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Summary

Security Information and Event Management (SIEM) platforms centralize and correlate
heterogeneous telemetry to surface suspicious behavior. Yet a stubborn gap remains be-
tween raw events and analyst-ready claims about what actually happened—claims that
align with operational abstractions such as MITRE ATT&CK techniques. Large language
models (LLMs) are a natural candidate for this semantic bridge: they read unstructured
text well and can map descriptions to controlled vocabularies. However, the usual way
LLMs are applied—open prompts, long contexts, free-form outputs—sits uneasily with
security operations. Hallucinated details, brittle formatting, unclear provenance, and pri-
vacy constraints make naive integration impractical. This thesis asks a practical question:
how can a SIEM pipeline employ LLMs to transform telemetry into attack-informed, au-
ditable artifacts under constraints of accuracy, privacy, and governance?

Rather than proposing a single “LLM for security,” the thesis advances a modular ar-
chitecture in which multiple LLM operators—potentially different models with different
inductive biases—are composed under narrow contracts and surrounded by validation,
retrieval, and feedback. Each operator performs one disciplined transformation of evi-
dence (e.g., condense noisy events; map a behavior to ATT&CK; justify a claim), and
each speaks a constrained interface, so that downstream components can enforce schema,
check consistency, and keep provenance. The design goal is not maximum model power,
but governability: the ability to reason about, audit, and evolve the system as models
change.

To make this design concrete without overreaching, the thesis exercises one thin, end-to-
end path through the architecture. A disciplined Windows lab (Hyper-V, clear snapshot
per run) executes one Atomic Red Team technique per run; Sysmon and selected Windows
channels are exported to XML to retain structured fields; a reporter operator compresses
each run into one neutral sentence in technical English; a mapper operator outputs only
a list of ATT&CK IDs as a plain string. The reporter is instantiated with GPT-40 (used
via API for budget reasons in the lab); the mapper is instantiated as a compact, locally
deployable Mistral-7B adapted with LoRA. GPT-4o is also used as a comparator mapper
under the same “IDs-only” instruction. This path is intentionally austere—no retrieval,
no validator, no feedback loop—so that behavior is attributable to the reporter-mapper
pair rather than to orchestration.

Evaluation is separated by input regime. In-domain, immediately after fine-tuning, the
adapted Mistral-7B is tested on the CTI dataset’s held-out split—clean, human-written
prose that matches the training style. Using the checkpoint at the minimum validation
loss, Mistral-7B attains micro-F1 0.5748, macro-F1 0.2985, Exact Match 0.5808, and
Hamming loss 0.0026. This establishes that a small, governable model does learn the
narrative-to-ATT&CK mapping on its home turf. Cross-domain, the same mapping role
is exercised on single-sentence summaries distilled from Windows logs—short, behavior-
centric language that is terser than CTI prose and sensitive to omissions. On 70 Windows
runs with single-label ground truth, GPT-40 (as a mapper) shows micro-F1 0.2806, Exact
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Match 0.0286, Hamming 0.0408, while the fine-tuned Mistral-7B shows micro-F1 0.2707,
Exact Match 0.2429, Hamming 0.0198. The contrast is operationally meaningful: GPT-
4o is recall-heavy, often surfacing the correct ID among plausible neighbors but adding
extras (hurting Exact Match and Hamming); Mistral-7B is precision-leaning, emitting
tighter lists that improve Exact Match and reduce label-wise error at the cost of some
misses. Because API budget precluded running GPT-40 across the entire CTI test split, a
budget-limited subset of 70 CTT items (multi-label; not aligned to the previous runs) pro-
vides a prose-only head-to-head: GPT-40 achieves micro-F1 0.2215, Exact Match 0.0286,
Hamming 0.0527; Mistral-7B achieves micro-F1 0.2535, Exact Match 0.1714, Hamming
0.0248. The same precision-versus-recall split persists on concise human prose.

These findings support three claims. First, summary fidelity sets the ceiling. When the
sentence is explicit about actor, flags, object, and locus (e.g., regsvr32 with /i /s against
a scriptlet; a Run-key write; a scheduled task), mapping is reliable; when the sentence is
vague, the general model hedges and the adapted model declines to guess. This places
a premium on reporter discipline: improving the prompt (e.g., obliging actor — flags —
object — locus) is a high-leverage lever that requires no model changes. Second, model
biases can be composed. A recall-heavy proposer and a precision-leaning confirmer be-
come dependable once a Validation layer enforces schema, reconciles outputs with simple
evidence cues, and gates promotions into a Detection Record. The goal is not a single
perfect model but controlled complementarity. Third, small models under tight contracts
are enough to shoulder SIEM-aligned roles with reproducible practice: reset-per-run lab
hygiene, fixed prompts, short outputs, and archived per-run artifacts make behavior in-
spectable rather than anecdotal.

The work is intentionally scoped. It does not build correlation rules nor a full STEM; it
designs and evaluates LLM operators that fit inside a SIEM pipeline. Outputs are SIEM-
ready: one sentence and a set of technique IDs are exactly the kind of governed artifact a
validator can wrap into a Detection Record and forward to an alert store, where existing
rules can corroborate, contextualize. The thesis also records real-world constraints: a
small CTT training corpus (especially for rare techniques), a hosted reporter in the lab
that a production SOC would replace with on-prem/VPC inference or sanitized inputs,
and no retrieval /validation/feedback in the prototype path. These are not oversights;
they are transparent boundaries that convert a sprawling problem into a tractable exper-
iment.

The implications are pragmatic. In the near term, the path forward is to tighten the two
contracts that define the prototype: strengthen the reporter’s discipline and constrain
the mapper’s decoding against an explicit schema (valid ATT&CK IDs; optional short
rationales kept separate from the ID list). Even without changing models, this reduces
brittleness and gives a validator room to act. In parallel, modest data investments—a
small paired set (logs, sentence, ATT&CK) and targeted augmentation with paraphrases
and hard negatives—would improve cross-domain robustness without increasing model
size. With those pieces in place, reintroducing validation, retrieval, and feedback turns
the prototype into a governed product surface: validation to enforce format and consis-
tency; retrieval to inject slow-moving organizational knowledge and reduce stale guesses;
feedback to recycle confirmed hits, misses, and near-misses into periodic adapter refreshes.
Finally, deployment posture matters: the lab used a hosted reporter for convenience, but
a SOC needs local or VPC-isolated inference, prompt/model versioning, dataset lineage,
and canary rollouts—engineering practice that makes LLM-augmented detection sustain-
able.

Overall, the thesis contributes: a survey that situates LLMs across reliability, DFIR /log
analysis, and ATT&CK-aligned SIEM practice; a governed design framework with narrow



contracts and explicit guardrails; and a working instantiation with reproducible proce-
dures and transparent limits.
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Chapter 1

Introduction

In the age of digital transformation, cybersecurity has become a critical concern for orga-
nizations worldwide. With the increasing sophistication of cyber threats [2], it is essential
for organizations to adopt comprehensive strategies to protect their assets, ensure data
integrity, and maintain operational continuity.

The growing frequency and complexity of cyberattacks have led to the development of
numerous frameworks and methodologies aimed at improving threat detection, response,
and mitigation. To gain visibility into their digital environments and to effectively man-
age security incidents, organizations have increasingly adopted Security Information and
Event Management (SIEM) solutions. STEM platforms play a crucial role in aggregating
and analyzing security data from diverse sources, enabling real-time detection, response,
and mitigation of threats. Security operations have always been a race against asymme-
try. Defenders must sift through high-volume, heterogeneous telemetry to spot a handful
of meaningful behaviors, while adversaries need only one overlooked weakness to gain a
foothold. Security Information and Event Management (SIEM) platforms were created
to rebalance that race by centralizing logs, normalizing formats, and correlating events
across hosts, networks, and applications. Yet modern SIEMs still face a familiar bottle-
neck: turning raw events into interpretable claims about what actually happened on a
system, at a level of abstraction that aligns with an analyst’s mental model.

Large language models (LLMs) appear, at first glance, to be ideal for this semantic
bridge [3]. They are adept at reading unstructured text, composing explanations, and
mapping descriptions to controlled vocabularies. But the way LLMs are typically de-
ployed—general prompts over long contexts with open-ended outputs—does not transfer
cleanly to regulated, high-stakes security workflows. The risks are well known: halluci-
nated details, fragile prompt surfaces, unpredictable formatting, unclear provenance, and
non-trivial privacy implications if telemetry leaves the organizational perimeter. The
challenge, therefore, is not “can an LLM read a log?” but rather how to integrate LLMs
into a SIEM pipeline in a way that is effective, governable, and auditable.

This thesis is motivated by that practical question. Instead of proposing a single,
monolithic “LLM for security,” it argues for roles, interfaces, and contracts. LLMs should
be treated as operators—potentially multiple, possibly different models—each responsi-
ble for a narrow transformation (condensing noisy events, extracting salient behavior,
aligning outputs to ATT&CK Framework, or justifying a claim), each speaking a con-
strained interface that downstream components can validate. With that posture, we can
reason about behavior, swap models, and scale capabilities without losing control of the
surrounding system.

The central problem this dissertation addresses is: how can a SIEM pipeline employ
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Introduction

LLMs to transform raw telemetry into attack-informed, auditable artifacts, under con-
straints of accuracy, privacy, and operational discipline? Concretely, the work pursues
three objectives. First, it seeks to design a conceptual framework for LLM-augmented
detection that is modular and enforceable. The design must specify the roles played by
different operators (not necessarily one model), the contracts at their boundaries (inputs
and outputs), and the governance around them (validation, retrieval, feedback), so that
the system remains explainable and maintainable as models evolve.

Second, it aims to instantiate one thin, end-to-end path through that framework to make
behavior empirically inspectable. The path chosen in this thesis uses two LLM operators
as a concrete example: a reporting operator that compresses Windows event logs into a
single neutral sentence, and a mapping operator that translates that sentence into MITRE
ATT&CK techniques. This is one instantiation among many the framework admits; it
is chosen because it isolates the influence of summarization on detection and produces
outputs that are easy to validate and score.

Third, it intends to evaluate this path under realistic constraints. The mapper is im-
plemented as a compact, locally deployable model (Mistral-7B adapted with LoRA) to
respect privacy and cost; GPT-40 is used where appropriate as a comparator and, for
budget reasons, as the reporter in the lab via API calls. The evaluation is deliberately
split across two input regimes: in-domain (CTI prose, immediately after fine-tuning)
to establish that the mapping can be learned at all, and cross-domain (single-sentence
summaries distilled from Windows logs) to probe how that mapping behaves when fed
compressed, behavior-centric language from real telemetry. Where API budget precludes
full-dataset comparisons, a budget-limited CTI subset is used and its limitations are made
explicit.

By pursuing these objectives, the thesis does not claim to “solve” SIEM detection with
LLMs. Instead, it proposes a governed way of using them—one that constrains inputs,
expects narrow outputs, and relies on validation and feedback to keep errors contained.
The results show that even a small slice of such a pipeline can be made legible and use-
ful: summary fidelity proves to be the ceiling for downstream mapping; different models
naturally separate along a recall-versus-precision axis; and once a validator is introduced,
those complementary biases become an asset rather than a liability.

The approach taken in this work is intentionally incremental. Rather than treating

the SIEM as a black box and bolting an LLM onto its side, the thesis decomposes the
detection problem into operators connected by contracts. Each operator has a single,
narrow responsibility and a constrained interface: what it may read, what it must pro-
duce, and which invariants its output must satisfy. This orientation allows the pipeline
to remain intelligible even when individual models are replaced or chained.
Within this general architecture, the experimental program exercises one thin path end
to end to make behavior observable. The path begins with telemetry capture in a dis-
ciplined Windows lab: A set of Atomic Red Team techniques is executed from a clean
snapshot; a bounded time window of events is collected from Sysmon and selected Win-
dows channels; and those events are exported as XML without premature flattening.
This produces a run-scoped bundle that is easy to archive and inspect. The next oper-
ator is the reporter, which compresses the bundle into one neutral sentence in technical
English. The sentence is not a narrative report and it does not name ATT&CK labels; it
is a compact, behavior-centric description intended to surface the essentials—who acted,
with which flags, on what object, and in which locus. The sentence becomes the input
to the mapping operator, which returns only a list of ATT&CK technique IDs as a plain
string. That austerity is deliberate: it separates learning from formatting, makes scoring
unambiguous, and allows a future validator to enforce a schema with minimal friction.
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1.1 Thesis organization

The document is structured to move from principles to practice without losing sight of
operational realities. The Background chapter 2 gathers the technical context: how
SIEMs ingest and normalize telemetry, how ATT&CK organizes adversary behavior,
and how LLMs behave under different prompting and adaptation regimes, including the
risks—hallucinations, prompt injection, brittle formatting—that matter in security set-
tings. The State of the Art chapter 3 surveys emerging uses of LLMs in log analysis
and threat intelligence and identifies the gaps this thesis chooses to address: the lack of
governed integration patterns, the tendency to present single-model solutions, and the
scarcity of reproducible end-to-end evaluations on real telemetry.

Building on that foundation, the Design chapter 4 presents the conceptual framework: a
modular pipeline with several LLM operators, each defined by a role and a contract, sur-
rounded by validation, retrieval, and feedback. It explains how evidence flows, how arti-
facts are shaped, and how the system remains auditable as components evolve. The Imple-
mentation chapter 5 then instantiates one thin path through that design—Windows lab,
Atomic Red Team, Sysmon export, single-sentence reporting, IDs-only mapping—and
evaluates it carefully in two regimes: CTI in-domain and Windows cross-domain, with a
budget-limited CTI subset for head-to-head comparisons.

The Appendices A B provide the reproducibility backbone: fine-tuning details for Mistral-
7B, environment setup and scripts for the Windows lab, and instructions to regenerate
the per-run tables and figures.

This organization mirrors the argument of the thesis itself. Start with why and how;
define who does what under which contract; run an instantiation, honest experiment;
read the results through the lens of governance; and leave behind enough artifacts that
another practitioner can pick up where the work stops.
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Chapter 2

Background

2.1 Security Information and Event management (SIEM)

Security Information and Event Management (SIEM) these type of solutions collect,
aggregate, and analyze large volumes of data from organizational systems and networks
in real time, SIEM solutions provide a comprehensive view of an organization’s security
posture, empowering security operation centers (SOC) to detect, investigate, and respond
to security incidents swiftly and effectively [4].

Key components of STEM include:

e« Log Management: SIEM solutions collect logs and events from various sources,
including servers, network devices, applications, and security appliances. The goal
of this data collection is to uncover anomalies that indicate a potential threat. Many
SIEM solutions also ingest threat intelligence feeds, which allow security teams to
identify and block emerging threats.

e Event Correlation: SIEM systems analyze the collected data to identify patterns
and correlations that may indicate security incidents. This involves applying rules
and algorithms to detect suspicious activities, such as unauthorized access attempts,
malware infections, or data exfiltration. Event correlation helps detect complex
attacks that may not be evident from individual events.

e Incident response and monitoring: To detect and respond to security incidents,
SIEM solutions provide real-time monitoring and alerting capabilities. When a
potential threat is identified, the SIEM system generates alerts that notify security
analysts for further investigation, this enables rapid response to security incidents,
minimizing potential damage.

2.1.1 How SIEM works

SIEM system continuously gather data from various sources, including servers, network
devices, applications, and security appliances. This data is then normalized and stored
in a centralized repository for analysis. Using algorithms and correlation rules, the sys-
tem analyzes the data to identify patterns and anomalies in the normalized data, which
may indicate security incidents. When a potential threat is detected, the SIEM system
generates alerts that notify security analysts, these alerts are centralized in a dashboard,
allowing security teams to monitor the security posture of the organization in real time.
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Security analysts can then investigate the alerts, determine the severity of the incident,
and take appropriate actions to mitigate the threat. This may involve blocking malicious
IP addresses, isolating compromised systems, or initiating incident response procedures.

How Security Information and Event Management (SIEM) Works

SIEM
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Figure 2.1: SIEM architecture [1]

2.1.2 Benefits of SIEM

SIEM solutions offer several benefits to organizations, including:

« Enhanced Threat Detection: By aggregating and analyzing data from multiple
sources, SIEM solutions can detect complex threats that may go unnoticed by
traditional security measures.

e Improved Incident Response: SIEM systems provide real-time alerts and cen-
tralized dashboards, enabling security teams to respond quickly to potential threats.

e Compliance and Reporting: Many organizations are required to comply with
industry regulations and standards. SIEM solutions help automate compliance
reporting by providing detailed logs and audit trails.

2.1.3 Key to successful SIEM implementation

Achieving effective STEM implementation can be challenging, it demands carefull plan-
ning, ongoing maintenance, and alignment with organizational objectives. Key factors
susch as clear goal-setting, appropriate tool selection, data management, tuning, automa-
tion, and skilled analysts all contribute to a successful STEM deployment. Below are some
key factors to consider for successful STEM implementation [5]:

1. Define Clear Security Objectives: Establish clear security objectives and re-
quirements that align with the organization’s risk tolerance and compliance needs.
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Objectives should include reducing indicent response times, achievieng specific com-
pliance, mandates, or enhanciing detection of advanced threats. Clear objectives
help the selection of use cases, data sources, and correlation rules, ensuring the
SIEM’s outputs align with business needs ans risk appetite.

. Select the Right SIEM Solution: Theare are various SIEM solutions available,
organization should evaluate their needs before selecting a solution. A good sys-
tem must provide real-time monitoring, advanced analytics, integration with other
security tools, autometed alert notifications, and flexible growth bespoke to the or-
ganization’s needs. When selectint a STEM solution, consider factors that integrate
with existing security tools, such as firewalls, intrusion detection systems, and end-
point protection solutions. The more various data sources the SIEM can integrate
with, the more comprehensive the security monitoring will be.

. Continuous Monitoring And Tuning for Optimal Performance: SIEM sys-
tems require continuous monitoring and tuning to ensure optimal performance.
Regulary review and update are essential to adapt to evolving threats and chang-
ing business requirements. It also means that tuning the system to reduce false
positive alerts and improve the accuracy of threat detection is an ongoing process.
Even the Endpoint Detection and Response (EDR) solutions require the enhance-
ment of their detection capabilities through continuous learning and adaptation.

. Integrating Threat Intelligence: Integrating threat intelligence feeds into the
SIEM system can enhance its ability of detection and response to emerging threats.
Threat intelligence provides valuable context about known threats, vulnerabilities,
and attack patterns, enabling the SIEM to correlate events with external threat
data. Having threat intelligence integrated into the SIEM system can help security
teams to understand external threats and respond more effectively. This can iden-
tify more advanced threats (such as Advanced Persistent Threats (APTs)), where
traditional security measures may not be sufficient.

. Automating Incident Response: Automating incident response processes can
significantly improve the efficiency and effectiveness of security operations. By
integrating automation into the SIEM system, organizations can streamline their
response to security incidents, reduce response times, and minimize the impact of
attacks. Automation can also help to ensure consistent and repeatable incident
response procedures, reducing the risk of human error.

. Establishing Comprehensive Reporting: Consistent reporting ensures that se-
curity incidents are documented, analyzed, and communicated effectively. Reports
may also include metrics that quantify the effectiveness of the SIEM system, such
as the number of incidents detected, response times, and the impact of incidents on
the organization. The reports should be easy to understand and provide actionable
insights into security posture. In compliance they can also help to demonstrate
adherence to regulatory requirements and industry standards.

. Fostering A Culture of Security Awareness: Security awareness is crucial for
the success of SIEM implementation. Professionals require training and education
in utilizing the system effectively, understanding its capabilities, and recognizing
potential threats. This is achieved by providing regular training sessions, work-
shops, and resources to keep security teams updated on the latest threats and best
practices.
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2.2 Artifical Intelligence

Artificial Intelligence (AI) refers to the simulation of human intelligence in machines
that are programmed to think and learn like humans, AI encompasses a wide range
of technologies and techniques, including machine learning, natural language processing,
deep learning, computer vision, and robotics. The goal of Al is to create systems that can
perform tasks that typically require human intelligence, such as understanding natural
language, recognizing patterns, making decisions, and solving complex problems. Each
of these techniques has its own strengths and applications, and they can be combined
to create more powerful Al systems. For example, natural language processing (NLP) is
often used in conjunction with machine learning to enable machines to understand and
generate human language, while computer vision is used to enable machines to interpret
and analyze visual data.

e Machine Learning (ML): A subset of AI that focuses on the development of
algorithms that allow computers to learn from and make predictions or decisions
based on data. ML algorithms can be supervised, unsupervised, or semi-supervised,
depending on the nature of the training data.

o Natural Language Processing (NLP): A field of Al that enables machines to
understand, interpret, and generate human language, NLP techniques are used in
applications such as chatbots, language translation, sentiment analysis, and text
summarization.

e Deep Learning: A subset of machine learning that uses neural networks with
multiple layers to model complex patterns in large datasets. Deep learning has
been particularly successful in tasks such as image and speech recognition, natural
language processing, and game playing.

2.2.1 Natural Language Processing (NLP)

Natural Language Processing (NLP) is a subfield of artificial intelligence that focuses
on the interaction between computers and humans through natural language. The goal
of NLP is to enable machines to understand, interpret, and generate human language
in a way that is both meaningful and useful. NLP combines computational linguistics,
machine learning, and deep learning techniques to process and analyze large amounts of
natural language data. NLP encompasses a wide range of tasks, the most common of
which include:

e Text Analysis: Analyzing and extracting information from text data, such as
sentiment analysis, topic modeling, and named entity recognition.

« Language Generation: Creating human-like text based on input data, such as
chatbots, automated content generation, and summarization.

e Speech Recognition: Converting spoken language into written text, enabling
voice-activated systems and virtual assistants.

How NLP works

NLP works by combining linguistic rules with statistical and machine learning techniques
to process and analyze natural language data. Here is an overview of a typical NLP
pipeline and its steps [6]:
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1. Text Preprocessing
This step involves cleaning and preparing the text data for analysis. Common
preprocessing tasks include tokenization (breaking text into words or phrases), after
which the text is often converted to lowercase to standardize it to ensuring that
words are treated uniformly. Stemming or lemmatization may also be applied to
reduce words to theis base or root form (e.g., “running" to “run"), removing stop

n “187"

words (common words that do not carry significant meaning, such as “the,
“and”), and removing punctuation and special characters. After preprocessing,
the text is clean, standardized and ready for machine learning models to interpret
effectively.

2. Feature Extraction

In this step, relevant features are extracted from the preprocessed text data, this
may involve converting text into numerical representations, such as Bag of Words
which quantify the presence and importance of words in a document. Other tech-
niques include word embeddings (e.g., Word2Vec, GloVe) that capture semantic
relationships between words by representing them as dense vectors in a continuous
space. These representations allow models to understand the context and meaning
of words based on their usage in sentences.

3. Text analysis
The extracted features are then analyzed using various computational techniques.
This process includes tasks sush as part-of-speech tagging (identifying the gram-
matical role of each word), named entity recognition (identifying and classifying
entities such as names, dates, and locations), and sentiment analysis (determining
the emotional tone of the text, assessing whether it is positive, negative or neutral).
These analyses help in understanding the structure and meaning of the text.

4. Model Training
Processed data is used to train machine learning models for specific NLP tasks.
During this phase it adjusts its parameters to minimize errors ans improve its
performance. Once trained, the model can be used to make predictions or generate
outputs on new, unseen data. The effectiveness of NLP models is continuallt refined
through iterative training and evaluation, ensuring that they can generalize well to
different contexts and datasets.

2.2.2 (Generative Al

Generative Al refers to a subset of artificial intelligence that focuses on creating new
content, such as text, images, music, or other forms of media, using algorithms and
models. Unlike traditional Al systems that primarily analyze and classify existing data,
generative Al models are designed to generate new data that resembles the training data
they were exposed to. This is achieved through techniques such as deep learning, neural
networks, and probabilistic modeling. It has gained significant attention in recent years
due to its ability to create realistic and high-quality content, leading to applications in
various fields, including art, entertainment, marketing, and even scientific research.

How Generative AI works

Generative Al works by training models on large datasets to learn patterns and structrures
within existing data to generate new and original new content. One of the breakthroughs
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with generative Al models is the ability to leverge different learing approaches, such
as unsupervised, semi-supervised learning for training. This has given the ability to
more easily create models that can generate new content without requiring extensive
labeled data to create foundation models. This foundational models can then be fine-
tuned for specific tasks or applications, such as text generation, image synthesis, or
music composition. An example of foundation models is the Generative Pre-trained
Transformer (GPT) series, which are large language models that can generate coherent
and contextually relevant text based on a given prompt. These models are trained on vast
amounts of text data and can be fine-tuned for specific applications, such as chatbots,
content creation, or language translation [7].

Types of Generative AI models

Generative Al models can be categorized into several types based on their architecture
and the type of data they generate. Some common types include:

e Diffusion Models: These models are generative models that determine vectors
in a latent space through a two-step process during training. The first step is
called the forward diffusion where slowly adds noise to training data, while the
second one is called the reverse diffusion where the model learns to denoise the
data to reconstruct the data samples. Diffusion models have shown impressive
results in generating high-quality images and other types of data. However they
can be computationally intensive and require significant resources for training and
inference.

e Variatonal Autoencoders (VAEs): VAEs consist of two main components, an
encoder and a decoder. The encoder converts input data into a smaller latent space
representaion. This compressed representation preserves the essential features of the
data while reducing its dimensionality. The decoder then reconstructs the original
data from this latent representation. This two components work together to learn
a probabilistic model of the data, allowing the VAE to generate new samples by
sampling from the learned latent space. VAEs are particularly useful for tasks such
as image generation, anomaly detection, and data compression.

« Generative Adversarial Networks (GANs): Discovered by Ian Goodfellow
in 2014, GANs consist of two neural networks, a generator and a discriminator,
that work against each other in a game-theoretic framework. The generator creates
synthetic data samples, while the discriminator evaluates whether the samples are
real (from the domain) or fake (generated). The generator aims to produce data that
is indistinguishable from real data, while the discriminator tries to correctly identify
real and fake samples. Through this adversarial process, both networks improve over
time, leading to the generation of high-quality synthetic data. GANs have been
widely used for image synthesis, video generation, and other creative applications.
While GANs can produce impressive results, they can be challenging to train and
may suffer from issues such as mode collapse, where the generator produces limited
diversity in its outputs, thus making GANs better suited for domain-specific data
generation.

¢ Transformer-based Models: These models, such as the GPT series, use self-
attention mechanisms to process and generate sequential data, particularly text.
They are capable of capturing long-range dependencies and context in the data,
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making them effective for tasks like language generation, translation, and sum-
marization. Transformer-based models have revolutionized natural language pro-
cessing and are widely used in various applications. Two mechanisms that are
commonly used in transofermer-based models are the self-attention mechanism and
the positional encodings. The self-attention mechanism allows the model to weigh
the importance of different words in a sentence when generating or understanding
text, enabling it to capture context and relationships between words effectively.
Positional encodings are used to provide information about the position of words
in a sequence, allowing the model to understand the order of words and their rela-
tionships within a sentence.

Self-Attention

Figure 2.2: Transformer-based models architecture

2.2.3 Large Language Models (LLMs)

Large language models (LLMs) are a category of foundation models trained on immense
amounts of data making them capable of understanding and generating natural language
and other types of content to perform a wide range of tasks [8].

LLMs are a class of foundation models which are trained on vast amounts of data to un-
derstand and generate natural language and other types of content, in addition to other
types of content based on the training data. They have the ability to infer from context,
generate coherent text and contestually relevant responses, translate languages, summa-
rize text, and even perform tasks like question answering and text completion. They are
able to do this thanks to bilion of parameters that are used to capture the nuances of lan-
guage and context, allowing them to generate human-like text and understand complex
queries.
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How Large Language Models (LLMs) work

LLMs operate by leveraging deep learning techniques and vast amounts of training data.
These models are typically based on transformer architectures, like the generative pre-
trained transformer (e.g. GPT-3, GPT-4, LLama, etc.), which excels at processing se-
quential data, such as text.

