s BNy
A,._ ﬁ;’ Polltecnlco

s

)l
N\
\, 1859 W2

‘\.\ %‘0

POLITECNICO DI TORINO

Master Degree course in Computer Engineering

Master Degree Thesis

Development and Evaluation of
Behavioral Models for the Detection of
Malicious Web Accesses

Supervisors

Prof. Marco MELLIA

Nikhil JHA, Ph.D.

Dr. Alberto VERNA
Candidate
Francesco GALLO

AcCADEMIC YEAR 2024-2025

Abstract

In recent decades, Internet services have become an essential component of modern
society, providing a wide spectrum of applications. The diversity of users, some of whom
have limited security knowledge, increases the likelihood of accessing malicious websites,
specifically developed by attackers to steal sensitive information, money, or personal data.

Traditional defense countermeasures, such as blocklists, — manually curated lists of
known malicious domains maintained by specialized companies — rely on comparing a
website’s identifier against those contained within the blocklist. Although this approach
is widely adopted, it is purely reactive: it protects users only after the malicious site has
been detected and included in the list.

To overcome this limitation, smart blocklists have been proposed. These rely on
algorithms, heuristics, or machine learning models that evaluate features of a web re-
source to classify it as malicious or benign. However, because these characteristics are
directly linked to the resource itself, attackers can deliberately manipulate them to avoid
detection.

This thesis explores an alternative approach: instead of analyzing the intrinsic charac-
teristics of a website, it examines the possibility of classifying a web resource by evaluating
users’ specific navigational patterns. In other words, the idea is to demonstrate that a
malicious access is not isolated with respect to the previous ones, on the contrary, they
are strongly correlated and can therefore be predicted.

To validate this idea, we developed a behavioral recognition model starting from
a dataset of real users’ browsing histories. The work starts with the collection and
evaluation of open-source blocklists in order to understand their reliability and the extent
of false positives. On this basis, we labeled the browsing data and extracted relevant
features, which were then used to train and compare different machine learning models.

The results show that behavioral models can effectively distinguish malicious from
benign accesses, providing preventive protection that is more robust than both traditional
blocklists and smart blocklists. This work represents a step toward more resilient online
security solutions, capable of anticipating attacks rather than merely reacting to them.

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1

4.2
4.3
4.4
4.5

4.6

6.1

7.1
7.2
7.3
7.4

Most popular URLs in Pimcity, them total accesses. 19
Most popular URLs in Pimcity-mainframe, them total accesses. 19
Users ranked per number of direct accesses. 20
Trend of accesses (day by day) 21
Trend of direct accesses (day by day). 21
Type popularity per number of accesses. 23
Top 20 initiators. L 23
Correlation heatmap between initiator domains and accessed URLs. . . . 24
Correlation heatmap between initiator domains and accessed types. 25

Bar chart of the daily average number of domains per blocklist (without

DAIMNES). .« o o v e e e e e e e e e e e e 37
Domain classification by type of threat. 38
Popularity and Maliciousness of every reported domain. 39

Ordered domains per number of reports (threshold between 1 and 2 reports). 40
Ordered domains per number of distinct users who made access (threshold

on 10% of total users). 41
Maliciousness vs popularity after filters application 42
Distribution of users by number of malicious sequences. 51
Confusion matrix - Random Forest classifier 55
Confusion matrix - MLP classifier. 56
Confusion matrix -LSTM classifier 57
Unbalance ratio trend 58

List of Tables

3.1

4.1
4.2
4.3

6.1
6.2
6.3

7.1
7.2
7.3
7.4
7.5
7.6

7.7

Example: 5 rows in the dataset 18
Blocklists e 31
Time coverage per list o 35
Update frequency of each blocklist 36
Hyperparameters of the Random Forest Classifier 49
Hyperparameters of the MLP model 50
Hyperparameters of the LSTM model 52
Classification Report - Random Forest 55
Classification Report - MLP classifier 56
Classification Report - LSTM classifier 57
Comparison of Random Forest Classification Metrics: Leave One User Out

vs 80/20 Splito 59
Comparison of MLP Classification Metrics: Leave One User Out vs 80/20

Split « . 60
Comparison of LSTM Classification Metrics: Leave One User Out vs 80/20

Split . . 60
Summary Table of the anticipated domains. 61

Contents

List of Figures

List of Tables

1 Introduction

1.1 Overview e e
1.2 Blocklists e e
1.3 Thesis Objectives
1.4 Thesisoutline

2 Background and related works

2.1 Fundamental concepts
2.1.1 Example of communication
2.1.2 URL o
2.1.3 Indirect accesses and initiator 0L
2.1.4 Malicious access

2.2 Literature Background
2.2.1 Risk Prediction Based on Browsing History
2.2.2 Domain Classification as Support for Prediction
2.2.3 Choice of Machine Learning Algorithms

2.3 Discussion

3 Pimcity Dataset

3.1 [Inmitial Presentation
3.2 Datacleaning L
3.21 Missing values L o
3.2.2 Inappropriate values oo
3.3 Dataexploration
3.3.1 URL
3.3.2 Username o
333 Time.
3.34 Type. . . oo
3.3.5 Initiatoro
3.4 Issues

w

co 0 O O O

10
10
10
11
12
12
14
14
15
15
15

4 TUnified Blocklist Dataset

4.1 Introduction L Lo
4.2 Limitations e
421 How GitHub works
4.3 Blocklists’ overviewo Lo
4.4 Data collection L
4.5 Data exploration o
4.5.1 Initial presentation o oL
4.5.2 Blocklist coverage period oo
4.5.3 Update of the blocklists
4.5.4 Number of reported domains
4.5.5 Domain identification by threat type
4.6 Data labeling
4.6.1 Initial data labeling approach
4.6.2 Data labeling strategies 0oL,
4.6.3 Results and Statistics oo

5 Feature selection

5.1 Popularity features
5.2 Structural and lexical features L.
5.3 Categorical features L
5.4 Behavioral features

6 Models and evaluation metrics

6.1 Non - sequential models o oL
6.1.1 Random Forest Classifier
6.1.2 Multilayer perceptron (MLP)

6.2 Sequential Model
6.2.1 Long Short-Term Memory (LSTM)

6.3 Evaluation Metricso

7 Results

7.1 Classifier performances L oo

7.2 Otherresults e
7.2.1 Unbalance ratio variation
7.2.2 Leaveoneuserout

7.3 Classifiers and blocklists Comparison

7.4 Discussion L e e e e

8 Conclusions and future works

Bibliography

27
27
27
28
28
30
34
34
34
34
37
37
38
38
39
41

43
43
44
45
45

48
48
49
50
50
ol
52

54
o4
o7
o8
o8
60
61

63

65

Chapter 1

Introduction

1.1 Overview

During the last decades, the Internet has established itself as a crucial component of
modern society. Through the capability of providing instant access to information and
facilitating global interaction and collaboration, the Internet has become an indispensable
asset for a large user base, impacting on different aspects of daily life, such as communi-
cation, business, learning, and interaction. Consequently with the increasing of activity,
Internet also become a valid target for malicious actors. The same connectivity that
enables global interaction inherently introduces exploitable vulnerabilities to attack sys-
tems, data, and users. These attacks involve websites that mimic legitimate services with
the purpose of stealing information, malicious websites that stealthily download spyware,
malware, or ransomware exploiting victim’s device, and fraudulent websites that inten-
tionally deceive the user in order to get access to personal data, money, or other sensitive
information.

The main target of these attacks is Personal data. Personal data is personally iden-
tifiable information about the victim, which can be exploited to perform more targeted
attacks such as identity theft or fraud. For instance, personal data may include person’s
name, surname, or job position that may be used by an attacker to write a targeted email
in order to convince the victim of being an acquaintance of his and asking for favors, like
money or privileged access to the company where the victim works. Other than per-
sonal data, Internet communication produces a large quantity of data relating the user
or his behavior during an online communication or session. The most common example
is cookies, small pieces of text which can contain user identifiers, history of interactions
and authentication tokens. If an attacker obtains this information, they can potentially
impersonate the user for an entire session. To address this type of threat, it is necessary
to adopt some countermeasures.

1.2 Blocklists

A blocklist contains a list of malicious identifiers that are compared with the identifier of
the resource requested by the user. Depending on the desired level of detail, a blocklist

6

1.2 — Blocklists

is based on

o Domains: identifier of a website.
e URLs: identifier of a web page.

e [Ps: identifier of a machine in the network.

If the identifier is found within the blocklist the access is blocked. For their simplicity
and efficiency in implementation, updating, and execution, blocklists are the most widely
used tools against malicious access. Among the most popular blocklists is Google Safe
Browsing (GSB) [14]. It operates at the URL level and is updated daily. At every access,
GSB compares the URL with its own list and blocks the access if it finds a match.

A further and final detail, necessary for the purposes of this thesis, concerns the user
access to a blocklists. In particular, an open-source blocklist is defined as one that makes
its list of malicious resources public. GSB does not have this property. However, blocklists
are subject to an inherent limitation. Indeed, we can define as a window of exposure the
period during which the user can be exposed to a malicious website because the blocklist
does not yet recognize the website as malicious. This period cannot be absent because:

1. The website must be recognized as malicious. Sometimes, this step coincides with
a malicious access by a victim.

2. The administrator of the blocklist must be aware of the maliciousness of the website.
3. The user must properly update the blocklist.

Throughout this period, and excluding the final phase (which may depend on the user
themselves) a malicious site is able to operate without restrictions. From this, it is clear
that a solution must be found to reduce the window of exposure as much as possible.
Academic literature explores a wide range of solutions involving algorithms, heuristics,
and artificial intelligence models that operate to improve various aspects of blocklists.
These studies aim to automatically detect and mitigate misclassified domains [15], analyze
the characteristics of the web page, such as HI'ML structure, hyperlinks, and input
forms [46], inspect URL syntax elements to identify malicious domains [55], or adopt
hybrid approaches that combine different features and techniques [20,45]. Finally, the
literature has highlighted the possibility to mitigate the window of exposure problem,
by supporting proactive detection of malicious domains [77,79], but unlike blocklists
they have neither a standardized structure nor a standardized operation. By definition,
choosing the set of attributes used to analyze a domain plays a fundamental role in the
effectiveness of classification. If this set is too selective, some malicious domains may
evade them and bypass security measures. Consequently, if it is too loose, some benign
sites may be blocked due to misclassifications. Finally, the exclusive use of site attributes
could lead attackers to create ad-hoc websites to evade them. For instance, an index
of a site’s maliciousness could be a poorly maintained and low-quality structure, but
the attacker, knowing that this feature is taken into account for site classification, could
design a well-structured site so that it is mistakenly classified as benign.

7

1 — Introduction

1.3 Thesis Objectives

The main objective of this thesis is to propose and evaluate a behavioral model that
analyzes user access patterns to accurately classify them for the detection of malicious
websites, aiming to overcome some of the typical limitations of blocklists. We explore
the idea of classifying a web resource by evaluating users’ specific navigational patterns.
In this context, we define a navigational pattern as a set of ordered accesses performed
by a user. These accesses can be grouped according to similar characteristics with other
ordered sets of accesses. In other words, the idea is to demonstrate that a malicious access
is not isolated with respect to the previous ones and, on the contrary, they are strongly
correlated. Consequently, we explore the possibility of deriving a certain number of
features from a user’s browser history that can be interpreted by a behavioral recognition
model to predict, with a high grade of accuracy, whether the next access will be malicious.
With regard to the window of exposure, the model, similarly to [46,55], aims to classify
a site through its characteristics, thus providing proactive protection. Unlike the latter,
however, the idea is to take into account the user’s user behavior. The rationale behind
this choice is that a model capable of recognizing behavioral patterns before malicious
access occurs is trained using features that belong to the user and cannot be modified by
an attacker. In particular, the thesis aims to:

o analyze the limitations of traditional blocklists;

e design a behavioral model that exploits user navigation patterns as a source of
useful information for identifying potential threats;

e implement and test the model, comparing its performance with approaches based
on blocklists;

o evaluate the effectiveness of the model classification through standard classification
metrics, such as accuracy, precision, recall, and F1-score.

1.4 Thesis outline

This thesis is structured as follows.

e 2 Chapter 2 : presents definitions, examples, and academic works for the under-
standing of both the technical and theoretical contexts of the thesis.

e 3 Chapter 3: describes Pimcity, the dataset composed of browsing histories used
in this thesis. The chapter also includes collection methods and data exploration.

e 4 Chapter 4: explores the method for the collection of several open-source block-
lists up to realize a reliable dataset. Furthermore, we explores the classification and
labeling process of the Pimcity entries

e 5 Chapter 5: explores the motivation, and the generation of relevant features from
the datasets.

