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Abstract

Large Language Model (LLM) based agents are increasingly adopted for the automation
of complex tasks. In this thesis, I systematically study their capabilities and limita-
tions in cybersecurity forensics. Building upon a publicly available cybersecurity bench-
mark [7], I designed and evaluated a modular multi-agent system for forensic analysis. 1
first addressed two fundamental limitations of LLMs: the lack of long-term memory and
the inability to access up-to-date knowledge. To overcome these challenges, I added a
semantic memory module for storing and retrieving information and a web search tool
(RAG) for external knowledge retrieval. Leveraging these solutions, I then enhanced the
agent architecture through iterative refinements. The initial design relied on a single
monolithic agent, while later versions added specialized components, including a PCAP
Flow Reporter and a Log Reporter for traffic and log analysis. I evaluate the impact
of design decisions on tool integration and architecture to provide guidance for prac-
titioners. I benchmark four agent architectures and six LLLM backends on 20 incident
scenarios of increasing complexity. I also test 10 incidents from 2025, reaching 80%
CVE identification accuracy with the best architecture. Finally, a human study with 22
experts rated the agent’s reports as complete, useful, and coherent.
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Chapter 1

Introduction

The thesis work focuses on the development of an AI Agent designed for Cybersecurity
forensics. The objective of the agent is to automate the analysis of traffic and Docker
log files to detect traces of malicious activity, evidence of potential attacks and support
analysts in drawing meaningful conclusions. By combining Large Language Models
(LLMs) with structured reasoning and memory, the agent aims to reduce the time and
expertise required for complex forensic investigations.

1.1 Context and problem statement

When a Cybersecurity incident occurs, it almost always leaves behind digital traces.
One of the most common sources of evidence is the network traffic, stored in technical
files called PCAPs (packet capture files). A manual analysis of such files to find traces
of malicious behavior is time-consuming and requires expertise. Therefore, this thesis
addresses the problem of how to build an Al-based assistant that can help automating
and streaming the analysis of forensic experts. The tool takes as input network traffic
data and log files. It then starts a multi-step reasoning process, limited to a predefined
number of iterations, to examine the data and find relevant insights. Finally, it has
to provide a concise report summarizing key findings that can help humans to make
further considerations and analysis. Also, I prompt the agent to specifically retrieve the
affected service, the identified CVE (Common Vulnerabilities and Exposures) and to
determine whether the attack was actually successful. This mirrors the typical workflow
of a forensics expert, who must manually evaluate these same elements to understand
whether a security incident has occurred and, in case the response is positive, answering
with a proper incident management strategy.

To reduce the volume of data that needs to be analyzed, the network traffic provided
to the agent is pre-filtered to include only information related to a specific, identified
service of interest. As a result, the agent operates during the second phase of the
forensic workflow. After an analyst has identified a potentially affected service based
on preliminary evidence related to the incident, the relevant network data is filtered
accordingly. This allows for a focused, in-depth analysis aimed at confirming the presence
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of malicious activity.

1.2 Relevance of the problem

In recent years, increased digitalization and the widespread adoption of flexible work
models have augmented the digital risk for both businesses and individuals. According
to a report by the International Monetary Fund (IMF), the global cost of cybercrime
is projected to reach $23 trillion by 2027, an increase of 175% compared to 2022 [38].
Moreover, according to a survey conducted by Gartner among executives [36], 50% of
them believe that generative Al will increase the risk of cyber attacks. However, an
interesting question arises: why not leveraging generative Al to also respond to cyber-
attacks, adapting and detecting cyber-threats more effectively?

Such question is further supported by other data: the business is currently challenged
by a skill gap in the cybersecurity sector: the growth of the global cyber-defense work-
force of only 12.6% in 2024. This translates into a current shortage of approximately
four million professionals worldwide, which could increase dramatically to eighty-five
millions by 2030 without the introduction of innovative solutions [38].

The imbalance between rising threats and the availability of skilled professionals
creates a significant bottleneck in the ability to detect, analyze and respond to security
incidents in a timely manner. This challenge becomes even more critical in a world where
virtually every process (economic, social, and institutional) relies on fragile and inter-
connected digital infrastructures. These elements clearly outline the need for intelligent
and autonomous tools that can reduce the workload on human analysts and scale with
the growing volume of digital evidence. To answer this call for automation, this thesis
leverages the capabilities of Large Language Models (LLMs) to support cybersecurity
forensics. I design the agent not only to reduce the burden on human analysts, but also
to increase the consistency of the analysis. I hope that, in doing so, my contribution
could help reducing the gap between the growing complexity of cyber threats and the
limited availability of specialized human resources, paving the way for more scalable and
intelligent security operations.

1.3 Main contribution of the thesis

The purpose of this research is to investigate the effectiveness of different Al agent
architectures in the forensics analysis. Specifically, the main goal is to evaluate how ar-
chitectural choices, such as memory management and tool integration, affect the agent’s
ability.

The project builds upon a previous work [7] that introduce a baseline forensic agent
evaluated on a benchmark of near-real-world cybersecurity events. The objective of
this thesis is to improve the results of the agent on the same benchmark by allowing
it to overcome the limitations pointed out in that study. Specifically, the original work
highlighted two main shortcomings:
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1. Lack of context window management: some executions aborted because input
tokens were higher of model’s context length

2. Inability to extract meaningful evidences: in many cases, the agent failed
to thoroughly explore the network traffic, resulting in incomplete analysis and
inaccurate conclusions

To address the first issue, the refined agent proposed in this work adopts a more advanced
prompting mechanism inspired by MemGPT [34]. This approach introduces a dynamic
memory management strategy, where only the most relevant elements of the current
reasoning process are preserved over time. In particular, the agent maintains a structured
queue that is incrementally updated at each reasoning step, allowing it to carry latest
information without exceeding context limitations. Additionally, in order not to lose
relevant details early in the reasoning process, the agent has the possibility to store
relevant details in a vector database. This information are retrieved at each step based
on the context and the entire prompt is constructed to make it as much meaningful as
possible, while being sure that the number of tokens is under a predefined limit.

To overcome the inability to extract meaningful evidences, the proposed solution
adopts a multi-agent architecture that coordinates several specialized components to
support forensic analysis. This includes dedicated agents and tools for network traffic
inspection, Docker log exploration, and external knowledge retrieval. Each agent is
responsible for a specific task and collaborates within a structured workflow, enabling a
more thorough and modular investigation process.

As a result, the refined agent is not only capable of handling longer inputs but also
more effective in extracting insights from complex forensic scenarios.

These improvements result in an agent that not only performs better on the given
benchmark, but also opens new possibilities for future applications in real-world foren-
sic workflows. The architectural choices made in this thesis, such as dynamic memory
management and multi-agent coordination, represent a step toward building more au-
tonomous and reliable Al systems for cybersecurity tasks.

1.4 Methodology

The methodology adopted in this thesis combines multiple approaches. First, a compre-
hensive literature review was conducted to understand the current landscape of LLM-
based agent architectures and their application in cybersecurity and reasoning tasks.
This includes reviewing recent advances in prompt engineering, memory management
and multi-agent systems.

Subsequently, a first working version of the system was developed in order to repro-
duce the result of the baseline agent [7]. This served as a reference point for identifying
performance gaps and architectural limitations. The implementation was based on an
open-source framework called LangGraph, which provides a flexible environment for
defining reasoning workflows, managing stateful agents and integrating external tools in
a modular way.
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The final version of the agent was then built incrementally, with architectural de-
cisions driven by insights gained from an in-depth analysis of intermediate results. At
each stage, the objective was to introduce new components, or change current ones, in
order to address specific weaknesses observed during experimentation.

Each version of the agent was extensively evaluated against the benchmark, allowing
for a clear comparison of approaches and a deeper understanding of their strengths and
limitations. This iterative and experiment-driven approach ensures that each choice was
driven by practical evidences rather than theoretical assumptions alone. By progressively
refining the agent and assessing the impact of each architectural change, the research
was able to converge toward a solution that balances performance and scalability. The
entire path from the baseline to the final solution, with all their respective drawbacks
and strengths, is discussed in detail in Chapter 4.

1.5 Thesis structure
The thesis is structured into six chapters, as follows:

e Chapter 1 — Introduction: Presents the context, motivation, main contributions
and structure of the thesis.

e Chapter 2 — Background: Provides a literature overview for what concerns
LLMs, agent and multi-agent architectures, prompting strategies, frameworks for
agents development and evaluation.

o Chapter 3 - Related works: Reviews existing works that have addressed similar
challenges in the field of Al-driven forensic analysis.

e Chapter 4 — Method: Describes in details the approach adopted in the design
of the main architectures.

o Chapter 5 — Experimental /numerical Evaluation: Presents the results of all
the experiments conducted and the insights gained from the in-depth analysis.

¢ Chapter 6 — Conclusion and Future Work: Summarizes the findings and
outlines possible directions for extending the research.



Chapter 2

Background

AT agents are software entities that leverage Large Language Models (LLMs) to perform
a task. Agents try to pursue a goal by iterating and taking decisions based on their
internal knowledge, the tools they have been provided with and the visible outcome of
previous decisions.

2.1 LLMs

Large Language Models (LLMs) are deep learning models trained on a vast amount of
data for advanced language processing. Text generation, machine translation, summary
writing, chat-bots or conversational Als are all possible examples of application of LLMs.
These models are typically pre-trained using self-supervised techniques, where the model
learns to predict missing words or tokens in context. However, self-supervision is only
the first step: LLMs are often further refined using supervised fine-tuning on curated
datasets, and aligned with human preferences through Reinforcement Learning from
Human Feedback (RLHF), enhancing their safety, coherence, and usefulness in real-
world tasks.

2.1.1 Capabilities and limitations of LLMs

Through extensive training, LLMs such as GPT-40 have gained the ability to distill long
and complex texts into concise summaries [5] [27]. They can contextually prioritize key
information, making them highly valuable for professionals dealing with dense content
such as legal documents, academic papers or technical reports [11].

Another notable strength is their versatility in creative writing tasks. LLMs can pro-
duce initial drafts for blogs, stories or articles, adapting to different tones and narrative
styles [3] [21].

In the field of software development, LLMs assist with code generation, debugging
and optimization. Thanks to their training on large codebases, they understand pro-
gramming patterns across multiple languages and can offer relevant suggestions based
on the developer’s intent [51].
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Despite the aforementioned strengths, LLMs also exhibit significant limitations. One
of the major concern is called hallucination [50], where models generate text that appears
coherent with respect to the context and factually correct, but it is actually inaccurate or
entirely fabricated. This stems from their design, which predicts likely tokens sequences
without an internal fact checking system.

Moreover, LLMs often struggle with tasks requiring complex reasoning and causality
understanding, such as multi-step logical problems or mathematical operations. Their
outputs are based on pattern recognition rather than true understanding of rules and
semantics [49] [10].

Security is another critical challenge in this context. LLMs are susceptible to attacks
such as prompt injection [57], jailbreaks [14] and data poisoning [12]. These vulnera-
bilities can lead to harmful behavior, biased responses or the unintentional disclosure
of sensitive information. Biases inherited from training data can also affect fairness in
sensitive domains like recruitment or legal analysis.

One of the main concern of the growing popularity of LLMs is their energy consump-
tion, not only for training, but also at inference time. Obviously this issue is strictly
related to the carbon footprint of such technologies, raising environmental sustainability
questions. Additionally, the high computational demands of large models translate into
substantial operational costs, particularly when relying on API calls for inference.

To conclude, one of the most pressing challenges with LLMs is their lack of inter-
pretability. As highlighted by Murdoch et al. [26], interpretation in machine learning
refers to the extraction of relevant knowledge from a model concerning relationships
either contained in the data or learned by the model. When dealing with LLMs with bil-
lions of parameters, they typically act as a black box, receiving an input and providing
an output. Interpretability is more than a theoretical concept in high-stakes domains.
For instance, in healthcare, a reliable interpretation can help understanding whether a
medical diagnosis made by an LLM is trustworthy or not. Similarly, in cybersecurity,
the stakes are high: a false negative may result in an undetected attack, compromising
sensitive systems, whereas a false positive may lead to wasted resources, but is typically
less harmful. In such scenarios, knowing why a model reached a certain conclusion is
crucial to build trust, guide human decision-making and implement appropriate coun-
termeasures.

2.2 Al agents

The potential of LLMs extends beyond writing summaries, essays and code, they can be
framed as powerful and organized general-purpose problem solver called Al agents.
2.2.1 System overview

In a LLM-powered autonomous agent system, the language model functions as the
agent’s brain, supported by several key components:

e Planning

10
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The agent is capable of decomposing complex tasks into smaller, more manageable
subgoals, allowing it to operate in a structured and efficient manner. Furthermore,
it can engage in self-reflection, analyzing the outcomes of previous decisions to
refine its strategies and improve future performance.

