.1: Results comparison between the models and the reference Radar HWA
FFT data

The results demonstrate the accuracy of the DRRA-based FFT implementations.
Among the two variants, the radix-4 implementation (DRRA_FFT_r4) achieves
the closest match, with a maximum difference of 14.0 and a relative error of 0.0857%.
The radix-2 implementation (DRRA_FFT_2r2) shows slightly higher deviation,
with a maximum difference of 23.0 and a relative error of 0.1408%. This difference
arises because the radix-4 FFT requires fewer computational stages, reducing the
accumulation of quantization errors introduced in fixed-point arithmetic.

Comparisons with the other models provide further insight. The NumPy-based
FFT exhibits the smallest relative error (0.0581%), due to its 32-bit floating-point
precision. Conversely, the TI DSPLib FFT_16x16 shows the largest discrepancy
(0.3243%) because of its reliance on Q15 fixed-point representation. Overall, the
DRRA FFT solutions achieve accuracy levels close to the floating-point implemen-
tation while maintaining the efficiency of fixed-point arithmetic, with the radix-4
variant offering the best trade-off between precision and computational cost.

The input signal and corresponding FFT outputs are illustrated in Figure 5.2.

59

Results

R
e
a
l-o

n
ly

 sig
n
a
l 1

_2
1

0
_9

3
7

.5
 H

z in
 tim

e
 d

o
m

a
in

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
A

D
C

 S
a
m

p
le

s (in
d
e
xe

s)

-2
0

0 0

2
0

0

-1
0

0

1
0

0

Ampliitude

D
R

R
A

 FFT
 O

u
tp

u
t, B

in
s

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
B

in
s

0

5
0

0
0

1
0

0
0

0

1
5

0
0

0

FFT Code

D
R

R
A

 FFT
 O

u
tp

u
t, Fre

q
u
e
n
cy

 d
o
m

a
in

-4
-2

0
2

4
-5

-3
-1

1
3

5
Fre

q
u
e
n
cy

 H
z (x

1
e
+

0
6

)

0 2
0

4
0

6
0

FFT-code (mag) / 256 Figure
5.2:

Input
signaland

FFT
output,w

ith
x-axis

corresponding
to

frequency
bins

and
frequency

values

60

5.2 – Synthesis

5.2 Synthesis
The FFT accelerator, composed of 3 cells in a single column, was synthesized using
Cadence Genus targeting the GlobalFoundries (GF) 22FDX 22 nm Fully-Depleted
Silicon-on-Insulator (FD-SOI) process technology, with a nominal supply voltage of
0.8 V. The synthesis flow included standard steps of logical optimization, gate-level
mapping, and technology-specific cell selection, allowing for the estimation of area,
power, and timing.

The design was synthesized for a target clock period of 1 ns, corresponding to
a maximum operating frequency of 1 GHz. Static timing analysis confirmed that
this constraint was fully met, with zero slack along the critical path. The critical
path was identified within the computational unit of the accelerator: it extends
from the state_reg[0] register in the finite-state machine of the bu resource to
the bu_reg2_reg[15] register in the same module. This path is associated with
the input selection of the radices, which depends on the radix option specified by
the instruction. Consequently, the maximum achievable operating frequency of
this design is limited to 1 GHz.

Instance Module Cell Count Total Area
[µm2]

fabric fabric 236763 236721.479
cell_0_0 cell 19022 69932.216

controller controller 7826 5820.273
resource_0 swb 6991 1927.711
resource_1 iosram_top 4199 62178.242

cell_1_0 cell 200529 97288.622
controller controller 7007 5574.866
resource_0 swb 11376 4106.486
resource_1 rf_fft_r4 137022 67040.497
resource_5 tfg 4967 2412.268
resource_8 bu 40087 18139.996

cell_2_0 cell 17084 69483.601
controller controller 8019 5855.683
resource_0 swb 4952 1452.805
resource_1 iosram_btm 4107 62169.123

Table 5.2: Cell count and area breakdown of the DRRA fabric

The total area of the synthesized fabric is reported in Table 5.2. Among

61

Results

the three cells, the central computational cell (cell_1_0) dominates the overall
area occupation, accounting for 41.10% of the fabric. The top and bottom cells
(cell_0_0 and cell_2_0) contribute 29.54% and 29.36%, respectively, as shown in
Figure 5.3. In these two peripheral cells, the area is almost entirely driven by the
integrated SRAM blocks, which have a width of 256 bits and a depth of 64 words,
representing roughly 85% of their footprint.