1.4 — Thesis outline

e« 6 Chapter 6: presents the machine learning models used to classify malicious
accesses, and the metrics used to evaluate them.

e 7 Chapter 7: reports and discusses experimental results.

e 8 Chapter 8: summarizes the main contributions of the study, discusses limita-
tions, and outlines potential directions for future research.

Chapter 2

Background and related works

This chapter aims to explain the fundamental concepts for understanding the purpose,
the context, and the problems that this thesis wants to address. To improve readability
and simplify the structure, we divide the chapter into two sections. The Fundamental
concepts section aims to illustrate a more detailed overview of Internet communication
with a particular focus on the definitions of direct/indirect access, URL, initiator, and
malicious access. In the second section, we review academic papers related to this thesis,
in order to understand how the literature has addressed the problem, what solutions and
results have been proposed, and which limitations still remain to be overcome.

2.1 Fundamental concepts

This section recalls the fundamentals of web communication by providing an high level
explanation of how client-server communication works. Within this framework, the client
is typically represented by the user’s device, which starts a request for a resource available
on the Internet, such as a webpage. On the other hand, the server is a remote machine
that hosts the resource and provides access to it.

2.1.1 Example of communication
Any Internet communication follows these elementary steps:

e Step 1: Client request: The client sends a request for a specific resource. Any
request is composed of: protocol (i.e. HTTP/HTTPS), method (GET, POST, PUT,
DELETE), resource’s URL, header (i.e. authorization tokens), and additional data
(i.e. parameters in the body of the request if the method is PUT or POST).

e Step 2: Server processing: The server receives the request and verifies if all con-
straints are satisfied to provide the response. Constraints to satisfy include: authen-
tication, authorization, verification of the parameters received, querying to database
or external services, and error handling in case of invalid input.

e Step 3: Server response: The server constructs the response along with a status
code that anticipates the outcome of the response (200 OK, 400 Bad Request,

10

2.1 — Fundamental concepts

500 Internal Server Error). In addition, the header is assembled with the necessary
parameters that describe the response, and the body contains the resource requested
by the user.

e Step 4: Client receives and renders the resource: Finally, the client receives the
resource and its browser processes it as an HTML file. Firstly, the DOM (Document
Object Model) is constructed, which is fundamental as it describes the structure
of the file. Consequently, the browser applies all the additional elements necessary
to display the resource to the user. For instance, additional elements include: CSS
files for styling, or JavaScript scripts for functionality.

2.1.2 URL

URL (Uniform Resource Locator) plays a pivotal role during communication. Every re-

source on the web is associated with a unique URL. In other words, the URL is the

resource’s identifier, but, in addition, it even provides information about the communi-

cation between the client and the server. For example, URL specifies details about the

protocol used to contact the host, which port is used, how to reach the resource, etc. In

summary, if the client wants to access a resource, he must know the correlated URL.
The general structure of the URL is the following.

protocol ://user:password@ domain :port /path ?query #fragment
—_—— —— —— e —— ——

http, https, ftp john:123 www.example.com 443 /path/to/file lang=it 33

o Protocol: 1t is the protocol used for the communication (i.e. HTTP, HTTPS, FTP).
It establishes a set of mandatory operations performed by both the client and the
server to communicate.

o User:password (optional): User’s credential. Nowadays, they are rarely used be-
cause an attacker could intercept them during a communication (URL sniffing).

e Domain: Identify the server that host the resource.

o Port (optional): It is the port where the host received the request. If it is not
specified, the standard port declared by the protocol is used, for instance, 80 HTTP,
443 HTTPS.

e Path: hierarchical path to reach the resource.
o Query (optional): key-values parameters interpreted by the server to specify con-

ditions to obtain the resource.

For instance, if the URL is https://domain.com/resource?id=123&lang=it, the
server will use 1d=123 to select the resource with ID equals to 123 and lang=it to
return it in italian.

o fragment (optional): reference to a specific section of the resource.

11

2 — Background and related works

2.1.3 Indirect accesses and initiator

Rarely do web pages consist of a single HI'ML file. They usually have a complex struc-
ture that involves images, CSS files, scripts, and other multimedia. When a user requests
a web page, the server is responsible for providing all additional resources required to
correctly respond to the user. Therefore, even in the absence of a direct request from the
user, numerous resources are still provided, since they are implicitly encompassed within
the initial request. The URL that initiates the communication is designated as the initia-
tor. In summary, accessing a resource means initiating a process of requests that starts
with the main request (initiator) and expands to all the necessary secondary resources
(indirect accesses). In this context, we distinguish first-party accesses, which involve all
the resources served by the same domain as the initiator, and third-party accesses,which
include resources required by the initiator but served from different domains.

Example of communication with indirect accesses

o Step 1: Client request (direct access): The client sends a request to the server for
a resource.

e Step 2: Server sends HTML: The server responds with the resource, but this one
requires additional elements to be rendered. For example, a CSS file.

o Step 3: Client implicitly requests additional resources (indirect access): The client
receives the document and automatically requests the additional resources refer-
enced in it.

e Step 4: Server sends additional resources: The server provides the requested CSS
file.

e Step 5: Client renders page: Finally, the client processes the initial resource using
all the additional elements.

2.1.4 Malicious access

An access is defined as malicious when the initial request sent by the client or any other
additional resources used to fulfill the first one contains malicious resources with the
purpose of compromising data, privacy, or the user’s control.

Malicious accesses classification

Similarly, to the aforementioned distinction between direct and indirect accesses, we may
classify two categories of malicious accesses.

1. direct malicious access: The initial request directly points to a malicious resource.

(a) The user receives a link to a malicious web site and he clicks on it requiring
the a malicious resource. (i.e. https://malicious.com/).

12

2.1 — Fundamental concepts

(b) The server responds with a page designed to steal credentials or sensitive
information. To illustrate this point, imagine a fraudulent banking interface
that mimics an official banking site with an input form where the user is
prompted to enter their banking data.

(c) By visiting the page, the user inserts his information which are forwarded to
the attacker.

In this case, the malicious access is direct because the user initiated the request.

2. indirect malicious access: The initial request is legitimate, but the calling chain
caused from additional resources contains a URL that points to a malicious resource.
For example, an attacker is able to inject a malicious script within a web site with
the purpose of executing it on the user’s browser when the web page is requested.

(a) The user requests a legitimate page: https://legit.domain.com/resource.

(b) The page includes a malicious script https://legit.domain/malicious-script.js.
For instance, the script could have been injected by an attacker in the com-
ment section of the legitimate web page. When the user’s browser renders the
HTML, it automatically executes the script (Stored XSS attack).

(¢) The injected or compromised script automatically sends the user’s sensitive
information to the attacker.

In this case, malicious access is indirect, because it has been triggered by a malicious
dependency of a legitimate page.

Targets

Common targets of attackers exist.

o Session cookies: temporary text of files automatically generated by the server to re-
member user details such as preferences or passed action on the site. Most websites
use cookies to identify users’ sessions; attackers can impersonate users’ requests by
stealing victims’ cookies.

e Personal data: For personal data we include all the data able to recognize unam-
biguously a person. This cluster comprises name, surname, job position, phone
number, email address, but even passed Internet researchers and interests. They
are used by the attacker to gain specific information about an user to repeat a more
accurate attack or impersonate him.

e Credentials:Usually involve username and password and are used by the user to
prove his identity to the server. However, a deceived user may insert them into
the form of a malicious website. If the attacker obtains those information, he can
virtually impersonate the user.

e localStorage or sessionStorage contain user’s sensitive data or metadata stored as
key-values pairs used to improve navigation on Web. If an attacker was able to
recover these values, they can lead to privacy breaches, or identity theft.

13

2 — Background and related works

Kinds of attacks

An attacker has many possibilities to force a user to access a malicious resource. However,
it is possible to group these attacks into two main categories.

o FExploiting software vulnerabilities: This type of attack usually requires a deep un-
derstanding of the systems used by the user for online communication. The attacker
exploits weaknesses in the software or protocols to trigger undesired behaviors, in
the meantime, the user may be unaware that he is under attack. Some examples
of these attacks involve Shadow server, DNS cache poisoning, Man-in-the-Middle,
and Cross-Site Request Forgery (CSRF).

In our context, for instance, an attacker could force the injection of malicious scripts
into legitimate websites making them malevolent.

o Ezxploiting human vulnerabilities: By human vulnerabilities is referred to psycho-
logical or social pressure. Attacks that take advantage of people’s vulnerabilities
are called social engineering attacks. In this case, the attacker forces the victim
to perform an unwanted action through deception. The most popular example of
this type of attack is phishing. Phishing occurs when an attacker sends an email
containing a link to a malicious web page and convinces the victim to click it and
provide sensitive information.

In summary, whether by exploiting software weaknesses or human behavior, attackers
aim to gain unauthorized access or trick users into compromising security.

2.2 Literature Background

This section presents a series of articles and related works that address the subsequent
steps of the thesis, starting with understanding user behavior on the web, as fundamental
prerequisite for developing predictive models capable of estimating the risk that a user
will access malicious content. Literature focuses on two aspects: the analysis of brows-
ing history and domain classification, supported by machine learning techniques. This
review highlights how various studies contribute knowledge and methodologies useful for
constructing a robust behavioral model.

2.2.1 Risk Prediction Based on Browsing History

One of the first studies to explore the link between user behavior and the risk of exposure
to malicious content is [16]. By analyzing users’ browsing histories, researchers aim to
identify those who, due to poor habits or limited cybersecurity knowledge, are more
likely to visit malicious sites. The approach focuses on predicting general behavior rather
than classifying individual URLs and introduces new features, such as the timestamp.
This line of research is further explored by [62], which extends the prediction horizon to
one month. Here, user risk is estimated by analyzing past behavior and cybersecurity
knowledge, using a random forest classifier to determine the probability of exposure
to malicious content. This approach highlights how non-sequential models are the first

14

2.3 — Discussion

choice if the goal is to predict general behavior. [44] addresses the classification in a
more mathematical approach. Researchers discovered that by analyzing how predictable
a website is, they could improve the model’s performance by bringing together URLs
from the same website. These results suggest that domain-level aggregation can improve
the model’s predictability performances.

2.2.2 Domain Classification as Support for Prediction

The prediction of the risk of occurring in a malicious access cannot be separated from
the ability to classify visited domains. Several studies have addressed this problem by
providing useful tools and methodologies. [43] demonstrates how, starting from a dataset
containing username, timestamp, URL and other information such as mouse movement
and keyboard activity , it is possible to recover the actual duration of visits to each URL.
Using a machine learning model, domains are classified into categories such as Cur-
rent, Next, or Past events, allowing the reconstruction of detailed browsing sequences.
This approach provides valuable information about the context in which users navigate,
improving the understanding of at-risk behaviors. Complementarily, [52] addresses the
complexity of multi-tab browsing. Using LSTM and Word2Vec, the model predicts URL
sequences considering the time spent on each and backtracking behavior. Identifying
macro-behaviors such as purposive, targeted, and explorative browsing is crucial to dis-
tinguish the various users’ behavior adopted during the navigation. Earlier studies, such
as [19], highlights the importance of additional behavioral features, such as re-visitation
rate and hierarchical site classification via DMOZ (now known as Curlie). This infor-
mation helps to understand browsing routines and better define the behavioral context
of each user. Finally, more recent classification approaches, such as [47,80], introduce
deep learning methods to categorize websites. Both articles demonstrate the ability to
recognize the thematic area of a website by trending topics. Website categorization can
be a crucial feature for predicting users’ interests.

2.2.3 Choice of Machine Learning Algorithms

The selection of a predictive model plays a central role in building a reliable system. [63]
show that LSTM and stacked RNNs can be used to predict future events based on past se-
quences. Despite the high accuracy achieved, models can be subject to deliberate evasion,
a factor to consider when modeling web risk. Other approaches, such as [39,49] explore
various strategies for classifying suspicious behaviors using LSTM, HMM, or XGBoost
and introduce techniques such as SMOTE for handling imbalanced datasets. These stud-
ies provide guidance on selecting algorithms that balance accuracy and interpretability.

