
Politecnico di Torino

Master of science in Computer Engineering

A.Y. 2024/2025

Graduation Session October 2025

EduWallet
A Blockchain-Enabled Digital Wallet for Managing University Course

Credits

Supervisor:
Valentina Gatteschi

Candidate:
Diego Da Giau

Abstract

While the world is rapidly transitioning from traditional Web 2.0 systems, domin-
ated by large companies monetizing centralized data, toward Web3 solutions built
on blockchain’s decentralized nature, the academic sector remains largely reliant
on centralized databases and static documents, whether digital or on paper. This
outdated approach hampers the sharing of academic records between institutions,
which often requires the production, validation, and verification of documents, as
well as agreement on common formats.

This work proposes a solution to modernize academic records management.
By leveraging blockchain and Ethereum smart contracts, we lay the foundation for
a system based on tamper-proof technologies. Through the adoption of account
abstraction, we are able to develop a user-friendly solution that enables gasless
interactions for users. EduWallet relies on a Software Development Kit that allows
universities to interact with on-chain functionalities, and a browser extension that
enables students to manage their data. A key feature of the proposed solution is
full data ownership, which is entirely granted to students, who control access to
their academic records. Additionally, a decentralized storage system is used to
store students’ certificates, minimizing the need for on-chain data storage.

EduWallet aims to provide a comprehensive environment within academic in-
stitutions, allowing universities to streamline bureaucratic processes and align
with the latest Web3 standards. The proposed solution also serves as a practical
example of how to effectively integrate on-chain and off-chain components into a
cohesive system.

iii

Sammendrag

Samtidig som verden raskt beveger seg bort fra tradisjonelle Web 2.0-systemer,
dominert av store selskaper som tjener på sentraliserte data, og over til Web3-
løsninger basert på blockchain-teknologiens desentraliserte natur, er akademia
fortsatt i stor grad avhengig av sentraliserte databaser og statiske dokumenter,
enten digitale eller fysiske. Denne utdaterte tilnærmingen vanskeliggjør deling av
akademiske opplysninger mellom institusjoner, og medfører ofte behov for pro-
duksjon, validering og verifisering av dokumenter, samt enighet om felles forma-
ter.

Dette arbeidet foreslår en løsning for å modernisere håndteringen av akade-
miske opptegnelser. Ved å ta i bruk blockchain og smartkontrakter på Ethereum
legges det til rette for et system basert på manipulasjonssikre teknologier. Gjen-
nom bruk av kontoabstraksjon utvikles en brukervennlig løsning som muliggjør
gassfrie interaksjoner for sluttbrukeren. EduWallet benytter et Software Develop-
ment Kit som lar universiteter samhandle med blokkjedefunksjonalitet, samt en
nettleserutvidelse som gjør det mulig for studenter å administrere sine egne data.
En sentral egenskap ved løsningen er at studentene har fullt eierskap til sine data,
og selv kontrollerer tilgangen til sine akademiske opplysninger. I tillegg benyttes
et desentralisert lagringssystem for oppbevaring av studentenes sertifikater, noe
som reduserer behovet for datalagring direkte på blokkjeden.

EduWallet har som mål å tilby et helhetlig digitalt miljø for akademiske institu-
sjoner, slik at universiteter kan effektivisere byråkratiske prosesser og tilpasse seg
moderne Web3-standarder. Den foreslåtte løsningen fungerer også som et prak-
tisk eksempel på hvordan man kan integrere on-chain- og off-chain-komponenter
i et sammenhengende system.

v

Contents

Abstract . iii
Sammendrag . v
Contents . vii
Figures . xi
Tables . xiii
Code Listings . xv
Acronyms . xvii
Glossary . xix
1 Introduction . 1
2 Background Material . 3

2.1 From Web 1.0 to Web3 . 3
2.2 Blockchain . 4
2.3 Ethereum . 5
2.4 Decentralized Storage . 6

3 Related Work . 7
3.1 Blockcerts . 7
3.2 Digital Credential Consortium . 7
3.3 PublicEduChain . 8
3.4 Cerberus . 8
3.5 Conclusions . 8

4 Problem Statement . 11
4.1 Use Case . 11

5 Requirements . 15
5.1 Functional Requirements . 15
5.2 Non-Functional Requirements . 17
5.3 Constraints and Assumptions . 18

6 System Architecture . 19
7 On-Chain Design . 21

7.1 Blockchain Technologies . 22
7.1.1 Account Abstraction . 23

7.2 SmartAccount . 24
7.3 Student . 25

7.3.1 Deployment and Interaction Flow 27
7.3.2 Vulnerabilities and Scalability 28

vii

viii Diego Da Giau: EduWallet

7.4 University . 29
7.5 StudentDeployer and UniversityDeployer 29
7.6 StudentsRegister . 31

7.6.1 Core Functionalities . 31
7.6.2 Scalability and Gas Considerations 32

7.7 Paymaster . 32
8 Off-Chain Design . 35

8.1 Browser Extension . 36
8.1.1 Technological Choices . 36
8.1.2 Functionalities . 37
8.1.3 Blockchain Interactions . 38
8.1.4 UI Prototyping . 42

8.2 Software Development Kit . 42
8.2.1 Working with the SDK . 43
8.2.2 Access On-Chain Functionalities 47
8.2.3 Input Management . 47

8.3 Decentralized Storage System . 47
8.3.1 Pinning files . 48
8.3.2 Integration in the system . 48
8.3.3 Security and Limitations . 49

8.4 CLI . 50
8.4.1 CLI Features . 50
8.4.2 Data validation . 53

9 Implementation . 55
9.1 Development Environment . 55
9.2 Account Abstraction and On-Chain Integration in Off-Chain Com-

ponents . 56
9.2.1 Direct View Function Calls . 56
9.2.2 View Function Calls via a Smart Contract Account 57
9.2.3 Gas-Consuming Transactions via Smart Contract Account . . 58

9.3 Access Control System . 60
9.4 Decentralized Storage System Interaction 62

10 Results . 65
10.1 Components Validation . 65
10.2 Transactions Analysis . 66

11 Discussion . 71
11.1 Future Work . 72

11.1.1 Public Network Deployment . 72
11.1.2 New Stakeholder: the Employer 72
11.1.3 Browser Extension Data Management 72

12 Conclusion . 75
Bibliography . 77
A Project Links . 81

A.1 GitHub Repository . 81

Contents ix

A.2 Figma Prototype Link . 81
B Base Account Contract . 83
C Base Paymaster Contract . 87
D Hardhat Configuration File . 91
E AccountAbstraction . 93
F Pinning System API . 101

Figures

2.1 Blockchain structure . 4

4.1 Sequence diagram of the EduWallet use case 13

6.1 System basic architecture diagram . 20

7.1 Smart contracts architecture class diagram 22
7.2 UserOperation life cycle within account abstraction protocol 23
7.3 Class diagram focused on SmartAccount contract 25
7.4 Class diagram focused on Student contract 27
7.5 Class diagram focused on University contract 29
7.6 Class diagram focused on StudentDeployer and UniversityDeployer

contracts . 30
7.7 Class diagram focused on StudentsRegister contract 31
7.8 Class diagram focused on Paymaster contract 33

8.1 System architecture diagram . 35
8.2 Browser extension login page . 38
8.3 Browser extension windows for academical records 39
8.4 Browser extension permissions page 39
8.5 Browser extension user information page 40
8.6 Browser extension screenshot with certificate link 49
8.7 Different aspects of the Command Line Interface (CLI) interface. . . 50
8.8 CLI use case diagram . 51

10.1 Transaction information from the local Hardhat node 66
10.2 Distribution diagram of operation costs in Ethereum and Polygon . 68

xi

Tables

3.1 Comparison of related solutions . 9

5.1 Functional Requirements . 16
5.2 Non-Functional Requirements . 18

10.1 Gas prices and exchange rates for Ethereum and Polygon networks 66
10.2 Gas costs and fiat currency equivalents for EduWallet smart con-

tract operations on Ethereum and Polygon networks. 67

xiii

Code Listings

7.1 Result structure within the Student smart contract 25

8.1 Blockchain configuration info data variable and its type definition . 40
8.2 Import of the Software Development Kit (SDK) and exemplar invoke 43
8.3 SDK student registration function . 44
8.4 SDK student enrolment function . 44
8.5 SDK student evaluation function . 45
8.6 SDK function to retrieve student’s personal details. 46
8.7 SDK function to retrieve student’s personal details and academic

records. 46
8.8 SDK permissions request function . 46
8.9 SDK permission verification function 47

9.1 Direct call to a smart contract view function 57
9.2 executeViewCall method in the SmartAccount abstract contract. . . . 57
9.3 TypeScript code invoking executeViewCall on a SmartAccount in-

stance. 58
9.4 Function to validate the sender’s signature in the SmartAccount

contract. 59
9.5 Role definition in the Student smart contract 60
9.6 Function definition using the onlyRole modifier. 60
9.7 hasRole method for verifying access permissions. 61
9.8 Functions to request and grant permissions in the Student contract. 61
9.9 Role hash generation in off-chain components. 61
9.10 InterPlanetary File System (IPFS) public gateway Uniform Resource

Locator (URL) configuration in off-chain components. 62

B.1 BaseAccount smart contract . 83

C.1 BasePaymaster smart contract . 87

D.1 Hardhat configuration file . 91

E.1 AccountAbstraction class code . 93

xv

xvi Diego Da Giau: EduWallet

F.1 AWS API used to store files in IPFS . 101

Acronyms

API Application Programming Interface . xvi, 16–18, 42, 43, 48, 49, 62, 101,
Glossary: Application Programming Interface

AWS Amazon Web Services. xvi, 48, 62, 101

BTC Bitcoin. 4, 5, 23

CID Content Identifier. 6, 26, 48, 49, 62, 63

CLI Command Line Interface. xi, 19, 36, 50–53, 59, 65, 75

dApp decentralized application. 5, 6

DCC Digital Credential Consortium. 7–9

ECTS European Credit Transfer and Accumulation System. 26, 38, 44, 52, 53

EOA Externally Owned Account. 5, 23–25, 31–33, 37, 41–47, 52, 56–59

ETH Ether. xix, 4, 5, 23, 31, 58, 66, 71

EVM Ethereum Virtual Machine. 5, 23

EW EduWallet. 1, 2, 9, 11, 12, 15–19, 21, 23, 24, 27, 28, 30, 31, 33, 35, 36, 40,
42, 49, 50, 52, 55, 60, 62, 65, 66, 69, 71, 72

FR functional requirement. 15–17, 26, 29, 31, 32, 35, 36, 53, 60, 65, 69, 71

ID identifier. 32, 37, 43–45

IPFS InterPlanetary File System. xv, xvi, 6, 48, 49, 62, 101

IT Information Technology. 36, 43

LMS Learning Management System. 8, 16–19, 36, 50, 52

MIT Massachusetts Institute of Technology. 7, 8

xvii

xviii Diego Da Giau: EduWallet

NFR non-functional requirement. 15, 17, 18, 23, 33, 36, 42, 44, 47, 48, 69, 71

PDF Portable Document Format. 63

QR Quick Response. 8, 9, 72

SCA Smart Contract Account. 21, 23–25, 29, 32, 37, 41–47, 52, 53, 56–58

SDK Software Development Kit. xv, 19, 21, 27, 29, 30, 32, 36, 42–48, 50, 52, 61,
62, 65, 75

UI User Interface. 37, 42, 65, 72

URL Uniform Resource Locator. xv, 36, 40, 48, 62

UX User Experience. 8, 9, 11, 50, 72

WWW World-Wide Web. 3

Glossary

Application Programming Interface A set of rules and protocols that allow dif-
ferent software applications to communicate with each other, enabling them
to exchange information or functionalities. xvii, 16

double-spending The double-spending problem refers to the malicious act of
spending the same digital currency multiple times. In digital systems without
adequate safeguards, this vulnerability could allow users to duplicate funds
and undermine the integrity of the monetary system. 4

hash In computer science, a hash function is an algorithm that takes an input of
arbitrary length and produces a fixed-size output, commonly referred to as
a hash or digest. xv, 4, 6, 49, 60, 61

Keccak-256 A cryptographic hash function that belongs to the Keccak family. It
produces a fixed 256-byte hash. 60, 61

mempool Short for memory pool. In general computing, it refers to a temporary
memory area used to manage pending operations. In the context of block-
chain and account abstraction, a mempool is a temporary storage area to
hold UserOerations that have been broadcast to the network but are not yet
included in a block. 24

nonce A nonce is a number that can be used only once in a cryptographic com-
munication. In Ether, the nonce represents the number of transactions sent
by a specific address and is used to ensure the uniqueness and validity of
each transaction. 56

peer-to-peer A peer-to-peer network is a distributed system architecture in which
all participating nodes, called peers, have equal authority and responsibility.
4, 6

salt A salt is a random sequence of data used in cryptography. It is added to a
password before hashing, with the purpose of making the resulting hash
unique, even if two users have the same password. 37

xix

Chapter 1

Introduction

We are currently living in a globalized world, where distance is increasingly ir-
relevant. People move freely across borders, and thanks to digital technologies,
everyone is interconnected and can access services regardless of location. Schools
and universities are deeply affected by this globalization, and their internal opera-
tions are rapidly evolving. Today, many students receive education from a variety
of sources, often through online courses offered by institutions in different coun-
tries. A further driver of this change is the rise of academic mobility programs,
such as the Erasmus+1 program, an initiative by the European Union designed to
promote student and faculty exchanges and foster intercultural experiences.

However, these opportunities introduce challenges in managing and sharing
students’ academic records. Typically, each university maintains its own format
and system for storing academic data, which creates friction when this informa-
tion needs to be exchanged. When a student transfers to another institution or
participates in an exchange program, they must present verified academic docu-
mentation, including diplomas and course transcripts. Currently, students are re-
quired to request certified digital or paper documents from their home institution,
which must be signed and validated by the university. Then, they submit these to
the receiving institution, which must verify the authenticity of both data and sig-
natures. This multi-step process is burdensome for both students and universities,
involving significant administrative overhead and document handling.

Given our experience with the Erasmus+ exchange program, and the tedious
process of requesting documentation, waiting for it, and resolving discrepancies
between universities regarding content and validation, we decided to develop a
solution to provide both students and universities with a unified system for storing
and sharing academic records. EduWallet (EW) leverages blockchain technology,
utilizing its tamper-proof and verifiable nature to allow universities to securely
issue academic records and certificates, while enabling students to access them
through ownership of an academic wallet in which the records are stored. User
interaction is a central focus of this work, as the solution is intended for students
of all backgrounds, without requiring specific computer science skills. Therefore,

1https://erasmus-plus.ec.europa.eu

1

https://erasmus-plus.ec.europa.eu

2 Diego Da Giau: EduWallet

the system is designed to abstract the complexity of its blockchain-based core.
The remainder of this document is structured as follows: the next chapter,

Chapter 2, provides the necessary background information on blockchain and the
technologies used within EW. Chapter 3 presents the related work. Based on the
context established in the previous chapters, Chapter 4 explains the problem ad-
dressed in this thesis and introduces the use case that guided the system design.
Chapter 5 outlines the requirements derived from these use cases. The design of
the proposed solution is presented in Chapter 6, which gives an overview of the
components that build EW, and is further detailed in Chapter 7 and Chapter 8,
which describe the on-chain and off-chain elements, respectively. The tools and
code used for the development of the system are discussed in Chapter 9. The
results are presented and analysed in Chapter 10, focusing on system costs and
compliance with the specified requirements. Chapter 11 offers a discussion of the
solution and its contributions, along with suggestions for future work. Finally,
Chapter 12 concludes the thesis by summarizing the work.

Chapter 2

Background Material

The aim of this chapter is to provide the reader with the fundamentals concepts
necessary to understand this work. All the background knowledge presented here
is related to emerging decentralized technologies, which are leveraged to mod-
ernize the university system in line with Web3 paradigm.

The chapter begins by tracing the evolution of the internet and websites, from
the earliest technologies to today’s decentralized web. It then delves into block-
chain technologies, with a particular focus on one of the most prominent plat-
forms, Ethereum. The final section explores decentralized storage solutions, which
serve as a bridge between fully on-chain systems and traditional web-based ser-
vices.

2.1 From Web 1.0 to Web3

The World-Wide Web (WWW) [1] was launched in 1991 with the publication of
the first website1 by the English computer scientist Tim Berners-Lee. The goal be-
hind the WWW was to create a digital archive of collective human knowledge,
accessible to anyone, everywhere. The first iteration of the web is known as Web
1.0, that was composed primarily of static web pages [2], where users’ main activ-
ities were limited to reading content created by technically skilled individuals or
interacting via emails and chat rooms [3]. A major limitation of this model was
the stateless nature of protocols like HTTP, which prevented websites from storing
or recall user data. As a result, web pages were static and offered limited inter-
activity, making them unattractive for commercial purpose since monetization was
difficult.

Web 2.0 emerged to address these issues by introducing dynamic websites to
the WWW. In the early 1990s, Lou Montulli, a developer at Netscape, introduced
browser cookies [4], small data files stored by web pages to retain user informa-
tion. This innovation enabled websites to become dynamic, offering personalized
experiences based on user behaviour and preferences. It also paved the way for

1https://info.cern.ch/

3

https://info.cern.ch/

4 Diego Da Giau: EduWallet

Block #1

Transactions

and metadata

Previous Hash

123456

Hash

AB56C8

Block #2

Transactions

and metadata

Previous Hash

AB56C8

Hash

14BA3D

Block #3

Transactions

and metadata

Previous Hash

14BA3D

Hash

8E45CC

Figure 2.1: Blockchain structure showing the chain of blocks.

monetization, as companies could now track and analyse their data. Web 2.0 gave
rise to modern tech giants such as Google and Microsoft, whose business models
heavily rely on collecting and leveraging user data. However, this shift led to a
new issue: user data became the property of centralized platforms, which could
exploit or sell it without users’ consent.

Web3 aims to reverse this trend by decentralising data ownership and return-
ing control to the users [5][6]. In the Web3 paradigm, individuals can own their
data and choose how it is shared or monetized. The core technology enabling this
transformation is the blockchain, a distributed ledger that facilitates interactions
with digital services without relying on centralized structures.

2.2 Blockchain

A blockchain [7] is a linked structure composed of data packages called blocks
(hence the name blockchain). Each block contains multiple operations, known as
transactions, along with metadata such as the cryptographic hash of the previous
block. This structure links each block to its predecessor, forming the chain depicted
in Figure 2.1, ensuring the integrity of the entire ledger. Since each block includes
the hash of the previous one, tampering with a block would require altering all
the subsequent blocks in the chain, making such modifications computationally
infeasible.

Blockchains are typically maintained by a peer-to-peer network [8], where
each participant, referred to as node, stores a copy of the blockchain. This decent-
ralized replication ensures data availability, fault tolerance, and security. Nodes
follow a consensus protocol, which defines the rules by which transactions are
validated and blocks are added to the chain.

The first blockchain was introduced in 2008 by Satoshi Nakamoto, the pseud-
onymous creator (or group of creators) of Bitcoin (BTC) [9][10]. It continues
to function as the public ledger for all BTC transactions, effectively solving the
double-spending problem without the need for a centralized authority. Another
widely known blockchain is Ethereum, which operates alongside its native crypto-
currency, Ether (ETH).

Chapter 2: Background Material 5

2.3 Ethereum

Ethereum2 was launched in 2015 based on an idea of Vitalik Buterin [11][12]. Bu-
terin’s vision was to enable the deployment of decentralized application (dApp),
programs that run autonomously on a blockchain without relying on external,
centralized infrastructure. To realize this vision, he and his collaborators created
the Ethereum Virtual Machine (EVM), a decentralized virtual machine that ex-
ecutes transactions. In contrast to BTC’s limited instruction set, the EVM supports
a broad range of operations, including loops and conditional statements. This flex-
ibility makes it possible to develop smart contracts, which are programs containing
both code and data that execute on the Ethereum blockchain.

When users perform on-chain operations, such as sending cryptocurrency or
invoking a smart contract function, they consume computational resources. To
compensate nodes for providing these resources and to prevent abuse (for ex-
ample, infinite loops), Ethereum measures resource usage in units called gas. Each
individual operation requires a specific amount of gas, and the total gas fee for a
transaction is calculated by multiplying the gas used by the current gas price. Be-
cause gas is paid in ETH, the cost of executing an operation varies with its market.

