/

‘I

’ A . .
’jj!y‘;: Politecnico
{.ﬁiﬁfﬁiiﬁ%ﬁ%i:z; a2 i Torino
\\‘\ 1859 #1:’

M
1]}

Master’s Degree in Electronic Engineering

A.Y. 2024/2025

Efficient Deep Visual-Inertial
Odometry for robot localization

Supervisors: Candidate:
Prof. Marcello Chiaberge Marco Pasculli
Prof. Stefano Primatesta

Dott. Mauro Martini

A nonno Peppe,

la mia guida

Table of Contents

List of Figures v
1 Introduction 1
1.1 Goal of the thesis 2
1.2 Thesis structure 3
2 Literature Review 4
2.1 DeepVO: Towards end-to-end visual odometry with deep Recurrent
Convolutional Neural Networks [2] 4
2.1.1 Network architecture and workflow 4
2.1.2 Loss function and training objective D
2.1.3 Performances and observations 6
2.1.4 Conclusions 6
2.2 ORB-SLAM: Feature-Based Monocular Visual Odometry and SLAM
[B] o 7
2.2.1 System overview 8
2.2.2 Tracking thread oo 8
2.2.3 Experimental results on localization performance 9
2.3 VINS-Mono: A Robust and Versatile Monocular Visual-Inertial
State [4] 12
2.3.1 System architecture 12
2.3.2 Experimental validation 14
3 Algorithm implementation 16
3.1 Visual Odometry: methodology 16
3.1.1 Mathematical formulation of the problem 18
3.1.2 Feature detection 19
3.1.3 Feature matching 21
3.1.4 Motion estimation L. 23
3.2 EKF implementation 0oL 25
3.2.1 Theory on KF and EKF 25

II1

3.2.2 Prediction Phase
3.2.3 Update Phase

4 Hardware experimental setup
4.1 Jackal
4.2 Camera

4.3 Inertial Measurement Unit

5 Results and discussion

5.1 Metrics and performances evaluation

5.2 Trajectory alignment L.
5.3 VO algorithm testso
5.3.1 VO algorithm test on KITTI database
54 VIO algorithm tests L
5.4.1 Test in the PIC4SeR laboratory

5.4.2 Test in the vineyard

5.4.3 Test in the Rover eXploration facilitY

6 Conclusions

Bibliography

v

32
33
34
35

36
36
38
39
39
43
43
47
51

55

56

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3

5.1
5.2
5.3

5.4
9.5

Self-localization odometry techniques [1] 3
DeepVO network architecture 5)
DeepVO testing resultso 7
ORB Slam architecture00 8
Comparison of different loop closing strategies in KITTI 09 11
VINS-Mono architecture, 12
Relative pose error. Three plots are relative errors in translation,

yaw, and rotation, respectively 15
Traditional VO pipeline [7] oo L 17
Matehmeatical Formulation [7]. 18
Uncertainty Propagation [7] 19
Superpoint Architecture [8] L 20
SuperGlue Architecture [9] 22
Example of feature detection and matching 23
Summary of the three algorithms for motion estimation [7] 24
Non linear transformation of a gaussian 27
Linear transformation of a gaussian 27
Graphical evolution of the gaussian estimating the state 31
Hardware setup in one of the testing environments 32
Technical specifications of the Jackal robot [11] 33
Intel® RealSense™ Depth Camera D4351 34
Trajectory estimation of the two kitti tests, comparing traditional

and deep algorithmso 40
RPE box plot for the two kitti tests, comparing traditional and deep

algorithms 41
Keypoints Matches in the PIC4SeR environment 43
Trajectory estimation of the 4 algorithms, compared 44
RPE box plots of the 4 algorithms, compared 45

\Y%

5.6 Keypoints Matches in the vineyard environment 47

5.7 Trajectory estimation of the 4 algorithms, compared 48
5.8 RPE box plots of the 4 algorithms, compared 49
5.9 Keypoints Matches in a non-terrestrial envirnment o1
5.10 Trajectory estimation of the 4 algorithms, compared 52
5.11 RPE box plots of the 4 algorithms, compared 53

VI

Chapter 1
Introduction

Autonomous navigation is a fundamental capability for a wide range of robotic
systems, from aerial drones and autonomous vehicles to mobile robots in general.
A key component enabling such autonomy is the ability to accurately estimate
the motion of the system over time, a task commonly referred to as odometry.
Incorporating the estimated motion within a global frame or a map leads to
localization. For this purpose, several techniques have been proposed over the years,
each with complementary strengths and weaknesses, depending on the sensors used
and the approach taken.

The standard solution for localization in a wide range of applications in outdoor
robotics is Global Navigation Satellite Systems (GNSS), such as GPS or Galileo.
These systems provide high-accuracy and reliable global positioning capabilities,
especially in open-sky environments. However, GNSS-based localization suffers
from an important limitation due to the fact that signals can become unreliable or
entirely unavailable due to signal occlusion in environments such as indoor settings,
urban canyons, dense forests or tunnels.

To overcome these challenges in GNSS-denied environments, alternative local-
ization methods are required.

The most implemented type of odometry in these scenarios for wheeled robots
is wheel odometry, which uses rotary encoders attached to the robot’s wheels, to
measure the rotation of each wheel. The encoder data combined with the robot’s
kinematic model, allows to estimate the robot’s overall motion. Despite being the
most common and simplest, it suffers from position drift due to wheel slippage,
when the wheels lose traction and rotate without fully translating into robot move-
ment, causing imprecision in the estimation of the translation.

In operations involving an environment that might cause this problem, other
techniques are employed.

Introduction

Visual Odometry (VO) estimates the pose of a robot using images acquired
from single or multiple cameras attached to the robot and had become one of
the most robust techniques for vehicle localization. It extracts motion-related
information from the apparent displacement of visual features across frames. This
can be achieved using geometric relationships between camera poses and 3D scene
points. Despite their effectiveness, purely visual approaches have drawbacks such
as motion blur, change in lighting or insufficient visual elements.

Another alternative is inertial navigation, that estimates a robot’s position, velocity,
and orientation by integrating data from accelerometers and gyroscopes. These
sensors measure linear acceleration and angular velocity, respectively, allowing the
system to track motion over time without relying on external signals. This is one
of the main advantages of inertial navigation, making it suitable for GPS-denied or
visually degraded environments. However, since because of the integration process
even small sensor errors accumulate rapidly, inertial navigation systems (INS) suffer
from drift over time.

Visual-Inertial Odometry (VIO) combines visual and inertial information to over-
come these individual limitations, achieving a more robust and accurate motion
estimation.

In recent years, Deep Learning has emerged as a powerful alternative to tradi-
tional visual odometry techniques. Data-driven models reduce the dependence on
hand-engineered features and geometric models, learning robust representations
directly from raw sensor data. This shift has led to the development of end-to-end
and hybrid deep VO architectures, within a unified framework, that can perform
feature extraction, data association, and pose estimation. Convolutional Neural
Networks (CNNs) are widely used for learning visual features that are invariant to
scale, rotation, and illumination changes. These features can be used to predict
depth maps, estimate optical flow, or directly regress relative poses between frames.

1.1 Goal of the thesis

This thesis focuses on the development of a hybrid deep learning-based visual-inertial
odometry system, aiming to leverage the representational power of convolutional
neural networks and recurrent architectures to detect and match visual features,
while fusing this information with inertial data by means of a direct Extended
Kalman Filter (EKF). The objective is to design and implement a system capable of
pose estimation, with potential applications in autonomous navigation for rover-like
robots.

Introduction

Self-Localization /
Odometry Techniques

Single-
modality

GNSS denied
environments

GNSS available
environments

Multi-
modality

Single- Multi-
modality modality

Observation-

GPS data Vision-based Inertial Visual-Inertial
based Odometry

GNSS/Radar . Visual-Laser
Visual Wheel IMU device Odometry

Odometry Odometry

Visual-Radar
Odometry

GNSS/LiDAR

Laser Odometry

Radar-Inertial
Odometry

Radar
Odometry

Sonar/ultrasonic
Odometry

Figure 1.1: Self-localization odometry techniques [1]

1.2 Thesis structure

The thesis is organized as follows:

o Chapter 2 introduces the existing methods and provides a literature review of
the most influential research papers in the fields of traditional visual odometry,
deep visual odometry and visual-inertial odometry.

Chapter 3 introduces the theoretical background of visual odometry and
describes the methods and design choices adopted in the development of the
algorithm proposed in the thesis.

Chapter 4 details the hardware setup used for data acquisition and system
deployment.

Chapter 5 presents the tests setup with their relative experimental results
and performance evaluations.

Chapter 6 concludes the thesis and discusses potential directions for future
work.

w

Chapter 2

Literature Review

2.1 DeepVO: Towards end-to-end visual odome-
try with deep Recurrent Convolutional Neu-
ral Networks [2]

In a period when Deep Learning had not been much adopted for VO problems, since
most CNNs were trained for recognition and classification, Wang et al. proposed a
novel deep learning-based VO technique, whose architecture,that they refer to as
Recurrent Convolutional Neural Networks(RCNNs), combines convolutional and
recurrent layers.

The authors’ motivation for developing a deep learning algorithm for VO stems from
a critical observation: conventional VO pipelines, though effective in controlled
conditions, require substantial manual fine-tuning and prior knowledge (e.g. camera
height) to estimate absolute scale, and often fail to generalize across environments
with different visual characteristics.

In contrast to classical methods, typically composed of discrete modules such
as feature detection, matching, motion estimation and scale recovery, this work
introduces a fully data-driven alternative that learns to estimate camera motion
directly from sequences of raw RGB images.

2.1.1 Network architecture and workflow

At the heart of DeepVO there is a twofold architecture: a convolutional neural
network (CNN) for feature extraction and a recurrent neural network (RNN),
specifically a stack of Long Short-Term Memory (LSTM) units, for modeling
sequential dependencies. At each time step, two consecutive RGB frames are
preprocessed and then stacked together to form the input tensor. The CNN then

4

Literature Review

extracts the geometric features, which are subsequently passed to the LSTM to
infer the 6-DoF pose of the camera.

Since, unlike networks designed for object classification, it focuses on learning
geometric features instead of appearances or visual context, the CNN is tailored
for motion understanding in unknown environments. Its structure, inspired by
FlowNet, consists of nine convolutional layers, each followed by a rectifying linear
unit (ReLU), with increasing channel depth and decreasing spatial resolution. This
allows the network to abstract small and useful features.

The RNN part, composed of two Long Short-Term Memory (LSTM) layers in
series, each with 1000 hidden units,thanks to its ability to model dependencies in
a sequence, is responsible for keeping track of the temporal evolution of motion.
However, RNN is not suitable to directly learn sequential representation from high-
dimensional data, such as images, therefore, its input are the features previously
exracted by the CNN. By maintaining internal memory of the previous states
thanks to gating mechanisms and feedback loops, it is capable of finding relations
among the CNN features, modeling the dynamics of the system.

Video (Image Sequence) 1 Convolutional Neural Network 1 Recurrent Neural Network Pose
- ‘ ‘_/4 ?;f:;;g Convi Convz Conv Conva 1 Conv4 Gonvé 1 Convs Convs 1 Convs | ; LSTM1 LSTM2 :
=) 3 B |
— | b o o | i
1241x376 x 3 B % = g 8 & o 8 :
@ e x x x x x = d
S BRLs gl gl 22> 2> 5 sH——8 gl —>fe
o A & & & x X % i H . . H
i
VgL I8 |8 |8 |8 |8 S :
m ; : |
© REIN, 0 octottoeteoeetooseoemosssooesooeeeooeooecooeoooecoooooood :
1241x376 x 3 } ** i
Time Q 777
Q
2890 Qa9 Qaq 2a9

Figure 2.1: DeepVO network architecture

2.1.2 Loss function and training objective

The network is trained to minimize the euclidean distance between predicted poses
and ground-truth poses. To this end, the loss function penalizes both translational
and rotational errors using the Mean Square Error (MSE):

1 N t A .
Nz > lIpw —pk!|2 + K ||@r — SOkH2
i=1 k=1

where p, ¢ denote the predicted position and orientation at time k, and pg, ©x
are the ground truth values. The scalar x is a weight that balances the two terms,

5

Literature Review

and N is the number of samples. In this computations the orientation is represented
via Euler angles rather than quaternions to avoid optimization complications.