2.3 Discussion

Although malicious access is a popular problem in the cybersecurity field, thus is not
enough to provide sufficient countermeasures. On the contrary, even in the last years,
malicious accesses have become a priority threat against the users’ web activity. To
contextualize this, referring to some reports, due to generative Al online phishing attacks

15

2 — Background and related works

increased by 1265% between 2024 and 2025 [61]. In addition, the number of phishing
emails that use infostealer to steal user credentials is increasing by 84% weekly [78]. 72%
of business leaders reported an increase in cyber-risks, with the malicious use of generative
AT as their primary concern. Furthermore, over 40% of organizations have experienced
social engineering attacks in the past year [27]. The report [48] highlights a shift towards
proactive security, with a focus on understanding attacker behavior in order to implement
effective countermeasures. As users rely more and more on the Internet, which offers
applications that require the intensive use of personal data or sensitive metadata; this
can only increase the number of reasons that lead an attacker to carry out illegal actions.
In addition, the spread of generative Al allows to produce complex websites on large scale
that are more convincing and more tailored to the victim. [59]
To mitigate the risk is necessary to:

e understands the hierarchy between initiator and secondary resources,
e monitor and log relationships between requests,

o apply different appropriate countermeasures,

16

Chapter 3

Pimcity Dataset

This chapter provides a detailed analysis of the datasets used for the study carried out
in this thesis. The analysis begins with data collection; subsequently, every dataset field
will be explored separately. Finally, all the limitations will be highlighted.

3.1 Initial Presentation

Pimcity is composed of browser histories, collected by voluntary participants who installed
a browser extension that collects all their accesses. This opportunity was proposed by
Politecnico di Torino [21] for a period of more than six months. At the end of this period,
it has been recorded the contribution of 345 wusers and a total of 392,902,891 accesses.
However, to focus on essential information, only a subset of access characteristics was
recorded. In particular, each entry in the dataset contains five specific characteristics of
the access.

e URL: Although in the dataset it was defined as a URL, only the domain of the web
page was stored. Any other information, such as protocol, path, port, etc., was
discarded during the acquisition.

o username: This is the identifier of the user who made the request. To preserve
privacy, all users were anonymized using specific suites of k-anonymity algorithms
[54].

e time: Timestamp of access in the format YYYY-MM-DD hh:mm:ss.

e initiator: If this field is NULL, the stored domain is considered the initiator. Oth-
erwise, the column specifies the initiator that requested the resource.

e type: The type of resource: image, script, CSP report, etc. Any type will be
explained in the appropriate subsection 3.3.2.

17

3 — Pimcity Dataset

username time url type initiator
aeddced3-d9b3-4db6-a242-d6fcad26ebaf | 2022-08-21 16:16:46 static.xx.fbedn.net image www.facebook.com
aeddced3-d9b3-4db6-a242-d6fcad26ebaf | 2022-08-21 16:16:46 | scontent-maa2-2.xx.fbedn.net | xmlhttprequest | www.facebook.com
aeddced3-d9b3-4db6-a242-d6fcad26ebaf | 2022-08-21 16:16:46 | scontent-maa2-1.xx.fbedn.net | xmlhttprequest | www.facebook.com
aeddced3-d9b3-4db6-a242-d6fcad26ebaf | 2022-08-21 16:16:46 | scontent-maa2-1.xx.fbedn.net | xmlhttprequest | www.facebook.com
aeddced3-d9b3-4db6-a242-d6fcad26ebaf | 2022-08-21 16:16:46 | scontent-maa2-1.xx.fbedn.net | xmlhttprequest | www.facebook.com

Table 3.1. Example: 5 rows in the dataset

3.2 Data cleaning

The distinction between direct and indirect accesses is imperative in the development of
a behavioral recognition model, since direct accesses more accurately reflect users’ intent,
while indirect ones represent only additional accesses made by the host to correctly send to
the user the directly requested resource. For this reason, we introduce a subset containing
only the direct accesses of Pimcity: Pimcity-mainframe. The Pimcity-mainframe dataset
plays an essential role in achieving a full understanding of the concepts of Pimcity, strictly
bonded to the users’ habits and behavior. This is due to the fact that Pimcity-mainframe
excludes a significant amount of automatic generated requests for additional resources.

3.2.1 Missing values

Before proceeding with the dataset analysis, it is essential to perform data cleaning,
which involves identifying and handling errors, suspicious values, or missing values. This
process ensures that the data will be reliable and ready for meaningful analysis and next
steps.

As a primary rule, all data fields, except for the initiator, must be non-nullable.
In non-technical vocabulary, the values contained in any entry, but the initiator, are not
optional, and its absence indicates an error. Therefore, the entry is considered incomplete
and is excluded from the dataset. All columns respect this condition, but the URL column
contains 93,417 null values (almost 0.02% of Pimcity). This presence of missing values
in the URL column is probably caused by a bug that occurred during data acquisition,
then the rows result unusable for our purposes, and was consequently deleted from the
dataset.

3.2.2 Inappropriate values

The last access in Pimcity appears with a suspected value of 11 August 5790. Focusing
on the Pimcity-mainframe accesses, we obtain a reasonable range of dates — from 06 May
2022 to 13 November 2022 — which we consider to be the correct interval, and all accesses
in Pimcity outside this range are discarded. The results of the corrections applied to
missing and inappropriate values are as follows: the original entries of 392,902,891 were
adjusted to 392,807,209 (99.99% of Pimcity).

18

3.3 — Data exploration

3.3 Data exploration

At this point, we can conduct a more detailed examination of the characteristics of
Pimcity’s fields.

3.3.1 URL
Frequency of access of 20 most popular domains
10 4
> g4
o
&
6]
3
o
L a
[T
2]
0
n > & &
LGF vo@ R & wo& £ & zns & ¢=‘° 7’@@ WDD@ +é,<<~ & ‘l&«o &D@ z@d‘ R @t R
& ¥ & & P & & & ¢ & & & 5 & @& & & & &
§ & & F ¢ F & & § e
- S GRS i 4 SR » 3 S & & o SRS
& S & ¥ & & & S & & & F
¥ & 5 & §§
& & = ¢ & &
& & & & o o
& o 5 &
R i v
& qe; QEI Qz'
a.@‘b Dglb a_@:b
& M
& & &
Domains

Figure 3.1. Most popular URLs in Pimcity, them total accesses.

As illustrated in the Figure 3.1, the most visited URLs in the dataset are auxiliary
domains, such as ssl.gstatic.com, which serve static content, including images, CSS,
and JavaScript. However, these requests reflect technical necessities rather than users’
direct browsing choices.

Number of distinct users per top 20 domains

Distinct users

Domains

Figure 3.2. Most popular URLs in Pimcity-mainframe, them total accesses.

Sorting the Pimcity-mainframe’s domain for distinct users who made access to them
(Figure 3.2), we observe that easypims.eu is the most popular domain, followed by

19

3 — Pimcity Dataset

google.com, indicating an elevate use of research-related platforms and general web brows-
ing activities. Other popular domains involve different google.com subdomains such as
accounts.google.com, and docs.google.com, showing a significant use of Google services.
Social media sites like youtube.com, facebook.com, whatsapp.com and instagram.com ex-
press that social interaction remains an important aspect of user activity, although it
is secondary to work and learning platforms. Finally, the presence of linkedin.com, mi-
crosoftonline.com, suggests that professional networking are also frequently used.

Overall, this analysis indicates that the population primarily engages with a mix of
search engines, social media, academic, and communication tools, with a strong inclina-
tion towards Google-related services.

3.3.2 Username

The dataset consists of 345 different users. Each user is properly anonymized to ensure
privacy and security, while is maintained an identifier to allow recognition.

Number of accesses by user

800000 -

600000 1

400000 4

Number of accesses

200000 +

a7 T o 67 87 @ o o & e et o7 w el @ o Y o7 o 67 o T
P R 0 TR I P S P (s, LA ey . S RN S S S A
BYOAY OO “ A S <
AT P Qi S & & & LR S T A S IF SR S SR L
Username

Figure 3.3. Users ranked per number of direct accesses.

In order to gain a more comprehensive insight into user behaviour, please refer to
the Figure 3.3. This figure illustrates the user who has made the most direct accesses.
However, the behavior of every user in terms of number accesses is highly variable. This
variability allow us to conduct a comprehensive study encompassing different browsing
patterns.

20

3.3 — Data exploration

3.3.3 Time

The data collection period, which started on 6 May 2022 and ended on 13 November
2022, ensures a continuous collection for slightly over six months.

167 Trend of accesses day by day
5 —— daily accesses
® max visits

n 4
(7]
[%]
[%]
(0]
IS
(1]
w“
o]
o2
Ke)
IS
3
=21

]

o o o o o 2 %
%"’p Obp U)\p Oﬁp %le ‘\9;\' \}:"
B & S S B & S
TIME (Day)

Figure 3.4. Trend of accesses (day by day)

The Figure 3.4 shows the number of accesses per day and, except for some peaks,
the number of accesses per day is stable. To investigate these outliers, it is necessary to
analyze the user’s behavior in the Pimcity mainframe.

Trend of accesses day by day

600000 > —— Visits by day
@ max visits
500000

400000

300000

Number of accesses

200000

100000 4 J
0

T T
& o

o © a o >
’{yg ’ﬁ’p ’{}p ’{},c "Q’D ’{}} ’f}.\
5 B s 8 s S 8
TIME (day)

Figure 3.5. Trend of direct accesses (day by day).

The peak visible in the Figure 3.5 shows that the user dc4e199b-4c5f-4986-b57a-2aaal0lbbeeef
carried out 602,503 accesses out of a total of 602,747 (almost 99%). It is not possible for

21

3 — Pimcity Dataset

a human being to execute such a number of accesses; therefore, this is suspected to be
automated traffic or a bug in data collection. In both cases, the user is excluded from the
database due to anomalous behavior. It is important to note that the suspicious behavior
of the user dc4e199b-4c5f-4986-b57a-2aaallbbeeef is also illustrated in Figure 3.3.
This user, who is at the top of the list for number of accesses, performs a significantly high
number of accesses. This number is strongly misaligned to the trend of the remaining

users.

3.3.4 Type

Type represents the kind of resource that the user wants to access. There are 14 different
types, defined as follows:

main__frame: Request for the main document of the web page. It also refers to the
first resource requested by the user.

sub__frame: web page or HTML document loaded inside the mainframe. For exam-
ple, an advertisement.

xmlhttprequest: Used for APIs or dynamic data, it refers to HTTP request sent in
the background by JavaScript.

image: Request for an image.

media: Request for multimedia files such as audio or video.

script: Request for executable file.

ping: Lightweight request used to send telemetry or tracking data.
stylesheet: Request for a CSS file.

font: Request for a font file. Used for text rendering.

history: Navigation performed via the browser’s history.

csp__report: Report sent by the browser when a Content Security Policy (CSP) rule
is violated.

object: Request for content loaded via the <object> or <embed> tag.

webbundle: Request for a WebBundle package, a format that allows grouping mul-
tiple web resources into a single file.

other: Requests that are not in any other category.

The following Figure 3.6 shows the popularity of the various types in Pimcity:

xmlhttprequest plays a central role.

With a total of 302,651,506 requests in the dataset xmlhttprequest represents almost
77% of Pimcity’s accesses.

22

3.3 — Data exploration

168 Total accesses per type
3.0
2.5
wn 204
[F)
n
0
81.5*
<
104
0.5
0.0- F T T
s 5 5 s
A A R G A
< i
§<&‘ S P & & &
Type

Figure 3.6. Type popularity per number of accesses.

3.3.5 Initiator

The initiator is crucial to understand who among the hosts required a malicious resource
if it occurs. In Pimcity, there are only 90,072 different initiators, but they are sufficient to
generate more than 98.96% of the traffic. The remaining 1.04% of the traffic is composed
of direct requests without initiator. Therefore, most of the traffic was automatically
requested by hosts rather than users. However, some initiators are more popular than
others. The Figure 3.7 shows who the 20 most popular initiators in the dataset are.

107 Total accesses per initiator (top 20)

Accesses

Initiator

Figure 3.7. Top 20 initiators.

23

3 — Pimcity Dataset

An interesting consideration concerns the relationship between initiators and URLs,
and between initiators and types, as shown in Figure 3.8. The goal is to understand
whether popular URLs gain their popularity because their initiator is popular as well,
or if an unpopular initiator makes a URL popular because it requires a large number of
resources from that URL.