Users hold ETH and pay transaction fees via Externally Owned Account (EOA)
[13], which can initiate transactions and serve as the interface between users and
the blockchain. An EOA is derived from a private key, which is also required to
cryptographically sign transactions. The other account type in Ethereum is the
contract account [13], which corresponds to a deployed smart contract. Contract
accounts can hold cryptocurrency but cannot initiate transactions on their own;
they can only send transactions in response to receiving one. Both contract ac-
counts and EOAs are publicly referenced by their address, which serves as the
identifier used to send funds or invoke contract functions.

Due to its versatility and the wide range of operations it supports, Ethereum
has become the foundation for numerous Layer 2 solutions [14] over time. Layer
2 solutions are protocols built on-top of the main blockchain (Layer 1) to provide
additional features, such as an increased transaction throughput or reduced fees.
The core idea behind these solutions is to process transactions off-chain and peri-
odically submitting a summary about them on the Layer 1 chain. Some notable
examples of Ethereum Layer 2 solutions are:

• Polygon3, which offers faster and cheaper transactions compared to the Eth-
ereum main network.
• Arbitrum4, that enhances scalability while preserving compatibility with Eth-

ereum smart contracts [15].
• ZKsync5, a solution that ensures high security and fast finality through the

use of validity proofs.

2https://ethereum.org
3https://polygon.technology
4https://arbitrum.io
5https://www.zksync.io

https://ethereum.org
https://polygon.technology
https://arbitrum.io
https://www.zksync.io

6 Diego Da Giau: EduWallet

• Optimism6, which prioritises simplicity and close integration with the Eth-
ereum ecosystem.
• Starknet7, that introduces its own high-performance language, Cairo8.

2.4 Decentralized Storage

Since blockchain operations consume gas, and gas costs are significantly higher
than those in traditional Web 2.0 solutions, especially for storage [16], dApps
often rely on decentralized storage solutions to handle large amounts of data and
high-volume files [6][17]. These solutions distribute data across the nodes in the
network, in contrast to traditional storage approaches that depend on centralized
data centres.

One widely adopted decentralized storage system is IPFS [18], a protocol built
on a peer-to-peer network architecture, similar to blockchains. When users upload
a file to IPFS, such file is assigned a unique identifier called a Content Identifier
(CID), which corresponds to the hash of the file’s content [19]. Files can be rep-
licated across multiple nodes to enhance availability and security. To retrieve a
file, users must use its CID to locate and access the nodes storing it. This content-
addressed design ensures file integrity and verifiability, as any change to the file
would produce a new CID.

6https://www.optimism.io
7https://www.starknet.io
8https://www.cairo-lang.org/

https://www.optimism.io
https://www.starknet.io
https://www.cairo-lang.org/

Chapter 3

Related Work

In recent years, many academic institutions have begun exploring blockchain-
based solutions to streamline certificate issuance and verification, leveraging the
technology’s tamper-resistant properties. This chapter presents the related work,
discussing each project’s approach and its contributions in relation to the problem
addressed in this thesis.

3.1 Blockcerts

In 2018, the Massachusetts Institute of Technology (MIT) introduced Blockcerts
platform [20] as an open-source standard for issuing cryptographically verifiable
academic credentials. Originally developed to allow MIT students to receive di-
gital versions of their academic certificates, Blockcerts has since evolved into a
community-led project1. The platform provides:

• A set of libraries (e.g., Python and JavaScript) for creating, issuing, and
verifying credentials.
• Mobile applications that allow students to receive, store, and share verifiable

certificates.
• Schemas and specifications for building systems that adhere to the Block-

certs standard.

3.2 Digital Credential Consortium

In 2019, MIT joined eleven other institutions worldwide to form the Digital Cre-
dential Consortium (DCC)2, including the University of Milano-Bicocca (Italy) and
the University of Toronto (Canada). The goal of the DCC is to establish interop-
erable standards for academic credentials and to facilitate the secure exchange
of students’ certificates across institutions. Building upon the foundation laid by

1https://www.blockcerts.org
2https://digitalcredentials.mit.edu

7

https://www.blockcerts.org
https://digitalcredentials.mit.edu

8 Diego Da Giau: EduWallet

MIT’s Blockcerts, the consortium evolved the project to support a broader and
more integrated ecosystem. It provides students with mobile applications to ac-
cess, verify, and share their academic credentials, and offers institutions an ad-
ministrative dashboard for issuing and managing certificates.

3.3 PublicEduChain

PublicEduChain [21] is a project developed by Gazi University (Turkey) that en-
ables students to manage their educational data on Ethereum. In this model:

• Each student deploys a personal smart contract via third-party wallets such
as MetaMask or Trust Wallet.
• Students register the address of their smart contract within the university’s

Learning Management System (LMS), which must be modified to support
this integration.
• Authorized LMS users (faculty, staff, or other institutions) can write courses

information into the student’s smart contract.

3.4 Cerberus

Tariq et al. introduced Cerberus [22], a blockchain-based system for certificate
verification focused on document authenticity. In Cerberus:

• Universities apply to join the network; once approved, they can upload cer-
tificates directly to the blockchain.
• Upon document upload, a unique Quick Response (QR) code is generated

and linked to the on-chain record.
• Students and other stakeholders can verify any certificate’s authenticity by

scanning the QR code.

3.5 Conclusions

The existing solutions, summarized in Table 3.1, exhibit several shortcomings re-
lative to our objectives. First, most platforms, including Blockcerts, the DCC, and
Cerberus, focus exclusively on degree certificates without accounting for the full
spectrum of academic records that universities issue. While diplomas attest to de-
gree completion, individual course transcripts contain valuable information that
students often use for academic exchanges or employment opportunities.

PublicEduChain offers a more comprehensive “academic wallet” model but
suffers from poor User Experience (UX). Students are responsible for developing
and deploying their own smart contracts, which limits adoption to those with
technical expertise and places a significant training burden on institutions.

Cerberus, despite addressing certificate verification, does not shift data owner-
ship to students. Instead, it retains the traditional paradigm in which universities

Chapter 3: Related Work 9

Table 3.1: Comparison of related solutions

Solution Focus Data Ownership UX
Blockcerts Certificates Students Libraries and mo-

bile applications
DCC Certificates Students Mobile applica-

tions and admin
dashboard

PublicEduChain Full academic re-
cords

Students Students must
write and deploy
smart contracts

Cerberus Certificates Universities Verification via QR
code

issue and hold certificates; students merely verify and share them via QR codes.
In contrast, Web3 principles advocate for a model in which students possess and
fully control their academic records, granting or revoking access as needed.

By offering a user-friendly UX for both students and institutions, supporting
the full spectrum of academic records, and ensuring that students retain complete
ownership of their data, EW presents a comprehensive solution that aligns with
the vision and values of decentralized technologies.

Chapter 4

Problem Statement

This chapter builds upon the related works presented in Chapter 3, which rep-
resent the current state of the art for our problem, and the background concepts
introduced in Chapter 2, which describe decentralized technologies with a focus
on the blockchain. It delves into the specific problem addressed by this work, and
introduces the use case that guided the design of EW.

As introduced in Chapter 1, our problem is the management of secure and
verifiable academic information. Since we are rapidly moving into Web3 techno-
logies, students and institutions require a decentralized system of records-keeping
that enables them to share this information without the use of traditional docu-
ment and validation methods. Based on the related works discussed earlier, such
a system must cover all aspects of a student’s academic career and provide stake-
holders with a streamlined environment that prioritizes UX and interaction. More
in detail, EW aims to enable university to issue certificates and record courses
evaluation in a tamper-proof and secure system, leveraging on blockchain char-
acteristics to provide these features.

On the students side, instead, we want to follow Web3 rule about data owner-
ship and design a system in which students are the owner of their academic data;
this means that they can manage the access to their academic wallet and decide
the entity that can view and modify their information.

4.1 Use Case

By analysing this problem, we developed a use case, illustrated in Figure 4.1, to
simulate the usage of EW. The scenario involves four main actors:

• The home university, which issues certificates and records evaluations dur-
ing the student’s regular academic career.
• The host university, which requires access to the student’s academic data

when the exchange project begins.
• The student, who participates in an exchange project, such as the Erasmus+

program. At the beginning of the program, they must send their academic

11

12 Diego Da Giau: EduWallet

history to the host university. At the end of the program, the home university
must certify the results obtained at the host institution.
• The administrator of the EW system, who manages the registration of stu-

dents and universities in the platform.

The first step is the registration of universities in the EW system. Universities
request access from the system administrator, who verifies their information and,
upon approval, registers them into the platform.

Once the universities are present in the system, the student begins their aca-
demic career by enrolling in the home university. As with traditional enrolment,
the university verifies the student’s identity and, once validated, creates an ac-
count for them in EW. With the account created and the appropriate permissions,
the home university can begin registering the student’s academic evaluation.

After some years of regular study, the student decides to participate in an
exchange program at the host university. To process the application, the host uni-
versity needs access to the student’s academic records. It sends a request via EW,
which the student receives and approves by granting the necessary permission.

Once granted access, the host university retrieves the student’s history directly
from EW and proceeds with the application. Upon acceptance, the students signs
the learning agreement and begins the program. The host university then requests
permission to add new academic records to the student’s wallet. The student again
approves this request. After completing the exams, the host university record the
evaluations in the student’s account. At the end of the exchange program, the
home university accesses the list of completed courses from EW to update the
student’s academic career.

Finally, the student revokes the host university access permissions, as they no
longer need access to their academic wallet. The student and both universities
have successfully completed the streamlined management of exchange program
documentation using EW.

The scenario highlights the need for a system that balances security with usab-
ility, while ensuring that students retain control over their academic data. The key
features required in such a solution include secure credential management, de-
centralized data ownership, streamlined inter-institutional communication, and
tamper-proof record keeping. The following chapter translates the features out-
lined in the use case and problem analysis into specific requirements for the EW
system.

Chapter 4: Problem Statement 13

Home
University

Host
University

System
Administrator

Student EduWallet

Request registration
Verify information

Register university

Request registration Verify information

Register university

Enrol in university
Verify identity

Create student account

Record student academic evaluations

Apply for exhange program

Request access to student records

Notify request

Approve request
Access academic records

Academic records

Process application

Accept student

Sign contract

Request permission to add records

Notify request

Approve request

Record student academic evaluations

Access to exchange results

Exchange results

Revoke host university access

Figure 4.1: Sequence diagram illustrating the chronological interactions between
student, universities, EduWallet, and the system administrator during the aca-
demic exchange process.

Chapter 5

Requirements

In this chapter, our aim is to describe both the functional requirements (FRs) and
non-functional requirements (NFRs) that guided us in the development of the
comprehensive academic wallets system. These requirements are summarized in
Table 5.1 and Table 5.2, respectively. They were derived from an in-depth analysis
of the use case presented in Chapter 4, as well as the specific needs and demands
of the various stakeholders engaged with the system. This stakeholder group in-
cludes the administrator of the EW system, students, and universities.

5.1 Functional Requirements

The primary FR for the system administrator is the ability to register universities
following their subscription request. This process must be preceded by a thorough
verification of the provided data, in order to ensure that only trusted institutions
are granted access to the system. The validation step is fundamental, as univer-
sities are the entities entitled to register new students in the academic record.
Consequently, if malicious actors are authorized to access the system, its security
and the veracity of the stored data could be compromised.

Regarding universities, they must be able to initiate a subscription by submit-
ting their institutional information, including name and country. Upon approval,
they require secure authentication mechanisms to access the system and exercise
their privileges. Authentication is a critical precondition for nearly all operations,
including the viewing and modification of students’ data and academic records.
These operations may involve retrieving the list of courses attended by a student or
issuing a new certification. Furthermore, authenticated universities are respons-
ible for creating EW account for newly enrolled students who do not yet posses
one, as well as requesting permission from students to access their existing wal-
lets. Delegating the creation of student accounts to universities accelerates the
data verification process, as the system relies on the institution’s trustworthiness
to validate student information.

Academic records are strictly personal data and must be handled with extreme
caution. For this reason, without proper authentication, access to student, whether

15

16 Diego Da Giau: EduWallet

Table 5.1: Functional Requirements

System Administration
FR1 Allow the system administrator to verify and approve universities re-

questing access to the EW system.
University

FR2 Enable universities to register and subscribe to the system.
FR3 Provide secure authentication mechanisms for universities to access

the platform.
FR4 Allow universities to create new smart contract wallets for students

upon enrolment.
FR5 Enable universities to read from and issue academic records to stu-

dents’ smart wallets.
FR6 Implement authorization controls to ensure that only permitted uni-

versities can access or modify specific academic records.
FR7 Provide a mechanism for universities to request and obtain permis-

sion from students before accessing or modifying their academic re-
cords.

FR8 Provide Application Programming Interface s (APIs) that allow uni-
versities to integrate the EW system with their existing LMS.

Student
FR9 Students must own and manage their academic smart wallets inde-

pendently.
FR10 Enable students to securely authenticate and access their smart wal-

lets.
FR11 Provide students with a web-based interface to view and manage

their academic records.
FR12 Allow students to grant and revoke access permissions to their aca-

demic records for specific institutions.

Chapter 5: Requirements 17

for viewing or modification, must be strictly restricted. Finally, since blockchain
technologies can be difficult to interact with, due to their relatively recent de-
velopment, the system should expose comprehensive API endpoints. These can
support seamless integration with university LMS, enabling them to interact with
and utilize the full rage of features offered by EW.

Students’ FRs are closely aligned with the core principles of Web3 ownership:
students must retain full control over their academic wallets. Consequentially,
the EW system must enable students to securely authenticate and access their
academic records via a web interface, which also provides the ability to view and
administer their data. A web application eliminates the need to install dedicated
software on user devices and ensures a smoother multi-device experience. Once
authenticated, students should be able to grant universities explicit permissions
to access their records, with fine-grained control over viewing and modification
rights. This distinction is essential to manage different scenarios appropriately. For
example, in the context of an exchange program, the host university should only
be allowed to access a student’s academic records, and not modify them.

5.2 Non-Functional Requirements

In addition to the presented core features, the system must fulfil several NFRs that
ensure robustness, maintainability and alignment with the principles of decent-
ralization.

To preserve its independence, EW must avoid reliance on third-party crypto-
currency wallets, such as MetaMask or Coinbase, as well as on proprietary tech-
nologies. These constraints are essential to prevent external dependencies that
could compromise the system’s availability or security due to changes in external
policies or services.

A key consideration for blockchain-based systems is the cost associated with
on-chain storage operations [16]. To address this, the system must minimize block-
chain storage usage by storing only essential data directly on-chain, while lever-
aging alternative technologies to manage and store files.

Academic records, by nature, must be verifiable and resistant to unauthor-
ized modifications. The system must ensure that these records are tamper-proof
and can be verified by third parties at any time, in alignment with the integrity
requirements of academic data.

Simplicity and ease of use are also critical. Since our target users are not ne-
cessary experts in blockchain or, more generally, in computer technologies, the
system must offer an intuitive means of accessing and managing academic data.
As such, both universities and students must be supported with a user-friendly
interface that facilitates seamless interaction with the EW platform.

Finally, the adoption of blockchain technologies is driven by the desire to
embrace the defining characteristic of Web3 applications: decentralization. EW
should be designed to operate as a decentralized system, thereby avoiding the

18 Diego Da Giau: EduWallet

Table 5.2: Non-Functional Requirements

NFR1 The system shall operate without dependency on third-party wallet
providers such as MetaMask.

NFR2 The system shall minimize reliance on third-party technologies to en-
hance security and maintain control.

NFR3 On-chain storage costs shall be minimized by storing only essential
data, excluding large files.

NFR4 Academic records shall be tamper-proof and verifiable by authorized
third parties.

NFR5 The system shall provide an intuitive and user-friendly interface for
both students and university administrators.

NFR6 The system architecture shall be designed to maximize decentraliza-
tion wherever feasible.

limitations and risks associated with centralized architectures, such as data secur-
ity vulnerabilities, scalability constraints, and privacy concerns.

5.3 Constraints and Assumptions

The system operates under the assumption that the user authentication phase is
not the primary focus of the project. Therefore, it is sufficient to implement a basic
mechanism to identify users and grant them access to their respective privileges. A
key requirement is that this method be easily replaceable or upgradable, allowing
for future integration of more sophisticated authentication solutions.

As the system is intended to serve as a Web3 extension for traditional LMS
platforms, a critical constraint is that all on-chain operations must remain within
acceptable gas limits. This ensures that blockchain transactions linger affordable
and practical for real-world use. It is also assumed that universities and their tech-
nical staff possess a fundamental understanding of blockchain technologies, in-
cluding key concepts such as wallets and transactions. This baseline knowledge is
essential for effectively utilize the API provided by EW.

Chapter 6

System Architecture

This chapter introduces the architecture of EW and provides a high-level over-
view of its components, each designed to satisfy the requirements outlined in
Chapter 5. The original project is available through the GitHub repository linked
in Appendix A.1.

EW employs a hybrid architecture that combines on-chain and off-chain ele-
ments, thereby delivering a user-friendly, secure and technologically advanced
academic record system. The integrated components, illustrated in Figure 6.1,
are:

• Smart Contracts: A suite of on-chain contracts that implement the core
system logic, including the creation of students and university accounts cre-
ation and the management and retrieval of academic records.
• Browser Extension: A graphical interface through which students can man-

age their academic wallets and interact with their records.
• SDK: A TypeScript library intended for integration into university LMS, fa-

cilitating seamless interaction with EW’s blockchain components.
• Decentralized Storage System: An off-chain solution for storing and re-

trieving certification files, which reduces on-chain storage costs by handling
large documents externally.

In addition to these core components, we developed a simple yet complete CLI,
which serves as a testing and demonstration tool and enables users to perform all
operations typically available to universities, thereby simplifying the interaction
with our SDK. Because the focus of our work is on the interaction of universities
and students with the academic registry, the system administrator’s core function-
alities1 have been inserted directly in the CLI. This design decision streamlines
our use case and reduces unnecessary complexity.

The next chapters provide a detailed breakdown of the on-chain (Chapter 7)
and off-chain (Chapter 8) designs.

1The approval and subscription of universities

19

20 Diego Da Giau: EduWallet

EduWallet

Browser

Extension

Blockchain

University

University

LMS

EduWallet

SDK

Smart

Contracts

Student

Decentralized

Storage

Certificates

System

Administrator

The colored elements are the developed ones

Figure 6.1: Base architecture of the EduWallet system

Chapter 7

On-Chain Design

This chapter details the on-chain design of the EW system, which is implemented
entirely via smart contracts. As introduced previously, these contracts embody the
core logic of the platform, exposing the functionality required by both the SDK and
the browser extension. Their overall structure is depicted in the class diagram in
Figure 7.1.

The EW system comprises seven custom smart contracts, represented as white
classes in the diagram. (Result is not a smart contract, see Section 7.3 for more
details).

1. SmartAccount: Defines the structure of a Smart Contract Account (SCA)
following the account abstraction specification.

2. Student: Represents an individual student in the system.
3. University: Represents a university entity.
4. StudentDeployer: Responsible for deploying Student contracts.
5. UniversityDeployer: Deploys University contracts.
6. StudentsRegister: Manages and stores information about students and uni-

versities.
7. Paymaster: Sponsors blockchain transactions made by students and univer-

sities.

It addition, the system relies on five external contracts, shown in green in Fig-
ure 7.1, which are derived from established libraries such as OpenZeppelin:

1. EntryPoint: A contract that receives transactions from smart accounts and
executes user operations.

2. AccessControl1: Provides a comprehensive role-based access control mech-
anism.

3. Ownable2: Implements a simple ownership model, allowing the designated
owner to perform privileged operations via restricted functions.