2.1.3 Performances and observations

Both training and testing of the DeepVO network have been performed on the well-
known KITTI dataset. The results were compared with some established monocular
and stereo systems such as VISO2. The results were promising: although stereo
systems still have an edge in absolute accuracy, DeepVO significantly outperforms
monocular ones. One particular result is that while during the tests in high speed
scenarios the translational error increased, the orientation error decreased. This
is probably due to the fact that the testing scenarios were mostly at low speed.
Moreover, when a car goes at high speed, it tends to go straight and this explains
the low orientation error.

Ultimately, the good results of the tests demonstrate the ability to maintain scale
consistency without external cues, an impressive step in advance for monocular
VO methods.

However, the paper also highlights challenges inherent to deep learning ap-
proaches. In particular, overfitting is identified as a major issue, especially for
rotational components, which exhibit low variability and are therefore more easily
memorized by the network. The experiments clearly show that well-regularized
models generalize better to unseen sequences, a crucial property for real-world
deployment.

2.1.4 Conclusions

DeepVO represents an important early step toward end-to-end learning in robot
perception. While it does not aim to replace classical geometry-based VO outright,
it offers a compelling alternative that simplifies the pipeline and removes the
need for manual tuning. Its ability to learn both geometric representations and
motion dynamics directly from data makes it particularly suitable for deployment
in scenarios where environmental conditions vary or prior calibration is unavailable.

Literature Review

- T
DeaepVO |
VISO2_M
VISOZ S| |

- GT 250
DeepVO
350 \.r|5282_m
VISOZ S 300

.
250 -200 -150 -100 50 O 50 100 150 200 -200 -100 o 100 200 300
X (m)

(a) Sequence 04. (b) Sequence 05.

=

- GT | = GT
DeepVO DieepVO
VISOZ_M|T VISO2_M
VIS02_S o0l vIs02_s

s . L . L
0 200 400 800 800 1000
* (m)

-250 -200 -150 -100 -50 1] 50
X (m)

(c) Sequence 07. (d) Sequence 10.

Figure 2.2: DeepVO testing results

2.2 ORB-SLAM: Feature-Based Monocular Vi-
sual Odometry and SLAM [3]

ORB-SLAM, proposed in 2015 by Mur-Artal et al., is one of the most influential
and widely used monocular SLAM systems in the field of robotics and computer
vision. Although its primary purpose is full SLAM (Simultaneous Localization
and Mapping), the system can also operate in pure odometry mode, making it
an excellent reference for evaluating monocular visual odometry methods. It
demonstrates the capabilities and limitations of traditional feature-based pipelines:
high accuracy when features are well distributed and trackable, but sensitivity to
visual degradations or environments with few distinctive features.

One of the major advantages of ORB-SLAM is its robustness in long-term operation,
thanks to techniques such as Bundle Adjustment (BA) and a so-called Essential
Graph (EG), that is a real time loop closing based on the optimization of a pose
graph. The algorithm works well also under challenging conditions such as dynamic
objects, low texture, or lighting changes.

7

Literature Review

2.2.1 System overview

The architecture of ORB-SLAM is threefold: the threads that run in parallel are
tracking, local mapping, and loop closing.

The tracking thread extracts ORB features from each frame and estimates the
camera pose via feature matching and motion-only bundle adjustment (BA). If
a sufficient number of features match an existing keyframe, the system attempts
relocalization using a bag-of-words database.

The local mapping thread maintains a sparse 3D map using selected keyframes and
performs local bundle adjustment to refine the structure and poses.

Finally, the loop closing thread detects previously visited places and performs
pose-graph optimization followed by a full map optimization (essentially a form of
global bundle adjustment), which helps reduce accumulated drift over time.

For the purpose of being a representative example of classical VO technique, only
the tracking thread is described in detail in the next section.

TRACKING
F - Extract i In:‘trlg:“szttefl;:’:::‘r:ag:on Track New KeyFrame
rame | = isi
ORB i Relocalisation Local Map Decision

\J
Map Initialization MAP

PLACE - KeyFrame 5
RECOGNITION " (2]
@ Insertion b
. r
Visual Recent =
Vocabulary — MapPoints || >
Covisibility culling]
Recognition Graph '%
Database Spanning New Points | &
Tree Creation
Loop Correction Loop Detection Local BA
Ontimi Local
E;Ps:-.\nr::iz; Loop Compute | | Candidates KeyFrames
Graph Fusion Sim3 Detection Culling

LOOP CLOSING

Figure 2.3: ORB Slam architecture

2.2.2 Tracking thread

The need for ORB-SLAM to run in real time rules out the well known SIFT and
SURF from the choice of the feature extractors, since their computation time
is approximately 300 ms. The authors opted to rely on ORB (Oriented FAST
and Rotated BRIEF) features for all parts of the pipeline: tracking, mapping,

8

Literature Review

localization, and loop closure. This design choice enables the system to be efficient
and consistent across different environments while also allowing it to operate in
real time using only CPU resources.

In the tracking thread, FAST corners at 8 scale levels with a scale factor of
1.2 are extracted. For image resolutions below 752 x 480 pixels the number of
corners to be extracted is set to 1000, while for higher resolutions, as the 1241
x 376 in the KITTI dataset, 2000 corners are extracted. In order to ensure an
homogeneous distribution each image is divided in cells, trying to extract at least
5 corners per cell, adapting the detector threshold if not enough corners are found.
The amount of corners retained per cell is also adapted if some cells contains no
corners (textureless or low contrast). The ORB descriptor are then computed on
the obtained FAST corners and used for feature matching.

If tracking for the previous frame was successful, a guided search of the map points
seen in the previous frame is performed and the camera pose is computed using a
constant velocity motion model. A broader search of the map points surrounding
their position in the most recent frame is performed if there were not enough
matches between the two consecutive frames.

In the event that tracking is lost, the frame is turned into a bag of words and
keyframe candidates for global relocalization are looked for in the recognition
database.Then correspondences with ORB associated to map points in each
keyframe are computed and by means of the PnP algorithm a camera pose is
found. If there were enough inliers, the pose is optimized and a guided search is
conducted for additional matches with the candidate keyframe’s map points.

2.2.3 Experimental results on localization performance

ORB-SLAM have been tested on several datasets, such as KITTI, TUM RGB-D,
and EuRoC MAV. Among the results presented in the paper, the ones of most

interest for this thesis are related to the localization tests with the KITTI dataset.
The results are reported in the table below.

9

Literature Review

Table 2.1: Results of ORB-SLAM in the KITTI dataset.

ORB-SLAM Global BA (20 its.)

Sequence Dimension (mxm) KFs RMSE (m) RMSE (m) Time BA (s)
KITTI 00 564 x 496 1391 6.68 5.33 24.83
KITTI 01 1157 x 1827 X X X X
KITTI 02 599 x 946 1801 21.75 21.28 30.07
KITTI 03 471 x 199 250 1.59 1.51 4.88
KITTI 04 0.5 x 394 108 1.79 1.62 1.58
KITTI 05 479 x 426 820 8.23 4.85 15.20
KITTI 06 23 x 457 373 14.68 12.34 7.78
KITTI 07 191 x 209 351 3.36 2.26 6.28
KITTI 08 808 x 391 1473 46.58 46.68 25.60
KITTI 09 465 x 568 653 7.62 6.62 11.33
KITTI 10 671 x 177 411 8.68 8.80 7.64

ORB-SLAM achieved low drift rates for both translation and rotation, even
though in long sequences without loop closure, the results are clearly worse. In
particular, the system benefits from its keyframe-based design, which allows it
to perform bundle adjustment at each frame, keeping the error even lower. The
accuracy is particularly high in urban scenarios characterized by abundant static
features, that facilitate the feature matching process.

For what regards the TUM RGB-D dataset, the authors report good accuracy even
across sequences with challenging conditions. This is due to the quality of ORB
features, which remain relatively invariant to illumination changes and moderate
motion blur.

The EuRoC MAV dataset further demonstrates ORB-SLAM’s capability in aerial
robotics. Even without loop closure, the system is able to estimate a consistent
trajectory in indoor spaces, where the field of view of the camera is often con-
strained. However, the authors note that in highly textureless environments, such
as monocromatic corridors, the system’s reliance on point features can lead to
tracking loss.

Overall, the localization results confirm that ORB-SLAM delivers high robustness
across a variety of scenarios. Loop closure has a crucial role in the accuracy of the
results, as showed in the table and in the images below:

10

Literature Review

Table 2.2: Comparison of loop closing strategies in KITTT 09.

Method Time (s) Pose Graph Edges RMSE (m)
- - - 48.77
BA (20) 14.64 . 49.90
BA (100) 72.16 ; 18.82
EG (200) 0.38 890 8.84
EG (100) 0.48 1979 8.36
EG (50) 0.59 3583 8.95
EG (15) 0.94 6663 8.88
EG (100) + BA (20) 13.40 1979 7.22

Essential Graph has the most influence on the accuracy of the results, with its
combination with bundle adjustment results in the lowest RMSE value.

440 A0}

2004 200

200 E 200
£

1004

[e Ground oth [T S S . oo f o Ground uth
— Estimated — Estimated

-
=100 [100 200 300 =100 a 100 00 300
=[m] wiml

(a) Without Loop Closing (b) BA (20)

T == Ground truth
— Estimated

(c) EG (100 (d) EG (1000 + BA (20)

Figure 2.4: Comparison of different loop closing strategies in KITTI 09

11

Literature Review

2.3 VINS-Mono: A Robust and Versatile Monoc-
ular Visual-Inertial State [4]

Proposed by Qin, Li, and Shen in 2018, VINS-Mono is a tightly-coupled, optimizationt
based visual-inertial odometry system. It consists of a monocular camera and an
inertial measurement unit (IMU), which is the minimum sensor suite in size, weight,
and power.

Unlike filter-based methods such as the Multi-State Constraint Kalman Filter
(MSCKF), VINS-Mono uses non linear optimization to fuse visual and inertial data
with a sliding window approach, allowing for accurate state estimation by jointly
optimizing feature positions and IMU measurements.

An important aspect of the system is that it can estimate the absolute scale of
motion directly, thanks to the integration of inertial data. This overcomes one of
the main limitations of monocular VO systems, which typically suffer from scale
ambiguity unless external cues are provided.

2.3.1 System architecture

Measurement Preprocessing (Sect. IV)

I

1 H I
f ‘I i | Camera (30hz) Featu:leTDet:.ctlon _]| Motion BA HCamera-rate Posel
| | vision-only .| Visual-inertial ! and Tracking :
I sfmM Alignment |1 | " l

! .

[S — ‘3 \ IMU (100hz) IMU Pre-integration}-ﬁﬂiPrOpaganonF[lmuvme Pose

- /

Oldest Sliding Window Newest Optimization-

based VIO

I States from Loop Closure

Relocalization

(Sect. VI, VII) D S 4
{ N

|
|
|
Odometry with 1
|
\

: 4-DoF Pose Graph Optimization Keyframe Database| '
I Pose Graph Reuse !