HeatMap between URLs and Initiators re7
calendar.google.com - ¢ [4 0 1o :e4Ed 0 1211421 E43 O 0 0 0 0] 0 M5z 0 [
chat.google.com - ¢ z2 1 ST 0] [0 0 0 0] 0 1536 0 0 1.75
docs.google.com - ¢ 0 5 031848 0 604 B0 O 0 0 0 0] 1 ume 0 15
drive.google.com - ¢ o B8 0 0 @307 0 0779304128056 O 0 0 0 0] 0 u:r 0 0 150
mail_google,((}m - 0 19707 1278 6460364 22 B151500 o 0 0 0 0 0 o o man o 53
meet.gocgle.com - 0 o 0 1 3382797 1283417 o 166314 1017 o 0 0 0 0 o o 359 0 o 1.25
tWitter.ch —4350217 0 0 0 0 4 0 0 1 4638137 0 0 0 0 0 0 0 0 u
[
B www.Canva.com - o 0 2 0 0 0 0 0 1 0 0 0 0 0 2559443 1581 1075 0 0
© 1.00
:-IE www.facebook.com - © 0 0 0 0 0 L] L] 7 0 0 0 0 0 0 N 6034 0 0
C
WWW.gOOgIe.CGm - 0 0 2 329 0 604781 L] 587 12025 1 0 0 0 0 0 6390 5253056 0 1351
- 075
www.linkedin.com - ¢ 0 0 0 0 [0 o 0 0 0 0 0 B0 A 0 o
www.netflix.com - o 0 0 0 0]]]]] 0 0 0 0] [57 [[
- 0.50
www.okx.com - 0 0 0 0 0]]]] o 0 0 0 0] 0 5 563143 o
www.primevideo.com - ¢ 0 (] (] (] 1 o o o] (] (] 0 0 [0 0 0 1
-025
WWWtht(htV - 0 0 0 0 0 0 0 0 0 2 2929265 3140576 SEEIlH]i 0 0 1 0 T
WWW.ycutube.CQm - 0 o Ee 0 0 577363 o o r-1} 0 0 0 0 0 o o 1578 o 7335887
| | | | | | | | | | | | | | | | | | | - 0.00
£ £ E £ £ £ £ £ £ E @ ® B B £ £ £ E £
o o o o =) Q o o o o c c c = o =) o o =]
g ¢ 9 © ¢ ¢ §g ¢ ¢ g F F F F ¢ v © o O
g L 44 4 4 g = o U] £ = = = g X £ ¥ 4
= o = o o k=] = T F=] 2 = = = o
£ 8 8 8 2 8 § & = 22 £ £ £ £ & 2 & 92 =B
z o o o =] o - o] E @ - - 5 S i} o = =1
b 2 = 5 o 5 £ o @ = £ = = : Q9 = E =]
3 = q o= w P £ £ £ <c E @ = >
" £ 3 8§ £ g 8 @ £ £ 8 58 ¥ 3 % g
[}
8 B £ E 5 s ® @ 3B z
T = o [~ ©
g3 8 8§ 8 E
E e @ ©] bt
T 5 E E E 32
p & U [i [}
T © - -] =
c o =) =t T
o - = uw Q
@ m [}] 7]
™~ ~ ~ =]
h)) =
Lt LE) LE)
o D D
=R - B <
o @ @
o o o
o} & &
2 B B
5 = =

Figure 3.8. Correlation heatmap between initiator domains and accessed URLs.

The heatmap in the Figure 3.8 highlights the correlation between URL and ini-
tiator and it is a demonstration of the massive number of requests that any initia-
tor executes. However, initiators have different behaviors. URLs like google.com,
ssl.gstatic.com, or play.google.com have been called from different initiators such as
calendar.google.com, chat.google.com, docs.google.com, drive.google.com, etc.

24

3.3 — Data exploration

Instead, other initiators generate a localized traffic of resources. For example, linkedin.com
only points to realtime.www.linkedin. com.

HeatMap between Types and Initiators &7
Calendar,google_com - 3 10681 8120 132 11 0229 w505 4286 5135 5164819
chat.google.com - 57 13384 352671 2801 a 417 101738 1051 B
docs.google.com - w1 12860 3050502 2 c280 8340 004070 BAST 141673 11144581
drive.google.com - 5 560 4092963 1 1813 a8 314721 5483 18321 5209315 4
jenkins.taptap.lan - 0 0 42204 0 0] BA93 753 7 82071
mail_google.com - pri) 48362 20078881 4674 9183 150606 325642 12676 89037
meet.google.com - =5 50 738 12723 B 1610 13820 b 53 4885304
twitter.com - % 10433 1032588 17385 6133 174 1305436 10 663 162125 3
[. - . : 11420
o wvideo.ibm.com - 0 a u 0 0 L] 48 1z 0 33114802
- .
1] www.bet365.it - [} 119 31000 [} 4150] E366] M9 3502868
=
c WWW.CaNnva.com - 0 5625 100390 541 2191 124 44099 9258 w82 2570634
= |
www.facebook.com - sz0a 07 4365303 33708 64782 116330 649311 32030 8644 -
m\,w_google.com - 3536 147308 24484969 11405 8154 1419424 1475652 122338 159443 211992
www.linkedin.com - a8 i 08996 110 2 1259 48675 42182 305 10810378
www.netflix.com - 0 5181 8320 103 1 n 1628 1103 1808 351233
-1
www.okx.com - 5 503 1281 0 0 %62 072 1084 183 5831000
www.primevideo.com - [1877 9944 14340 [5663 4259 37] 331508
www.twitch.tv - 0 16079 5085020 o7 11475 N36 131062 30566 1335
www.youtube.com - 0 106039 2236013 28387 6280 0380 404286 50112 2895 u072532
| | | | | | | | | | -0
t = [© = o = - w =
9 é 2 b1 2 < 2 o E @
o ° @ = =1 = o S
g E E °© @ G £, g
o = a L
4] @ @ =
S

Figure 3.9. Correlation heatmap between initiator domains and accessed types.

The Figure 3.9 shown the correlation between initiator and types requested per ini-
tiator. Every popular initiator requires almost every type of resource. It means that the
additional resources’ traffic, is independent by the initiator that requires it. It is worth
noting that the xmlhttprequest request type is the most requested among all initiators.
The xmlhttprequest mechanism is a tool that allows clients and servers to change the
content of a webpage without reloading the entire page, thereby improving navigation and
communication performance between client and server. Consequently, many web-pages
use xmlhttprequest to dynamically retrieve data, for example when loading new search
results, updating a dashboard or fetching user-specific information.

25

3 — Pimcity Dataset

3.4 Issues

Data exploration just performed is sufficient to list some limitations and problems that
the thesis must address in order to develop a reliable behavioral recognition model.

1. Academic navigational patterns: The browsing behavior of an academic user, spe-
cialized in STEM subjects, is different from that of inexperienced users. Ideally,
this problem will be addressed by collecting more heterogeneous data.

2. Domain-only storage: Without other information but domain, we lost the difference
between web page and web resource. The presence of path is crucial to understand
if the host is responsible of the presence of the malicious resource, because it is
designed with malicious purpose in mind, or it is a legitimate host who rely on
third parties malicious resources.

3. Lack of other information: Nowadays the behavior on web is really complex. Multi-
tab, presence of security mechanism, history clicks, links, focus, incognito browsing
are just some of the example of information that would help to better apprehend
the behavior of an user.

26

Chapter 4

Unified Blocklist Dataset

This chapter presents in detail all the steps involved in constructing a dataset of blocklists
from scratch. The steps carried out include an explanation of the limitations imposed by
Pimcity, the selection and justification of the blocklists, and data collection. Finally, the
new dataset, Unified Blocklist Dataset, is presented through a data exploration.

4.1 Introduction

The thesis’ goal is to develop and evaluate a behavioral recognition model able to classify
a user access as malicious or benign.

In order to achieve this objective, we use Pimcity, a dataset comprising sequential
accesses executed by voluntary participants. At this juncture, it is necessary to label
every access in the database as malicious or benign, to establish a solid foundation for
the development of a reliable web access classifier. Considering that blocklists represent
one of the most widely used tools for identifying malicious accesses, in this chapter, we
describe the methods used to retrieve, download, and integrate different blocklists, up to
the creation of the Unified Blocklist Dataset. Consequently, a preliminary analysis of the
dataset is performed in order to provide an overview of its main characteristics. We also
explore how to combine Pimcity and Unified Blocklist Dataset to detect every malicious
access, and how we develop a methodology to ensure reliable labeling of domains through
a study on possible false positive reports in blocklists.

4.2 Limitations

The first problem that we address is the limitation of the access of the blocklist. Security
services such as Google Safe Browsing (GSB) [14] or Virus Total (VT) [69] allow API
services to classify URLs or domains. However, the API services’ limitation rate makes
this type of classification unfeasible. Therefore, open-source blocklists are required, as
they allow us to download the entire list of malicious domains and work on it locally.

Other concerns about data collection to generate reliable labeling are strongly cor-
related with data stored in Pimcity. The labeling of Pimcity accesses places in the
conditions to address two fundamental limitations.

27

4 — Unified Blocklist Dataset

1. Domain only: As explained in the previous chapter, collecting only the domain of
any access and not further information, we lost the difference between malicious
host and malicious hosted resource. To address this problem, it is necessary to
focus on the blocklists that contain domains.

2. Historic data: This work was done in March 2025, but the stored accesses in Pimcity
date back to March 2022 - November 2022. The use of updated blocklists would
cause unreliable labeled accesses, since they do not reflect the Internet context of
2022. In addition, malicious websites have a volatile nature due to their activity.
Today many malicious web page has been blocked, reported, deleted, renamed, or
other.

The most challenging of the imposed limitations is that which forces us to derive the
historical data of the blocklists. In fact, most popular blocklists do not have historical
information dating back to the period of Pimcity data collection.

After a thorough search of the available blocklists, our choice fell on the numerous
blocklists projects available on GitHub [29].

4.2.1 How GitHub works

This subsection presents only the essential aspects of GitHub needed to understand the
next steps.

GitHub [29] is a hosting platform used by developers and agencies to work on software
projects. All projects are accessible to contributors via a URL that points to a repository.
In other words, the repository is the virtual space where developers can work on a project.
Each repository has an owner, who is the user that created the repository. To facilitate
contributions from many users, GitHub has developed a sharing process based on com-
mits. In GitHub, any version of a file is reachable by an URL with the following structure:
https://github.com/{repo_owner}/{repo_name}/raw/{commit_sha}/{file_path}

where:

e repo_owner: the GitHub user or organization owning the repository,
e repo_name : the name of the repository,

e commit_sha: the commit’s identifier,

e file_path: the path of the file inside the repository.

The possibility of recovering previous versions of the blocklists is fundamental to trace
how the blocklist was updated day by day during the period of collection data of Pimcity.

4.3 Blocklists’ overview

Recovering data from limited number of blocklists, for instance 2 or 3, would not guar-
antee a correct evaluation of the accesses. Conversely, recovering data from a larger set
of blocklists (43), we are able to compare different results and make the labeling phase

28

4.3 — Blocklists’ overview

more accurate and reliable. For this purpose, we choose different blocklists from different
projects. Most projects update their lists basing on a specific threat. For this reason,
during data acquisition, we take into account the details of the threat, as this not only
allow us to define a domain as malicious, but also helps us to determine what threat it
poses to the user.

In total, we selected 10 different types of threats, plus 1 to classify all domains that
do not fall into any other type.

e Redirect: The site uses redirect techniques to manipulate the user’s request. In
other words, the site is benign, but when a user points to it, it forces the user to
make malicious access.

e Crypto: Websites related to cryptocurrency that may run cryptojacking script-
hidden code that uses visitors’ devices to mine cryptocurrency without their consent.

o Ads: Advertisement sites. Even if they are not malicious, they are very popular
within blocklists because of their annoying behavior. However, ads blocklist usually
are used to block phishing sites as well.

e Spam: A spam site is a website whose primary purpose is the widespread of un-
wanted content. The content may or may not be malicious; however, it is generally
accepted that spam sites suggest malicious resources. To illustrate this point, con-
sider a website that automatically sends fake promotions, which then redirect users
to malicious web pages.

e Scam: Scam sites are designed to deceive the user by forcing them to provide per-
sonal or perform unwanted actions. For instance, Scam site may mimics legitimate
site to obtain user’s trust and force him to send money, personal data, or other type
of sensitive information.

e Ransomware:Ransomware attacks involve the encryption of a device’s resources by
a virus, and the subsequent demand for a ransom to unlock them. A ransomware
website hosts a specific virus that renders the victim’s resources inaccessible until
a sum of money is paid to the attacker.

e Phishing: Similar to scam, they deceive the user. The difference between phishing
and scam is the utilize of social engineering methods to deceive the victim. Usually,
phishing attacks start with an targeted email containing a link that redirects the
receiver to a malicious server. In contrast, scam sites do not involve direct action by
the attacker against the user, such as sending an email. Rather, they are malicious
sites that deceive the user into believing they are legitimate in order to forward
sensitive information to the attacker.

o Abuse: A list of sites that aim to mislead or deceive users. These sites may spread
false information, or employing deceptive interfaces to deceive the user to taking
unwanted actions

29

4 — Unified Blocklist Dataset

o Malware: A list of sites that host or distribute malicious software. These sites
contain infected files or virus that are downloaded which execution on user’s device
results in a security and privacy compromise.

e Fraud: site created with the purpose to defraud users. Both Scam and Fraud sites
are specifically designed to deceive the user, but Fraud refers to a more generic legal
term.

e Mized: If a blocklist do not specify the kind of malicious threat, it fall in the mixed
type.