They consist of multiple layers of neural networks, each with parameters that can be fine-
tuned during training which are enhanced by the self-attention mechanism, during the
training phase, LLMs learn to predict the next word in a sentence based on the context
provided by the preceding words. The model assigned probability score to the recurrence
of words that have been tokekinezed (broken down into smaller units, such as words or
subwords), and these tokens are then transformed into numerical representations (em-
beddings) that capture their semantic meaning.

The training process involves exposing the model to vast amounts of text data, allowing it
to learn patterns, grammar, and context. Once trained, LLMs can generate text by sam-
pling from the learned probability distribution, selecting the most likely next word based
on the context provided by the input, the result is coherent and contextually relevant
text that resembles human language. The model can also be fine-tuned, prompt-tuning
(like reinforcement learning from human feedback (RLHF)) to remove biases, hallucina-
tions, improve performance on specific tasks and not less important for do not expose
organizations to unwanted liability, or cause damage to the organization or its customers.

Applications of Large Language Models (LLMs)

LLMs have a wide range of applications across various domains, including;:

e Text Generation: LLMs can generate coherent and contextually relevant text,
making them useful for content creation, storytelling, and creative writing.

o Content Summarization: LLMs can summarize long documents or articles, ex-
tracting key information and presenting it in a concise format.

o Language Translation: LLMs can translate text from one language to another,
enabling cross-lingual communication and understanding.

e AT assistants: LLMs can power chatbots and virtual assistants, providing users
with information, answering questions, and assisting with various tasks.

e Sentiment Analysis: LLMs can analyze text to determine the sentiment or emo-
tional tone, which is useful for understanding customer feedback, social media sen-
timent, and market trends.

GPT-3 and GPT-3.5 Models

Gpt-3, introduced in 2020 by OpenAl, is a large language model based on the Trans-
former architecture, designed to capture long-term dependencies in text data. GPT-3 is
generative pre-trained transformer model that has been trained on a large and diverse
dataset to achieve a high level of natural language understanding and generation. It has
175 billion parameters, making it one of the largest language models. This has allowed
GPT-3 to improve its performance on NLP tasks. A key feature of GPT-3 is the intro-
duction of in-context learning, a method that allows the model to adapt to new tasks,
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this do not require fine-tuning or additional training, but rather relies on prompting the
model to manipulate it and generate contextually relevant responses. The GPT-3 archie-
tecture uses a unidirectional transformer decoder, which processes text in auto-regressive
manner, meaning that it generates text one token at a time based on the previous tokens
in the sequence. This happens because the attention matrix prevents that model from
attending to future tokens during training, allowing it to generate text in a left-to-right
manner. The large size of the network, with its 175 billion parameters, enables a strong
generalization capability, allowing it to perform well on a wide range of tasks without the
need for task-specific training.

GPT-3 has some limitations, such as the inability to handle long-term dependencies ef-
fectively, complex prompts, and the potential for generating biased or harmful content.

On the other hand, GPT-3.5 is an improved version of GPT-3, addressing some of
the limitations of GPT-3. It employs a subfield of Al known as Reinforcement Learning
from Human Preferences (RLHF'), which means that human feedback is used to improve
machine-learning algorithms [9]. Like GPT-3, GPT-3.5 is a Transformer-based autore-
gressive language model, it uses a similar multi-layer decoder stack, attention mechanism,
and positional encodings. It is also optimised for coding tasks, but also to increase the
ability to understand the prompt, in addition to natural language modelling and gener-
ation.

GPT-4 Model

GPT-4 is a large-scale, multimodal language model developed by OpenAl, which can
accept both text and image inputs, generating text outputs. GPT-4 exhibits human-level
performance on various professional and academic benchmarks. GPT-4 is a Transformer-
based model pre-trained to predict the next token in a document. The post-traineing
alignment process results in improved performance in measures of factuality and adhrence
to desire behavior [10]. In addition the dense focus is enriched with advanced mechanism
for processing long context, allowing it to handle documents with thousands of words,
exapanding the number of tokens that can be processed simultaneously. The multimodal
archietecture introduces an integrated data fusion pipeline, enabling the model to process
and understand images and text together, enhancing its ability to generate contextually
relevant responses based on both types of input. The distinction between GPT-3.5 and
GPT-4 comes out when the complexity of the task increases, as GPT-4 demonstrates
superior performance in understanding and generating complex text.

Despite its capabilities, GPT-4 is not without limitations. It can still produce incorrect
or nonsensical answers, and it may be sensitive to input phrasing, meaning that slight
changes in the input can lead to different outputs. Additionally, while GPT-4 has been
trained on a diverse range of data, it may still exhibit biases present in the training
data, which can affect its responses. OpenAl continues to work on improving the model’s
performance and addressing these limitations through ongoing research and development.
Greate care should be taken when using GPT-4 in sensitive applications and contexts
(such as security, healthcare, and legal domains), where the accuracy and reliability of
the generated content are critical.

The training of GPT-4, like its predecessors, was conducted to predict the next word
in a document, using a large corpus of publicly available data (such as internet data).
The data is a web-scale dataset including correct and incorrect solution to mathematical
problems, self-contradictory statements, and representing a great variety of domains and
topics. So when prompt with a question, GPT-4 can generate a variety of ways that
might be far from the user’s intent, to align its responses with user intent, the model has
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been fine-tuned using reinforcement learning from human feedback (RLHF).

Mistral7B model

Mistral 7B is an open-source large language model released by Mistral Al in Septem-
ber 2023. Despite having only 7.3 billion parameters, it consistently outperforms larger
models—such as Llama2 13B—on a wide range of benchmarks, and even rivals Llamal
34B in many reasoning and code-generation tasks [11]. It shipped in both a “base" and
an “instruction-tuned" version, the latter being fine-tuned to follow user prompts in a
chat setting. of the most discussed language models in the Al community because of
its performance with just 7B parameters [12]. Mistral has been engineered for superior
performance and efficiency, outperforming the best open 13B models across all evaluated
benchmarks. It is a decoder-only transformer model, which means that it resembles the
decoder part of the transformer architecture. A lot of language models are decoder only
since they are designed to generate text, which does not require bidirectional processing.
Each token it is represented by a vector of 4096 dimensions, the attention block are 32
different heads, whereas the transformer had 8 heads but Mistral uses a different attention
mechanism Knows as Grouped Query Attention (GQA) with sliding windows. Context
length is 8192 tokens, which is the maximum number of tokens that can be processed
simultaneously.

In the normal self attention mechanism, each token attends to every other token in the se-
quence that comes before it, which can be computationally expensive for long sequences.
Mistral applies a sliding window approach of some size w that does not let a token at-
tend to all the previous tokens. As it shows in Figure 2.3, a windows size of 3 has been
maintained along with the casual mask end this significantly reduces the computational
cost for faster inference and training since it has to compute less dot products. This
might lead to a loss of information since it is not able to capture long-term dependencies
between tokens, but it is a trade-off that Mistral has made to achieve better performance
and efficiency. But even though the sliding windows attention mechanism restricts di-
rect attention to a local context, the multiple layers of the transformer blocks enable
information to propagate through the sequence, allowing the model indirectly to capture
long-term dependencies.

Another important feature of Mistral is KV cache with rolling buffer, the inference pro-
cess performed is that it starts with a special token after which it generates the first word
based on the start token, then from the previous tokens it generates the next word, and
so on until another special token is reached. This process encounters a lot of redunant
computations so MIstral uses a KV cache to optimize it only when the key and value
vectors are cached while the query vector is recomputed for each step. BUt since it has
a sliding window attention mechanism, it is not needed to recompute tokens that do not
fall under the windows size, so it uses rolling buffer that limits the size of the cache to
the size of sliding window.

Mistral 7B was compared to other models such as Llama models on various bench-
marks with their own evaluation pipeline as it is shown in Figure 2.4 [12].
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Figure 2.4: Mistral 7B performance on various benchmarks
Model Modality MMLU HellaSwag WinoG PIQA ARC Easy ARC Chall.
LLaMA 2 7B Pretrained 44.4% 77 1%  69.5% TT1.9%  68.7% 43.2%
LLaMA 2 13B Pretrained 55.6% 80.7%  72.9% 80.8% 75.2% 48.8%
Code-llama 7B Finetuned 36.9%  62.9%  62.3% 72.8%  59.4% 34.5%
Mistral Pretrained 60.1% 81.3% 75.3% 83.0% 80.0% 55.5%
Model Modality NQ  TriviaQA HumanEval MBPP MATH GSMSK
LLaMA 2 7B Pretrained 24.7% 63.8% 11.6% 26.1%  3.9% 16.0%
LLaMA 2 13B Pretrained 29.0% 69.6% 18.9% 354%  6.0% 34.3%
Code-llama 7B Finetuned 11.0%  34.9% 31.1% 52.5% 5.2%  20.8%
Mistral Pretrained 28.8% 69.9% 30.5% 47.5% 13.1% 52.2%

Table 2.1: Comparison of Mistral with LLaMA. Metrics are split across two panels
to keep body font size and respect margins.

Mistral 7B has demonstrated that smaller model can achieve competitive performance
by leveraging advanced techniques. Despite having only 7 billion parameters, it has shown
that it can outperform many larger models across a wide range of benchmarks, including
reasoning, code generation, and natural language understanding tasks. These strengths
make Mistral 7B a compelling choice for researchers and developers looking for a balance
between performance and computational efficiency, particularly suited in settings with
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limited resources.

2.2.4 Prompt Engineering

Prompt engineering is the process of designing and optimizing input prompts to guide
large language models (LLMs) in generating desired outputs. It involves crafting specific
instructions, questions, or examples that effectively communicate the task or information
needed from the model. The goal of prompt engineering is to elicit accurate, relevant, and
contextually appropriate responses from LLMs, enhancing their performance on various
tasks such as text generation, question answering, and language translation.

Prompt engineering represent an important aspect of working with LLMs, beacuse Large
models are trained without any explicit knowledge of user intent, a good prmpt engi-
neering will prove effective in guiding the model to produce their desired outputs. Infact
much of the quality of the generated content depends on the the effective prompt.

How Prompt Engineering works

Prompt engineering works by carefully crafting input prompts that provide clear instruc-
tions and context to the LLM. There are different techniques and strategies that can be
used to improve the effectiveness of prompts. Below are some common techniques used
in prompt engineering [13]:

Zero-shot prompting

Zero-shot prompting is a technique where the model is asked to perform a task without
any prior examples or training specific to that task. The model relies on its pre-existing
knowledge and understanding of language to generate a response. This approach is useful
when there are no labeled examples available for the task at hand. It has some limitations,
most of the time, the output may not be as accurate or relevant as desired, where the
answer could be vague or not aligned with the user’s intent. This could be frustrating for
users who expect more precise or contextually relevant responses and can lead to prompt
multiple times to get the desired output.

Few-Shot Prompting

Few-shot prompting is a technique where the model is provided with a few examples
of the desired output format or task before generating a response. It can be used as a
technique to enalbe in-context learning where the user provides demonstrations of the
desired output format or task within the prompt. These demonstrations help as a guide
for the model to understand the expected output and generate responses that are more
aligned with the user’s intent. Below is an example of few-shot prompting [14]:

Prompt: A “whatpu" is a small, furry animal native to Tanzania. An example
of a sentence that uses the word whatpu is: We were traveling in Africa and we saw
these very cute whatpus.

To do a “farduddle" means to jump up and down really fast. An example of a sentence
that uses the word farduddle is:
Output: When we won the game, we all started to farduddle in celebration.
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It is important to note that the model has somehow learned to perform the task
by providing just one example(i.e. 1-shot). Of course it is still not a perfect solution,
especially when the task is complex or requires a deep understanding of the context, but
it can significantly improve the quality of the generated content.

Chain-of-Thought Prompting

Chain-of-thought prompting is a technique that encourages the model to generate inter-
mediate reasoning steps before arriving at a final answer. The prompt enables comples
reasoning capabilities through the use of intermediate steps, it can be combined with
few-shot prompting to provide examples of the reasoning process. Example:

Prompt: "The odd numbers in this group add up to an even number: 4, 8, 9,
15, 12, 2, 1.
A: Adding all the odd numbers (9, 15, 1) gives 25. The answer is False.

The odd numbers in this group add up to an even number: 17, 10, 19, 4, 8, 12,
24.
A: Adding all the odd numbers (17, 19) gives 36. The answer is True.

The odd numbers in this group add up to an even number: 16, 11, 14, 4, 8, 13,
24.
A: Adding all the odd numbers (11, 13) gives 24. The answer is True.

The odd numbers in this group add up to an even number: 17, 9, 10, 12, 13, 4, 2.
A: Adding all the odd numbers (17, 9, 13) gives 39. The answer is False.

The odd numbers in this group add up to an even number: 15, 32, 5, 13, 82, 7, 1.
A:
Output: Adding all the odd numbers (15, 5, 13, 7, 1) gives 41. The answer is False.

However, chain-of-thought prompting can be computationally expensive and may not
always lead to the desired output, its ability is still dependent on its training data and
the complexity of the task.

Role-Based Prompting

Role-based prompting is a technique that involves assigning specific roles or personas
to the model to guide its responses. Instead of simply asking a question, the user can
frame the prompt in a way that encourages the model to respond as if it were a specific
character or expert. This helps shape the style and tone of the response, making it more
relevant to the user’s intent. Example of role-based prompting;:

Prompt: Act as a senior software engineer interviewing me for a backend role.
Ask me two coding questions, then evaluate my answers and provide feedback.
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2.3 MITRE ATT&CK Framework

The MITRE ATT&CK framework is a comprehensive knowledge base of adversary tac-
tics, techniques, and procedures (TTPs) based on real-world observations of cyber attacks.
It provides a structured approach to understanding and analyzing the behavior of threat
actors, enabling organizations to improve their cybersecurity posture by identifying po-
tential vulnerabilities and implementing effective defenses. The framework is organized
into matrices that categorize adversary behaviors across different platforms, such as en-
terprise, mobile, and cloud environments. Each matrix consists of tactics, which represent
the high-level goals of an adversary, and techniques, which describe the specific methods
used to achieve those goals. The framework also includes sub-techniques that provide
more granular details about how a technique can be executed. In detail, the framework
is divided into several components: tactics, techniques, and procedures.

Tactics represent the high-level objectives that adversaries aim to achieve during an at-
tack, these objectives outline the “why" behind an adversary’s actions and are categorized
into stages of an attack lifecycle, such as Initial Access, Execution, Persistence, Privilege
Escalation, Exfiltration, etc. Techniques define the specific methods or approaches that
adversaries use to achieve their tactics, these techniques provide the “how" of an at-
tack and include various methods such as phishing (to gain initial access), command
and scripting interpreter usage (for executing commands on a compromised system),
credential dumping (to obtain sensitive credentials), etc. Procedures are the specific im-
plementations of techniques that adversaries use in real-world attacks, these procedures
provide detailed information on how a technique is executed in practice, including tools,
scripts, and workflows used by adversaries.

2.3.1 Why ATT&CK Framework is Important

ATT&CK framework was created to provide a common language and understanding of
adversary behaviors, enabling organizations to share threat intelligence and collaborate
on defense strategies. MITRE decided, based on their research and analysis of real-world
cyber attacks, to create a framework that would help to address four main issues [15]:

1. Adversary behavior is complex and constantly evolving, making it difficult for or-
ganizations to keep up with the latest threats. Typical indicators such as domains,
IP addresses, file hashes, registry keys, etc. were easily changed by adversary to
evade detection, making it difficult to identify and respond to attacks.

2. The existing lifecycle models were too high-level and did not provide enough detail
about adversary behaviors. The existing models were not comprehensive enough to
cover the wide range of tactics and techniques used by adversaries.

3. Applicability to real enviroments. TTPs need to be based on real-world observations
of adversary behavior, rather than theoretical models or assumptions. This ensures
that the framework is relevant and applicable to real-world scenarios.

4. Common taxonomy. TTPs need to be organized in a way that allows for easy
understanding and communication among security professionals.

An organization’s ability to detect and defend against cyber threats is greatly en-
hanced by strong offense and defense teams that work together to understand and miti-
gate risks, so the ATT&CK became the go-to tool for adversary emulation team to plan
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events and for the detection team to verify the effectiveness. With this useful process the
MITRE’s reasearch program realeased the ATT&CK framework to the public in 2015,
and it has since become a widely adopted standard in the cybersecurity community.

2.3.2 The ATT&CK Matrix

The ATT&CK matrix is a visual representation of the tactics and techniques used by
adversaries during cyber attacks. For instance, as shown in Figure 2.5, the matrix is
organized into columns representing tactics and rows representing techniques, the tactic
Persistence (the adversary’s goal of maintaining access to a compromised system) is rep-
resented by the first column, while the techniques used to achieve this goal are listed in
the corresponding rows, where each cell in the matrix represents a specific technique (this
technique may have sub-techniques as well), such as “Account Manipulation" or “Boot or
Logon Autostart Execution", which are used by adversaries to maintain persistence on a
compromised system. Of course each technique is bound to one or more tactics, like the
“Account Manipulation" technique is bound to the Persistence and Privilege Escalation
tactics.

This matrix is the most recognizable part of the ATT&CK framework because it is
commonly used to show things like detection capabilities in security products, defensive
coverage on an environment, and results of an incidents or red team engagements [15].

2.3.3 Cyber Threat Intelligence

Another important aspect of the ATT&CK framework is its focus on cyber threat intel-
ligence (CTI). ATT&CK documents adversary groups—such as APT28, APT29, and
FIN7T—based on real-world observations of their tactics, techniques, and procedures
(TTPs). By mapping these groups and their TTPs to the framework, organizations can
gain a deeper understanding of threat actor behavior and prioritize defenses against the
most commonly used techniques. Examples of how specific adversary employ techniques
are documented in the framework page, which outlines each group’s procedure for using
the technique. A procedure represents a concrete instance of use and can be invaluable
for understanding exactly how a technique is used in practice, for replicating an incident
through adversary emulation and for pinpointing the specific indicators needed to detect
that instance in action.

2.4 Virtualization

Virtualization is a process that allows multiple virtual instances of a computer system to
run on a single physical machine. It involves creating virtual machines (VMs) that can
run their own operating systems and applications, while sharing the underlying hardware
resources of the host machine. Virtualization is widely used in cloud computing, data
centers, and software development environments to improve resource utilization, flexi-
bility, and scalability. It allows cloud service providers (CSPs) such as Amazon Web
Services (AWS), IBM Cloud,Microsoft Azure, and Google Cloud Platform (GCP) to op-
timally utilize their I'T infrastructure to deliver scalable resources. Virtualization offers
numerous benefits to both on-premises and cloud environments, including [16]:
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Figure 2.5: MITRE ATT&CK Enterprise Matrix (a subsection).
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Background

e Resource Optimization: In the past organizations used to allocate a dedicated
physical CPU for each application, which resulted in underutilization of resources.
Virtualization allows multiple virtual machines to run on a single physical server,
optimizing resource utilization and reducing hardware costs.

o Easier Management: Replacing physical servers with virtual machines simplifies
management tasks such as provisioning, scaling, and monitoring. Virtual machines
can be easily created, modified, and deleted. For example, automated deployment
and configuration tools allow administrators to quickly set up new virtual machines
and Applications as services in software templates, reducing the time and effort
required for manual setup. Additionally security policies can leverage security con-
figurations based on the virtual machine’s role.

e« Minimal downtime: It allows administrators to run multiple redundant virtual
machines on the same physical server to failover between them in case of a problem
occurs.

e Faster provisioning: Provisioning new virtual machines is faster than setting up
physical servers, as it involves copying existing virtual machine images or templates
rather than installing an operating system and applications from scratch. VM
management tools can automate the process of creating and configuring new virtual
machines, reducing the time required to deploy new applications or services.

e Disaster Recovery: Virtual machines can be easily backed up and restored, fa-
cilitating disaster recovery and business continuity planning.

e Cost-effectiveness: Virtualization reduces hardware acquisition costs, mainte-
nance and energy consumption, as fewer physical servers are needed to run multiple
virtual machines.

2.4.1 The main components of virtualization

VMs are usually referred to as guests, with one or more guest machines running on a
single host machine. In practice virtual machines consist in several files (configuration
files, virtual hard drives, etc.) that are stored on the host machine. These files are used
by the hypervisor to create and manage the virtual machines. A hypervisor is a software
layer that coordinates the VMs, it serves as an interface between the VM and the host
machine’s hardware resources, ensuring that each of them has access to the necessary
resources such as CPU, memory, storage, and network. It also manages the allocation of
resources to each VM, ensuring that they do not interfere with each other.

There are two main types of hypervisors [16]:

o Type 1 Hypervisor (Bare-metal): This type of hypervisor runs directly on
the host machine’s hardware, without an underlying operating system. It provides
better performance and resource utilization, as it has direct access to the hardware
resources. Examples of Type 1 hypervisors include VMware ESXi, Microsoft Hyper-
V, and Xen.

o Type 2 Hypervisor (Hosted): This type of hypervisor runs on top of a host
operating system, relying on the host OS for resource management. It is generally
easier to set up and use, but may have lower performance compared to Type 1
hypervisors. Examples of Type 2 hypervisors include VMware Workstation, Oracle
VirtualBox, and Parallels Desktop.
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Beyond server virtualization, there are other types of virtualization that can be used
to optimize IT infrastructure management and resource utilization, these type of virtual-
ization include Desktop virtualization, application virtualization, storage virtualization,
network virtualization, and data virtualization.

Virtualization versus Containerization

Virtualization and containerization are two distinct technologies used to optimize re-
source utilization and improve application deployment. While both approaches aim to
create isolated environments for running applications, they differ in their architecture
and implementation.

Containerization involves packaging applications and their dependencies into lightweight
containers that share the host operating system’s kernel. Containers are more efficient
in terms of resource utilization, as they do not require a full OS instance for each appli-
cation. This allows for faster startup times and better scalability. However, containers
provide a lower level of isolation compared to VMs, as they share the same kernel and
may be more susceptible to security vulnerabilities.

Virtualization and Security

Virtualization provides numerous security benefits by isolating applications and services
within virtual machines (VMs). Compared to containers and traditional deployment,
VMs provide a higher level of isolation, as each VM runs with strong hardware isolation
and has its own operating system instance, so one VM can be compromised without
affecting others. This makes VMs a better choice for running untrusted applications or
services, as the impact of a security breach can be contained within the compromised
VM. If a VM is compromised or infected with malware, the impact is contained within
that VM and can be rolled back to a previous state (snapshot) when the VM was stable,
they can be easily restored to a known good state, thus minimizing the risk of data loss or
corruption. Of course, this is not a silver bullet, as the hypervisor itself can be vulnerable
to attacks, and if the hypervisor is compromised, it can lead to a security breach across
all VMs, potentially allowing an attacker to access sensitive data or disrupt services.
However, virtualization still provides a significant security advantage over traditional
deployment methods, as it enables better isolation and containment of security incidents.

Security features for protecting VMs and the underlying physical hardware include
access control, encryption, network segmentation, monitoring, logging, patch manage-
ment, and regular security assessments. Software-based security solutions provide virtual
monitoring tools that can address compliance, real-time threat detection, and incident
response.
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Chapter 3

State-of-the-Art

In this chapter, we examine the current state of the art in Large Language Models (LLMs)
and their applications, with a particular focus on SIEM (Security Information and Event
Management) systems and the integration of LLMs within them. We review various inte-
gration strategies proposed in recent years, alongside a survey of Log Analysis techniques
and how LLMs can enhance their performance.

The chapter also discusses the main challenges and limitations associated with current
approaches. Building on this foundation, in the next chapter, the work proposes a novel
method that leverages the capabilities of LLMs to improve the efficiency and effectiveness
of SIEM systems. Specifically, it focuses on post-attack log analysis and the automatic
generation of a summary report detailing the nature and impact of the attack. This
report is then mapped to the MITRE ATT&CK framework.

3.1 Hallucinations and Bias in LLMs

Nowadays, Large Language Models (LLMs) are widely used in various applications such
as chatbots, content generation, and question-answering systems. However, these models
often struggle with factual accuracy and consistency (bias and hallucination problem) in
their responses. To address these challenges, several techniques have been developed to
enhance the reliability of LLM outputs.

LLMs continue to evolve in their ability to generate human-like text, a key challentge
remains the issue of hallucinations, where models produce confident but incorrect or non-
sensical information. This issue is the biggest barrier to safetly deploying LLMs into
real-world applications. Unlike traditional Al systems (focused on specific tasks), LLMs
are trained on vast amounts of data, making them more prone to generating false infor-
mation. This allows them to generate text that is coherent and contextually relevant, but
it also means they can produce outputs that are factually incorrect or misleading. This
is alarming when we rely on NLP capabilities for critical tasks such as medical diagno-
sis, legal advice, financial support, and cybersecurity. Small errors in these domains can
lead to significant consequences, including financial loss, legal issues, and even threats
to human life [17]. To mitigate these risks, researchers first introduce a structured clas-
sification of more than 32 mitigation strategies, grouped into three primary categories:
Prompt Engineering, Model Development, and Supervised Fine-Tuning 3.1.
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3.1.1 Prompt Engineering

Cybersecurity experts have long know that it takes a combination of human behavior and
technology to battle phishing and ransomware attacks. The same is true for LLMs, where
prompt engineering plays a crucial role for battling dangerous hallucinations responses
from aberrant generative algorithms and the human prompts that trigger them.
Chain-of-feedback (CoF) prompting is a method where users iteratively guide AI by
providing specific constructive feedback on its outputs, similar to mentoring a child.
Instead of vague demands like “Try again" effectively prompts detail what the AT did
well and what’s missing, steering it towards more accurate and relevant results. The tips
for an optimal CoF prompting strategy include [18]:

o Balance Specificity: Avoid overly detailed prompts that stifle creativity but clar-
ify desired tone, format, or style.

o Focus on “Do" over “Don’t”: Al often misinterprets negative instructions, so
frame prompts positively.

« Use Examples: Showcasing desired outputs from other platform helps refine re-
sponses.

o Collaborative Refinement: Treat Al as a partner, combining human intuition
with algorithmic precision for higher-quality results.

CoF and mindful prompt engineering bridge the gap between raw Al capability and
context-aware, reliable outputs, emphasizing that human interaction is essential to har-
ness Al’s potential responsibly.

The are several other prompt engineering techniques that can be used to mitigate
hallucinations in LLMs, we list some of the most notable ones below [13]:

o Chain-of-Verification (CoVe): Uses iterative verification steps to cross-check
outputs for consistency and factual correcteness.

o Step-Back Prompting: encourages deeper reasoning processes within Large Lan-
guage Models (LLMs) before arriving at final answers. By using prompts like “think
through this task step-by-step,” you guide the model to engage in higher-level rea-
soning (for example analyze system logs step by step) rather than jumping to con-
clusions.

e Feedback Loop Integration for Continuous Improvement in AI Systems:
Leverages user feedback to iteratively refine model performance and address errors.

o Fact-Checking with external sources: Cross-references outputs against trusted
databases to validate accuracy (can be used to validate common attack patterns in
cybersecurity).

Implementing these techniques may reduce hallucinations, enhance the reliability of Al-
generated content. Of course the importance is to combine these techniques (if it is
possible) with ongoing refinement to ensure safe and effective Al deployment.
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Retrieval-Augmented Generation (RAG)

Retrieval-Augmented Generation (RAG) is a technique that incorporates external knowl-
edge sources to ground model outputs in verifiable information. This approach address
the key challenge of accuracy and currency in LLMS ouputs [19]. RAG effectively miti-
gates hallucinations by providing responses that are not only coherent but also factually
accurate and verifiable.