4. BaseAccount: Abstract contract defining the core behaviours of a SCA under
the account abstraction specification.

1https://docs.openzeppelin.com/contracts/5.x/api/access
2https://docs.openzeppelin.com/contracts/5.x/api/access#Ownable

21

https://docs.openzeppelin.com/contracts/5.x/api/access
https://docs.openzeppelin.com/contracts/5.x/api/access#Ownable

22 Diego Da Giau: EduWallet

Student

- name
- surname
- date of birth
- place of birth
- country of birth
- permissions
+ enroll()
+ askAccess()
+ grantAccess()
+ revokeAccess()
+ getResults()

SmartAccount

- owner
+ executeViewCall()
+ validateUserOpSignature()

University
- name
- country
- short name

UniversityDeployer

+ deployUniversity()

StudentDeployer

+ deployStudent()

Result

- course code
- course name
- degree course
- ects
- evaluation date
- grade
- certificate
+ evaluate()

EntryPoint 1 0..* BaseAccount

0..*

1

deploys ^

0..*

1

deploys ^

< issues

0..* 1

Paymaster

+ validateUserOp()

BasePaymaster

StudentsRegister

+ registerUniversity()
+ registerStudent()
+ getUniversity()
+ getStudent()

1 1

1

1

AccessControl

Library contracts

Ownable

Figure 7.1: Class diagram representing smart contracts architecture

5. BasePaymaster: Abstract contract defining the structure of a paymaster that
sponsors user transactions.

Before detailing the design of each custom smart contract and its role in the
academic records workflow, we first justify our choice on on-chain technologies
and platforms.

7.1 Blockchain Technologies

The development of a blockchain-based system begins with the selections of a
suitable blockchain platform. We selected Ethereum, a public blockchain known
for its extensive developer community and rich ecosystem of features particularly
suitable for an academic record systems [21][20]. Ethereum supports smart con-
tract development in multiple languages and serves as the foundation for various
layer 2 solutions that enhance performance and scalability. This flexibility allows
the system to be initially developed for the Ethereum main network and later
migrated to a Layer 2 chain to take advantage of specific features, with minimal
development overhead.

Chapter 7: On-Chain Design 23

User

User

User

UserOperation mempool

UserOperation

UserOperation

UserOperation

Bundler

Bundle transaction

UserOperation UserOperationUserOperation

Ethereum block

Other trasnaction Other transactionBundle transaction

EntryPoint

UserOperation UserOperationUserOperation

Smart Contract
Account

Smart Contract
Account

Smart Contract
Account

Figure 7.2: UserOperation life cycle within account abstraction protocol.

For the implementation, we selected Solidity3 as the programming language.
Solidity is an object-oriented language, designed specifically for writing smart con-
tracts on Ethereum and the EVM, influenced by C++, JavaScript and Python4. It
is the most widely adopted language in the ETH ecosystem, supported by and act-
ive and large developer community. Given our prior experience with Solidity, this
choice was natural and well-suited to our objectives.

7.1.1 Account Abstraction

One of the most significant obstacles to the widespread adoption of blockchain
technologies, and Web3 applications in general, is the complexity involved in in-
teracting with the blockchain. To perform on-chain operations, users are typically
required to create and manage cryptocurrencies wallets (EOA), fund them with
tokens (e.g., BTC or ETH), and only then are they able to access and utilize de-
centralized platforms. During the design of the system, we aimed to eliminate
this burden for users, in order to streamline the interactions among EW, univer-
sities and students, thereby addressing NFR 5 in Table 5.2. These considerations
motivated the adoption of account abstraction within the system.

ERC-4337, introduced in 2021 by Vitalik Buterin and others [23][24], defines
account abstraction on Ethereum. It enables users to leverage SCA with custom
logic as their primary on-chain accounts, replacing traditional EOA. User actions
are encapsulated in pseudo-transactions called UserOperations, whose life cycle
is illustrated in Figure 7.2. Each UserOperation may bundle multiple on-chain
actions, such as contract calls or token transfers, and includes all necessary exe-
cution data. When creating a UserOperation, the user specifies the target SCA and
signs the operation to authorize both its execution and associated gas consump-

3https://soliditylang.org/
4https://github.com/ethereum/solidity/blob/develop/docs/index.rst

https://soliditylang.org/
https://github.com/ethereum/solidity/blob/develop/docs/index.rst

24 Diego Da Giau: EduWallet

tion. Signed UserOperations are submitted to a mempool, where specialized nodes
called bundlers collect and aggregate them into a single on-chain transaction. This
transaction is sent to an entry point contract on Ethereum, which unpacks each
UserOperation and dispatches it to the designated SCA. The SCA then executes the
required actions and handles fee payments, effectively becoming the transaction
sender.

A key feature of ERC-4337 is the ability to designate a paymaster, such as
our system’s Paymaster contract, to sponsor gas fees on the user’s behalf. If the
paymaster approves, it covers the transaction costs, allowing users to interact with
EW without managing wallets or tokens directly.

Some features introduced by this standard in Ethereum are:

• Custom Verification Logic: SCAs have the capacity to implement custom-
made authentication and validation mechanisms, going beyond the tradi-
tional public-key signature model.
• Sponsored Transactions: Developers can delegate gas payment to paymas-

ter, transforming the user fee experience.
• Bundled Operations: Users can combine multiple transactions into a single

UserOperation, reducing the aggregate cost compared to separate transac-
tions.

However, one of the trade-offs of using account abstraction is the higher trans-
action cost. Due to the added complexity and number of steps involved, executing
a UserOperation is typically about four times more expensive than a traditional
transaction initiated by an EOA [24].

In our implementation, since the system runs in a local test environment where
no public bundlers are available, UserOperations are sent directly to the entry
point contract, which then forwards them to the appropriate SCA for execution.

7.2 SmartAccount

Depicted in Figure 7.3, SmartAccount contract serves as an abstract base for all
SCAs in the account-abstraction layer of the EW system. Both University and Stu-
dent contracts inherit from SmartAccount, which in turn extends BaseAccount, an
abstract contract supplied by the ERC-4337 standard. BaseAccount implements
core ERC-4337 logic, including support for both single and batched UserOpera-
tions and a mechanism to refund the entry point contract for gas expenditures in-
curred during transaction execution. SmartAccount boosts these capabilities with
two key features:

• Validate UserOperation signature: Upon receiving a signed UserOpera-
tion, the contract verifies that the signature originates from the owner of the
SCA. The owner is specified when the contract which implements SmartAc-
count is deployed by providing the address to its constructor. Once valid-
ated, the account can perform the specified operations by leveraging the
execution routines provided by BaseAccount.

Chapter 7: On-Chain Design 25

Student

SmartAccount

- owner
+ executeViewCall()
+ validateUserOpSignature()

University

EntryPoint 1 0..* BaseAccount

Library contracts

Figure 7.3: Class diagram showing a focused view of the SmartAccount contract
and its associated interactions. This view is a subset of the broader system archi-
tecture.

• Execute read-only function: To allow gasless access to read-only (view)
functions that are permissioned in our system, the contract offers a dedic-
ated method, restricted to only the owner of the account, for executing such
calls via the SCA. This avoids the need for standard UserOperations execu-
tion, and their associated gas costs, when users only require data retrieval.
These view calls are performed by providing SmartAccount the address of
the target contract and the encoded function data (calldata) to send to it
(i.e., the function signature and parameters in encoded form).

Moreover, because SCAs support customizable signature validation logic and
decouple externally EOAs from on-chain execution, SmartAccount can be readily
adapted to integrate alternative authentication schemes.

7.3 Student

The Student contract encapsulates the majority of the system’s logic. Its primary
responsibilities include storing the student’s personal information, such as name,
surname, date of birth, place of birth and country of birth, as well as managing
their academic records. These records are stored using the structure presented in
Code listing 7.1.

Code listing 7.1: Result structure within the Student smart contract

/**
* @dev Represents an academic result
* @param code Course code
* @param name Course name
* @param university Smart wallet address of the university that created the record
* @param degreeCourse Name of the degree program
* @param ects ECTS credits for the course
* @param grade Final grade
* @param date Date when the grade was assigned
* @param certificateHash CID of the IPFS file representing the certificate
*/
struct Result {

string code;
string name;
address university;
string degreeCourse;

26 Diego Da Giau: EduWallet

uint16 ects;
string grade;
uint date;
string certificateHash;

}

Due to Solidity’s limited support for floating-point numbers, and because the
European Credit Transfer and Accumulation System (ECTS) credits may not al-
ways be whole number, the ECTS value is stored as the original number multiplied
by 100. The type uint16 is used for this purpose, allowing values up to 655.355,
which is more than sufficient for academic credit systems. A smaller unsigned
integer type, such as uint8, supports only values from 0 to 2.55 in this context,
which is clearly inadequate. The field certificateHash stores the CID of the certi-
ficate, acting as a reference to its location in the decentralized storage system, as
seen in Section 2.4.

Additional functionalities, all addressing FR 5 in Table 5.1, include enabling
universities to:

• Retrieve a student’s personal and academic information.
• Enrol the student in a new course.
• Record an evaluation for course the student has already attended.

All such interactions are governed by a strict access control mechanism, implemen-
ted to fulfil the relevant functional requirements outlined in Table 5.1, namely FR
6, FR 7, and FR 12. This mechanism is based on the AccessControl library, specific-
ally the AccessControlEnumerable extension, which enables the definition of roles
and their association with specific addresses. Within the Student contract, four
distinct roles are defined:

1. reader
2. writer
3. reader requester
4. writer requester

These roles cover all possible scenarios. When an institution requests read or write
access to a student’s academic records, its smart account address is assigned the
corresponding role. Since AccessControlEnumerable supports enumeration of role
bearers, the student can query and view which institutions have pending access
requests. When an institution attempts to access or modify a student’s academic
records, the Student contract verifies whether the caller’s address has been gran-
ted the appropriate role, thereby enforcing access restrictions. This mechanism
requires the Student contract to support a set of permission management func-
tions, including the ability for students to grant, revoke, and inspect permissions
(FR 12 in Table 5.1), as well as for universities to request and verify their ac-
cess rights (FR 7 in Table 5.1). The underlying AccessControl library restricts the
permission management functions to holders of the default admin role, which is
defined within the library itself. The Student contract assign this role to the stu-

5The maximum number representable with 16 bits is 65535

Chapter 7: On-Chain Design 27

Student

- name
- surname
- date of birth
- place of birth
- country of birth
- permissions
+ enroll()
+ askAccess()
+ grantAccess()
+ revokeAccess()
+ getResults()

SmartAccount

University

StudentDeployer

Result

- course code
- course name
- degree course
- ects
- evaluation date
- grade
- certificate
+ evaluate()

0..*

1

deploys ^

< issues

0..* 1

AccessControl

Library contracts

Figure 7.4: Class diagram showing a focused view of the Student contract and its
associated interactions. This view is a subset of the broader system architecture.

dent, thereby enabling them to manage and control access to their academic data
autonomously.

7.3.1 Deployment and Interaction Flow

As illustrated in Figure 8.8 and Figure 7.4, Student contracts are deployed by
the StudentDeployer, which is invoked by the StudentsRegister contract when a
university registers a new student in the EW system. Delegating students registra-
tion to universities decentralizes the validation process: since universities already
verify applications during their standard admissions procedures, they supply au-
thenticated data directly to the system, thereby avoiding centralization and redu-
cing administrative overhead. Relying solely on a central administrator to register
both universities and potentially tens of thousands of students would be imprac-
tical.

Upon registration, the initiating university is automatically granted write per-
missions for the student’s academic record, reflecting its role as the enrolling in-
stitution responsible for issuing evaluations. All subsequent interactions with the
Student contract are carried out either by the browser extension or the SDK. The
browser extension is responsible for retrieving personal and academic data and
managing permissions on the student’s behalf. The SDK, on the other hand, acts
on behalf of universities to access and modify the student’s academic wallet. To
facilitate these interactions, the Student contract defines several structured data
types, which are used for functions inputs and outputs. These structures improve
code readability and usability by grouping related data into cohesive types. In-
stead of requiring users to pass multiple separate parameters in a specific order,
an approach that increases the risk of errors, developers can simply import the

28 Diego Da Giau: EduWallet

relevant structure and populate its fields. The data types defined in the Student
contract are:

• EnrollmentInfo: Contains the information required to enrol a student in a
course; used as input for the enrolment function.
• EvaluationInfo: Contains the data needed to record an evaluation; used as

input for the evaluation function.
• Result: Previously presented, this structure stores the details of a course

attended by the student and is used to return the student’s academic records.
• StudentBasicInfo: Represents the student’s personal information.
• StudentInfo: A composite structure that includes StudentBasicInfo and a

list of Result structures, representing the student’s complete academic pro-
file.

7.3.2 Vulnerabilities and Scalability

This design is suitable not only for the testing environment but also for deploy-
ment in a real-world platform. In Solidity, the usage of aggregated data types,
such as arrays or mappings, entails a gas cost that increases with the size of the
data structure, particularly when looping or enumerate its content. However, in
the context of a student’s academic career, the number of universities requiring
access to their academic wallet is typically limited, likely fewer than ten. As a res-
ult, the size of the permissions data structures remain small and the associated
gas cost does not increase to a level that would pose significant issue.

A more significant concern arises with the storage of student’s academic res-
ults, which are currently stored together in a single array. Recording a new eval-
uation for an existing course requires iterating through the array to locate the
appropriate entry. If a student’s results set grows to several tens of entries, this
operation can incur high costs, undermining platform usability. To mitigate this
issue, future enchantments can preserve the existing results array, allowing all re-
cords to be retrieved in a single transaction, while also maintaining a secondary
mapping from the composite key (university address, course code) to the index of
the corresponding result in the array. Although this mapping introduces a slight
increase in the storage consumption, it enables constant-time lookups and updates
for specific courses. This significantly lowers the gas cost for evaluations.

Moreover, to minimize the overall cost of the EW system and its operational
expenses, all functions that do not modify the on-chain state, i.e., those that per-
form only data retrieval, are implemented as read-only operations. In Solidity,
these are marked with the view or pure modifier and execute without gas cost.
Given that read operations are generally more frequent than writes, this design
choice further curtails the system’s cumulative gas expenditures.

Chapter 7: On-Chain Design 29

SmartAccount

University
- name
- country
- short name

UniversityDeployer

Result

0..*

1

deploys ^

< issues

0..* 1

Library contracts

Figure 7.5: Class diagram showing a focused view of the University contract and
its associated interactions. This view is a subset of the broader system architec-
ture.

7.4 University

Since the primary focus of this work is on the interaction between students and
their academic records, as well as the ownership of such data, the institutional
accounts (SCA) of universities, implemented through the University contract, are
designed to be simpler than those of students, as illustrated in Figure 7.5. Similar
to the Student contract, the University contract extends the SmartAccount con-
tract, enabling it to function as a SCA compatible with the account abstraction
specification. As a result, universities can use their account, via the SDK, to per-
form blockchain transactions, which are then sponsored by the Paymaster (see
Section 7.7).

In addition, because universities are identified solely by their contract address
in interactions with other smart contracts, the University contract also stores de-
scriptive metadata, including the institution’s name, country, and a short iden-
tifier. Apart from the UniversityDeployer, which is responsible for deploying the
contract, the only components that interact directly with the University contract
are the SDK and the browser extension. When these components need to access
university-related information, they do so using the institution’s contract address.
For instance, when a student retrieves their academic records, each record refer-
ences the issuing university by it address. The browser extension must then query
the blockchain to access the corresponding University contract and extract the rel-
evant metadata. All such metadata functions are implemented as read-only calls,
enabling gass-free data retrieval.

7.5 StudentDeployer and UniversityDeployer

The deployment of Student and University contracts, corresponding to FRs 2 and 5
in Table 5.1 respectively, is handled by the StudentDeployer and UniversityDeployer
contracts, as depicted in Figure 7.6. When a system administrator registers a new

30 Diego Da Giau: EduWallet

Student

University

UniversityDeployer

+ deployUniversity()

StudentDeployer

+ deployStudent()

0..*

1

deploys ^

0..*

1

deploys ^

StudentsRegister1 1

1

1

Figure 7.6: Class diagram showing a focused view of the StudentDeployer and
UniversityDeployer contracts and their associated interactions. This view is a sub-
set of the broader system architecture.

university, or a university registers a new student through the SDK, they interact
with the StudentsRegister smart contract. This contract, in turn, invokes one of
the deployer contracts to create the corresponding smart contract instance. This
architecture implements the factory pattern, a design principle commonly used in
object-oriented programming to abstract the creation of objects. In the context of
the EW system, the deployer contracts abstract and encapsulate the instantiation
of new Student and University contracts.

The adoption of the factory pattern offers several advantages over embedding
the deployment logic directly within the StudentsRegister contract:

• It separates the contract creation logic from the registration logic, improving
modularity and maintainability.
• It reduces the complexity of the StudentsRegister contract by externalizing

the deployment process.
• It minimizes the contract size of StudentsRegister. In Solidity, deploying

a contract via the new keyword requires embedding the bytecode of the
deployed contract, which increases the size of the calling contract. Since
Solidity enforces a maximum contract size of 24576 bytes, including large
deployment code directly could exceed this limit. Using external deployer
contracts bypass this issue.

The decision to centralize deployments through the StudentsRegister contract
was also motivated by gas efficiency. On blockchain platforms, reducing the num-
ber of transactions typically leads to lower gas costs. By combining the deployment
of a contract and the registration of its address into a single transaction, the system
reduces the overall gas consumption required for onboarding new entities.

Chapter 7: On-Chain Design 31

Student

University

UniversityDeployer

StudentDeployer StudentsRegister

+ registerUniversity()
+ registerStudent()
+ getUniversity()
+ getStudent()

1 1

1

1

Ownable

Figure 7.7: Class diagram showing a focused view of the StudentsRegister con-
tract and its associated interactions. This view is a subset of the broader system
architecture.

7.6 StudentsRegister

This section presents the StudentsRegister smart contract, which functions as the
EW ledger. It stores the addresses of all student and university academic wallets
and links them to their respective ETH wallets. This contract is deployed by the
system administrator, who thereby becomes its owner and gains access to the func-
tionalities restricted through the Ownable library contract. The Ownable contract,
provided by the OpenZeppelin library, establishes an ownership model where cer-
tain functions are accessible only to the contract’s owner. It also enables ownership
transfer to another ETH wallet or smart contract, if needed. During deployment,
the StudentsRegister contract requires the addresses of the already deployed Stu-
dentDeployer and UniversityDeployer contracts, which it must invoke to create
new smart accounts. Additionally it must be configured with the address of the
EntryPoint contract responsible for enabling account abstraction.

7.6.1 Core Functionalities

As illustrated in Figure 7.7, the StudentsRegister contract provides five core func-
tionalities:

1. Register a new university: This function allows the system administrator
(i.e., the contract owner) to register a new university within the EW system
by submitting its institutional information, name, country, a short identi-
fier, and its EOA address. The address is stored within the StudentsRegister
contract and also utilized in the corresponding University contract to define
account ownership. This functionality fulfils FR 1 in Table 5.1. To prevent
duplicate entries, the function checks whether the university’s EOA address
is already present in the registry. Upon successful validation, the Students-

32 Diego Da Giau: EduWallet

Register contract invokes the UniversityDeployer contract to instantiate the
university’s smart account and stores the resulting address alongside the
provided wallet address. Access to this function is restricted to the contract
owner to ensure that only verified and authorized institutions can be re-
gistered.

2. Retrieve a university smart account address: This function allows a uni-
versity to obtain the address of its SCA by referencing its EOA address. This
functionality supports FR 3 in Table 5.1 and is integrated into the SDK,
which uses the university’s EOA for authentication and retrieves the cor-
responding smart account address to enable operations under the account
abstraction model. As a read-only operation, it incurs in no gas cost.

3. Register a new student: This function, restricted to validated universit-
ies, allows them to register a new student by providing the student’s EOA
address along with relevant personal details. To prevent duplicate registra-
tions, the function verifies whether the student’s EOA is already present in
the system. This operation fulfils requirement FR 4 in Table 5.1. The wallet
address is recorded in the StudentsRegister contract and referenced in the
associated Student contract to establish ownership. Universities invoke this
functionality through the SDK, as with all other smart contract interactions.

4. Retrieve a student smart account address: This function enables a student
to retrieve the address of their SCA using their EOA address. It is primarily
used during the login process handled by the browser extension, addressing
requirement FR 10 in Table 5.1. When a student logs in using their identi-
fier (ID) and password, the extension derives the corresponding EOA and
queries the StudentsRegister contract to retrieve the associated smart ac-
count address. If a valid address is returned, the authentication process is
considered successful. As this function does not alter any state on the block-
chain, it is implemented as a view function to leverage gas-free execution.