The Table 4.1 includes all blocklists used in the job. Next to the owner of each
blocklist is the type of threat that each list blocks. If a blocklist represents multiple
threats, it appears on multiple rows with the corresponding threats.

4.4 Data collection

This section presents the technical details for recovering blocklist data. To facilitate
the reader, any subsection presents and explains a different part of the workflow. At a
high level, the workflow for recovering blocklist data can be summarized as follows: first,
we identify all relevant commits for each blocklist repository, extracting their unique
identifiers and dates. Next, using these identifiers, we download all versions of the files of
interest, storing them locally to ensure both computational efficiency and backup safety.
Finally, we process and combine all downloaded file by extracting all the relevant domains
to construct a reliable dataset, the Unified Blocklist Dataset.

STEP 1: Recovering of the useful sha’s commits

API services of GitHub allow the programmer to recover all the commits and the sha
associated between two dates. However, GitHub imposes a call limit for unauthenticated
users. For this reason, the following code contains a token used to identify the require
during the entire process.

Other information that the require must know to complete this phase is as follows:

e Name of the repository owner.
e Name of the repository.

e Path of the file. The simplest method to obtain the path of the file is to extract it
from URL of the most recent version that appears in the repository.

The Script 4.1 aims to recover all the commits between two date by providing all
the necessary elements. If the communication was successful and there are commits for
that period, the commit’s identifier (sha) and date are extracted from the details of each
commit. Finally, everything is returned to the calling function.

30

4.4 — Data collection

Owner Type Citation
blocklistproject-abuse abuse 6]
blocklistproject-ads ads [7]
nocoin-adblock-list ads [50]
blocklistproject-crypto crypto 8]
blocklistproject-fraud fraud [9]
blocklist-malware malware [4]
blocklistproject-malware malware [10]
iam-py-test malware [35]
kitsapcreator-malware malware [41]
rpiList-malware malware [57]
tweet-feed-today malware [70]
blocklist-phishing phishing [5]
chainapsis-phishing-block-list phishing [18]
eth-phishing-detect phishing [26]
null-host-bad-domains phishing [51]
phishfort-domains phishing [53]
rpilist-phishing-angriffe phishing [58]
tweet-feed-today phishing [70]
blocklistproject-redirect redirect [12]
blocklistproject-ransomware ransomware | [11]
tweet-feed-today ransomware | [70]
antiscam-squad-cypto-scam scam 2]
discord-antiscam scam [22]
durablenapkin-scamblocklist scam [25]
global-anti-scam-org-scam-urls scam [30]
global-anti-scam-org-scam-urls-pihole | scam [31]
blocklistproject-scam scam [13]
soteria scam [64]
tweet-feed-today scam [70]
kitsapcreator-spam mixed [42]
referer-spam spam [56]
search-engine-spam spam [60]
spam__ 404 spam [65]
thiojoe-spamdomainslist spam [68]
azorult-tracker mixed (3]
cert-pl-domains mixed [17]
foxwallet-domains mixed [28]
inversions-dnsbl-blocklists mixed [37]
kadomains mixed [40]
stevenblack-hosts mixed [66]
tweet-feed-today mixed [70]
ultimate-host-blacklist-0 mixed [71]
ultimate-host-blacklist-1 mixed [72]
ultimate-host-blacklist-2 mixed [73]
ultimate-host-blacklist-3 mixed [74]

Table 4.1. Blocklists

31

4 — Unified Blocklist Dataset

Listing 4.1. Obtaining all commits between two dates.

def get_commits_between_dates(start_date, end_date, repo_owner,
repo_name, filepath):

url = f
headers

commits = []
page = 1

]
~
H
()

while True:
params = {
start_date,
end_date,

filepath,
page,
100,
X
response = requests.get(url, headers=headers, params=params
)
if response.status_code != 200:
break
data = response. json()

if not data:
break

for commit in data:
commit_date = commit[1L 1L]
commit_sha = commit []
commits.append ((commit_sha, commit_date))

page += 1
commits = list(set(commits))

if len(commits) > O:
commits.sort(key=lambda x: x[1])

return commits

STEP 2: Recovering all the versions of the file

Now we have all the elements to recover all the previous versions of the file. Even if the
goal of this part is to generate a Unified Blocklist Dataset which contains all the input
derived from all the selected blocklists. The code immediately saves the blocklist’s file
for two reasons:

32

4.4 — Data collection

e the operations performed are computationally heavy. For security reasons, saving
the file before operating on it guarantees a form of backup.

e by atomizing the operations, it is possible to operate in parallel to optimize the
work.

The Script 4.2 demonstrates how to construct a URL that directly points to the raw
version of a file. This version is typically a .txt file, ready for download.

Listing 4.2. Downloanding files given its commits.

def download_file_from_commit (
commit_sha, file_path, save_directory, filename, repo_owner,
repo_name

):
url = f
headers = {
f)
}
response = requests.get(url, headers=headers)
if response.status_code == 200:
save_path = save_directory + filename
with open(save_path, , encoding=) as file:
file.write(response.text)
else:
print (f)

return response.status_code

STEP 3: Create a database by combing all the files

Finally, after downloading the files, it is possible to combine all the information to con-
struct a reliable dataset to be used for the next steps. The function find_url_in_line()
takes as input a line and searches through a regex if there is a domain. This function
avoids storing unnecessary lines, such as comments, or explanations found in blocklists.
N.B: The Script 4.3 uses the same terminology imposed by Pimcity. Therefore, the term
URL stands for domain.

Listing 4.3. Inserting domains from a blocklist in Unified Blocklist Dataset.

def insert_in_unifiedBlocklistDataset(filepath, type, date, source)

output_lines = []
with open(filepath, , encoding=) as infile:
lines = infile.readlines ()
for line in 1lines:
url = find_url_in_line(line)
if url is not None:
output_lines.append(
£

33

10

11

12

13

4 — Unified Blocklist Dataset

with open(R , encoding=
) as outfile:
for 1 in output_lines:
outfile.write(l)

4.5 Data exploration

Data exploration represents the first step in understanding of the new dataset called
Unified Blocklist Dataset. Through a preliminary analysis of the variables and their
relationships, it is possible to identify patterns, anomalies, and useful insights to guide
the subsequent stages of modeling.

4.5.1 Initial presentation

The dataset is composed of the data recovered from 43 blocklists, for a total of 4,904,484
distinct domains and 365,619,022 rows. Each line consists of the following characteristics:

e URL: In accordance with the terminology already used in Pimcity, we refer to any
domain stored in the dataset under the column URL.

e Source: Is the blocklist’s name that has reported the domain.
e Date: The date of the report.

e Type: The type of threat that the domain represents

4.5.2 Blocklist coverage period

The first characteristic to consider is that the period covered by each list is not uniform.
Every blocklist belongs to different projects that start or end at different times. To better
analyze this condition, the Table 4.2 is presented showing all periods covered by each list.
It is worth noting that, although some of the tables do not cover the entire Pimcity data
acquisition period, by integration of several projects, we have sufficient information to
label any access of the database.

4.5.3 Update of the blocklists

It principally depends on the blocklists’ administrator, but it plays a key role in under-
standing how fast the blocklist is in the case of the discovery of a new malicious site. In
Unified Blocklist Dataset the update times of each blocklist are shown in Table 4.3:

N.B: The Average update was calculated by dividing the number of updates in each
list by the number of the coverage period. The closer the value is to 1, the more the list
is updated (1 means that the list was updated every day). It is evident that no blocklists
were updated more than one time per day.

34

4.5 — Data exploration

Blocklist Start Date | End Date |Period (Days)
antiscam-squad-cypto-scam 2022-10-20 | 2022-11-13 25
azorult-tracker 2022-05-06 |2022-11-01 180
blackbook-Stamparm 2022-05-06 | 2022-11-06 185
blocklist-malware 2022-05-15 | 2022-09-27 136
blocklistproject-abuse 2022-05-15 | 2022-09-27 136
blocklistproject-ads 2022-05-15 | 2022-09-27 136
blocklistproject-crypto 2022-05-15 | 2022-09-27 136
blocklistproject-fraud 2022-05-15 | 2022-09-27 136
blocklistproject-malware 2022-05-15 | 2022-09-27 136
blocklistproject-phishing 2022-05-15 | 2022-09-27 136
blocklistproject-redirect 2022-05-15 | 2022-09-27 136
blocklistproject-ransomware 2022-05-15 | 2022-09-27 136
blocklistproject-scam 2022-05-15 | 2022-09-27 136
chainapsis-phishing-block-list 2022-07-01 | 2022-11-12 135
cert-pl-domains 2022-05-06 |2022-11-13 192
discord-antiscam 2022-05-06 |2022-11-13 192
durablenapkin-scamblocklist 2022-05-07 |2022-11-13 191
eth-phishing-detect 2022-05-08 | 2022-11-11 188
foxwallet-domains 2022-08-18 | 2022-09-07 21
iam-py-test 2022-05-07 | 2022-11-13 191
inversions-dnsbl-blocklists 2022-05-06 |2022-11-13 192
kadomains 2022-05-06 |2022-11-13 192
kitsapcreator-malware 2022-05-15 | 2022-09-25 134
kitsapcreator-spam 2022-05-15 | 2022-09-25 134
nocoin-adblock-list 2022-05-31 | 2022-09-06 99
null-host-bad-domains 2022-10-16 |2022-11-13 29
phishfort-domains 2022-05-06 | 2022-11-13 192
referer-spam 2022-05-07 | 2022-10-27 174
rpiList-malware 2022-05-11 | 2022-11-13 187
rpilist-phishing-angriffe 2022-07-28 | 2022-11-13 109
search-engine-spam 2022-05-09 | 2022-11-09 185
soteria 2022-05-07 | 2022-11-12 190
spam__404 2022-05-29 | 2022-10-31 156
stevenblack-hosts 2022-05-11 | 2022-11-13 187
thiojoe-spamdomainslist 2022-05-31 | 2022-11-06 160
tweet-feed-today 2022-05-06 |2022-11-13 192
ultimate-host-blacklist-0 2022-05-06 |2022-11-13 192
ultimate-host-blacklist-1 2022-05-06 |2022-11-13 192
ultimate-host-blacklist-2 2022-05-06 |2022-11-13 192
ultimate-host-blacklist-3 2022-05-06 |2022-11-13 192
global-anti-scam-org-scam-urls 2022-05-07 | 2022-11-13 191
global-anti-scam-org-scam-urls-pihole | 2022-11-13 | 2022-11-13 1

Table 4.2.

Time coverage per list

35

4 — Unified Blocklist Dataset

Table 4.3. Update frequency of each blocklist

Source

Average update frequency (days)

antiscam-squad-cypto-scam
azorult-tracker
blackbook-Stamparm
blocklist-malware
blocklist-phishing
blocklistproject-abuse
blocklistproject-ads
blocklistproject-crypto
blocklistproject-fraud
blocklistproject-malware
blocklistproject-phishing
blocklistproject-ransomware
blocklistproject-redirect
blocklistproject-scam
cert-pl-domains
chainapsis-phishing-block-list
discord-antiscam
durablenapkin-scamblocklist
eth-phishing-detect
foxwallet-domains
global-anti-scam-org-scam-urls
global-anti-scam-org-scam-urls-pihole
iam-py-test
inversions-dnsbl-blocklists
kadomains
kitsapcreator-malware
kitsapcreator-spam
nocoin-adblock-list
null-host-bad-domains
phishfort-domains
referer-spam
rpiList-malware
rpilist-phishing-angriffe
search-engine-spam

soteria

spam__404
stevenblack-hosts
thiojoe-spamdomainslist
tweet-feed-today
ultimate-host-blacklist-0
ultimate-host-blacklist-1
ultimate-host-blacklist-2
ultimate-host-blacklist-3

1.0
0.15
0.21
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
1.0
0.24
0.98
0.87
0.7
0.14
0.67
1.0
0.57
0.97
1.0
0.04
0.04
0.09
0.55
1.0
0.13
0.65
0.78
0.11
0.03
0.01
0.43
0.24
0.98
1.0
1.0
1.0
1.0

36

4.5 — Data exploration

4.5.4 Number of reported domains

Finally, the number of reported domains is crucial to define a blocklist as reliable or
not. If a blocklist contains only a small number of domains, users could be exposed
to malicious websites. On the other hand, if the list flags even potentially suspicious
domains as malicious, it risks blocking legitimate sites and unnecessarily restricting user
access. The Table 4.1 shows the number of domains listed in each blocklist divided by
the number of days covered by the list.