Global Pose Graph Optimization and Reuse (Sect. VIII)

Figure 2.5: VINS-Mono architecture

The VINS-Mono pipeline consists of several interconnected modules:

o Feature tracking: The KLT sparse optical flow technique tracks existing
features for every new image [5]. In the meantime, to keep each image’s
feature count at a minimum of 100-300, new corner features are identified.
By establishing a minimum pixel spacing between two adjacent features,
the detector ensures a consistent feature distribution. After passing outlier

12

Literature Review

rejection, 2D features are first undistorted and then projected onto a unit
sphere. Using a basic matrix model and RANSAC, outlier rejection is carried
out.

Keyframes are also selected in this step, by means of two cryteria. The first is
to compute the average parallax apart from the previous keyframe, checking
wether it sets above a certain threshold. The second is to count the number
of features that have been tracked from the previous frame, checking that this
number is below a certain value.

IMU pre-integration: The authors use the continuous-time quaternion-
based derivation of IMU preintegration. Acceleration bias (ba), gyroscope bias
(bw), and additive noise all have an impact on IMU measurements, which are
taken in the body frame and integrate the force for fighting gravity with the
platform dynamics. W and &, the raw accelerometer and gyroscope readings,
are provided by:

a; =a; + by, + Rfvgw +n,
(.:Jt :wt—f—bwt +nw. (].)

The biases are modeled as random walks and the additive noises in the
measuraments are considered gaussian withe noises.
All the IMU measuraments between two frames are preintegrated following:

by bi (A 2
« = R/*(a; — by,)dt
b //te[tk:thrl] ' (' t)

o= R (&; — by,)dt
Bt = [, . R —ba)

1
i — —Q(&, — by,)Yxdt 3
"ka+1 \/te[tk7tk+1] 2 (t ’LUt)’Yt ()

Sliding window optimization: At the core of the system lies a nonlinear
optimization running over a sliding window of keyframes. The state vector
includes the poses of the camera/IMU, velocity, biases, and selected landmark
positions. The cost function integrates both visual reprojection errors and
IMU pre-integration residuals. By solving this optimization problem, the
system achieves tightly-coupled sensor fusion: the vision constraints help to
bound the inertial drift, while the inertial constraints provide metric scale and
aid visual tracking during periods of poor feature visibility.

To maintain computational tractability, the sliding window is kept fixed in
size, typically containing around ten keyframes. When new frames arrive,
older states are marginalized out using the Schur complement, while their
information is preserved in the form of prior constraints. This strategy ensures

13

Literature Review

that the system can run in real time while retaining a sufficient temporal
horizon to achieve accurate estimation.

« Loop closure and relocalization (optional): Beyond local odometry,
VINS-Mono integrates global optimization capabilities. A loop closure mod-
ule based on a bag-of-words approach detects revisited locations. When a
loop closure is identified, the system introduces additional constraints in a
pose graph, which is then optimized to reduce drift accumulated over long
trajectories. The relocalization mechanism also allows the system to recover
from tracking failures, making it more robust to temporary occlusions. In this
way, VINS-Mono can function both as a visual-inertial odometry system with
bounded drift and as a full SLAM system with global consistency. .

2.3.2 Experimental validation

The authors validated VINS-Mono extensively across a wide range of datasets and
platforms, performing numerical analysis to define the accuracy of the system.

On the EuRoC MAYV dataset, VINS with and without loop closure activated have
been compared to another state of the art algorithm for VIO, OKVIS []. The tests
show that the best results are achieved by the VINS with loop closure algorithm.

Table 2.3: RMSE in EuRoC datasets in meters.

Sequence OKVIS (mono) VINS-Mono VINS-Mono + Loop
MH_01_easy 0.232 0.212 0.212
MH_02_easy 0.175 0.169 0.163
MH_ 03_medium 0.307 0.227 0.120
MH_04_difficult 0.457 0.436 0.190
MH_05_difficult 0.697 0.558 0.198
V1_01_easy 0.083 0.078 0.078
V1_02_ medium 0.074 0.072 0.071
V1_03_difficult 0.079 0.072 0.072
V2 01 easy 0.084 0.077 0.077
V2_02_medium 0.076 0.073 0.073
V2_03_difficult 0.074 0.072 0.072

14

Literature Review

Figure 2.6:

—VINS_I =
wneP | Relative Pose Error

—_— T T T + — LI
E,.F +OKVIS ; N i]
g I"'_ ; TTT T‘ + | j._l
So4r TTI T - T I]
S ?ﬁi_-’ [Q +
w 0.2 | B
T 1 1

g . Il L1 I+l o ! .

[= 10 20 30 40 50 60

Distance [m]

e +$ T% l+ T £ -
= + 4 T T -
P15 - | — 4 -]
S TR £ B AR | IS SRR
g T! ‘ ! Trh! !

u.;().5- B

o T4 +I + 111 +L

10 20 30 40 50 60
Distance [m]
T T T T T 7
SAEN TT -]
@ + 1 — %
- [- T + ES
%1_ TT* H* N ,\i :‘ T||JT‘|_
A T
L I
%05- T T 1
£ L
€ ol 14 - L4 L4 . b
10 20 30 40 50 60
Distance [m]

Relative pose error.

yaw, and rotation, respectively

Three plots are relative errors in translation,

In addition to benchmark datasets, the system was tested in real-world appli-
cations, including deployment on drones. These experiments demonstrated that
VINS-Mono is not only accurate but also computationally efficient, capable of
running in real time.

15

Chapter 3
Algorithm implementation

As described in the Introduction section, there exist many ways to implement a
system capable of keeping track of a robot’s position, given a certain sensor suite.
The work of this thesis focuses on the development of a hybrid deep learning-based
stereo visual-inertial odometry system that leverages a direct Extended Kalman
Filter (EKF) to fuse the data from the visual and inertial sensors.

In this chapter, the implementation of the system under test is described in detail,
focusing on the methodologies applied in the two main parts of the algorithm: the

VO and the EKF.

3.1 Visual Odometry: methodology

The position of a mobile robot with vision-based odometry can generally be esti-
mated in three different ways: through a feature-based approach, an appearance-
based approach or a hybrid-based approaches.

The appearance-based approach estimates the camera pose by analyzing the in-
tensity of the captured image pixels based on minimizing the photometric error,
that is the difference between the intensity values of image pixels in corresponding
areas of different images. The fundamental assumption in appearance-based meth-
ods is that the scene’s appearance remains constant over the short time interval
between two frames. This indicates that camera movement, not modifications to
the scene, is the cause of any change in the perceived intensity of a pixel. The
most widely used appearance-based technique is called Optical Flow (OF), which
estimates mobility by processing raw pixel data from successive frames using an
OF algorithm. This program examines variations in pixel intensity between two
consecutive camera-captured frames. Calculating the 2D displacement vectors of
points between frames—which represent the motion of objects and the camera—is
the main principle. As the illumination of pixels changes, the OF algorithm tracks

16

Algorithm implementation

these changes to determine how each pixel’s position shifts from one frame to the
next, thereby estimating the overall camera motion.

Since the appearance-based methods work on the assumption that the projection
of a point in both frames has the same intensity. This assumption often fails due
to lighting changes, sensor noise, pose errors and dynamic objects. Another issue
is high computation due to the use of all pixels over all frames.

A feature-based technique was chosen as the VO algorithm for this thesis study
because of those issues.

Overall, the basic algorithm for feature-based VO involves detecting and tracking
features in consecutive camera frames, estimating the camera motion using the
correspondences between the features, estimating the 3D positions of the features
using triangulation, and estimating the camera trajectory using the estimated
motion and 3D positions [6].

Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

2D-2D 3D-3D 3D-2D

Local optimization

Figure 3.1: Traditional VO pipeline [7]

In this thesis work, a different approach is adopted: the tasks of feature detection
and feature matching are assigned to two different Convolutional Neural Networks,
namely SuperPoint [8] and SuperGlue [9], whose architecture is described in the
following sections. Then the motion estimation is performed leveraging the infor-
mation about the features matched in every consecutive frame couples, by means
of a least squares optimization.

17

Algorithm implementation

3.1.1 Mathematical formulation of the problem

In case of a stereo camera, the left and right frames are both captured at every
discrete time instant, creating two sets of images: [, 0., = {110, ..., in} and I, ., =
{Lo, .. Lrn}
For simplicity, the left camera frame, the IMU frame and the robot frame are
considered to be coincident. The trasformation between left and right camera T is
instead known, and it’s an important parameter for the motion estimation phase.
Two camera positions at consecutive time instants £ — 1 and k are related by the
k k
Ro’%—l tkl_ll where RY |, € SO(3)
is the rotation matrix and tf_;, € R3**! is the translation vector. Known the
initial position of the robot to be tracked, from the concatenation of all the
consecutive transformations T, it’s possible to obtain the consecutive camera poses
Com = {Cy, ..., Cy}, that is the trajectory of the robot. This means that the path
is recovered incrementally, pose after pose, leading to possible drift after a long
series of images: the uncertainty of the camera pose at time k is the combination
of the uncertainty of the camera pose at time k£ — 1 and the uncertainty of the
transformation 77 j_;.

rigid transformation T,z 1 € R : Ty,) = [

Figure 3.2: Matehmeatical Formulation [7]

18

Algorithm implementation

Figure 3.3: Uncertainty Propagation [7]

3.1.2 Feature detection

The first stage of the developed VO algorithm is feature detection and it is carried
out by a neural network called SuperPoint.

"SuperPoint has a fully-convolutional neural network architecture, which operates
on a full-sized image and produces interest point detections accompanied by fixed
length descriptors in a single forward pass" [8]. The data flow is the following: first
the input image dimensionality (H x W) is processed and reduced by a factor 1/8
by the model using a single, shared encoder. The encoder applies a sequence of
convolutional layers with non-linear activations and three max-pooling operations.
This results in a feature tensor B € RH/&*W/8xF — Each element of this tensor
corresponds to a non-overlapping 8 x 8 patch of the original image, often referred to
as a cell. This compact yet expressive representation is then shared by two decoder
heads, that are in series to the encoder. Those decoders have two roles: one for
feature detection and the other for feature description, both learning task-specific
weights. The interest point decoder estimates the likelihood of a feature to be
present in each cell. Specifically, it produces an output tensor of size H. x W, x 65,
where the 65 channels correspond to the 64 pixel locations inside an 8 x 8 cell,
plus one additional “dustbin” channel representing the absence of a keypoint.A
channel-wise softmax is then applied, followed by a reshaping step that maps the
tensor back to the original resolution H x W, thus yielding a dense probability
heatmap of interest points. This design avoids expensive upsampling operations
and keeps the computation lightweight.

The second head computes descriptors associated with the detected points, generat-
ing a semi-dense grid of descriptors D € R#exWex256 Fach descriptor corresponds

19

Algorithm implementation

to a cell in the reduced resolution feature map. To obtain descriptors at the full
image resolution, bicubic interpolation is applied, followed by ¢ normalization to
ensure unit-length descriptors:

This results in a dense map of descriptors € R7*W>256_ Now, the descriptors

corresponding to the detected keypoint locations can be put in output, waiting to
be matched.

In contrast to traditional systems, which compute descriptors after detecting interest
points and are unable to share computation and representation between the two
tasks, the majority of the network’s parameters are shared between the two tasks.

W prosnanennnnanen ' H/8 P

ak 65

-......InterestPoint Decoder w
; Conv .
' w/8 X :
Input ' Softmax Resh :
Encoder ' - - - P
A T SRS O
> ' Descriptor Decoder W

-
=5
i
i
B

...................................... D

Figure 3.4: Superpoint Architecture [8]

The training of SuperPoint has been performed using pairs of synthetically warped
images which have both pseudo-ground truth interest point locations and the
ground truth correspondence from a randomly generated homography which relates
the two images.