Within the central computational cell, the detailed area breakdown is presented
in Figure 5.4. The register file resource rf_fft_r4 is by far the main contributor,
occupying 68.33% of the cell area. This is explained by its relatively large depth
of 256 words and the complexity of its associated address decoding logic. The
(bu), where for adders and multipliers are instantiated, accounts for 20.04%. The
(tfg), implemented with a compact ROM-based architecture, represents only 2.47%
of the cell area. The remaining fraction is split between the controller and
the swb. This area distribution reflects the strong impact of memory in FFT
implementations, particularly in memory-based architectures where large data sets
must be preserved in-place during processing.

29.54%

41.10%

29.36%

cell_0_0
cell_1_0
cell_2_0

Figure 5.3: Area distribution of top-
level cells

3.49%
5.67%

68.33%

2.47%

20.04%

2.47%

3.49%
5.67%

68.33%

controller tfg
swb bu
rf_fft_r4

Figure 5.4: Area distribution of
cell_1_0

The power characterization of the synthesized design is summarized in Table 5.3.
At a clock frequency of 1 GHz, the total power consumption amounts to 98.14 mW.
Registers are the primary contributors, responsible for 57.55% of the total power,

62

5.2 – Synthesis

followed by logic resources with 33.73%, and memory blocks with 8.72%, as shown
in Figure 5.6. When considering the type of power consumption, internal power is
dominant at 78.13% of the total, switching power accounts for 21.71%, and leakage
power is negligible at only 0.16% (Figure 5.5). The marginal impact of leakage
is expected, since the relatively high operating frequency emphasizes dynamic
contributions (internal and switching) over static consumption.

Category Leakage Internal Switching Total
[mW] [mW] [mW] [mW]

memory 0.100 8.452 0.008 8.562
register 0.014 53.18 3.284 56.48
logic 0.040 15.05 18.02 33.10

Subtotal 0.154 76.68 21.31 98.14

Table 5.3: Power report of the fabric, for clock frequency of f = 1 GHz

78.13%

0.16%

21.71%

0.16%

78.13%

Internal
Leakage
Switching

Figure 5.5: Power distribution of the
fabric, by category

8.72%57.55%

33.73%

Memory
Register
Logic

Figure 5.6: Power distribution of the
fabric, by resource

A comparison between the proposed FFT accelerator and other designs imple-
menting memory-based variable-size FFT architectures is summarized in Table 5.4.

63

Results

The comparison considers only designs that focus solely on the FFT computa-
tion, excluding works that integrate additional modules. The analysis focuses on
256-point FFT computations and highlights key factors to evaluate efficiency and
performance. To provide a fairer comparison between different technology nodes,
the area and power have been normalized using the scaling tool described in [31],
taking the 22-nm technology used in this work as the reference node.

Moreover, the energy per FFT operation has been computed taking into account
both clock frequency and cycle counts as follows:

Eeff = P

f
· Ncycles (5.2)

Design Technology Voltage Frequency Area Latency Power Energy
[nm] [V] [MHz] [mm2] [cycles] [mW] [nJ/FFT]

This work 22 0.8 1000 0.24 258 98.14 25.3
Chen et al. [32] 45 0.9 1000 0.53 277 58.09 16.09
Wang et al. [33] 16 0.8 940 1.02 284 224.89 67.95
Guo et al. [34] 65 1.0 500 0.20 288 173.78 100.09

DRRA1, Shami [35] 65 - 500 0.22 536 81.61 87.49

Table 5.4: Comparison of FFT accelerator designs

The proposed design, implemented in a 22 nm technology, achieves a silicon
footprint of only 0.24 mm2. This is smaller than [32] (0.53 mm2) and significantly
more compact than [33] (1.02 mm2), while [34] achieves an even smaller area of
0.20 mm2.

In terms of performance, all designs complete the computation in a comparable
number of cycles, ranging from 258 (this work) to 288 [34]. The proposed design
achieves the lowest cycle count using the radix-4 configuration, considering only
the cycles for FFT computation and excluding input/output operations. Coupled
with a 1 GHz operating frequency, this results in high throughput with minimal
overhead.

At 98.14 mW, the proposed design has a higher power consumption than
[32] (58.09 mW), but is significantly better than both [33] (224.89 mW) and [34]
(173.78 mW). When considering energy efficiency, the proposed accelerator achieves
25.3 nJ/FFT, which is higher than [32] (16.09 nJ/FFT), but demonstrates substan-
tial advantages over [33] (67.95 nJ/FFT) and [34] (100.09 nJ/FFT), with energy
reductions of 63% and 75%, respectively.