¢ Memory
Agents typically employ two types of memory:

— Short-term memory, which includes mechanisms like prompt chaining, allow-
ing the agent to keep track of recent interactions and adjust its behavior
accordingly.

— Long-term memory, which enables persistent knowledge retention across ses-
sions by integrating external storage systems (e.g., vector databases) for fast
and scalable information retrieval.

e Tool Use
Agents can interact with external tools and APIs to access information beyond
their internal training data. This includes querying databases, performing code
execution and retrieving real-time knowledge on the web, extending the agent’s
functionality and adaptability.

2.2.2 Planning

A complicated task is typically faced by decomposing it into many steps, which requires
the agent knows who is it and plan ahead. Many prompting techniques have been
introduced to guide the model in decomposing a complex task:

o Chain of Thoughs [48]: The model is explicitly instructed to think step by step
to transform big tasks into multiple manageable tasks.

o Tree of Thoughts [52]: It extends CoT by exploring multiple reasoning pos-
sibilities at each step. It generates multiple thoughts per step, creating a tree
structure. The search process in the generated tree can be performed through
BFS (breadth-first search) or DFS (depth-first search).

2.2.3 Self-reflection

Self-reflection is fundamental to make an agent improve its actions by iteratively refining
past decisions and correcting previous mistakes. It plays a crucial role in real-world
scenarios where trial and error are inevitable.

ReAct [53] integrates reasoning and act within LLMs. It allows the model to both
generate natural language reasoning steps and perform concrete actions, such as calling
external tools. By doing so, it can explain its thought process while interacting with the
environment to gather new information, improving both transparency and effectiveness
in solving complex tasks.

11
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The ReAct prompt template incorporates explicit steps for the LLM to reason and act,
and is typically structured as follows:

Thought:

Action:
Observation:

This cycle is repeated multiple times until a final answer or conclusion is reached.

2.2.4 Tool use

LLMs tool calling comprises mainly 3 stages:

1. Task planning: the LLM, acting as the brain of the system, parses the action into
a tool call with related and required arguments. At this stage, the LLM is required
to understand, based on the description of the tool and the required arguments,
whether invoking it is beneficial for completing the task.

2. Task execution: the tool called executes its function and returns the correspond-
ing results, including an appropriate description of errors, if any

3. Result integration: the LLM receives the output of the tool, appends it to the
prompt of the following step. it is used to decide whether to continue the reasoning
process or conclude the task.

Despite their impressive capabilities, LLM-powered agents can be computationally ex-
pensive, especially when multiple reasoning steps, external tool calls or memory lookups
are involved. Indeed, the aforementioned result integration step often requires to input
many words (that translate to tokens) in the model. This not only increases operational
costs and energy consumption, but also introduces latency and can push the system
toward the limits of the model’s context window, potentially degrading performance or
truncating important information.
Such challenges highlight the need for efficient memory management strategies, prompt

engineering techniques and careful architectural design to ensure scalability and sustain-
able deployment of AI agents in real-world applications.

2.2.5 Autonomy and safety trade-offs

Recent research increasingly focuses on implementing fully autonomous Al agents that
do not require continuous supervision. Thus, they are provided with a task, a limit
on the amount of iterations in their reasoning process and have to provide an answer.
Such agents would be particularly powerful in terms of task automation, especially to
improve performance of humans. However, increasing the autonomy of Al agents in
dynamic environments introduces risks in terms of misalignment, unexpected behaviors
and unsafe tool usage.

12
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A common mitigation strategy involves Human-in-the-Loop (HITL) configurations or
adjustable autonomy levels, where humans retain decision authority over critical actions
or final outputs. Additionally, it often happens that an LLM gets stuck in a loop without
the ability of understanding the next step. This may happen because it lacks the concept
of causality or because it is not able to highlight relevant details. In such scenarios, it is
particularly useful to introduce a human-in-the-loop that is able to guide the agent in
the correct direction.

2.3 Multi-Agent paradigm

In a real-world scenario, multiple decision-makers often need to interact in order to
solve a complex task. A Multi-Agent System (MAS) provides an accurate and effective
abstraction of this approach.

In a LLM-MAS application, several generative agents can collaborate and commu-
nicate with one another or being coordinated by an orchestrator (which is itself an
agent communicating with the others), which delegates sub-tasks to the most suitable
sub-agent.

As stated by Chen et al. [6], the communication of agents has two different purposes:

1. Achieve collaboration, obtaining performance that goes beyond the single agent
2. Achieve consensus, enabling faster convergence

The type of communication content changes: it could be natural language or custom
content such as a vector or a discrete signal that does not allow for interpretability as it
can be understood only by the generative agents in the system.

Multi-agent systems can be broadly categorized based on their coordination strategy:

¢ Centralized coordination
A single orchestrator (possibly a generative agent) oversees the planning, task
delegation and integration of outputs from sub-agents. This design simplifies global
reasoning but may become a bottleneck or single point of failure.

¢ Decentralized coordination
Agents communicate peer-to-peer and negotiate sub-tasks without a central con-
troller. This architecture is more robust and scalable in dynamic environments but
poses challenges for convergence, alignment and conflict resolution.

In case the multi-agent system makes use of an orchestrator, sub-agents can be con-
ceptualized as advanced tools or services that are invoked by the orchestrator to handle
specific sub-tasks. These sub-agents may be either generative or non-generative, like
tools for retrieval, classification or logic-based execution. Similarly, the orchestrator
itself can be generative or not: it may be implemented as a language model capable
of planning and prompting, or as a static controller using predefined rules or graphs.
Regardless of its nature, the orchestrator is typically responsible for coordinating agent

13
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interactions and integrating their outputs to achieve coherent global behavior.

There are two main problems related to LLM-MAS:

o Efficiency explosion
LLMs are inherently slow at inference time because of their autoregressive nature.
In generative multi-agent systems, this inefficiency is amplified because each agent
may need to query the LLM multiple times per action. As the number of agents
increase, this overhead grows significantly

¢ Accumulative error effect
In LLM-MAS, the output of each round influences the input of the following one.
Early errors propagate and compound over time, leading to degraded performance
in later stages

Moreover, evaluating the behavior of a group introduces another challenge in Multi-
Agent systems. In complex settings, it is important to assess both the quality of inter-
agent communication and the effectiveness of the result they return with respect to
the assigned sub-task. This often requires inspecting long execution logs to determine
whether each sub-agent correctly interpreted its role when invoked and to verify if its
response aligns with the original task requirements.

Multi-agent systems are being actively explored for real-world applications such as collab-
orative scientific discovery, distributed customer support, complex multi-modal planning
and autonomous system orchestration. Frameworks like AutoGen and CrewAlI allow to
deploy such systems in practice.

2.4 Frameworks for agents development

There are different technologies available for developing AT agents that leverage Large
Language Models (LLMs) to perform complex tasks. The selection of a specific frame-
work influences the level of flexibility, scalability and the ease of integration with external
tools or services. In the context of this project, LangGraph, a framework built on top of
LangChain, was adopted to design the Al agent. LangGraph introduces a graph-based
abstraction, where each step in the agent’s reasoning process is represented as a node
within a directed graph (DG). This architecture supports features such as conditional
routing, which allows to manage even complex workflows. Nevertheless, there are sev-
eral other alternatives, each offering different capabilities and abstraction levels. The
following is a more in-depth analysis of the most prominent existing technologies.

e Llamalndex
Llamalndex stands out as one of the most adopted frameworks for agents de-
velopment. It is specifically designed for context-augmented LLM applications.
It enables agents to access external data beyond their initial training sets, fa-
cilitating more informed and accurate responses. The most popular example of

14
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context-augmentation is Retrieval-Augmented Generation or RAG, which com-
bines context with LLMs at inference time. The framework is available in both
Python and TypeScript, offering user-friendly tools for beginners as well as ad-
vanced customization capabilities for more experienced developers. Llamalndex is
an open-source project, fostering a collaborative environment for developers world-
wide. To support the transition from development to production, Llamalndex
provides LlamaCloud, an end-to-end managed service available both as a hosted
solution on their infrastructure and as a self-hosted deployment. Among its compo-
nents, LlamaParse serves as the document parsing engine, enabling the extraction
and structuring of data from various document formats. Users can sign up and
parse up to 1,000 pages per day for free, with the option to scale usage through a
pay-as-you-go model by adding a credit card. It is ideal for situations where an Al
agent needs to understand natural language requests and be able to draw informa-
tion from a library or index, like a knowledge base, such as chatbots, knowledge
assistants, or question-answering systems. However, the setup can be slow, with
developers needing to undertake data organization tasks, such as adding filters and
analyzing any logs to check agent behavior before the system is truly optimized.

AutoGen

AutoGen is an open source framework by Microsoft for developing Al agents and
facilitating cooperation among multiple agents to solve tasks. It offers extensive
customization capabilities, along with AutoGen Studio, a no-code, drag-and-drop
interface designed to support users who may not be proficient in programming. Ex-
tensive documentation is available online, including hands-on tutorials, examples
and a rich library of pre-built, open source agents that can be adapted and cus-
tomized to many different use cases. The documentation available online is exten-
sive and provides many tutorials and open source pre-built agents that can be easily
customized. The framework is currently compatible with both Python and .NET,
enabling cross-language agent collaboration and broader integration within enter-
prise environments. AutoGen’s architecture is based on an event-driven messag-
ing infrastructure, supporting asynchronous communication and multiple message
types (e.g., prompts, results, code execution, etc.), which simplifies the orchestra-
tion of sophisticated multi-agent workflows. From a deployment perspective, Au-
toGen supports both local hosting and enterprise-scale cloud deployment, offering
integration with Microsoft Azure services for secure, production-ready workflows.
Microsoft also provides additional tools to enhance AutoGen-based applications:

— Azure AI Studio to deploy LLM-powered applications
— Azure OpenAl to integrate GPT models in a secure environment
— OpenTelemetry for observability and debugging of multi-agents applica-

tions

AutoGen is ideal for tasks requiring multiple Al agents, such as customer support,
data analysis or IT support. While optimized for Microsoft tools, it’s open source.
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The simple Ul and ability to use the ‘low-code’ studioGen appeals to develop-
ers looking for a standardized, modular framework for creating intelligent agents.
The designed architecture is extensible, allowing users to customize systems with
pluggable components. However, it offers less flexibility in designing custom logic,
agent autonomy and intricate workflow than other frameworks.

LangChain - LangGraph

LangChain is the most widely adopted open-source frameworks for developing ap-
plications powered by Large Language Models (LLMs). It is designed to facilitate
the creation of context-aware and tool-augmented agents. LangChain is particu-
larly well-suited for building agents that require step-by-step reasoning, integration
with external APIs or access to long-term memory. The framework supports both
Python and JavaScript/TypeScript, offering an high flexibility level. LangChain
also includes native support for key LLM capabilities such as tool usage, retrieval-
augmented generation (RAG), function calling and agent execution. LangChain is
often used in combination with LangGraph, a complementary library that intro-
duces a graph-based architecture for managing complex workflows through directed
graphs (DGs). This integration allows developers to define more complex multi-
agents architecture or conditional routing to support also parallel execution. For
deployment, LangChain applications can be hosted locally or in the cloud. Ad-
ditionally, LangChain offers LangSmith, a dedicated observability and debugging
platform that enables developers to trace, evaluate and fine-tune their LLM work-
flows. Also in this case, LangChain’s documentation is available online with many
hands-on tutorials and pre-built agents that can be customized and connected to
generate complex behaviors. The project is supported by a highly active and grow-
ing community of developers and contributors, which fosters rapid innovation and
support. While LangChain excels in automating complex processes and aids users
with prompt engineering and modular development, it’s often noted as complex
for beginners, requiring a significant time investment to learn the nuances.