Daily Average of Domains

8000

7000

6000 A

%))
(=]
[=]
[=]

Daily average
8
8

W
(=]
[=]
o

2000 A

1000 4

Blocklists

Figure 4.1. Bar chart of the daily average number of domains per blocklist (without names).

4.5.5 Domain identification by threat type

In the end to better understand the composition of Unified Blocklist Dataset we summa-
rize the number of reported domains per their type.

The results 4.2 highlight that the majority of domains fall under the mized and mal-
ware categories, together accounting for the largest share of the dataset. Phishing do-
mains also represent a significant portion, followed by abuse and spam. Other categories
such as fraud, ads, redirect, and scam contribute less but are still relevant for identify-
ing specific attack vectors. Finally, categories like crypto and ransomware appear less
frequent, but remain important due to the potential impact of these threats.

This classification provides a first overview of the threat landscape in the dataset and
helps to prioritize the analysis of the most prevalent and dangerous categories.

N.B: The type depends on the nature of the list. If the same domain is contained in
more lists with different type, the domain falls under different types too.

37

4 — Unified Blocklist Dataset

Domain classification by type

mixed

malware

phishing

abuse

Type

redirect

scam

crypto

ransomware

I T T T T T T T T
0.00 0.25 0.50 0.75 1.00 125 1.50 175 2.00
Number of Domains le6

Figure 4.2. Domain classification by type of threat.

4.6 Data labeling

In the context of the evaluation of the classifier models, the choice of the metodology to
label the accesses plays a key role. The labeling phase represents the objective reference
with which the model compares the predicted results and calculates metrics such as
precision, recall, and the Fl-score. This leads to a correlation between labeling and model
reliability. In particular, if the labeled accesses are wrongly classified, the model will use
those data to calibrate its parameters and provide similar and inaccurate results. To
choose the labeling methodology as accurate and reliable as possible, we explore different
solutions.

4.6.1 Initial data labeling approach

The first approach consists of a preliminary analysis of the Unified Blocklist Dataset. A
domain is considered malicious if it is reported by at least one blocklist on the same date
that the user accesses it. At first glance, the number of exposures (accesses classified
as malicious) is remarkably high, nearly 15.99% of all accesses are flagged as malicious.
When distinguishing between direct and indirect accesses, 7.60% of direct accesses and
16.11% of indirect accesses are reported by at least one blocklist. This high proportion
is primarily due to the use of domains as the unit of classification. It is worth noting
that each domain is correlated with numerous URLs, some of which may be malicious and
others not. Blocklists may label an entire domain as malicious based on a single suspected
resource. This aggregation does not reflect normal web patterns. Different studies express
a significantly lower number of malicious domains. For example, [67] confirms that the
number of unique domains blocked by the company for malicious activity is 1.6% in

38

4.6 — Data labeling

2023. While for third-parties additional resources, the study [36] labels only 1.2% of
them as suspected of malicious activities. Both cases demonstrate an overestimation of
the malicious domains. For this reason, we cannot consider this first approach useful to
perform a valid and accurate labeling of the accesses.

4.6.2 Data labeling strategies

To establish the best approach to label the accesses, we considered two principal char-
acteristics of domains. On the one hand, we have maliciousness that is the number of
blocklists that have reported the domain. This feature is self-explanatory in terms of
its importance for correctly determining whether a domain is malicious or not. On the
other hand, we have the popularity of the domain. This characteristic is expressed in two
terms: the number of visits and the number of different users who have access to it. In
general, several studies have explored the idea of considering the popularity of a domain
to establish if it may be considered malicious or not. For instance, Hu et al. [34] classifiers
evaluated based on popularity and performance data to detect malicious and phishing
domains. This relationship is further supported by [33,75], who highlight owners of pop-
ular websites are more likely to employ robust and different security countermeasures to
ensure high up-time, as increased traffic typically translates into higher revenue. Con-
sequently, the adoption of these security systems establish a strong correlation between
popularity in domains and its likelihood of being non-malicious. The goal of this section
is to determine two cutoff values: one for the popularity and one for the maliciousness,
which allow us to select a reliable labeling methodology for use in the subsequent steps
of our work.

The Figure 4.3 shows every reported domain in three dimensions: number of distinct
users who visited it (X axis), number of blocklist that reported it (Y axis) and number
of visits (marker size).

Domains distribution: Popularity vs Maliciousness

Tot reports

10

8
-

e @

o « N
l).(.’ ® ® .

Tot reports

@ - 2

0 50 100 150 200 250 300 350

Tot Users

Figure 4.3. Popularity and Maliciousness of every reported domain

39

4 — Unified Blocklist Dataset

Given this image, it is possible to ideally divide it into four different sections:

Top right:The section includes popular domains reported by many blocklists. Due
to their popularity, they are unlikely to be truly malicious. Examples of domains
contained in this section are google.analytics or static.doubleclick.net.

e Top left: All domains in this section are reported by many blocklists and are un-
popular. Theoretically, there is a high probability that they are malicious since
they satisfy both the constraints of popularity and maliciousness.

e Bottom right: This section is a gray zone, since the domains respect the popularity
constraint, but they are rarely reported.

e Bottom left: This section includes all domains that we can consider misclassified as
malicious. They do not respect popularity constraint, and they are reported by a
few blocklists.

Since the domains in the top left section of the image are the better candidates, we
have to isolate them.

Maliciousness Threshold

Trend of metric 'Total reports' across sorted URLs

Total reports=1
12

10|

Total reports

=°

2k 4k 6k 8k 10k 12k
URLs

Figure 4.4. Ordered domains per number of reports (threshold between 1 and 2 reports).

The Figure 4.4 shows all domains, sorted by the number of blocklists that report
them. Most of domains — 6,791 on 12,234 (55.51%)— have only one report. Although
setting a threshold of at least two reports, causes a significant number of domains to be
discarded, this step is necessary to ensure a more reliable labeling. By requiring multiple
independent reports, we reduce the risk of including misclassified domains and focus on
those that are more consistently recognized as suspicious.

40

4.6 — Data labeling

Popularity Threshold

The Figure 4.5 below are shown the domains sorted by popularity (in terms of distinct
users).

Trend of metric "Total users' across sorted URLs

400 Total users=34.5

Total users

URLs

Figure 4.5. Ordered domains per number of distinct users who made access
(threshold on 10% of total users).

Following the approach of the study conducted by Burton et al. [15], we can address
the problem of discarding misclassified domains given popularity metrics. Similarly to
the static method proposed in the paper, we consider the elbow of the curve as an eligible
threshold. By approximating the threshold value at 10% of the total number of users,
we can discard all the domains visited by more than that value. This filter discards only
1,216 on 12,234 domains, — almost 9.9% —, allowing us to filter out all popular and
well-known domains.

4.6.3 Results and Statistics

In addition to the implementation of filters, we focus on the direct accesses represented
by the Pimcity-mainframe dataset. This approach allows us to avoid the issue of indirect
traffic by focusing solely on direct domain accesses for classification purposes. Finally,
this additional precaution would further reduce the residual error, allowing us to work
even more carefully on the data we have available. In light of the aforementioned consid-
erations, after the application of the filter and the exclusive use of Pimcity-mainframe,
the number of reported malicious accesses amounts to 382 distinct domains, constituting
0.74% of the total unique domains (50,976) registered with Pimcity-mainframe. Even if
the percentage is lightly minor, the selection is in accordance with the behavior recorded
by [67]. Since both thresholds are fixed, this selection cannot be considered valid in ab-
solute sense. In particular, we selected a subset of domains which, although they would
be classified as malicious with respect to our metrics, do not necessarily represent all of
the threats in the entire Pimcity dataset. However, the Figure 4.6 shows in terms of

41

4 — Unified Blocklist Dataset

popularity and maliciousness the position of every reported domain. The visualization
serves as practical tool for analyzing patterns in domain-level threats and supports the
labeling of the accesses for subsequent classification tasks.

Domains distribution: Popularity vs Maliciousness

Tot reports
8
8

n 6 ®
5
3 : 6
o
g . ° . ®
. o - . .- e ® © @

2 . L ® . . Y . 4

0 2

0 5 10 15 20 25 30 35

Tot Users

Figure 4.6. Maliciousness vs popularity after filters application

42

Chapter 5

Feature selection

It is understood that features represent all the characteristics that the classification model
must take into account to determine whether an observed access is malicious or not. For
feature selection, we mean the process of selecting, from among the possible features,
those that we considered most important and explanatory for the model in function of
the classification. We organized the features into four main groups: popularity features,
which capture the web popularity of the domain; structural and lexical features, which
reflect specific characteristics of the domain; categorical features, which describe the
thematic area of the domain; and behavioral features, which are directly related to the
individual user’s browsing behavior.

5.1 Popularity features

We have already discussed the evidence showing that a domain’s popularity and the
likelihood of it being malicious are inversely proportional 4.6.2. Consequently, the first
two features aim to materialize this idea by measuring two metrics: one capturing local
popularity, that is, within the Pimcity dataset, and the other capturing global popularity,
taking into account the domain’s popularity on the Internet.

o Traffic (10 bins): Firstly, domains are sorted according to the number of users
accessing them. Then, the dataset is divided into ten different groups based on this
order. Finally, each domain is assigned to the group to which it belongs.

e PageRank: PageRank is an algorithmic analysis tool developed by Google to rank
websites based on the quality and quantity of their hyperlinks. We obtain the
PageRank value using the API system provided by OpenPageRank [23]. Each
domain that belongs to the top 10 million most popular domains is valued with a
decimal score ranging from 0.0 to 10.0. Domains out of top 10 million are instead
assigned a default value of 0.0.

43

5 — Feature selection

5.2 Structural and lexical features

The initial features employed for training the model are based on the domain’s structure.
Numerous studies have demonstrated the enhanced classification value these features can
offer [1,20,45,55,82]. Consequently, despite their non-strict relevance to user behavior,
we have selected three features.

o Domain level: A subdomain is the extension of a domain created to organize or iden-
tify specific services. For instance, in mail.google.com, "mail” is a subdomain of
google.com. The domain level corresponds to the number of subdomains present in
the domain in according to the number of dots used to separate all the subdomains.
In mail.google.com are presents 3 dots, then it is a level-3 domain. According to
article [20] legitimate domains tend to have 2 or 3, sub-levels. Domains with many
sub-levels are often considered suspicious. This feature is taken into account in
other articles dealing with the classification of malicious domains [45, 55].

e Shannon entropy: To bypass blocklists, many malicious domains are generated
automatically using a Domain Generation Algorithm (DGA), which produces a
large number of new domains. These domains often exhibit complex and seemingly
random structures.

One way to detect such domains is by using Shannon entropy, a mathematical
measure of the degree of randomness or disorder in a string, defined as follows. For
a domain name with characters from an alphabet A, Shannon entropy is defined
as:

H(X) =~ p(x)log,p(x)
€A

Where p(x) is the ratio between the number of occurrences of character x in the
string’s length of the string. Finally, we add up all the probabilities of each letter to
define the value of the Shannon entropy of the entire domain. The underlying idea is
that a domain with high Shannon entropy is more likely to have been automatically
generated by a DGA for malicious purposes.

o Levenshtein distance: Another method used by attackers to deceive the victim is
the cybersquatting. Cybersquatting is the process of creation of a malicious domain
by making a small change on a popular and legitimate one. To better illustrate
this definition a malicious domain may be generated by changing the letter L in
netflix.comin the letter I (netiix.com). Finally, the attacker may send a phishing
email to the user with a link to the malicious netiix.com that is managed by the
attacker. Although both the domain level and Shannon entropy provide a measure
of the complexity of the domain’s structure, the Levenshtein distance measures the
grade of similarity between two strings. For two strings a and b, the Levenshtein

44

5.3 — Categorical features

distance d(a,b) can be formally defined as:

|b], if |a| =0,
|al, if |b] =0,
d(a,b) = d(tail(a), tail(b)), if head(a) = head(b),
d(a, tail(b)),
1 + min ¢ d(tail(a),b), , otherwise.
d(tail(a), tail(b))

where head is the first character of the string, tail is the string but the first character,
and the absolute value of a string is its length. In other words, the Levenshtein
distance corresponds to the minimum number of insertions, replacements, deletions
to obtain the string b given the string a. The Levenshtein distance is measured
between each access and all domains with a PageRank value greater than 6. cutoff
value of 6 was chosen taking into account taking into account the computational
effort required to calculate this metric. Finally, the minimum Levenshtein distance
is taken into account as a feature to detect possible cybersquatted domain.

5.3 Categorical features

To better understand the behavior and interests of a user, and establish if a new access
is concordant with the user’s navigational patterns, we need to classify any domain for
the thematic area that the web page belongs to. On the basis of [38] we use the classifier
provided by Google Topics API [32], which has been used in the advertising sector to
identify user interests across website topics [76].