Compared to the previous FFT architecture implemented in the first-generation
DRRA (DRRA-1 [35]), the proposed design demonstrates substantial performance
gains. Despite occupying a nearly identical silicon area (0.22 mm2) and achieving
slightly lower power consumption (81.61 mW), the DRRA-1 FFT requires 536 clock

64

5.2 – Synthesis

cycles to execute a 256-point FFT, more than twice the latency of the new design.
Consequently, the proposed implementation delivers more than 3× improvement
in energy efficiency. Overall, the proposed solution achieves a balanced trade-off
between silicon area, performance, and energy efficiency, while leveraging the
flexibility of the reconfigurable DRRA architecture.

65

66

Chapter 6

Conclusions

This thesis has addressed the challenges imposed by mmWave FMCW radar systems,
specifically the stringent requirements for efficient, low-latency, and energy-aware
execution of the FFT. Within this context, a reconfigurable FFT accelerator has
been designed and implemented on the DRRA, a coarse-grained reconfigurable
fabric. The proposed solution demonstrates how such an architecture can effectively
meet the demands of real-time radar signal processing, where conventional platforms
such as DSPs, FPGAs, or ASICs either lack the necessary flexibility or struggle to
sustain the required trade-offs among performance, area, and power.

The accelerator integrates dedicated architectural blocks, such as RF, BU, and
TFG modules, while leveraging the spatial programmability of the DRRA and
the resource-centric configurability enabled by the CIS programming model. This
approach allows for efficient mapping of FFT kernels, taking advantage of the
inherent parallelism and reduced control overhead.

Extensive functional validation confirmed the correctness of the design by com-
parison against reference models, demonstrating near floating-point accuracy while
maintaining the efficiency of fixed-point arithmetic. Post-synthesis evaluation in
22 nm CMOS technology revealed operation at 1 GHz, with a compact silicon foot-
print of 0.24 mm2 and a power consumption of 98.14 mW, corresponding to an energy
efficiency of 25.3 nJ per 256-point FFT. When compared to prior DRRA-based
FFT solutions, this implementation delivers more than a threefold improvement in
energy efficiency, highlighting a favorable balance among throughput, power, and
area.

These results confirm the viability of the DRRA as a platform for domain-specific
acceleration in radar systems. The work illustrates how reconfigurable fabrics can
bridge the gap between the peak efficiency of ASICs and the flexibility of FPGAs,
ultimately offering a scalable, reusable, and adaptable framework for emerging
high-performance embedded applications.

67

Conclusions

6.1 Future work
Future developments may extend this research in several directions. Scaling to
larger FFT sizes will require novel memory hierarchies and addressing mechanisms
to partition data into manageable subsets, while minimizing latency and band-
width bottlenecks. Hardware-efficient matrix transposition and reordering schemes
must be explored to enable 3D-FFT implementations for full range-Doppler-angle
processing, thereby unlocking complete radar data cube generation directly on
the accelerator. At the same time, exploiting higher degrees of parallelism could
further reduce execution time for multi-antenna radar scenarios or to increase the
resolution.

In conclusion, this thesis has demonstrated that DRRA-based accelerators
can deliver compact, reconfigurable, and energy-efficient FFT processing, estab-
lishing a promising foundation for next-generation FMCW radar and related
high-performance embedded applications.

68

Chapter 7

Appendix

7.1 PASM program for DRRA FFT

1 epoch <fft256_2r2 > {
2 rop <route0r > (row =0, col =0, slot =0, port =2){
3 route(slot =0, option =0, sr=0, source =2, target =0 b010000000)
4 }
5 rop <input_r > (row =0, col =0, slot =1, port =0){
6 dsu(slot =1, port =0, init_addr =0)
7 rep(slot =1, port =0, level =0, iter =31, step =1, delay =0)
8 }
9 rop <input_w > (row =0, col =0, slot =1, port =2){