Other notable methods include LLM-Augmenter, which iteratively refines prompts with
feedback from external sources. Given a user query the framework first retrieves evidence
from extarnal knowledge and performe reasoning to form evedince chain, then LLM-
Augmenter queries an LLM using a prompt that contains the evidence for the LLM to
generate a response based on the retrieved information. LLM-Augmenter validates the
response (e.g. by checking if the response is consistent with the evidence) and generates a
feedback message to refine the prompt. This process is repeated until the response meets
the desired quality standards.

Other approaches include the use of FreshPrompt which generates up-to-date web search
queries results into model responses. Real time strategies like EVER validate and correct
hallucinations during the generation phase, while post-generations methods like RARR
retrofit responses with research-backed.

LLM-Augmenter (Peng et al., 2023)
FreshPrompt (Vu et al,, 2023)

Before Generation §2.1.1.1

During Generation §2.1.1.2 Decompose-and Query framework (D&Q) (Cao et al., 2023)

EVER (Kang et al., 2023)

Retrieval
Generation §2.1.1

RARR (Gao et al., 2023)
High Entropy Word Spotting and Replacement (Rawte ct al., 2023)

After Generation §2.1.1.3

End-to-End §2.1.14 ]—[ Retrieval-Augmented Generation (RAG) (Lewis et al., 2021)

Prompting GPT-3 To Be Reliable (Si ct al., 2022)
ChatProtect (Mindler et al., 2023)

—| Prompt Engineering §2.1 I— Self-Reflection Methodology (Ji et al., 2023b)

P Structured Comparative reasoning (Yan et ., 2023)

a Mind’s Mirror (Liu et al., 2023)
{ Feedback and Reasoning §2.1.2 DRESS (Chen et al,, 2023)

MixAlign (Zhang ct al., 2023b)
CoVe (Dhuliawala ct al, 2023)
CoNLI (Lei et al., 2023)

= UPRISE (Cheng et al., 2023)
Erompeiuning (ST SynTra (Jones et al., 2023)
Tntroducing New Decoding
Strategy §3.1
Utilization of Knowledge RHO (Ji etal, 20230)
Graph §3.2 FLEEK (Bayat et al., 2023)

Introducing Faithfulness THAM Framework (Yoon et al., 2022)
based Loss Function §3.3 Loss Weighting Method (Qiu et al., 2023b)

Knowledge Retrieval (Varshney et al., 2023) ]

Hallucination Mitigation|
Techniques in LLMs

Developing Models §3

e e — .

Knowledge Injection and Teacher-Student Approach (Elaraby et al., 2023)
HAR (Koksal et al., 2023)
Fine-tuning Language Models for Factuality (Tian et ., 2023)
BEINFO (Razumovskaia et al., 2023)
R-Tuning (Zhang et al., 2023a)
TWEAK (Qiu et al., 2023a)

—[ Supervised Finetuning §3.4

Figure 3.1: Taxonomy of hallucination mitigation strategies for LLMs

3.1.2 Model Development

Here, the focus is on architectural and algorithmic innovations. New Decoding strategies
such as Context-Aware Deciding (CAD) and DoLa contrast models’ outputs from various
internal layers to enhance factual consistency. Knowledge graph-based methos like RHO
and FLEEK integrate structured factual database into the generation process. Some
models use faithfulness-based loss functions, including THAM and Loss Weighting, to
penalize hallucinations during training.
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Supervised Fine-Tuning

Supervised fine-tuning involves training LLMs on curated datasets that emphasize factual
accuracy. SFT serves as a vital phase in aligning LLMs for specific tasks using labeled
data.

It helps to follow human commands more accurately for specific tasks and eventually in-
creases the faithfulness of the model’s responses. Of course, the quality of the fine-tuning
data is crucial, as it directly impacts the model’s ability to generalize and produce accu-
rate outputs. During this phase, the LLM’s weights are adjusted based on the gradients
from a task-specific loss function, which measures the difference between the model’s
predictions and the ground truth labels. This technique has proven particularly effective
in improving the adaptability of LLMs, enabling them to perform at previously unseen
tasks with high accuracy [19].

3.1.3 Other Techniques

As we said, in domains where incorrect information can have serious consequences, such
as healthcare, finance, legal applications, and cybersecurity. Unchecked LLM outputs
can undermine the reliability and trustworthiness of the system. We introcuded RAG,
an approach that aims to reduce hallucinations in language models by incorporating the
capability to retrieve external knowledge and making it part of the prompt that’s used
to generate the response, where the model uses the retrieved information in conjunction
with prompts to generate the final output.

Amazon Web Services (AWS) has introduced a new feature called Amazon Bedrock
Guardrails [20], which is designed to offer hallucination detection with contextual ground-
ing checks, seamlessly applied using the APIs or embedded in applications workflow.
After the model generates a response, Guardrails checks the output to see if hallucina-
tions occurred. Amazon Bedrock Guardrails helps accelerate generative Al application
development by orchestrating multiple tasks, it uses the reason capability of LLMs to
break down user-requested tasks into smaller steps. The following illustrates the solution
architecture:

(=) : 8. if hallucination detected O
7. inveke s
6. user query + kb response : [= .

Hallucination Detection Ap1  2- respond Human in the loop (HITL)
Action Group Hallucination detector i hallucination detected
(AWS Lambda-function) (customer service agent)

‘ 1. User quegstion ;((D\’}t
S =
«— [« —
<>

Customer 10. Agent esponse

QnA Agent for
Bedrock User Guide

2. search for answer = 3. search in vector db F‘I_I|'|
{ ; —_— @ e —
1 H ¢ e 0. data ingestion

5. KBResponse is generated

(offline setup)
4. answer chunks
Bedrock User Guide Vector DB Raw Data Source (PDF files)
{Amazon Bedrock Knowledge Bases) (Amazon OpenSearch Serverless) {Amazon 53)

Figure 3.2: Architecture Diagram for Custom Hallucination Detection and Mitigation

The architecture consists of the following steps:
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1. Data ingestion which involves raw data stored in Amazon S3 bucket.

2. The user provides relevant questions to the Amazon Bedrock User Guide, which
are handled by the Amazon Bedrock Agent (set up to handle user queries).

3. The agent creates a plan and indentifies the need to use a knowledge base. The
request is sent to the knowledge base, which retrieves relevant information from
the underlying vector database. The agent retrieves and answer through RAG
technique, in detail:

e The query is directed to the vector DB.
¢ Relevant answers chuncks are retrieved.

e The knowledge base is generated from the retrieved chunks back to the agent.

4. The user query in conjuction with the knowledge base response are sent to invoke
the correct action group.

5. This tuple is then passed to a Lambda function that calculate a hallucination score.

6. A notification (Amazon uses SNS service) is triggered to alert if the score is lower
than a certain threshold.

7. Instead if the score is above the threshold, the hallucination detector set up in
Lambda responds with a final knowledge base response. Otherwise, it generates a
default response to the user asking to wait until a custom service agent joins the
conversation.

8. The final agent response is sent back to the user in the chatbot UL

Other techniques that are foundations of reliable Al interactions especially in an
automed system are:

o Input Validation: Decrease the risk of malicious prompt (injection attacks).

e Context Window Management: Smart token distribution between user inputs
and system prompts leads to better context management. Models can access exter-
nal information through retrieval augmented generation (RAG) without overloading
the context window.

e Temperature and Top-p Sampling Control: Language models use temper-
ature settings to balance creativity and predictability. Tasks that need accuracy
work best with lower temperature (close to 0) because they produce more focused
and deterministic outputs. Higher temperatures let the model explore different pos-
sibilities, but can lead to less reliable results. The Figure 3.3 illustrates the impact
of temperature on LLM outputs [21].

e Implementing Guardrails in Prompts: safeguard against AI Hallucinations
used for proper validation mechanisms. This reduces the risk of generating harmful
or misleading content. Some examples of basic guardrails include:

— Data Validation Checks: Provides detailed validation through multiple lay-
ers of protection. Undesirable content is filtered, and any personal data is
redacted by the system. Then checks verify information using mathematical
processes to match outputs with expected results.
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— Output Format Enforcement: Structured outputs help prevent halluci-
nations by ensuring that the generated content adheres to a specific format,
making it easier to validate and verify. (e.g. JSON schema implementation
lets developers define expected structures for API responses).

o Testing and Monitoring: Regularly test and monitor LLM outputs to identify
and address potential issues help prevent AI hallucinations in production envi-
ronments. Team can maintain high-quality outputs and minimize risks with proper
evaluation. Piepelines with continuous integration and continuous deployment (De-
vOps) help teams check Al responses automatically.

e Fine-Tuning: Adjusting model parameters or retraining models with additional
data that specifically targets identified weaknesses or biases can help improve the
model’s performance and accuracy to reduce the possibility of hallucinations. This
helps align the model outputs with the desired behavior, addressing any gap that
initially led to hallucinations.
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Figure 3.3: Illustration on different temperature resulting in different possibility distri-
butions

In conclusion, preventing Al hallucinations just needs a complete approach that com-
bines prompt engineering, resilient guardrails, and continuous monitoring. Researchers
shows that good prompt engineering can significantly boost response accuracy by 30%
[22]. Building reliable AI applications that users trust needs constant watchfulness, com-
mitment and adaptation to new challenges. Rigorous testing and evaluation before LLM
deployment, establishing clear operational boundaries and incorporating user feedback
are essential to mitigate the risk of LLM hallucinations. Furthermore, continuous mon-
itoring and improvement of LLMs (strategic fine-tuning) are vital to ensure that LLM
applications not only meet but exceed standards of reliability and safety [23]. The im-
portance of these measures is not only for technical reasons, but protecting information’s
integrity and keeping users safe from harmful misinformation. Put these techniques into
practice today to build a safer and more reliable Al future.

3.2 Digital Forensics Reports written by LLMs

The advent of LLMSs has has introduced new possibilites for automating complex language-
based tasks across a variety of domains. In digital Forensics, where the articulation of
technical findings into clear, coherent, and legally sound reports is critical and time-
consuming task, LLMs are beginning to demonstrate potential as supportive tools. It is
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crucial to enphasize that LLMs are not intended to replace human experts, but rather to
assist them in generating reports that are more efficient and effective. Concerns around
factual reliability, data confidentialitiy, and legal admissibility persist, especially given
the high-stakes nature of digital evidence in juridical context.

While automation has been successfully integrated into many early phases of digital

forensics investigations (e.g. data acquisition), report generation remains one of the least
supported yet most critical tasks. This stage demands clarity, precision, and legal defen-
sibility, all of which are tradittionally grounded in expert human judgment and domain
knowledge. However, the potential of LLMs to assist examiners in drafting reports more
efficiently, particularly in high-volume environments where backlogs are common.
Recent studies [24] have shown empirically that LLMs can assist in writing digital foren-
sics reports. Their findings reveal that certain sections, such as the Introduction, Items
Received, and Methodology, are well-suited for LLLM assistance due to their strucured in-
put data and relatively low variability. Conversely, sections requiring evaluative judgment
or interpretative reasoning, like the Discussion and Conclusion, pose greater challenges
for automated text generation due to the reliance on investigator experience, context,
and nuanced interpretation 3.1.
The study also highlights that LLMs should be regarded not as autonomous report writ-
ers but as assistive tools. Generated texts often require exstensive proofreading, factual
verification, and stylistic adjustment before they can be included in a final report. In
some cases, as we said in the previous section 3.1, LLMs introduce hallucinated content
or make plausible yet inaccurate assumptions, which could compromise the reliability of
evidence presentation if unchecked. Nonetheless, when appropriately integrated, LLMs
can significantly reduce the time spent on report drafting, allowing forensic experts to
focus on higher-level analysis and decision-making. Their role fits within a broader trend
of leveraging Al for augmentation rather than replacement in critical decision-making
domains.

3.3 Log Analysis with LLMs

Log analysis is a critical component of cybersecurity, enabling organizations to monitor,
detect, and respond to security incidents. LLMs can enhance log analysis by automat-
ing the extraction of relevant information from vast amounts of log data, identifying
patterns, and generating insights. By leveraging LLMs, security teams can improve their
incident response times and reduce the cognitive load associated with manual log analysis.

3.3.1 SuperLog: Adapting LLMs for Log Analysis

As modern IT infrastructures scale in complexity and heterogeneity, the volume, variety,
and velocity of log data generated by systems pose significant challenges to traditional log
analysis approaches. Conventionally, engineers have relied on manual inspection or rule-
based systems to extract insights from system logs, which is not only time-consuming but
often fails to scale or generalize across environments. The advent of large language models
(LLMs) has sparked new interest in automating log-related tasks such as parsing, anomaly
detection, root cause analysis, and interpretation. However, the application of general-
purpose LLMs (such as GPT-3.5, GPT-4) to log analysis reveals a major shortcoming:
a fundamental mismatch between the structure of system logs and the natural language
these models are trained on. Logs are typically terse, highly domain-specific, syntactically

40



State-of-the-Art

Section Purpose and Structure and |Input data LLM-
Content Elements source potential
Introduction | Provides a Text that usually | Mandate and High
summary of the |follows the Lab Log
mandate and the | mandate
investigation structure
context, includes
crime
description,
suspect(s),
investigator(s),
transmitted
items, and the
prosecutor
questions
Received Description of Combination of | Mandate, Lab High
Items seized items text, tables, and | Log and Tool
including lists describing report (note that
characteristics: each item this last source
size, hash (if only presents
forensic image), partial data)
or physical
condition (if
device)
Methodology | Details analysis | Text or list of Literature and High
procedure, i.e., taken Lab Log
steps followed steps/applied
(incl. tools in
justification) and | chronological
tools used (incl. |order
versions)
Results Provides an Combination of |Lab Log and Medium*
overview of the | texts, tables, and | Tool report
results, e.g., a list | lists with varying
of every artifact |structure
of interest
identified, and
their
characteristics
Discussion Discusses the Text with Investigator Low
meaning of the | varying knowledge,
results in the structures for experience, and
context of the each mandate’s | opinion (parts of
investigation, question (the the data may be
and the limits of |evaluation in the lab log)
the undertaken |usually comes at
analysis' the end)
Conclusion | Summarizes the | Text following Prior elements Medium-Low
important the overall
elements of each |structure of the
prior section report

* Low for the whole section but high for various components within the section.

 An evaluation of the results under the light of each hypothesis is also present if the report is evaluative.

Table 3.1: Summary of serging findings for the forensic report analysis.

irregular, and lack the narrative context that LLMs excel at processing. To address this
gap, the paper [25] introduces SuperLog, a novel adaptation of open-source LLMs for the
domain of log analysis that successfully bridges the divide between structured operational
logs and the natural language interface of LLMs.

The core innovation lies in a newly proposed Continual Pre-Training (CPT) paradigm
that injects interpretable domain knowledge into a general-purpose LLM, enabling it to
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understand, process, and reason over log data while maintaining its fluency in natural
language. Instead of relying solely on raw log corpora, which offer limited semantic clarity,
the authors constructed NLPLog, a large-scale dataset containing over 250,000 question-
answer pairs derived from real-world logs across 14 diverse domains (including Windows,
Linux, MacOS, Hadoop, Spark, and more). Each Q&A pair is designed to provide rich
interpretive context across five dimensions of operational understanding: Grok pattern
parsing, event insight generation, root cause analysis, component correlation, and failure
forecasting. Importantly, these pairs are expressed in natural language, ensuring that
the model internalizes structured knowledge in a format that aligns with its pretraining
corpus, thereby avoiding the interpretability degradation often seen in LLMs retrained
on raw logs.

To prepare the data, the authors developed a multi-stage (Figure 3.4) pipeline in-
volving deduplication, log event reconstruction, and interpretable knowledge generation.
They utilized existing tools such as LogPPT to extract log templates from massive vol-
umes of semi-structured logs, then populated these templates with representative vari-
ables to simulate realistic events. GPT-4 was employed via carefully designed prompts to
generate meaningful natural language explanations, questions, and answers around each
log instance. In contrast to prior work—such as Bigl.og or LogRobust, that employed
domain-adapted pretraining with raw logs or structured anomaly labels, this method
enriches the model’s domain understanding with human-like interpretability [25].

& Perform Log Ananlysis Tasks

L1: fatal: Read from socket failed: .
i | Connection reset by peer [preauth] | : Domam-adapfed
: |L2: pam_unix(sshd:session): session e LLM

' | closed for user curi
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buiuny-aui4

!|L1: fatal: Read from socket failed:
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:|Q: What are the possible reasons |:
:|behind the log L1 ?

:|A: The log message L1 typically
:|indicates ...

SuperlLog

Interpretable Domain Knowledge (©)

Figure 3.4: Tllustration on the interpretable knowledge construction and continual pre-
training of SuperLog.

During the continual pre-training phase, the authors trained SuperLog using the 7-
billion-parameter LLaMA2 model, incorporating NLPLog to shift the model’s attention
toward domain-specific log features while preserving its original language generation capa-
bilities. Fine-tuning was conducted in two distinct modes: task-based fine-tuning, where
the model is trained on specific datasets for log parsing and anomaly detection (e.g.,
LogHub, BGL, Spirit); and instruction-following fine-tuning, where the model learns to
generalize across log tasks by following user prompts in natural language (using instruc-
tion datasets like Alpaca enriched with clustering and ranking). This dual fine-tuning
strategy makes SuperLog both domain-specialized and interactive, capable of following
diverse instructions without task-specific retraining.
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The model’s performance was evaluated on four core tasks [25]: log parsing, anomaly

detection, log-based failure diagnosis, and log interpretation. In all cases, SuperLog
outperformed baseline methods, including state-of-the-art LLMs such as GPT-4 and
Claude-3, as well as log-specific models like OWL-7B and DevOps-14B. For log pars-
ing, it achieved near-perfect RandIndex and F1-scores across five datasets. For anomaly
detection, it showed significant gains in both session- and template-level evaluations,
surpassing prior works like LogBERT and LogAnomaly. Notably, in log interpreta-
tion tasks—measured via GPT-4-based grading of readability and usefulness—SuperLog
demonstrated the highest average scores, confirming that the integration of interpretable
domain knowledge enhances not only task performance but also the clarity and human-
alignment of model outputs. Additional ablation studies confirmed that removing the
CPT phase or replacing interpretable data with raw logs led to notable performance
degradation, particularly in interpretive tasks, highlighting the importance of natural-
language supervision.
An especially compelling aspect of SuperLog’s capabilities lies in its generalization to
unseen domains. The model was evaluated on Apache and OpenStack logs—datasets
excluded from the CPT and fine-tuning processes. Compared against high-performing
baselines, SuperLog achieved significantly higher ROUGE scores, demonstrating its ca-
pacity to transfer learned reasoning to novel environments. These results indicate that the
model’s internalization of log reasoning patterns is not domain-locked, but rather general
and reusable—an essential property for practical deployment in dynamic I'T environments.
Moreover, the model’s architecture supports offline deployment, unlike proprietary LLMs
that require API access and present latency, cost, and security concerns.

3.3.2 LogGPT

Unlike existing approaches that rely on individual models tailored for specific tasks such
as parsing, anomaly detection, or root cause analysis, LogGPT aims to provide a general-
purpose, instruction-following log analysis framework based on the powerful capabilities of
LLMs. To overcome the semantic gap between structured log data and natural language,
and to ensure the model can understand, reason, and generate human-interpretable ex-
planations, the authors [26] develop a comprehensive training methodology that includes
multi-stage instruction tuning and domain adaptation via synthetic and real-world logs.
At its core, LogGPT is trained to accept task-specific prompts that include both a high-
level instruction (e.g., “parse this log”) and input log content, and to produce structured
or textual outputs in response. This prompt-based interaction model enables it to flexibly
support a wide range of tasks including log parsing, anomaly detection, log summariza-
tion, fault localization, root cause analysis, and more—offering a unified solution rather
than a fragmented toolset.

A critical contribution of the paper is the design of a multi-stage fine-tuning strategy
that guides the LLM to generalize across diverse log analysis tasks while maintaining high
interpretability and reliability. The authors construct a large-scale log-centric instruction
dataset that includes synthetic logs with known structures and patterns, as well as real-
world logs obtained from public datasets such as BGL, HDFS, and Thunderbird. This
dataset includes thousands of task-formulated prompt-output pairs spanning multiple log
formats, failure scenarios, and operational contexts. The training process involves several
stages: starting with a base LLM (LLaMA?2), the model is adapted first through domain
exposure using synthetic logs, and then through task-specific instruction tuning with
human-generated or simulated outputs. Importantly, the authors use chain-of-thought
prompting to encourage the model to output interpretable reasoning traces—particularly
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valuable for tasks like root cause analysis or anomaly justification. To prevent overfit-
ting and ensure generalization, they also implement input diversity strategies and task
randomization across training batches.

LogGPT’s architecture and training methodology enable it to tackle both structured
prediction and generative reasoning tasks, something that traditional log analysis models
cannot do [26]. For instance, in log parsing, the model is capable of identifying log
templates and variable fields directly from free-text logs; in anomaly detection, it can flag
unusual log sequences based on learned patterns; and in summarization, it can generate
natural language explanations of log segments or sequences. Additionally, the model
supports log-based question answering, enabling interactive diagnostic scenarios where
an engineer can query a system state in plain English and receive structured or textual
insights. The versatility of LogGPT is validated through comprehensive evaluations on
multiple benchmarks. In log parsing, it outperforms strong baselines such as Drain and
LogPai. In anomaly detection, it shows superior performance to both rule-based and
neural methods (e.g., LogAnomaly, DeepLog), particularly in scenarios involving unseen
failures or noisy data. For root cause analysis and fault localization, LogGPT not only
achieves high accuracy but also provides traceable, explainable reasoning steps, which is
a significant improvement over black-box models.

It demonstrates strong generalization to unseen log formats, with few-shot prompting or
zero-shot capabilities that allow it to handle novel system logs with minimal tuning. The
authors also show that the model’s instruction-following nature makes it adaptable to
operator feedback or domain-specific constraints, making it suitable for integration into
interactive debugging tools or DevOps platforms. A notable advantage of LogGPT over
proprietary APIs (e.g., GPT-4) is its offline deployability and transparency—an important
consideration for enterprise environments where data privacy, latency, and customization
are critical. By releasing a publicly available version and accompanying training data, the
authors contribute a significant foundation for further research in log-intelligent systems.

3.3.3 Leveraging Language Models for Automated Shell Log Analysis:
The LogPrécis Approach

Here the researchers [27] propose LogPrécis, an innovative framework that utilizes pre-
trained language models (PLMs) to automate the analysis of malicious Unix shell logs,
offering a novel methodology for extracting high-level semantic information from raw logs
in the form of attack fingerprints.

LogPrécis is designed to parse raw shell sessions—typically collected through honey-
pots—and assign MITRE ATT&CK tactics to each command or token in the session.
These tactics act as interpretable, high-level labels representing the attacker’s goals (e.g.,
Execution, Persistence, Discovery, Defense Evasion). This process results in a tactic se-
quence, or fingerprint, that characterizes each attack session. Through a combination of
domain adaptation, few-shot fine-tuning, and a careful comparison of language model ar-
chitectures, LogPrécis demonstrates that it is possible to reduce over 400,000 raw attack
logs to approximately 3,000 unique fingerprints, thereby enabling efficient summarization,
pattern detection, and forensic analysis.

The study rigorously evaluates various pre-trained models—such as BERT, CodeBERT,
CodeBERTa, and GPT-3—and experiments with multiple tokenization strategies (to-
kens, words, statements), chunking methods, and training regimes (from-scratch, domain-
adapted, fine-tuned). Among the models tested, CodeBERT with token-level classifica-
tion, context-aware chunking, and domain adaptation performed best, achieving over
85% ROUGE-1 score and 66.9% fidelity on the classification task 3.2. The results show
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that PLMs pre-trained on code significantly outperform generic NLP models, and that
adapting them to the specific shell log domain substantially improves performance.

The process starts with domain adaptation, where the PLMs are further trained on

Unix shell logs in an unsupervised fashion to better understand the peculiarities of shell
syntax, attacker tools, and command chaining. The fine-tuning step then uses a small but
curated set of 360 labeled attack sessions to train a classifier to assign MITRE tactics to
log tokens. Despite the limited labeled data, the model shows strong generalization thanks
to few-shot learning, and continues to improve as more samples are added. An important
insight from the study is that contextual chunking, where each segment of a shell session
is fed to the model along with a few preceding and following commands, greatly enhances
the model’s ability to correctly classify the intent behind each command—showing that
context is crucial in understanding the semantics of attacker behavior.
The paper also addresses the challenges of ambiguous commands. For example, a com-
mand like rm (remove) can be part of Persistence, Impact, or Defense Evasion, depending
on context. LogPrécis can disambiguate such cases by analyzing surrounding commands
and system state. It is demonstrated that while classic approaches like static rule match-
ing or Word2Vec-based embeddings fail in these scenarios, PLMs with attention mecha-
nisms excel by capturing semantic relationships and positional dependencies. In addition
to the per-command classification, LogPrécis builds higher-level representations by group-
ing commands with the same tactic and generating session-level tactic fingerprints. These
fingerprints facilitate several downstream applications:

o Clustering and deduplication of similar attack sessions.

o Tracking the evolution of malware families (e.g., variants of the DOTA crypto-
miner).

e Anomaly and novelty detection, by flagging the emergence of new, unseen tactic
sequences.

e Real-time alerting in SOC pipelines with reduced false positives and better priori-
tization.

An illustrative use case involved the emergence of a new fingerprint involving the
lockr command, which LogPrécis flagged in December 2022. This command was later
confirmed by external reports to be part of a novel SSH-based persistence attack targeting
WordPress and Drupal environments. The fact that LogPrécis detected this shift months
in advance highlights its potential as a proactive tool for cyber threat intelligence. From a
performance standpoint, the study shows that LogPrécis offers the best trade-off between
effectiveness, efficiency, and cost. It runs faster and more accurately than GPT-3, with
inference costs near zero since it uses open-source models. In contrast, GPT-3, while
competitive in terms of ROUGE-1, incurs substantial computational and monetary costs,
making it less suitable for real-time or large-scale deployment. The authors also built a
practical implementation of LogPrécis using Python, Elasticsearch, and Kibana, creating
an interactive dashboard where analysts can explore log sessions by tactic sequences,
time trends, or individual commands. This integration shows that LogPrécis is not just a
proof-of-concept but a deployable system with tangible benefits for operational security.
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Model Entity |Accuracy ROUGE-1|Fidelity
CodeBERT | token 0.912 0.853 0.669
CodeBERT | word 0.896 0.823 0.594
CodeBERTa| token 0.889 0.817 0.506

BERT token 0.902 0.811 0.556

BERT statement| 0.909 0.807 0.614

BERT word 0.885 0.791 0.486
CodeBERTa |statement| 0.885 0.788 0.553
CodeBERTa| word 0.863 0.781 0.406
CodeBERT |statement| 0.877 0.739 0.522

Table 3.2: PLMs with context chunking and domain adaptation. CodeBERT with token
classification task offers the best results (HaaS dataset).

3.3.4 LoGBabylon: A Unified Framework For Cross-log File Integra-
tion And Analysis

LogBabylon introduces a unified framework for log file integration and analysis that lever-
ages advances in Large Language Models (LLMs) and Retrieval-Augmented Generation
(RAG). The framework addresses the challenges of heterogeneous log formats, enabling
seamless integration and analysis across diverse log sources. At its core, LogBabylon is
designed to automate the entire pipeline of log analysis (from classification to interpre-
tation, Figure 3.5) across heterogeneous and unstructured log sources. Its architecture is
composed of three main stages [28]:

1. Classification and Template Extraction: LogBabylon classifies incoming logs
using a prefix parse tree structure and a lightweight preprocessing method. Instead
of relying on hand-crafted rules or regular expressions, the system employs LLMs
to extract log templates dynamically. This strategy enables high adaptability to
new log types and reduces the need for domain-specific expertise. A novel match-
ing algorithm—combining strict, loose, and fallback LLM-based matching—ensures
that both known and unseen log patterns can be parsed accurately. The system
organizes logs into clusters based on semantic similarity and maintains a template
pool that evolves over time.