In particular, the classifier takes as input the domain of a visited website and, based
on its lexical structure (i.e. the words contained in the domain), assigns it one to three
topics from a predefined hierarchical taxonomy [24], along with a confidence score for
each classification.

The taxonomy is organized into main categories and derived subcategories, allowing
the model to capture both general and specific user interests.

For instance, a site about cars may be classified under the main topic /Autos &
Vehicles, or under a sub-topic like /Autos & Vehicles/Classic Vehicles that better
describes the site. Nevertheless, in order to reduce the number of potential topics, we
take in consideration exclusively the primary topics,and we ignore the remaining ones.

Basically, after the classification procedure, up to three main categories and their
confidence values are associated with each domain.

5.4 Behavioral features

In order to provide further clarification regarding the selection of behavioral features, it
is essential to revisit the specific goals of our classification model. The primary objective
of this thesis is to demonstrate the feasibility of predicting malicious accesses through the

45

5 — Feature selection

analysis of a series of previous accesses. To this end, we introduce the concept of session,
defined as a period of web activity that is followed and preceded by a minimum of 20
minutes of inactivity. It is important to note that user behavior differs depending on the
activity [52]. For example, sending an e-mail is characterized by highly targeted behavior
in terms of the accessed sites, in contrast to web research, which is exploratory. The
concept of a session enables us to circumvent the distinction between potential behaviors,
given that the period during which we want to extract features is not fixed and may vary
in number. Finally, we selected five primary features to characterize each session. Each
feature was computed using only the accesses preceding the current one, ensuring that
the classification can be performed in real time.

o Session depth: number of accesses executed by the user (until access).

o Session depth (distinct domains): number of distinct domains in the session (until
access).

o Session time: duration of the session (until access).

e New domain in session: binary feature that indicates if the user has already accessed
the domain during the current session.

o Hour (4 bins): The day is divided into four periods (morning 6—11, afternoon
12—17, evening 18—21, night 22—75), and this feature stores, as a vector, which
period the domain was accessed.

Nevertheless, the concept of a session could prove to be a limitation in the pursuit of
our objectives. In the event that our goal is to detect malicious sessions by comparing
information with previous sessions, the classifier may not predict abnormal behavior in
the case of session begins as malicious or suspicious. For example first access of the session
was caused by a click of the user on a phishing link sent by an attacker. Consequently,
certain features are designed to encompass not only the current session, but also memory
for up to 100 previous access, independently of the session. We assume that over 100
accesses, the behavior is not more useful to establish if the next access will be malicious
or not.

In conclusion, the following features are also extracted from the knowledge of the
session at the time of access.

e Count wvisits: The feature is calculated by counting how many times the domain
you want to access appears in the previous 100 accesses

e Coherency index: The feature combines the concept of category and previous ac-
cesses by calculating the number of times the category of the site the user wants
to access appears in the previous 100 accesses. Only the category with the highest
confidence of each access is taken into account for the calculation.

Finally, we also took into account descriptive features that may be useful for the model
to capture temporal patterns or network delays caused by low-quality services, typical of
malicious domain.

e Howur: hour of access

46

5.4 — Behavioral features

o Weekend: binary features that highlights the accesses that occurs during the week-
end

o Difference from the previous access: measure of the temporal difference from the
current access and the previous one

47

Chapter 6

Models and evaluation metrics

The purpose of this chapter is to illustrate the choice, development and results of dif-
ferent classification models. For our convenience, we have decided to divide the possible
classification models into two groups according to their unit of classification. The first
set comprehends the non-sequential models. They receive as input a set of features (cor-
responding to the features extracted from each individual access) and, based on the
comparison and values of the features, they find recurring patterns that can predict a
classification. The term "non-sequential” is due to the fact that they do not consider or-
dered set of accesses as a whole, but only one access that is classified through comparison
with other accesses taken randomly from the dataset.

Sequential models, on the other hand, tend to classify accesses by considering entire
ordered set of accesses. The literature shows that of all the models, LSTMs are the most
suitable for the task. They consider a sequence of accesses and attempt to classify the last
access, not only by analyzing its features, but also by taking into account the features of
previous accesses, relating the entire sequence to other sequences. It is worth noting that
the selected features, and in particular the behavioral ones, already contain information
about session or about the 100 previous access. Therefore, whether it is a sequential
model or a non-sequential model, both represent a valid choice to establish whether a
malicious access can be expected given a sequence of user accesses.

6.1 Non - sequential models

The literature shows how these models have been used to estimate a user’s risk of accessing
malicious sites [16]. The substantial difference between our work and that proposed by
the cited paper is the granularity of the classification, i.e. the ability of the model to
predict the individual access and not only the overall risk dictated by the user’s behavior.

Hlustrated by several studies [36,67], and also found in our dataset, the concept
of malicious access is comparable to a rare event with respect to the total number of
benevolent accesses. It follows that the class of benevolent accesses is disproportionately
large compared to the class of malicious accesses. A classifier that takes the entire dataset
as input could be subject to the problem of class imbalance, in other words, it could
happen that during testing, it would label all accesses as benign and still achieve a high

48

6.1 — Non - sequential models

degree of accuracy. The adoption of algorithms such as SMOTE, which artificially insert
elements of the minority class to re-balance the dataset, could alter the information
related to the real behavior of the user. Our solution is therefore to force an unbalance
ratio between the malevolent and benevolent classes. The unbalance ratio (UR) can be
formally defined as:

UR = Nbegm'n

Nmalicious

where Npenign represents the number of benign accesses and Nyqiicious the number
of malicious accesses in the dataset. In other words, it indicates that for each malicious
access, U R benevolent accesses are taken. Finally, in order to ensure a clear separation
between classes, the training class is composed of the 80% of users to which the selected
accesses belong, while the test class is composed of the remaining 20%.

We decided to focus our efforts on two classification models: Random Forest and
Multilayer Perceptron (MLP).

6.1.1 Random Forest Classifier

The Random Forest Classifier is a learning model based on multiple distinct decision
trees. It works by combining multiple decision trees to improve predictive performance
and reduce overfitting. The main functioning can be summarized as follows.

1. Bootstrap Aggregating (Bagging): N decision trees are created on random samples
with replacement (bootstrap) from the training dataset.

2. Random Feature Selection: during the construction of each tree, a random subset
of features is considered at each split, increasing diversity among the trees.

3. Voting: for classification, each tree casts its vote for the class of the observation,
and the final class is chosen by majority voting.

4. Handling Class Imbalance: using the hyperparameter class_weight="balanced",
the model automatically weights classes according to their frequency in the dataset.

Hyperparameters

Table 6.1.1 summarizes the main hyperparameter used.

Hyperparameter Value Description

n_estimators 100 Number of trees in the forest
random_state RANDOM_STATE Seed for reproducibility
class_weight "balanced" Automatic class weighting

Table 6.1. Hyperparameters of the Random Forest Classifier

49

6 — Models and evaluation metrics

6.1.2 Multilayer perceptron (MLP)

The Multi-Layer Perceptron (MLP) is a feedforward neural network composed of multiple
fully-connected layers. Hyperparameter are summarized in Table 6.1.2

1. Input Layer: accepts a feature vector of size X _train.shape[l].
2. Hidden Layers:
e First hidden layer: 256 neurons, ReLU activation, followed by BatchNormalization
and Dropout with a rate of 0.3.
e Second hidden layer: 64 neurons, ReLU activation, followed by BatchNormalization

and Dropout with a rate of 0.2.

3. Output Layer: 1 neuron with sigmoid activation, suitable for binary classification
tasks.

4. Model Compilation: the model is trained by minimizing binary_crossentropy,
using the Adam optimizer with a learning rate of 1 x 1073, and monitoring the
accuracy metric.

Hyperparameters

Hyperparameter Value Description

layers [256, 64, 1] Number of neurons per layer
activations ["relu", "relu", "sigmoid"] Activation functions for each layer
dropout_rates (0.3, 0.2] Dropout rate for regularization
batch_normalization True Batch normalization to stabilize training
loss "binary__crossentropy" Loss function

optimizer Adam Optimizer with learning rate le — 3
metrics ["accuracy’] Metrics monitored during training

Table 6.2. Hyperparameters of the MLP model

6.2 Sequential Model

The analysis of the behavior requires the ability of the model to take in consideration
not the single event, but also the ordered sequence of preceding event. Many academic
works [39,49, 63, 81], probe that LSTM is a valide choice, since that it receives as input
a sequence of events and try to predict the class of the last one. In this case, the unit to
take into account for the classification is not the single access (even if the model classify
only the last access of the sequence), but the entire sequence of access. For a first try,
we select 20 accesses, considering it as a good tradeoff between a limited number of

50

6.2 — Sequential Model

accesses which do not provide enough information about the context and consequently
of the behavior; and a larger set of accesses that could have led the model to accentuate
the correlation of features occurring at a high temporal distance from current access.
Finally, we define a malicious sequence as any sequence that ends with a malicious access.
Conversely, a benign sequence corresponds to any sequence of twenty accesses that ends
with a legitimate one. Since any sequence is composed of twenty accesses, to avoid
overfitting, we chose not to intersect the sequences.

For LSTM, the balance problem is further aggravated since the input unit is not a
single access, but a sequence of 20 accesses.

Distribution of Users by Number of Malicious Sequences
111 (82.8%)

100

80

60 1

Number of Users

40 4

204

10 (7.5%)
6 (4.5%)
3(2.2%) 2 (1.5%) 2 (1.5%)

T : T ; T ;
0-30 31-60 61-90 91-120 121-150 >150
Number of Sequences

Figure 6.1. Distribution of users by number of malicious sequences.

As shown in the Figure 6.1, many of the malicious accesses (and consequently se-
quences) are executed by a minority of the total users. If these users were selected for the
test phase, the model would lose much of the information needed for proper training. We
therefore define N as the number of sequences to be extracted from the histories of each
user. If a user has less than N sequences of a given class, then the maximum number of
available sequences closest to N will be extracted. This system allows us to consider many
users and once we perform an 80/20 split on the users, it ensures that the training and
test classes have enough sequences. Finally, we train the model on the accesses performed
by the 80% of the users and test it on the remaining 20% user base’s accesses.

6.2.1 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) are a kind of Recurrent Neural Network (RNN) spe-
cialized to address the vanishing gradient problem. Recurrent Neural Networks (RNNs)
use a loss function to quantify the error, or the difference between the classification of the
network and the ground truth. Subsequently, the gradient of the loss with respect to the

51

6 — Models and evaluation metrics

weights of the RNN is calculated, which is then backpropagated to update the weights
and reduce the error in future iterations. As the gradient is the product of several deriva-
tions, it is possible for the gradient to take on extremely small values if the influence of a
weight on the loss is negligible. In this cases, the weights do not change, and the network
is subject to difficulties in learning long-term dependencies. Long Short-Term Memory
(LSTM) address the problem by introducing memory cells that facilitate the flow of the
gradient over time, preventing it from becoming too small even after multiple time steps.
Table 6.2.1 summarizes the parameters.

Sequential(): Creates a linear stack of layers for the model.

Input (shape=(sequence_length, input_shape)): Specifies the input shape of
the sequences, where sequence_length is the number of timesteps and input_shape
is the number of features per timestep.

Masking(mask_value=0.0): Skips timesteps that are entirely zeros, useful for
variable-length sequences.

LSTM(100): Adds an LSTM layer with 100 units to capture temporal dependencies
in the data.

Dense(1l, activation="sigmoid"): Adds an output layer with 1 neuron and sig-
moid activation for binary classification.

compile(): Configures the learning process with binary_crossentropy loss, Adam
optimizer with learning rate le — 3, and monitors accuracy during training.

Hyperparameters

Hyperparameter Value Description

sequence_length variable Length of input sequences

input_shape variable Number of features per timestep
mask_value 0.0 Value to ignore for variable-length sequences
LSTM_units 100 Number of LSTM units in the cell

loss "binary_ crossentropy" Loss function

optimizer Adam Optimizer with learning rate le — 3
metrics ["accuracy"] Metrics monitored during training

6.3

Table 6.3. Hyperparameters of the LSTM model

Evaluation Metrics

To evaluate the effectiveness of a classification model, several metrics are used based on
four fundamental variables:

52

6.3 — Evaluation Metrics

o True Positive (TP): the number of elements correctly classified as belonging to the
positive class.

o Fualse Positive (FP): the number of elements incorrectly classified as belonging to
the positive class, but actually belonging to the negative class.

o True Negative (TN): the number of elements correctly classified as belonging to the
negative class.

o [Fulse Negative (FN): the number of elements incorrectly classified as belonging to
the negative class, but actually belonging to the positive class.