Botpress

Botpress is an all-in-one platform for building Al agents powered by LLMs, specif-
ically introduced to facilitate the development and deployment of chatbots within
self-hosted websites. Given the specificity of the task Botpress is designed for, the
documentation is mainly related to examples and tutorials for realizing chatbots
and customizing their interface to ensure visual consistency with the host appli-
cation. Botpress includes features like intent recognition, slot filling, multi-turn
conversations, and memory management, making it suitable for a wide range of
use cases from customer support to lead generation. It also provides a graphical
interface that allows developers and non-technical users to visually design conversa-
tional flows, making it highly accessible for rapid prototyping and production use.
Botpress has recently evolved to support LLM-based agents, offering a hybrid ap-
proach that combines rule-based logic with generative Al capabilities. Developers
can define workflows and conditions for generation, retrieval or decision-making.
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It also supports integrations with third-party tools and APIs. The platform is
open-source and self-hostable, but also offers a cloud version with advanced fea-
tures like analytics, monitoring, and versioning that is called Botpress Studio.
The community is active, although its primary focus remains in chatbot appli-
cations rather than general-purpose agent architectures. Botpress relies on rigid,
predefined paths, which can be effective for simple queries or highly structured
workflows. This is especially true for enterprises looking to get started with Al-
assisted customer support, such as automating customer service, answering FAQs,
and offering live chat. While effective for simple queries or highly structured work-
flows, unanticipated questions or scenarios can be a challenge. This framework
may appeal to enterprises keen to start offering customer support, but scalability
may be an issue.

CrewAl

CrewAl is a multi-agent platform built for enterprises, which allows to orchestrate
powerful Al agents with ease and scale. Custom agents can be defined for data
research, automation or generation, assigning, depending on the context, differ-
ent tasks to be accomplished. The platform is specifically developed to build Al
agents that work together to tackle complex tasks. It is completely developed in
Python and it is independent of LancgChain or other agent frameworks. CrewAl
provides two distinct paradigms for building agents: Crews and Flows. The first
one allows for an high-level abstraction, where each agent is assigned a role, a goal
and, optionally, a tool, the Crew class handles orchestration. The latter allows for
a more fine-grained control at a lower level, where Flows gives full control over
the execution path, task sequencing, and condition-based branching. It is possible
to define a flow of tasks, each executed by a specific agent or LLM call, allowing
for fine-tuned logic and inter-agent communication. Additionally, CrewAl allows
to easily integrate tools created with LangChain or Llamalndex, or even to de-
velop custom tools. Among available frameworks for agent development, CrewAl
stands out for its rich and comprehensive documentation, offering tutorials and
examples for virtually every possible use case. Although it lacks a native observ-
ability layer, it can be integrated with external tools for logging and monitoring
(such as LangSmith if using LangChain tools). Being fully open-source, CrewAl
is an ideal choice for developers and researchers looking to build customizable
and autonomous Al teams without vendor lock-in For enterprises, CrewAl pro-
vides an Enterprise Edition that includes advanced features such as orchestration
dashboards, integrations with over 700 applications, enhanced observability, and
deployment tools. Recently, CrewAI Studio has been introduced, a no-code in-
terface designed to simplify the development and orchestration of Al agents and
multi-agent workflows. While CrewAlI Studio enhances accessibility, it is impor-
tant to note that it requires an enterprise subscription. Despite being relatively
new, CrewAl has quickly fostered an active and supportive community, with regu-
lar updates and open-source contributions. For defined goals and tools and teams
familiar with task orchestration and Al agent workflows, it is a great framework
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that can integrate with a variety of external tools to gather data, analyze trends
and generate reports or be used to manage projects. It can be used for tasks like
content creation, with research and writing articles done by specialized agents, or
project management, breaking down complex projects into smaller tasks, assign-
ing tasks to team members, and tracking progress. CrewAl excels in structured
workflows but lacks adaptability for tasks requiring autonomous decision-making
or real-time role reassignment.

Framework Year Language Key Features ‘Weaknesses Stars
Pt Advan?csxd?aigrlgnt Altridcxmg; Struggles with
LLamalndex 2022 yraon, fntegrations with real-time updates, 40.9K
TypeScript external data; .
frequent index refreshes
document parser (LlamaParse)
Multi-agent orchestration; Less flexible for
AutoGen 2023  Python, .NET human-in-the-loop; enterprise-scale 43.2K
event-driven execution tasks requiring reasoning
Modular; Limited debugging;
LangChain 2022  Python, JS/TS third-party tool integration; BN 106K
. e complex for beginners
full observability
Hybrid logic engine Risid responses:
Botpress 2017 JavaScript (LLM + rules); & P ’ . 13.5K
poor contextual understanding
NLU support
Agent grouping . . .
CrewAl 2024 Python (roles/goals/tools); Rigid task assignment; 30.1K
- . less adaptable
optimized for collaborative agents
Recursion control; Too complex for simple agents;
LangGraph 2023 Python, JS/TS supports long-running ple ple agentss 4y 5K

agents with RAG hard for beginners

2.5 Development framework

Among the many frameworks analyzed, LangGraph was selected as the core technology
for this project due to several compelling reasons.

First and foremost, LangGraph builds upon the robust and widely adopted LangChain
ecosystem, allowing seamless integration with pre-existing tools for retrieval, tool use,
memory, and function calling. Its graph-based architecture introduces a highly modular
and flexible way of designing agents, where each node represents a step in the agent’s
reasoning process. This structure makes it easier to define conditional logic, recursion,
and parallel workflows, which are essential for complex agent behavior.

Another major factor in the decision was the availability of a large number of pre-
built components. These significantly reduce development time and allow developers to
focus on the logic and reasoning capabilities of the agent rather than on infrastructure
or boilerplate code.

LangGraph also benefits from being part of an active and fast-growing community;,
which ensures continuous improvements, regular updates, and quick support through
forums, GitHub discussions, and community-driven resources. The comprehensive doc-
umentation and numerous open-source examples made onboarding and experimentation
significantly more efficient.
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Finally, LangGraph offers a high degree of customization. Developers can fine-tune
agent workflows at every level—from memory handling and tool integration to the def-
inition of execution paths and failure handling strategies—making it a highly versatile
choice for both research and production use cases.

In summary, LangGraph was chosen not only for its advanced technical capabilities,
but also for the strong ecosystem and support it provides, making it a future-proof and
scalable foundation for the development of intelligent, multi-step agents.

2.6 Agent evaluation

Evaluating the performance of an agent is a key point for improvement and it’s also
critical to understand its behavior in a real-world scenario. There are different possible
evaluation strategies than can be used, most of them rely on the creation of ad-hoc
benchmarks.

These benchmarks differ depending on the specific capabilities being assessed in Al
agents. For example, some researchers focus on evaluating Self-Reflection, Memory or
Planning capabilities (sometimes in combination) [54].

In the context of Al agents for Cybersecurity forensics, the objective was to evaluate
the agent’s effectiveness in facing a near-real-world scenario.

To this end, we use CFA-bench [7], a benchmark specifically designed to test Al
agents in cybersecurity forensic tasks, which serves as the foundation of our evaluation
framework.

Moreover, the agent realized for the aforementioned paper is the baseline of this
work. In that case, they evaluated different LLM-powered agent architectures:

e ReACT Reasoning that requires to the LLM, for each step, to provide both a
thought and an action for the next step. The environment then responds with an
observation that is appended to the Scratchpad

e ReACT 4 Summary is built upon the same concepts of the Reasoning agent,
but the LLM is also required to report a summary of the process till the ongoing
step. This summary becomes the new input, so that the context window is not
overcame by too many tokens

¢ Decoupled where the idea is to enhance reasoning capabilities by decoupling
thought and action at each step

The agents, in their different configuration, were required to provide a final report high-
lighting 4 key elements:

1. Affected service
2. Service vulnerable (True or False)

3. Attack successful (True or False)
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4. Identified CVE

Thus, the agent is first required to find the name of the service under evaluation and
the type of attack being attempted by the adversary. Then, it must assess whether
the service is effectively vulnerable to that type of attack and whether the attack was
successful.

This benchmark simulates a near-real-world scenario, as the PCAP files contain net-
work traffic already filtered to include only the service of interest, complemented by
Docker log files, i.e., the application logs produced within the corresponding Docker
containers. Therefore, this setup can be interpreted as a post-identification stage, where
an issue has already been localized to a specific service, and the agent is expected to con-
duct further investigation in a fully autonomous manner. However, several cases in the
benchmark would present a significant challenge even for a human expert encountering
them for the first time. Indeed, understanding some of them would require access to the
system to perform some type of conclusion, and current agents are not meant to do so.
Moreover, determining that a service is not vulnerable to a specific CVE based solely on
an observed attack attempt is not always straightforward. This often requires precise
knowledge of the deployed software version and a deep understanding of the nuances
between different vulnerabilities affecting the same service.

The list of all the evaluated incidents is reported in Table 2.1.

Table 2.1: List of collected incidents for benchmark.

Service CVE Vulnerable | Attack success
Couchdb CVE-2022-24706 | True True
Grafana CVE-2021-43798 | True True
Apache HTTP Server | CVE-2021-41773 | True True
Apache HTTP Server | CVE-2021-42103 | True False
Jenkins CVE-2024-23897 | True True
Joomla CVE-2023-23752 | True True
Apache Solr CVE-2021-44228 | True True
phpMyAdmin CVE-2016-5734 | True True
phpMyAdmin CVE-2018-12613 | True True
Cacti CVE-2022-46169 | True True
Apache Airflow CVE-2020-11981 | True False
Apache Airflow CVE-2020-11981 | True True
SaltStack CVE-2020-11651 | True True
SaltStack CVE-2020-11651 | False False
Apache APISIX CVE-2021-45232 | True True
Apache APISIX CVE-2021-45232 | False False
Apache ActiveMQ CVE-2017-15709 | False False
Apache ActiveMQ CVE-2017-15709 | True True
GitLab CVE-2021-22205 | False False
GitLab CVE-2021-22205 | True True
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My approach was to iteratively improve the agent guided by the observations made
on the tests performed on the aforementioned benchmark. Thus, in order to understand
whether the architecture was effective also in other scenarios we collected a set of new
events. We decided to limit the dimension of our new independent evaluation set to
10, including only vulnerabilities discovered in 2025, so that the chance of being in the
agent’s knowledge was lower. This allowed to evaluate the actual effectiveness of our
findings while also ensuring the generality of the final proposed solution. The objective
was to demonstrate that, by iteratively adapting our agent to better face the benchmark,
we did not overfit on its characteristics. The set of new events is reported in Table 2.2.

Table 2.2: List of newly collected incidents (2025).

Service CVE Vulnerable | Attack success
Erlang/OTP | CVE-2025-32433 True True
Erlang/OTP | CVE-2025-32433 False False
Vite CVE-2025-30208 True True
Vite CVE-2025-30208 False False
Next.js CVE-2025-29927 True True
Next.js CVE-2025-29927 False False
Langflow CVE-2025-3248 True True
Langflow CVE-2025-3248 True True
Langflow CVE-2025-3248 False False
Tomcat CVE-2025-24813 True False
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Chapter 3

Related works

In recent years, the growing complexity and scale of cyber threats have exposed the
limitations of traditional approaches to digital forensics and incident response. As these
challenges evolve, Artificial Intelligence has started to play a key role in supporting
and enhancing forensic investigations. Among the most promising developments are
AT agents, autonomous systems capable of analyzing evidence, reconstructing timelines
and generating detailed forensic reports. These tools are designed to boost analyst
productivity, speed up response times and bring greater consistency to investigations.

This section explores current work at the intersection of Al, cybersecurity and digital
forensics, with a particular focus on autonomous agents. It looks at early applications
of LLMs in forensic analysis, recent efforts to combine large language models with rule-
based systems and the growing interest in agent-based architectures for automating
security tasks. Moreover, it touches on some of the key challenges ahead, including
concerns around safety, transparency and governance when deploying these systems in
sensitive or high-stakes environments. Finally, it presents a brief overview about evalu-
ation benchmark for autonomous agents in this context.

3.1 Digital forensics and LLMs

In the world of cybersecurity, Large Language Models (LLMs) are positioned as tools to
assist rather that replace human investigators. In particular, in the context of forensic
analysis, it is often difficult for experts to explore in detail the huge amount of traffic
they are exposed to. Thus, it is fundamental to have access to an instrument that can
facilitate this task.

This research field is relatively recent in time. One of the earliest attempt was made
evaluating directly ChatGPT across a range of tasks, including interpreting digital arti-
facts [37]. In this study by Scanlong and Breitinger (2023), their conclusions highlight
both the potential and limitations of LLMs in this domain. On the positive side, Chat-
GPT can assist experienced analysts by accelerating routine tasks and offering educa-
tional support. However, they also emphasizes significant risks: hallucinations, limited
reasoning capabilities and lacks of data privacy. The authors conclude that, while LLMs
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hold promise as forensic assistants, they require careful supervision and are not yet reli-
able for unsupervised investigations in critical environments. Obviously, this was a first
trial to open a new research direction, since prompting directly ChatGPT to evaluate
its performance makes it difficult to replicate results or make conclusions fully reliable.
However, it was fundamental to demonstrate the first versions of generalist huge models
have knowledge in the context of cybersecurity and can actually assist forensic experts.