7.6.2 Scalability and Gas Considerations

In contrast to the Student contract, already addresses the issue of unbounded gas
costs typically associated with dynamically growing data structures. It stores stu-
dent and university addresses in mappings, which provide direct, constant-time
access by key. Since the system does not require iteration over all entries dur-
ing standard transaction execution, the gas cost of insertion operations remains
stable and independent of the total number of registered entities. This architec-
tural choice ensures that the registry can scale efficiently without incurring in-
creasing gas fees.

7.7 Paymaster

One of the system’s key feature is that blockchain usage is nearly transparent
for users. Students do not directly interact with wallets or perform transactions

Chapter 7: On-Chain Design 33

Paymaster

+ validateUserOp()

BasePaymaster

Figure 7.8: Class diagram showing a focused view of the Paymaster contract. This
view is a subset of the broader system architecture.

themselves, and universities only need the private key associated with their EOA to
manage their institutional smart wallet. This level of abstraction is made possible
by the Paymaster, a smart contract deployed on the blockchain that sponsors all
transactions made by users. This design directly addresses NFR 5 (see Table 5.2),
which emphasizes minimizing the complexity of interactions with the system for
end users.

Without the Paymaster, the system would require a mechanism to fund user
wallets, presenting three primary options:

1. Each user funds their own wallet.
2. Universities fund the wallets of both students and themselves.
3. The EW system centrally manages and funds all wallets.

Each approach has significant drawbacks. The first and second require users to
manage EOA and purchase tokens, which increases complexity and cost, espe-
cially burdensome for students. The third alternative still introduces administrat-
ive overhead and security concerns related to managing a large number of wallets.

Our solution utilizes a paymaster that, as shown in Figure 7.8, implements
the BasePaymaster abstract contract, developed as part of ERC-4337. For sim-
plicity, our current implementation sponsors all transactions it receives, without
validating their origin or gas cost. The only enforced constraint, inherited from
BasePaymaster, is that they must be routed through a known EntryPoint contract.

This configuration is suitable for testing environments such as local or test
networks, where there is no risk of losing real tokens. In a real-world deployment,
a more robust implementation would be necessary, specifically, one that integrates
with the StudentsRegister contract to verify that the transaction sender is a verified
student or university.

Chapter 8

Off-Chain Design

In this chapter, we present the design of the EW off-chain components, developed
to offer a user-friendly interface for stakeholders and support the integration of
system functionalities. Together with the smart contracts described in Chapter 7,
these components form the complete system architecture, as illustrated in Fig-
ure 8.1.

University System

CLI

University

EduWallet

SDK

System

Administrator

Student

Blockchain

Student University

Students

Register

Student

Deployer

University

Deployer

Paymaster

Decentralized Storage

Certificates

Browser

 Extension
Pinning

System

The colored elements are the developed ones

Figure 8.1: Complete architecture of the EduWallet system

Given that students using EW are not expected to have expertise in blockchain
technologies, the platform must provide a simple yet effective interface. This in-
terface should enable them to interact with their academic wallets, retrieve aca-
demic results, and manage access permissions. These requirements address FR 11
in Table 5.1. Similarly, smart contracts interactions may pose challenges even for

35

36 Diego Da Giau: EduWallet

universities and their Information Technology (IT) departments. Therefore, the
system must also offer a simplified and accessible interface for institutional use,
as specified inFR 8 in Table 5.1. To satisfy these usability needs, two primary com-
ponents were developed: a browser extension for student interactions with their
academic wallets, and a SDK designed to facilitate the integration of EW within
university systems.

Moreover, NFR 3 in Table 5.2 emphasizes the need to minimize on-chain stor-
age consumption and associated costs by limiting blockchain use to essential data
only. To support this goal, the system incorporates a decentralized storage solu-
tion, which is responsible for storing and providing access to large data files, such
as academic certificates and other supporting documentation.

Finally, to enable comprehensive testing of the environment, a CLI was de-
veloped. This tool simulates a real university LMS and allows for testing the SDK
functionalities, as well as its interaction with smart contracts and the decentral-
ized storage layer.

8.1 Browser Extension

This section presents the browser extension, which serves as the primary interface
for students to interact with their academic wallets. Its main objective is to abstract
the complexity of on-chain operations by offering a user-friendly interface that
aligns with the design and usability standards of traditional web applications,
addressing FR 11 in Table 5.1.

8.1.1 Technological Choices

To achieve the highest level of decentralization and autonomy for users, we chose
to implement a browser extension rather than a traditional web application. Con-
ventional web applications, typically accessed via a URL, rely on a server to host
both the user interface (front-end) and the business logic (back-end), but this ar-
chitecture introduces central points of control and potential failure. Such reliance
would conflict with NFR 6 in Table 5.2, which emphasizes the importance of min-
imizing centralization within the system’s design. In contrast, a browser extension
operates more like a lightweight desktop application, but within the browser en-
vironment. This eliminates the need for an external server to host the interface
and, since the core logic of the EW system resides in smart contracts deployed
on the blockchain, no additional server-side back-end is required. This architec-
ture ensures that both the user interface and the underlying logic remain fully
decentralized, depending only on the local extension and on-chain infrastructure.
Beyond decentralization, browser extensions offer a compact, wallet-like user ex-
perience. Rather than a full screen web page, they present a small, easily access-
ible window via an icon in the browser toolbar. This interaction model is com-
mon among cryptocurrency wallets, such as MetaMask, offering users an intuitive
means of managing on-chain assets. Adopting the same paradigm for academic

Chapter 8: Off-Chain Design 37

records helps students access and control their data seamlessly, reinforcing the
concept on an academic wallet.

Browser extensions are supported across several major browsers, including
Microsoft Edge, Google Chrome and Firefox. While each browser introduces minor
platform-specific differences, we opted to develop the extension primarily for
Google Chrome. Chrome currently holds the largest global browser market share1,
offering a broad potential user base. Additionally, since Google Chrome and Mi-
crosoft Edge are both based on the Chromium open-source project, extensions
developed for Chrome are also compatible with Microsoft Edge, further extend-
ing platform reach without additional development overhead.

Among the various technologies available for browser extensions develop-
ment, we selected TypeScript2 as the core programming language and React3 as
the framework for building the user interface. TypeScript offers the flexibility and
web-centric capabilities of JavaScript while introducing static typing, which im-
proves code safety, clarity, and maintainability. It also integrates seamlessly with
smart contract development, as libraries exist to generate TypeScript types directly
from contract definitions. React, originally developed by Facebook as an open-
source JavaScript library, is widely used for building modern web interfaces. It
enables efficient User Interface (UI) development and facilitates seamless interac-
tion with application logic. Our familiarity and prior experience with both React
and JavaScript also influenced our choice, enabling a faster and more reliable de-
velopment process. Additionally, we employed Vite as the building tool for our
environment, making it easier to manage and bundle the various modules of our
browser extension efficiently.

8.1.2 Functionalities

The browser extension provides students with all necessary tools to access and
manage their academic wallets. The primary entry point is the login functionality.
To authenticate, students enter the credentials (see Figure 8.2) supplied by the
university at wallet creation. During login, the extension derives the private key
of an EOA from the student’s ID and password using the PBKDF2 algorithm. PB-
KDF2 is a key-derivation function that, given a salt and a password, produces the
private key of an Ethereum EOA. In our implementation, the student’s ID serves
as the salt, eliminating the need for a centralized salt repository and ensuring
uniqueness per users. Upon deriving the private key and instantiating the EOA,
the extension queries the StudentsRegister contract to retrieve the associated SCA
address. If a valid address is returned, authentication succeeds and the extension
proceeds to fetch the student’s personal details and academic records from their
smart account.

Once logged in, students can view a consolidated list of their academic records

1https://en.wikipedia.org/wiki/Usage_share_of_web_browsers
2https://www.typescriptlang.org/
3https://react.dev

https://en.wikipedia.org/wiki/Usage_share_of_web_browsers
https://www.typescriptlang.org/
https://react.dev

38 Diego Da Giau: EduWallet

Figure 8.2: Screenshot of the browser extension login window

(Figure 8.3a) and inspect individual entries (Figure 8.3b). Records are grouped
first by university, using each institution’s short identifier, and then by degree pro-
gram. Each entry displays the course name, course code, ECTS credits, and grade,
if available. The homepage also shows the student’s total accumulated ECTS. Se-
lecting a record opens its detailed view, which adds the date of evaluation and
hyperlink to the certificate stored on the decentralized storage system.

The extension also supports permission management via the lock icon. In this
interface (Figure 8.4), students can review granted permission and pending access
requests from universities. The permissions are categorized into three groups: re-
quests, read permissions and the write permissions. Buttons adjacent to each entry
enable students to easily grant new permissions or revoke existing ones, ensuring
full control over their academic wallet.

Finally, clicking the user icon in the top-right corner opens the personal in-
formation page, where students can view their profile details (Figure 8.5).

8.1.3 Blockchain Interactions

The most straightforward way to perform on-chain operations from off-chain com-
ponents is by using external libraries specifically designed to streamline these in-
teractions. The two primary options are web34 and ethers5. We opted for ethers
over web3 because it is more lightweight, an essential feature for web applica-
tions that must minimize browser resource usage, and because it is more modern

4https://web3js.readthedocs.io/en/v1.10.0/index.html
5https://docs.ethers.org/v6/

https://web3js.readthedocs.io/en/v1.10.0/index.html
https://docs.ethers.org/v6/

Chapter 8: Off-Chain Design 39

(a) Homepage (b) Single record page

Figure 8.3: Screenshots of the browser extension showing the academic records
homepage and detailed record view.

Figure 8.4: Screenshot of the extension permissions window

40 Diego Da Giau: EduWallet

Figure 8.5: Screenshot of the browser extension user information window

and offers better TypeScript support. Another crucial library used in the devel-
opment of the extension is TypeChain6, a TypeScript-oriented tool that, given the
Solidity code of smart contracts, extracts type definitions that can be imported
directly into the application. This ensures our application remains type-safe and
consistent with the structures and requirements defined in the smart contracts
that comprise EW.

With these libraries in place, the browser extension needs to establish a con-
nection to the blockchain to execute operations. Our system leverages the ethers
JSON-RPC provider, which connects to a chain via its URL. The URL of the used
chain is hardcoded in the extension, along with the addresses of the core contracts,
namely, the StudentsRegister, EntryPoint and Paymaster (see Code listing 8.1). To
deploy the extension on a different configuration, such as a layer 2 network with
a new URL and different core contract addresses, these values must be manually
updated in the extension’s source code.

Code listing 8.1: Blockchain configuration info data variable and its type defini-
tion

/**
* Configuration for blockchain network connections.
* Defines parameters needed to connect to Ethereum networks.
*/
interface BlockchainNetworkConfig {

/** Chain identifier for the Ethereum network. */
readonly chainId: string,
/** JSON-RPC endpoint URL for the Ethereum network. */
readonly url: string;

6https://www.npmjs.com/package/@typechain/ethers-v6

https://www.npmjs.com/package/@typechain/ethers-v6

Chapter 8: Off-Chain Design 41

/** Smart contract address for the StudentsRegister contract. */
readonly registerAddress: string;
/** Smart contract address for the EntryPoint contract used in the account

abstraction protocol. */
readonly entryPointAddress: string;
/** Smart contract address for the Paymaster contract that sponsors

transaction gas fees. */
readonly paymasterAddress: string,

}

/**
* Blockchain network configuration.
*/
export const blockchainConfig: BlockchainNetworkConfig = {

/** Chain identifier. */
chainId: "31337",
/** Network endpoint. */
url: "http://127.0.0.1:8545",
/** StudentsRegister contract address. */
registerAddress: "0x51a240271AB8AB9f9a21C82d9a85396b704E164d",
/** EntryPoint contract address. */
entryPointAddress: "0xF2E246BB76DF876Cef8b38ae84130F4F55De395b",
/** Paymaster contract address. */
paymasterAddress: "0xB9816fC57977D5A786E654c7CF76767be63b966e",

}

To support the required on-chain functionalities, the browser extension per-
forms three types of interactions:

1. Direct read-only operations
2. Read-only operations via the SCA
3. Transactions via the smart account

Direct Read-Only Operation

This is the simplest interaction and is executed, for example, during login phase,
where the extension retrieves the address of the student’s smart account. In this
case, the extension directly invokes the corresponding function of the Students-
Register contract, using the student’s EOA as the sender.

Read-Only Operation via Smart Account

These interactions occur when retrieving permissioned data, such as academic
records, accessible only to authorized universities or the student. For this, the ex-
tension invokes the dedicated function to execute read-only operations, provided
by the SmartAccount contract. As described in Section 7.2, the call requires spe-
cifying:

• the address of the target contract
• the encoded function signature and parameters (calldata)

Encoding is handled using functions from the ethers library. The operation is ex-
ecuted using the student’s EOA.

42 Diego Da Giau: EduWallet

Transaction via Smart Account

This type of interaction is required for operations that alter blockchain state, such
as granting or revoking permissions to universities, by accessing restricted func-
tions. These actions require gas consuming transaction executed via the student’s
SCA, using UserOperations. The browser extension constructs a UserOperation by
assembling the following fields:

• Sender address (the student’s EOA address)
• Target contract address
• Encoded function name and parameters
• Gas and fee-related parameters
• Transferred value (always set to 0 in our case)
• Paymaster address and associated parameters
• Student’s EOA signature, generated using ethers utilities

After constructing the UserOperation, the extension sends it directly to the Entry-
Point contract using its hardcoded address. As discussed in Section 7.1.1, in a
public network deployment, this operation would be relayed via a bundler in-
stead.

8.1.4 UI Prototyping

The UI was initially designed using Figma, a powerful prototyping tool that en-
ables detailed visualization and planning UI across various types of applications.
The UI prototype, accessible via the link provided in Appendix A.2, played a cru-
cial role not only in shaping the visual layout of the extension, but also in refining
its functional requirements. By sketching out all application windows and placing
ourselves in the shoes of end users, we were able to identify the key pieces of in-
formation the interface needed to convey and determine the most effective ways
to present them.

8.2 Software Development Kit

This section describes the SDK, a TypeScript package designed to simplify integ-
ration of the EW system within university infrastructure. By abstracting low-level
blockchain concerns, such as EOA key management, contract deployment and ref-
erencing, read-only queries and gas consuming transactions, the SDK lowers the
barrier to entry for institutions wishing to adopt on-chain academic records.

When evaluating integration strategies, we considered two alternatives: web
APIs and a stand-alone SDK. Web APIs require a centralized server to receive cli-
ent requests, execute business logic, and relay blockchain interactions. In con-
trast, an SDK is distributed as a client-side library that runs directly within the
user’s environment, requiring no dedicated server infrastructure beyond standard
package hosting. This approach aligns with NFR 6 in Table 5.2, which prioritizes
decentralization. Moreover, an SDK offers superior scalability compared to APIs.

Chapter 8: Off-Chain Design 43

Since API calls traverse the public internet and share server resources, they can be
affected by network latency or server overload when serving thousands of institu-
tions worldwide. The SDK, by running locally on each institution’s system, min-
imizes network dependencies and leverages the user’s own compute resources.
However, SDKs entail two main trade-offs. First, updates depend on consumer
upgrading to newer package versions, whereas a centralized API can be improved
transparently. Second, SDKs are inherently platform-specific: a TypeScript SDK
supports only JavaScript/TypeScript environments. To address this, one must de-
velop and maintain multiple SDK variants for different languages or platform.

Given that our off-chain components are implemented in TypeScript, and that
Node.js7 is widely adopted in modern back-end systems, we selected TypeScript
for the SDK. The choice maximizes compatibility with university IT stacks and
leverages existing expertise in the JavaScript ecosystem.

8.2.1 Working with the SDK

Once imported in the university’s system, the SDK exposes a suite of functions and
types that encapsulate all interaction with the on-chain academic record platform.
An example of its usage is shown in Code listing 8.2, where the SDK is imported
and used to register a student in the system. The registration function accepts two
parameters: the university EOA wallet, instantiated from the private key provided
at university enrolment using the ethers Wallet type; and a StudentData object,
a type defined by the SDK that includes the student’s name, surname, date of
birth, place of birth, and country of birth. The function returns the student’s cre-
dentials (ID and password) and the SCA address. Because all SDK calls involve
blockchain queries or transactions, each function is declared asynchronous and
must be awaited by the caller.

Code listing 8.2: Import of the SDK and exemplar invoke

// Import the SDK
import * as eduwallet from ’eduwallet-sdk’;

// Register the student using the SDK
const student = await eduwallet.registerStudent(

uni,
{

name,
surname,
birthDate,
birthPlace,
country,

});

In addition to students registration, the SDK provides the following core func-
tionalities for university integrators:

• Enrol a student in one or more courses.
7An open-source server environment used to run JavaScript and TypeScript code outside the

browser (https://nodejs.org)

https://nodejs.org

44 Diego Da Giau: EduWallet

• Record a new evaluation for a student.
• Retrieve a student’s personal details.
• Retrieve a student’s personal details and complete academic records.
• Request permission to read from or write to a student’s academic wallet.
• Verify an existing permission in a student’s academic wallet.

Register a student

Universities register students by providing their own EOA and a StudentData ob-
ject,v Code listing 8.3. The SDK generates a new EOA for the student using PB-
KDF2 algorithm, already presented in Section 8.1.2. Specifically, the SDK ran-
domly generates a student’s ID and password, which are used as inputs to derive
the private key. This approach satisfies NFR 1 in Table 5.2 by avoiding reliance
on third-party wallets (e.g., MetaMask). The SDK then constructs a UserOpera-
tion to invoke the registration function on the StudentsRegister contract via the
university’s smart account. Finally, it queries the StudentsRegister to retrieve the
student’s SCA address and returns it, along with the student’s credentials, to the
caller.

Code listing 8.3: SDK student registration function

/**
* Registers a new student in the academic blockchain system.
* Creates both a student EOA and smart account.
* @param {Wallet} universityWallet - The university EOA with registration
* permissions
* @param {StudentData} student - The student information to register
* @returns {Promise<StudentCredentials>} The created student credentials and

wallet
* information
*/
async function registerStudent(

universityWallet: Wallet,
student: StudentData

): Promise<StudentCredentials>

Enrol a student

To enrol students in courses, universities invoke the function whose signature is
presented in Code listing 8.4. This function requires the university’s EOA wallet,
the student’s SCA address, and an array of CourseInfo objects, each containing
course code, name, degree program, and ECTS credits. The SDK converts these
into the format expected by the Student contract’s Result structure (Section 7.3)
and submits a UserOperation to perform the enrolment.

Code listing 8.4: SDK student enrolment function

/**
* Enrols a student in one or more academic courses.
* Records course enrolments on the student’s academic blockchain record,
* establishing the foundation for future evaluations.

Chapter 8: Off-Chain Design 45

* @param {Wallet} universityWallet - The university EOA with enrolment authority
* @param {string} studentWalletAddress - The student’s SCA
* @param {CourseInfo[]} courses - Array of courses to enrol the student in (code,
* name, degreeCourse, ects)
* @returns {Promise<void>} Promise that resolves when all enrolments are
* successfully recorded
*/
async function enrolStudent(

universityWallet: Wallet,
studentWalletAddress: string,
courses: CourseInfo[]

): Promise<void>

Record a new evaluation

Recording an evaluation requires the university’s EOA wallet, the student’s SCA
address, and an array of Evaluation objects (see Code listing 8.5 for the function
signature). Each object includes the course ID, grade, evaluation date, and an
optional path to a certificate file. For entries that include certificates, the SDK first
uploads the file to the decentralized storage system (see Section 8.3) and retrieves
a reference to it. It then assembles a UserOperation containing all relevant data,
including the storage reference. This UserOperation is executed via the university’s
smart account to invoke the evaluation function in the student’s contract.