10 dsu(slot =1, port =2, init_addr =0)
11 rep(slot =1, port =2, level =0, iter =31, step =1, delay =0)
12 }
13 rop <route1wr > (row =1, col =0, slot =0, port =2){
14 route (slot =0, option =0, sr=1, source =1, target =0

b0000000000000010)
15 route (slot =0, option =0, sr=0, source =1, target =0 b010000000)
16 }
17 rop <read_val > (row =0, col =0, slot =2, port =3){
18 dsu(slot =2, port =3, init_addr =0)
19 rep(slot =2, port =3, level =0, iter =31, step =1, delay =0)
20 }
21 rop <write_val > (row =1, col =0, slot =1, port =2){
22 dsu (slot =1, port =2, init_addr =0)
23 rep (slot =1, port =2, iter =31, step =1, delay =0)
24 }
25 rop <swb_0 > (row =1, col =0, slot =0, port =0){
26 swb (slot =0, option =0, channel =8, source =1, target =8)
27 swb (slot =0, option =0, channel =9, source =2, target =9)
28 swb (slot =0, option =0, channel =10, source =3, target =10)
29 swb (slot =0, option =0, channel =11, source =4, target =11)

69

Appendix

30 swb (slot =0, option =0, channel =12, source =5, target =12)
31 swb (slot =0, option =0, channel =13, source =6, target =13)
32 swb (slot =0, option =0, channel =1, source =8, target =1)
33 swb (slot =0, option =0, channel =2, source =9, target =2)
34 swb (slot =0, option =0, channel =3, source =10, target =3)
35 swb (slot =0, option =0, channel =4, source =11, target =4)
36 }
37 rop <read_d1 > (row =1, col =0, slot =1, port =1){
38 fft (slot =1, port =1, n_points =256 , radix =0, n_bu =1, mode =1,

delay =0)
39 }
40 rop <read_d2 > (row =1, col =0, slot =2, port =1){
41 fft (slot =2, port =1, n_points =256 , radix =0, n_bu =1, mode =1,

delay =0)
42 }
43 rop <read_d3 > (row =1, col =0, slot =3, port =1){
44 fft (slot =3, port =1, n_points =256 , radix =0, n_bu =1, mode =1,

delay =0)
45 }
46 rop <read_d4 > (row =1, col =0, slot =4, port =1){
47 fft (slot =4, port =1, n_points =256 , radix =0, n_bu =1, mode =1,

delay =0)
48 }
49 rop <read_twid1 > (row =1, col =0, slot =5, port =1){
50 fft (slot =5, port =1, n_points =256 , radix =0, n_bu =1, mode =0,

delay =0)
51 }
52 rop <read_twid2 > (row =1, col =0, slot =6, port =1){
53 fft (slot =6, port =1, n_points =256 , radix =0, n_bu =1, mode =0,

delay =0)
54 }
55 rop <write_d1 > (row =1, col =0, slot =1, port =0){
56 fft (slot =1, port =0, n_points =256 , radix =0, n_bu =1, mode =1,

delay =0)
57 }
58 rop <write_d2 > (row =1, col =0, slot =2, port =0){
59 fft (slot =2, port =0, n_points =256 , radix =0, n_bu =1, mode =1,

delay =0)
60 }
61 rop <write_d3 > (row =1, col =0, slot =3, port =0){
62 fft (slot =3, port =0, n_points =256 , radix =0, n_bu =1, mode =1,

delay =0)
63 }
64 rop <write_d4 > (row =1, col =0, slot =4, port =0){
65 fft (slot =4, port =0, n_points =256 , radix =0, n_bu =1, mode =1,

delay =0)
66 }
67 rop <bu > (row =1, col =0, slot =8, port =0){
68 bu (slot =8, option =0, radix =0)

70

7.1 – PASM program for DRRA FFT

69 }
70 rop <read_res > (row =1, col =0, slot =1, port =3){
71 dsu (slot =1, port =3, init_addr =0)
72 rep (slot =1, port =3, level =0, iter =31, step =1, delay =0)
73 }
74 rop <route2w > (row =2, col =0, slot =0, port =2){
75 route (slot =0, option =0, sr=1, source =1, target =0

b0000000000000100)
76 }
77 rop <write_res > (row =2, col =0, slot =2, port =2){
78 dsu (slot =2, port =2, init_addr =0)
79 rep (slot =2, port =2, iter =31, step =1, delay =0)
80 }
81 rop <output_r > (row =2, col =0, slot =1, port =3){
82 dsu (slot =1, port =3, init_addr =0)
83 rep (slot =1, port =3, iter =31, step =1, delay =0)
84 }
85 rop <output_w > (row =2, col =0, slot =1, port =1){
86 dsu (slot =1, port =1, init_addr =0)
87 rep (slot =1, port =1, iter =31, step =1, delay =0)
88 }
89
90 cstr(" input_r == input_w ")
91 cstr(" route0r < input_r ")
92 cstr(" input_w < read_val ")
93 cstr(" route1wr < read_val ")
94 cstr(" read_val .e0 [0] == write_val .e0 [0]")
95 cstr(" write_val .e0 [31] < read_d1 ")
96 cstr("swb < read_d1 ")
97 cstr("bu < read_d1 ")
98 cstr(" read_d2 == read_d1 ")
99 cstr(" read_d3 == read_d1 ")