3.2 Specialized models

Following the direction of the previous work, where the capabilities of an LLM are di-
rectly evaluated when collaborating with a human, Sharma et al. proposed a more
specialized model for digital forensics: ForensicLLM [55]. Specifically, to address the ac-
curacy and privacy issues of general LLMs,they deployed a custom 8-billion-parameter
model fine-tuned for digital forensics. ForensicLLM is built on Meta’s LLaMA and
trained on an extensive corpus of more than 1,000 forensic research papers and artifact
metadata using a retrieval-augmented fine-tuning (RAFT) pipeline. It is also provided
with a vector database as a tool to fetch relevant domain knowledge. Also in this case,
the model acts as a Q&A assistant for a forensic analyst that is performing an in-depth
analysis in network traffic. Despite not being specifically tailored for reducing the over-
head required for the analysis of a huge amounts of data, it is still a solution improving
the quality of the results. According to author’s evaluation, their strategy significantly
reduced hallucinations and factual errors compared to a general LLM. However, the
model is not fully autonomous, and an 8B-parameter local model may not match the
raw performance of larger proprietary LLMs. Its contribution lies in demonstrating a
practical, privacy-preserving assistant tuned for forensic analysts, with retrieval tech-
niques to ground its responses in verified forensic knowledge.

3.3 Autonomous agents

GenDFIR [56] is a framework that integrates a rule-based expert system with an LLM-
based agent to automate cyber incident timeline forensics. In this work, data (logs,
file timestamps, etc.) go through an expert system, where if-then-else conditions have
been defined by rule engineers. This reduces the data volume and focuses the analysis
mainly on suspicious artifacts. Finally, an LLM with Retrieval-Augmented Generation
(RAG) processes those filtered data, treating them as a knowledge base for the LLM. The
LLM agent is prompted to act as an autonomous digital forensic analyst, tasked with
correlating events and even suggesting likely incident causes or outcomes. This work
introduces an important concern related to the amount of data that are required to be
analyzed, which is complex not only for humans, but also for LLMs when considering
costs and focus. Indeed, API calls are expensive when the number of input tokens grow
too much, while hosting a local model can alleviate this problem, it is still convenient
to reduce input tokens to keep inference times constrained. Moreover, also the ability
to fully grasp important details is strictly related to the amount of data to be analyzed.
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These considerations highlight the importance of designing agents that are not only
accurate, but also resource-efficient, capable of prioritizing relevant information without
being overwhelmed by the scale of forensic data.

The main limitation of this approach is the same that distinguishes rule-based sys-
tems: they rely on predefined rules. In the context of forensic analysis, it is important
to keep updated with a fast-evolving landscape: novel attack patterns such as zero-
day exploits or obfuscated techniques emerge often. In this case, a rule-based system
may fail to detect them unless new rules are added. Updating these rules is not only
time-consuming, but also error-prone, as overlapping or conflicting conditions may re-
duce system performance. Moreover, such programs often struggle to generalize across
unseen scenarios, limiting their adaptability and generality in a real-world use-case.

Despite progress towards autonomy in many recent works, most of the practical
implementations used in real use-cases, still rely on human-in-the-loop designs. This is
the case of the agent developed by Microsoft Research in 2023 [17], which is intended
to support cloud operations engineers during incidents. In this case, rather than acting
autonomously, the system is able to reason and propose hypotheses, suggesting also
possible next steps that have to be authored by a human.

In particular, they designed a modular agent with three main LLM-driven compo-
nents: a Hypothesis Generator (given evidences, proposes possible causes), a Hypothesis
Tester (suggests commands to be run in order to verify the previous hypothesis) and a
Mitigation Planner (recommends fix actions once the cause is confirmed). The system is
designed in such a way that, in order to run the mitigation step, the supervisor engineer
has to check and confirm it.

The difference in this case is that decisions and actions are all left to human oper-
ators, ensuring accountability in this context. This is fundamental when working with
mission critical systems, where even minor errors can have significant consequences.
This is the direction of most of the works in the context of Al agents applied to real
use-case scenarios: enhance performance while still prioritizing safety and control. As
such, hybrid approaches that combine automated reasoning with human validation are
increasingly seen as the most viable path toward integrating LLM-based agents in real-
world operations.

3.4 Multi-agent collaboration for incident response

In the context of fully autonomous agents, Zefang Liu developed a multi-agent system
to handle incident response. In his work [24], multiple agents collaborate like a cyber
defense team to face a threat. The study experimented with different team structures:
centralized teams (an Incident Captain agent directs others), decentralized teams (agents
work more independently) and hybrid setups, to see which coordination style yields the
best outcome in the simulated incidents. The results showed that, when using a multi-
agent paradigm, decision-making improves with effective communication. In particular,
since in that case the plan is provided by one single agent, the centralized approach
showed more coherent actions. In the other hand, decentralized agents showed more
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diverse exploration of hypotheses. However, the author also observed challenges: the
agents sometimes miscommunicated or got stuck without human guidance. Indeed, it
is complex to make an agent fully adhere to its role and task, without losing focus
and overlapping with the others. The results of this research suggest that multi-agent
LLMs hold significant promise when a collaborative workflow is needed, as it happens
for incident response. However, their effectiveness is still limited if the role definition,
as well as the communication method, is not robust enough. To unlock full potentials
of specialized agents, the future direction may be to fully constraint their objective to a
role and make communication possible only in predefined steps by defining a pipeline of
agents.

3.5 Positioning of this Work

In light of this evolving landscape, the contribution presented in this thesis aims to ad-
vance and understand how to integrate LLM-based agents into practical forensic work-
flows. Previous works have designed partially autonomous systems, which required hu-
mans to correct and guide the agent or programs working in isolated tasks such as
anomaly detection.

In this work the agent operates over structured forensic data while incorporating
both retrieval and tool-use mechanisms. Thus, the system is fully autonomous and able
to perform a complete reasoning leading to a compact report that can be useful as first
guidance for a forensic expert. Moreover, the multi-agent architectures developed are
intended to face the limitations highlighted in section 3.4, avoiding communication in
each round and bounding the scope of each agent.

The study shows promises and drawbacks of many different approaches, highlighting
their key differences in terms of structure and performance. This is done through a clear
path of enhancements in terms of architectures and provided tool in order to allow the
agent to face the tasks to be performed.

Unlike existing models that rely purely on open-ended prompts or static context,
the agent developed here leverages token-aware memory management and a FIFO queue
to maintain conversational context within operational bounds. It is further enhanced
by semantic retrieval components that allow the agent to recall and reason over past
evidence, even when omitted from the active context window. Moreover, the human
enters the loop only at the end of the execution, with the possibility to analyze reports
and logs, fully understanding each reasoning step performed by the agent. This allows
for more flexibility both in terms of usability and human feedback, also going in the
same direction as LLM-based agents in real-world operations.

Overall, this work contributes to bridge the gap between experimental agentic archi-
tectures and deployable forensic tools, offering a modular and extensible framework for
integrating LLM agents in real-world cybersecurity investigations.
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3.6 Benchmark for evaluation

There are several benchmarks assessing the capabilities of LLMs in static security-related
tasks, such as vulnerability detection and debugging. In my work, I used CFA-bench [7]
to evaluate the performance of the agent on 20 different tasks. For each proposed
architecture, the agent was run three times to reduce the impact of randomness in
executions and an average of the evaluation metrics is computed.

However, there are several benchmarks that have been proposed over years to evalu-
ate agents in specific security tasks. The approaches are different depending on the type
of ability that is assessed. In Table 3.1, there is a summary of the main contributions in

this areas, highlighting their focus and methodologies.

Table 3.1: Cybersecurity Benchmark Datasets for LLM Evaluation

Benchmark Date Task How they use What they
Dataset LLM measure
Securityeval [39] 2022-11- Evaluate ML-based Prompt to generate Vulnerability
09 code generation on code snippets detection and
vulnerable examples patching

LLMSecEval [46]

OWL-Bench [16]
NetEval [25]

SecEval [20]

SecQA [23]
DebugBench [44]
CyberMetric [45]
OpsEval [22]

PythonSecurityEval
2]

Can LLMs
Understand
Computer
Networks? [9]
SECURE [4]

2023-03- Natural language
16  security evaluations

2023-09- Operational
17 cybersecurity tasks
2023-09- Network operations

19  tasks
2023-12- Cybersecurity
20 knowledge
assessment
2023-12- Computer security
26 QA

Prompt to generate
code snippets

Multiple-choice,
Q&A
Multiple-choice,
Q&A
Multiple-choice,
Q&A

Multiple-choice,
Q&A

2024-01- Debugging capability Code snippets pass

11  assessment
2024-02- Cybersecurity QA
12
2024-02-IT operations
16  benchmark

rate
Multiple-choice,
Q&A
Multiple-choice,
Q&A

2024-02- Patch security issues Prompt to generate

19  in Python code
2024-04- Virtual sysadmin
22 tasks on networking

2024-05- Cybersecurity
30  advisory generation

code snippets

Q&A

Multiple-choice,
Q&A

Accuracy on
security-related
prompts
Task-solving ability

Network operations
skills

General
cybersecurity
knowledge
Problem-solving and
security knowledge
Bug detection and fix
accuracy

Domain
understanding
Operations
performance

Patch correctness
and impact

Network reasoning
and troubleshooting

Advisory quality and
relevance
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Chapter 4

Method

The first version of the agent developed to tackle cybersecurity forensic tasks is inspired
by the ReACT Agent proposed with the CFA-bench [7]. In their work, explained more
in detail in subsection 2.6, one of the main challenges was managing the Scratchpad
characterizing the short-term memory: continuously appending messages from the con-
versation could lead to a premature abort of the execution. Indeed, they tried to solve
this problem by introducing a second version called Summary + ReACT, where the
prompt at each step is a summary of the current and all the previous steps in terms of
actions and corresponding observations. The problem with this alternative approach is
that it makes the agent lose the focus and performance tends to decrease. Among the
three versions they implemented, the most promising one was the simple ReACT Agent,
which I also adopted as the baseline with some improvements in order to reduce the
aforementioned limitation.

4.1 ReACT Agent

As already explained in subsection 2.2.3, the ReACT agent is tasked with providing both
a thought and an action as a response to the previous observation. The environment,
once the action is executed, responds with an observation which is then appended to
the scratchpad. The agent proceeds step by step till it is confident enough to provide
a final report or until the maximum number of iterations is reached. In the latter case,
the agent is prompted to provide a final answer based on the information gathered so
far, even if not complete.

The system is able to interface with data provided and external sources through
tools. In this first version, these are the tools available:

e PCAP Reader: this tool allows the agent to interact with the network traffic
associated with each event stored in a PCAP file by executing tshark commands
from the command line.

Specifically, at the beginning of the reasoning process, the agent is provided with
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a summary list of the packets extracted from the PCAP using the following com-
mand:

tshark -r {pcap_file} -T fields -e frame.number -e frame.time -e
frame.protocols -e _ws.col.Info

This output includes, for each packet:

— the frame number (used as identifier),

— the timestamp of capture,

the protocol stack (e.g., eth:ip:tcp:http),

— and the summary line as shown in Wireshark’s "Info" column.
These lines are presented to the agent directly in the prompt to provide a compact
overview of the entire capture file.

The agent can then call the PCAP Reader tool to access the full content of a specific
packet by specifying the corresponding frame number. Internally, the following
command is executed:

tshark -r {pcap_file} -Y "frame.number=={frame_number}" -T
fields -e data

This allows the agent to inspect the payload of any specific frame for deeper forensic
analysis relevant to exploit detection.

Information Retriever: a web search tool that allows to complement the internal
knowledge of the LLM with external, up-to-date information. To optimize the pro-
cess, a Retrieval-Augmented Generation (RAG) is used. The agent is encouraged
to search for relevant information on the web providing a query (e.g., ’Common
Vulnerabilities and Exposures (CVEs) potentially associated with a specific service
or a malicious attack’). The RAG leverages a smaller language model to enrich the
query using a query transformation approach [13]. The resulting expanded query is
then used on DuckDuckGO, a search engine to extract content from the top 10 web
pages. Each webpage is then segmented into smaller chunks using a sliding win-
dow approach, sampling a 512-token segment every 256 tokens. These chunks are
embedded into vector representations using the OpenAl text-embedding-3-small
model [28]. To select the most relevant content, a semantic ranking is performed
by computing the cosine similarity between the query embedding and the embed-
dings of all chunks. The top-5 ranked chunks are then selected and incorporated
into the prompt provided to the main LLM for final reasoning.
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The agent is provided with the aforementioned tools and the following prompt to execute
the task:

Role: You are a specialized network forensics analyst.

You are working towards the final task in a step-by-step manner.