2. Consolidation via Retrieval-Augmented Generation (RAG): To overcome
the limitations of static language model knowledge, LogBabylon integrates RAG,
allowing it to retrieve relevant past logs from a vector database. Incoming logs are
embedded into vector representations and compared against stored log entries to
find similar examples. These examples are used as context for the LLM to pro-
duce context-aware and semantically accurate interpretations. This RAG-enhanced
approach improves anomaly detection by allowing the system to detect even subtle
deviations from normal behavior and facilitates a richer understanding of system
state.
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3. Interpretation and Human-Readable Insights: The final stage focuses on
making the output of log analysis accessible and actionable. LogBabylon applies
variable-aware prompting and in-context learning (ICL) to fine-tune LLM responses.
By identifying and classifying variables (e.g., timestamps, IPs, codes) and using
carefully selected k-shot examples, the system improves template generalization and
reduces hallucinations. The output includes natural-language summaries, anomaly
classifications, and root-cause analyses, all designed to aid system operators in
decision-making.
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Figure 3.5: LogBabylon’s architecture

LogBabylon’s performance was evaluated on two benchmark datasets: loghub-2k,
which includes structured logs from 16 systems, and logPub, a more diverse and large-
scale collection. Compared to both rule-based tools (e.g., Drain, Uniparser) and LLM-
based baselines (e.g., ChatGPT and DivLog), LogBabylon showed superior results across
multiple metrics, including Grouping Accuracy (GA), Parsing Accuracy (PA), F1 score
on Template Accuracy (FTA), and Granularity Distance (GD). Notably, even when op-
erating with zero or very few labeled examples, LogBabylon outperformed other systems
in robustness and adaptability [28].

From a usability perspective, LogBabylon requires minimal configuration and no ex-
tensive manual tuning, making it highly suitable for real-world deployment. The system
supports a wide range of log types—including application logs, system logs, and network
logs—and can scale to large volumes with high accuracy. Its design also anticipates future
extensions, such as integration with confidential computing environments and interactive
user feedback loops for template refinement.
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3.3.5 Overview of Log Analysis with LLMs

The surveyed works demonstate that LLM-based log analysis is taking shape along three
reliable lines and a few still-emerging ones. First, domain adaptation with log-centric con-
tinual pre-training plus instruction tuning now works consistently: it lets a model move
across environments while keeping explanations that an analyst can read and trust, as
exemplified by SuperLog. Second, when the data are shell sessions, models pre-trained on
code can compress activity into compact, MITRE ATT&CK-aligned “fingerprints” that
help clustering and triage; this is the core idea behind LogPrécis. Third, task-conditioned
“generalist” models can cover parsing, anomaly detection, summarization, and fault lo-
calization through a single interface with competitive results on public datasets such
as BGL, HDFS, and Thunderbird, as shown by LogGPT. By contrast, unified pipelines
that classify, template, retrieve context, and interpret heterogeneous logs—like LoGBaby-
lon—are promising but not yet fully validated at SOC scale, and they still need stronger
safeguards against hallucinations and model drift. Engineering constraints are also un-
derexplored: we lack systematic evidence on latency, throughput, and cost in always-on
SIEM settings, and the community does not yet share robust benchmarks for log under-
standing, multi-step reasoning, and ATT&CK mapping. These gaps suggest practical
next steps: couple LLMs with retrieval-grounded checks and simple rules to bound errors
in CTI/IOC extraction; run active-learning loops so analyst feedback steadily improves
prompts, templates, and instructions; and prefer privacy-preserving, on-prem deploy-
ments via distillation and quantization when data cannot leave the SOC. In practice, use
SuperLog-style adaptation for cross-domain reasoning with readable rationales; prefer
LogPrécis for shell telemetry when ATT&CK fingerprints and clustering matter; choose
LogGPT when one model must span multiple log-analytics tasks; and adopt LoGBabylon-
like pipelines when you need to stitch diverse sources together with evidence-grounded
analysis.

3.4 MITRE ATT&CK: State of the Art and Way Forward

The framework continues to expand and now supports multiple domains, including Enter-
prise, Mobile, and Industrial Control Systems (ICS). Each domain has unique tactics and
techniques, reflecting the differing threat landscapes. For example, the Enterprise matrix
includes over 190 techniques and 385 sub-techniques, covering diverse platforms like Win-
dows, macOS, Linux, and cloud environments. The ICS matrix reflects the convergence
of operational and information technologies, highlighting the growing vulnerabilities in
cyber-physical systems.

Notable developments in the framework include the addition of PRE-ATT&CK tactics
(later absorbed into the main matrix) to capture adversary behavior before initial access,
and the expansion into domains like mobile platforms (2017) and cloud services (2019).

To contextualize ATT&CK’s utility, the authors [29] compare it with other promi-
nent cybersecurity frameworks: the Lockheed Martin Cyber Kill Chain (CKC), Microsoft
STRIDE, the Unified Kill Chain (UKC), and the Diamond Model (DM). They empha-
size that while ATT&CK serves as a detailed behavioral database, CKC is a linear attack
model emphasizing temporal sequence, and STRIDE is a threat identification methodol-
ogy grounded in six threat categories (Spoofing, Tampering, etc.). ATT&CK is uniquely
suited for detailed modeling of Tactics, Techniques, and Procedures (TTPs), especially
when used in combination with other models for risk assessment and response planning.

The surveyed works are organized into four major use-case categories:
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. Behavioral Analytics: The works analyze attacker behavior by mapping observed

data to ATT&CK techniques (Figure 3.6). For example, clustering algorithms have
been used to detect relationships among techniques, while machine learning and
Al-driven systems such as HOLMES or MAMBA correlate log data with ATT&CK
entries to identify and respond to APTs in real-time. Other studies propose frame-
works for ICS threat hunting, mobile APT detection, and explainable Al models
that help visualize and interpret adversarial behavior.

Red Teaming and Adversary Emulation: These studies use the ATT&CK
framework to simulate attacks and evaluate security systems. Several domain-
specific languages (DSLs) such as enterpriseLang and powerLang have been pro-
posed to model attack scenarios. Automated tools like CALDERA and Atomic
Red Team help emulate real-world attack sequences for training and testing. Stud-
ies also extend ATT&CK with new techniques relevant to emerging domains like
5G networks.

Defensive Gap Analysis: Here, ATT&CK is used to identify blind spots in
existing defenses. Studies map vulnerabilities, assess cyber hygiene, and analyze
the efficacy of existing countermeasures by cross-referencing defense capabilities
with ATT&CK’s documented techniques. For example, some works link ATT&CK
to CVEs to estimate risk profiles across systems.

CTI Enrichment: The framework is often integrated into CTI pipelines to im-
prove sharing and analysis of threat intelligence. Tools have been developed to
automatically extract ATT&CK-relevant indicators from threat reports using NLP
and knowledge graphs. Furthermore, some works 3.5 align ATT&CK with frame-
works like NIST to improve security posture assessments.

The ATT&CK framework has proven to be a flexible and powerful resource across
various cybersecurity domains. It supports standardized terminology, enriches threat
modeling, and improves communication between stakeholders.

ATT&CK Input
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Figure 3.6: Behavioral analytic with the ATT&CK matrix: We identified three main
relations with the ATT&CK matrix, i.e., Input, Support,and Comparison.

However, the survey also identifies several open issues:

Scalability and Complexity: As the framework expands, maintaining its us-
ability and relevance becomes challenging. The sheer number of techniques can
overwhelm analysts, especially in large organizations with complex environments.
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e Dynamic Threat Landscape: New attack vectors and techniques emerge rapidly,
necessitating continuous updates to the framework. Ensuring timely incorporation
of new threats while maintaining backward compatibility is a key challenge.

e Integration with Other Frameworks: While ATT&CK is widely adopted, in-
tegrating it with other models (e.g., MITRE D3FEND) for comprehensive risk
assessment remains an open area of research.

e« Automated Mapping and Analysis: Automating the mapping of observed be-
haviors to ATT&CK techniques is still an active area of research, particularly in
heterogeneous environments where logs may not be standardized.

« Benchmarking and Evaluation: There’s a need for standardized benchmarks to
evaluate the effectiveness of ATT&CK-based systems.

e Emerging Domains: There’s limited ATT&CK coverage for domains like IoT,
automotive, and edge computing, which are increasingly vulnerable.

3.5 SIEM solutions in modern cybersecurity

In the modern cybersecurity landscape, Security Operation Centers (SOCs) serve as the
central nevous system for organizational defense, continuously monitoring systems, ana-
lyzing events, and responding to potential threats. A core component of their operational
workflow involves the use of SIEM systems, which aggregate and analyze security data to
identify suspicious activities and potential threats (chapter 3.5). SIEM systems have be-
come increasingly advanced, incorporating real-time correlation engines and custom rule
systems, but they still face significant limitations, especially when dealing with unstruc-
tured textual data such Cyber Threat Intelligence (CTT) reports, incident logs, and alerts.
CTT documents, often published in prose by security firms or disseminated across ana-
lyst forums, contain critical indicators of compromise (IOCs) sush as file paths, process
names, registry keys, and command line instructions. However, because this information
is embedded in natural language, its extraction and operationalization (such as converting
it into SIEM correlation rules) remains a highly manual and repetitive task for analysts.
Recognizing the inefficiencies of this manual process, this work proposes a fully auto-
mated, Al-powered solution that harnesses the capabilities of LLMs to bridge the gap
between unstructured CTI reports and structured, actionable threat detection rules. Un-
like prior domain-specific approaches, which often rely on traditional NLP techniques
or narrowly trained Named Entity Recognition (NER) models, the proposed agent by
the researchers leverages the generalization power of frontier models like GPT-4. It is
designed to operate without human oversight, significantly reducing the cognitive and
time burdens placed on security personnel and allowing them to focus on higher-level
analytical and strategic tasks [3].

The system architecture is based on a multi-stage pipeline that addresses several
core technical challenges. First, the CTI report is divided into smaller, manageable
segments, typically paragraphs, and each is processed independently to extract potential
IO0Cs. Given the risk of factual inaccuracy in LLM outputs, the system implements a
purification mechanism that combines majority voting across multiple LLM invocations
with retrieval-augmented filtering (RAG). This filtering stage cross-references the LLM-
generated outputs against a curated vector database built from Windows and Linux
documentation to confirm the validity of file paths, command formats, registry structures,
and system binaries.
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Figure 3.7: Workflow of the proposed Al agent: the first half

Once purified, the agent processes the IOCs further by distinguishing between “cap-

ture” and “non-capture” groups within each string-an essential step for building flexible
and robust regular expressions (RegEx). Capture groups include predictable or invariant
components like system paths or command verbs, while non-capture groups encompass
attacker-defined elements such as filenames or GUIDs that may change across incidents.
This distinction enables the generation of generalizable RegEx patterns that can match
variations of malicious activity. A built-in RegEx tester then validates each generated
pattern to ensure syntactic correctness and semantic relevance.
Beyond individual indicators, a key innovation of this project is the automated extraction
of relationships between I0Cs. Using both linguistic parsing and semantic role label-
ing, the agent identifies subject-object-verb dependencies to uncover causal or sequential
links—e.g., whether a given executable “drops” a second payload, or if a script “mod-
ifies” a registry key. These relationships are then normalized through a verb-mapping
schema that categorizes similar actions (e.g., “create”, “drop”, “establish”) under com-
mon behavior labels to facilitate consistent analysis. A final verification step ensures that
relationships make logical sense within cybersecurity contexts (e.g., a registry key should
not “create” an executable), and invalid links are either corrected or discarded.

The culmination of this process is the generation of a Relationship Graph 3.8: a di-
rected, structured representation of how various threat components (expressed as RegEx-
formatted I0Cs) interact within the reported incident. These graphs provide SOC an-
alysts with an intuitive, at-a-glance understanding of attack chains, malware behavior,
and propagation logic, which are invaluable for threat hunting and proactive defense.
To validate the effectiveness of the agent, the system was tested on more than 50 real-
world CTI reports collected from diverse sources. The agent successfully extracted over
2,900 candidate IOCs, of which approximately 2,300 were validated as correct through
purification. It produced around 2,200 RegEx patterns, a slightly lower number due to
shared structures across different reports (e.g., the recurring use of the “AppData” direc-
tory or registry keys such as HKLM\Software\Microsoft\ Windows\ Current Version\Run).
Notably, the system achieved a near-complete recall rate, failing to extract only about
3% of the ground-truth IOCs, and many of those omissions were due to edge cases or
ambiguous phrasing in the source text [3].

This research represents one of the first comprehensive attempts to fully automate
CTT analysis using LLMs, from raw text ingestion to the creation of actionable intelligence
in the form of correlation rules and threat graphs. Unlike earlier efforts that required
continuous human oversight or were limited to specific IOC types, this Al agent demon-
strates broad coverage, domain adaptability, and operational utility. By integrating it into
SOC workflows, organizations can dramatically accelerate the speed of response, reduce
analyst fatigue, and improve their readiness against evolving cyber threats. Moreover,
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the generalizability of the architecture suggests that similar agents could be trained or
fine-tuned for other threat intelligence domains, including fraud detection, vulnerability
reporting, and software supply chain analysis.
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In summary, the work illustrates the transformative potential of LLMs in cyberse-
curity operations, not merely as assistive tools but as autonomous agents capable of
executing complex analytical tasks with precision and consistency. It opens the door to
a new class of intelligent, self-improving security infrastructure that scales with both the
volume and complexity of modern threat landscapes.

3.6 SIEM rules with MITRE ATT&CK

In the face of escalating cyber threats, security operations increasingly rely on SIEM (Se-
curity Information and Event Management) systems to monitor and analyze log data via
structured rules. These SIEM rules are critical in identifying malicious activity (chapter
2.1). However, to be truly effective, these rules must be accurately mapped to the tactics,
techniques, and procedures (TTPs) defined in the MITRE ATT&CK framework-a glob-
ally recognized taxonomy of adversarial behavior. Unfortunately, this mapping process
is often manual, error-prone, and inefficient (chapter 2.3).

To address these limitations, the researchers [30] introduce Rule-ATT&CK Mapper
(RAM), a novel, automated framework that leverages large language models (LLMs) to
map SIEM rules to their corresponding MITRE ATT&CK techniques. Unlike existing
solutions that primarily focus on unstructured data such as cyber threat intelligence
(CTI) reports, RAM implements a multi-stage, prompt-chained pipeline that transforms
structured SIEM rules into unstructured natural language descriptions, enhances them
with contextual information, and then uses LLMs to recommend corresponding MITRE
ATT&CK techniques and sub-techniques. This approach is particularly significant be-
cause prior methods—mostly rule-based systems or supervised learning models—have ei-
ther required constant retraining or have been limited to unstructured data (e.g., threat
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intelligence reports), making them unsuitable for the structured nature of STEM rules.

The RAM pipeline consists of six key steps (Figure 3.9):

1. Indicator of Compromise (IoC) Extraction: Automatically identifies entities
such as IP addresses, process names, registry paths, etc., in the SIEM rule.

2. Contextual Information Retrieval: Uses LLM agents (e.g., REACT (REason-
ing & ACTing) framework [31]) to enrich IoCs with additional data through web
searches or external knowledge sources.

3. Natural Language Translation: Converts the SIEM rule and its contextual
information into a readable, unstructured description, making it more interpretable
and compatible with the LLMs.

4. Technique Recommendation: The LLM proposes probable MITRE ATT&CK
techniques based on the natural language representation of the rule.

5. Technique Refinement and Explanation: Filters irrelevant techniques and
generates chain-of-thought rationales, offering explainability and justifications for
the mappings.

The framework was tested using the Splunk Security Content dataset, comprising
SIEM rules written in SPL (Search Processing Language), with careful attention paid to
avoid data leakage from LLM knowledge cutoffs. Several LLMs were evaluated within
RAM, including GPT-4-Turbo, GPT-40, Qwen, IBM Granite, and Mistral, demonstrat-
ing that GPT-4-Turbo achieved the highest accuracy and recall in mapping SIEM rules
to MITRE techniques.

An ablation study highlighted that enriching the rules with contextual information sub-
stantially improved mapping performance. Specifically, translating rules into plain En-
glish with context boosted the average recall from 0.46 to 0.75, and average precision
from 0.39 to 0.52. This underscores the importance of combining both implicit LLM
knowledge and explicit external information for domain-specific tasks.

The study also compared RAM with several baselines, including zero-shot GPT-4 prompt-
ing, BERT and CodeBERT classifiers, and TTPxHunter (a SecureBERT-based system).
RAM outperformed all baselines in both recall and precision, demonstrating its effective-
ness and adaptability.

Importantly, RAM offers clear advantages:

e It eliminates the need for labeled training datasets, thus overcoming a major
limitation in cybersecurity applications where data is sensitive and scarce.

e It produces interpretable outputs, by providing reasoning and explanations
for each mapping decision, which is crucial for analysts to understand the rationale
behind the mappings (Figure 3.10).

o It is format-agnostic supporting SIEM rules across various platforms and rule
definition languages (e.g., SPL, Lucene, KQL).

There are some limitations to consider. For instance, SIEM rules often lack sufficient
embedded context, which can hinder even LLM-based systems. Additionally, issues such
as ambiguous technique descriptions, mislabeled ground truth datasets, and challenges
in differentiating techniques from sub-techniques can impact accuracy. Overall, RAM
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Figure 3.9: AI Agent-based RAM pipeline

represents a significant advancement in automated cyber threat detection. By bridging
the gap between structured SIEM data and the semantically rich MITRE ATT&CK
framework through LLMs, RAM enhances both the efficiency and accuracy of cyber
defense strategies.

3.7 Summary-strengths and weaknesses

These articles show that applying large language models (LLMs) to cybersecurity and
digital forensics can accelerate critical workflows—including extraction of indicators of
compromise (IoCs), normalization and interpretation of heterogeneous logs, mapping
to MITRE ATT&CK, and drafting structured sections of incident reports—thanks to
natural-language interfaces and domain-aware pipelines (e.g., model adapters for logs,
retrieval-augmented generation, and agentic orchestration with guardrails). Prompt-
engineering patterns, RAG, and supervised/instruction fine-tuning, together with op-
erational controls (input validation, context management, temperature/top-p settings,
and output schemas), improve coverage, coherence, and traceability, reducing analyst
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Figure 3.10: Overview of prompt structure used in all steps of the pipeline.

workload and easing integration with SIEM and threat-intel sources. However, mate-
rial weaknesses remain: hallucinations and bias are mitigated but not eliminated and
depend on the quality and freshness of curated knowledge; nondeterminism and data
opacity hinder reproducibility and legal auditability; security risks (prompt injection,
data leakage) and privacy/compliance constraints persist; costs and latency can be sig-
nificant at scale; robust domain adaptation still requires task-specific data and evaluation;
and both ATT&CK mapping and multi-agent orchestration can introduce error propaga-
tion, drift, and ongoing maintenance. In short, LLMs provide tangible gains in efficiency
and coverage, but they should be embedded in grounded, well-governed workflows with
human-in-the-loop, strong monitoring, and verifiable outputs.
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Chapter 4

Design

4.1 Introduction and Motivation

This chapter presents a conceptual framework for integrating Large Language Models
(LLMs) into a Security Information and Event Management (SIEM) pipeline. The frame-
work is deliberately modular and extensible, so that individual capabilities (ingestion, nor-
malization, retrieval, reasoning, validation, and reporting) can evolve over time without
forcing a redesign of the whole system. The primary objective is to support the analysis
of heterogeneous operating-system and application logs and broader security telemetry,
while producing explainable and actionable results that fit the operational workflows of
a Security Operations Center (SOC).

Modern SIEM deployments face three simultaneous pressures. First, the volume and

heterogeneity of telemetry continue to grow, stressing rule-based correlation and manual
triage. Second, attacker techniques change quickly, and knowledge encoded in static rules
and dashboards becomes stale. Third, operational environments (especially in regulated
sectors) require traceability: every detection and every automated action must be justi-
fied, reproducible, and auditable.
LLMs offer new capabilities for summarization, pattern abstraction, and semantic map-
ping (e.g., linking traces of behavior to MITRE ATT&CK techniques). However, naively
inserting an LLM into a SIEM can create risks: hallucinations, inconsistent output for-
mats, leakage of sensitive information, and difficulty validating or reproducing results.
The design in this chapter addresses those risks by structuring how LLMs interact with
data and by surrounding them with guardrails.

4.1.1 Goals.

Modular, event-oriented processing The framework organizes the SIEM pipeline
into discrete processing stages (ingestion, pre-processing, prompt orchestration, LLM
analysis, validation, and outputs). Each stage consumes well-defined inputs and produces
well-defined outputs. This organization allows deployments to be event-driven (i.e., each
new item of telemetry triggers a cascade of processing steps) without hard-wiring the
implementation to a particular technology stack. The consequence is lower latency for
detections and a clearer separation of responsibilities between stages.

Reduced hallucinations and stale knowledge. The framework reduces generation
errors and outdated reasoning through three complementary techniques:
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e Prompt engineering and context management. The framework uses struc-
tured prompts, tasks are defined by reusable instruction templates with explicit
output schemas (e.g., JSON fields for findings, candidate TTPs, confidence, and
evidence references). Where appropriate, few-shot exemplars and controlled decod-
ing (low temperature) guide the model toward stable behavior.

e Fine-tuning and model selection. models can be adapted to the security do-
main using curated data (e.g., forensic traces with known TTP labels), improving
alignment with SOC tasks.

o Retrieval-augmented generation (RAG). optional retrieval of recent and au-
thoritative context (ATT&CK pages, CTI reports, internal policies) grounds the
model’s answers in verifiable sources. Retrieval is governed by allow-listed reposi-
tories and freshness checks to limit drift.

Be auditable and safe by design. The system ensures every result is traceable to
its inputs, including the exact prompt, model version, and parameters used. Auditability
must meet these properties: (i) reproducibility, given the same inputs and configuration,
the system produces the same output; (ii) provenance, all artifacts carry tamper-evident
metadata about their origin, transformations, and integrity; (iii) explainability, outputs
are structured (not free text only) and cite the evidence supporting each claim; and (iv)
governance, a validation layer enforces schema adherence, consistency constraints, and
policy gates before any automated action can proceed.

Support multiple LLM roles. The design anticipates scenarios where more than one
LLM-based role is beneficial, for example, one role to summarize raw logs into a concise
analyst report, and another to map behaviors to MITRE ATT&CK techniques. The
framework permits these roles to be composed sequentially (prompt chaining) or run in
parallel, while exposing a single, consistent interface to downstream components.

Scalability and replaceability. Each stage communicates through explicit contracts
(structured artifacts), enabling independent scaling and replacement. For instance, a pre-
processing component optimized for Windows Event Logs can be substituted later with
a broader normalizer without changing the design of the LLM stages or the validation
logic.

Privacy-aware operation. Because security telemetry may include sensitive or foren-
sic data, the framework is compatible with on-premise or private-cloud inference and with
strict data-minimization practices. Optional retrieval is governed by source allow-lists,
and prompts are constructed from sanitized, normalized representations of events rather
than raw logs.

4.1.2 Scope and non-goals.

The present chapter focuses on conceptual design: roles, interfaces, and the behavior
of the pipeline as a whole. It does not prescribe a specific vendor technology, queueing
system, or model; those are implementation choices that can vary across deployments.
Likewise, this chapter does not describe datasets, training recipes, or evaluation metrics,
those belong to the subsequent Implementation chapter where only where only a small
proof-of-concept instance of the framework is realized.
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4.2 Architectural Overview

This section describes the end-to-end behavior of the framework, from the moment secu-
rity telemetry is produced by an information system to the moment a detection record is
made available to analysts and response tooling. The description is technology-agnostic:
it defines roles, data exchanged between roles, and the sequence of transformations, not
the specific software products or deployment patterns. Figure 4.1 (Framework architec-
ture) provides a visual summary that we will reference while introducing the six phases.

From telemetry to normalized evidence. The boundary of the system starts where
security-relevant data is generated: operating systems, applications, identity providers,
network devices, middleware, and security tools such as EDRs. The framework assumes
that these sources can be accessed through standard collection mechanisms (agents, con-
nectors, or export interfaces). The Input Retriever is the logical role responsible for
bringing raw artifacts into the pipeline and attaching basic provenance: where the ar-
tifact came from, how it was obtained, when it was observed, and—when possible—an
integrity hash to make later tampering detectable.

Raw artifacts are seldom uniform. A single host may emit Windows Event XML, Power-
Shell transcripts, and application logs with free-form lines; a network sensor may provide
NetFlow, PCAP slices, and IDS alerts. The Pre-process role brings structure to this het-
erogeneity. First, it parses and normalizes events to a canonical representation with stable
field names (timestamp, host identity, user identity, action, resource, network endpoints,
process metadata, etc.). Second, it applies sanitization steps so that the normalized rep-
resentation can be safely embedded in prompts without allowing the content of logs to
steer the model (e.g., escaping model-like tokens and quoting untrusted strings). Third,
it may derive simple features that are useful later (for example, a normalized command
line, a process tree summary, or a rarity score for an event type). The output of this phase
is a structured artifact we denote [Y] Normalized Event. [Y] is intentionally compact and
deterministic: two identical raw events should lead to the same [Y], which helps with
reproducibility and caching.

Prompt orchestration The framework separates what we ask the model to do from
what it must reason over and from which external knowledge is allowed to guide that
reasoning. This separation appears in three artifacts:

e [X] Pre-set Instruction encodes the task. It can be as simple as “summarize
the security-relevant behavior in [Y] and output valid JSON with fields A, B, C,”
or as precise as “given [Y], return candidate MITRE ATT&CK techniques with
confidence scores and evidence references.” The key point is that [X] is reusable
across many events.

e [Y] Normalized Event is the evidence produced earlier in 4.2.

o [Z] Context (Optional) is external knowledge fetched on demand when the task
benefits from grounding—pages from ATT&CK, snippets from an internal hard-
ening policy, a short CTI extract about an IOC that appears in [Y]. Retrieval is
governed by source allow-lists and freshness rules, and it is bounded in size so that
the model remains focused on the event at hand. A small context cache can avoid
repetitive retrieval when many events require the same background.
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Figure 4.1: Architecture of the proposed system.

An Interface composes [X], [Y], and (when present) [Z] into a concrete prompt ac-
cording to ordering and size rules. The Interface also communicates to the model an
output contract (for instance, a JSON schema), so that downstream components can rely
on a stable structure rather than free text. The interface can also apply [F] Feedback
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Directives, produced later by analysts or the validator, that patch instructions (tighten
schemas, add exemplars) or append short vetted context. Evidence [Y]remains immutable
and is never edited by feedback.

Reasoning over behavior The LLM Layer is the reasoning core. It is presented here in
general terms, independent of a specific model or decoding strategy. The framework allows
one or more roles to be configured, depending on the analytic question an organization
wants to answer.

At its simplest, a single role consumes [X] and [Y] (and optionally [Z]) and returns a
structured answer with findings, evidence references, and—where applicable—candidate
mappings to a knowledge structure such as MITRE ATT&CK. In more elaborate setups,
a first role may transform [Y] into a concise analyst-oriented report (reducing noise and
highlighting anomalies), while a second role consumes that report to perform classification
(e.g., selecting likely techniques and explaining the rationale). The roles can be chained
without changing the rest of the pipeline because they all speak the same contract: inputs
are explicit artifacts and outputs must respect the same schema family.

The framework does not require a specific prompting style. Zero-shot, few-shot, or
prompt chaining are implementation choices. What the design does require is that the
chosen style be captured in [X], that the model operate on sanitized [Y], and that any
additional knowledge come through governed [Z], so that the reasoning remains auditable.

Guardrails and acceptance LLM outputs are not delivered directly to detection
dashboards or response playbooks. Instead, they pass through a Validation Layer whose
purpose is twofold: to protect the rest of the system from malformed or unsafe outputs,
and to convert model suggestions into reliable, auditable detection records.

Validation proceeds in stages. First, the output is checked against the promised
format: the JSON must parse; mandatory fields must be present; identifiers must meet
expected patterns; numerical ranges (such as confidence values) must make sense. These
checks are quick and objective, either the contract is respected or it is not.