100 cstr(" read_d4 == read_d1 ")
101 cstr(" read_twid1 == read_d1 - 1")
102 cstr(" read_twid2 == read_twid1 ")
103 cstr(" write_d1 == read_d1 + 2")
104 cstr(" write_d2 == read_d2 + 2")
105 cstr(" write_d3 == read_d3 + 2")
106 cstr(" write_d4 == read_d4 + 2")
107 cstr("bu != route1wr ")
108 cstr("bu != swb")
109 cstr(" read_res > write_d1 + 512")
110 cstr(" write_res == read_res + 1")
111 cstr(" output_r > write_res ")
112 cstr(" output_r == output_w ")
113 }

Listing 7.1: FFT-256 dual radix-2 PASM program

71

72

Bibliography

[1] Jonas Fuchs, Markus Gardill, Maximilian Lübke, Anand Dubey, and Fabian
Lurz. «A Machine Learning Perspective on Automotive Radar Direction
of Arrival Estimation». In: IEEE Access 10 (2022), pp. 6775–6797. doi:
10.1109/ACCESS.2022.3141587 (cit. on p. 1).

[2] Yuwei Cheng, Jingran Su, Mengxin Jiang, and Yimin Liu. «A Novel Radar
Point Cloud Generation Method for Robot Environment Perception». In:
IEEE Transactions on Robotics 38.6 (2022), pp. 3754–3773. doi: 10.1109/
TRO.2022.3185831 (cit. on pp. 1, 2).

[3] Khushi Gupta, Srinivas M. B., Soumya J, Om Jee Pandey, and Linga Reddy
Cenkeramaddi. «Automatic Contact-Less Monitoring of Breathing Rate and
Heart Rate Utilizing the Fusion of mmWave Radar and Camera Steering
System». In: IEEE Sensors Journal 22.22 (2022), pp. 22179–22191. doi:
10.1109/JSEN.2022.3210256 (cit. on p. 2).

[4] Gen Li, Yun Ge, Yiyu Wang, Qingwu Chen, and Gang Wang. «Detection of
Human Breathing in Non-Line-of-Sight Region by Using mmWave FMCW
Radar». In: IEEE Transactions on Instrumentation and Measurement 71
(2022), pp. 1–11. doi: 10.1109/TIM.2022.3208266 (cit. on p. 2).

[5] Muhammet Emin Yanik and Sandeep Rao. «Radar-Based Multiple Target
Classification in Complex Environments Using 1D-CNN Models». In: 2023
IEEE Radar Conference (RadarConf23). 2023, pp. 1–6. doi: 10.1109/Radar
Conf2351548.2023.10149609 (cit. on p. 2).

[6] Dian T. Nugraha, Andre Roger, and Romain Ygnace. «Integrated FFT acceler-
ator and inline bin-rejection for automotive FMCW radar signal processing».
In: 2015 European Radar Conference (EuRAD). 2015, pp. 564–567. doi:
10.1109/EuRAD.2015.7346363 (cit. on pp. 2, 4).

[7] Jinmoo Heo, Yongchul Jung, Seongjoo Lee, and Yunho Jung. «FPGA Imple-
mentation of an Efficient FFT Processor for FMCW Radar Signal Processing».
In: Sensors 21.19 (2021). issn: 1424-8220. doi: 10.3390/s21196443. url:
https://www.mdpi.com/1424-8220/21/19/6443 (cit. on pp. 3, 4, 24, 26).

73

https://doi.org/10.1109/ACCESS.2022.3141587
https://doi.org/10.1109/TRO.2022.3185831
https://doi.org/10.1109/TRO.2022.3185831
https://doi.org/10.1109/JSEN.2022.3210256
https://doi.org/10.1109/TIM.2022.3208266
https://doi.org/10.1109/RadarConf2351548.2023.10149609
https://doi.org/10.1109/RadarConf2351548.2023.10149609
https://doi.org/10.1109/EuRAD.2015.7346363
https://doi.org/10.3390/s21196443
https://www.mdpi.com/1424-8220/21/19/6443

BIBLIOGRAPHY

[8] Tourangbam Harishore Singh, Po-Tsang Huang, Kung-Shuo Kao, Chih-Shiang
Cheng, Kuei-Ann Wen, and Li-Chun Wang. «Energy-Efficient Sparse FFT
and Compressed Transpose Memory for mmWave FMCW Radar Sensor
System». In: IEEE Transactions on Instrumentation and Measurement 73
(2024), pp. 1–11. doi: 10.1109/TIM.2024.3385823 (cit. on pp. 3, 25, 26).