Instruction: I will give you the task context, the previous steps, and the last
thought, action, and the corresponding observation. By thinking in a step-by-step
manner, provide only one single reasoning step in response to the last observation
and the action for the next step.

Context: {context}

LastStep: {last_step}

ReACT-style prompt, taken from [7].

4.1.1 Limitations of the ReACT Agent

This version, despite showing promises, is affected by several key limitations, as explained
in the reference work [7].

Indeed, the management of the prompt through a Scratchpad causes the abortion of
many events in the benchmark because the context window is overcame. Additionally,
providing the agent with the full list of packet has two main drawbacks:

e The analysis doesn’t even start if the list of packets is extended. This typically
happens in realistic use cases, where the length of the list of packets exchanged is
greater than the average context window size allowed by the transformer architec-
ture

e The system has to operate blindly opening packets with a few information about
them, without even knowing IP addresses involved in the conversation. This often
results in calling the PCAP Reader tool with random numbers, without a clear
execution strategy

Moreover, the retrieval strategy adopted by the RAG system inherently limits the
amount of information it can extract from an external web page. In many cases, relevant
content may appear both at the beginning and at the end of an article, positions that
are distant in terms of chunking. As a result, important details that would be valuable
for the agent may not be included in the final prompt. Since chunk selection is based
on semantic similarity to the query, semantically distant but complementary chunks are
less likely to be retrieved together, even though their combination would significantly
enrich the contextual information provided to the agent.
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4.2 Baseline, the Single Agent (SA)

The first version of the program has been developed to reproduce the ReACT agent
described in Section 4.1 with two main improvements. As anticipated in Section 2.4,
the agent has been implemented using LangGraph, which allows to represent it through
a graph of nodes and edges. Each node performs a step, stores the result in the State

and passes it to the next node depending on the routing defined. Here is the structure
of SA:

__start__

l

main_agent

S
tools

S,
_end__

Figure 4.1: SA graph

There are two main nodes in the graph:

1. main__agent: this node calls the LLM, it’s the brain of the agent. With three
optional edges, it may decided to:

e Call a tool
o Iterate on itself continuing the reasoning process
e Stop the execution by reaching the end node and returning a result

2. tools: this abstract box includes all the tools that the LLM can decide to call
based on the task to be performed. In this version, there are 3 tools available:

e Web search tool, explained in subsection 4.2.2
e Store memory, deepened in subsection 4.2.1
o Frame opener, the same provided to the ReACT agent 4.1

Since there is only one intelligent node responsible for planning and taking actions, we
call this first version Single Agent (SA).

To overcome the limitations of the first ReACT system, a MemGPT [35] like prompt
has been adopted. The objective was to allow the agent to perform complex and lengthy
reasoning despite the context window size.
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4.2.1 Mem-GPT Prompt

The structure of the prompt has been changed in order to adapt to iterative reasoning
processes. In particular, it is realized by taking inspiration from the work done for Mem-
GPT [35]. Their OS-inspired design of the memory allows to manage many rounds
of conversation or, as in this case, many subsequent steps without nor aborting the
execution, neither losing relevant early details in the process.

LLM Finite Context Window (e.g. 8k tokens)
A

Id A
Prompt Tokens Completion Tokens
e A R = |
System Instructions FIFO Queue i—’i Output Buffer i
I 1 1
Read-Only (static) Read-Write Read-Write
MemGPT System Prompt Write via Functions Write via Queue Manager

e —
Archival Storage

Function Executor Queue Manager

Recall Storage

Read via Functions Read via Functions

Write via Functions Write via Queue Manager

Figure 4.2: High-level architecture of MemGPT, illustrating how memory management
is handled through controller logic and memory modules. Figure adapted from [34].
The prompt is divided into three main sections:

e System instructions: read-only and fixed instructions provided to the LLM to
make it understand the task to be executed, the role and available tools.

o Working Context: section containing relevant memories of the conversation. It
is updated at each step based on the context and stored messages by the LLM.

¢« FIFO Queue: queue that reports the most recent steps in the reasoning process
and flushes away older messages when there’s no available space anymore

The agent is provided with the following System Instructions section of the
prompt:

Role: You are a specialized network forensics analyst.
You are working towards the final task on a step by step manner.

Instruction:

You are provided with a queue of the most recent steps in the reasoning process.
Store the most relevant information as soon as you get them, because the queue has
a limited size and older messages will be removed.

By thinking in a step by step manner, provide only one single reasoning step in
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response to the last observation and the action for the next step.

You have tools available to search online for CVEs and extract frames from the pcap
file.

When you are ready to provide the final answer, stop the reasoning and format the
result.

Context: Analyze the provided PCAP (Packet Capture) file to accomplish the
following tasks:

1. Identify the name of the service or application involved.

2. Determine the relevant CVE (Common Vulnerabilities and Exposures) based
on the captured data.

3. Gather evidence of malicious activities associated with the identified CVE.
4. Assess whether the service or application is vulnerable to the identified attack.

5. Evaluate whether the attack was successful.

Guidelines:

e Begin by thoroughly analyzing the PCAP file to extract relevant information.

o After the exploratory analysis, ensure that the CVE identification is accurate

by cross-referencing details from external sources with the evidence found in
the PCAP files.

e Use the online search tool only after the exploratory analysis has been com-
pleted to verify the findings and gather additional information.

System instruction prompt

The agen is provided with an additional tool that allows it to store memories in a vector
database. At each step, the memories are retrieved from the vector database based on the
semantic similarity to the last 3 messages in the conversation. To compute embeddings,
the OpenAl text-embedding-3-small model is used [28]. The 10 most relevant memories
retrieved from the database are then placed in the Working context section of the
prompt.

The FIFO Queue is managed by monitoring the token count of each message.
When the accumulated messages exceed the model’s context window, the oldest ones
are removed sequentially until sufficient space is available.

4.2.2 Improved Web Search Tool

When testing more in depth the web search tool introduced in Section 4.1, I observed
that query expansion was not effective in this specific context. In fact, asking an LLM
to expand a query without access to any background knowledge often results in a loss of
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meaning or the introduction of irrelevant terms. Since the query expander operates in
isolation, without access to PCAP data or any additional context, it lacks the necessary
understanding of the forensic scenario. As a result, the expanded queries may diverge
from the analyst’s intent, ultimately degrading the quality of the retrieved web content.

Thus, the refined version of the web search tool has been inspired by an official
Open Al guide [30] and using Google’s custom search APIs [15] to increase the quality
of the results. The Web Search Tool acts as a subagent explicitly looking for CVEs.
In particular, each web page retrieved by the search engine is passed to an LLM to be
summarized. The Web Search Agent receives the following prompt:

You are an Al assistant tasked with summarizing content relevant to '{query}’ for
a forensic analyst

that is trying to identify the CVE related to a specific service/application under
analysis.

Please provide a concise summary in {character_limit} characters or less where you
highlight your findings for each CVE detected in the web page.

The summary should be in the following form for each CVE identified:
?CVE-XXXX-YYYY: Description of the CVE and its relevance to the
service/application under analysis.’

Ultimately, the LLM is enriched with a final aggregated summary that synthesizes the
content of the ten individual summaries, each derived from a distinct web page retrieved
during the search. This aggregated summary follows the same structured format de-
fined in the prompt used for summarizing each single page, i.e., a list of identified CVEs
along with their corresponding descriptions and relevance to the investigated service or
application. This approach enables the agent to reason over a compact and coherent
list of vulnerabilities, without relying on raw chunks of text. Compared to traditional
chunking-based retrieval methods, where long passages are segmented and may lose se-
mantic coherence, this strategy leverages the language model’s summarization capability
to preserve critical information and context. As a result, the final summary tends to
retain more relevant details, improving both precision and usability in the reasoning
process.

4.2.3 Limitations of the Single Agent

This first version of the program was developed to reproduce the results reported in the
reference work [7], trying also to address their main limitation: aborted cases caused by
the restricted context window.

Although the adoption of a MemGPT-inspired prompt in the Single Agent partially
mitigated this issue, the solution proved insufficient in some cases. Specifically, 2 out
of 20 events in our reference benchmark failed to start the execution phase entirely,
as the number of packets exceeded the available context window when using GPT-40
model [29].
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Additionally, one of the main limitation described in the previous section is still
present in this agent: it blindly opens packets without being provided with more meta-
data to perform an informed decision.

This drawback could not be effectively overcame by changing the architecture: the
structure of the data and the tools provided had to be adapted to a more realistic
use-case scenario.

4.3 Multi-agent architecture, TShark Expert Agent (TEA)

Given the limitations highlighted in the previous section, the system has been enhanced
to avoid appending the full list of packets to the prompt.

In particular, the architecture changed towards a multi-agent structure. The ra-
tionale was to manage more complex workflows needed to allow the agent executing
arbitrary TShark commands through a more powerful system.

I observed that, when providing the system with a tool to analyze PCAP files through
the command line, many errors raised because of missing arguments and wrong syntax.

The background knowledge of the LLM used (GPT-4o, provided by OpenAl [29])
was not enough to face this complex task. To address these limitations, a dedicated sub-
agent was introduced to specialize in interpreting and executing tshark commands. This
subagent acts as an intermediary, translating high-level instructions into syntactically
correct command-line operations. By isolating this responsibility, the overall robust-
ness and reliability of the system significantly improved, especially when dealing with
non-trivial use cases.

Overall, the structure of the agent didn’t change; in this case, there is just one
additional tool: the Tshark expert, acting as a subagent. For this reason, I call it the
TShark Expert Agent (TEA).

4.3.1 TShark expert

Also in this case, the subagent has been implemented using LangGraph. Here is the
structure of the agent:
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__start__
tshark_expert
. P - . )
et /" : ’
2 v
tools _end__

Figure 4.3: TShark Expert subagent

The capabilities of this system are provided as a tool to the main_ agent, which can
call it to perform an analysis. In particular, the expert requires as input the description
of an high level inspection to be performed on the PCAP file, and then it returns the
output of the executed command and a summary of the operations performed to get to
that.

As showed in the structure of the subagent, it is allowed to iterate and call tools to
improve its analysis and execute refined commands. The subagent is provided with 2
tools:

e TShark manual: a semantic search tool built from the official tshark man-
ual pages [42] and the Wireshark display filter guide [43]. The content of both
documents was parsed and chunked using a sliding window strategy, where each
chunk includes 1000 characters with an overlap of 200 characters to preserve con-
text across adjacent chunks. Each chunk was embedded using a transformer-based
sentence embedding model [28], and the resulting vectors were stored in a FAISS
(Facebook AI Similarity Search) index for efficient approximate nearest-neighbor
search.

When the subagent requires additional knowledge (e.g., about syntax or parame-
ters of a tshark command or about display filters), it formulates a natural language
query. This query is embedded using the same embedding model and used to per-
form a semantic search over the FAISS index. The top-3 relevant chunks are then
retrieved and appended to the subagent’s context before the next reasoning step.

This mechanism enables the agent to retrieve precise technical documentation with-
out needing to include the full manuals in the prompt. It effectively augments the
agent’s capabilities with an up-to-date and scoped external knowledge base.

e TShark command executor: a wrapper that allows executing tshark com-
mands. The subagent is expected to generate the command string in the correct
syntax, which is then passed to the executor. When an error occurs, the system
extracts additional information regarding missing parameters or syntax issues by
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processing the content of the standard error stream (stderr). Given the size of
PCAP files of some of the events in the benchmark and in realistic use-cases, the
length of the output of the command is checked before returning it to the agent.
It is allowed to append the output to the prompt as long as it does not exceed the
context window, which depends on the specific LLM used for the forensic analysis.
If the output is too large to fit within the context limit, the subagent is prompted
to refine its commands. This may be done, for example, by applying more restric-
tive filters or adopting an alternative strategy to reduce the amount of extracted
data.

4.3.2 Interaction Flow between Agents

The main agent is initially provided with a high-level overview of the network traffic con-
tained in the PCAP file. This summary is obtained by executing a preliminary tshark
command that extracts the list of TCP conversations, offering a compact representation
of communication flows that is appended to the prompt.

The command used to generate this summary is shown below:

tshark —r <pcap_file> —q —z conv, tcp

This output provides the agent with essential information such as IP addresses, ports
and the amount of data exchanged in each connection.

When the main agent needs to perform a more detailed analysis of the PCAP file, it
delegates the task to the subagent. This happens by passing a textual description of
the high-level analysis goal expressed in natural language. For instance, the main agent
might submit the following instruction:

Follow the second TCP stream in the PCAP file and report relevant
details.