The final training objective combines two terms:

« Detector loss L, a cross-entropy loss over the probability map of interest
points.

e Descriptor loss L4, a hinge-based loss applied to pairs of descriptors. Positive
pairs are enforced to have high similarity, while negative pairs are pushed
apart, using margins m, and m,,.

The global loss is:
L=L,X,Y)+ L,(X"\Y')+ AL4(D, D', S),

where S encodes ground-truth correspondences induced by a synthetic homography,
and A is a balancing factor.

20

Algorithm implementation

3.1.3 Feature matching

Once the keypoints are detected and the descriptors are created, they have to be
matched. In this work, the task of feature matching has been assigned to a neural
network called SuperGlue.

SuperGlue has a three-stage pipeline: descriptors are first enriched with positional
information thanks to a keypoint encoder, then refined through alternating self- and
cross-attention layers, and finally matched via a differentiable optimal transport
layer, supervised by a correspondence-aware cross-entropy loss.

The task is formulated as matching two sets of keypoints extracted from a pair
of images. For each image, the input is a set of keypoints, each represented by its
pixel location x € R?, a descriptor vector d € RP, and a detection score s € [0,1].
The objective is to predict a partial assignment between these two sets while also
accounting for unmatched keypoints due to occlusion or lack of overlap. Formally,
the output is a binary matching matrix M € {0,1}(NV+UX(M+1) where N and M
are the number of keypoints in the two images and the additional row and column
correspond to a dustbin of unmatched cases. The one-to-one constraint ensures
that each keypoint is either matched to exactly one counterpart or left unmatched.

Descriptors by themselves are often insufficient for robust correspondence, since
they lack positional awareness and information about detector confidence. Super-
Glue addresses this with a keypoint encoder. Each descriptor d; is projected into
a latent space and augmented with a positional embedding computed from the
normalized coordinates x; and detection score s;. Concretely:

fi = Wdz + ¢p0s([xi7 81’})7

where ¢p0s is a multi-layer perceptron (MLP) and W is a linear projection. This
step ensures that features carry both appearance and spatial context before entering
the main graph neural network.

The central component of the architecture is an attentional graph neural network
(GNN) that iteratively refines descriptors through message passing. Each layer
consists of two operations:

o Self-Attention. Within each image, descriptors attend to one another, allow-
ing features to capture intra-image relationships such as repetitive patterns.
For a set of features F € RV*P | the attention mechanism computes:

T

Attention(Q, K, V) = softmax < Q

BV

21

Algorithm implementation

where Q = FWg, K = FWg, V = FWy, are query, key, and value projections,
and B is a learnable bias function of the relative keypoint coordinates. This
bias makes attention geometry-aware, steering it toward spatially meaningful
relationships.

e Cross-Attention. To exchange information across the two images, each
keypoint in one set attends to descriptors in the other set, conditioned on
spatial offsets between coordinates. This enables the network to hypothesize
potential correspondences and refine them iteratively. The formulation mirrors
self-attention, but with Q from one image and K,V from the other.

These two operations alternate in the network, allowing features to consolidate
local structure before receiving cross-view evidence, and vice versa. At the output
of this part of the network, the descriptors are no longer purely local but are
enriched with both intra- and inter-image context.

Once descriptors are updated, SuperGlue computes a similarity matrix S;;. To
allow for unmatched points, the matrix is extended with an extra row and column,
the dustbin. SuperGlue then solves for a soft assignment matrix P using the
Sinkhorn algorithm, which iteratively normalizes rows and columns to produce a
doubly-stochastic matrix. This guarantees approximate one-to-one assignments,
with additional probability mass assigned to the dustbin for outliers. At inference
time, hard correspondences are obtained by taking the mutual argmax in P,
discarding those assigned to the dustbin.

Attentional Graph Neural Network Optimal Matching Layer

local

features Attentional Aggregation matching Sinkhorn Algorithm

partial
assignment

descriptors
visual descriptor e Cross fA score matrix row
i [+
normalization
position —I -.
Keypoint L S, i <
B Encoder) \ | | L
B J C
@ f; Ly T]
L dustbin N+1
z

score =1

Figure 3.5: SuperGlue Architecture [9]

SuperGlue is trained with supervision on ground-truth correspondences. The loss
is a cross-entropy over the soft assignment probabilities:

L=— Z log PZ] — Z log Pi,@ — Z log P@}j,
(i.7)€g igma(9) i¢rB(9)

where G is the set of ground-truth matches, and 74(G), 75(G) are the sets of
indices that participate in them. The additional terms for unmatched keypoints

22

Algorithm implementation

enforce that points without correspondences are correctly assigned to the dustbin.
This loss makes the model robust to occlusions, low overlap, and repeated structures.

In figure 3.6, a demonstrative example of feature detection and matching by
SuperPoint and SuperGlue from one of the tests performed is shown:

Figure 3.6: Example of feature detection and matching

3.1.4 Motion estimation

The last phase of the Visual Odometry algorithm is motion estimation. Motion
estimation allows for the transformation matrix 7} ;1 to be obtained, starting from
two sets of features matched by SuperGlue between two consecutive left images.
In general, motion estimation can be obtained in different ways from geometric
constraints, depending on how the features that have been extracted and matched
in the two previous phases are specified:

e 2D-2D: this case is typical of monocular systems. The transformation matrix
Tj:—1 can be estimated starting from the essential matrix Ej = const X ¢, Ry,
up to an unknown scale factor. The main property of 2D-2D based motion
estimation is the epipolar constraint. It determines the line on which, the
feature corresponding to one in the first image, lies in the second image. This
constraint can be formulated by 5T Ep = 0, where § is a feature location in
one image and p is the location of its corresponding feature in another image.
The minimal case solution for finding the essential matrix involves 5 couples
of matched features.

Starting from the essential matrix, 4 couples of R; and t; can be obtained:
the correct one has all the features in front of both camera views. To find it,
it’s necessary to triangulate one of the features, checking its depth dimension.

23

Algorithm implementation

« 3D-3D: this case is typical of stereo systems. The transformation matrix 7j_
can be found by determining the transformation that aligns the two 3D feature
sets. The general solution consists of finding the 7}_; ; that minimizes the L,
distance between the two 3-D feature sets. Of course, this method needs for
the features to be triangulated from the two cameras perspectives.

e 3D-2D: the general formulation in this case is to find Tk that minimizes the
image reprojection error:

N 2
arg min ; Ipi — i

where p;_, is the reprojection of the 3D point X} _; into image I; according to
the transformation 7}_; ; under test. The name of the problem is "Perspective
from n Points (PnP)". In the algorithm proposed in this thesis work, the
problem is solved by means of least square optimization starting from n > 6
couples of features.

1) Do only once:
1.1) Capture two frames /y_5, /x_;

1) Capture new frame I

2) Extract and match features between /,_, and /;,

3) Compute essential matrix for image pairfy_;, fy.

4) Decompose essential matrix into R, and f;, and form T},
5) Compute relative scale and rescale t, accordingly

6) Concatenate transformation by computing Gy = €1 Tie
7) Repeatfrom 1).

(a) 2D-2D

1.2) Extract and match features between them

1.3) Triangulate features from g2, k1

2) Do at each iteration:

2.1) Capture new frame /,

2.2) Exiract features and match with previous frame J;_,
2.3) Compute camera pose (PnP) from 3-D-to-2-D matches
2.4) Triangulate all new feature matches between I, and /},_;
2.5) Iterate from 2.1).

(c) 3D-2D

1) Capture two stereo image pairs /1, Iri—1 and i, Irx
2) Extract and match features between /;,_, and I,
3) Triangulate matched features for each stereo pair
4) Compute T, from 3-D features X;_, and X;
5) Concatenate transformation by computing
G =G e
6) Repeat from 1).

(b) 3D-3D

Figure 3.7: Summary of the three algorithms for motion estimation [7]

24

Algorithm implementation

3.2 EKF implementation
3.2.1 Theory on KF and EKF

In VIO systems, the fusion of data from both cameras and IMU sensors allows
to achieve accurate and robust motion estimation. One of the most established
methods for fusing sensor data is through the Kalman Filter (KF) and its extended
version.

'In statistics and control theory, Kalman filtering (also known as linear quadratic
estimation) is an algorithm that uses a series of measurements observed over time,
including statistical noise and other inaccuracies, to produce estimates of unknown
variables that tend to be more accurate than those based on a single measurement,
by estimating a joint probability distribution over the variables for each time-step"
[10].

The algorithm operates in two stages recursively: prediction and update. During
the prediction phase the KF generates estimates of the current state variables,
along with their uncertainty. These estimates are updated using a weighted average
once the results of the subsequent measurement are known. Estimates with lower
uncertainty are given more weight. With just the current input measurements, the
previously computed state and its uncertainty matrix, the algorithm can function
without the need for any other historical data.

The important variables and functions in this algorithm are:
o State: xy
e Measurement: z;
o Command:
 State estimation function: g(-)
o Measurement estimation function: h(-)
e Mean of the gaussian estimating the state: p;
o Covariance of the gaussian estimating the state: ¥,
o Motion model uncertainty: R;
o Measurement model uncertainty: @)y
« Jacobian of motion model with respect to the command: V;

o Jacobian of motion model with respect to the state: G

25

Algorithm implementation

« Jacobian of sensor model with respect to the state: H,
e Kalman Gain: K,

The motion model and sensor model uncertainties are a representation of the

noise that is added to the estimate after each step. Those matrices can be diffi-
cult to tune and may vary for each application. The values in the motion model
uncertainty matrix should be smaller when the model matches the system well,
and this would be ideal. If however, the predictions from the motion model are far
from the measurements, those values must be increased. This will cause the filter’s
predicted error to be larger, which in turn will cause the filter to trust the incoming
measurement more during the correction step. The initial estimate covariance
matrix, on the other hand, represents the initial value for the state estimate error.
Setting the values in this matrix small, will result in rapid convergence for the
initial measurement. However, care should be taken not to use large values for
variables that will not be measured directly.
In the context of this thesis, these matrices were carefully tuned to ensure accurate
state estimation. Given the accuracy of the VO algorithm and the noise concern-
ing the IMU measurements, the variances of the motion model have been set to
pretty high values, which are 3m/s? (linear acceleration) and 2° (angular velocity)
while for the sensor model, the variance has been set to 0.001m, a low value. By
carefully tuning these parameters, it was possible to achieve a balance between
rapid convergence of the state estimates and the accuracy of these estimates.

The Extended Kalman filter is the nonlinear version of the Kalman filter that
linearizes the system about an estimate of the current mean and covariance.
The two fundamental equations of next state and the measurement estimations,
are represented by nonlinear functions, respectively:

Ty = g(flft—but)
Zt = h(xt)

Those non-linear functions distort Gaussian distributions, resulting in totally
different forms (figure 3.8).

In this scenario, the standard KF can be applied if the system is linearized
at each time step. The EKF achieves this, by linearizing the system applying
a first-order Taylor expansion to the functions g¢(-) and h(-) around the mean.
The linearization approximates g and h by a linear function that is tangent to
them at the mean of the Gaussian. Projecting the Gaussian through this linear
approximation, keeps the posterior a Gaussians. In fact, once g and h are linearized,
the mechanics of belief propagation are equivalent to those of the KF (Figure 3.9).

26

Algorithm implementation

6 6
ply) = Function g{x)
— Gaussian of p(y) 4+ Meanp
4l x Meanof py) 4 Q 1w
2 2
g = 4
0 o
-2 -2
-4 -4
0 0204 06 08 0 0.5 1
% p)
4+ Meanp
_4
<
2
0
n ng 1

6
5 g Mean p
4 4
e
3 ~3
2 2
1 1
0 05 1 15 0 0.5 1
8 px) = N(% @, 69
Mean of p{x)
?4
2
0
n LR 1

Figure 3.9: Linear transformation of a gaussian

The linearization of the state transition function g(.) is the following:

0
g(x,) = g(pe—1, u—1) + aii (T4—1 — pe—1)

Tt—1=Ht—1,Ut—1

= g(pr—1,ut—1) + Gr_1 (T4—1 — pie—1)

where the Jacobian G; has size n x n, with n denoting the state dimension. The
value of the Jacobian depends on w; and pu,;_1, hence it differs for different points
in time.