[9] M. A. Shami. «Dynamically Reconfigurable Resource Array». PhD thesis.
Stockholm: KTH Royal Institute of Technology, 2012 (cit. on pp. 5, 27, 28).

[10] Yu Yang Jordi Altayo and Ahmed Hemani. «Tile-based Heterogeneous Re-
configurable Architecture Template and Its Instruction Set». In: Open-Source
Computer Archietcture Research Workshop 2024. Buenos Aires, Argentina,
June 2024 (cit. on pp. 5, 30).

[11] Yu Yang, Jordi Altayó González, Paul Delestrac, and Ahmed Hemani. CIS:
Composable Instruction Set for Data Streaming Applications. 2025. arXiv:
2407.00207 [cs.AR]. url: https://arxiv.org/abs/2407.00207 (cit. on
pp. 5, 27, 30–32).

[12] E. O. Brigham and R. E. Morrow. «The fast Fourier transform». In: IEEE
Spectrum 4.12 (1967), pp. 63–70. doi: 10.1109/MSPEC.1967.5217220 (cit. on
p. 8).

[13] James W. Cooley and John W. Tukey. «An algorithm for the machine
calculation of complex Fourier series». In: Mathematics of Computation 19
(1965), pp. 297–301. url: https://api.semanticscholar.org/CorpusID:
121744946 (cit. on p. 8).

[14] P. Duhamel and Henk Hollmann. «‘Split radix’ FFT algorithm». In: Electron-
ics Letters 20 (Feb. 1984), pp. 14–16. doi: 10.1049/el:19840012 (cit. on
p. 12).

[15] Lakshmi Santhosh and Anoop Thomas. «Implementation of radix 2 and
radix 22 FFT algorithms on Spartan6 FPGA». In: 2013 Fourth International
Conference on Computing, Communications and Networking Technologies
(ICCCNT). 2013, pp. 1–4. doi: 10.1109/ICCCNT.2013.6726840 (cit. on
p. 13).

[16] Sandeep Rao. Introduction to mmwave Sensing: FMCW Radars. Texas In-
struments. url: https://www.ti.com/content/dam/videos/external-
videos/ko-kr/2/3816841626001/5415203482001.mp4/subassets/mmwave
Sensing-FMCW-offlineviewing_0.pdf (cit. on pp. 14–16, 18).

[17] Mario Garrido, Fahad Qureshi, Jarmo Takala, and Oscar Gustafsson. «Hard-
ware architectures for the fast Fourier transform». In: Oct. 2018, pp. 613–647.
isbn: 978-3-319-91733-7. doi: 10.1007/978-3-319-91734-4_17 (cit. on
pp. 18–20).

74

https://doi.org/10.1109/TIM.2024.3385823
https://arxiv.org/abs/2407.00207
https://arxiv.org/abs/2407.00207
https://doi.org/10.1109/MSPEC.1967.5217220
https://api.semanticscholar.org/CorpusID:121744946
https://api.semanticscholar.org/CorpusID:121744946
https://doi.org/10.1049/el:19840012
https://doi.org/10.1109/ICCCNT.2013.6726840
https://www.ti.com/content/dam/videos/external-videos/ko-kr/2/3816841626001/5415203482001.mp4/subassets/mmwaveSensing-FMCW-offlineviewing_0.pdf
https://www.ti.com/content/dam/videos/external-videos/ko-kr/2/3816841626001/5415203482001.mp4/subassets/mmwaveSensing-FMCW-offlineviewing_0.pdf
https://www.ti.com/content/dam/videos/external-videos/ko-kr/2/3816841626001/5415203482001.mp4/subassets/mmwaveSensing-FMCW-offlineviewing_0.pdf
https://doi.org/10.1007/978-3-319-91734-4_17

BIBLIOGRAPHY

[18] Tomasz Patyk, Fahad Qureshi, and Jarmo Takala. «Hardware-Efficient Twid-
dle Factor Generator for Mixed Radix-2/3/4/5 FFTs». In: 2016 IEEE Inter-
national Workshop on Signal Processing Systems (SiPS). 2016, pp. 201–206.
doi: 10.1109/SiPS.2016.43 (cit. on p. 21).