Upon receiving such a request, the subagent initiates an iterative reasoning process in
which it plans a sequence of actions. It may consult the Tshark Manual tool to resolve
any ambiguities in the command syntax or display filter expressions, and it uses the
Tshark Command Executor to run the actual commands.

The result of each command is parsed and interpreted by the subagent to refine its
next steps. For example, in response to the instruction above, the subagent might:

o Parse the high-level instruction (e.g., "second TCP stream") to identify the corre-
sponding stream index.

o Construct an appropriate display filter (e.g., tcp.stream == 1) to isolate the de-
sired stream.

o Execute follow-up commands to extract relevant information such as payload con-
tent, packet timestamps and TCP flags.
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When the subagent is satisfied by the results obtained in relation to the high level
goal required, it returns the tshark command executed and the corresponding output.
Obviously, also in this case, it is allowed for a maximum number of iterations before
being prompted to return the result of its analysis even if not complete.

In order not to make execution times explode because of the two running agents, the
number of iterations for the Tshark expert are limited to 15.

4.3.3 Limitations of the Tshark Expert Agent

This version, despite allowing us to face all the events in the benchmark without sat-
urating the context window with too many packets, presents several limitations. The
principal issue lies in the main_ agent’s inability to explore large volumes of data with-
out losing focus. During testing and log analysis, it became evident that the agent often
fixates on irrelevant details, failing to maintain a coherent investigation strategy. As a
result, it struggles to abstract from the noise and may be unable to complete the analysis
or to inspect the entire network traffic in a meaningful and structured way.

This behavior highlights the need for a more guided and goal-oriented reasoning pro-
cess, as well as for improved mechanisms to identify, prioritize and focus on relevant
information. Such improvements are essential to enable the agent to carry out com-
plex, multi-step forensic analyses over large network traces in a structured and effective
manner.

4.4 Multi-agent architecture, Flow Reporter Analyst (FRA)

Despite the improvements introduced through the TShark_expert, the main limitation
related to the inability to autonomously explore a huge amount of data without losing
the focus is still present. To address this, I revised the architecture to allow the agent
just to draw conclusions from data, avoiding the step of devising techniques to explore
the network traffic effectively. Indeed, from the analysis of the log files obtained through
the tests of the previous versions, it is clear that the agent lacks causality and ability to
plan when there are too many possibilities and there’s not a standard strategy coming
from the literature.

Thus, the new approach is inspired by one of the possible workflows of human foren-
sic analysts. In practice, cybersecurity experts open a PCAP file with Wireshark and
examine the entire network trace, looking for unusual requests or abnormal responses.
Their method is often straightforward yet effective: they analyze TCP flows to identify
suspicious patterns or anomalies within the communication, observing them one at a
time if there are no additional indicators that suggest where to start from.

The problem is that, when leaving complete freedom to the agent, it typically focuses
on some irrelevant detail found in early iterations instead of analyzing the entire traffic.
In this case, it may be lucky and find the real evidence of exploitation, but it could also
lose time on noisy data (e.g., misconfiguration alerts in the traffic not related to the
attempted attack).
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In order to solve the aforementioned problem, I introduced a guided search to ensure
that the traffic is completely inspected and findings are correlated. This is a common
pattern in realizing agents: drawing the path and leaving freedom to make conclusions
and/or hypothesis.

Starting from the network traffic summary obtained with the command:

tshark —r <pcap_file> —q —z conv, tcp

the output is first examined to ensure that TLS traffic is excluded. Encrypted traffic
is removed because it does not contribute useful information to the analysis while in-
creasing complexity and execution time. After this filtering step, a dedicated subagent
(Section 4.4.1) analyzes each remaining TCP flow to identify relevant indicators or
potential anomalies.

4.4.1 PCAP flows reporter

The PCAP flows reporter inspects each flow of TCP traffic and generates a structured
forensic report that highlights the following key elements:

 Service: the service involved (or a list if more than one is visible from the traffic).
If possible, the agent has to highlight the version of the service, which may be
particularly useful to call the web search with more accurate queries

¢ Relevant events: point out actions performed by the different IP addresses in-
volved in the conversation. If needed, direct quotations can be added in order to
give a more in-depth overview to the main_agent

e Malicious activities: report malicious or suspicious activities found in the flow
and the service they involve (among those present, if more than one)

o Attack success: state whether there has been an attack in the current flow and
if it was successful.

The subagent analyzes each TCP flow by following the corresponding stream and
extracting the relevant information previously defined. The traffic is extracted from
each stream using the command:

tshark —r <pcap_file> —q —z follow ,tcp,ascii ,{stream_number}

This command reconstructs the full bidirectional TCP conversation associated with the
given stream number, displaying the exchanged payloads in ASCII format. It separates
the content sent by the two endpoints, making it easier to analyze application-layer
protocols (e.g., HTTP, FTP) or detect suspicious sequences of commands and responses.
The output is particularly useful for inspecting raw communication without the need to
open Wireshark’s graphical interface, but giving exactly the same information to the
agent that works through analyzing natural language data.

For each flow, the subagent generates a structured report that highlights the key
details outlined in the predefined list. Each field in the report is explicitly filled in
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by the LLM, ensuring that all relevant information is consistently captured. Defining a
clear and uniform report structure is crucial to enable reliable conclusions across different
flows.

Additionally, it receives the report of the immediately preceding flows in order to
correlate findings when necessary. Indeed, some attacks are exploited through a request
and a response that comes later in another flow, which would be impossible to be detected
without having a complete overview.

Since TCP traffic may be particularly long, a chunking technique has been intro-
duced: when the number of tokens is too high, the agent iterates receiving one chunk at
a time and refining the report at each iteration. This way, I ensured that the context
window is not overcame, while the traffic is fully inspected. This structured and iterative
analysis enables the system to handle complex forensic tasks with greater precision. The
PCAP flows reporter plays a crucial role in the architecture, as the quality and complete-
ness of its reports directly influence the reasoning and final assessments performed by
the main_ agent. By ensuring consistency and depth of inspection, this subagent signif-
icantly enhances the reliability of the overall investigation workflow. Finally, the report
is passed to the main_ agent as first message in order to start the reasoning process.
Since the architecture builds upon the previous version, the tools available to the main
agent remain the same as those used in the multi-agent system described in Section 4.3,
without the possibility of executing arbitrary commands:

1. Web search tool
2. Store memory

The entire flow of execution of the agent is reported in Figure 4.4.

4.4.2 Limitations of the Flow Reporter Analyst

As it has been previously mentioned, the entire context of the attack is injected into the
first agent in the pipeline, which is obliged to analyze the totality of the captured traffic to
produce reports. The first problem associated with this strategy is the amount of tokens
that it requires to input within the LLM. Indeed, in real use-cases, captured traffic can
become huge in terms of exchanged data, mainly because of HTML pages exchanged
or long communication protocols. The amount of tokens, which directly translates into
costs, is not the only limitation: the chunking strategy to analyze huge amount of data
make the agent lose the focus on irrelevant details. With the strategy explained in the
previous section, when the TCP flow is too long, it is divided into partially overlapping
chunks. During the first iteration the PCAP flows reporter generates a partial version
of the report, then it iterates again receiving the previous report and the new chunk to
refine previous conclusions and so on till the TCP flow has been completely analyzed.
With such an approach, the risk of losing relevant details because they were not properly
included in the previous version of the report is high. When observing the traffic, I
noticed that very long flows were full of noisy data, such as HTML pages that are
useless for the analysis.
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Figure 4.4: TEA

4.5 Multi-agent architecture, Log Reporter (LR) and Flow
Reporter Analyst (FRA)

Up to the previous version of the agent, we only considered PCAP files as input data.
However, as explained in Section 2.6, the benchmark provides not only network traffic
captures but also Docker log files, enabling additional insights for each event. The
possibility to provide them to the agent was left as a suggestion and future work by the
reference paper [7].

The main challenge in this context was to devise an efficient strategy to make the
agent access logs. Indeed, some events are characterized by many files, which can also
be lengthy. The idea of providing the agent with a tool to open and append them to the
prompt step by step would have not been effective. Indeed, it would have wasted many
iterations, with the risk of saturating more and more the context window. Thus, also in
this case, the idea is to face a such complex workflow with a multi-agent architecture in
LangGraph.

Starting from the previous version of multi-agent system, there is the need of an
additional subagent focusing on analyzing log files and reporting relevant details. Here
is the structure of the complete agent:
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Figure 4.5: Multi-agent system, FRA + LR

As showed in the graph 4.5, before getting to the PCAP flows reporter, the flow
passes through the log reporter.

This subagent receives all log files directly appended to the prompt and generates
a concise forensic report. It is explicitly instructed to focus on the service mentioned
in the logs, identifying it by name and, when possible, also reporting the version. The
analysis is tailored for a forensic analyst and aims to highlight suspicious or anomalous
events, referencing specific log entries to support its conclusions. If no relevant findings
are detected, the subagent is required to state this explicitly, avoiding any speculative
assumptions, particularly regarding the success of an attack, which typically cannot be
reliably inferred from log data alone.

The resulting report is passed to the main_agent and appended to its prompt, rep-
resenting the foundation on which the system bases the following steps in the analysis.

To improve performance, the complete version of the agent receives two different
reports:

1. Logs report: summary of relevant events and services from log files produced by
the Log_reporter 4.5

2. PCAP flows report: message containing a list of reports (one for each TCP flow
in the traffic) produced by the PCAP_flows_reported
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The main_ agent in figure 4.5 is provided with the same tools that characterized the
orchestrator of the previous version, with the most important one being the web search.

4.6 Constrained Flow Reporter Analyst

To avoid burning an amount of tokens that is not sustainable for this analysis and reduce
the noise, I introduced a new version of agent provided with a token budget for the data
that can be analyzed in the TCP flows.

Given the budget, I first count the totality of tokens within TCP flows. In case it is
under the budget, then the traffic is fully examined flow after flow by the PCAP flows
reporter. Conversely, if it overcomes the budget, it is necessary to allocate, for each flow,
an amount of tokens that is proportional to its initial dimension.

To compute the amount of tokens for each flow we use:

v/tokens;
>_j \/tokens;

This square root normalization strategy has been introduced to reduce the impact of
huge flows. Indeed, in case one stream of traffic is much larger than the others, if we use
proportional allocation, then we are focusing only on data of the biggest flow, ending up
ignoring the others. Since mathematically it may happen, with the previous formula,
that the allocation is greater than the actual dimension of a small flow, we select the
minimum to make things correct:

allocation; = budget x

final _allocation; = min(tokens;, allocation;)

Any remaining budget is then iteratively redistributed among the flows that have not yet
reached their maximum allocation, balancing the distribution further while preserving
the global token limit.

This strategy ensures a more balanced and fair analysis across all TCP flows, prevent-
ing large streams from monopolizing the token budget and allowing smaller, potentially
relevant flows to be included in the inspection.

Finally, given the allocation budget, there’s the need of a strategy to select actual
rows of text from the traffic, moving from tokens to words. The approach used in this
case is to divide by two the final allocation budget for the i-th flow. Half of the total
is used to select words from the beginning of the traffic, while the other half is used for
the end of the flow, increasing the probability of selecting relevant details within data.
Indeed, the ratio is that, in the middle, there could be noise related to specific exchanged
data, but not details to detect the type of attack or its success.

The purpose of the agent is not to fully analyze what is exchanged by the service and
the attacker, but to detect anomalies and report them to a cybersecurity expert that
can go deeper in the analysis, if needed.
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4.6.1 Limitations of the Constrained Flow Reporter Analyst

This version of the agent has been introduced to reduce the costs of execution, as an
effective system is not only evaluated by the result returned, but also based on many
other metrics. Indeed, it is important to account also for input/output tokens, execution
times, security etc.

However, the square root allocation strategy has a main drawback: it is not informed,
it makes a decision that does not depend on the specific flow, but it is fixed. Thus, it
may happen, even when considering events outside our reference benchmark, that the
evidence of the success of an attack is in the middle of a flow that is not seen by the agent.
To mitigate this limitation, future versions of the agent could incorporate lightweight
heuristics or attention mechanisms to guide allocation based on flow semantics or pre-
liminary inspection. Nevertheless, this constrained approach remains a valuable tool for
scalable and cost-aware pre-filtering, enabling analysts to focus their efforts where they
matter most.