Code listing 8.5: SDK student evaluation function

/**
* Records academic evaluations for a student’s enrolled courses.
* Publishes certificates to IPFS when provided and records evaluations on the
* blockchain.
* @param {Wallet} universityWallet - The university EOA with evaluation
* permissions
* @param {string} studentWalletAddress - The student’s SCA address
* @param {Evaluation[]} evaluations - Array of academic evaluations to record
* @returns {Promise<void>} Promise that resolves when all evaluations are
* successfully recorded
*/
async function evaluateStudent(

universityWallet: Wallet,
studentWalletAddress: string,
evaluations: Evaluation[]

): Promise<void>

Retrieve Student Details and Records

To fetch personal details, with (Code listing 8.7) or without (Code listing 8.6)
academic records, the SDK takes the university’s EOA wallet and the student’s
SCA address. It executes a read-only operation via the university’s SCA, to invoke
the appropriate view function on the student’s smart account. Upon success, the
SDK maps the returned data into a Student object, containing StudentData and
an array of academic records.

46 Diego Da Giau: EduWallet

Code listing 8.6: SDK function to retrieve student’s personal details.

/**
* Retrieves basic student information from the blockchain.
* Only fetches personal data without academic results.
* @param {Wallet} universityWallet - The university EOA with read permissions
* @param {string} studentWalletAddress - The student’s SCA address
* @returns {Promise<Student>} The student’s basic information
*/
async function getStudentInfo(

universityWallet: Wallet,
studentWalletAddress: string

): Promise<Student>

Code listing 8.7: SDK function to retrieve student’s personal details and academic
records.

/**
* Retrieves student information including academic results.
* Provides a complete academic profile with course outcomes.
* @param {Wallet} universityWallet - The university EOA with read permissions
* @param {string} studentWalletAddress - The student’s SCA address
* @returns {Promise<Student>} The student’s complete information with academic
* results
*/
async function getStudentWithResult(

universityWallet: Wallet,
studentWalletAddress: string

): Promise<Student>

Request a permission

When a university needs permission to read or write a student’s academic wal-
let, it invokes the function shown in Code listing 8.8. This function requires the
university’s EOA wallet, the student’s SCA address, and the desired permission
type (Read or Write). It then constructs and submits a UserOperation to call the
corresponding function on the student’s SCA.

Code listing 8.8: SDK permissions request function

/**
* Requests permission to access a student’s academic wallet.
* Universities must request access before they can read or modify student records.
* @param {Wallet} universityWallet - The university EOA
* @param {string} studentWalletAddress - The student’s SCA address
* @param {PermissionType} type - Type of permission requested (Read or Write)
* @returns {Promise<void>} Promise that resolves when the permission request is
* submitted and confirmed
*/
export async function askForPermission(

universityWallet: Wallet,
studentWalletAddress: string,
type: PermissionType

): Promise<void>

Chapter 8: Off-Chain Design 47

Verify permissions

To verify existing permissions (Code listing 8.9), the SDK takes the university’s
EOA wallet and the student’s SCA address. It then executes a read-only operation
via the university’s smart account, targeting the student smart account. The stu-
dent’s SCA returns the granted permission type, or null if none is held. The SDK
forwards this result to the caller, using the appropriate TypeScript type.

Code listing 8.9: SDK permission verification function

/**
* Verifies a university’s permission level for a student’s academic wallet.
* @param {Wallet} universityWallet - The university EOA to check permissions for
* @param {string} studentWalletAddress - The student’s SCA address
* @returns {Promise<PermissionType | null>} The permission level (Read or Write)
* or null if no permission
*/
async function verifyPermission(

universityWallet: Wallet,
studentWalletAddress: string

): Promise<PermissionType | null>

8.2.2 Access On-Chain Functionalities

Since the SDK adopts the same model as the browser extension to access on-chain
functionalities, the Section 8.1.3 provides a thorough explanation of the different
types of interactions, as well as the tools and libraries used to execute them.

8.2.3 Input Management

All SDK functions incorporate input validation and presence checks to ensure data
integrity. For example, the function responsible for recording a new evaluation in
a student’s academic wallet first verifies that all required parameters are provided.
It then checks the validity of the student’s smart account address by confirming
that it begins with 0x. Additionally, the function ensures that the evaluations array
contains at least one entry and that each evaluation includes all mandatory fields.

8.3 Decentralized Storage System

This section presents our solution to one of the most significant challenges in
blockchain-based systems: the high cost of on-chain storage. To address this issue,
presented also through the NFR 3 in Table 5.2, we introduce an off-chain decent-
ralized storage solution in our project. This system is used to store and retrieve
certification files, such as language certificates or graduation diplomas, which re-
quire significantly more space than plain text8. Storing such documents directly
on-chain would result in substantial gas costs, making the approach impractical.

8PDF files typically range from a few kilobytes to several megabytes, whereas plain text data
usually occupies only a few bytes.

48 Diego Da Giau: EduWallet

We chose a decentralized storage system over traditional local or cloud-based
solutions to maintain the decentralized nature of our environment and to meet
NFR 6 outlined in Table 5.2. Among the various decentralized options available,
we selected IPFS for its ability to provide verifiable and distributed file storage.
This choice is motivated by several factors: IPFS is an open source protocol with
a large and active community, strong support, and widespread adoption. It also
serves as the foundational layer for many other decentralized platforms, such as
Filecoin9 and Web3.Storage10, allowing future extensions or upgrades to be im-
plemented with minimal effort [19]. Furthermore, IPFS ensures immutability of
stored files, a critical feature for academic certificates, which must remain un-
changed over time.

8.3.1 Pinning files

To fully leverage IPFS, we integrated Filebase11, a third-party pinning service. Pin-
ning refers to the act of instructing a node to keep a copy of a file permanently
[18], preventing it from being removed during garbage collection. Without File-
base, we would have needed to run our own local IPFS node and manage file pin-
ning manually, an approach that introduces instead complexity, higher mainten-
ance costs, and reduced data availability in a testing system like ours. In contrast,
Filebase handles node operation and file pinning, offering an accessible solution
thorough its Amazon Web Services (AWS) S3-compatible API, which simplifies
file uploads to the peer-to-peer network. Notably, Filebase also provides a free
tier allowing up to 5 GB of storage, which is sufficient for our needs. This is an
advantage over other pinning solutions such as Web3.Storage, which lacks a fully
free plan, or Pinata12, which offers more limited options.

8.3.2 Integration in the system

As illustated in Figure 8.1, both the browser extension and the SDK interact with
the storage system. The browser extension enables students to retrieve certificates
associated with their academic records through the official IPFS public gateway.
As shown in Figure 8.6, each certificate is presented as clickable, composed by the
gateway’s base URL followed by the file’s CID on the IPFS network. The CID of
each document is stored on-chain within the student’s academic wallet, alongside
other record information such as the course name (see Section 7.3). This enables
students to view and download their certificates from a standard web interface.

Similarly, the SDK uses the same mechanism to retrieve certificates on behalf
of universities. When uploading a file, however, it interacts directly with Filebase
to ensure that the file is pinned and hosted by an active node. The SDK receives
the document from the university and uses the AWS S3-compatible API to upload

9https://filecoin.io
10https://web3.storage
11https://filebase.com
12https://pinata.cloud

https://filecoin.io
https://web3.storage
https://filebase.com
https://pinata.cloud

Chapter 8: Off-Chain Design 49

Figure 8.6: Screenshot of the browser extension presenting the page of a course.
The image shows the link to the certificate saved in the decentralized storage.

it. This API requires the access key associated with the pinning account, which is
managed by the EW system administrator, along with the file itself. In return, it
provides the CID, which is then stored in the academic record. Section 9.4 provides
a more detailed explanation of the API structure and usage.

8.3.3 Security and Limitations

Academic certifies, and official documents more broadly, are legal artifacts that
must always be secure and verifiable. IPFS inherently supports these properties
through its use of content-based addressing. In this model, each file is identified
by a CID, which is derived from the cryptographic hash of the file’s content. Any
alteration to the file results in a completely different CID, ensuring that tampering
is immediately detectable [18]. Since the CID is stored on the blockchain at the
time the certificate is issued by the university, the document’s authenticity and
integrity are guaranteed.

While IPFS offers strong immutability and verifiability, it lacks built-in access
control. In the context of our system, we assume that certificates are publicly
accessible documents. Consequently, any part in possession of a file’s CID can re-
trieve it via the public gateway. However, if access control becomes a requirement,
there are several strategies to address this limitation [25]. One option is to encrypt
files before uploading them to IPFS, such that only authorized components within
our system can decrypt them. Another approach is to use a private IPFS network,
where access can be restricted to approved entities.

50 Diego Da Giau: EduWallet

(a) Sliding menu

(b) User input and visual feedbacks

Figure 8.7: Snapshots of the CLI interface

8.4 CLI

This section describes the testing tool developed to evaluate the use of the SDK. In
a real-world deployment, universities are expected to integrate the SDK into their
existing LMS to interact with EW. However, given that this is a testing environ-
ment, smaller and simpler than a real-world deployment, we developed a minimal
CLI to simulate the interaction between a university’s system and our academic
register. We opted to implement a CLI rather than a web application or desktop
GUI and this decision allowed for faster development, enabling us to focus on the
core functionalities of the SDK, the blockchain logic, and the browser extension,
without introducing additional complexity related to graphical or UX design.

Figure 8.7 illustrates the visual aspects of the CLI. In Figure 8.7a, users can
navigate through a sliding menu offering various options. When input is required,
the interface prompts the user for the necessary information and provides visual
feedback upon completion of the operation (Figure 8.7b).The CLI leverages the
inquirer13 TypeScript library to manage user interactions and uses ora14 to display
feedback. Specifically, ora is responsible for showing success and error messages,
as well as animated text with spinners to indicate ongoing operations.

8.4.1 CLI Features

The CLI exposes all the features outlined in Figure 8.8. Users can:

• Submit a request to register a university in the EW system.

13https://www.npmjs.com/package/inquirer
14https://www.npmjs.com/package/ora

https://www.npmjs.com/package/inquirer
https://www.npmjs.com/package/ora

Chapter 8: Off-Chain Design 51

CLI

register universityapply

verify information

register
<<Include>>

<<Include>>

<<Include>>

subscribe student

enroll student in a course

evaluate student

get student and results

get student

<<Include>>

request permission

verify permission

University

Admin

Figure 8.8: Use case diagram representing the functionalities provided by the
CLI.

• Register a new student.
• Retrieve a student’s personal details.
• Retrieve a student’s details and academic results.
• Enrol a student in a new course.
• Evaluate a student.
• Request permissions from a student.
• Verify existing permissions.

Additionally, the CLI provides options to change the current university and exit
the program.

Testing environment initialization

Before performing any operation, the CLI must initialize a local blockchain test
network by deploying the following smart contracts:

• EntryPoint
• StudentDeployer
• UniversityDeployer
• Paymaster
• StudentsRegister

The Paymaster contract then must also be funded to sponsor users’ transactions.

52 Diego Da Giau: EduWallet

In public test networks or in production environments, this initialization step
would be unnecessary, as the contracts would already be deployed. Their ad-
dresses would be hardcoded in the CLI, SDK and browser extension.

University registration

To apply to the EW system, a university must provide its name, country, and short
name. Upon receiving these parameters, the CLI generates a random private key,
which becomes the private key of the university’s EOA. The EOA is then set as
the active identity used to execute the subsequent operations on behalf of the
university. Upon successful completion, the CLI shows the generated private key,
which is essential for accessing the university’s SCA. In a real LMS, this private
key must be securely stored and used to initialize the EOA wallet when interact
with the SDK.

To enable immediate interaction with the EntryPoint contract on the local test-
net, the CLI also funds the university’s EOA. This step is unnecessary in public or
production networks, where the bundler covers transaction fees and is reimbursed
by the Paymaster.

Register a new student

To register a student, the university provides their name, surname, date of birth,
place of birth and country of birth. The CLI then invokes the SDK to create the
student’s smart account and credentials, which are returned to the university (Fig-
ure 8.7b). The SCA address uniquely identifies the student and must be stored by
the university, as it is required for all future interactions.

The CLI also funds the student’s EOA for local testing. The wallet address is
obtained from the login credentials, as explained for the browser extension in
Section 8.1.

Student Information Retrieval

To retrieve a student’s personal information or full academic record, university
must provide the student’s smart account address. The CLI then returns the re-
quested data.

Enrol and evaluate

To enrol or evaluate a student, the university must provide the smart account ad-
dress and course code. Enrolment also requires the course name, number of ECTS
and degree course name. Evaluation requires the evaluation date and, optionally,
the path to a certificate file. Since the SDK allows enrolment in or evaluation of
multiple courses at once, the CLI also supports submitting multiple records in a
single command.

Chapter 8: Off-Chain Design 53

Permissions: Request and Verification

To access or modify student’s academic records, the university must request per-
mission. The CLI requires the student’s SCA address and the type of permission
(read or write). The CLI also includes the option to verify whether the university
currently has read or write permission for a specific student.

Changing University and Exiting the CLI

These functionalities are unique to the CLI and are included for convenience. To
change the active university, the user provides the private key of another registered
university. To exit the CLI, the user selects the corresponding menu option.

Administrator Functionalities

The CLI also includes admin functionalities, as outlined in FR 1 of Table 5.1, to
facilitate system testing. Specifically, the administrator can:

• Review the information submitted in university registration request.
• Approve and register universities in the system.

These functionalities are embedded within the university registration option. A
university is automatically registered when its information is provided by the user
during the registration process.

8.4.2 Data validation

All user input is validated using regular expressions and formatting rules. For in-
stance, wallet addresses and private keys are validated based on length and struc-
ture15. Strings are validated to fall within predefined length limits. Dates must
follow the YYYY-MM-DD format to avoid ambiguity and must be after January 1,
1970, as they are stored as Unix timestamps (unsigned integers). ECTS values are
checked to ensure they are valid integers or floating-point numbers within accept-
able limits. Since the smart contracts store ECTS as integers scaled by 100 (see
Section 7.3 for further details), the CLI ensures the values will not cause overflow
during storage.

15Private keys must start with 0x and be followed by 64 hexadecimal characters; addresses by
42.

Chapter 9

Implementation

This chapter describes the practical implementation of the EW system, build-
ing upon the designs introduced in the previous chapters. While Chapter 7 and
Chapter 8 focus on the system’s architecture and the rationale behind key design
decisions, this chapter highlights the concrete tools, technologies, and develop-
ment processes used to bring the system to life.

Key implementations aspects include the use of account abstraction for users
account, the integration of off-chain and on-chain components and the introduc-
tion of an access control system that empowers students to manage who can access
their data. Special attention is given to the coordination between the academic re-
cords system and the decentralized storage layer.

9.1 Development Environment

This section outlines the tools and technologies used to author, compile, and test
EW system.

The primary code editor is Visual Studio Code1, chosen for its lightweight
footprint and extensive ecosystem of extensions. To support Solidity development,
we installed the Nomic Foundation’s Solidity extension, which provides syntax
highlighting, inline error detection, and code completion directly within the editor,
thereby accelerating development and debugging.

To compile contracts and simulate a local blockchain, we utilized Hardhat2.
Our configuration specifies:

• Solidity compiler version: 0.8.28 (the latest fully supported by Hardhat at
the time of writing)3

• EVM version: Cancun
• Optimizer settings: Enabled with 1000 runs to reduce bytecode size and

keep contracts (e.g., Student, EntryPoint) below the 24576-byte limit.

1https://code.visualstudio.com/
2https://hardhat.org/
3Versions 0.8.29 and 0.8.30 were not yet fully supported.

55

https://code.visualstudio.com/
https://hardhat.org/

56 Diego Da Giau: EduWallet

• Preconfigured account: A single funded EOA serves as deployer, funder for
student and university wallets, and system administrator. Its private key is
fixed to ensure deterministic contract addresses, as these are derived from
the deployer’s key and the number of contracts deployed by the account
(nonce).

The complete Hardhat configuration file can be found in Appendix D.
For blockchain interaction in off-chain code, we rely on two core libraries:

• ethers: Provides providers for network connectivity, cryptographic utilities
(e.g., PBKDF2), and the Wallet class for EOA key management and transac-
tion signing.
• TypeChain: A Hardhat plug-in that generates TypeScript bindings from con-

tracts, allowing them to be imported and used as strongly typed classes.

Finally, our smart contracts leverage external libraries to streamline common
patterns:

• OpenZeppelin Contracts: Supplies contract implementations of access con-
trol and other standard modules.
• AccountAbstraction: Provides the EntryPoint contract and abstract con-

tracts required for ERC-4337 account abstraction.

9.2 Account Abstraction and On-Chain Integration in Off-
Chain Components

As described in Section 7.1.1, account abstraction redefines on-chain interac-
tions within the Ethereum network. Whereas traditions transactions were bound
to EOA, the introduction of UserOperations enables SCA to initiate and execute
transactions directly on-chain. This paradigm shift also alters how off-chain com-
ponents interact with and invoke on-chain logic.

In Section 8.1.3, we identified three primary modalities for invoking smart
contract functionality:

1. Direct view function calls
2. View function calls via a SCA
3. Gas-consuming transactions via a SCA

The following subsections detail the code patterns used to implement each inter-
action modality, as well as the core components involved in the implementation
of account abstraction.

9.2.1 Direct View Function Calls

To perform a direct call to the view function shown in Code listing 9.1, the sys-
tem first initializes an ethers provider. It then uses the StudentsRegister__factory
class generated by TypeChain to create a StudentRegister instance connected to

Chapter 9: Implementation 57

the on-chain contract via the connect method, which accepts the contract address
and provider as arguments. The instance exposes all public functions, variables,
and types defined in the Solidity contract. Because the target function is permis-
sioned, the student’s EOA must be connected as the transaction sender. This is
achieved by invoking the factory’s connect method again, this time passing a Wal-
let, instantiated with the student’s private key and the same provider. The view
function is then called as a standard method on the resulting object. The return
value is automatically typed according to the contract’s Solidity definition and, in
this case, is a string.

Code listing 9.1: Direct call to a smart contract view function

import { StudentsRegister__factory } from
"@typechain/factories/contracts/StudentsRegister__factory"

// Ethereum JSON-RPC provider instance
const provider = new JsonRpcProvider(blockchainConfig.url);
// Retrieves the StudentsRegister contract instance
const studentRegister = StudentsRegister__factory
.connect(blockchainConfig.registerAddress, provider);
// Retrieves the student’s smart account address from the StudentsRegister contract
const studentAccountAddress = await studentsRegister
.connect(connectedStudent).getStudentAccount();

9.2.2 View Function Calls via a Smart Contract Account

View functions calls via a SCA exploit the executeViewCall method defined in the
SmartAccount abstract contract (see Code listing 9.2). This method, which can
be only invoked by the SCA owner, accepts two arguments: the address of the
target contract and encoded function name and parameters. By using it, SCAs can
perform read-only operations without submitting gas-consuming transactions.

Code listing 9.2: executeViewCall method in the SmartAccount abstract contract.

/**
* @notice Performs a view call to another contract
* @dev Only the owner can execute view calls; uses staticcall to ensure no state
* changes
* @param _targetContract Address of the contract to call
* @param _calldata The encoded function data to send to the target contract
* @return bytes The data returned from the view call
*/
function executeViewCall(

address _targetContract,
bytes calldata _calldata

) external view returns (bytes memory) {
// Only owner can execute view calls
if (msg.sender != owner) {

revert UnauthorizedCall();
}
// Static call ensures we only execute view functions
(bool success, bytes memory returnData) = _targetContract.staticcall(

_calldata
);

58 Diego Da Giau: EduWallet

if (!success) {
revert ViewCallFailed(returnData);

}
return returnData;

}

To invoke this method from TypeScript, the steps illustrated in Code listing 9.3
must be followed:

1. Calldata encoding: The target function’s selector and parameters must be
encoded into a hexadecimal string. We use the BaseContract class from eth-
ers to generate this encoding in a generic way, independent of the specific
contract interface.

2. Account connection and method invocation: Instantiate a SmartAccount
contract object connected with the owner’s EOA wallet (e.g., the university’s
EOA). Then, invoke the executeViewCall method on this connected SCA in-
stance, passing the target contracts address along with the encoded calldata.

3. Result decoding: The call returns an encoded hexadecimal string. We de-
code it back into expected return type using ethers utilities.

Code listing 9.3: TypeScript code invoking executeViewCall on a SmartAccount
instance.