27

Algorithm implementation

The same linearization is implemented for the measurement function h. Here, the
Taylor expansion is developed around ji; , the state considered most probable when
h is linearized.

) = B+ o (o i) = b + Hila —)

Tt=[lt

Concerning the KF nad EKF algorithms, the main differences are indeed the state
estimation function and measurement estimation function, which are linear in the
KF and non-linear in EKF.

The two algorithms are reported in parallel in the following table:

Extended Kalman filter Kalman filter

Prediction

fie = g(pe—1, ur) pe = Agpir—1 + Bruy

Y =G 1G] + Ry ¥ =AY Al + R,
Correction

Ky =S H (HSH + Q)7 | Ky = %,C7 (G20 + Q)
pe = jig + Ki(2e — h(jiz)) pe = jir + Ki(2e — Cijuig)

Y = (I — K.H,)%, Y = (I — K:Cy)%,

Return g, 2

Regarding the computational efficiency of the EKF, each update has a complex-
ity of O(k*® + n?), where k represents the size of the measurement vector z; and
n the size of the state vector ;. This makes it very efficient, especially because
it approximates the probability distribution with a multivariate Gaussian. One
crucial limitation of the EKF is due to its approximation of state transitions and
measurements model by linear Taylor expansions. The accuracy of this approxima-
tion depends mainly on two factors: the degree of nonlinearity of the functions and
the level of uncertainty, that means the width of the posterior.

Furthermore, greater uncertainty in the system leads to a wider Gaussian estimate,
accentuating the effect of nonlinearity and reducing the accuracy. Therefore, it
is essential to keep the uncertainty in the estimate low to achieve good performance.

In the next two paragraphs, a walkthrough the workflow of the EKF implemen-
tation for this thesis work is presented.

28

Algorithm implementation

3.2.2 Prediction Phase

The state vector is defined as:

Ty = [(Iz, a’yv Az, Vg, Uya Uz, dpr7 dpy7 dpz]

The choice of having the difference in position instead of the absolute position is
found in the need to keep the propagating error as low as possible. In the prediction
phase, the motion model is applied at ~ 100H z to the data measured by the IMU,
in order to predict the mean of the Gaussian representing the state of the system.
Since the IMU data is very noisy, a filter must be applied to it in order to have a
smooth and reliable prediction: in this work, the linear acceleration and angular
velocity are considered as a mobile mean of the last & samples measured by the IMU.
The higher k, the smoother the prediction, but the more dynamic of the system is
lost. Therefore, the choice of this constant is determined by the frequency at which
the IMU measures and some consideration on the application of the algorithm: the
faster the dynamics of the system (i.e. a drone), the lower that number must be.
Taking into account a sampling frequency of the IMU of ~ 500H z and the fact
that the application is deployed on a rover-like robot, the choice was to set k = 10.
The chosen motion model is a constant acceleration approximation:

At = Qg1
Uy = v+ (a1 — g)At
Pt = Di1 + Vi1 A + 3 (a1 — g) AL

where g, that is the acceleration of gravity, and every other kinematic variable, are
expressed in the world frame, while At is the difference in time between the first
and the tenth IMU measurement.

The output of the motion model is the mean of the gaussian estimating the state
of the system. In this phase, the covariance of that gaussian and the Jacobians
relative to the motion model are updated as well.

Every time the prediction is carried out, the Ap found is added to the previous,
in such a way that, when the update is performed, the cumulative information of
movements estimated since the last update, is available.

The Jacobians of the motion model with respect to the state and with respect to
the command, useful for the EKF algorithm, are computed each step, since the

29

Algorithm implementation

variables that make them up vary each step. Their form is the following:

[RdR 0 0 0 0 0 0 0 0]
0 RdR 0 0 0 0 000
0 0 RdR 0 0 0 000
RARAt 0 0 1 0 0 000
Gy = 0 RARAt 0 0 1 0 000
0 0 RIRAt 0 0 1 000
RARIAL? 0 0 At 0 0 000
0 RARIAL? 0 0 At 0 0 0 0
0 0 RARIA> 0 0 At 0 0 0

[RdR 0 0 0 0 0]

0 RdR 0 000

0 0 RIR 0 0 0

RARAt 0 0 000

V, = 0 RARAt 0 000

0 0 RARAt 0 0 0

RARAL? 0 0 000

0 RARIA 0 000

0 0 RARIAE* 0 0 0]

3.2.3 Update Phase

Every time a new couple of images are captured by the stereo camera, the update
is performed. First, the VO algorithm described previously is applied to the new
images, in such a way to estimate a certain Apcanr, to be checked against the
Apryu. The sensor model is very straightforward, since the output of the VO
algorithm is the wanted information itself, the difference in position since the last
update.

2t = Apvo
Then, the Kalman gain K; is computed taking into account the Jacobian of the
sensor model with respect to the state H; as well as the covariance of the gaussian
of the estimation of the state 3; and the noise factor ;. Finally, the mean and
covariance of the estimation of the state are updated, as a result of the weighted
average with the information in output of the prediction and of the VO algorithm,
as described by the algorithm in the previous section.
The Jacobian of the sensor model with respect to the state, due to the simplicity
of the sensor model itself, is the following constant matrix:

0001O00O0
H=10 00010
000O0O0T1

30

Algorithm implementation

> @ N I ()
© R)
" © K I O

Figure 3.10: Graphical evolution of the gaussian estimating the state

In figure 3.10, the graphical evolution of the Gaussian estimating the state of a
system by means of a Kalman filter is shown.

a) Initial belief;
b) Measurement superimposed to the initial belief;

¢) New belief after the update, superimposed to the first two Gaussians;

)
)
)
d) New belief after a certain movement, superimposed to the previous belief;
e) New measurement superimposed to the belief

)

f) There is also the new belief after the update of the last measurement.

31

Chapter 4

Hardware experimental
setup

The hardware setup for deploying the application described in this thesis consists
on 3 elements: a robot, a stereo camera and an inertial measurement unit. Those
three components are described and referred to in the next subsections.

Figure 4.1: Hardware setup in one of the testing environments

32

Hardware experimental setup

4.1 Jackal

The robot on which the algorithm has been deployed for the indoor tests in the
laboratory is the Jackal, created by ClearPath Robotics. It is an unmanned ground
vehicle (UGV) built from a sturdy aluminum chassis made with a high torque 4x4
drivetrain for rugged all-terrain operation, capable of moving at a max speed of
2m/s. Being a compact UGV, it is the best solution for simulating the behavior of
a rover, considering the facility where the tests took place.

L=300mm 11 8in]
W 180 mm (7,08 n]

L= 135mm (531]
W 135 mm [5.31in]

—_

&5 mm

2410
1

SIZE AND WEIGHT SPEED AND PERFORMANCE

EXTERNAL DIMENSIONS 508 x 430 x 250 mm MAX SPEED 20m/s
(20x 17 x101in) (6.6 ft/s)

INTERNAL DIMENSIONS 250 x 100 x 85 mm RUN TIME o
(10x4x3in) (BASIC USAGE] ours

WEIGHT 17kg USER POWER 5V at 5A, 12V at 10A, 24V at 20A
(37 lbs)

MAXIMUM PAYLOAD 20kg DRIVERS AND API ROS 2 Jazzy

(44 1bs)

Figure 4.2: Technical specifications of the Jackal robot [11]

33

Hardware experimental setup

4.2 Camera

The camera that has been mounted on the Jackal robot is the Intel® RealSense™
Depth Camera D435i. It features 1920 x 1080 RGB resolution at 30fps. The
following table summarizes all the technical specifications of the camera module.

Metric Value
Baseline 50 mm
Left /Right Imagers Type Wide

Depth FOV HD (degrees)

H:87+3 / V:58+1 / D:95+3

Depth FOV VGA (degrees)

H:754+3 / V:62+1 / D:89+3

IR Projector

Wide

IR Projector FOV

H:90 / V:63 / D:99

Color Sensor OV2740
Color Camera FOV H:69+1 / V:42+1 / D:77+1
IMU 6DoF

Table 4.1: specifications Intel® RealSense™ Depth Camera D435i

FE R R R R R R R RN

Figure 4.3: Intel® RealSense™ Depth Camera D435i

34

Hardware experimental setup

4.3 Inertial Measurement Unit

The Inertial Measurement Unit (IMU) exploited for the deployment of the appli-
cation is integrated in the camera module described in the previous section. In
particular, it is a 6 degrees of freedom IMU (forward/back, up/down, left/right,
pitch, yaw, roll) with accelerometer and gyroscope. Table ?? summarizes its

specifications.
Parameter Properties
Degrees of Freedom 6
Acceleration Range +4g

Accelerometer Sample Rate!

62.5, 250 (Hz)

Gyroscope Range

+1000 deg/s

Gyroscope Sample Rate?

200, 400 (Hz)

Sample Timestamp Accuracy

50 usec

! The sample rate may differ from the absolute specified sample rate by £5%. It is

Table 4.2: IMU specifications.

advised to rely on the sample timestamp.

2 The sample rate may differ from the absolute specified sample rate by +0.3%.

35

Chapter 5
Results and discussion

In this section, the results of the tests performed are shown and explained. Following
the development process of the system, the tests for the VO algorithm alone are
displayed first, followed by the tests of the entire VIO pipeline.

The test campaign for the VIO algorithm was designed in order to check its
capabilities in both indoor and outdoor environments and to asses its limits.
Therefore, the system was tested in three settings: in the laboratory, in a vineyard
and in a special facility resembling a non-terrestrial environment. In each of
those three situations, a different aspect of the setting tests a specific limit of the
algorithm.

The structure of the result showout, that will be common of all subsections, is the
following;:

o scatter plots showing the estimated path in parallel with the ground truth
path;

» a box plot showing the evolution in time of the relative pose error;
o table summarizing all the relevant metrics for the quantitative evaluation.

Even before that, the metrics adopted to evaluate the quality of the results and
the method applied to align the trajectories are defined and explained.

5.1 Metrics and performances evaluation

In order to quantitatively assess the accuracy of the estimated trajectory with
respect to the ground truth, several standard metrics are considered. Let p, € R?
denote the estimated position at index i, and p; € R? the corresponding ground
truth position. The metrics employed are the following:

36

Results and discussion

Absolute Trajectory Error (ATE). The Absolute Trajectory Error measures
the global deviation between the estimated trajectory and the ground truth. The
per-frame error is defined as:

€ = H(IA%) — Pi,

The overall ATE is summarized using different statistics of the error sequence
{e;}X,, such as the mean, minimum, maximum, and in particular the Root Mean
Square Error (RMSE):

1 N
ATERMSE = - E 6?.
N 1=1

ATE reflects how well the estimated trajectory matches the global shape and scale
of the ground truth trajectory.

Relative Pose Error (RPE). The Relative Pose Error evaluates the local
consistency of the trajectory over a fixed interval Ak. For each segment, the
displacement in the estimated and ground truth trajectories is compared:
Ap; = Pirak — Pi Ap; = Pirak — Pi-
The relative translational error is then defined as:
 L12pil: = [Apie
Z APz

The RPE is reported through the same statistics as the ATE. This metric highlights
local drift and scale errors.

Hausdorff Distance. The Hausdorff distance quantifies the maximum discrep-
ancy between two sets of points. For two trajectories X = {x;} and Y = {y;,}, the
directed Hausdorff distance is:

d(X,Y) = max min|x -y,

This represents the largest spatial deviation between the two trajectories.