4.7 Architectures overview

To conclude the methodology, a complete overview of the four agent architectures is
provided in Fig. 4.6. I study four different architectures that consistently improve re-
sults over evaluation metrics. The solutions proposed varies both in terms of structure,
operational flow and type of input.
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Figure 4.6: Overview of agent architectures. Each architecture receives traffic data
(and logs) and processes it through a pipeline of pre-processing, reporting, and an LLM
reasoning agent. The agents connect to the desired LLM backend via API, interact with
tools and sub-agents (tshark, Flow Reporter, Log Reporter and Web Search) to extract
evidence and produce the forensic report.
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Chapter 5

Experimental evaluation

Given the architectures introduced in the previous chapter, I evaluate all of them on CFA-
Bench [7] using GPT-40 [29] as reference model. I then further test the best-performing
architecture on a held-out dataset of unseen events and across several additional LLMs.
During development, benchmark feedback informed several design choices, that’s why I
validate the findings on unseen events to assess robustness to forensic variability.

For the experiments, I rely on well-known LLMs available through public APIs.!
I evaluate four architectures, two input modalities, and six LLMs. Unless otherwise
specified, I use each model’s default temperature,? and repeat each incident three times
to account for stochasticity. The time to complete an incident analysis ranges from a
few minutes to 15-20 minutes.

5.1 Results over architectures, GPT-40

In this first section, I introduce the results obtained with the different architectures. For
each architecture, I report several metrics:

o Affected service: percentage of events for which the correct service have been
identified

e Identified CVE: percentage of correct CVE identification

e Attack successful: correct identification of the success of the attack, binary
output given by the agent (True or False)

e Aborted cases: number of events that fails to run in the benchmark because
they overcome the context window

"mttps://platform.openai.com; https://wuw.together.ai

2The temperature controls generation randomness and ranges from 0 to 1; 0 yields deterministic
output. See, e.g., [19,47].
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e MCC attack success and F1,,cr0 attack success: Matthews Correlation Co-
efficient and F1,,,,0 Score to better evaluate the binary label previously introduced

e Steps: number of steps performed by the agent

e Input and Output tokens per run: number of tokens given as input/output
over one run of the benchmark

e Cost per run: upper bound of the cost for each run

Note. Throughout this section, a “run” denotes a single execution of the benchmark.
All the reported metrics in the following are the mean over three independent runs to
reduce stochastic variability.

I evaluate the performance of the three agent architectures explained in 4, excluding
the one equipped with the Log reporter that will be better analyzed in the following
5.1.4. T keep the back-end LLM fixed to OpenAl GPT-40 and set the maximum number
of steps to 25. I summarise results in Tab. 5.1.

Best Architecture: Start with the Single Agent (SA) and compare its performance
against the CFA-bench baseline [7]. Both approaches achieve similar accuracy in identi-
fying the service under attack. However, thanks to the improved Web Search tool and the
MemGPT-style memory management, SA achieves substantially better results in other
dimensions: CVE identification improves by +14%, and the attack success evaluation
by +34%. These gains are attributed to SA’s ability to:

1. retrieve better targeted information about candidate CVEs from the web

2. accumulate and reuse contextual information over multiple reasoning steps to refine
its conclusions

Despite these improvements, the overall SA performance remains unsatisfactory. No-
tably, the high number of steps reflects the SA difficulties in using tshark efficiently: it
sequentially inspects packets until it finds some evidence, causing a waste of input to-
kens, and finally loosing focus. Additionally, the MCC is negative, indicating that its
predictions are biased in the wrong direction: worse than random guessing. This effect
stems from SA’s tendency to return “attack unsuccessful” whenever it fails to gather suf-
ficient evidence. Because the benchmark is unbalanced (14 successes versus 6 failures),
this systematically biases SA’s predictions toward the wrong class, explaining its poor
MCC despite reasonable accuracy and F1 scores (recall — a random guess would have
50% accuracy).

Next, I analyse the performance of the Tshark Expert Analyst (TEA) and Flow
Reporter Analyst (FRA) architectures. Both outperform SA in identifying the correct
service. However, only FRA achieves a consistent improvement in CVE detection and
attack success evaluation. The limited TEA gains can be traced back to a coordination
gap between the main agent and the Tshark sub-agent. Indeed, the main agent often
issues overly broad requests (e.g., “explore the HTTP traffic”), which triggers the Tshark
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Table 5.1: Comparison of different agent architectures. best in bold; second-best
underlined.

Metric CFA-bench [7] SA TEA FRA
Service (1) 0.42 0.45 0.58 0.67
CVE (1) 0.14 0.28 0.35 0.45
2|  Acc (1) 0.13 047 048  0.62
S F1 (1) — 049 046  0.62
2| MccC (1) — 011 000  0.45
Steps (/) — 18.11 1132  5.48
In. Tokens (]) — 548M 4.37TM  3.86M
Out. Tokens ({) = 78k 123k 112k
Cost [$] (1) — 14.48 1215  10.78

sub-agent into performing inconclusive analyses, eventually losing direction. As a result,
many runs fail to converge to useful evidence. Nonetheless, when Tshark sub-agent
succeeds in extracting a meaningful clue, TEA is able to resolve the task efficiently.
For instance, TEA correctly identifies the service in 35 runs out of 60, and in 21 of
these it also pinpoints the correct CVE. Once the service is known, the CVE is typically
identified within just three reasoning steps — in a (query — reasoning — second query)
pattern. This shows that, although the TEA design provides fine-grained packet analysis
capabilities, its practical effectiveness is hampered by coordination issues between its two
agent layers.

The FRA architecture resolves the coordination gap by decoupling the PCAP flows
reporter from the main agent. The sub-agent independently conducts a systematic
analysis of the PCAP, producing a high-quality report of suspicious activities without
being influenced by intermediate reasoning steps. The main agent then refines these
findings through targeted reasoning and web searches. Although this limits the agent’s
action space since it cannot query back the flows reporter, FRA achieves the best overall
performance at the lowest cost. On average, it converges in just ~5 steps, significantly
reducing input token usage. Notice the positive MCC testifying that it takes well-
grounded decisions based on the evidence collected by the PCAP flows reporter sub-
agent.

Result Breakdown Fig. 5.1 reports, for each incident in the dataset, how many times
(out of three runs) the agents correctly identify the service (top) and the CVE (bottom).
Incidents are ordered by difficulty. SA can correctly identify the service of the first 8
incidents only. In 5 of them, the agent immediately guesses the exact service at the
first reasoning step. In fact, for those incidents, the answer is self-contained in the
packet list summary. As previously stated, once the service is found, the agent can
get the correct CVE with one or two web searches. In contrast, when finding the service

49



Experimental evaluation

Service |dentification

N\ 3 3 3 3 3 33 3 3000000

TEA [EREE 333 3 33 0 30

FRA 33333333333303

CVE Identification

SA PA RIS 0 0 0 0/0/0 |0
FRA 33333000 3000

01 2 3 45 6 7 8 91011 12 13 14 15 16 17 18 19

Figure 5.1: Breakdown of performance in Service (top) and CVE (bottom) identification
over the 20 incidents.

requires using the PCAP reader tool, the reasoning trace becomes much longer (18 steps
on average, Table 5.1), a clear sign that the agent starts losing focus and finally fails in
both tasks. TEA shows improved service identification thanks to the T'Shark sub-agent,
but the coordination issues discussed earlier often prevent it from translating partial
findings into successful CVE detection. By contrast, FRA’s decoupling strategy ensures
more consistent progress: the Flow Reporter provides focused evidence, enabling the
main agent to refine its reasoning and achieve higher accuracy in both service and CVE
identification.

Looking at the hardest incidents (15-19), these involve multi-container systems where
the attack generates a large volume of traffic (Tab. 2.1), causing the agents to lose
focus. Incident 17-Cacti is a notable exception: here, the difficulty stems not from
traffic overload but from the scarcity of online information. In this scenario, the Web
Search tool provides little support, and agents ultimately fail. Conversely, TEA and
FRA fail to identify the CVE in incidents 7 and 8. These incidents involve Apache
ActiveMQ exposing OS and kernel versions in plain text. The attacker simply uses a
telnet connection to issue a standard HTTP GET request, leaving almost no forensic
evidence of malicious activity. This lack of distinctive signals hampers the coordination
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between the Tshark sub-agent (in TEA) or the PCAP flows reporter (in FRA) and the
main agent.
As we can observe, results keep increasing when moving towards a more complex ar-
chitecture in the table. When focusing on SA, we notice that results are close to be a
random guess for what concerns the identification of the success of the attack, while the
agent is able to detect the correct service or the CVE less than half of the times.
When introducing the TEA there are many improvements, in particular because it
allows to face all the events, but also because the agent is able to extract more informa-
tion from PCAP files. This improves even more when considering the version that also
includes logs as source of information. Indeed, log files are particularly useful for service
identification, improving not only that metric, but also CVE detection, as it is a direct
consequence.

5.1.1 Web Search Tool usage

I further analyze how agents leverage the Web Search tool by examining a subset of
increasingly complex incidents (Fig. 5.2). Each row reports the last query issued in one
run, with cell colours reflecting whether the correct CVE was identified (green) or not
(red).

I identify three typical failures: (A) query asking for the wrong service, (B) query
broadly looking for attacks, and (C) query asking for the wrong attack. At large, a
“correct” query does not guarantee success, and a wrong query implies failure. For
instance, service misidentification (A) makes the whole analysis fail (see SA looking for
JetDirect and etcd in the Couch DB and APISIX incidents). In the Gitlab incidents,
SA gets lost in investigating the long packet list, reaching the maximum step number.
TEA performs slightly better, e.g., correctly looking for CouchDB. Yet, its queries are too
broad to succeed in complex scenarios. Only FRA manages to recover CVEs for some
challenging incidents. Curiously, in the 12-APISIX incident, queries are correct, and the
true CVE is present in the web search results. Yet the agent picks the right CVE in only
one run, suggesting that GPT-4o0 struggles at interpreting web search results.

Observing how the queries performed by the agent evolve over time it is easier to
measure the actual understanding. Indeed, the Single Agent performs queries that are
always different among executions and that are too general, resulting in researches that
don’t even include the type of attack attempted, as it was not able to detect it. On
the contrary, the degree of detail increases towards the Flow Reporter Analyst, which
includes the type of attack (RCE, path traversal, etc.) most of the times and also
demonstrates an higher stability over execution for what concerns evidence found.

As the query becomes more specific, I observe that the number of results returned
by the Web Search Tool reduces. The overall result is:

o Fewer steps reduce execution time and cost.

o A more focused, context-aware analysis increases the likelihood of retrieving the
correct CVE during online search.
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Figure 5.2: Agent’s web searches in increasingly complex incidents. Red cells indicate
that the agent failed in CVE identification.

o With fewer plausible candidates, the agent can more reliably select the correct one.

e Accuracy improves not only because there are fewer CVEs to consider, but also
because the agent develops a deeper understanding of the overall incident.

5.1.2 Model ablation over FRA architecture

I study the effects of different back-end LLMs on the performance while providing some
quantitative interpretation of their reasoning. I test only the FRA architecture and
compare six LLMs.

Table 5.2: Study over different LLMs.

OpenAl OpenAl OpenAl Deepseek  Kimi LLama-4

Metric GPT-40 [33] 03 [32] GPT-5[31] R1[8] K2 [41] Maverik [1]
Service (1) 0.67 0.75 0.80 0.85 0.82 0.75
CVE (1) 0.45 0.48 0.68 0.67 0.63 0.53
8| Acc (1) 0.62 0.80 0.78 0.78 0.78 0.60
15 F1(1) 0.62 0.79 0.77 0.76 0.76 0.63
& | MCC (1) 0.45 0.65 0.63 0.55 0.55 0.35
Steps ({) 5.48 3.55 3.93 5.42 6.70 17.12
In. Tokens (]) 3.86M 3.67TM 3.92M 4.66M 4.35M 8.69M
Out. Tokens ({) 112k 245k 373k 555k 94k 215k
Cost [$] (1) 8.60 9.30 8.63 3.78 4.63 2.52

In Tab. 5.2 T detail the results. Focusing first on the closed-source OpenAl models,
both 03 and GPT-5 outperform the baseline GPT-40 in service identification (+8% and
+13%, respectively). This aligns with expectations: 03 is a dedicated reasoning model,
designed to generate an internal reasoning trace before producing the final answer, at
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the cost of higher latency. This makes it well-suited for detailed forensic investigations.
GPT-5, in contrast, is a hybrid model that can dynamically invoke reasoning when needed
and benefits from a more recent training process. For CVE detection, however, o3
performs only on par with GPT-40. As I will show in Fig. 5.3, this is due to 03 often
being overconfident in its own knowledge and relying less on the Web Search tool. Still,
thanks to its reasoning capabilities, 03 achieves the highest performance in attack success
evaluation (0.64 MCC), even surpassing the newer GPT-5. Both models also require
fewer reasoning steps on average, but their verbosity makes the overall cost comparable
to GPT-4o.