// Encode the function call
const calldata = targetContract.interface.encodeFunctionData(functionName, params);
// Execute the view call through the smart account
const results = await smartAccount.connect(connectedUniversity)
.executeViewCall(targetContractAddress, calldata);
// Decode the result
const decodedResults = targetContract.interface
.decodeFunctionResult(functionName, results);

9.2.3 Gas-Consuming Transactions via Smart Contract Account

To execute state-changing operations, such as granting or revoking permissions,
our off-chain components fully leverage the ERC-4337 account abstraction pro-
tocol. On the smart-contract side, the BaseAccount abstract contract provides two
core methods (see Appendix B):

1. execute: Accepts a target address (either an EOA or another smart con-
tract), a value (ETH to transfer) and encoded calldata, then performs a
single transaction.

2. executeBatch: Accepts an array of such triples (address, value, calldata)
and executes them automatically in a single transaction.

Both methods incur in gas costs, in contrast to the read-only executeViewCall from
Section 9.2.2.

Account abstraction security is enforced by the validateUserOp function within
BaseAccount, invoked by the EntryPoint contract before execution. Within valid-
ateUserOp, our smart account calls its own _validateSignature helper (see Code

Chapter 9: Implementation 59

listing 9.4), which in our case simply verifies that the signer of the UserOperation
matches the account owner.

Code listing 9.4: Function to validate the sender’s signature in the SmartAccount
contract.

/**
* @notice Validates the signature on a user operation
* @dev Verifies that the operation was signed by the account owner
* @param _userOp The user operation containing the signature to validate
* @param _userOpHash The hash of the user operation that was signed
* @return validationData 0 if signature is valid, 1 if invalid
*/
function _validateSignature(

PackedUserOperation calldata _userOp,
bytes32 _userOpHash

) internal virtual override returns (uint256 validationData) {
// Verify the signature matches the owner’s address
if (owner != ECDSA.recover(_userOpHash, _userOp.signature))

return SIG_VALIDATION_FAILED;
return SIG_VALIDATION_SUCCESS;

}

On the client side, we encapsulate UserOperation handling in an AccountAb-
straction TypeScript class (see Appendix E). Because no public bundlers are avail-
able in our local testnet, we must format and submit operations directly to the
EntryPoint contract as PackedUserOperation objects. The workflow is as follows:

1. Create the UserOperation: Populate fields such as sender address, target
contract address, value, calldata, gas and fee parameters, and paymaster
details (see Section 7.1.1).

2. Pack the UserOperation: Pack and encode some UserOperation fields, such
as the gas consumption ones.

3. Sign the UserOperation: Sign the packed payload with the sender’s EOA
using ethers utilities, incorporating some network information and opera-
tion format.

4. Send the UserOperation: Submit the signed operation via the EntryPo-
int.handleOps method. Because this submission itself is a transaction, the
CLI must pre-fund users’ EOAs on the testnet.

5. Verify the result: After execution, inspect the returned execution trace stack
for any exception logs emitted by the UserOperation. The absence of such
errors confirms the successful execution.

The primary limitation of our implementation lies in gas consumption estima-
tion. In our AccountAbstraction class, all gas and fee-related parameters are hard-
coded. Since the system operates in a controlled testing environment with dedic-
ated paymaster and user accounts pre-funded with large balances, we configured
these limits conservatively, setting them to high values to avoid transaction fail-
ures due to out-of-gas errors. We chose not to implement a more advanced gas
estimation mechanism, as it would introduce unnecessary complexity in the con-
text of a local setup. In a real-world deployment, this concern is mitigated by
bundlers, which either expose utilities for gas estimation or handle it internally.

60 Diego Da Giau: EduWallet

As a result, the interaction with UserOperations becomes seamless for the end
user and developers alike.

9.3 Access Control System

One of the main principles of Web3 is the shift in data ownership and manage-
ment, from centralized systems typical of Web2 architectures to a user-centric
model. In EW, academic records are owned by students, as established by FR 9 in
Table 5.1, and this ownership is enforced through a robust access control system.
This permission system is implemented entirely in smart contracts, specifically
within the Student contracts.

Access control in the Student contract is achieved using the AccessControlEn-
umerable abstract contract, an extension of the more general AccessControl con-
tract, both of which are provided by the OpenZeppelin contracts library. This lib-
rary allows developers to define roles, which are then used to restrict access to
specific contract functions. In AccessControlEnumerable, a role is defined as the
Keccak-256 hash of a string, as shown in Code listing 9.5.

Code listing 9.5: Role definition in the Student smart contract

// Role definitions for access control
bytes32 private constant READER_ROLE = keccak256("READER_ROLE");

Roles can be granted or revoked using methods provided by the AccessCon-
trolEnumerable library. The Student contract utilizes the following methods:

• grantRole
• revokeRole
• _grantRole
• _revokeRole

The key distinction between these methods is their access control. The functions
grantRole and revokeRole can only be invoked in a transactions initiated by the en-
tity holding the DEFAULT_ADMIN_ROLE, whereas _grantRole and _revokeRole are
unrestricted methods. The DEFAULT_ADMIN_ROLE is defined by the AccessCon-
trolEnumerable library and must be assigned to the administrator of the roles, in
our case the student. This role is granted at the time of smart account creation.
The unrestricted methods are primarily used in functions involving universities
(e.g., permission requests), while the permissioned methods are used by students
(e.g., permission revocation).

To enforce role-based access, the contract uses the onlyRole function modifier
(Code listing 9.6) and the hasRole method (Code listing 9.7). The modifier restricts
access to function execution based on role possession, while the method allows for
role verification at runtime. Both tools are provided by the OpenZeppelin access
control library.

Code listing 9.6: Function definition using the onlyRole modifier.

Chapter 9: Implementation 61

function evaluate(
EvaluationInfo[] calldata _evaluations

) external onlyRole(WRITER_ROLE) {
...

}

Code listing 9.7: hasRole method for verifying access permissions.

if (hasRole(WRITER_APPLICANT, _university))

As shown in Code listing 9.8, the permission-related functions accept or return
roles in their hashed format. Therefore, off-chain components must define and
compute permissions in the same way as the contract.

Code listing 9.8: Functions to request and grant permissions in the Student con-
tract.

/**
* @notice Allows a university to request permission to access student data
* @dev University addresses will be added to READER_APPLICANT
* or WRITER_APPLICANT roles
* @param _permissionType Permission type requested (READER_APPLICANT
* or WRITER_APPLICANT)
*/
function askForPermission(bytes32 _permissionType) external {

// Validate permission type
if (

_permissionType != READER_APPLICANT &&
_permissionType != WRITER_APPLICANT

)
...

}

/**
* @notice Grants permission to a university
* @dev Only callable by the student (DEFAULT_ADMIN_ROLE)
* @param _permissionType Permission type (READER_ROLE or WRITER_ROLE)
* @param _university Address of university to grant permission to
*/
function grantPermission(

bytes32 _permissionType,
address _university

) external onlyRole(DEFAULT_ADMIN_ROLE) {
// Check if the permission exists
if (_permissionType != WRITER_ROLE && _permissionType != READER_ROLE)
...

}

Both the browser extension and the SDK use the id function from the ethers library
to compute the hash of role strings, as shown in Code listing 9.9. The id function
takes a string and returns its Keccak-256 hash, ensuring consistency with the con-
tract’s role definition.

Code listing 9.9: Role hash generation in off-chain components.

/**
* Role identifiers used for access control.

62 Diego Da Giau: EduWallet

* Uses Ethereum’s id() function to generate role identifiers from string constants
.

*/
export const roleCodes: RoleCodes = {

/** Role identifier for read access requesters */
readRequest: id("READER_APPLICANT"),
/** Role identifier for write access requesters */
writeRequest: id("WRITER_APPLICANT"),
/** Role identifier for approved readers */
read: id("READER_ROLE"),
/** Role identifier for approved writers */
write: id("WRITER_ROLE"),

}

9.4 Decentralized Storage System Interaction

EW employs a decentralized storage system to manage certificates linked to aca-
demic records. Both the browser extension and the SDK can retrieve files, but only
the SDK is responsible for uploading them on it.

File retrieval is performed via the public IPFS gateway URL. By appending
a file’s CID to this gateway URL, students and universities can directly access the
document. This gateway is hardcoded in both the browser extension and the SDK,
as shown in Code listing 9.10. The corresponding CID for each certificate is stored
on-chain and retrieved when querying academic results.

Code listing 9.10: IPFS public gateway URL configuration in off-chain compon-
ents.

/**
* Configuration for IPFS storage.
* Defines parameters needed to retrieve certificates.
*/
interface IpfsStorageConfig {

/** Gateway URL for retrieving IPFS content */
gatewayUrl: string;

}

/**
* IPFS storage configuration.
*/
export const ipfsConfig: IpfsStorageConfig = {

/** IPFS gateway url. */
gatewayUrl: "https://ipfs.io/ipfs/",

}

Uploading a file requires interaction with an IPFS pinning service, as described
in Section 8.3.1. Our SDK uses an AWS S3–compatible API provided by Filebase
(see Appendix F). The API call requires the following parameters:

• Bucket: Name of the virtual folder for organizing files.
• Key: Unique identifier for the file within the bucket.
• Body: The file content to be uploaded.

Chapter 9: Implementation 63

• ContentType: The type of the file (set to Portable Document Format (PDF)
in our implementation).

Prior to issuing the upload request, a middleware, sourced from the official File-
base documentation4, is attached to the API client. This middleware intercepts
the response to extract the resulting CID, which the SDK then records on-chain
alongside the academic record.

4https://docs.filebase.com/

https://docs.filebase.com/

Chapter 10

Results

This chapter presents the results obtained through the validation of the proposed
solution, as described in the previous chapters. The validation involved testing
all the developed components that interact to form EW, and analysing the out-
comes produced by the testing environment. This process is fully reproducible by
following the deployment steps outlined in the GitHub repository (Appendix A.1).

10.1 Components Validation

The goal of the components validation was to verify whether all the system func-
tionalities, as outlined in Chapter 5, had been properly implemented. To perform
this verification, we carried out various system-level tests focusing on the interac-
tion among components.

The tests were conducted in the local testing environment, with the Ethereum
node configured as explained in Section 9.1. Given that all elements of the EW
solution are tightly integrated and designed to work in synergy, the most effective
validation approach was to test them as a cohesive unit, specifically, by validating
the SDK and the browser extension together.

The SDK functionalities were tested through the CLI, using its UI to select
and execute various operations. The browser extension instead was tested using
the Chrome browser, replicating the experience of student users. After performing
operations such as the student registration and enrolment via the CLI, we used the
resulting student credentials to log into the extension and verify the data stored
in student’s academic wallet. Through these tests, we confirmed that all FRs were
fulfilled for both the SDK and the browser extension.

These functional tests revealed a few bugs in system behaviour. For instance,
while testing data input through the CLI, we encountered an issue with date hand-
ling: since dates are stored as unsigned timestamps, any date before January 1,
1970, was rejected by the smart contracts, causing transactions to fail. As a result,
we implemented additional checks in the off-chain components to validate and
restrict date inputs to compatible values. We also noticed occasional graphical

65

66 Diego Da Giau: EduWallet

Figure 10.1: Transaction information from the local Hardhat node

Table 10.1: Gas prices and exchange rates for Ethereum and Polygon networks

Network Token Gas Price
(Gwei)

Exchange rate
ETH to EUR
(EUR)

Exchange rate
ETH to NOK
(NOK)

Ethereum ETH 2 2,303.31 26,557.16
Polygon POL 30 0.19 2.19

glitches in the browser extension. In some cases, a student’s academic record was
correctly retrieved but not displayed in the interface. The data would appear only
after switching views, for example, from the wallet page to the personal informa-
tion page. These issues are likely caused by imperfect handling of the extension’s
internal state management and have been noted for future refinement.

10.2 Transactions Analysis

One of the features provided by the local Hardhat node used to test our on-chain
components is the ability to analyse transactions. As shown in Figure 10.1, Hard-
hat enables inspection of each transaction and its related information, including
the sender and receiver addresses, the amount of ETH transferred, the compu-
tational effort consumed (gas used), and the hash of the block that contains the
transaction.

Using this data, we analysed the cost of transactions to assess whether the
proposed solution is compatible with real-world usage. We did not give signific-
ant attention to transaction waiting times in our tests due to the limitations of a
local environment. Since the node was not shared with other users and only EW-
related transactions were processed, transaction delays and congestion were not
representative of a real public blockchain scenario.

To convert gas costs into traditional currencies, we used gas prices from online
gas trackers1 and token exchange rates retrieved from an online converter2. The
conversion values are summarized in Table 10.1. Gas prices are expressed in Gwei,
a standard unit where 1 Gwei corresponds to 10−9 ETH or POL.

All transaction data collected during validation are presented in Table 10.2.
In particular, by analysing the distribution diagrams in Figure 10.2, we observe
that the costs are relatively contained, with the most frequent cost around 0.5

1https://etherscan.io/gastracker and https://polygonscan.com/gastracker
2https://www.coinbase.com/it/converter

https://etherscan.io/gastracker
https://polygonscan.com/gastracker
https://www.coinbase.com/it/converter

Chapter 10: Results 67

Table 10.2: Gas costs and fiat currency equivalents for EduWallet smart contract
operations on Ethereum and Polygon networks.

Operation Gas used Ethereum Polygon
EUR NOK EUR NOK

1 Deploy 4 core
contracts

5775926 26.6075 306.7844 0.0329 0.3796

2 Register univer-
sity

937412 4.3183 49.7900 0.0053 0.0616

3 Register student 3050503 14.0525 162.0254 0.0174 0.2005
4 Enrol in one

course
228660 1.0533 12.1451 0.0013 0.0150

5 Enrol in two
courses

335233 1.5443 17.8057 0.0019 0.0220

6 Evaluate one
course

141137 0.6502 7.4964 0.0008 0.0093

7 Evaluate two
courses

106053 0.4885 5.6329 0.0006 0.0070

8 Request permis-
sion

196625 0.9058 10.4436 0.0011 0.0129

9 Grant permis-
sion

203678 0.9383 10.8182 0.0012 0.0134

10 Revoke permis-
sion

87306 0.4022 4.6372 0.0005 0.0057

EUR (5.7 NOK) on the Ethereum network and 0.0001 EUR (0.0012 NOK) on the
Polygon network. These diagrams exclude the deployment costs of the four ini-
tial smart contracts, StudentsRegister, StudentDeployer, and Paymaster, as these
would typically be deployed only once in a real-world scenario and would there-
fore represent outliers in our analysis.

For the remaining transactions, as expected, the costs on the Ethereum net-
work are significantly higher, approximately 800 times, compared to those on
the Polygon network. For instance, registering a student, which involves deploy-
ing a dedicated smart contract, costs approximately 14 EUR (161 NOK) on Eth-
ereum, while on Polygon, the same operation costs approximately 0.02 EUR (0.23
NOK). Despite the higher costs on Ethereum, the overall expenses of our system
remain compatible with real-world usage. For example, considering the academic
career of a typical student completing 40 courses, the total wallet management
cost would amount to roughly 80 EUR (922 NOK) on Ethereum and only 0.10
EUR (1.15 NOK) on Polygon.

An important optimization enabled by our system is the ability to enrol in
and evaluate multiple courses within a single transaction. This feature signific-
antly improves cost-efficiency compared to processing each course in a separate
transaction.

68 Diego Da Giau: EduWallet

(a) Distribution diagram of operation costs in the Ethereum network

(b) Distribution diagram of operation costs in the Polygon network

Figure 10.2: Distribution diagrams of the cost to execute EduWallet operations
in Ethereum and Polygon networks.

Chapter 10: Results 69

In conclusion, the validation demonstrates that our system satisfies all the
FRs and NFRs outlined in Chapter 5. Furthermore, the operational costs of EW re-
main modest, particularly when considering deployment on the Polygon network,
which offers significantly lower transaction fees compared to the Ethereum main
network.

Chapter 11

Discussion

This thesis addresses a simple but impactful problem: the difficulties faced by stu-
dents and universities in managing academic records. As discussed in Chapter 1
and Chapter 4, despite the increasing globalization of higher education, univer-
sities still share students’ academic results through digital or paper-based docu-
ments. This leads to bureaucratic inefficiencies and wasted time. The goal of this
work was to develop a blockchain-based academic records registry that offers a
reliable, modernised way for students and universities to store and share aca-
demic data. This chapter reflects on the proposed solution, considers the results
presented in Chapter 10, and suggests key directions for future work.

The results show that our solution successfully satisfies all defined FRs and
NFRs, demonstrating its compatibility with real-world usage. The cost per student
remains low on both Ethereum and Polygon networks, confirming the economic
feasibility of our approach. The contribution of the EW system lies in providing a
complete platform, with interfaces for both students and universities, that enables
blockchain-backed academic record management in a user-friendly, “black-box”
manner. Our design abstracts away the blockchain complexities, allowing users to
focus solely on the core functionalities. As discussed in Chapter 3, prior projects in
this domain often fall short in one or more areas: they either limit themselves to
academic certificates, provide inadequate user interfaces that require students to
deploy their own smart contracts, or fail to uphold Web3 principles of data own-
ership by giving universities sole control over records. EW addresses these limita-
tions by leveraging emerging standards such as account abstraction to streamline
interaction and decentralise ownership.

That said, our solution presents certain weaknesses. The most notable is its
current limitation to a local development environment. While this setup facilit-
ated faster development and avoided unnecessary ETH consumption during smart
contract iteration, it prevented us from testing the system under real-world condi-
tions, including network latency, congestion, and fluctuating gas prices. Another
challenge lies in the system’s complexity and management. EW is a large-scale
project composed of multiple tightly integrated components, each with specific
configurations and dependencies. Coordinating these components proved to be

71

72 Diego Da Giau: EduWallet

demanding and may have benefitted from dedicated project management tools
designed for modular, distributed systems.

A further technical challenge was the use of account abstraction. As a relat-
ively new and rapidly evolving technology, up-to-date resources and documenta-
tion were often lacking. Moreover, its integration required a deeper, lower-level
interaction with the blockchain, particularly when crafting UserOperations manu-
ally, adding complexity to the development process.

Despite these challenges, EW represents a complete solution. It demonstrates
how blockchain technology can be used to securely manage students’ academic
records without compromising ease of interaction.

11.1 Future Work

Among the many possible enhancements for our system, we identify three future
directions that offer the most significant value to the current solution. These pro-
posals span three key areas of improvement:

1. System testing
2. Functionality expansion
3. UX and UI refinement

11.1.1 Public Network Deployment

As previously mentioned in this chapter, one of the main limitations of our solution
is its deployment and testing within a local blockchain environment. A critical
next step to strengthen the system’s validation is deploying the smart contracts
on a public test network, which provides a more realistic environment. Future
developers will need to select the target network(s), either the Ethereum main
network or a Layer 2 solution, and update the corresponding configuration values
currently hardcoded in the system.

11.1.2 New Stakeholder: the Employer

A significant functional improvement would be the introduction of a new stake-
holder: the employer. This addition would enable students to share verifiable aca-
demic credentials with prospective employers. Employers could be granted access
to EW via temporary accounts and a dedicated interface, or alternatively through
expiring links or QRs code, following the example of Cerberus [22] as discussed
in Section 3.4. This feature would expand the platform’s use beyond academia
and enhance its relevance in professional settings.

11.1.3 Browser Extension Data Management

As outlined in Section 10.1, the browser extension currently experiences sporadic
bugs related to data visualization, likely originating from its internal data hand-

Chapter 11: Discussion 73

ling mechanisms. Improving the reliability of this component would significantly
enhance the student experience. A valuable enhancement would involve redesign-
ing the extension’s data management logic to eliminate these issues and ensure
consistent, error-free interaction with academic wallets.

Chapter 12

Conclusion

This thesis began with a central question: Is it possible to develop a system that facil-
itates academic records sharing between institutions, while also enabling students to
truly own and manage their data? Over the course of this work, we presented our
proposed solution to this challenge, highlighting its strengths and acknowledging
its limitations.