Path Length. The path length corresponds to the total traveled distance, com-
puted as the cumulative sum of segment lengths:

N-1
L(pi.n) = Z ’Pz‘+1 — Pi
i=1

x

Comparing the estimated and ground truth path lengths allows evaluating system-
atic scale errors.

37

Results and discussion

Final Drift. The final drift is the Euclidean distance between the last aligned
estimated pose and the corresponding ground truth pose:

Deinal = HS(f)N) - PNHQ-

It can also be expressed as a percentage of the ground truth path length:

Dﬁnal
Dy, = —mL_ o 100%.
g L(plzN) ’

This metric expresses how far the estimated trajectory drifts from the ground truth
at the end of the sequence.

5.2 Trajectory alignment

Before the evaluation, the two trajectories are aligned using a similarity transfor-
mation (rotation and translation), fixing a coincident starting point. The method
applied is the Kabsch—Umeyama algorithm: it finds the optimal translation, ro-
tation and scaling by minimizing the root-mean-square deviation (RMSD) of the
point pairs. The algorithm is as follows:

The input is the two vectors of points describing the ground truth and the estimated
path:

gt:(al,...,an), est:(bl,...,bn)
Let the centroids be:

12 12
= - a;, est — bz
l'l'gt n ; H' t n ;
Define the variance of gt:
— L5 - gl
n P 0 gt

Compute the covariance matrix:

Z Ngt b i Nest)

=1

3*—‘

Then perform singular value decomposition:

H=UDV"
38

Results and discussion

To detect and prevent reflection, compute:
d= sgn(det(U) det(VT))
S = diag(l, ce 1,d>
Finally, the optimal rotation matrix R and scale factor c are given by:

2
Jgt

tr(DS)

R=USVT, c=

Then each aligned point b}, is:
b; = Mgt +c R(bz - ll'est)

Alternatively, defining the translation vector

t= Mgt _CR”'est

we have the equivalent form:

b, =t+cRb;

5.3 VO algorithm tests

The VO algorithm is the first component of the system that has been developed
chronologically. This has first been tested on the KITTI vision benchmark suite
[12], that is the most used database for visual odometry tests, later on the data
recorded in the three real life scenarios, the very same that have been used to test
the whole algorithm.

For the purpose of validation, an alternative pipeline for Visual Odometry (in the
following: Traditional VO) has been implemented. This algorithm differs from
the Deep VO algorithm under test for the feature detection and matching phases,
that are not entrusted to Deep Neural Networks. In particular a FAST keypoint
detector [13], a BRIEF descriptor [14] and a FLANN matcher are employed.

5.3.1 VO algorithm tests on KITTI database

The system endeavored for recording the data of the KITTI database is composed
of two high-resolution color and gray-scale video cameras, while the ground truth
is provided by a Velodyne laser scanner and a GPS localization system. The videos
were recorded by driving in the city of Karlsruhe in rural areas or in highways and
up to 15 cars and 30 pedestrians can be seen in the images.

The purpose of the operation was to create datasets for tasks such as optical flow,
visual odometry, 3D object detection, and 3D tracking: in the context of this thesis,
the 2012 high definition stereo camera dataset for visual odometry is used.

In the following, the results of the simulations are shown.

39

Results and discussion

804

60 +

z[m]

40

204

—— Ground Truth
Estimated path
e end

e start 80 1

60 1

z[m]

40 4

20 4

ZID
x [m]

—20 0

(a) Deep VO trajectory (test 1)

@ — Ground Truth
Estimated path
e end
e start

60

140 4

TN

RN

2‘0
x [m]

-20 o]

40

60 80

(b) Traditional VO trajectory (test 1)

—— Ground Truth
Estimated path
e end
e start

140 4

120 1

100 1

80 1

60 +

40

60 80

x [m]

o 20 40

(c) Deep VO trajectory (test 2)

100

z[m]
[
|

—— Ground Truth
Estimated path
e end
e start

120 140 0

6'0
x [m]

20 40

80

(d) Traditional VO trajectory (test 2)

Figure 5.1: Trajectory estimation of the two kitti tests, comparing traditional

and deep algorithms

As qualitatively clear from the scatter plots in figure 5.1, and quantitatively
clear from the metrics enclosed in table 5.1, the Deep VO version of the algorithm
outperforms the traditional version in the matter of estimating the path correctly.
In particular the path in output from the Deep VO algorithm results closer to the
ground truth with respect to the other one.
The results are very good in terms of numerical errors, since the quality of the data
set is very high and the environment where the photos have been taken is full of

recognizable visual features.

40

Results and discussion

The box plots in figure 5.2 show the trend of the RPE over the distance traveled.
In both tests and for both the algorithms, it is clear that the major errors coincide
with the 90° curve.

RPE distribution by distance RPE distribution by distance
0.045 0.09
0.040 T 0.08
0.035 0.07
5 0030 S 0.06
2 _— 4 = = L = g
=0025 —— = = = 005 L 1
& g ===
& ?
0.020 0.04
0.015 0.03
0.010 0.02
0.005 ==

15.3 31.9 48.4 65.0 81.5 98.1 114.7 131.2 15.3 319 48.4 65.0 815 98.1 114.7 131.2
Distance traveled [m] Distance traveled [m]

(a) Deep VO RPE box plot (test 1) (b) Traditional VO RPE box plot (test 1)

RPE distribution by distance RPE distribution by distance

0.040 011
L —/ 0.10
0.035 { == = T B == ==

0.09
0.030 0.08 — I:_l ﬁ = i’ e = ———

RPE [ratio]
RPE [ratio]

o
o
N
bl

0.020

0.015 0.04 ==

23.8 49.1 74.4 99.7 125.0 150.3 175.6 200.9 23.8 49.1 74.4 99.7 125.0 150.3 175.6 200.9
Distance traveled [m] Distance traveled [m]

(c) Deep VO RPE box plot (test 2) (d) Traditional VO RPE box plot (test 2)

Figure 5.2: RPE box plot for the two kitti tests, comparing traditional and deep
algorithms

The price to pay for the extra accuracy from the neural networks is the speed
of execution of the algorithm: while the traditional VO method runs at 12 fps, the
Deep version runs at 4fps. These metrics have to be considered measured on a
Intel (R) Core (TM) i7-1065G7 CPU @1.2GHz and its integrated GPU, an Intel
(R) Iris Plus Graphics G7. Considering the results obtained, this section of the
algorithm is a solid foundation to build the entire VIO pipeline.

As mentioned above, the numerical errors are low, in relation with the length
of the path, that is a determining characteristic for evaluating the absolute value
of the metrics. For what regards the deep version of the algorithm in particular,
the scale factor is close to 1.0 and the path length is only 0.027% longer in the
first test with respect to ground truth and 0.034% longer in the second test with
respect to the same reference.

41

Results and discussion

Table 5.1: Trajectory metrics report

Path 1 Path 2

Metric Traditional VO Deep VO Traditional VO Deep VO
ATE [m]

RMSE 3.358 1.767 9.254 3.966

Mean 3.120 1.631 8.289 3.546

Max 5.595 3.306 16.247 6.969

Min 1.512 0.687 1.993 1.051
RPE [ratio]

RMSE 0.050 0.028 0.082 0.034

Mean 0.049 0.027 0.081 0.034

Max 0.091 0.045 0.128 0.046

Min 0.014 0.006 0.039 0.015
Hausdorff distance [m] 5.595 2.529 16.247 6.969
Scale 0.9599 0.9827 0.9174 0.9637
Path Length [m)]

Estimated (aligned) 146.467 143.350 231.251 221.080

Ground Truth 139.492 139.492 213.590 213.590

Difference +6.975 +3.859 +17.661 +7.490
Final Drift [m]

Absolute 5.595 2.369 16.247 6.969

Percent of GT length 4.011% 1.698% 7.607% 3.263%

42

Results and discussion

5.4 VIO algorithm tests

After having verified the functionality of the VO algorithm, the EKF was imple-
mented. The parameters regarding the noise of the sensors and the trust in the
models have been tuned, based on the results of the experiments in the laboratory,
reaching their optimal values.

The estimated path has a shape similar with respect to the shape of the ground
truth and overall follows it well, moreover the scale is correct. The RPE box plots
also show that the error fro the deep VIO algorithm is limited within acceptable
limits, rarely exceeding the value of 0.2. The tables in each of the following subsec-
tions are filled with information regarding the metrics that have been considered
for the quantitative evaluation of the algorithm. For the algorithm under test,
the absolute trajectory error and the final path length difference result in average
respectively 2% and 6% of the ground truth path length.

The test results are deeply explained in the following subsections.

5.4.1 Test in the PIC4SeR laboratory

Many tests have been performed in the PIC4SeR facility before starting to test in
outdoor settings. In this subsection the most relevant is shown.

This indoor setting has very peculiar objects so the keypoints are robust and
generally easy to match.

SuperGlue
Keypoints: 183:19i1
Matches: 169

Figure 5.3: Keypoints Matches in the PIC4SeR environment

The trajectory under test consists of a 270° turn followed by a straight: this
kind of curve allow to test the ability of the algorithms to track the robot position
over a long-lasting rotational movement. It is an effective way to test the algorithm,
near the limits related to path complexity. Despite that, it is a quite short path,
compared to the following tests, being 9.4m long.

43

Results and discussion

As can be seen from the plots, deep versions of the algorithms produces a
smoother trajectory with respect to the traditional ones. Moreover, fusing inertial
and visual data permits to better recover the scale of the trajectory, as can be

evaluated qualitatively referring to the curve in the path.

- gr?undtT;uthth » 1.0 4 — Ground Truth °
stimated pal Estimated path
s end e end
e start 0.5 1 o start
0.0 4
0
—0.5
E E 10
~ 1 [or=. N ==
=15
24 -2.0
/
-25
-3 4 -3.0
-1 0 1 2 -1 o 1 2 3
x[m] x[m]
(a) Traditional VO (b) Deep VO
—— Ground Truth [}
Estimated path 1.0 + — Ground Truth
1 Estimated path [
e end end
]
start 4
e “ 03 e start
0.0 4
0
-0.5
£ -
~ -1 — % 1.0
154
24 -2.0 1
—2.51
=34 -3.0 4
T T T T T T T T T
-1 0 -1 0 1 2 3

x [m]

(c) Traditional VIO

Figure 5.4: Trajectory estimation

44

(d) Deep VIO

of the 4 algorithms, compared

Results and discussion

RPE distribution by distance RPE distribution by distance

0.35 0.24
030 022
0.25 0.20

0.18

= oYl e LIt
P & Ld s “ o

8.9

RPE [ratio]
RPE [ratio]

o o
N
S

1.0 2.2 3.3 4.4 5.5
Distance traveled [m] Distance traveled [m]
(a) Traditional VO (b) Deep VO
RPE distribution by distance RPE distribution by distance
0.40
0.11
0.35
0.10
0.30 0.09
3 0.25 < 008
] g
i 0.20 1 i 0.07
& 0,15 &
. ,__I__\ 0.06
0101 \Tl 0.05
0.05 i 0.04 - =
=l =
- 0.03
1.0 2.2 33 4.4 5.5 6.6 7.8 8.9 1.0 2.2 33 4.4 5.5 6.6 7.8 8.9
Distance traveled [m] Distance traveled [m]
(c) Traditional VIO (d) Deep VIO

Figure 5.5: RPE box plots of the 4 algorithms, compared

The box plots demonstrate that the most critical segment of the trajectory is

indeed the curve, as the Relative Pose Error (RPE) is higher compared to the
initial and final sections of the path.
Quantitatively, the absolute error values are substantially lower than those observed
in the KITTI dataset, primarily due to the significantly shorter trajectory length.
In this scenario, certain metrics, such as path length and absolute drift, favor
the traditional algorithm versions, although both absolute and relative errors are
overall improved in the deep learning-based variants.