[19] Qing Liu, Yanping Yu, and kuang Wang. «A novel method of twiddle factor
generation of the FFT processor for OFDM system». In: 2006 IET Inter-
national Conference on Wireless, Mobile and Multimedia Networks. 2006,
pp. 1–3. doi: 10.1049/cp:20061402 (cit. on p. 21).

[20] Reeshita Kallapu, Dimitrios Stathis, Srinivas Boppu, and Ahmed Hemani.
«DRRA-based Reconfigurable Architecture for Mixed-Radix FFT». In: 2023
36th International Conference on VLSI Design and 2023 22nd International
Conference on Embedded Systems (VLSID). 2023, pp. 25–30. doi: 10.1109/
VLSID57277.2023.00020 (cit. on p. 21).

[21] Jen-Chuan Chi and Sau-Gee Chen. «An efficient FFT twiddle factor genera-
tor». In: 2004 12th European Signal Processing Conference. 2004, pp. 1533–
1536 (cit. on p. 22).

[22] Mario Garrido, Jesús Grajal, and Oscar Gustafsson. «Optimum Circuits for
Bit-Dimension Permutations». In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 27.5 (2019), pp. 1148–1160. doi: 10.1109/TVLSI.
2019.2892322 (cit. on pp. 22, 23).

[23] Mario Garrido, Jesús Grajal, and Oscar Gustafsson. «Optimum Circuits for
Bit Reversal». In: IEEE Transactions on Circuits and Systems II: Express
Briefs 58.10 (2011), pp. 657–661. doi: 10.1109/TCSII.2011.2164141 (cit. on
p. 23).

[24] Mohan Guo, Dixian Zhao, Qisong Wu, Jiarui Wu, Diwei Li, and Peng Zhang.
«An Integrated Real-Time FMCW Radar Baseband Processor in 40-nm
CMOS». In: IEEE Access 11 (2023), pp. 36041–36051. doi: 10.1109/ACCESS.
2023.3265814 (cit. on pp. 24, 26).

[25] Zeynep Kaya and Mario Garrido. «Low-Latency 64-Parallel 4096-Point Memory-
Based FFT for 6G». In: IEEE Transactions on Circuits and Systems I: Regular
Papers 70.10 (2023), pp. 4004–4014. doi: 10.1109/TCSI.2023.3298227 (cit.
on pp. 25, 26).

[26] Hector A. Gonzalez, Marco Stolba, Bernhard Vogginger, Tim Rosmeisl, Chen
Liu, and Christian Mayr. «A Low-footprint FFT Accelerator for a RISC-
V-based Multi-core DSP in FMCW Radars». In: 2024 IEEE International
Symposium on Circuits and Systems (ISCAS). 2024, pp. 1–5. doi: 10.1109/
ISCAS58744.2024.10558386 (cit. on pp. 25, 26).

75

https://doi.org/10.1109/SiPS.2016.43
https://doi.org/10.1049/cp:20061402
https://doi.org/10.1109/VLSID57277.2023.00020
https://doi.org/10.1109/VLSID57277.2023.00020
https://doi.org/10.1109/TVLSI.2019.2892322
https://doi.org/10.1109/TVLSI.2019.2892322
https://doi.org/10.1109/TCSII.2011.2164141
https://doi.org/10.1109/ACCESS.2023.3265814
https://doi.org/10.1109/ACCESS.2023.3265814
https://doi.org/10.1109/TCSI.2023.3298227
https://doi.org/10.1109/ISCAS58744.2024.10558386
https://doi.org/10.1109/ISCAS58744.2024.10558386

BIBLIOGRAPHY

[27] Lingbo Ai, Zhentao Li, Yang Yu, and Menglin Zeng. «Design of High-
Performance Millimeter-Wave Radar Digital Processing Accelerator». In:
2024 International Conference on Microwave and Millimeter Wave Technology
(ICMMT). Vol. 1. 2024, pp. 1–3. doi: 10.1109/ICMMT61774.2024.10672454
(cit. on p. 26).

[28] Ahmed Hemani. «The SiLago Method: Next Generation VLSI Architectures
and Design Methods». In: Proceedings of the Third ACM International Work-
shop on Many-Core Embedded Systems. MES ’16. Seoul, Republic of Korea:
Association for Computing Machinery, 2016, p. 1. isbn: 9781450342629. doi:
10.1145/2934495.2936779. url: https://doi.org/10.1145/2934495.
2936779 (cit. on p. 28).

[29] SiLago Team. url: https://silago.eecs.kth.se/docs/ (cit. on pp. 28–30,
38).