We began by reviewing related work in the field, identifying both useful found-
ations and critical shortcomings. These insights guided the definition of a compre-
hensive use case, capturing the multifaceted nature of the problem. From this use
case, we derived a set of functional and non-functional requirements that our sys-
tem needed to fulfil. We then explored the design of the on-chain components,
providing an in-depth discussion of the smart contracts and the rationale behind
key architectural decisions. Particular attention was given to the adoption of ac-
count abstraction, a pivotal choice that enabled us to simplify user interaction with
the blockchain while maintaining security and decentralization. Following this,
we detailed the design of the off-chain components, including the SDK, browser
extension, decentralized storage system, and CLI, explaining how these elements
interface with the smart contracts. We also illustrated how account abstraction
is implemented across the system, and how decentralized storage helps reduce
blockchain-related costs while preserving the system’s decentralized nature. The
implementation chapter offered a deeper technical look at the system’s core, help-
ing readers understand how the various modules operate in practice. We validated
our solution through testing, confirming its functionality and cost-efficiency in
a controlled environment. Finally, we discussed the broader implications of our
work and identified promising directions for future development.

In summary, this thesis contributes a practical and innovative solution to the
management of academic records, enabling universities to align with Web3 prin-
ciples such as decentralization and data ownership. Beyond its application in the
educational sector, our work also offers broader value to the blockchain com-
munity by demonstrating how to integrate off-chain and on-chain components
in a cohesive, user-friendly system.

75

Bibliography

[1] T. Berners-Lee, R. Cailliau, J.-F. Groff and B. Pollermann, ‘World-wide web:
The information universe’, Internet Research, vol. 2, no. 1, pp. 52–58, 1992.
DOI: 10.1108/eb047254.

[2] N. Choudhury, ‘World wide web and its journey from web 1.0 to web
4.0’, International Journal of Computer Science and Information Technolo-
gies, vol. 5, no. 6, pp. 8096–8100, 2014.

[3] A. Murray, D. Kim and J. Combs, ‘The promise of a decentralized internet:
What is web3 and how can firms prepare?’, Business Horizons, vol. 66, no. 2,
pp. 191–202, 2023, ISSN: 0007-6813. DOI: https://doi.org/10.1016/j.
bushor.2022.06.002. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0007681322000714.

[4] D. Kristol and L. Montulli, Rfc2109: Http state management mechanism,
1997.

[5] D. Sheridan, J. Harris, F. Wear, J. C. Jr, E. Wong and A. Yazdinejad, Web3
challenges and opportunities for the market, 2022. arXiv: 2209.02446. [On-
line]. Available: https://arxiv.org/abs/2209.02446.

[6] P. P. Ray, ‘Web3: A comprehensive review on background, technologies, ap-
plications, zero-trust architectures, challenges and future directions’, In-
ternet of Things and Cyber-Physical Systems, vol. 3, pp. 213–248, 2023,
ISSN: 2667-3452. DOI: https://doi.org/10.1016/j.iotcps.2023.
05.003. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2667345223000305.

[7] M. Nofer, P. Gomber, O. Hinz and D. Schiereck, ‘Blockchain’, Business &
Information Systems Engineering, vol. 59, no. 3, pp. 183–187, 2017, ISSN:
1867-0202. DOI: 10.1007/s12599-017-0467-3.

[8] I. Acharjamayum, R. Patgiri and D. Devi, ‘Blockchain: A tale of peer to
peer security’, in 2018 IEEE Symposium Series on Computational Intelligence
(SSCI), 2018, pp. 609–617. DOI: 10.1109/SSCI.2018.8628826.

[9] S. Nakamoto, ‘Bitcoin: A peer-to-peer electronic cash system’, Bitcoin.–URL:
https://bitcoin. org/bitcoin. pdf, 2008.

77

https://doi.org/10.1108/eb047254
https://doi.org/https://doi.org/10.1016/j.bushor.2022.06.002
https://doi.org/https://doi.org/10.1016/j.bushor.2022.06.002
https://www.sciencedirect.com/science/article/pii/S0007681322000714
https://www.sciencedirect.com/science/article/pii/S0007681322000714
https://arxiv.org/abs/2209.02446
https://arxiv.org/abs/2209.02446
https://doi.org/https://doi.org/10.1016/j.iotcps.2023.05.003
https://doi.org/https://doi.org/10.1016/j.iotcps.2023.05.003
https://www.sciencedirect.com/science/article/pii/S2667345223000305
https://www.sciencedirect.com/science/article/pii/S2667345223000305
https://doi.org/10.1007/s12599-017-0467-3
https://doi.org/10.1109/SSCI.2018.8628826

78 Diego Da Giau: EduWallet

[10] E. Ben Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer and
M. Virza, ‘Zerocash: Decentralized anonymous payments from bitcoin’, in
2014 IEEE Symposium on Security and Privacy, 2014, pp. 459–474. DOI:
10.1109/SP.2014.36.

[11] V. Buterin et al., ‘A next-generation smart contract and decentralized ap-
plication platform’, white paper, vol. 3, no. 37, pp. 2–1, 2014.

[12] G. Wood et al., ‘Ethereum: A secure decentralised generalised transaction
ledger’, Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32, 2014.

[13] V. Buterin, ‘Ethereum: Platform review’, Opportunities and challenges for
private and consortium blockchains, vol. 45, pp. 1–45, 2016.

[14] C. Sguanci, R. Spatafora and A. M. Vergani, Layer 2 blockchain scaling: A
survey, 2021. arXiv: 2107.10881 [cs.DC]. [Online]. Available: https://
arxiv.org/abs/2107.10881.

[15] H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg and E. W. Felten, ‘Ar-
bitrum: Scalable, private smart contracts’, in 27th USENIX Security Sym-
posium (USENIX Security 18), Baltimore, MD: USENIX Association, Aug.
2018, pp. 1353–1370, ISBN: 978-1-939133-04-5.

[16] S. Kahtyat, ‘Designing a decentralized identity verification platform’, Norsk
IKT-konferanse for forskning og utdanning, no. 3, Oct. 2024. [Online]. Avail-
able: https://www.ntnu.no/ojs/index.php/nikt/article/view/6249.

[17] A. Mühle, A. Grüner, T. Gayvoronskaya and C. Meinel, ‘A survey on essential
components of a self-sovereign identity’, Computer Science Review, vol. 30,
pp. 80–86, 2018, ISSN: 1574-0137. DOI: https://doi.org/10.1016/j.
cosrev.2018.10.002. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1574013718301217.

[18] J. Benet, Ipfs - content addressed, versioned, p2p file system, 2014. arXiv:
1407.3561 [cs.NI]. [Online]. Available: https://arxiv.org/abs/1407.
3561.

[19] E. Daniel and F. Tschorsch, ‘Ipfs and friends: A qualitative comparison of
next generation peer-to-peer data networks’, IEEE Communications Surveys
& Tutorials, vol. 24, no. 1, pp. 31–52, 2022. DOI: 10.1109/COMST.2022.
3143147.

[20] Y. Shakan, B. Kumalakov, G. Mutanov, Z. Mamykova and Y. Kistaubayev,
‘Verification of university student and graduate data using blockchain tech-
nology’, International Journal of Computers Communications & Control, vol. 16,
Sep. 2021. DOI: 10.15837/ijccc.2021.5.4266.

[21] M. Tanriverdí, ‘Publiceduchain: A framework for sharing student-owned
educational data on public blockchain network’, IEEE Access, vol. 12, pp. 51 772–
51 785, 2024. DOI: 10.1109/ACCESS.2024.3385660.

https://doi.org/10.1109/SP.2014.36
https://arxiv.org/abs/2107.10881
https://arxiv.org/abs/2107.10881
https://arxiv.org/abs/2107.10881
https://www.ntnu.no/ojs/index.php/nikt/article/view/6249
https://doi.org/https://doi.org/10.1016/j.cosrev.2018.10.002
https://doi.org/https://doi.org/10.1016/j.cosrev.2018.10.002
https://www.sciencedirect.com/science/article/pii/S1574013718301217
https://www.sciencedirect.com/science/article/pii/S1574013718301217
https://arxiv.org/abs/1407.3561
https://arxiv.org/abs/1407.3561
https://arxiv.org/abs/1407.3561
https://doi.org/10.1109/COMST.2022.3143147
https://doi.org/10.1109/COMST.2022.3143147
https://doi.org/10.15837/ijccc.2021.5.4266
https://doi.org/10.1109/ACCESS.2024.3385660

Bibliography 79

[22] A. Tariq, H. Binte Haq and S. T. Ali, ‘Cerberus: A blockchain-based accredit-
ation and degree verification system’, IEEE Transactions on Computational
Social Systems, vol. 10, no. 4, pp. 1503–1514, 2023. DOI: 10.1109/TCSS.
2022.3188453.

[23] V. Buterin, Y. Weiss, D. Tirosh, S. Nacson, A. Forshtat, K. Gazso and T.
Hess, ‘Erc-4337: Account abstraction using alt mempool’, Ethereum Im-
provement Proposals, Tech. Rep., 2021.

[24] Z. Lin, T. Wang, C. Zhao, S. Zhang, Q. Yang and L. Shi, ‘A measurement
investigation of erc-4337 smart contracts on ethereum blockchain’, in 2024
International Conference on Computing, Networking and Communications
(ICNC), 2024, pp. 1164–1170. DOI: 10.1109/ICNC59896.2024.10556301.

[25] B. Guidi, A. Michienzi and L. Ricci, ‘Data persistence in decentralized so-
cial applications: The ipfs approach’, in 2021 IEEE 18th Annual Consumer
Communications & Networking Conference (CCNC), 2021, pp. 1–4. DOI: 10.
1109/CCNC49032.2021.9369473.

https://doi.org/10.1109/TCSS.2022.3188453
https://doi.org/10.1109/TCSS.2022.3188453
https://doi.org/10.1109/ICNC59896.2024.10556301
https://doi.org/10.1109/CCNC49032.2021.9369473
https://doi.org/10.1109/CCNC49032.2021.9369473

Appendix A

Project Links

A.1 GitHub Repository

https://github.com/NTNU-IDI/eduwallet-eduwalletdiego

A.2 Figma Prototype Link

https://www.figma.com/design/aZrmR2thWfRGKQWDQbZE9C/EduWallet?node-id=
125-95&t=gQwA5a4uDzRy8jBl-1

81

https://github.com/NTNU-IDI/eduwallet-eduwalletdiego
https://www.figma.com/design/aZrmR2thWfRGKQWDQbZE9C/EduWallet?node-id=125-95&t=gQwA5a4uDzRy8jBl-1
https://www.figma.com/design/aZrmR2thWfRGKQWDQbZE9C/EduWallet?node-id=125-95&t=gQwA5a4uDzRy8jBl-1

Appendix B

Base Account Contract

Code listing B.1: BaseAccount smart contract

1 // SPDX-License-Identifier: MIT
2 pragma solidity ^0.8.28;
3
4 /* solhint-disable avoid-low-level-calls */
5 /* solhint-disable no-empty-blocks */
6 /* solhint-disable no-inline-assembly */
7
8 import "../interfaces/IAccount.sol";
9 import "../interfaces/IEntryPoint.sol";

10 import "../utils/Exec.sol";
11 import "./UserOperationLib.sol";
12
13 /**
14 * Basic account implementation.
15 * This contract provides the basic logic for implementing the IAccount interface -
16 * validateUserOp.
17 * Specific account implementation should inherit it and provide the
18 * account-specific logic.
19 */
20 abstract contract BaseAccount is IAccount {
21 using UserOperationLib for PackedUserOperation;
22
23 struct Call {
24 address target;
25 uint256 value;
26 bytes data;
27 }
28
29 error ExecuteError(uint256 index, bytes error);
30
31 /**
32 * Return the account nonce.
33 * This method returns the next sequential nonce.
34 * For a nonce of a specific key, use ‘entrypoint.getNonce(account, key)‘
35 */
36 function getNonce() public view virtual returns (uint256) {
37 return entryPoint().getNonce(address(this), 0);
38 }
39
40 /**

83

84 Diego Da Giau: EduWallet

41 * Return the entryPoint used by this account.
42 * Subclass should return the current entryPoint used by this account.
43 */
44 function entryPoint() public view virtual returns (IEntryPoint);
45
46 /**
47 * execute a single call from the account.
48 */
49 function execute(address target, uint256 value, bytes calldata data)
50 virtual
51 external {
52 _requireForExecute();
53
54 bool ok = Exec.call(target, value, data, gasleft());
55 if (!ok) {
56 Exec.revertWithReturnData();
57 }
58 }
59
60 /**
61 * execute a batch of calls.
62 * revert on the first call that fails.
63 * If the batch reverts, and it contains more than a single call, then wrap the
64 * revert with ExecuteError, to mark the failing call index.
65 */
66 function executeBatch(Call[] calldata calls) virtual external {
67 _requireForExecute();
68
69 uint256 callsLength = calls.length;
70 for (uint256 i = 0; i < callsLength; i++) {
71 Call calldata call = calls[i];
72 bool ok = Exec.call(call.target, call.value, call.data, gasleft());
73 if (!ok) {
74 if (callsLength == 1) {
75 Exec.revertWithReturnData();
76 } else {
77 revert ExecuteError(i, Exec.getReturnData(0));
78 }
79 }
80 }
81 }
82
83 /// @inheritdoc IAccount
84 function validateUserOp(
85 PackedUserOperation calldata userOp,
86 bytes32 userOpHash,
87 uint256 missingAccountFunds
88) external virtual override returns (uint256 validationData) {
89 _requireFromEntryPoint();
90 validationData = _validateSignature(userOp, userOpHash);
91 _validateNonce(userOp.nonce);
92 _payPrefund(missingAccountFunds);
93 }
94
95 /**
96 * Ensure the request comes from the known entrypoint.
97 */
98 function _requireFromEntryPoint() internal view virtual {
99 require(

100 msg.sender == address(entryPoint()),

Chapter B: Base Account Contract 85

101 "account: not from EntryPoint"
102);
103 }
104
105 function _requireForExecute() internal view virtual {
106 _requireFromEntryPoint();
107 }
108
109 /**
110 * Validate the signature is valid for this message.
111 * @param userOp - Validate the userOp.signature field.
112 * @param userOpHash - Convenient field: the hash of the request, to check
113 * the signature against. (also hashes the entrypoint
114 * and chain id)
115 * @return validationData - Signature and time-range of this operation.
116 * <20-byte> aggregatorOrSigFail - 0 for valid
117 * signature, 1 to
118 * mark signature
119 * failure,
120 * otherwise, an address of an aggregator
121 * contract.
122 * <6-byte> validUntil - Last timestamp this operation
123 * is valid at, or 0 for
124 * "indefinitely"
125 * <6-byte> validAfter - first timestamp this
126 * operation is valid
127 * If the account doesn’t use time-range, it is enough
128 * to return SIG_VALIDATION_FAILED value (1) for
129 * signature failure.
130 * Note that the validation code cannot use
131 * block.timestamp (or block.number) directly.
132 */
133 function _validateSignature(
134 PackedUserOperation calldata userOp,
135 bytes32 userOpHash
136) internal virtual returns (uint256 validationData);
137
138 /**
139 * Validate the nonce of the UserOperation.
140 * This method may validate the nonce requirement of this account.
141 * e.g.
142 * To limit the nonce to use sequenced UserOps only (no "out of order" UserOps)

:
143 * ‘require(nonce < type(uint64).max)‘
144 * For a hypothetical account that *requires* the nonce to be out-of-order:
145 * ‘require(nonce & type(uint64).max == 0)‘
146 *
147 * The actual nonce uniqueness is managed by the EntryPoint, and thus no other
148 * action is needed by the account itself.
149 *
150 * @param nonce to validate
151 *
152 * solhint-disable-next-line no-empty-blocks
153 */
154 function _validateNonce(uint256 nonce) internal view virtual {
155 }
156
157 /**
158 * Sends to the entrypoint (msg.sender) the missing funds for this transaction.
159 * SubClass MAY override this method for better funds management

86 Diego Da Giau: EduWallet

160 * (e.g. send to the entryPoint more than the minimum required, so that in
161 * future transactions it will not be required to send again).
162 * @param missingAccountFunds - The minimum value this method should send the
163 * entrypoint. This value MAY be zero, in case
164 * there is enough deposit, or the userOp has a
165 * paymaster.
166 */
167 function _payPrefund(uint256 missingAccountFunds) internal virtual {
168 if (missingAccountFunds != 0) {
169 (bool success,) = payable(msg.sender).call{
170 value: missingAccountFunds
171 }("");
172 (success);
173 // Ignore failure (its EntryPoint’s job to verify, not account.)
174 }
175 }
176 }

Appendix C

Base Paymaster Contract

Code listing C.1: BasePaymaster smart contract

1 // SPDX-License-Identifier: MIT
2 pragma solidity ^0.8.28;
3
4 /* solhint-disable reason-string */
5
6 import "@openzeppelin/contracts/access/Ownable2Step.sol";
7 import "@openzeppelin/contracts/utils/introspection/IERC165.sol";
8 import "../interfaces/IPaymaster.sol";
9 import "../interfaces/IEntryPoint.sol";

10 import "./UserOperationLib.sol";
11 /**
12 * Helper class for creating a paymaster.
13 * provides helper methods for staking.
14 * Validates that the postOp is called only by the entryPoint.
15 */
16 abstract contract BasePaymaster is IPaymaster, Ownable2Step {
17 IEntryPoint public immutable entryPoint;
18
19 uint256 internal constant PAYMASTER_VALIDATION_GAS_OFFSET = UserOperationLib.
20 PAYMASTER_VALIDATION_GAS_OFFSET;
21 uint256 internal constant PAYMASTER_POSTOP_GAS_OFFSET = UserOperationLib.
22 PAYMASTER_POSTOP_GAS_OFFSET;
23 uint256 internal constant PAYMASTER_DATA_OFFSET = UserOperationLib.
24 PAYMASTER_DATA_OFFSET;
25
26 constructor(IEntryPoint _entryPoint) Ownable(msg.sender) {
27 _validateEntryPointInterface(_entryPoint);
28 entryPoint = _entryPoint;
29 }
30
31 // Sanity check: make sure this EntryPoint was compiled against the same
32 // IEntryPoint of this paymaster
33 function _validateEntryPointInterface(IEntryPoint _entryPoint)
34 internal
35 virtual {
36 require(
37 IERC165(address(_entryPoint))
38 .supportsInterface(type(IEntryPoint)
39 .interfaceId),
40 "IEntryPoint interface mismatch"

87

88 Diego Da Giau: EduWallet

41);
42 }
43
44 /// @inheritdoc IPaymaster
45 function validatePaymasterUserOp(
46 PackedUserOperation calldata userOp,
47 bytes32 userOpHash,
48 uint256 maxCost
49) external override returns (bytes memory context, uint256 validationData) {
50 _requireFromEntryPoint();
51 return _validatePaymasterUserOp(userOp, userOpHash, maxCost);
52 }
53
54 /**
55 * Validate a user operation.
56 * @param userOp - The user operation.
57 * @param userOpHash - The hash of the user operation.
58 * @param maxCost - The maximum cost of the user operation.
59 */
60 function _validatePaymasterUserOp(
61 PackedUserOperation calldata userOp,
62 bytes32 userOpHash,
63 uint256 maxCost
64) internal virtual returns (bytes memory context, uint256 validationData);
65
66 /// @inheritdoc IPaymaster
67 function postOp(
68 PostOpMode mode,
69 bytes calldata context,
70 uint256 actualGasCost,
71 uint256 actualUserOpFeePerGas
72) external override {
73 _requireFromEntryPoint();
74 _postOp(mode, context, actualGasCost, actualUserOpFeePerGas);
75 }
76
77 /**
78 * Post-operation handler.
79 * (verified to be called only through the entryPoint)
80 * @dev If subclass returns a non-empty context from validatePaymasterUserOp,
81 * it must also implement this method.
82 * @param mode - Enum with the following options:
83 * opSucceeded - User operation succeeded.
84 * opReverted - User op reverted. The paymaster still
85 * has to pay for gas.
86 * postOpReverted - never passed in a call to postOp().
87 * @param context - The context value returned by validatePaymasterUserOp
88 * @param actualGasCost - Actual cost of gas used so far (without this postOp
89 * call).
90 * @param actualUserOpFeePerGas - the gas price this UserOp pays. This value is
91 * based on the UserOp’s maxFeePerGas
92 * and maxPriorityFee (and basefee)
93 * It is not the same as tx.gasprice, which is what the
94 * bundler pays.
95 */
96 function _postOp(
97 PostOpMode mode,
98 bytes calldata context,
99 uint256 actualGasCost,