Turning to open-source models, both DeepSeek R1 and Kimi-K2* deliver impres-
sive results, matching or surpassing OpenAl’s best models across most metrics. This is
particularly encouraging, as they can be deployed on-premise at inference time, avoid-
ing the need to outsource sensitive data. Even when accessed via the cloud (as in our
experiments), these models remain significantly cheaper than their closed-source coun-
terparts—roughly half the cost. The open source Llama-4 Maverick improves over
GPT-4o0, but ranks only second to last overall.

In short, open-source LLMs rival or even exceed the performance of the best propri-
etary models, while offering greater flexibility and substantially lower cost.

5.1.3 Result Breakdown

To provide a more interpretable view of model performance, Fig. 5.3 analyses CVE
identification outcomes across all 60 runs (20 incidents, each repeated 3 times). For each
model, I report the fraction of runs:

1. where the model issues a web query (green bar);
2. where the last web response contains the correct CVE identifier (blue bar);

3. the final CVE successfully detected, distinguishing correct answers supported by
web evidence (cream bars) from those obtained through prior knowledge (red bar).

All models use the Web Search tool in over 80% of cases, except 03, which does so
in only 50% of runs. This reflects its distinctive behaviour: despite the prompt explic-
itly encouraging web searches when uncertain, o3 tends to rely heavily on its internal
knowledge, often displaying overconfidence. The quality of the queries is captured by
the blue bar. Here, GPT-40 performs poorly: it searches in 95% of runs, yet only 54%
of responses contain the correct CVE. By contrast, Llama-4 Maverick emerges as the
most effective searcher: it always queries the web, and 80% of its results include the cor-
rect CVE. The crucial step is then selecting the right CVE among candidates. GPT-5,
DeepSeek R1, and Kimi K2 excel here: whenever the correct CVE is present, they pick
it 90-95% of the time (blue bar ~ cream bar). Llama-4 Maverick, however, struggles to

30pen-source models make their code, architecture, and trained weights freely available for use,
modification, and redistribution.
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Figure 5.3: Detailed outcomes of web searches and CVE identification across 60 runs.The
sum of CVE detection success rates corresponds to the accuracy values of Table 5.2.

distinguish between near-identical CVEs, choosing the wrong one in 30% of such cases
showing a clear reasoning limitation. Finally, the red bar highlights cases where the
correct CVE is predicted without it appearing in web search results, i.e., by relying on
LLM’s prior knowledge. As said, 03 frequently succeeds this way. Interestingly, GPT-5
shows a more systematic use of external evidence, only occasionally complementing it
with prior knowledge.

Overall, the figure reveals three distinct behaviours: 03 relies primarily on offline pri-
ors; GPT-5 and DeepSeek R1 combine web evidence with strong reasoning in a balanced
manner; Llama-4 Maverick and GPT-4o suffer from mismatches between retrieval and
reasoning.

5.1.4 Including the Log Reporter

Finally, I study the effects of offering the application logs to the agent as in the Flow
and Log Reporter Agent (FRA + LR) in Fig. 4.6. I only consider the best and worst
performing LLM backend (GPT-5 and GPT-40) in Tab. 5.3.

Consider GPT-40. Application logs improve the service identification of the services
(+18%), as the agent can better resolve ambiguous cases with the service information
frequently available in logs. This partially improves the CVE detection and evaluation
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Table 5.3: Effects of including the application logs as input for the worst and best model
in the previous study. Results in bold are the best for that metric; results underlined
are the second best.

OpenAl GPT-40 OpenAl GPT-5
Metric FRA FRA + LR FRA FRA + LR
Service (1) 0.67 0.85 0.80 0.87
CVE (1) 0.45 0.50 0.68 0.65
% Acc (1) 0.62 0.70 0.78 0.68
S F1 (1) 0.62 0.70 0.77 0.69
s MCC (1) 0.45 0.54 0.63 0.51
Steps ({) 5.48 7.10 3.93 3.77
In. Token (]) 3.86M 4.34M 3.92M 3.87TM
Out. Token () 112k 132k 373k 398k
Cost [$] (]) 8.60 12.18 8.63 8.80

of attack success (+5% and +8%, respectively). This is due to GPT-40’s reasoning lim-
itations that still apply: while the additional information is highly beneficial for simple
retrieval tasks (e.g., finding a service name directly from the input logs), it contributes
little when deeper reasoning is required. The need to analyse more data increases the
number of steps, tokens and finally cost.

GPT-5 benefits from logs in the service identification. Conversely, the additional
information provided by the logs confuses the agent both in the CVE detection and
evaluation of successful attacks (—3% and —10%). Recall that the logs offer evidence of
attacks in only 7 incidents. This lack of evidence confuses the agent who neglects the
evidence presentd by the PCAP flows reporter. This is reflected in the unexpectedly
reduced number of steps, tokens and similar costs.

In a nutshell, logs are hardly beneficial, make the model more self-confident, and cre-
ate the risk of making more errors. Future efforts shall focus on finding better prompt-
s/strategies to actually account for the additional information provided by the log.

I finally evaluate the agent on 10 recent CVEs and benign traffic 2.2, using DeepSeek
R1, OpenAl 03, and GPT-5 as back-end LLMs and FRA as architecture. As shown in
Tab. 5.4, the agents achieve 90% service identification and 80% CVE detection accuracy
— an impressive result considering these incidents involve both vulnerable and patched
systems. GPT-5 and 03 deliver the strongest performance, whereas DeepSeek R1 strug-
gles with attack success classification (3 failures out of 10), yielding an MCC of only
0.41, suggesting a more random guess approach. These results support the choice of
GTP-5 as the final backend LLM for the agent.

Challenging the agent with 10 benign traces collected during simple browsing ses-
sions, it correctly reports no evidence of malicious activity. In two cases, it flags potential
brute-force attempts, supported by repeated and rapid failed login events, which, in fact,
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Table 5.4: Results on 2025 CVEs (testset).

Metric Deepseek R1 OpenAl 03 OpenAl GPT-5
Service (1) 0.90 0.80 0.90
CVE (1) 0.80 0.70 0.80
% Acc (1) 0.70 0.90 0.90
> F1(1) 0.73 0.90 0.90
U=J MCC (1) 0.41 0.82 0.82
Steps ({) 5.5 4.3 4.4
In. Token () 492k 298k 502k
Out. Token (/) 207k 108k 185k
Cost [$] () 0.72 1.46 2.47

is an accurate observation.

5.2 Human Report Assessment

I pooled human experts to evaluate the quality of the final report produced by OpenAl’s
03 and DeepSeek R1 models and provide a qualitative assessment of agent performance.
I ask experts to evaluate three aspects on a scale from 0 to 5 (0 - Totally Unsatisfied, 5
- Totally Satisfied):

e Completeness: Does the report include relevant and accurate information?

e Usefulness: Is the report helpful to a human analyst?

e Logical Coherence: Is the agent’s reasoning clear and logically consistent?

I involve 22 volunteers. I select four incidents from the 2025 testset in which the
agent was successful and show the agent’s reasoning steps, the final report and the
PCAP file. The volunteers self-declared their security forensic expertise and proceeded
to compile an online questionnaire.The questionnaire is available at https://forms.
gle/QsaJ1dVUSK7suu3K6.

At the time of running the survey, GPT-5 was not yet released. 22 students, experi-
enced researchers, and professors responded. 9 self-declared low (rating 1-2), 8 medium
(rating 3), and 5 high expertise (rating 4-5).

All participants find the produced reports to be complete, useful and logically co-
herent (average score of 4.33, 4.23, 4.31, respectively). When asked which report they
prefer, Fig. 5.4 shows the breakdown of preference for Deepseek R1 (blue) or OpenAl 03
(orange) final report, broken down by level of expertise (the darker, the higher). Over-
all, participants show a slight preference for Deepseek R1, particularly among medium-
and high-expertise participants. This is reflected by the all-metric average grade for
Deepseek R1 of 4.39 versus a 4.20 for o3.

OpenAl 03 is preferred only on the first incident (20 - Vite). Some participants
reported the Deepseek R1 comment to be verbose in this case. In the other cases, they
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find OpenAl 03 to be overconfident (as in fact it is).

B Deepseck R1 I OpenAl 03
100%

80%

60%

40%

Preference

20%

0%

20 - Vite 22 - Next.js 23 - Next.js 26 - Langflow

Figure 5.4: Human evaluation preferences per event, grouped by expertise level (low,
medium, high).

5.2.1 Human evaluation details

On Fig. 5.5, I provide the in-depth results of my survey on the Completeness, Usefulness
and Logical coherence of the agent in a subset of testing incidents. All criteria consistently
receive average scores > 4, indicating overall appreciation. When asked to provide
optional feedback, participants generally underlined that the responses of the o3-based
agent were less verbose and therefore more functional (e.g., in 20 - Vite).

B Deepseck R1 I OpenAl 03

Completeness
(=} — e} w E= ot

Usefulness
Do w = ot

—

Now e Ol o

Logical Coherence

—

20 - Vite 22 - Next.js 23 - Next.js 26 - Langflow

Figure 5.5: Average score for each criterion, grouped by incident and expertise level (low,
medium, high). Whiskers indicate min and max scores.
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Chapter 6

Conclusion and Limitations

I discuss the current limitations of the best architecture and provide some grounding for
future exploration of this topic.

6.1 Limitations

6.1.1 Balancing Flexibility and Reliability

Network incidents require forensic agents to flexibly seek heterogeneous evidence. To
approximate human practice, I designed the Tshark Expert Agent (TEA) architecture.
However, in practice, granting TEA broad freedom led the agent to (i) lose direction,
(ii) misuse tshark commands, and (iii) produce unfocused analyses. To mitigate this, I
introduced Flow Reporter Agent (FRA), which restricts actions to inspecting connection
payloads via a flows-summariser sub-agent. This improves reliability, but at a cost:
some outcomes are encoded in transport-layer dynamics rather than payload content.
For instance, in Erlang/OTP (incidents 8-9 in Tab. 2.2), determining the result of an
SSH-based attack depends on whether the server terminates the connection with a TCP
RST or continues. This evidence is not visible in payloads alone, and, therefore, FRA
cannot resolve such cases. Future work should retain FRA’s efficiency while recovering
TEA’s flexibility, e.g., by training a dedicated tshark-expert sub-agent that can execute
and validate commands safely.

6.1.2 No Feedback Loop for Self-Correction

In my best-performing architecture (FRA), agents investigate incidents sequentially. The
main agent receives the pre-processed output from the PCAP flows reporter and cannot
invoke it again for targeted follow-ups. This contrasts with real-world practice, where
teams of experts (i) jointly analyse and brainstorm on the same case and (ii) share access
to the raw evidence. Consistent with prior observations [18], I found that tightly or-
chestrating multiple agents — especially over long interactions with evolving hypotheses
— is challenging, reducing opportunities for self-correction. Future work should explore
orchestration strategies that enable reflective feedback loops (e.g., cross-agent critique,
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mediated tool calls) without sacrificing reliability, whether through more advanced ar-
chitectures or improved prompting. In addition, iterative analysis challenges the LLM’s
natural ability to process a lot of data. Thus, splitting the data and analysis into chunks
may impair the agent’s ability to arrive at the correct conclusions [40], as noted already
in [7].

6.1.3 Log Integration Pitfalls

Counter-intuitively, adding application logs to FRA architecture did not yield measur-
able gains. Logs often introduced noise, especially when they contained no incident-
relevant evidence, causing the agent to over-attend to spurious details rather than deci-
sive network signals. Future work should better harmonise the input information (e.g.,
salience-aware summarisation, confidence-weighted gating, or explicit “ignore-logs” de-
cisions) to prevent bias from uninformative inputs.

6.2 Conclusion

In this thesis, I introduced an autonomous LLM-based agent for cyber forensics and
incident response that supports Blue Team operations. By systematically analysing
network traces, it identifies the targeted application, exploited vulnerability, and success
of the intrusion, while generating structured forensic reports.

My results show that LLM-based agents can meaningfully support forensic investi-
gations. I systematically compared different architectures: from single-agent baselines
to multi-agent pipelines with expert sub-agents. Results reveal three main lessons:

1. specialised sub-agents combined in a multi-agent architecture outperform a single
all-purpose agent;

2. simple orchestration pipelines are simpler and better than deeply inter-communicating
agent designs, which often suffer from coordination failures;

3. more evidence is not always better, e.g., integrating system logs can distract from
critical traffic patterns and reduce agent performance.

I found that GPT-5 and Deepseek R1 performed the best, allowing the agent to correctly
identify exploited CVEs in up to 80% of the 10 most recent 2025 incidents. Finally,
22 experts confirmed the value of the reports generated, which were rated accurate,
complete, and operationally useful.
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