[30] Texas Instruments. Hardware Accelerator (HWA) 2.0 overview 1. url: https:
//www.ti.com/content/dam/videos/external-videos/en-us/8/3816
841626001/6282120424001.mp4/subassets/hwa_2.0_slides_-_final_
version.pdf (visited on 09/09/2025) (cit. on p. 59).

[31] Satyabrata Sarangi and Bevan Baas. «DeepScaleTool: A Tool for the Accurate
Estimation of Technology Scaling in the Deep-Submicron Era». In: 2021 IEEE
International Symposium on Circuits and Systems (ISCAS). 2021, pp. 1–5.
doi: 10.1109/ISCAS51556.2021.9401196 (cit. on p. 64).

[32] Xiaowen Chen, Yuanwu Lei, Zhonghai Lu, and Shuming Chen. «A Variable-
Size FFT Hardware Accelerator Based on Matrix Transposition». In: IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 26.10 (2018),
pp. 1953–1966. doi: 10.1109/TVLSI.2018.2846688 (cit. on p. 64).

[33] Angie Wang et al. «A 0.37mm2 LTE/Wi-Fi compatible, memory-based,
runtime-reconfigurable 2n3m5k FFT accelerator integrated with a RISC-V
core in 16nm FinFET». In: 2017 IEEE Asian Solid-State Circuits Conference
(A-SSCC). 2017, pp. 305–308. doi: 10.1109/ASSCC.2017.8240277 (cit. on
p. 64).

[34] Lei Guo, Yuhua Tang, Yuanwu Lei, Yong Dou, and Jie Zhou. «Transpose-free
variable-size FFT accelerator based on-chip SRAM». In: IEICE Electronics
Express 11.15 (2014), pp. 20140171–20140171. doi: 10 . 1587 / elex . 11 .
20140171 (cit. on p. 64).

[35] Muhammad Ali Shami, Muhammad Adeel Tajammul, and Ahmed Hemani.
«Configurable FFT Processor Using Dynamically Reconfigurable Resource
Arrays». In: Journal of Signal Processing Systems 91.5 (May 2019), pp. 459–
473. doi: 10.1007/s11265-017-1326-7 (cit. on p. 64).

76

https://doi.org/10.1109/ICMMT61774.2024.10672454
https://doi.org/10.1145/2934495.2936779
https://doi.org/10.1145/2934495.2936779
https://doi.org/10.1145/2934495.2936779
https://silago.eecs.kth.se/docs/
https://www.ti.com/content/dam/videos/external-videos/en-us/8/3816841626001/6282120424001.mp4/subassets/hwa_2.0_slides_-_final_version.pdf
https://www.ti.com/content/dam/videos/external-videos/en-us/8/3816841626001/6282120424001.mp4/subassets/hwa_2.0_slides_-_final_version.pdf
https://www.ti.com/content/dam/videos/external-videos/en-us/8/3816841626001/6282120424001.mp4/subassets/hwa_2.0_slides_-_final_version.pdf
https://www.ti.com/content/dam/videos/external-videos/en-us/8/3816841626001/6282120424001.mp4/subassets/hwa_2.0_slides_-_final_version.pdf
https://doi.org/10.1109/ISCAS51556.2021.9401196
https://doi.org/10.1109/TVLSI.2018.2846688
https://doi.org/10.1109/ASSCC.2017.8240277
https://doi.org/10.1587/elex.11.20140171
https://doi.org/10.1587/elex.11.20140171
https://doi.org/10.1007/s11265-017-1326-7

	List of Figures
	Introduction
	Background
	Requirements
	Motivation
	Objectives

	State of the Art
	The fast Fourier transform
	Decimation of the FFT
	The radix of the FFT

	mmWave FMCW radars
	The range-FFT
	The Doppler-FFT
	The angle-FFT

	FFT accelerators
	FFT hardware architectures
	Building blocks
	FFT accelerators for mmWave FMCW radar

	Methodology
	DRRA
	Architecture

	Composable Instruction Set
	Controller instructions
	Spatial and temporal composability

	DRRA component library
	Vesyla toolchain
	PASM compilation
	Assemble the DRRA fabric

	Implementation
	DRRA2 FFT architecture
	Register File
	FFT Address Generation Unit
	Twiddle Factor Generator
	Butterfly Unit

	DRRA fabric
	PASM program

	Results
	Simulation
	Synthesis

	Conclusions
	Future work

	Appendix
	PASM program for DRRA FFT

	Bibliography