100 uint256 actualUserOpFeePerGas

Chapter C: Base Paymaster Contract 89

101) internal virtual {
102 (mode, context, actualGasCost, actualUserOpFeePerGas); // unused params
103 // subclass must override this method if validatePaymasterUserOp returns a
104 // context
105 revert("must override");
106 }
107
108 /**
109 * Add a deposit for this paymaster, used for paying for transaction fees.
110 */
111 function deposit() public payable {
112 entryPoint.depositTo{value: msg.value}(address(this));
113 }
114
115 /**
116 * Withdraw value from the deposit.
117 * @param withdrawAddress - Target to send to.
118 * @param amount - Amount to withdraw.
119 */
120 function withdrawTo(
121 address payable withdrawAddress,
122 uint256 amount
123) public onlyOwner {
124 entryPoint.withdrawTo(withdrawAddress, amount);
125 }
126
127 /**
128 * Add stake for this paymaster.
129 * This method can also carry eth value to add to the current stake.
130 * @param unstakeDelaySec - The unstake delay for this paymaster. Can only be
131 * increased.
132 */
133 function addStake(uint32 unstakeDelaySec) external payable onlyOwner {
134 entryPoint.addStake{value: msg.value}(unstakeDelaySec);
135 }
136
137 /**
138 * Return current paymaster’s deposit on the entryPoint.
139 */
140 function getDeposit() public view returns (uint256) {
141 return entryPoint.balanceOf(address(this));
142 }
143
144 /**
145 * Unlock the stake, in order to withdraw it.
146 * The paymaster can’t serve requests once unlocked, until it calls addStake
147 * again
148 */
149 function unlockStake() external onlyOwner {
150 entryPoint.unlockStake();
151 }
152
153 /**
154 * Withdraw the entire paymaster’s stake.
155 * stake must be unlocked first (and then wait for the unstakeDelay to be over)
156 * @param withdrawAddress - The address to send withdrawn value.
157 */
158 function withdrawStake(address payable withdrawAddress) external onlyOwner {
159 entryPoint.withdrawStake(withdrawAddress);
160 }

90 Diego Da Giau: EduWallet

161
162 /**
163 * Validate the call is made from a valid entrypoint
164 */
165 function _requireFromEntryPoint() internal virtual {
166 require(msg.sender == address(entryPoint), "Sender not EntryPoint");
167 }
168 }

Appendix D

Hardhat Configuration File

Code listing D.1: Hardhat configuration file

1 import { HardhatUserConfig } from "hardhat/config";
2 // Import the hardhat-toolbox which bundles several useful plugins
3 import "@nomicfoundation/hardhat-toolbox";
4
5 const config: HardhatUserConfig = {
6 // Solidity compiler configuration
7 solidity: {
8 version: "0.8.28", // Specify the Solidity compiler version
9 settings: {

10 optimizer: {
11 enabled: true, // Enable the optimizer to reduce gas costs
12 runs: 1000, // Higher values optimize for when the code is executed many
13 // times
14 },
15 evmVersion: "cancun" // Use the latest EVM version for compatibility
16 // with newest features
17 },
18 },
19
20 // Network configurations for deployment and testing
21 networks: {
22 hardhat: {
23 hardfork: "cancun", // Use the Cancun EVM rules for the in-memory Hardhat
24 // Network
25 accounts: [
26 {
27 balance: "10000000000000000000000000000000", // 10^34 wei (extremely

large
28 // balance for testing)
29 privateKey:
30 "0x0001"
31 // Deterministic test account
32 }
33]
34 },
35 localhost: {
36 url: "http://127.0.0.1:8545" // Connect to a locally running Ethereum node
37 },
38 },
39

91

92 Diego Da Giau: EduWallet

40 // Project structure paths
41 paths: {
42 sources: "./contracts", // Directory for smart contract source files
43 tests: "./test", // Directory for test files
44 cache: "./cache", // Directory for the cache
45 artifacts: "./artifacts" // Directory for compiled contract artifacts
46 }
47 };
48
49 export default config;

Appendix E

AccountAbstraction

Code listing E.1: AccountAbstraction class code

1 import { ethers, TypedDataDomain, TypedDataField } from ’ethers’;
2 import { SmartAccount__factory } from ’@typechain/...’;
3 import { blockchainConfig, logError } from ’src/conf’;
4 import { EntryPoint } from ’@typechain/...’;
5 import { AddressLike, BigNumberish, BytesLike } from ’ethers’;
6 import { getEntryPoint } from ’src/utils’;
7
8 /**
9 * Constants for EIP-712 domain.

10 */
11 const DOMAIN_NAME = ’ERC4337’;
12 const DOMAIN_VERSION = ’1’;
13
14 /**
15 * Returns the EIP-712 domain for ERC-4337 user operations.
16 * @param entryPoint EntryPoint contract address
17 * @param chainId Chain ID
18 */
19 export function getErc4337TypedDataDomain(entryPoint: string, chainId: number):
20 TypedDataDomain {
21 return {
22 name: DOMAIN_NAME,
23 version: DOMAIN_VERSION,
24 chainId: chainId,
25 verifyingContract: entryPoint
26 };
27 }
28
29 /**
30 * Returns the EIP-712 types for ERC-4337 user operations.
31 */
32 export function getErc4337TypedDataTypes(): { [type: string]: TypedDataField[] } {
33 return {
34 PackedUserOperation: [
35 { name: ’sender’, type: ’address’ },
36 { name: ’nonce’, type: ’uint256’ },
37 { name: ’initCode’, type: ’bytes’ },
38 { name: ’callData’, type: ’bytes’ },
39 { name: ’accountGasLimits’, type: ’bytes32’ },
40 { name: ’preVerificationGas’, type: ’uint256’ },

93

94 Diego Da Giau: EduWallet

41 { name: ’gasFees’, type: ’bytes32’ },
42 { name: ’paymasterAndData’, type: ’bytes’ }
43]
44 };
45 }
46
47 /**
48 * Packs paymaster data for the user operation.
49 * @param paymaster Paymaster contract address
50 * @param paymasterVerificationGasLimit Gas limit for paymaster verification
51 * @param postOpGasLimit Gas limit for post-operation
52 * @param paymasterData Additional paymaster data
53 * @returns Packed paymasterAndData bytes
54 */
55 function packPaymasterData(
56 paymaster: string,
57 paymasterVerificationGasLimit: number | bigint,
58 postOpGasLimit: number | bigint,
59 paymasterData: string
60): string {
61 return ethers.concat([
62 paymaster,
63 ethers.zeroPadValue(ethers.toBeHex(paymasterVerificationGasLimit), 16),
64 ethers.zeroPadValue(ethers.toBeHex(postOpGasLimit), 16),
65 paymasterData
66]);
67 }
68
69 /**
70 * UserOperation interface for ERC-4337.
71 */
72 interface UserOperation {
73 sender: string;
74 nonce: bigint;
75 initCode: string;
76 callData: string;
77 callGasLimit: bigint;
78 verificationGasLimit: bigint;
79 preVerificationGas: bigint;
80 maxFeePerGas: bigint;
81 maxPriorityFeePerGas: bigint;
82 paymaster: string;
83 paymasterVerificationGasLimit: bigint;
84 paymasterPostOpGasLimit: bigint;
85 paymasterData: string;
86 signature: string;
87 }
88
89 /**
90 * PackedUserOperation interface for EntryPoint contract.
91 */
92 interface PackedUserOperation {
93 sender: AddressLike;
94 nonce: BigNumberish;
95 initCode: BytesLike;
96 callData: BytesLike;
97 accountGasLimits: BytesLike;
98 preVerificationGas: BigNumberish;
99 gasFees: BytesLike;

100 paymasterAndData: BytesLike;

Chapter E: AccountAbstraction 95

101 signature: BytesLike;
102 }
103
104 /**
105 * AccountAbstraction manager for ERC-4337 user operations.
106 * Handles creation, signing, packing, and execution of user operations
107 * for smart accounts using the EntryPoint contract.
108 */
109 export class AccountAbstraction {
110 private provider: ethers.Provider;
111 private entryPoint: EntryPoint;
112 private signer: ethers.Wallet;
113
114 /**
115 * Constructs the AccountAbstraction manager.
116 * @param provider Ethers provider instance
117 * @param signer Wallet used for signing user operations
118 */
119 constructor(
120 provider: ethers.Provider,
121 signer: ethers.Wallet,
122) {
123 this.provider = provider;
124 this.signer = signer;
125 this.entryPoint = getEntryPoint();
126 }
127
128 /**
129 * Creates a user operation for a smart account call.
130 * @param params User operation parameters (sender, target, value, data,
131 * initCode)
132 * @returns UserOperation object
133 */
134 async createUserOp({
135 sender,
136 target,
137 value,
138 data,
139 initCode = ’0x’,
140 }: {
141 sender: string;
142 target: string;
143 value: bigint;
144 data: string;
145 initCode?: string;
146 }): Promise<UserOperation> {
147 const accountContract = SmartAccount__factory.connect(sender,
148 this.provider);
149 const callData = accountContract.interface.encodeFunctionData(’execute’,
150 [target, value, data]);
151
152 // Get the nonce for the smart account
153 const nonce = await this.entryPoint.getNonce(sender, 0);
154
155 // Get fee data for gas pricing
156 const feeData = await this.provider.getFeeData();
157
158 // Paymaster address from config
159 const paymaster = blockchainConfig.paymasterAddress;
160

96 Diego Da Giau: EduWallet

161 const userOp: UserOperation = {
162 sender,
163 nonce,
164 initCode,
165 callData,
166 callGasLimit: BigInt(1_000_000),
167 verificationGasLimit: BigInt(5_000_000),
168 preVerificationGas: BigInt(500_000),
169 maxFeePerGas: feeData.maxFeePerGas || BigInt(2_000_000_000),
170 maxPriorityFeePerGas: feeData.maxPriorityFeePerGas ||
171 BigInt(1_000_000_000),
172 paymaster: paymaster,
173 paymasterVerificationGasLimit: BigInt(2_000_000),
174 paymasterPostOpGasLimit: BigInt(2_000_000),
175 paymasterData: ’0x’,
176 signature: ’0x’,
177 };
178
179 return userOp;
180 }
181
182 /**
183 * Computes the hash of a user operation for signing.
184 * @param userOp UserOperation object
185 * @returns Hash string (bytes32)
186 */
187 async getUserOpHash(userOp: UserOperation): Promise<string> {
188 // Convert to packed format for hashing
189 const packedUserOp = this.packUserOp(userOp);
190 // Call the EntryPoint contract’s getUserOpHash (returns bytes32)
191 return await this.entryPoint.getUserOpHash(packedUserOp);
192 }
193
194 /**
195 * Signs a user operation using EIP-712 typed data.
196 * @param userOp UserOperation object
197 * @returns UserOperation with signature
198 */
199 async signUserOp(userOp: UserOperation): Promise<UserOperation> {
200 const chainId = parseInt(blockchainConfig.chainId);
201 const entryPointAddress = blockchainConfig.entryPointAddress;
202
203 const packedUserOp = this.packUserOp(userOp);
204
205 const signature = await this.signer.signTypedData(
206 getErc4337TypedDataDomain(entryPointAddress, chainId),
207 getErc4337TypedDataTypes(),
208 packedUserOp
209);
210
211 return {
212 ...userOp,
213 signature
214 };
215 }
216
217 /**
218 * Converts a UserOperation to the packed format required by EntryPoint.
219 * @param userOp UserOperation object
220 * @returns PackedUserOperation object

Chapter E: AccountAbstraction 97

221 */
222 packUserOp(userOp: UserOperation): PackedUserOperation {
223 // Pack callGasLimit and verificationGasLimit into a single bytes32
224 const accountGasLimits = ethers.solidityPacked(
225 [’uint128’, ’uint128’],
226 [userOp.callGasLimit, userOp.verificationGasLimit]
227);
228
229 // Pack maxFeePerGas and maxPriorityFeePerGas into a single bytes32
230 const gasFees = ethers.solidityPacked(
231 [’uint128’, ’uint128’],
232 [userOp.maxPriorityFeePerGas, userOp.maxFeePerGas]
233);
234
235 const paymasterAndData = packPaymasterData(
236 userOp.paymaster,
237 userOp.paymasterVerificationGasLimit,
238 userOp.paymasterPostOpGasLimit,
239 userOp.paymasterData
240);
241
242 return {
243 sender: userOp.sender,
244 nonce: userOp.nonce,
245 initCode: userOp.initCode,
246 callData: userOp.callData,
247 accountGasLimits: accountGasLimits,
248 preVerificationGas: userOp.preVerificationGas,
249 gasFees: gasFees,
250 paymasterAndData: paymasterAndData,
251 signature: userOp.signature
252 };
253 }
254
255 /**
256 * Executes a batch of user operations via EntryPoint.handleOps.
257 * @param userOps Array of UserOperation objects
258 * @param beneficiary Address to receive transaction fees
259 * @returns TransactionResponse object
260 * @throws Error if transaction fails
261 */
262 async executeUserOps(userOps: UserOperation[], beneficiary: string):
263 Promise<ethers.TransactionResponse> {
264 try {
265 // Sign and pack each user operation in the batch
266 const packedUserOps = await Promise.all(
267 userOps.map(async (op) => {
268 const signedOp = await this.signUserOp(op);
269 return this.packUserOp(signedOp);
270 })
271);
272
273 // Direct call to EntryPoint.handleOps with all operations
274 const connectedEntryPoint = this.entryPoint.connect(this.signer);
275 return await connectedEntryPoint.handleOps(packedUserOps,
276 beneficiary
277);
278 } catch (error) {
279 logError(’Error sending batch user operations:’, error);
280 throw error;

98 Diego Da Giau: EduWallet

281 }
282 }
283
284 /**
285 * Verifies the result of a user operation transaction.
286 * Throws an error if the operation failed, including revert reasons.
287 * @param receipt Transaction receipt
288 * @param targetContract Target contract for error decoding
289 * @throws Error if operation failed or logs are missing
290 */
291 verifyTransaction(receipt: ethers.TransactionReceipt,
292 targetContract: ethers.BaseContract): void {
293 const entryPoint = this.entryPoint;
294
295 if (!receipt || !receipt.logs) {
296 throw new Error("No receipt or logs found in transaction receipt.");
297 }
298
299 // Find UserOperationEvent logs
300 const userOpEvents = receipt.logs.filter(log => {
301 try {
302 const parsedLog = entryPoint.interface.parseLog(log);
303 return parsedLog?.name === "UserOperationEvent";
304 } catch {
305 return false;
306 }
307 });
308
309 if (userOpEvents.length === 0) {
310 throw new Error("No UserOperationEvent found in transaction logs.");
311 }
312
313 let parsedUserOpEvent;
314 try {
315 parsedUserOpEvent = entryPoint.interface.parseLog(userOpEvents[0]);
316 } catch (e) {
317 throw new Error("Failed to parse UserOperationEvent log: " +
318 e instanceof Error ? e.message : String(e)));
319 }
320
321 if (!parsedUserOpEvent?.args) {
322 throw new Error("UserOperationEvent log missing args.");
323 }
324
325 const success = parsedUserOpEvent.args.success;
326
327 if (!success) {
328 // Find UserOperationRevertReason logs
329 const revertEvents = receipt.logs.filter(log => {
330 try {
331 const parsedLog = entryPoint.interface.parseLog(log);
332 return parsedLog?.name === "UserOperationRevertReason";
333 } catch {
334 return false;
335 }
336 });
337
338 if (revertEvents.length === 0) {
339 throw new Error("UserOperation failed but no" +
340 "UserOperationRevertReason found in logs."

Chapter E: AccountAbstraction 99

341);
342 }
343
344 let parsedRevertEvent;
345 try {
346 parsedRevertEvent = entryPoint.interface.parseLog(
347 revertEvents[0]
348);
349 } catch (e) {
350 throw new Error("Failed to parse UserOperationRevertReason log: "
351 + (e instanceof Error ? e.message : String(e)));
352 }
353
354 if (!parsedRevertEvent?.args) {
355 throw new Error("UserOperationRevertReason log missing args.");
356 }
357
358 const revertData = parsedRevertEvent.args.revertReason;
359
360 // Try to decode custom error
361 const decodedError = targetContract.interface.parseError(revertData);
362 if (decodedError) {
363 throw new Error(
364 ‘UserOperation reverted with custom error:‘ +
365 ‘${decodedError.name}, args:‘ +
366 ‘${JSON.stringify(decodedError.args)}‘
367);
368 } else {
369 throw new Error("UserOperation reverted with unknown" +
370 "custom error.");
371 }
372 }
373 }
374 }

Appendix F

Pinning System API

Code listing F.1: AWS API used to store files in IPFS

// Prepare upload parameters
const uploadParams = {

Bucket: ipfsConfig.bucketName,
Key: ‘${dayjs().valueOf()}‘,
Body: bufferFile,
ContentType: "application/pdf",

};

// Create command for S3 upload
const command = new PutObjectCommand(uploadParams);
let cid = "";

// Add middleware to extract CID from response headers
command.middlewareStack.add(

(next) => async (args) => {
try {

const response = await next(args);
if (!response.response || typeof response.response !== ’object’)

return response;
const apiResponse = response.response as {

statusCode?: number;
headers?: Record<string, string>

};
if (apiResponse.headers && "x-amz-meta-cid" in apiResponse.headers) {

cid = apiResponse.headers["x-amz-meta-cid"];
}
return response;

} catch (error) {
logError(’Middleware error:’, error);
throw error;

}
}, {
step: "build",
name: "addCidToOutput",

});

// Execute upload
await s3Client.send(command);

101

	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Glossary
	1 Introduction
	2 Background Material
	2.1 From Web 1.0 to Web3
	2.2 Blockchain
	2.3 Ethereum
	2.4 Decentralized Storage

	3 Related Work
	3.1 Blockcerts
	3.2 Digital Credential Consortium
	3.3 PublicEduChain
	3.4 Cerberus
	3.5 Conclusions

	4 Problem Statement
	4.1 Use Case

	5 Requirements
	5.1 Functional Requirements
	5.2 Non-Functional Requirements
	5.3 Constraints and Assumptions

	6 System Architecture
	7 On-Chain Design
	7.1 Blockchain Technologies
	7.1.1 Account Abstraction

	7.2 SmartAccount
	7.3 Student
	7.3.1 Deployment and Interaction Flow
	7.3.2 Vulnerabilities and Scalability

	7.4 University
	7.5 StudentDeployer and UniversityDeployer
	7.6 StudentsRegister
	7.6.1 Core Functionalities
	7.6.2 Scalability and Gas Considerations

	7.7 Paymaster

	8 Off-Chain Design
	8.1 Browser Extension
	8.1.1 Technological Choices
	8.1.2 Functionalities
	8.1.3 Blockchain Interactions
	8.1.4 UI Prototyping

	8.2 Software Development Kit
	8.2.1 Working with the SDK
	8.2.2 Access On-Chain Functionalities
	8.2.3 Input Management

	8.3 Decentralized Storage System
	8.3.1 Pinning files
	8.3.2 Integration in the system
	8.3.3 Security and Limitations

	8.4 CLI
	8.4.1 CLI Features
	8.4.2 Data validation

	9 Implementation
	9.1 Development Environment
	9.2 Account Abstraction and On-Chain Integration in Off-Chain Components
	9.2.1 Direct View Function Calls
	9.2.2 View Function Calls via a Smart Contract Account
	9.2.3 Gas-Consuming Transactions via Smart Contract Account

	9.3 Access Control System
	9.4 Decentralized Storage System Interaction

	10 Results
	10.1 Components Validation
	10.2 Transactions Analysis

	11 Discussion
	11.1 Future Work
	11.1.1 Public Network Deployment
	11.1.2 New Stakeholder: the Employer
	11.1.3 Browser Extension Data Management

	12 Conclusion
	Bibliography
	A Project Links
	A.1 GitHub Repository
	A.2 Figma Prototype Link

	B Base Account Contract
	C Base Paymaster Contract
	D Hardhat Configuration File
	E AccountAbstraction
	F Pinning System API