45

Results and discussion

Table 5.2: Trajectory metrics report

Metric Traditional VO Deep VO Traditional VIO Deep VIO
ATE [m]
RMSE 0.545 0.466 0.423 0.252
Mean 0.508 0.421 0.383 0.233
Max 1.015 0.804 0.794 0.449
Min 0.177 0.051 0.084 0.062
RPE [ratio]
RMSE 0.161 0.154 0.107 0.061
Mean 0.148 0.151 0.082 0.058
Max 0.335 0.226 0.273 0.116
Min 0.047 0.080 0.000 0.010
Hausdorff distance [m] 0.479 0.518 0.386 0.333
Scale 1.050 1.097 0.991 1.029
Path Length [m]
Estimated (aligned) 18.704 17.633 20.330 19.525
Ground Truth 20.436 20.436 20.436 20.436
Difference -1.732 -2.803 -0.106 -0.911
Final Drift [m)]
Absolute 0.193 0.582 0.103 0.333
Percent of GT length 0.942% 2.847% 0.502% 1.630%

46

Results and discussion

5.4.2 Test in the vineyard

The first tests in an outdoor setting have been run in a vineyard near Turin.
The peculiarity of this setting is the large amount of features that are however
similar among each other, being them all lees and trees: this might deceive the VO
algorithms.

Figure 5.6: Keypoints Matches in the vineyard environment

In this subsection one of tests performed in this environment is shown.
The trajectory consists of a narrow 180° turn, followed by a 100m long straight,
and lastly another 180° curve. This path has been chosen for two reasons. First,
the narrow curves allow for the test of the ability of the algorithm to evaluate how
much the robot turns around, being a wide curve easier than a narrow one. The
second reason is that the long corridor allows the computation of the drift error
accumulated over a long-lasting period of time.

47

Results and discussion

Since the trajectory is very long, it is difficult to appreciate the local differences
between the four algorithms. What is evident instead, is that the VO-only variants
the drift error accumulates faster, since the first curve is already further than what
should be. Moreover, the traditional VO algorithm doesn’t evaluate well the second
turn, being its exit not parallel with the ground truth.

—— Ground Truth 207 —— Ground Truth
Estimated path Estimated path
07 e start @ start
/ e end 01 e end
|
—20 4 i
f]e —-20 4
/
—40 4 —40 4
E E
-60 N —60
_g0 » —80
~100 / -100
—120 -120
100 75 —so 25 o 25 50 3 100 75 50 25 o 25 50 75
x [m] % [m]
(a) Traditional VO (b) Deep VO
20
—— Ground Truth —— Ground Truth
Estimated path Estimated path
0 /’1 e start ol e start
| e end / e end
—20 1 // 20 [
—40 4 —40 /
E E
~
—601 —60
-804 v —80 1
—100 | é’ -100
T r T + r -120
-75 -50 -25 [25 50 75 -75 -50 -25 25 50 75
x [m] % [m]
(c) Traditional VIO (d) Deep VIO

Figure 5.7: Trajectory estimation of the 4 algorithms, compared

48

Results and discussion

The box plots underlines that the relative pose error is higher in correspondence
of the turns, with the peak errors being two in the VO-only variants, while the
versions that leverage also inertial data presents only the second relative pose error
peak.

RPE distribution by distance RPE distribution by distance

o &
> o
|
1

RPE [ratio]
o
Y
RPE [ratio]
o
w

14
IS

B .
17| b=~

178.7 20.8 433 65.9 88.5 111.0 133.6 156.1 178.7
Distance traveled [m]

_— || = = = —

o
o
o
o

o
o

20.8 433 65.9 88.5 111.0 133.6 156.1
Distance traveled [m]

(a) Traditional VO (b) Deep VO

RPE distribution by distance

0.6
0.5
0.4
0.2

;? —— 0.1
20.8 43.3 20.8 43.3

65.9 88.5 111.0 133.6 156.1 178.7
Distance traveled [m]

RPE distribution by distance

4 =
® o

RPE [ratio]
o
Y
RPE [ratio]
o
W

o
=

——

o
N}

o
o

65.9 88.5 111.0 133.6 156.1 178.7
Distance traveled [m]

(c) Traditional VIO (d) Deep VIO

Figure 5.8: RPE box plots of the 4 algorithms, compared
In metrics table, it iss clear that the absolute errors, such as ATE, path length
and final drift, are larger than in the previous tests, since the long corridor has

caused for the drift error to accumulate. The relative pose error instead is low,
since that metric is not affected by drift accumulated over time.

49

Results and discussion

Table 5.3: Trajectory metrics report

Metric Traditional VO Deep VO Traditional VIO Deep VIO
ATE [m]
RMSE 14.011 13.160 8.129 7.686
Mean 10.647 10.242 6.314 6.135
Max 30.039 28.985 17.186 15.406
Min 0.663 1.423 0.616 0.101
RPE [ratio]
RMSE 0.290 0.361 0.179 0.183
Mean 0.229 0.299 0.131 0.144
Max 1.575 1.578 1.109 0.623
Min 0.000 0.001 0.000 0.000
Hausdorff distance [m] 24.577 19.959 14.031 11.172
Scale 0.777 0.789 0.860 0.869
Path Length [m]
Estimated (aligned) 227.585 231.473 209.742 204.855
Ground Truth 189.964 189.964 189.964 189.964
Difference +37.621 +41.509 +19.778 +14.892
Final Drift [m)]
Absolute 23.901 23.427 13.593 14.036
Percent of GT length 12.582% 12.332% 7.156% 7.389%

50

Results and discussion

5.4.3 Test in the Rover eXploration facilit

The last tests have been performed in the Rover eXploration facilitY (ROXY)
located at Thales Alenia Space, in Turin. The peculiarity of this setting is the
absence of clear visual features, being the camera pointed downwords and being
the soil bare. This is the most complex situation for a VO algorithm, since the
precision and variety of the correspondences are crucial. The peculiarity of the
terrain serves the purpose of resembling a non-terrestrial ground.

SupenrGueiig
ey Point S BINFII0N;

Mathes oo

eshold: 0.2000
hold: 0/80
000001:000002-

Figure 5.9: Keypoints Matches in a non-terrestrial envirnment

In this subsection one of tests performed in this facility is shown.
The trajectory seems simple from a 2D perspective, even tough the terrains presents
bumps and hills that might trick the algorithm.

As can be seen from the plots of the estimated trajectories, the traditional
algorithms fail to track the robot movements, in a certain region. This is due to
the lack of clear geometrical features, that the algorithm is looking for, due to the
camera being very close to the terrain in that section. This problem is solved by
the neural networks in deep variant the algorithm that are able to stay on track.
Moreover it can be qualitatively seen that the deep VIO has a tracking with respect
to the deep VO algorithm alone, being closer to the ground truth.

51

Results and discussion

17.5 + —— Ground Truth
Estimated path
e start

1501 @ end

12.5 4

10.0 +

E °
~

754

5.0 1

254

0.0 4 L4

-5 0 5 10 15
x[m]
(a) Traditional VO
17.5 + — Ground Truth
Estimated path
e start

1501 o end
125
10.0

754

3

5.0 4

254

0.0 4 L4

T T T T u
=5 o 5 10 15

x[m]

(c) Traditional VIO

z[m]

Figure 5.10: Trajectory estimation

52

20.0 4" — Ground Truth
Estimated path
175 o star
e end

15.0 4

12.5 4

10.0 4

751

50 e~

2.54

i
0.0 4 1‘!
-5 0 5 10 15 2(
x [m]
(b) Deep VO
| — Ground Truth
175 Estimated path
o start

1504 ® end
12.5
10.0

754

5.0 4

2.5+

0.0 4

T T T T T
-5 o 5 10 15
x[m]

(d) Deep VIO

of the 4 algorithms, compared

Results and discussion

The scale on the RPE axis on the box plots show the difference between the
errors in among traditional and deep variants, due to the fact that the tracking is
being lost in path section mentioned above. Moreover, the Deep VIO algorithm
outperforms the VO-only one, in terms of average and maximum RPE.

RPE distribution by distance RPE distribution by distance

: EreTEeE
EELE-MIE

00 T T T T T T 0.00
15.7 21.2 26.7 32.1 37.6 43.0 4.8 10.3 15.7 21.2 26.7 321 37.6 43.0
Distance traveled [m] Distance traveled [m]
(a) Traditional VO (b) Deep VO
RPE distribution by distance RPE distribution by distance

o
S

o
EY

0.175
0.150
0.125

g

% 0100

& 0.075

&
0.025 lf

37.6 43.0 4.8 103

o
o

S

—_
_

w

RPE [ratio]
o o

o
o

o
o

4.8 10.3 15.7 21.2 26.7 321 15.7 21.2 26‘.7 32‘ 1 37.6 43‘.0
Distance traveled [m] Distance traveled [m]

0.000

o
o

(c) Traditional VIO (d) Deep VIO

Figure 5.11: RPE box plots of the 4 algorithms, compared
Since the qualitative analysis enlighted the failure of the traditional algorithms,
their metrics loose value. For example, the path length predicted by the traditional

VIO algorithm is closer to the real one, with respect to the one predicted by the
deep VO algorithm: this is irrelevant, since the trajectory itself is wrong.

53

Results and discussion

Table 5.4: Trajectory metrics report

Metric Traditional VO Deep VO Traditional VIO Deep VIO
ATE [m]
RMSE 3.193 2.120 3.296 0.851
Mean 2.759 1.926 2.823 0.776
Max 5.539 3.393 6.892 1.432
Min 0.257 0.379 0.201 0.072
RPE [m]
RMSE 0.177 0.185 0.254 0.078
Mean 0.128 0.179 0.215 0.072
Max 0.536 0.333 0.726 0.179
Min 0.000 0.006 0.001 0.000
Hausdorff distance [m] 5.521 3.273 6.844 1.430
Scale 1.008 0.856 1.181 0.942
Path Length [m]
Estimated (aligned) 42.397 54.359 38.703 49.366
Ground Truth 45.773 45.773 45.773 45.773
Difference -3.376 8.586 -7.070 3.592
Final Drift [m)]
Absolute 4.138 0.772 2.376 0.383
Percent of GT length 9.040% 1.687% 5.191% 0.837%

o4

Chapter 6
Conclusions

This thesis presented the design, implementation, and comprehensive evaluation of
a hybrid deep learning-based visual-inertial odometry system. By leveraging the
computational power of convolutional neural networks for feature detection and
matching and an Extended Kalman Filter for sensor fusion, the proposed system
finds a trade off among the strengths and weaknesses of both worlds.

The experimental results obtained across multiple real-world scenarios demonstrate
that the deep learning components significantly enhance pose estimation accuracy
and trajectory smoothness compared to traditional methods. Moreover, in challeng-
ing conditions where visual information alone is insufficient, inertial data proves to
be useful to improve robustness. From the results, the integration of the neural
networks turns out to be worth it, despite a computational overhead leading to
slower executions with respect to classical pipelines.

Among the algorithms tested, the deep visual-inertial odometry variant can achieve
the assigned task with superior accuracy. This is evident from the systematic
evaluation with metrics such as Absolute Trajectory Error, Relative Pose Error,
Hausdorff distance and final drift. Moreover, the deep models recover scale more
reliably, reducing drift accumulation effectively.

Future research directions could focus on optimizing computational efficiency
through model compression or hardware acceleration, and exploring other ways to
further exploit inertial data.

Overall, this work contributes to advancing autonomous navigation capabilities by
demonstrating how modern deep learning techniques can be synergistically com-
bined with established geometrical methods to obtain state-of-the-art performances
in visual-inertial odometry.