Second, the content is examined for internal consistency. Timestamps referenced in
the explanation must fall within the time window of [Y]; hostnames and user identities
must match what appears in the evidence; ATT&CK technique identifiers must be valid
entries; if the model claims that a process contacted a given IP, that IP must be visible
in the network fields of [Y] or in the retrieved context [Z] with an explicit citation. This
stage does not re-do the model’s reasoning; it verifies that the reasoning is grounded in
observable facts.

Third, policy and risk controls are applied. Organizations can set thresholds (for
example, “do not auto-escalate to response unless the confidence is above 0.9 or unless two
independent roles agree”). They can forbid certain automatic actions for high-risk assets,
or require human sign-off for specific families of techniques. The Validation Layer is where
such rules live, ensuring that machine-generated suggestions cannot bypass governance.

When a result passes validation, it is transformed into a canonical Detection Record
and handed to the output services. When a result fails, the validator records a Validation
Issue that explains why and routes the case to a Feedback space where analysts can review
it, correct labels if needed, and provide examples that may later be used to refine prompts,
update retrieval indices, or fine-tune models. The feedback path closes the loop between
model behavior and operational reality without forcing immediate retraining.
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From detection to action The accepted Detection Record becomes the single source
of truth consumed by three families of services. Compliance reporting turns it into a
human-readable narrative that cites evidence and aligns with regulatory expectations for
audit trails. Threat-detection views aggregate and correlate records across hosts and
time windows, enabling analysts to see campaigns rather than isolated events. Incident-
response hooks expose the record to playbooks that can open tickets, notify responders,
or, under the constraints enforced by validation, request containment actions from inte-
grated tools. Because all three services consume the same canonical artifact, they remain
consistent and reproducible, and investigators can always trace a dashboard widget or a
response action back to the exact evidence, prompt, and model output that motivated it.

4.3 Components and responsibilities

This section characterizes each component of the framework in terms of its role, the
artifacts it consumes and produces, and the quality properties it is responsible for. The
components are presented as logical roles rather than fixed products or services. An
implementation may map several roles into a single process or service, or split them
further, but the interfaces described here should remain stable across such choices. The
figure 4.2 shows the detailed architecture of the proposed system, illustrating how data
flows between components and where artifacts are placed in the process.

Input Retriever The Input Retriever is the controlled entry point of the system.
Its responsibility is to acquire security-relevant artifacts from heterogeneous sources and
attach minimal provenance so that later stages can reason about trust and timing. Typical
sources include host operating systems, applications and middleware, identity providers,
network sensors, and security tools such as EDR/IDS. Acquisition may occur through
agents, built-in export interfaces, or connectors already present in an enterprise SIEM.

Two properties matter here. First, provenance: every raw artifact is tagged with
“who/where/when/how", such as the source system, the collector identity, the observation
time, and (when feasible) a cryptographic hash of the exact bytes received. Second, non-
interference: collection should be read-only or otherwise forensically sound, to avoid
modifying the very systems one aims to observe. The retriever does not attempt to
interpret the content beyond basic integrity and format checks. Its output is simply a
RawEvent with attached provenance.

Pre-process Raw artifacts vary widely in syntax and semantics. The Pre-process
component transforms them into a stable, compact representation suitable for down-
stream reasoning and safe to embed in prompts. This transformation has three layers.

Parsing to a canonical shape. Events are projected onto a common set of fields:
timestamps, host and user identities, process metadata, file or network descriptors, and a
normalized notion of “action". Standards such as ECS or OCSF can inspire the field nam-
ing and typing, but the canonical shape must also accommodate source-specific structures.
In Windows environments, for example, Event Viewer exposes events as XML with rich,
event-ID specific payloads (e.g., process creation 4688, logon 4624). The parser should
preserve those details—like NewProcessName, ParentProcessName, LogonType, SIDs,
and event IDs—while also mapping them to portable fields (e.g., process.executable, pro-
cess.parent.executable, user.id, event.code). This dual view lets the pipeline benefit from
Windows-specific semantics without binding the rest of the design to Windows only.
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Normalization and enrichment. After parsing, obvious ambiguities are resolved
(time zone normalization, hostname canonicalization), and lightweight enrichments are
added where inexpensive and stable (for instance, deriving a process tree snippet from
parent /child relations, or marking whether an IP is private vs. public). These enrichments
are simple and deterministic; heavy analytics are intentionally deferred to later stages.

Prompt-safety and sanitization. Pre-process treats input as untrusted text.
Any string that will later appear inside an LLM prompt is escaped or quoted to pre-
vent the content itself from acting like instructions (a risk when logs contain fragments
that resemble prompts). The result of Pre-process is the [Y] Normalized Event, an im-
mutable, schema-validated record that captures essential facts and is safe to reference
inside prompts.

Retrieval and Context Cache Not every analytic task requires external knowledge,
but when grounding improves reliability the framework can attach a small amount of
curated context. The Retrieval component receives a focused query derived from the task
and the event (for example, a technique keyword present in [Y], or an indicator observed
in the event) and searches allow-listed repositories: MITRE ATT&CK technique pages,
corporate security policies, curated CTI notes, vulnerability descriptions, and similar
sources. A Context Cache stores frequently used chunks under a short time-to-live so that
repeated lookups for the same technique or policy do not add latency. Two constraints
keep Retrieval predictable. First, governance: only approved sources are searched, with
recency checks to avoid anchoring on outdated material. Second, budgeting: the amount
of context is bounded so that the model remains focused on the event at hand. The output
is [Z] Context, a compact set of cited snippets with metadata (source, date, identifiers)
that can be safely injected into prompts.

Prompt Interface The Prompt Interface is the point where the framework turns arti-
facts into a concrete query for the model, while also announcing an output contract that
downstream components can verify. It takes three inputs and one optional adjunct: [X],
[Y], [Z], and [F]. The Interface enforces ordering (instructions before evidence, evidence
before context), applies size limits, and ensures that what the model returns must be
valid according to a declared schema family (for instance, an LLMInference v1 object).
It does not decide what the model should infer; it decides how the question is asked and
how the answer must be shaped so that the pipeline remains auditable.

LLM layer The LLM Layer performs the actual reasoning under the constraints set
by the Interface. Conceptually, it exposes one or more roles that can be composed (for
example):

o A reporter role that distills [Y] into a concise, structured mini-report for analysts,
emphasizing anomalies, unusual sequences, and the minimal evidence needed to
understand them.

o Classifier role that reads [Y] (or the reporter’s output) and proposes candidate
mappings to a knowledge structure such as MITRE ATT&CK, with confidence and
explicit references to the evidence that motivated each candidate.
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These roles are illustrative rather than prescriptive, the framework equally accom-
modates alternative roles, such as a triage summarizer or a policy-conformance checker,
provided that the roles accept the same artifact family as input and produce outputs that
satisfy the same schema contract.

Three design choices make this layer dependable:

Determinism where it matters. For steps that feed automation or validation,
decoding parameters favor stability (e.g., low temperature) and outputs are restricted
to structured function calls or JSON. Where ambiguity is expected—say, exploring al-
ternative explanations—n-best generation is permitted but must still meet the schema
contract.

Grounded justifications. Every claim in the output (a finding, a technique can-
didate) carries references to fields in [Y] or to snippets in [Z]. This is what allows the
Validation component to verify that the reasoning is anchored in observable facts rather
than free association.

Composability without entanglement. Because roles consume and emit stan-
dardized artifacts, they can be chained without hidden couplings. For example, a reporter
can be swapped for a different summarization strategy without changing the classifier or
the validator.

Validation Layer The Validation component is the system’s gatekeeper. It receives
the model’s output and decides whether the result is acceptable as a detection artifact.
It does so by applying a sequence of checks that move from formal to semantic to policy:

e Contract conformance. The output must parse and satisfy the declared schema:
required fields present, correct types, and sensible ranges.

e Consistency with evidence and context. References in the justification must
point to facts present in [Y] or to cited snippets in [Z]; timestamps must align with
the event’s time window; identifiers such as host, user, and technique codes must
be valid and coherent.

« Risk and policy controls. Organizational rules are enforced here: minimum
confidence thresholds for automated escalations, asset-sensitivity constraints, and
constraints on which response actions are even eligible for automation.

If a result passes these checks, it is transformed into a canonical, tamper-evident
Detection Record. If it fails, the validator records a Validation Issue with explicit reasons
and routes the case to Feedback. The validator never silently fixes semantic errors; it
either accepts with full traceability or rejects with a reason, keeping the pipeline honest
about what the model did or did not establish.

Feedback and Continuous Improvement Feedback is the controlled place where
human understanding corrects or augments machine suggestions, and where those cor-
rections are turned into durable improvements without rewriting history. It serves three
functions.
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Case review and labeling. Analysts review flagged cases, annotate errors (“in-
valid JSON,” “incorrect technique,” “unsupported claim”), and, when appropriate, attach
corrected labels or minimal teaching examples. This is not free-form editing of outputs; it
is structured feedback captured under a small ontology of error types and label schemas.
Crucially, the original [Y] remains immutable.

Prompt patches and hints ([F]). Some errors are best addressed by adjusting
how questions are asked rather than by retraining a model. Feedback can therefore emit
[F] Feedback Directives that instruct the Prompt Interface to modify [X] (for example,
enforce stricter JSON formatting, add a domain-specific exemplar, or focus the task on
a particular facet of [Y]) or to add a small piece of vetted context to [Z]. Because [F|
targets the instruction and context, not the evidence, it improves the next run without
altering the record of what happened.

Curating improvements for later. Over time, labeled cases and analyst-approved
snippets form a high-quality dataset for fine-tuning and for refreshing retrieval indices.
This path is explicitly offline: changes are staged, reviewed, and applied under version
control, so that the behavior of the online system changes only through deliberate up-
dates.

Controls in Feedback. To remain trustworthy, Feedback itself is governed. La-
bels carry the identity of the annotator and timestamps; sampling strategies avoid over-
representing easy cases; proposed prompt patches can be canaried on a subset of traffic
before becoming default; and every change to validation thresholds or retrieval allow-lists
is tracked so that analysts can correlate system behavior with governance decisions.

Output Services. Once accepted, the Detection Record becomes the single source of
truth for downstream consumers.

Compliance reporting. transforms it into a narrative that cites evidence and jus-
tifications in a human-readable layout while preserving references to the underlying arti-
facts. Because reports are derived from the same canonical object that drives detection,
they are reproducible and auditable.

Threat-detection views and correlation. assemble records across hosts and time
windows to reveal campaigns and lateral movement rather than isolated events. Since
every record carries stable correlation keys (host, user, process lineage), such aggregation
does not require re-parsing the original logs.

Incident-response hooks. expose records to playbooks that can open tickets, no-
tify responders, or request containment actions from integrated tools. The hooks honor
the decisions already made by Validation (e.g., actions allowed only above a threshold, or
only after human approval), so automation remains inside the boundaries set by policy.
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Figure 4.2: Detailed architecture of the proposed framework, highlighting data flow,
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4.4 Data models and Artifacts

The framework relies on a small set of versioned artifacts exchanged between components.
Keeping these artifacts explicit has two goals. First, it makes the pipeline auditable and
reproducible: given a particular event and configuration, the same output can be re-
created later. Second, it isolates concerns: instructions can evolve without changing
evidence, and context can be refreshed without rewriting prompts. This section defines
the artifacts and explains the Detection Record, which is the canonical output consumed
by reporting, correlation, and response tooling.

4.4.1 Design principles for artifacts

Artifacts follow four principles. They are immutable once created, so downstream rea-
soning always refers to a stable object. They are schema-validated and versioned, so the
system can evolve without ambiguity. They carry provenance and privacy annotations,
so investigators know where information came from and what handling rules apply. And
they include references rather than copies whenever possible, so that larger payloads (e.g.,
raw logs, long context documents) remain in dedicated storage while the artifacts keep
the flow lightweight.

[Y] Normalized Event. [Y] is the compact, deterministic representation of a raw
item of telemetry. It is produced by the pre-processing stage and designed to be safe
for inclusion in prompts. The record captures timing, source host and user, action se-
mantics, and the minimal fields required to reconstruct the evidence in analyst tools.
In Windows environments, this structure preserves native Event Viewer XML seman-
tics—such as event IDs (e.g., 1234 for process creation, 2345 for logon), SIDs, NewPro-
cessName, ParentProcessName, and logon types—while mapping them to portable fields
like event.code, user.id, process.executable, and process.parent.executable. By keeping
both the Windows-specific and the normalized view, [Y] remains faithful to the source
and remains cross-platform.

Two properties of [Y] are important for later stages. It is sanitized so that strings which
will enter prompts cannot act as instructions (for example, tokens resembling model di-
rectives are quoted or escaped). And it is hash-addressed: the artifact ID encodes a
content digest and provenance (collector, source, capture time), which supports forensic
integrity checks.

[X] Pre-set Instruction. [X] specifies the task to be performed on [Y] and how the
result must be shaped. It is a reusable template (“map behaviors in [Y] to candidate
ATT&CK techniques and output valid JSON with fields ...”) and can include few-shot
exemplars when stability is more important than openness. The template also records
decoding policy (for instance, low temperature and max-tokens ceilings) and an output
contract by reference to a schema, so that downstream validation can check conformance
mechanically. Because [X] is data, not code, changing a prompt or adding a new exemplar
is a governance decision that leaves the rest of the system untouched.

[Z] Context (optional, governed). [Z] is a bounded collection of snippets that
grounds the model’s reasoning in verifiable sources. Typical entries include ATT&CK
technique descriptions, short extracts from vulnerability advisories, or paragraphs from
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internal security policies. Each snippet carries a citation (source, identifier, URL or doc-
ument handle, publication date) and freshness metadata, and the artifact as a whole
records the retrieval policy used (allowed sources, TTL, deduplication parameters). The
pipeline favors small, topical context over large document dumps: the goal is to help the
model disambiguate specific behaviors observed in [Y], not to expand the search space.

[F] Feedback Directives. [F] is the artifact that carries structured guidance from an-
alysts and from the validation layer back to the Prompt Interface. It does not modify
[Y]; instead, it patches [X] (for example, enforcing a stricter JSON schema or adding a
domain-specific exemplar) and may append a short vetted snippet to [Z] when that snip-
pet represents institutional knowledge worth injecting consistently. Feedback directives
are small and composable: each directive states a reason (e.g., “format non-compliant,"
“wrong technique family," “insufficient evidence linkage") and a minimal fix (e.g., “require
function-call output," “prioritize process lineage evidence," “insert ATT&CK T1105 ex-
emplar"). Because [F] targets instruction and context rather than evidence, it improves

future runs without rewriting history.

LLMInference. The LLMInference object is the immediate result of model reason-
ing. It is deliberately machine-first: a JSON structure with fields for findings, evidence
references, candidate mappings (e.g., ATT&CK techniques), confidence, and a compact
rationale. Each claim links back to specific fields in [Y] or to citations in [Z], which is
what enables downstream validation to check that explanations are grounded.

An inference object also records the model lineage used to produce it: model family
and version, decoding parameters, and the exact [X]/[Z] digests. These details make re-
runs comparable and support A /B evaluations of alternative prompts or models without
ambiguity.

Detection Record. The Detection Record is the canonical artifact produced when an
inference passes validation. It is the single source of truth for reporting, correlation, and
response, and it is designed to be tamper-evident, traceable, and operationally useful. At
a high level, a Detection Record binds together five strands:

1. What happened. A reference to the [Y] Normalized Event (or to a small set of
[Y] records if the detection covers a short sequence), with enough context to re-open
the raw evidence in analyst tools. The record keeps [Y] immutable and addressable
by hash so investigators can verify integrity later.

2. What the model concluded and why. The accepted LLMInference payload,
including findings, candidate techniques, confidence, and the evidence references
and citations that support each claim. The record stores the exact [X] template
digest and [Z] context digest that framed the question, and it stores the model
lineage (model ID, version, decoding parameters) so that the same reasoning can
be reproduced.

3. Why this was accepted. The Validation section captures the checks performed
(contract conformance, consistency with [Y]/[Z], policy and risk controls) and their
outcomes. Rather than a simple “pass/fail", the record includes a short narrative of
the validator’s decision and the thresholds or rules that were in force (e.g. accepted
as medium-risk finding because confidence 0.88 >= 0.80 threshold; auto-response
not authorized because asset sensitivity = high).
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4. How to correlate it. A set of correlation keys (host identity, user identity, process
lineage fingerprints, time window identifiers) computed deterministically from [Y].
These keys allow dashboards and hunt queries to aggregate Detection Records into
campaigns and to follow lateral movement, without reparsing raw logs or re-running
models.

5. What can act on it. The Response policy section, which states what actions,
if any, are permitted automatically, which require human approval, and which are
explicitly barred for this record. These decisions are inherited from organization
policy and from the validator’s risk assessment; the record stores them so that
response tooling does not need to re-implement validation logic.

Two additional facets make the Detection Record fit for regulated environments.
First, it carries privacy and retention annotations (for example, whether personal data is
present, and the latest date on which redaction or deletion may be required). Second, it
is append-only: follow-up information (such as an operator’s comment or the ticket ID of
an incident) is added as linked entries with their own provenance rather than by editing
the original content. This approach preserves a clear audit trail.

A concise example, stripped to essentials for readability:

{
"record_id": "det-41laf...",
"created_at": "2025-03-17T12:04:10Z2",
"status": "accepted",

"evidence": {
"y_refs": ["y:host-42:evt-7al2..."],
"window": {"start": "2025-03-17T12:02:00Z", "end": "2025-03-17T12:05:00Z"%}
},
"inference": {
"id": "inf-902b...",
"model": {"name": "ModelX", "version": "v1.3", "temperature": 0.1},
"x_digest": "sha256:...",
"z_digest": "sha2b6:...",
"findings": [{"id": "f1", "summary": "Download-and-execute via bash",
"evidence_refs": ["Y.process.command_line", "Y.network.dst_ip"]1}],
"attck": [{"technique": "T1059.004", "confidence": 0.86, "justification":
"Command interpreter used with remote script"}],
"confidence": 0.84

1,
"validation": {
"contract": "pass",
"consistency": ["timestamps_aligned", "host_consistent"],
"policy": {"risk": "medium", "auto_response": false, "reason":
"high-sensitivity asset"},
"validator_version": "v2.1"
1,

"correlation": {"host_id": "host-42", "user_id": "u-1001",
"proc_fingerprint": "p:4312@host-42"},

"privacy": {"contains_pii": false, "retention_class": "security-incident"},

"audit": {"by": "validation-service", "hash": "sha256:..."}

In practice, a production record will also include a links section (to tickets, dashboards,
or playbook runs) and may reference a bundle of [Y] artifacts when the detection emerges
from a short sequence rather than a single log line.
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Lifecycle and mutability. Only three things can happen to a Detection Record after
creation. It can be linked to other records (for correlation), it can accrue annotations
(for example, incident IDs or human comments), and it can be referenced by reports and
response artifacts. None of these operations changes the original body of the record. If a
later re-analysis yields a different conclusion, the system creates a superseding record that
points back to the earlier one and explains the change (for instance, “technique updated
from T1059.004 to T1105 based on analyst confirmation”), keeping history intact.

Storage, indexing, and queries. Artifacts live in tamper-evident storage. For effi-
ciency the system maintains two layers of indexing. A document index supports retrieval
by identifiers and time windows, and a graph or columnar index supports correlations
over the keys stored in records (hosts, users, process fingerprints). Analysts search and
pivot in the record space, not in raw logs; when they need full fidelity, the record provides
the pointers and hashes necessary to retrieve the original evidence.

Why this separation matters. The separation of [X], [Y], [Z], and [F] is not stylistic,
it is what minimizes accidental leakage and maximizes reproducibility. Evidence remains
evidence and is never rewritten by feedback. Instructions can be tightened or enriched
without touching the event. Context enters through an audited gate and can be refreshed
on its own schedule. And feedback travels as directives rather than edits, so the pipeline
improves while the historical record remains clean.

4.5 Orchestration and operational considerations

This section explains how the pieces of the framework “move" together in practice. The
emphasis is not on a particular product or middleware, but on the operational behavior
of the pipeline: how events trigger work, how stages hand off artifacts, how limits are
enforced, and how the system remains observable, safe, and evolvable.

4.5.1 Event-driven orchestration in this context

By event-driven we mean that new telemetry causes the next step to run, rather than
the system waiting for a periodic batch. When a log record (or a short burst of related
records) arrives, the pipeline reacts: it is parsed and normalized into [Y], a prompt is
assembled from [X] + [Y] + (optional) [Z], the model reasons, the validator judges, and, if
all goes well, a Detection Record is issued. Nothing in this description requires a specific
transport; what matters is causality (each artifact triggers the next transformation) and
decoupling (each stage depends only on the artifact contract, not on who produced it).
Why this matters for a SIEM scenario:

o Latency. It keeps latency low for detections that depend on fresh context (e.g., a
suspicious process tree that should be flagged before lateral movement succeeds).

o Backpressure. It enables backpressure: if a downstream stage slows down (for
example, a burst of inference work), upstream stages can continue to normalize and
queue artifacts without dropping data or blocking the whole system.

o Explainability. It improves explainability: every output corresponds to a small,
traceable chain of artifacts rather than to a large, opaque batch job.
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In an implementation, the hand-off between stages can be synchronous or asynchronous.
The design remains the same either way because the “contract” is the artifact itself.

To avoid overloading terms like “service” or “microservice,” the chapter uses operator

to denote a logical processing role: a piece of the pipeline that accepts one artifact type
and emits another, while satisfying a small set of invariants. Pre-process is an operator
that turns raw logs into [Y]; the Prompt Interface is an operator that combines [X], [Y],
and [Z] into a model call; the LLM layer is an operator that turns that call into an
LLMlInference; the Validator is an operator that turns an LLMInference into either a
Detection Record or a Validation Issue; and so on.
Thinking in operators has two advantages. First, it clarifies responsibility boundaries: if
the output is malformed, we know exactly which operator violated its contract. Second, it
enables idempotence and replay: re-running an operator on the same inputs should yield
the same output, which is crucial for forensics and audits. Whether a given deployment
maps each operator to a separate process, or co-locates several in a single runtime, is an
implementation choice; the operator abstraction stays the same.

Every real system runs under constraints. We use the word budget to make those
constraints explicit, so that the pipeline can make predictable trade-offs when load spikes
or when an event is unusually complex.

We say Latency Budget the maximum time we are willing to spend from ingestion to
an accepted Detection Record under normal conditions. It is split across stages (normal-
ization, optional retrieval, inference, validation). If retrieval is slow or the model is busy,
the system can choose to degrade gracefully, for example, run without [Z] for low-risk
assets, or route the event to a smaller model, so that the total time stays inside the
budget. Time budgets differ by use case: real-time containment needs faster paths than
nightly compliance reporting.

Token /size budget refers that Prompts cannot grow without bound. The Interface
enforces a size budget for [Y] (e.g., the salient parts of a Windows 1234/4321 pair rather
than entire XMLs) and a context budget for [Z] (a handful of cited paragraphs, not a full
ATT&CK site dump). When inputs exceed budget, the Interface applies deterministic
compression (summaries that preserve key fields, process-tree skeletons, or top-k salient
lines) and records in the output that truncation occurred. This keeps model behavior
stable and makes validation tractable.

Cost budget refers to inference and retrieval consume compute (and, in some deploy-
ments, money). The orchestrator can apply tiering: first a compact “triage" role on all
events; escalate only the ambiguous or high-risk ones to a larger role or to retrieval.
Caches (for [Z] context and for repeated prompt patterns) further reduce cost without
changing semantics.

Finally Risk budget, every organization chooses how much automation risk it will ac-
cept. The validator encodes this as thresholds and gates: “no automatic response unless
confidence > 6 and the asset is not marked high-sensitivity"; “two independent roles must
agree for containment." These are not mere settings; they are part of the governance story
and are written into the Detection Record so that actions remain auditable.

Many environments benefit from micro-batching: grouping a few related events that
occur within a short window and treating them as a unit of reasoning. For example, a
process creation (4600) followed by a network egress and a new scheduled task is more
informative together than in isolation. Micro-batching still respects event-driven causality
(the arrival of the first event starts the timer), but it allows the Interface to construct a
single [Y] bundle with richer structure and better signal-to-noise.

Security telemetry is messy: duplicates appear, clocks skew, and delivery may be at-
least-once. Operators therefore behave idempotently: if the same RawEvent is seen twice,
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its [Y] identifier (derived from content hash + provenance) is the same, so downstream
correlation does not double-count it. Where ordering matters (e.g., reconstructing a
process tree), the Pre-process operator uses timestamps and parent/child identifiers to
rebuild causal order rather than trusting arrival order. The Detection Record itself is
append-only and hash-addressed, which makes “exactly-once" less fragile: duplicates may
be ingested, but they collapse onto the same identifiers.

Because the pipeline is event-driven, observability is natural: every operator emits
metrics (throughput, error rates, queue depth), logs (artifact IDs, schema-violation rea-
sons), and traces (a correlation ID that follows an event through the operators). Two
patterns are especially useful:

¢ Guardrail metrics: fraction of inferences rejected by contract checks vs. by policy
checks; average confidence over time; drift in the distribution of mapped techniques.

o Governance timelines: when [X] changed, when validation thresholds changed,
when a new model version was adopted. These markers explain sudden shifts in
acceptance rates or response behavior.

Failures are inevitable; what matters is that they be contained. If retrieval fails, the
Interface proceeds without [Z] and sets a “context-degraded" flag; the validator may then
lower the action privileges of the resulting record. If the model fails (timeout, invalid
JSON), the Interface can re-prompt once with stricter settings; if it fails again, the case
is routed to Feedback and, optionally, to a rule-based fallback. Importantly, failures do
not mutate [Y]; they produce separate artifacts (Validationlssue, Feedback) with clear
provenance.

An LLM-enhanced STEM evolves: prompts are refined, validation thresholds adjusted,
retrieval sources updated, and model versions rotated. The orchestration treats these
changes as versioned configuration, not as silent tweaks. New versions are introduced
alongside old ones (canarying), with a small fraction of traffic routed to them. Detection
Records capture which versions were in force, making before/after comparisons easy.
When a change backfires, rollback is mechanical: switch the routing, not the code.

Operationally, privacy is enforced at three crossings. First, Pre-process performs
data minimization and optional PII (Personally Identifiable Information) redaction before
anything touches a prompt. Second, Retrieval uses an allow-list and logs the exact
citations injected into [Z]. Third, the LLM Layer runs under a placement policy: on-prem
or VPC inference for sensitive tenants; no prompts leave the organization’s boundary
unless policy explicitly permits it. These decisions are recorded in the Detection Record’s
privacy annotations so audits can verify compliance.

4.5.2 A concrete walk-through

To make the orchestration less abstract, consider a Windows host that emits a 1234
process creation for powershell.exe followed by an outbound connection. The Input
Retriever attaches provenance and passes the raw XML to Pre-process, which extracts
the process tree, normalizes user and host identifiers, and produces [Y]. The Interface
composes [X] (“identify suspicious execution and map to candidate ATT&CK techniques;
output JSON with findings, evidence_ refs, candidates, confidence, rationale") with [Y];
it decides to query [Z] for the “Command and Scripting Interpreter' page because of the
presence of PowerShell, but it keeps only a short excerpt. The model returns an inference
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with a candidate technique and cites the command line and the network destination from
[Y]. Validation parses the JSON, checks that the cited fields exist and the timestamps
align, enforces the policy that no containment can be suggested on high-sensitivity hosts,
and accepts the result. A Detection Record is issued, visible immediately to analyst
views; a cache entry is created for the ATT&CK page in case similar events arrive. If
later a burst of similar events appears, the Interface may switch to a micro-batch strategy
(grouping the next few events by process lineage) to stay within time and cost budgets
without losing context.