59

Bibliography

LAKMAL SENEVIRATNE YUSRA ALKENDI and YAHYA ZWEIRI. «State
of the Art in Vision-Based Localization Techniques for Autonomous Naviga-
tion Systems». In: IEEE ACCESS (2021), pp. 76847-76874 (cit. on p. 3).

HONGKAI WEN SEN WANG RONALD CLARK and NIKI TRIGONTI.
«DeepVO: Towards end-to-end visual odometry with deep Recurrent Convo-
lutional Neural Networks». In: IEEE EXPLORE (2017) (cit. on p. 4).

J. M. M. Montiel Raul Mur-Artal and Juan D. Tardos. «ORB-SLAM: a
Versatile and Accurate Monocular SLAM System». In: IEE TRANSACTIONS
ON ROBOTICS (2015) (cit. on p. 7).

Tong Qin, Peiliang Li, and Shaojie Shen. « VINS-Mono». In: IEEE Trans-
actions on Robotics 34.4 (Aug. 2018), pp. 1004-1020. 1SSN: 1941-0468. DOTI:
10.1109/tro.2018.2853729. URL: http://dx.doi.org/10.1109/TRO.
2018.2853729 (cit. on p. 12).

B. D. Lucas and T. Kanade. «An iterative image registration technique with
an application to stereo visiony». In: Proc. Int. Joint Conf. Artif. Intell (1981)
(cit. on p. 12).

Arman Neyestani, Francesco Picariello, Amin Basiri, Pasquale Daponte, and
Luca De Vito. «Survey and Research Challenges in Monocular Visual Odom-
etry». In: 2023, pp. 107-112 (cit. on p. 17).

Davide Scaramuzza and Friedrich Fraundorfer. «Visual Odometry [Tutorial]».
In: IEEE Robotics Automation Magazine (2011) (cit. on pp. 17-19, 24).

Tomasz Malisiewicz Daniel DeTone and Andrew Rabinovich. «SuperPoint:
Self-Supervised Interest Point Detection and Description». In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops (2018) (cit. on pp. 17, 19, 20).

Tomasz Malisiewicz Paul-Edouard Sarlin Daniel DeTone and Andrew Ra-
binovich. «SuperGlue: Learning Feature Matching With Graph Neural Net-
works». In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (2020) (cit. on pp. 17, 22).

56

https://doi.org/10.1109/tro.2018.2853729
http://dx.doi.org/10.1109/TRO.2018.2853729
http://dx.doi.org/10.1109/TRO.2018.2853729

BIBLIOGRAPHY

[10]

[11]

[12]

Wikipedia contributors. Kalman filter — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/Kalman_filter. [Accessed: 25 August
2025]. 2025 (cit. on p. 25).

ClearPath Robotics. technical specifications of the Jackal robot. https://
clearpathrobotics . com/ jackal - small - unmanned - ground - vehicle/.
[Accessed: 15 September 2025] (cit. on p. 33).

Andreas Geiger, Philip Lenz, and Raquel Urtasun. «Are we ready for Au-
tonomous Driving? The KITTI Vision Benchmark Suite». In: Conference on
Computer Vision and Pattern Recognition (CVPR). 2012 (cit. on p. 39).

Miroslav Trajkovi¢ and Mark Hedley. «Fast corner detection». In: Image and
Vision Computing 16.2 (1998), pp. 75-87 (cit. on p. 39).

Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua.
«BRIEF: Binary Robust Independent Elementary Features». In: Computer
Vision — ECCV 2010. Ed. by Kostas Daniilidis, Petros Maragos, and Nikos
Paragios. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 778-792
(cit. on p. 39).

57

https://en.wikipedia.org/wiki/Kalman_filter
https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/

Acknowledgements

Ringrazio innanzitutto il mio relatore, il Prof. Marcello Chiaberge, per 'opportunita
di lavorare a questo progetto di tesi all’interno del suo laboratorio. Ringrazio i
correlatori ufficiali e non, Mauro Martini, Marco Ambrosio e il prof. Stefano
Primatesta, per avermi supportato durante tutto il percorso, per la disponibilita e
pazienza nel prendere parte alle riunioni che si sono rivelate necessarie nel corso di
questi mesi al PIC. Vi ringrazio inoltre per aver acconsentito a farmi portare la
Jetson dall’altra parte d’Italia, cosi vicino al mare. Sono contento di aver scelto
questo percorso di tesi, che possa indirizzarmi nel corso della mia futura carriera?

Ai miei genitori, senza di voi gli obiettivi che ho raggiunto e le esperienze
che ho potuto vivere in questi due anni, sarebbero state solo fantasia. Grazie
per aver creduto in me tanto da fare i tanti sacrifici che mi hanno permesso di
avere questa opportunita: ve ne sono immensamente grato. Grazie per le nostre
chiamate serali sono servite tanto a voi quanto a me: siete riusciti a farmi sen-
tire a tavola con voi anche a 1000km di distanza. Stare lontano da voi mi ha
fatto rendere ancor piu conto del valore del tempo passato insieme. E come sem-
pre grazie per sopportarmi, visto che finite sempre per essere la mia valvola di sfogo.

A mio fratello, sono contento di come il nostro rapporto stia crescendo con noi.
Sembra ieri che ti urlavo addosso perche ti mettevi sempre in bolla a Super Mario
Bros. Grazie per l'interesse genuino che dimostri e grazie per i consigli che mi dai,
il tuo parere ¢ importante. Sai che puoi contare su di me e io so che posso contare
su di te: questo e tutto. Continua cosi che vai lontano.

A cicia, la mia fortuna. Ogni pagina di questo percorso porta con se un po’
del tuo sorriso, delle tue attenzioni e della tua pazienza. Con la tua sensibilita
senza eguali e le tue parole sempre ponderate riesci a capirmi anche quando non
ti parlo, riesci ad accarezzare le corde giuste, lasciando che ogni mio dubbio trovi
pace in un tuo abbraccio. Se sono arrivato fin qui, € anche merito tuo: sei stata la
mia motivazione, il mio equilibrio e la mia serenita nei momenti piu difficili, senza

58

Acknowledgements

mai pretendere nulla in cambio. Grazie per avermi insegnato a mandare in fumo
cio che non posso controllare, ad abbandonarmi alle onde, a vivere con piu serenita
e leggerezza. Questa vita ci ha sorriso e lo sai, perche ho al mio fianco la persona
con cui voglio tagliare ogni traguardo, la persona con cui, anche quando poi saremo
stanchi, troveremo il modo per navigare nel buio.

A Marco e Elisa, mi avete accolto tra di voi sin dal primo giorno, quando an-
cora non sapevamo quanto duro sarebbe stato quel primo semestre... Grazie per
avermi aiutato nell’inserimento in quella che per me era una nuova realta, in parti-
colare con il corso accelerato di VHDL, senza il quale oggi sarei ancora alle prese
con il VGA controller. A Bat, che ha reso un’esperienza di studio da fuorisede, un
corso avanzato di trekking, alpinismo e mountain bike. Grazie per avermi fatto
assaporare quella che e la tua quotidianita, senza mai chiedre nulla in cambio, salvo
qualche nodino. Dopo 12 corsi e altrettanti lab insieme, posso dire che noi 4 siamo
stati una squadra vincente, a cui gli altri chiedevano quando non riuscivano in
qualcosa: sono fiero di noi. Ma soprattuto siete gli amici che cercavo qui, sono
contento di aver condiviso questi due anni con voi.

Alle vecchie conoscenze de "Il Meridione", siamo stati scaraventati tutti nella
stessa situazione bene o male contemporaneamente e ci siamo fatti forza a vicenda.
Abbiamo legato molto dalla triennale e sono davvero contento per questo, spero
che i nostri legami non si sciolgano con il futuro incerto che ci aspsetta. Siete stati
fondamentali per portare un po’ di sano terronismo in questo contesto nordico (x
es gli unici con cui cenare alle 9:30 come le persone normali!). Abbiamo finanziato
e visto fallire Burgo’s, speriamo che almeno Fratelli Pummaro’ regga dai.

Ad Andrea e Pier, abbiamo condiviso questa prima esperienza di vita da soli,
ma non da soli. Tra le minacce della signora di sotto, le panzerottate che si respi-
rano ancora nell’aria, la cucina andata a fuoco, la casa completamente allagata, le
innumerevoli cose che abbiamo rotto, siamo ancora qui: la reputo una vittoria.

A Ciccio, il nostro rapporto si e stretto molto da quando mi sono trasferito e
per questo sono un sacco contento. Grazie per avermi portato ai miei primi spet-
tacoli di cabaret e per avermi accompagnato al cinema anche a vedere film che ti
saresti risparmiato altrimenti. E in generale grazie per la tua disponibilita nei miei
confronti, lo apprezzo davvero. Che ci creda o no, tra i giorni piu divertenti che
ricordo a Torino, ¢’e quello in cui abbiamo fatto il trasloco!

Agli amici di sempre, che siete venuti fin qui a Torino da svariate citta d’Italia per
esserci in questo giorno per me memorabile: siete degli persone da custodire. Grazie
per esservi sempre fatti trovare presenti ogni volta che tornavo a casa, facendomi

59

Acknowledgements

sentire come se non fossi mai partito. La distanza ha solo reso piu chiaro quanto
siano rari i legami che resistono al tempo e ai chilometri. Non servono grandi gesti:
la semplicita con cui ci ritroviamo vale piu di tutto.

Non molti sanno cosa si provi a prenotare un viaggio di sola andata, lasciando
alle spalle casa, familiari e amici. Ho imparato piu che mai in questi due anni che
i rapporti interpersonali vanno coltivati con impegno, che non si puo dare nulla
per scontato. Per questo motivo, ci tengo particolarmente a ringraziare Matteo,
Bobby, Claudia, Nora e Simona che, grazie anche alla loro esperienza simile alla
mia, hanno saputo cogliere questo aspetto.

Infine, ci tengo specialmente a ringraziare la mia nonnina, che durante questa
laurea magistrale si ¢ ritrovata ad avere in mano delle redini molto importanti e ha
saputo ammorbidire quello che sarebbe altrimenti stato un ostacolo molto duro.
Sentire alle 19 in punto la tua risata e uno dei momenti preferiti della mia giornata,
non posso farne a meno. Parlando di cose di cui non posso fare a meno, il tuo ragu
e il tuo minestrone, accuratamente centellinati nel corso della mia permanenza
a Torino, sono stati fondamentali per la mia sopravvivenza lontano dal cibo di
casa! A parte gli scherzi nonna, grazie per la leggerezza che mi trasmetti con le
tue parole curiose e innocenti, senza pretese ma con tante aspettative, che cerchero
sempre di rispettare.

60

	List of Figures
	Introduction
	Goal of the thesis
	Thesis structure

	Literature Review
	DeepVO: Towards end-to-end visual odometry with deep Recurrent Convolutional Neural Networks Deep-VO
	Network architecture and workflow
	Loss function and training objective
	Performances and observations
	Conclusions

	ORB-SLAM: Feature-Based Monocular Visual Odometry and SLAM ORBSLAM
	System overview
	Tracking thread
	Experimental results on localization performance

	VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State vins-mono
	System architecture
	Experimental validation

	Algorithm implementation
	Visual Odometry: methodology
	Mathematical formulation of the problem
	Feature detection
	Feature matching
	Motion estimation

	EKF implementation
	Theory on KF and EKF
	Prediction Phase
	Update Phase

	Hardware experimental setup
	Jackal
	Camera
	Inertial Measurement Unit

	Results and discussion
	Metrics and performances evaluation
	Trajectory alignment
	VO algorithm tests
	VO algorithm test on KITTI database

	VIO algorithm tests
	Test in the PIC4SeR laboratory
	Test in the vineyard
	Test in the Rover eXploration facilitY

	Conclusions
	Bibliography