4.6 Positioning vs. the state of the art

This section positions the proposed framework with respect to the research surveyed in
Chapter 3. In brief, the works reviewed there advance modeling and analytics for logs
(summarization, prompt strategies, domain adaptation, RAG over heterogeneous sources,
ATT&CK mapping). The contribution of this chapter is architectural and operational:
it specifies how such analytics are safely integrated into a SIEM by means of explicit
artifact contracts ([X]/[Y]/[Z]/[F]), a Validation Layer with policy/risk controls, and a
canonical Detection Record that makes outputs reproducible, auditable, and actionable.

LogPrécis focuses on malicious Unix shell sessions and uses language models to

segment sessions into tactic-level behaviors, yielding compact “fingerprints” that help an-
alysts understand families of attacks [27]. It demonstrates that LLMs can abstract noisy
command sequences into meaningful behaviors at scale.
In our framework, it aligns naturally with a reporter role in the LLM layer: it can distill
[Y] (e.g., command transcripts) into analyst-friendly summaries or tactic sequences. The
novelty of our proposal is what surrounds that role: governed [Z] context (allow-listed,
time-bounded), schema-first outputs (an LLMInference contract), Validation (format —
consistency — policy gates), and a Detection Record that downstream tools and play-
books can trust. In other words, LogPrécis provides a powerful analytic; the framework
provides the safe plumbing that carries it into a STEM.

Works on prompt strategies for interpretable, online log analysis (e.g., [26]) and agen-

tic patterns like ReAct for retrieval-and-reasoning [31] show that careful prompt design
and tool use improve both accuracy and interpretability without heavy task-specific train-
ing.
These ideas live in our [X] instruction library (task templates, few-shot exemplars, de-
coding policies) and in [F] feedback directives, which let analysts tighten or amend in-
structions after validation (e.g., “require function-call JSON," “prioritize process-lineage
evidence"). The key step forward here is discipline around prompting: [X] and [F] are
versioned, auditable artifacts; [Y] (evidence) is sanitized and immutable; [Z] (context)
is governed for source and size. That separation reduces accidental leakage and makes
prompt evolution traceable—properties typically outside the scope of prompt-strategy
papers but essential in SOC operations.

Research on adapting LLMs to logs (e.g., instruction-tuned or continually pre-trained
models for log QA and anomaly tasks [25]) and on LLM-assisted forensic report drafting
[24] demonstrates that domain-specialized models can reason more reliably over telemetry
and produce analyst-useful prose.

As we said earlier, the framework is model-agnostic and role-based: a domain-adapted
model can simply serve as the reporter or classifier role. What the framework adds is the
governance boundary around the model: governed [Z] retrieval, schema-checked outputs,
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Validation (including confidence thresholds and asset-sensitivity rules), and a Detection
Record with correlation keys and privacy/retention annotations.

LogBabylon argues for cross-log integration and uses RAG to help models handle

heterogeneous formats and improve analyst workflows [28]. It highlights the practical
value of consolidating sources and using retrieval to inform interpretation.
We agree with the integration + RAG premise, but we govern retrieval explicitly: [Z]
is built only from allow-listed sources, is bounded in size, carries citations and freshness
metadata, and is cached with short TTLs to avoid cross-tenant leakage. Crucially, re-
trieval and caching decisions are recorded in the Detection Record, so investigations can
replay the exact context that influenced a decision. This turns “RAG helps" into “RAG
helps within auditable boundaries."

RAM shows that multi-stage prompting can map structured SIEM rules to MITRE
ATT&CK techniques across multiple models without fine-tuning, and that curated exter-
nal context boosts performance [30]. It is a concrete instance of classifier-style reasoning
over structured inputs.

This maps one-to-one onto a classifier role in the LLM layer. The framework then con-
tributes the post-classification safety path: schema-checked JSON, Validation for con-
sistency with [Y]/[Z] and for risk/policy gates, and the emission of a Detection Record
suitable for correlation and governed response. RAM demonstrates that ATT&CK map-
ping is feasible; the framework ensures such mappings become operationally trustworthy.

Chapter 3 also surveys hallucination mitigation (temperature control, verification
chains, detection/grounding checks, and guardrail services) [17, 19, 23, 20, 22, 13, 21].
Our design operationalizes those ideas at the system level: low-temperature, function-
call/JSON-only outputs for safety-critical steps; governed [Z] retrieval; explicit Validation
(format — consistency — policy); and feedback loops ([F] directives for prompt tightening
now; curated labels for fine-tuning later). Rather than a grab-bag of techniques, the
framework makes them part of the contract.

4.7 Limitations, risks, and mitigations

No design that incorporates generative models into security operations is free of trade-offs.
Here we discuss the main limitations and risks of the proposed framework and outline
mitigations that reduce (but do not eliminate) their impact. Where appropriate, the text
connects the risk to specific elements of the framework (e.g., [X]/[Y]/[Z]/[F], Validation,
the Detection Record) so that mitigations are concrete rather than merely aspirational.

LLMs are pattern recognizers trained to produce plausible continuations, not for-

mal verifiers. Even with domain adaptation, careful prompting, and governed context,
they may still hallucinate a fact, over-generalize from weak evidence, or assign confi-
dence poorly. In our pipeline this risk is bounded by design: outputs must be schema-
conformant and every claim must cite where in [Y] or [Z] it comes from. That does not
guarantee truth, but it ensures that an unverifiable claim cannot pass Validation unde-
tected.
Some mitigations could be to constrain outputs to JSON/function calls; keep decoding
deterministic for safety-critical steps; require evidence references for every finding; gate
high-impact actions on consensus (e.g., two roles agreeing) or on human approval; main-
tain offline evaluation suites with seeded ground truth and periodically re-test models
and prompts.
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Telemetry is untrusted. Attackers can deliberately craft log lines or command argu-

ments that look like instructions to a model. If raw text is concatenated with instructions,
the model can be steered. The framework assumes this threat and responds in two places:
Pre-process performs prompt-safety sanitization (quoting and escaping untrusted strings
in [Y]); and Prompt Interface keeps a hard boundary between [X] (instructions) and [Y]
(evidence). Because [Y] is immutable and sanitized, Feedback cannot retroactively alter
evidence; it can only patch [X] or contribute vetted snippets to [Z].
Mitigations: Treat all inputs as adversarial; sanitize before prompting; keep allow-lists
for function calls/tools; block patterns known to cause model jailbreaks; include “deny
directives" in [X] that instruct the model to ignore any embedded instructions found in
[Y].

Retrieval helps, but it is not a silver bullet. Knowledge bases can be stale, biased,
or simply off-topic for a specific event. Over-long context can distract the model; under-
scoped context can leave ambiguity unresolved. The framework therefore keeps [Z] small,
cited, and freshness-checked, with a short-TTL cache. Detection Records note which
context was used so that investigators can replay or contest its relevance.

Mitigations: Enforce allow-lists and TTLs; prefer short, technique-specific snippets over
large dumps; monitor cache hit/miss and stale-context rates; regularly curate sources;
fall back to no-[Z] operation with a “context-degraded" flag when retrieval is unavailable.

High-volume SIEM environments can produce more candidate events than a large

model can analyze within tight SLAs (Service Level Agreements). Retrieval adds variable
latency; deterministic decoding reduces variability but may still be slow. The orchestra-
tion addresses this with budgets (time, size/tokens, cost) and tiering (small “triage" roles
on all traffic; escalate only ambiguous or high-risk items).
Mitigations: Micro-batch related events; summarize before prompting; cap [Z] size; use
model cascades; cache common contexts; route non-urgent tasks to batch windows; mon-
itor end-to-end latency and degrade gracefully under load (e.g., skip [Z] for low-risk
assets).

Not every behavior maps cleanly to ATT&CK techniques; sometimes the correct
answer is “unknown" or “novel." Over-confident mappings create a false sense of precision.
The framework separates mapping confidence from detection confidence and allows the
model to return “unknown/novel," provided that evidence is still summarized and linked.
Mitigations: Require explicit confidence intervals; allow multiple candidate techniques
with rationales; prefer consensus for automated actions; maintain an internal extension
taxonomy for behaviors not covered by ATT&CK and document mappings over time.

Ground truth for real attacks is scarce and costly to label. Synthetic datasets help but

may not capture operational messiness. The risk is deploying a pipeline that performs
well in curated tests and underperforms in live conditions.
Mitigations: Combine red-team replays, curated CTI-derived cases, and live-traffic ca-
naries; evaluate at multiple levels (JSON validity, grounding correctness, TTP preci-
sion/recall, time-to-signal); store model lineage and prompt versions in Detection Records
so that regressions can be traced to specific changes in [X], [Z], or model versions.

Automated response can reduce dwell time, but it introduces a blast-radius risk when
a detection is wrong. The framework’s Validation component is designed as a governance
gate: it decides what actions, if any, are eligible for automation given confidence, asset
sensitivity, and policy.
Mitigations: Default to notify or isolate-with-revert rather than destructive actions; insist
on human approval for high-impact changes; simulate playbooks in a “dry-run" mode
before enabling automation; record every action decision inside the Detection Record.
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Caches improve latency and cost, but they can create cross-tenant or cross-environment
leakage if not scoped. Retrieval indices can also inadvertently mix data if built from multi-
tenant sources.

Mitigations: Scope caches and indices by tenant/environment; include [X]/[Y] digests in
cache keys; apply short TTLs; audit cache usage in Detection Records; separate fine-
tuning datasets per tenant unless an explicit data-sharing agreement exists.

Prompt templates, validation thresholds, retrieval allow-lists, and model versions

evolve. Untracked changes create silent drift: acceptance rates shift and nobody can
explain why.
Mitigations: Treat [X], [Z] policies, validator rules, and model versions as versioned con-
figuration; roll out changes via canaries; capture versions and digests in every Detection
Record; review guardrail metrics (schema-violation rates, grounding errors, confidence
distributions) as part of routine operations.

4.7.1 Privacy, compliance, and data residency: local-only vs. API-
based inference

Security telemetry and forensic artifacts often contain personally identifiable informa-
tion, trade secrets, or confidential incident details. In many organizations, and in some
jurisdictions, sending such material to an external API is either prohibited or impractical
to govern. For this reason, the framework is intentionally compatible with local-only
(on-prem or private-cloud/VPC) inference. This subsection clarifies the trade-offs.

Local-only inference. Benefits:

o Data control and residency. Prompts ([X]+[Y]+[Z]) and outputs never leave
the organization’s boundary; storage and retention are under the same governance
as the rest of the SIEM.

e Chain of custody. Forensic integrity is easier to argue when evidence never
traverses a third-party boundary.

e Policy alignment. It is straightforward to enforce redaction, minimization, and
per-tenant isolation. Easier to audit and certify for regulated environments.

Trade-offs:

o Hardware and scalability. Running capable models requires GPUs/accelerators,
careful capacity planning, and ongoing maintenance (drivers, runtimes).

e« Model freshness. Upgrading to new model families or safety features is slower;
you own the lifecycle (quantization, fine-tuning, evals).

e Cost profile. Up-front capital and ongoing ops may exceed API usage for small
volumes; for large, steady workloads on-prem can be cheaper, but only if utilization
stays high.

Operational guidance:

o Start with a tiered cascade: small local model for triage + larger local model for
escalations; keep a clear path to swap models as hardware evolves.
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e Use quantized or distilled variants for first-pass roles; reserve heavier models for
classifier roles where accuracy materially changes decisions.

o Keep artifact contracts stable so that changing the model does not ripple through
the pipeline.

When an external API is considered Some organizations will still evaluate hosted
APIs (e.g., for specialized models). If so, the bar for use must be unusually high.
Minimum controls:

e No-retention commitments and region pinning contractually enforced, prompts and
outputs must not be used for provider training.

e Transport encryption with mutual authentication; tenant-scoped keys.

o Strict minimization: never send raw logs; send only sanitized [Y] extracts and only
when policy allows; consider two-stage abstraction (local reporter role produces a
heavily redacted mini-report; only that report is sent for classification).

e Independent logging: keep a local ledger of every prompt digest sent and every
response received to preserve auditability.

Residual risk. Even with controls, metadata and timing can be sensitive; legal /reg-
ulatory regimes can change; and incident confidentiality can be compromised by subpoe-
nas outside the organization’s control. For forensic contexts, the safest default remains
local-only inference.

4.7.2 Limits that remain

Even with the mitigations above, residual limitations persist. The framework cannot
guarantee truth—only that claims are traceable and governed. It cannot remove all
latency variance, nor can it make ATT&CK mapping complete or unambiguous. And
while local-only inference addresses major privacy concerns, it imposes costs and capacity
limits that some organizations may find prohibitive. The purpose of this chapter is
not to claim perfection but to make the trade-offs explicit and to encode safety in the
architecture: immutable evidence ([Y]); governed context ([Z]); disciplined instructions
and feedback ([X]/[F]); a Validation gate; and a Detection Record that binds decisions
to evidence, configuration, and policy.
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Chapter 5

Implementation

5.1 Objectives and Scope

This chapter implements a minimal, working slice of the architecture introduced in Chap-
ter 4, it exercises one thin, concrete path through those generic roles to see how the idea
behaves on real telemetry. The core hypothesis is simple: if we can compress the noise of
Windows event logs into one short, technical sentence that describes what actually hap-
pened, then a small model should be able to map that sentence to one or more MITRE
ATT&CK techniques. The experimental loop therefore has three moving parts: execute
a single, well-scoped Atomic Red Team technique; capture a bounded slice of telemetry;
and run a summarize — map pipeline that consumes the exact same artifacts on every
run. Retrieval, validation, and feedback, the components (that would govern a production
system) remain outside this chapter on purpose.

The lab setting is intentionally modest. Experiments run on a Windows 10 Pro vir-
tual machine under Hyper-V, always reverted to the same snapshot before each test so
that observed effects can be attributed to the current technique rather than to residue
from earlier runs. Telemetry comes from Sysmon plus selected Windows channels and
is exported per channel to XML in a folder named after the technique (for example,
T1218.010/...). This keeps evidence easy to inspect later and avoids introducing a heavy
normalization stage that the chapter does not aim to build. Operational details—Hyper-
V configuration, VM sizing, the export script (to retrieve telemetry)—are documented in
the appendix A and are recalled here only when they affect methodology.

Within this loop we instantiate two of the abstract roles from Chapter 4. First, a summa-
rization role turns a per-run XML bundle into one neutral, formal sentence that surfaces
the behavior without naming ATT&CK techniques or dumping raw events. For budget
and time reasons only, this role is implemented in the lab with GPT-40 via API; the lab
did not have the resources to host a large model locally. That is a pragmatic choice, not an
architectural requirement: in a production SOC the same role should run on-prem/VPC
or be fed sanitized inputs.

Second, a mapping role reads the sentence and returns only the list of ATT&CK IDs (e.g.,
T1059.001, T1112). We evaluate two inductive biases on the same sentence and under
the same instruction (“output only IDs"): a fine-tuned Mistral-7B (LoRA, 4-bit) adapted
on CTlI-style summaries mapped to ATT&CK, and GPT-40 used directly as a classifier.
The first choice reflects a governance constraint: a compact mapper is realistic to host
locally and keeps cost and privacy compatible with forensic workloads. The second gives a
strong general-purpose comparator under identical prompting, which helps explain where
a general model tends to favor recall and where an adapted small model tends to favor
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precision. The quantitative results—both on the CTTI test split of the fine-tuning run and
on transfer to Windows summaries—will be presented later; for now it suffices to note
that the adapted classifier does learn the mapping on CTI text and that, on Windows
runs, the two models behave complementarily along the precision/recall trade-off.

To keep comparisons fair while acknowledging practical constraints, the evaluation pro-
ceeds along three channels. First, an in-domain baseline on the CTI dataset is taken
immediately after fine-tuning and is computed only for the fine-tuned Mistral-7B (clean
human prose). Second, a Windows pipeline evaluates cross-domain transfer on one-
sentence summaries from logs (runs), where both Mistral-7TB and GPT-4o are tested
under the same “IDs-only” instruction. Third, to obtain a head-to-head comparison on
concise human prose with multiple labels without incurring prohibitive API costs, both
classifiers are evaluated on a budget-limited CTI subset (the first 70 items). This subset
is not aligned one-to-one with the Windows runs.

The scope of this chapter is deliberately narrow. There is no governed retrieval ([Z]),
no Validation Layer that checks format, consistency, or policy before promoting a result
to a Detection Record, no feedback loop, and no structured output beyond a plain string
of IDs. Those omissions are intentional and make the experiment legible: we can observe
how summary quality drives mapping quality without interference from other stages.
“How-to" material—installation steps, scripts, training and inference settings—Iives in
the Appendix A, so that the main text can focus on motivations and implications.

5.2 Data and Models

The prototype stands on two kinds of text. On one side there are short CTI-style narra-
tives written by humans, each paired with one or more MITRE ATT&CK techniques. On
the other side there are single-sentence summaries distilled from Windows event logs by
the reporter. The classifier is trained on the former and tested on both. This asymmetry
is intentional: it lets us separate what the model learns on clean prose from how well it
transfers to compressed, behavior-centric sentences produced from raw telemetry.

The classifier is Mistral-7B adapted with LoRA techniques. Base weights remain
frozen and only small low-rank adapters are learned, which keeps memory and compute
requirements within reach of a lab (with modest performance) while preserving most of the
capacity of the base model. Despite its relatively compact size, Mistral 7B surpasses larger
models—outperforming LLaMA 2 (13B) across all major benchmarks and even exceeding
LLaMA 1 (34B) in tasks involving reasoning, mathematics, and code generation [32] [33].
The task is framed as multi-label mapping from a short description to a set of ATT&CK
technique IDs. To avoid pushing schema decisions into the learning problem, the output
contract is deliberately austere: the model is asked to return only a plain string listing
technique IDs, separated by commas or newlines (for example, T1059.001, T1112). There
is no JSON envelope, no confidence score, and no rationale. That constraint mirrors the
runtime interface used later in the Windows loop and keeps the discussion focused on
behavior rather than formatting.

Training follows the now standard “instruction-following" recipe: each example is
rendered as a brief instruction to “map the following activity to MITRE ATT&CK tech-
niques", followed by a compact narrative, with the target rendered as the plain list of
IDs. The checkpoint used in the rest of this chapter is the one taken at the minimum
validation loss A.3; decoding on the CTTI test split is configured to be deterministic (a
small beam rather than fully greedy) because exact-match improves without changing the
output format. For the Windows experiments we keep variance low for the same reason:
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the outputs are short strings and reproducibility is a practical concern, even if this chap-
ter does not claim formal stability across re-runs. All low-level settings (optimizer and
schedule, precision/quantization, batch/accumulation, hardware envelope) are moved to
the Appendix A; what matters here is that the adaptation is lightweight and the model
is small enough to be hosted on-prem in a future SOC setting.

The Figure 5.1 shows the instantiated architecture in the lab, illustrating the components
that are active in this chapter, how they interact.

Two prompts define the runtime behavior. The reporter prompt takes a bundle of
Windows Event XML and asks for one formal, label-free sentence that filters routine noise
and surfaces the salient behavior: which process acted, with which flags, against which
object, and in which locus (for example, a Registry hive or a Task Scheduler entry). This
role is implemented with GPT-40 via API purely for budget/time reasons—a pragmatic
lab choice, not a production requirement. In a mature deployment, the same role should
run on-prem/VPC or be fed sanitized inputs.

The prompt pre-build I provided([X1] object text in the figure 5.1) is the following:

Role: You are a cybersecurity assistant integrated within a SITEM platform.
Context: You are analyzing a batch of Windows Event XML logs. Filter
out routine system noise. Focus exclusively on behaviors indicating initial
compromise or post-exploitation activity (e.g., privilege escalation, unusual
persistence mechanisms, suspicious remote access). Task: Generate a single,
highly concise summary (1-2 sentences, strictly under 100 words) describing
the core malicious activity on the system. Use formal, technical English.
Constraints: - Focus solely on the high-level malicious behavior. - Do not
reference MITRE ATT&CK techniques, frameworks, or specific TTPs. - Do
not list, cite, or enumerate individual log events or raw data. - Avoid specu
lation; state observable behaviors indicative of compromise. Examples:- “A
Tiny Web Shell was deployed post-exploitation of CVE 2019-19781, with pay-
loads dropped to specific Citrix directories.”- “Fake TLStraffic carrying RC4-
encrypted system beacons indicates a likely backdoor communicating with a
remote C2.”

This prompt shows a possible application of prompt engineering techniques and in this
case it fits best into the following categories:

o Few-shot prompting: because it provides explicit examples to guide the model’s
output.

e Instructional prompting: the task is clearly defined with specific constraints
and expectations.

o Role-based prompting: a specific role is assigned to the model (”cybersecurity
assistant within a SIEM platform”).

o Contextual prompting: a well-defined operational context is provided (analyzing
Windows Event XML logs for malicious activity).

The [X1] object is attached to the [Y1] object, which refers to the TTP’s logs extracted
from the previous phase, and the final prompt is sent to the GPT-40 model for analysis
and report generation part. Finally it produces a concise behavioral summary describing
the malicious activity related to the TTPs executed(in this experiment case only one
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Figure 5.1: Instantiation of the architecture from Chapter 4 in the lab, showing how data
flows between components and where artifacts are placed in the process.

TTP is executed at a time) without mentioning the specific TTPs or MITRE ATT&CK
framework. Here is an example of a summary generated by the GPT-40 model for the
TTP T1003.001(OS Credential Dumping: LSASS Memory):
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"An account with SYSTEM privileges reconfigured Image File Execution Op-

tions for Isass.exe and launched multiple debugger binaries (nanodump.x64.exe,
rdrleakdiag.exe via WerFault) to generate full memory dumps of the LSASS

process into user-temp folders, evidencing automated credential dumping post-

compromise."

Of course this summary generation is prone to errors due to the nature of the LLMs,
which may not always produce accurate or relevant summaries.

The detector prompt given to the mapping role is intentionally spartan: analyze the
sentence and output only the applicable MITRE ATT&CK technique ID(s) as a plain
string. Keeping the instruction fixed lets us attribute differences to the models rather
than to prompt variation. The prompt interface is composed of two text objects, [X2]
and [Y2], where [Y2] represents either the prompt generated by the LLM in the previous
phase or the human-written report from the HuggingFace dataset, and [X2] is a predefined
prompt that provides the model with the necessary context to perform the detection task.
The full prompt is the following:

Instruction: You are a cybersecurity assistant. Analyze the system log
below and assign all applicable MITRE ATT&CK technique ID(s), separated
by commas. You must output only the list of elements—mnothing else.

Log: [Y2]

Response:

Note that the instruction prompt is designed to be simple and straightforward, with a
clearly defined task and a strict response format. [Y2] serves as an input attachment to
[X2], providing the log or report that is to be analyzed.

The mapping role is evaluated in two families and one budget-driven subset. In-

domain, the model is tested on the dataset’s held-out CTI split to establish what has
been learned; these full-dataset metrics are reported for Mistral-7B only. Cross-domain,
the mapping role is exercised on one-sentence summaries from Windows runs (one exe-
cuted TTP per run), where both Mistral-7B and GPT-40 are compared under the same
instruction. Finally, because running GPT-40 across the entire CTI test split was not
economically feasible, a head-to-head comparison on clean human prose is performed on a
budget-limited subset: the first 70 CTI items. This subset is multi-label and not aligned
to Windows runs.
One caveat runs through the whole section. The sentence produced by the reporter is
the bottleneck. If it fails to mention the actor or the crucial flags, or if it omits the locus
of the action, the mapper’s ceiling is immediately capped—mno amount of fine-tuning will
recover information that is simply not present. For that reason, the effectiveness of the
reporter prompt is flagged as a high-leverage axis for future work: contrasting the current
instruction with a generic baseline and with a lightly structured variant (for instance, re-
quiring process — object — locus) would quantify how much of the observed variance is
due to prompt discipline alone, without changing any model code.

5.3 Simulation environment

The experiments run on a deliberately simple but disciplined Windows lab. Each trial
starts from the same Windows 10 Pro virtual machine under Hyper-V, reverted to a
known snapshot before execution so that side effects from previous runs do not leak into
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the current one. This “reset-per-test” routine is more than a convenience: it makes the
telemetry attributable. When a technique fires, the subsequent logs can be read as evi-
dence for that action rather than background noise accumulated over a long-lived host.
The VM is sized like a workstation, connected to a default virtual switch, and kept iso-
lated from production networks to keep the risk surface small.

Adversarial activity is produced with the Invoke Atomic Red Team: a PowerShell-
based framework that provides a collection of atomic tests to simulate adversary tech-
niques from the MITRE ATT&CK framework. It allows to execute individual TTPs
in a controlled manner while capturing relevant system logs and events. We chose this
framework because it is widely used in the cybersecurity community to test and validate
detection capabilities against known techniques, and it offers a robust testing experi-
ence—in other words, it simply imports the Invoke-AtomicTest module and downloads
the tests you want to run, without writing custom scripts for each TTP. Before a technique
is executed, prerequisites are checked and, when available, auto-installed. Techniques are
run locally, one at a time, from the clean snapshot. In practice, the PowerShell session
that drives the runs sometimes needs to load modules or execute scripts, to unblock that
in the lab, the shell is launched with -ExecutionPolicy Bypass at process scope. That
setting disables an important guardrail for that session only where in an isolated VM
the trade-off is acceptable because the goal is to collect data, not to model a hardened
estate, but the work records the implication openly because, in an enterprise setting, it
would strongly prefer signed scripts (AllSigned) or Constrained Language Mode rather
than bypassing policy.

Telemetry collection favors fidelity over cleverness. The machine runs Sysmon [34]
applying the default merged profile provided by the project and relies on several Windows
event channels (Security, System, Application, Windows PowerShell, WMI-Activity/
Operational, Task Scheduler/Operational, and Sysmon/Operational) meanwhile a small
listener brackets each run in time, then exports events per channel to XML into a folder
named after the technique under test.

The repository organizes rules modularly by Sysmon Event ID (e.g., process creation,
image load, registry activity, DNS, file operations) and supplies automation to merge
selected modules into a single sysmonconfig.xml. This design offers two advantages rele-
vant to the present study: (i) it yields broad coverage with sensible filters out of the box,
reducing time-to-signal in a lab; and (ii) it remains auditable and maintainable, since
modules can be added or excluded in a controlled manner as needs evolve.

From a semantic standpoint, the choice aligns with the kinds of evidence this chap-
ter relies on. Sysmon Event IDs expose precisely the actors and artifacts that drive
behavior-centric summaries and ATT&CK mapping: Event ID 1 (process creation, in-
cluding command line), ID 7 (image load), IDs 12-14 (registry key/value create, modify,
delete), ID 22 (DNS query), and newer additions such as ID 27-29 for executable file
blocking/detection. These fields make it possible to state, in compact form, which bi-
nary acted, with which flags, against which object, and in which locus—information that
the summarization role condenses into a single sentence, and that the mapping role sub-
sequently interprets. Using an XML-first export preserves the nested attributes (e.g.,
CommandLine, Image, TargetObject) that would be flattened or lost in simplified for-
mats [35]. There are, however, explicit trade-offs in adopting the default profile without
estate-specific tuning. The default configuration is intentionally general and will capture
benign high-volume patterns alongside the signals of interest. In a production environ-
ment this would warrant a second phase where frequent, demonstrably benign sources
are excluded and high-value modules are refined to the organization’s software baseline;
in a lab setting with one Atomic technique per clean snapshot, the additional background
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is manageable and, in fact, beneficial for reproducibility, since other readers can apply
the same public profile and obtain comparable bundles. The modular structure is de-
signed precisely to facilitate this evolution from “broad and sane defaults” to “curated
and estate-aware” without rewriting the configuration from scratch. It is important to
delineate what Sysmon does and does not claim. Sysmon provides observational evi-
dence on the endpoint; it does not by itself ascribe ATT&CK techniques. The mapping
reported in this chapter is performed by the pipeline’s modeling components using the
summarized evidence. In other words, Sysmon is the sensor, not the labeler—a distinc-
tion that mirrors the governance model introduced in Chapter 4, where validation and
policy determine whether an observation is promoted to a detection artifact.

From this bundle, the summarization role, implemented with GPT-40 via API purely
for budget and time reasons, produces one sentence in formal, technical English. The
prompt 5.2 prepared sets the tone and the discipline: analyze Windows Event XML,
filter out routine noise, and deliver a single neutral description of what happened; do not
name ATT&CK techniques; do not dump raw events. The instruction includes a couple
of very short exemplars to anchor style and granularity. The goal is not to produce
a narrative report but to surface the minimal behavioral cues a mapper needs: which
process executed, with which flags, on what object, and in which locus (for example, a
Run key under the Registry or a scheduled task entry).

The mapping role consumes exactly that sentence and nothing else. For comparability,
both variants—the fine-tuned Mistral-7B and GPT-40 used directly as a classifier—receive
the same detection instruction 5.2: assign the applicable MITRE ATT&CK technique
IDs and output only the list (a plain string, comma or newline separated). No schema
is enforced and no post-hoc “repair” is applied; the outputs are stored as returned along
with run metadata so that downstream scoring can be explicit about what was and wasn’t
produced.

Two concrete techniques make the data path tangible. When executing T1082 (System

Information Discovery), logs show short-lived cmd.exe or PowerShell processes issuing
benign-looking queries. The summarizer tends to produce a crisp line—essentially “a
command-line session queried host identification and system details”—and, because the
behavior is specific, the mapper can often hit the exact technique. By contrast, T1218.010
(Signed Binary Proxy Execution: regsvr32) is fertile ground for near-neighbor confusion:
the evidence centers on regsvr32.exe with /i and /s; a general model may enumerate that
family and add broader execution labels, whereas a small adapted model may return
a single, conservative guess. These two ends of the spectrum—deterministic discovery
vs. signed-binary proxy execution—reappear in the results as different precision/recall
behaviors.
A total of 70 MITRE ATT&CK TTPs were tested. The orchestration for every run is
identical: restore the snapshot, execute one Atomic technique, export a time-boxed set of
XML files per channel, ask the summarizer for one sentence, pass that sentence to both
mappers under the same instruction, and persist the plain-text lists the models return.
That sameness is a strength: it removes “plumbing variance” from the picture so that
differences in detection can be discussed in terms of what was said in the sentence and
what the models made of it.

5.4 Testing methodology and results

Results are reported in two phases that mirror the life of the system: first, an in-domain
baseline taken immediately after fine-tuning on the CTI dataset; second, the pipeline
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evaluations on Windows, where inputs are compressed, behavior-centric sentences pro-
duced from logs (plus a complementary test on short human-written summaries).

All evaluations are framed as multi-label classification. We restate the metrics in the
vocabulary of this chapter so that their operational meaning is clear.

o Precision (micro, macro): Measures the proportion of true positive predictions
among all positive predictions made by the model. Micro precision aggregates the
contributions of all classes by counting the total true positives and false positives
across the dataset. Macro precision computes precision independently for each class
and then takes the unweighted average.

e Recall (micro, macro): Measures the proportion of true positive predictions
among all actual positive instances in the dataset. Micro recall aggregates across
all classes, while macro recall calculates recall per class and then averages the
results, giving equal weight to each class.

o F1l-score (micro, macro): The harmonic mean of precision and recall. Micro F1-
score considers global true positives, false negatives, and false positives, while macro
F1-score computes the Fl-score per class and averages them equally, regardless of
class frequency.

o« Exact Match: Measures the proportion of instances where the predicted set of
TTPs exactly matches the ground truth set. This metric is particularly relevant
in multi-label classification settings, as it penalizes any partial mismatch between
predicted and true labels.

o« Hamming Loss: Measures the fraction of incorrectly predicted labels (both false
positives and false negatives). It is computed as the average number of incorrect
labels per instance, normalized over the total number of labels, and provides an
indication of label-wise prediction error.

Before entering the Windows environment loop, the fine-tuned classifier was evaluated
on the held-out CTTI test split from the dataset used for training. Using the checkpoint
at the minimum validation loss, Mistral-7B (LoRA, 4-bit) achieved micro-F1 = 0.5748
(micro-precision 0.6259, micro-recall 0.5314), macro-F1 = 0.2985, Exact Match = 0.5808,
and Hamming loss = 0.0026 A.4. These numbers characterize what the adapted small
model learns on clean, human CTI prose; they serve as a baseline only. The micro-macro
gap reflects label imbalance. Decoding used low-variance settings (a small beam), which
improved Exact Match over greedy while preserving the plain-string output contract.

Evaluation on LLM-generated summaries from Windows logs single-label
TTPs. Each pipeline run executes one TTP from a clean snapshot, exports a time-
boxed set of events to XML, and produces one formal sentence with the reporter. That
same sentence is then given—unchanged and under the same instruction (“IDs only”)—to
two classifiers: the fine-tuned Mistral-7B and GPT-40 used directly as a classifier. Across
70 runs with single-label ground truth, the results are:

Model PH R# Fl,u PM RM FlM

GPT-40  0.1875 0.5571 0.2806 0.2863 0.5571 0.3435
Mistral 7B 0.2857 0.2571 0.2707 0.1961 0.2571 0.2071

Table 5.1: Results using LLM-generated prompts (single TTP ground truth)
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Hamming Loss: GPT-40 = 0.0408, Mistral7B = 0.0198
Exact Match: GPT-40 = 0.0286, Mistral7B = 0.2429
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Figure 5.2: Comparison of GPT-40 and Mistral-7TB performance on LLM-generated
prompts (single TTP ground truth).

Two complementary behaviors emerge. GPT-40 favors recall: it often contains the
correct ID somewhere in its output but tends to add plausible extra IDs, which depresses
Exact Match and raises Hamming Loss when only one label is expected. Mistral-7B fa-
vors precision: it emits fewer IDs, which yields a much higher Exact Match and lower
Hamming Loss, at the cost of missed positives (lower recall). Put simply: the general
model casts a wider net; the adapted small model is choosier.

A per-run containment view makes this concrete. Over the 70 aligned runs, the break-
down is: both models surfaced the correct ID in 16 runs; Mistral-only in 2; GPT-40-only
in 23; neither in 29. Read alongside the strict metrics, this says that GPT-40 is more
likely to surface the right candidate somewhere in a longer list (39/70 containments),
while Mistral is more likely to match exactly when a single label is expected (Exact
Match 0.2429 vs. 0.0286). Operationally, containment informs recall at triage time; Ex-
act Match and Hamming Loss inform noise and analyst burden.

In the tables B.1 and B.2, the per-run detections and predictions are reported in detail.
A qualitative glance at specific techniques is consistent with this split. Deterministic
discovery such as T1082 (System Information Discovery) is mapped cleanly when the
sentence states the actor and intent; by contrast, signed-binary proxy execution like
T1218.010 (regsvr32) invites near-neighbor additions unless the sentence names the bi-
nary and salient flags (e.g., /i, /s). In the raw strings for those runs, GPT-40 tends to
enumerate families; Mistral often picks a single candidate and stops.

Evaluation on a CTI subset (70 items, multi-label; not aligned to Windows
runs) To compare the two classifiers on concise human prose without logging artefacts
and within an API budget, I evaluated a subset of the CTI dataset: the first 70 items
in dataset order. Each item is a compact analyst-style description with multiple ground-
truth techniques (multi-label). This subset is not aligned 1:1 with the 70 Windows runs; it
exists solely to provide a prose-only, multi-label head-to-head comparison under the same
“IDs-only” instruction. Because it is the first 70 items rather than a stratified sample,
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the figure 5.3 and table 5.2 below should be read as indicative, not as a statistically
representative estimate for the entire dataset.

Model PM RN Flu PM RM F].M

GPT-40 0.1624 0.3478 0.2215 0.1815 0.2880 0.2049
Mistral 7B 0.3600 0.1957 0.2535 0.1461 0.1694 0.1444

Table 5.2: Results using human-written prompts (multi-TTP ground truth)

Hamming Loss: GPT-40 = 0.0527, Mistral7TB = 0.0248
Exact Match: GPT-40 = 0.0286, Mistral7B = 0.1714
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Figure 5.3: Comparison of GPT-40 and Mistral-7B performance on a CTI subset (multi-
label, not aligned to Windows runs).

GPT-40 exhibits higher recall in both micro (0.3478) and macro (0.2880) settings, indi
cating that it identifies a larger number of relevant TTPs per example. However, its lower
precision leads to modest F1l-scores—micro F1 at 0.2215 and macro F1 at 0.2049—sug
gesting it tends to over-predict, introducing more false positives. In contrast, Mistral 7B
achieves a much higher micro precision (0.3600 vs. 0.1624 for GPT-40), but its lower
recall (0.1957) results in a slightly better micro Fl-score (0.2535), but worse macro F1
(0.1444). This indicates again that Mistral is more conservative and favors precision
over coverage, particularly at the class level. The task is harder for both models under
multi-label evaluation (as expected), and absolute values decrease. The relative behaviors
nevertheless persist: GPT-40 keeps a recall-heavy profile; the adapted Mistral maintains
tighter outputs (higher micro precision, lower Hamming Loss, higher Exact Match).

5.5 Discussion

The fine-tuned classifier used in the pipeline was adapted on a small CTI corpus. This
constraint is worth stating explicitly because it interacts with every observation in 5.4.
A limited training set narrows the distribution of phrasings, artifacts, and technique co-
occurrences the model can see during adaptation; as a result, the in-domain baseline on

86



Implementation

the CTI test split reflects competence on clean, familiar prose, whereas the Windows loop
demands cross-domain transfer to one-sentence summaries distilled from telemetry. The
gap reported in 5.1 is therefore not surprising. With fewer examples per label, rare tech-
niques remain under-represented, which depresses macro-averaged metrics and pushes the
model toward conservative outputs at inference time. This conservative bias shows up
in the Windows results as higher Exact Match and lower Hamming Loss—the classifier
predicts fewer IDs and avoids speculative additions—but also as lower recall when the
one-line summary is ambiguous.

A small data regime also sharpens the role of prompting and decoding. Because the out-
put contract is a short, rigid string, decoding choices that favor determinism (such as a
small beam) help the model settle on the most plausible single list rather than exploring
diverse alternatives; this improves strict metrics but does not manufacture information
that the summary does not contain. Likewise, the reporter prompt becomes a principal
lever: when training data are scarce, the sentence fed to the classifier must surface the
decisive cues—actor, flags, and locus—so that the mapper can align the summary with
the patterns it actually learned. In other words, the ceiling in 5.4 is jointly set by data
volume during adaptation and by the information content of the sentence at runtime.
These constraints do not invalidate the pipeline; they delimit its claims and suggest con-
crete next steps. Modest data augmentation on the CTI side (paraphrases that preserve
technique semantics; curated hard-negatives to separate near-neighbors) would broaden
the model’s exposure without changing its size. A small paired Windows set—log —
one-sentence summary — ATT&CK—would reduce domain shift directly and allow the
adapter to learn from the same style of input it will face in production. Even without
collecting new labels, tightening the reporter contract (requiring the sentence to include,
at minimum, process — object — locus) would raise the informative content of the input
the classifier sees and therefore its attainable recall. Read in this light, the precision-
heavy behavior observed in 5.4 is not a flaw of the architecture; it is a stable consequence
of a small, careful adaptation coupled with a terse input. The framework anticipated
exactly this division of labor: a recall-oriented proposer followed by a precision-oriented
confirmer, with a Validation step to arbitrate promotions.
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Conclusions

This thesis set out to answer a simple, practical question: can a SIEM pipeline use large
language models to turn raw security telemetry into attack-informed claims that an an-
alyst can trust? Rather than proposing yet another monolithic “LLM for security,” the
work focused on roles, interfaces, and contracts. Chapter 4 formalized a conceptual archi-
tecture for a modular, governed pipeline: evidence is ingested and normalized; a reporter
condenses noisy events into a short, neutral sentence; a mapper translates that sentence
into MITRE ATT&CK techniques; a validator and policy layer decide what gets pro-
moted to a Detection Record; and feedback and retrieval are designed to keep the system
current without entangling runtime logic with training. The emphasis throughout was
on clear boundaries—what each component is allowed to consume and produce—so that
behavior can be reasoned about and audited.

Chapter 5 then exercised one thin, end-to-end path through that design. The path was
deliberately frugal—mo RAG, no validator, no feedback loop—so that the behavior of the
reporter-mapper pair could be observed without confounders. A compact model, Mistral-
7B adapted with LoRA, served as a locally deployable mapper; GPT-40 served both as
a reporter (to produce the one-sentence summaries from Windows logs) and as a second
mapper for head-to-head comparison under the same “IDs-only” instruction. The evalua-
tion was staged on two distinct input regimes. In-domain, immediately after fine-tuning,
Mistral was tested on the CTT dataset’s held-out split, establishing that the small model
does learn the narrative-to-ATT&CK mapping on clean human prose. Cross-domain, the
same mapping role was exercised on single-sentence summaries distilled from Windows
events collected in a disciplined lab loop (one executed Atomic technique per run, export
to XML, summarize once, map once). Because API cost precluded running GPT-40 on
the entire dataset, a budget-limited subset of 70 CTI items provided from the dataset it-
self, multi-label head-to-head comparison that is explicitly not aligned with the Windows
runs.

Across these settings, the results are coherent. On CTI text, the adapted Mistral reaches
a credible baseline and shows that a small, governable model can shoulder the mapper
role. In the Windows loop, the two classifiers separate along a line that is operationally
meaningful: GPT-4o favors recall, often surfacing the right technique among several plau-
sible candidates, while Mistral favors precision, emitting tighter lists that improve exact
matches and reduce label-wise error at the cost of some misses. On the 70-item CTI
subset this contrast persists, now on concise human prose rather than sentences distilled
from logs. Read through the lens of the Chapter-4 design, this is not a quirk but a use-
ful division of labor: a recall-heavy proposer paired with a precision-leaning confirmer
becomes reliable once a validator is in place to check format, reconcile obvious inconsis-
tencies against simple evidence cues, and enforce policy before promotion to a Detection
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Record.

Two broader contributions emerge from this work. First, it clarifies the contracts that
make LLMs safer to use in a SIEM context: narrow inputs and outputs, determinis-
tic decoding for short targets, and the deliberate separation of reporting, mapping, and
validation. Second, it grounds the discussion in reproducible practice: a clean, reset-
per-run Windows lab; a well-known Sysmon configuration; fixed prompts; plain-string
outputs; and published per-run tables that make successes and failures inspectable. The
thesis does not claim completeness—several pieces of the architecture (retrieval, valida-
tion, feedback) remain future work by design—but it shows that even a small slice, if
properly governed, already exposes the central trade-offs and provides a path for a SOC
to modernize detection without surrendering control.

6.1 Challenges and Limitations

The most immediate limitation of this work is data regime. The mapper was adapted
on a small CTI corpus, and the full-dataset evaluation after fine-tuning was conducted
only for the adapted model. That choice made the study feasible in a student lab, but it
constrains what the model could reasonably learn—especially for rare techniques—and
explains part of the gap between the neat in-domain baseline and the Windows pipeline.
When the summaries become terse, behavior-centric sentences distilled from logs, the
classifier’s conservative bias surfaces: it prefers to say less rather than guess, which
improves exact matches but suppresses recall. This is not a defect of the approach so
much as a consequence of pairing limited supervision with compressed inputs.

A second constraint is economic and operational. GPT-40 was used via a hosted API for
the reporter role and, where budget permitted, as a comparator mapper. That delivered
strong baselines quickly, but it is not the right posture for a SOC handling sensitive
or regulated data: forensic evidence is not meant to leave the perimeter. The thesis
therefore argues for an on-prem or VPC-isolated deployment in production, but it did
not implement it. The same budget constraint explains why the head-to-head on CTI
prose covers only the first 70 items of the dataset rather than the full split and why that
subset is not stratified. These choices are recorded explicitly; they make the comparison
informative rather than definitive.

The governance surface is intentionally incomplete. The pipeline exercised here omits
retrieval, validation, and feedback—precisely the components that, in Chapter 4, were
meant to keep the system current and safe. Without retrieval there is no principled
way to inject fresh organizational knowledge or CTI context; without validation there is
no policy gate to catch inconsistent or ill-formed outputs; without feedback there is no
structured path to correct systematic errors or to retrain adapters when the estate drifts.
The prototype compensates by narrowing the contracts (IDs-only outputs, deterministic
decoding), but that narrowness is itself a limitation: analysts receive no confidence or
rationale, which would help justify promotions to a Detection Record and accelerate
triage.

There are also measurement and methodology limits worth stating plainly. The Windows
loop favored single-label ground truth (one technique per run) to keep attribution clean;
real incidents can, of course, involve multiple techniques in quick succession. The study
therefore adds a multi-label view on concise human prose, but those items are dataset
entries, not aligned to Windows runs, and the two views are compared only at the level
of aggregate metrics. Exact-match, a deliberately strict score, punishes any extra label;
Hamming loss, a label-wise error rate, does not capture semantic “distance” between
near-neighbors (e.g., proxy execution variants). Both metrics are useful, but neither says
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much about how helpful a sentence was for an analyst or how easily a validator would
reconcile a plausible near-miss against simple evidence cues.

On the instrumentation side, the lab relied on the default sysmon-modular profile to
shorten time-to-signal and maximize reproducibility. That choice yields broad coverage
quickly but is not estate-tuned; in production one would exclude known benign chatter
and promote modules aligned with the organization’s baseline to keep noise—and SIEM
cost—in check. The lab sometimes launched PowerShell with -ExecutionPolicy Bypass
at process scope to unblock module loading, a decision acceptable in an isolated VM
whose goal was to capture evidence, but not representative of hardened enterprise posture.
These trade-offs are recorded transparently, and they do not affect the logic of the results,
yet they limit the external validity of the measurements.

Finally, the study does not attempt to stress the system adversarially. Prompt-injection
hardening, schema-enforced outputs, and function-calling guardrails were discussed in the
design but not implemented. The mapper’s interface was kept intentionally austere to
isolate behavior, but that also means brittleness: a stray token or formatting quirk can
turn a good forecast into a scoring error. Likewise, the study does not quantify stability
across repeated runs (variance under identical inputs) beyond adopting deterministic
decoding where possible. None of these choices undermines the central finding—that the
reporter-mapper pair can be made legible and useful under tight contracts—but they
mark where engineering effort must flow before a SOC can rely on such a pipeline as part
of its primary detection surface.

6.2 Future Improvements

The most direct path forward is to tighten the two contracts that define the prototype
path—the sentence that enters the mapper and the artifact that leaves it—and then to
reintroduce, in a disciplined way, the governance pieces that Chapter 4 anticipated but
the experiments deliberately omitted. On the input side, the reporter must evolve from a
well-phrased instruction to a measurable contract. The single sentence worked because it
forced the model to foreground essentials, but it also hid variation the mapper could not
overcome. A structured probe makes this explicit: hold the mapper fixed and vary the
reporter along a narrow ladder, from a lightly templated sentence that obliges at least
actor — flags — object — locus to a more structured template that also enforces tense
and subject-verb-object order. For each rung, measure not only downstream detection
but the sentence fidelity itself—did those fields actually appear? The lighter variant is
easy to adopt and preserves stylistic flexibility, yet leaves more room for omission; the
structured variant is clearer for the mapper and tends to lift recall on rare patterns, at
the cost of some brittleness when upstream evidence is thin. Starting light and promoting
fields to “required” only where they demonstrably improve recall keeps discipline without
overfitting the prose.

A complementary improvement is to constrain decoding against the ontology and to re-
turn structured artifacts. The mapper currently emits a plain string; that made scoring
easy, but it also made the system brittle. In a production pipeline the output should be
a small, schema-conformant record—valid ATT&CK IDs enforced at generation time, a
machine-checkable shape, and an optional human-readable rationale kept separate from
the ID list. The rationale need not be a chain-of-thought; a short, anchored explanation
(“regsvr32 executed with /i /s against a remote scriptlet; signed-binary proxy execution
is likely”) is enough to support validation and analyst trust. Constrained decoding or
grammar-guided generation would all but eliminate formatting errors and open the door
to policy checks in the validator: reconcile IDs against the sentence, reject contradictions,

90



Conclusions

and apply minimal heuristics (for instance, forbid multi-family mixes that are implausible
given the observed actor and locus).

Given schema-constrained outputs, promotion should be gated by a validator that is opin-
ionated but light. A rule-first validator (schema checks plus a few sentence-ID consistency
rules) is transparent, deterministic, and cheap, yet may miss subtle semantic slips; adding
a small discriminative checker over (sentence, IDs) catches near-neighbor confusions,
though it requires labels and care to avoid opacity. A third option is a proposer/confirm-er
pattern: a recall-leaning proposer nominates candidates and a precision-leaning confirmer
prunes them under calibrated thresholds; this balances errors and routes disagreements
to the validator or a human, at the price of extra latency and orchestration. For an
incremental path, adopt rule-first now, instrument reasons for rejection, and introduce
the confirmer once thresholds are stable.

The next class of improvements concerns data. Training on human CTI prose was suf-
ficient to show feasibility, but cross-domain performance is capped by how much the
mapper has seen of the sentence style it will face at runtime. Two data investments
stand out. First, assemble a paired set of the form (logs — one-sentence summary —
ATT&CK), even if small, so that adaptation can directly internalize the reporter’s style
and omissions. Second, repair the imbalance that depresses macro performance by tar-
geted augmentation: paraphrases that preserve technique semantics, and hard negatives
that force the model to separate near neighbors. Neither requires an exotic training
regime; both make the small adapter more robust without changing its footprint. In
parallel, repeat the GPT-40 head-to-head on a stratified CTI sample rather than the first
N items to reduce sampling bias and to sharpen confidence in the observed recall-versus-
precision trade-off.

As the footprint widens beyond Windows logs, downstream components benefit from a
small, explicit canonical schema (stable IDs and timestamps, subject-verb-object fields,
host /user /process keys, plus a concise “fact” string) with per-source adapters that only
fill what they can prove. A community schema buys interop quickly but invites field-
guessing and silent mapping errors; a narrow local schema tightens contracts and audits
but needs more glue when new sources arrive; an hybrid approach keeps the core strict
while projecting community-compatible views for tools. Similarly, context should prefer
a slow-moving, versioned cache (baselines, allow-lists, policy snippets, recent ATT&CK
deltas) over open-ended retrieval: the cache is predictable and low-drift but less helpful
on long-tail behaviors; full semantic retrieval is richer but increases operational burden
and the risk of spurious context. A mixed posture—cache by default, retrieval only be-
hind clear guardrails—keeps blast radius small while covering rare cases.

With those contracts and data in better shape, the pipeline is ready to reintroduce gover-
nance. The first component to add back is a Validation layer that is opinionated but light-
weight: enforce the schema, check ID-sentence consistency against a few evidence cues,
gate promotions to a Detection Record, and log decisions. The second is governed context.
The mapper should be able to consult a stable cache of organizational knowledge—golden
process baselines, known-good admin scripts, current ATT&CK changes—so that it can
discount expected behavior and avoid stale mappings. Retrieval here is not a full seman-
tic memory; it is a narrow, slow-moving context that reduces unnecessary guesses and
helps the validator explain promotions. The third is feedback. Whether from analyst
adjudications or from simple counters in the validator, the system should return a trickle
of curated examples to the adapter: confirmed hits, confirmed misses, and representa-
tive near-misses. A plain supervised refresh at regular intervals—mo complex reinforce-
ment—would be enough to keep the mapper aligned with the estate and to prevent drift.
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The privacy and deployment posture deserves equal attention. The thesis relied on
a hosted reporter for budget reasons; a SOC cannot. The natural trajectory is local or
VPC-isolated inference for both roles, with a redaction front-end for any optional external
services. This is not merely a compliance box to tick: keeping inference close to the logs
collapses latency, enables deterministic builds of the models in use, and makes it tractable
to run shadow modes (new prompts, new adapters) on mirrored traffic before promotion.
Surrounding this with routine MLOps—model and prompt versioning, dataset lineage,
canary deployments, and rollbacks—turns the prototype path into a manageable product
surface rather than an experiment.

Finally, the pipeline should be scaled outward and deepened. The contracts remain the
same, but the reporter must learn different dialects. Deepened means moving beyond the
one-technique-per-run simplification: multi-stage runs with interleaved techniques, time-
aware summarization that carries forward state across a short horizon, and correlation
that recognizes when several weak, precise hints add up to one strong claim. None of
this contradicts the central insight of the thesis. It extends it. By keeping roles narrow,
outputs structured, and validation explicit, the same small building blocks—one sentence
in, one governed record out—can scale to richer evidence without surrendering control.
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Appendix A

Mistral-7B fine-tuning

A.1 Overview and intent

This appendix records the practical details of adapting Mistral-7B-Instruct with LoRA
for the task of mapping short security narratives to MITRE ATT&CK techniques. The
goal is reproducibility: a reader should be able to recreate the training environment,
regenerate the checkpoint at the validation minimum, and reproduce the in-domain test
metrics reported in Chapter 5.

A.2 Environment and dependencies

The experiment aims to develop the analysis and detection component that will be de-
ployed in the pipeline. The component is an assistant capable of analyzing system logs
and identifying relevant MITRE ATT&CK techniques. Key components included:

o Base model: Mistral-7B-Instruct, a 7-billion parameter language model optimized
for instruction-following tasks.

o Dataset: Security-TTP-Mapping (tumeteor/Security-TTP-Mapping from Hug-
ging Face) [36].

e Training Approach: Parameter-efficient fine-tuning with LoRA.

e Quantization: 4-bit NF4 with double quantization.

« Hardware: Google Colab with A100 GPU (40GB VRAM).

e Software: Python 3.10, PyTorch, Hugging Face Transformers, torch library.

e Objective: Multi-label classification of ATT&CK techniques.

Hardware and training configuration The training was performed on Google Colab
with an NVIDIA A100-SXM4 GPU (40GB VRAM).
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Component Specification
Platform Google Colab
GPU NVIDIA A100-SXM4 (40GB VRAM)
VRAM Utilization 22-24GB during training
Batch Size Support| 16 (with gradient accumulation)
Quantization Enabled (4-bit NF4)
Training Duration ~6 hours (2400 steps)

Table A.1: Hardware configuration and resource utilization

Parameter Value
Max steps 2400
Batch size 16
Gradient accumulation 2
Learning rate 1x10™*
Warmup steps 100
LR scheduler Constant
Early stopping patience 2
GPU Memory 40GB (A100)
VRAM Usage ~24GB

Table A.2: Training parameters

Methodology The training process code is taken and adapted from the Digital Ocean
Guide [32]. The model is fine-tuned on the Security-TTP-Mapping dataset, which con-
tains labeled examples of security-related texts mapped to ATT&CK techniques. The
training uses LoRA to efficiently adapt the model with a reduced number of trainable
parameters, making it feasible to fine-tune large models on limited hardware.

Below are the key steps and configurations used in the training process.

Listing A.1: Loading the dataset

from datasets import load_dataset
ds = load_dataset("tumeteor/Security-TTP-Mapping")

Listing A.2: Creating the prompt template for training

def create_prompt (example) :
bos_token = "<g>"
eos_token = "</s>"

system_message = (
"You,are a ,cybersecurity assistant.. "
"Yourtask,is to analyze ja system log ,and assign the most,
appropriate MITRE_ATT&CK technique(s)."

log_text = example["textl"]
mitre_labels = "".join(example["labels"]) .strip()
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full_prompt = ""

full_prompt += bos_token
full_prompt += "\n_Instruction:\n"
full_prompt += system_message
full_prompt += "\n\n Log:\n"
full_prompt += log_text
full_prompt += "\n\n Response:\n"
full_prompt += mitre_labels
full_prompt += eos_token

return full_prompt

Note that the prompt template is designed to provide clear instructions to the model,
along with the log text and the expected response format. An example of the prompt
generated is:

Listing A.3: Example of the prompt generated

create_prompt(ds[’train’] [0])

OUTPUT: <s>

### Instruction:

You are a cybersecurity assistant. Your task is to analyze a
system log and assign the most appropriate MITRE ATT&CK
technique(s).

### Log:

The command processing function starts by substituting the main
module name and path in the hosting process PEB, with the one
of the default internet browser. The path of the main browser
of the workstation is obtained by reading the registry value

### Response:
[’T1057°]
</s>

The following code snippet shows the training configuration (adapted from the guide)
and execution (for the load and configuration of the LoRa parameters see the guide [32]):

Listing A.4: Training configuration and execution

args = TrainingArguments(
output_dir = "/content/drive/MyDrive/siem-finetuned",
#num_train_epochs=5,

max_steps = 2400,
per_device_train_batch_size = 16,
gradient_accumulation_steps=2,
warmup_steps = 100,
logging_steps=50,

do_eval=True,
#save_strategy="epoch”,
#evaluation_strategy="epoch",
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eval_strategy="steps",
eval_steps=200,
save_strategy="steps",
save_steps=200,
save_total_limit=5,
learning_rate=le-4,
bf16=True,
1r_scheduler_type=’constant’,
metric_for_best_model="eval_loss",
report_to=[]

)

trainer = SFTTrainer(

model=model,

peft_config=peft_config,

formatting_func=create_prompt,

args=args,

train_dataset=ds["train"],

eval_dataset=ds["validation"],
callbacks=[EarlyStoppingCallback(early_stopping_patience=2)]
)

trainer.train()

The table below shows the training dynamics, with the minimum validation loss at
step 2200. The model checkpoint at this step is saved and used for evaluation on the test
set.

Step|Train Loss|Validation Loss
200 1.0859 0.9734
400 1.0455 0.9241
600 0.9938 0.9012
800 0.9434 0.8877
1000| 0.9023 0.8812
1200| 0.9153 0.8722
1400| 0.8928 0.8563
1600| 0.8081 0.8548
1800| 0.8104 0.8462
2000 0.7239 0.8582
2200 0.7328 0.8435
2400 0.6491 0.8758

Table A.3: Training dynamics with minimum validation loss at step 2200

After training, the model is saved and can be used for inference on new data. The
evaluation was performed on the test set of the Security-TTP-Mapping dataset, yielding
the metrics reported in Table A.4. Below are the code snippets for loading the trained
model, performing inference, and calculating evaluation metrics.

Listing A.5: Loading the trained model and performing inference
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model_path =
"/content/drive/MyDrive/siem-finetuned/checkpoint-2200"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausallM.from_pretrained(
model_path,
device_map=’auto’,
quantization_config=nf4_config
)
model.eval()

def create_inference_prompt(log_text: str) -> str:
bos = "<g>"
instruction = (
"You,are a ,cybersecurity assistant.. "
"Analyze the system ,log below and assign;all applicable MITRE
ATT&CK, jtechnique ID(s), separated, by commas."

)

return (
f"{bos}\n"
"### Instruction:\n"
f"{instruction}\n\n"
"### Log:\n"
f"{log_text}\n\n"
"### Response:\n"

)

predictions = []

for example in test_data:
prompt = create_inference_prompt (example["text1"])
inputs = tokenizer (prompt,

return_tensors="pt").to(model.device)
output = model.generate(
**xinputs,
max_new_tokens=32,
do_sample=True,
num_beams=5,
early_stopping=True,
)
decoded = tokenizer.decode(output[0], skip_special_tokens=True)
predictions.append(decoded)

The predictions are then processed to extract the predicted ATT&CK IDs, which
are compared against the ground truth labels to compute evaluation metrics such as
precision, recall, F1-score, Hamming loss, and Exact Match.

The code below shows how to process and compute these metrics:

Listing A.6: Processing predictions and computing evaluation metrics

all_techniques = sorted({tech for labs in true_labels_list for
tech in labs}) # Unique sorted techniques

tech2idx = {tech: idx for idx, tech in enumerate(all_techniques)}
# Technique to indexz mapping
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def to_binary_vector(label_list, mapping): # Convert list of
labels to binary vector
vec = [0] * len(mapping)
for 1bl in label_list:
if 1bl in mapping:
vec [mapping[1b1]] = 1
return vec

y_true = [to_binary_vector(labs, tech2idx) for labs in
true_labels list] # True labels

y_pred = [to_binary_vector(labs, tech2idx) for labs in responses]
# Predicted labels

prec_micro = precision_score(y_true, y_pred, average=’micro’,
zero_division=0) # Micro precision

rec_micro = recall_score(y_true, y_pred, average=’micro’,
zero_division=0) # Micro recall

#ETC ...

The final evaluation metrics on the test set are summarized in Table A.4.

Table A.4: Test set evaluation metrics

Metric Micro|Macro|Global
Precision 0.6259 | 0.3578 -
Recall 0.5314 | 0.2923 -
F1-score 0.5748 | 0.2985 -
Hamming loss| - - 0.0026
Exact match - - 0.5808

The current results validate our approach and provide a functional baseline for pipeline
integration. The 58% exact match rate demonstrates the model’s capability to correctly
identify all relevant techniques in a majority of cases, which is acceptable for initial system
integration and testing.

The primary limitation remains the model’s performance on rare techniques (macro-
F1 0.30), which we attribute to the limited training data available for these specific
techniques, class imbalance in the training data, and the inherent complexity of multi-

label classification tasks.
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Set-up lab environment

The experimental phase focuses on the evaluation of large language models (LLMs) for
detecting MITRE ATT&CK techniques based on Windows system logs. The primary goal
is to assess whether LLMs, given a concise behavioral summary, are capable of inferring
the correct TTP(s) associated with a specific adversarial activity.

Experiments were performed on both fine-tuned and general-purpose models:

o Mistral 7B (fine-tuned) - A custom-trained model based on the Security-TTP-
Mapping dataset provided by Tumeteor [37].

o GPT-4o0 - a general-purpose model accessed via OpenAl chatGPT [38].

Experiments were conducted in a controlled environment using a Windows 10 virtual
machine under Hyper-V. I have choosen to use the Hyper-V platform because is a native
solution for Windows system and ease of snapshot management, which allows for quick
resets between tests. The virtual machine was configured with the following specifications:

e OS: Windows 10 Pro
o CPU: 2 virtual cores
« RAM: 6 GB

o Disk Space: 100 GB

e Network: Default virtual switch for internet access

Each test was executed from the same system snapshot to minimize noise and ensure
isolated behavior per TTP test. Everytime a test was executed the VM was reset to a
clean state, ensuring no residual effects from previous tests.

B.1 Sysmon and Log capture configuration set-up

The Sysmon service [35] was installed and configured to capture detailed system activity.
The configuration default file provided by [34] was used as a baseline. This configuration
captures a wide range of events, including process creation, network connections, file
modifications, and registry changes. To install and configure Sysmon:
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Listing B.1: Sysmon installation and configuration

Sysmon64.exe —accepteula -i sysmonconfig.xml
# To update configuration later
Sysmon64.exe —c sysmonconfig.xml

# To uninstall Sysmon

Sysmon64.exe -u

A Powershell script was developed to automate the extraction of relevant logs from the
Windows Event Viewer. The script starts to capture logs before executing the adversarial
technique and stops immediately after the test completes. Below is the script used for
log capture:

Listing B.2: PowerShell script for log extraction

param(
[string] $0utputDir = ".\captured_logs"

if (-not (Test-Path -Path $0utputDir)) {
New-Item -ItemType Directory -Path $OutputDir -Force | Out-Null
Write-Host "Created output folder: $0utputDir"

}

Write-Host "Preparing jto,capture events. Press ENTER to start,
recording..."

Read-Host

$startTime = Get-Date

Write-Host "‘n[+] Capture started: $startTime"

Write-Host "Run_your Atomic Red Team tests. Press ENTER when
you’re done..."

Read-Host

$endTime = (Get-Date) .AddSeconds(5)

Write-Host "[+] Capture ended  (with_ buffer): $endTime‘n"

$logs = @(
"Microsoft-Windows-Sysmon/Operational",
"Security",
"System",
"Application",
"Windows PowerShell",
"Microsoft-Windows-WMI-Activity/Operational",
"Microsoft-Windows-TaskScheduler/Operational"

foreach ($log in $logs) {
Write-Host "Extracting ,events from: $log"

if (-not (Get-WinEvent -ListLog $log -ErrorAction
SilentlyContinue)) {
Write-Warning "Log,$log not_ found or disabled"
continue

100




Set-up lab environment

try {
$events = Get-WinEvent -FilterHashtable @{
LogName = $log
StartTime = $startTime
EndTime = $endTime
} -ErrorAction Stop

$eventCount = if ($events) { $events.Count } else { O }
Write-Host "$eventCount events, found"

if ($eventCount -gt 0) {
$safeLogName = $log -replace ’[Ta-zA-Z0-9\-]’, ’_’
$outputFile = Join-Path -Path $0utputDir -ChildPath
"${safelLogName}_events.xml"

$xmlWriterSettings = [System.Xml.XmlWriterSettings]@{
Indent = $true
IndentChars = " "
Encoding = [System.Text.Encoding]::UTF8

$xmlWriter =
[System.Xml.XmlWriter]::Create($outputFile, $
xmlWriterSettings)
$xmlWriter.WriteStartDocument ()
$xmlWriter.WriteStartElement ("Events")
$xmlWriter.WriteAttributeString("LogName", $log)
$xmlWriter.WriteAttributeString("StartTime", $
startTime.ToString("o"))
$xmlWriter.WriteAttributeString("EndTime", $
endTime.ToString("o"))
$xmlWriter.WriteAttributeString("Count", $eventCount)

foreach ($event in $events) {
$eventXml = $event.ToXml ()
$xmlFragment = [System.Xml.XmlDocument]: :new()
$xmlFragment .LoadXml ($eventXml)
$xmlFragment .DocumentElement .WriteTo ($xmlWriter)

$xmlWriter.WriteEndElement ()
$xmlWriter.WriteEndDocument ()
$xmlWriter.Flush()
$xmlWriter.Close()

Write-Host "All events exported to:_ $outputFile"

catch {
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if ($_.Exception -match "No events were found") {
Write-Host "Nogevents,found,in the specified time,
period"
} else {
Write-Warning "Error during extraction: $
($_.Exception.Message)"

Write-Host "All ,logs exported, to: ,$0utputDir"

This script captures events from multiple Windows logs, including Sysmon, Security,
System, Application, PowerShell, WMI Activity, and Task Scheduler. It allows the
user to specify an output directory for the captured logs, defaults to a folder named
captured_logs in the current directory. The script prompts the user to start and stop
the log capture, ensuring that only relevant events are recorded. The capture is designed
to run manually, allowing the user to execute the desired adversarial technique during the
capture window. This is important to ensure that the logs contain the events generated
by the specific technique being tested. The captured logs are saved in XML format, which
is suitable for further processing and analysis.

After, the captured events are stored in XML files within the TTP specific folder. It
has the following structure:

$HOME
|- win-logs
|- T1082
|- Microsoft-Windows-Sysmon_Operational_events.xml
|- Microsoft-Windows-WMI-Activity_Operational_events.xml
|- T1083

The win-logs folder contains subfolders for each ATT&CK technique (TTP) tested
(e.g. T1082, T1083, etc...). This folder is then shared with the host machine so that
the log processing and analysis can be performed outside the VM environment. The
XML files contain detailed information about each event, including timestamps, event
IDs, process names, command lines, and other relevant metadata, which are essential for
the analyzing system behavior and identifying the techniques used.

B.2 Invoke-AtomicRedTeam set-up and execution

The Atomic Red Team framework [39] was used to execute the adversarial techniques.
The installation was done via Powershell using the following commands:

Listing B.3: Invoke-AtomicRedTeam installation

Install-Module -Name invoke-atomicredteam,powershell-yaml -Scope
CurrentUser

If you get an error about the repository being untrusted, you can run:
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Set-ExecutionPolicy -ExecutionPolicy Bypass -Scope Process

This command temporarily sets the execution policy to bypass for the current PowerShell
session, allowing you to install the module without changing the system-wide policy. Of
course this operation brings security risks, so it should be done only in a controlled
environment, it remands to the chapter 5 for more details about security considerations.

Once installed, it needs to download the Atomic Red Team repository (this is where
the atomic tests are defined), the default location is C:\AtomicRedTeam\Atomics, but
you can specify a different path.

Listing B.4: Downloading the Atomic Red Team repository

IEX (IWR ’https://raw.githubusercontent.com/redcanaryco/
invoke-atomicredteam/master/install-atomicsfolder.psl’ -
UseBasicParsing);

Install-AtomicsFolder

Now that the framework is installed, you can execute a specific atomic test using the
Invoke-AtomicTest command. A good starting point is to list all available techniques
IDs and test names available for execution. The -ShowDetailsBrief flag provides a concise
overview of each test given its technique ID.

Listing B.5: Listing available Atomic Red Team techniques

Invoke-AtomicTest T1082 -ShowDetailsBrief

E¥ Administrator: Windows PowerShell = O *

Figure B.1: Listing available Atomic Red Team test for technique T1082

Each atomic test definition specifies whether the test is intended to be run on Windows,
Linux, or macOS. However, there may be finer-grained requirements for an atomic test.
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For example, the test may be intended for execution on a Domain Controller or Server
rather than on a Workstation. Other requirements (also called prerequisites) may include
the existence of certain files or users, as well as the installation of specific tools. Note:
Since a Domain Controller (e.g., Active Directory) was not set up in this environment,
tests requiring such components were not executed.

To check if the actual system state meets the prerequisities for a specific atomic test,
you can use the -CheckPrereqs flag. This is a useful step to ensure that the test can be
executed successfully without errors due to unmet requirements.

Listing B.6: Checking prerequisites for an Atomic Red Team test

Invoke-AtomicTest T1082 -CheckPreregs

ernalPayloads.

[*] The Az module must be installed.

ry installing prereq's with the -GetPrereg

Figure B.2: Checking prerequisites for Atomic Red Team test T1082

If some prerequisites are not met, you can either manually adjust the system to satisfy
them or insert the -GetPrereqgs flag to have the framework attempt to automatically set
up the necessary conditions. However, this automatic setup may not always be successful,
especially if it requires complex configurations or installations. A full installation guide
of the Invoke-AtomicRedTeam can be found at [39].

Executing Atomic Red Team tests Once the prerequisites are satisfied, you can
execute the atomic test using the Invoke-AtomicTest command. The test can run on
local or remote systems, but in this case, we are focusing on local execution.

Listing B.7: Executing an Atomic Red Team test

Invoke-AtomicTest T1082 -TestNumbers 1, 7, 9
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This command executes the specified test numbers 1, 7 and 9 for technique T1082 (System
information Discovery). The ouput shows the status of each test, indicating whether it
was completed successfully or if there were any errors. For the purpose of this experiment,
all tests were executed with the following commands:

Listing B.8: Executing all Atomic Red Team tests for a specific technique

PS C:\AtomicRedTeam\win-logs> powershell.exe -ExecutionPolicy
Bypass -File ".\capture_events.psl" -OutputDir ".\T1059.001"

PS C:\AtomicRedTeam> Invoke-AtomicTest T1059.001 -LoggingModule
"Attire-ExecutionLogger" -ExecutionLogPath
".\win-1logs\T1059.001\T1059.001. json"

The first command starts the log capture process generated by the system during the test
execution and saves them in the specified output directory (e.g., . \win-logs\T1059.001).
The second command executes the atomic test for technique T1059.001(Command and
Scripting Interpreter: PowerShell) and logs the execution details in a JSON file in the
specified path using the Attire-ExecutionLogger module. Note: For practical reasons,
both commands must be executed in different PowerShell sessions.

The output from the framework provides a json file with the execution details, including
the status of each test, any errors encountered, and the commands executed. This infor-
mation is useful for verifying that the test ran as expected and for troubleshooting any
issues that may arise during execution. Here is an example of the output from executing
a test:

Listing B.9: Output from executing an Atomic Red Team test

{
"mitre-technique-id": "T1082",
"procedure-name": "Hostname Discovery (Windows)",
"procedure-id": {
"type": "guid",
"id": "8b5cfbf23-4ale-4342-8792-007e004b975f"
1,
"procedure-description": "Identify system hostname for Windows. Upon
execution, the hostname of the device will be displayed.\n",
"order": 7,
"steps": [
{
"order": 1,
"time-start": "2025-06-17T09:38:21.000Z",
"time-stop": "2025-06-17T09:38:21.000Z",
"executor": "command_prompt",
"command": "hostname\n",
"process-id": 6480,
"exit-code": O,
"is-timeout": false,
"output": [
{
"content": "DESKTOP-T6SAS9U",
"level": "STDOUT",
"type": "console"
}
]
3
]
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3,

This JSON output provides a detailed record of test execution, including the technique
ID, procedure name and description and the test steps with timestamps, commands
executed, process IDs, exit codes, and output. In this case, the test successfully executed
the hostname command, which retrieves the system’s hostname as expected.

Another example of a TTP test was executed for T1218.010 (Signed Binary Proxy
Execution: Regsvr32).

Listing B.10: Output from executing an Atomic Red Team test

{
"mitre-technique-id": "T1218.010",
"procedure-name": "Regsvr32 Silent DLL Install Call DllRegisterServer",
"procedure-id": {
"type": "guid",
"id": "9d71c492-ea2e-4c08-af16-c6994cdf029f"
},
"procedure-description": "Regsvr32.exe is a command-line program used to
register and unregister OLE controls. Normally, an install is executed
with /n to prevent calling Dl1lRegisterServer.",
"order": 5,
"steps": [
{
"order": 1,
"time-start": "2025-06-18T14:08:00.000Z",
"time-stop": "2025-06-18T14:08:05.000Z",
"executor": "command_prompt",
"command": "C:\\Windows\\system32\\regsvr32.exe /s /i \"C:\\
AtomicRedTeam\\atomics\\T1218.010\\bin\\A11TheThingsx86.d11\"\n
"process-id": 2860,
"exit-code": O,
"is-timeout": false,
"output": [
{
"content": "",
"level": "STDOUT",
"type": "console"
X
]
X
]
X

This technique is called Signed Binary Proxy Execution: Regsvr32 and involves
using a legitimate signed binary (in this case, regsvr32.exe) to execute a potentially
malicious DLL. This technique is called Signed Binary Proxy Execution: Regsvr32,
the regsvr32.exe is a command-line utility in Microsoft Windows for registering and un-
registering DLLs and ActiveX controls in the operating system Registry. In this Test
the regsvr32.exe [40] command is executed with the /s (silent) and /i (install) options
to register a DLL file without displaying any user interface. Here an Attacker can abuse
to run malicious DLLs without dropping EXEs (living off the land), Bypass applica-
tion allowlists and some antivirus solutions, Avoid detection by using legitimate system
utilities.
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Test coverage A total of 70 MITRE ATT&CK TTPs were tested. Each technique
was executed individually with all the tests for which the requirements were satisfied,
starting from a clean checkpoint. Events were collected via PowerShell scripts and stored

in XML format.

The table B.1 shows the per-TTP detection results for both models under the exact
ATT&CK ID match condition, and the table B.2 shows the predictions made by both
models for each TTP tested. For the analysis and evaluation discussion, please refer to

Chapter 5.

Table B.2: Per-run predictions (plain strings returned by models).

# ATT&CK TTP Mistral-7B FT (predicted IDs)

GPT-4o (predicted IDs)

1 T1003.001

2 T1005
3 T1007

4 T1010

5 T1012
6 T1016
7 T1021.001

8 T1021.006

9 T1033

10 T1036.003
11 T1036.004
12 T1036.005

13 T1047

14 T1049

15 T1053.005

16 T'1055.001

17 T1055.002

18 T1055.003
19 T1055.012

20 T1056.001
21 T1057

T1056, T1056.001

T1074.001
T1059.003

T1112

T1059.001
T1046
T1562.004

T1059.001

T1033

T1036.005
T1546.013, T1059.003
T1059.001

T1055.004, T1055.003

T1059.001

T1047, T1069.001

T1059.001

T1055

T1059.001
T1055.012

T1059.001
T1059.001
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T1003.001, T1112, T1055.012,
T1547.009

T1005, T1074.001, T1059.001

T1059.001, T1087.002, T1057,
T1033, T1112, T1547.001

T1059, T1204.002, T1547.001,
T1112, T1055.001

T1086, T1012, T1112, T1546.003
T1086, T1046, T1083, T1057

T1112, T1562.004, T1059.001,
T1021.001

T1059.001, T1021.006, T1087,
T1078, T1550.002

T1059.001, T1033, T1087.001,
T1087.002

T1036.003, T1059.001, T1204.002
T1050, T1059.003, T1547.010

T1059.001, T1027, T1055.001,
T1547.001

T1033, T1047, T1059.001,
T1055.001, T1078, T1547.001

T1086, T1059.001, T1087.002,
T1018

T1059.001, T1059.005, T1087.002,
T1220, T1047

T1059.001, T1105, T1055.001,
T1055.002, T1543.003

T1059.001, T1055, T1055.001,
T1055.012

T1059.001, T1055

T1055, T1055, T1036.004,
T1204.002, T1548.002

T1056.001, T1059.001, T1548.001

T1059.001, T1068, T1112,
T1547.006, T1543.003
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# ATT&CK TTP Mistral-7B FT (predicted IDs)

GPT-40 (predicted IDs)

22 T1059.001

23 T1059.003

24 T1059.005

25 T1059.007
26 T1070.001
27 T1070.004

28 T1070.006
29 T1071.001

30 T1082
31 T1083

32 T1110.004
33 T1112

34 T1113

35 T1120

36 T1127.001
37 T1134.001

38 T1135

39 T1140
40 T1202

41 T1204.002

42 T1218.003

43 T1218.005

44 T1218.010
45 T1218.011

46 T1220

47 T1222.001
48 T1518
49 T1543.003

T1059.001

T1059.003

T1059.003

T1059.001
T1070.001
T1070.004

T1070.006
T1071.001

T1059.001
T1059.003

T1059.001
T1112

T1113

T1059.001

T1220
T1543.003

T1059.001

T1140
T1059.001

T1059.001

T1071.001

T1059.001

T1218.010
T1036.005

T1059.003

T1222.002
T1059.001
T1543.003
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T1059.001, T1003.001, T1105,
T1087.002

T1059.001, T1059.005, T1202,
T1036, T1566.002

T1059.001, T1059.005, T1059.003,
T1070.004

T1059.001, T1082, T1204.002
T1070.001, T1086

T1070.004, T1070.006, T1059.003,
T1059.001

T1070.006, T1070.009, T1112

T1059.001, T1059.003, T1071.001,
T1055.013, T1005

T1087.001, T1012, T1059.001

T1059.003, T1059.001, T1021.004,
T1083, T1057, T1036.005

T1110.003, T1552.001, T1059.001

T1112, T1059.001, T1547.001,
T1021.001

T1059.001, T1113, T1112,
T1562.001

T1059.001, T1105, T1218.011,
T1086

T1127.001, T1059.005, T1218.005

T1543.003, T1059, T1021.002,
T1570

T1087.002, T1135, T1046,
T1059.001

T1105, T1140, T1218.011
T1059.001, T1559.001, T1218.010,
T1071.001

T1059.001, T1566.001, T'1204.002,
T1112, T1055, T1105, T1027,
T1071.001

T1036.005, T1071.001, T1112,
T1547.001

T1086, T1059.001, T1136.001,
T1546.003, T1053.005

T1218.010, T1036.005, T1059.003

T1036.003, T1059.003, T1218.011,
T1204.002

T1047, T1059.001, T1218.011,
T1112, T1082, T1562.001

T1222.001, T1564.001, T1070.004
T1059.001, T1105, T1074.002
T1050, T1543.003, T1574.002
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# ATT&CK TTP Mistral-7B FT (predicted IDs)

GPT-40 (predicted IDs)

50 T1546.001
51 T1546.003

52 T1546.008
53 T1546.012

54 T1547.001
55 T1547.004
56 T1547.008
57 T1547.009
58 T1557.001

59 T1560.001

60 T1562.001
61 T1562.002

62 T1562.003
63 T1562.004

64 T1562.006

65 T1564.001

66 T1564.002

67 T1564.003

68 T1566.001

69 T1566.002

70 T1574.001

T1546.013, T1059.001
T1546.003

T1546.008
T1546.013, T1546.014

T1112

T1546.015

T1112

T1059.003, T1547.009
T1546.013, T1059.001

T1059.001

T1562.001
T1546.013, T1059.001

T1059.001
T1569.002

T1562.001
T1564.001

T1204.001

T1059.003
T1059.003, T1105
T1059.003

T1543.003

T1059.001, T1546.001, T1562.001

T1053.005, T1047, T1059.001,
T1546.003, T1220

T1546.008, T1055.002, T1547.001

T1059.001, T1059.003, T1112,
T1546.012

T1547.001, T1546.001, T'1055.001
T1546.010, T1546.011, T1059.001
T1059.001, T1547.001, T1112

T1059.001, T1547.009, T1204.002

T1036.005, T1059.001, T1071.001,
T1105, T1112, T1547.001

T1059.001, T1027, T1560.001,
T1074.001, T1486

T1562.001, T1562.004, T1059.001
T1059.001, T1105, T1562.006,
T1027, T1021.001, T1055
T1562.001, T1059.001, T1105
T1059.001, T1021.004, T1562.004,
T1112, T1053.003

T1562.001, T1562.006, T1070.006,
T1569.002

T1059.001, T1112, T1564.001,
T1547.001

T1059.001, T1059.003, T1087.001,
T1136.001, T1112, T1547.009,
T1078

T1059.001, T1059.003, T1218.005,
T1071.001, T1106

T1566.001, T1059.001, T1105,
T1204.002

T1059.001, T1055.001, T1121,
T1204.001

T1059, T1547.001, T1543.003,
T1543.002, T1055
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Table B.1: Per-TTP detection under exact ATT&CK ID match. A checkmark indicates
the model returned the ground-truth ID for that run.

# ATT&CK TTP Mistral-7TB FT GPT-40 # ATT&CK TTP Mistral-7B FT GPT-40

1 T1003.001 - v 36 T1127.001 - v
2 T1005 - v 37 T1134.001 - -
3 T1007 - - 38 T1135 - v
4 T1010 - - 39 T1140 v v
5 T1012 - v 40 T1202 - -
6 T1016 - - 41 T'1204.002 - v
7 T1021.001 - v 42 T1218.003 - -
8 T1021.006 - v 43 T1218.005 - -
9 T1033 v v 44 T1218.010 v v
10 T1036.003 - v 45 T1218.011 - v
11 T1036.004 - - 46 T1220 - -
12 T1036.005 - - 47 T'1222.001 - v
13 T1047 - v 48 T1518 - -
14 T1049 - - 49 T1543.003 v v
15 T1053.005 - - 50 T1546.001 - v
16 T1055.001 - v 51 T1546.003 v v
17 T1055.002 - - 52 T1546.008 v v
18 T1055.003 - - 53 T1546.012 - v
19 T1055.012 v - 54 T1547.001 - v
20 T1056.001 - v 55 T1547.004 - -
21 T1057 - - 56 T1547.008 - -
22 T1059.001 v v 57 T1547.009 v v
23 T1059.003 v - 58 T1557.001 - -
24 T1059.005 - v 59 T1560.001 - v
25 T1059.007 - - 60 T1562.001 v v
26 T1070.001 v v 61 T1562.002 - -
27 T1070.004 v v 62 T1562.003 - -
28 T1070.006 v v 63 T1562.004 - v
29 T1071.001 v v 64 T1562.006 - v
30 T1082 - - 65 T1564.001 v v
31 T1083 - v 66 T1564.002 - -
32 T1110.004 - - 67 T1564.003 - -
33 T1112 v v 68 T'1566.001 - v
34 T1113 v v 69 T1566.002 - -
35 T1120 - - 70 T1574.001 - -
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