Usually, counts of true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN) for each class are expressed in an appropriate table known as Confusion
Matriz. It provides a complete view of the comparison between the instances correctly
classified by the model and their true class. A typical confusion matrix for a binary
classification looks like this:

TP FP
FN TN

Each row represents the actual class, while each column represents the predicted class.
Based on these variables, the other crucial metrics are defined:

e Precision: indicates the proportion of instances classified as positive that are actu-
ally positive. It is defined as:
TP

Precision = m

e Recall: measures how many true positive instances the model has recognized in
comparison to the total number of instances that were designed for classification.

TP

Recall = — "+
T TPYEN

e F1-score: is the harmonic mean of precision and recall. It allows a single metric to
summarize the properties of the two metrics.

Fl—o Precision - Recall

" Precision + Recall
o Accuracy: This metric is indicative of the number of instances that have been
correctly classified, in comparison to the total number of instances.

TP+ TN
TP+TN+ FP+FN

Accuracy =
o Support: refers to the number of occurrences of each class in the dataset. It is used
to weight other metrics when computing averages.

These metrics allow the model’s performance to be evaluated from different perspec-
tives, depending on the application context and class distribution.

53

Chapter 7

Results

This chapter presents and discusses the results obtained by the various selected models.
The analysis is based on a unbalanced dataset with a unbalance ratio of 2 and, only for
the LSTM dataset, the number of benign and malicious sequences taken by each user
corresponds to 6.

Firstly, the classification results are presented, with a discussion of the metrics: Pre-
cision, Recall, F1-score, and Support. Next, we analyze the variation of two main factors:
the unbalance ratio, and the variation of the classifier performances in a scenario closer
to a real context. Finally, we compare classifiers and blocklists to study the ability of
classifiers to anticipate the behavior of blocklists.

7.1 Classifier performances

As a first approach, we have evaluated the performances of the three classifiers: Random
Forest, Multi- Layer Perceptron (MLP) e Long Short-Term Memory (LSTM). The metrics
adopted by three evaluation include: Precision, Recall, F'1-Score,and Support. In addition,
for each classifier, its confusion matriz and a summary table are presented. The dataset
used for multi-layer perceptron (MLP) and random forest (RF), consists of 247 unique
users who have made a total of 8550 malicious accesses and 17,100 benign accesses.
Upon implementing an 80/20 split on the user base, the test set comprises 50 users. The
support for the malicious class is found to be 2,407, while the benign class has a support
of 3,118.

The dataset used to train and evaluate LSTM was built using a different approach
to the MLP and Random Forest datasets. For each user, up to six sequences of the
malicious and benign classes are taken. Consequently, if the benign class is larger than
the malicious class by a factor greater than the unbalance ratio of 2, random sequences
of the benign class are eliminated from the dataset to normalize the proportion of the
classes. At the end of the aforementioned operations, we perform an 80/20 split on the
users to guarantee the impossibility of data leakage between the classes. In conclusion,
the LSTM’s dataset includes 1,731 benign sequences. Of these, 1,379 are used to train
the classifier and the remaining 352 are used as the test set. Finally, the test set consists
of 223 benign sequences and 129 malicious ones.

54

7.1 — Classifier performances

Random Forest

Performance is high overall, with good precision values for both classes. The only ex-
ception is represented by recall on the malicious class. The model aims to classify as
benign some accesses who are malicious. This phenomenon suggests that the conditions
to classify an access as malicious are stringent, and the result is an increase of the false
negative class. The Table 7.1 and the Figure 7.1 illustrate, respectively, the performances
and the confusion matrix of RF classifier.

Confusion Matrix

3000
2500
o 43
2000
©
2 1500
&
- 1000
— 783
- 500
1
0 1

Predicted

Figure 7.1. Confusion matrix - Random Forest classifier

Class Precision (%) Recall (%) Fl-score (%) Support
Benign 65.58 98.62 78.78 3118
Malicious 94.86 32.95 48.91 2407

Table 7.1. Classification Report - Random Forest

MLP

MLP obtains balanced and good results in terms of precision and recall for both the
classes, with an overall accuracy of 81.11%. The Table 7.2 and the Figure 7.2 illustrate,
respectively, the performances and the confusion matrix of MLP classifier.

55

7 — Results

Confusion Matrix

2500
o 167
2000
T
=]
g - 1500
- 1000
— - 874
- 500
0 1
Predicted
Figure 7.2. Confusion matrix - MLP classifier
Class Precision Recall Fl-score Support
Benign 77.15% 94.64% 85.01% 3118
Malicious 90.18% 63.69% 74.65% 2407

Table 7.2. Classification Report - MLP classifier

LSTM

Among all classifiers, LSTM shows the best performances for every metric. This is due to
its ability to exploit the sequential nature of the data, confirming the model as particularly
suited for the classification of temporal sequences of accesses. The Table 7.3 and the
Figure 7.3 illustrate, respectively, the performances and the confusion matrix of LSTM
classifier.

Discussion of the preliminary results

In summary, preliminary results indicate that all the classifiers tested are able to identify
and classify malicious accesses, either by considering single accesses (MLP and Random
Forest) or by analyzing sequences of accesses (LSTM).

The first consideration suggests that neural networks, in particular MLP and LSTM,
are particularly suited to this purpose. Moreover, the context of malicious accesses plays
a crucial role: the LSTM classifier, which inherently incorporates information on previous

56

7.2 — Other results

Confusion Matrix
200

175
16

150

125

Actual

- 100

- 75

- 50

-25

Predicted

Figure 7.3. Confusion matrix -LSTM classifier

Class Precision (%) Recall (%) Fl-score (%) Support
Benign 93.95 92.66 93.30 218
Malicious 81.40 84.34 82.84 83

Table 7.3. Classification Report - LSTM classifier

accesses by effectively exploiting the temporal dimension, shows superior performance in
the classification phase compared to MLP and Random Forest. From this first analyses,
it is clear that it is possible to detect malicious access by observing local user behavior.

7.2 Other results

Following the initial results, a further analysis was conducted to explore how the perfor-
mance of the models changes when unbalance ratio or the method of splitting are varied.
The metric utilized to illustrate the trend of performance as these factors change is the
F1-score on the malicious class. Fl-score is a suitable metric due to the fact that it com-
bines both precision and recall in a single measure, thus capturing not only the proportion
of correctly detected malicious instances among those classified as malicious (precision)
but also the proportion of actual malicious instances that are correctly identified (recall).

57

7 — Results

This is of particular importance in unbalanced scenarios, such as the detection of mali-
cious accesses, where a focus on accuracy alone could be misleading due to the dominance
of the benign class.

7.2.1 Unbalance ratio variation

Figure 7.4 shows how an increase in the unbalance ratio corresponds to a performance
degradation for all classifiers. However, the correlation between performance and unbal-
ance ratio was predictable, since an increase in the unbalance ratio corresponds to an
increase in benign accesses, and consequently an unbalanced dataset. In an unbalanced
dataset, in fact, one class (in this case benign accesses) dominates numerically over the
other (malicious accesses). This can lead the model to favor the majority class, reducing
the ability to correctly recognize the minority class. Even in this scenario, the LSTM
classifier proves to be the best-performing model. Although its performance decreases,
it still shows a notable robustness, achieving, in the worst analyzed case, an F1-score on
the malicious class higher than 60%, in contrast to roughly 20% for the RF and MLP
classifiers. It is worth noting that Random Forest classifier demonstrates a drop of the
performances when the unbalance ratio is set to 2. This unanticipated outcome indi-
cates that the dataset generated with this unbalance ratio may present challenges for the
Random Forest in differentiating between malicious and benign accesses.

F1-score Trend

Models
0.9 —e— Random Forest
—a— MLP

08 —e— LSTM

0.7

Fi-score

0.6
0.5

0.4
2 4 6 8 10

Oversampling ratio

Figure 7.4. Unbalance ratio trend

7.2.2 Leave one user out

Another useful approach is what we have called Leave One User Out (LOUO). The
methodology involves training the model on all users except one whose accesses will be
used in the test set. To ensure more robust and generalizable results, the procedure was
repeated for each user in the dataset. In other words, for each user its accesses were

58

7.2 — Other results

tested, while with all the accesses of all other users was in training set of the classifier.
In this way, we ensure that the classes of the model are balanced only in the training
phase, while, in the testing phase, the model is tested on a simulation of random accesses
(or sequences) of a user that could have only benign, only malicious or mixed. This
metric would not only prove that the model is able to predict malicious access through
user behavior, but would also make the model applicable in a context closer to the real
one, in which the number of benigns and malicious accesses is strongly disproportionate.
For each model, the performances obtained by each user were collected. Subsequently,
arithmetic average of the performances was then applied in order to normalize the number
and compare them with the performance obtained with the 80/20 model.

Random Forest

Class Leave One User Out (%) 80/20 Split (%)
Precision Recall Fl-score Precision Recall F1l-score

Malicious 83.33 68.44 71.71 94.86 32.95 48.91

Benign 94.08 98.79 95.60 65.58 98.62 78.78

Table 7.4. Comparison of Random Forest Classification Metrics: Leave
One User Out vs 80/20 Split

The Table 7.4 shows as the Random Forest’s performances improve significantly. This
finding, combined with the study on the variation of unbalance ratio, indicates that the
initial results, which were considered the worst performances between the three model,
are probably caused by a problematic 80/20 splitting method. This approach has been
found to provide inadequate conditions for the model to learn effectively.

MLP

As shown in Table 7.5 show a degradation in performances, specifically the precision of
the malicious class of the model decreases by almost 30 percentage points.

This decline can be explained by the fact that, in the Leave One User Out setting,
the model is trained on a dataset that differs from the context of the test user, making
generalization more challenging. In contrast, using an 80/20 random split ensures that
the training and test sets share a similar distribution, which generally leads to better
performance metrics.

If, in terms of performances, MLP has demonstrated itself as the better choice during
80/20 splitting, the Random Forest classifier is the most suitable in a real-world scenario
where the malicious accesses are sporadic events.

LSTM

As illustrated in Table 7.6, there is a clear decline in performance for the malicious class.
LSTM displays a behavior close to the MLP, especially with a reduction in the recall
value for the malicious class. However, the overall performance remains the best between

59

7 — Results

Class Leave One User Out (%) 80/20 Split (%)
Precision Recall Fl-score Precision Recall F1l-score

Malicious 61.00 60.26 58.02 90.18 63.69 74.65

Benign 92.22 92.67 91.49 77.15 94.64 85.01

Table 7.5. Comparison of MLP Classification Metrics: Leave One User Out vs 80/20 Split

the three models (all metrics above 70%), suggesting that the LSTM remains the most
suitable option for our purpose.

Class Leave One User Out (%) 80/20 Split (%)
Precision Recall Fl-score Precision Recall F1l-score

Malicious 80.37 77.49 77.68 81.40 84.34 82.84

Benign 95.43 94.84 94.40 93.95 92.66 93.30

Table 7.6. Comparison of LSTM Classification Metrics: Leave One User Out vs 80/20 Split

7.3 Classifiers and blocklists Comparison

Another desirable outcome would be the ability of the classifiers to anticipate the iden-
tification of malicious domains before the blocklists are updated. A preliminary study
of false positives generated by classifiers showed that some accesses would have been re-
ported as malicious by a blocklist within a few days. This result highlights the potential
of behavioral recognition models in anticipating threats.

The analysis was conducted on the false positive set since it comprises the accesses that
are classified as malicious by the classifiers, but benign during the labeling phase. Our
models were trained on a relatively small dataset, which limits the precision with which we
can quantify the anticipatory capability of the classifiers against blocklists. Nevertheless,
each model demonstrated the ability to predict at least one malicious access ahead of
its official classification. The analysis encompasses three principal aspects: the rational
behind the accesses are not labeled as malicious, the proportion of anticipated malicious
accesses, and the number of days in which the blocklist was anticipated. It should be
noted that the access classification method, better described in Chapter 4.6.2, considers
an access to be malicious solely if the domain was reported by at least two blocklists
on the day of access and it is not utilized by more than 10% of the population. None
of the reported false positives violate the popularity constraints, with the exceptions of
ad.doubleclick.net (141 users) and login.live.com (84 users), reported by both MLP
and RF. For definition, even if they these domains were reported by several blocklists, an
access to them is not labeled as malicious. For this reason we cannot consider them as a
result of the antcipatory capability of the classifiers.

As illustrated in Table 7.7, all classifiers have reported at least one access that has been
identified by a blocklist within the following days. The number of accesses anticipated

60

7.4 — Discussion

with respect to at least one blocklist is relatively low with a value of 11.67% for Random
Forest, 4.91% for MLP, and 6.25% for LSTM.

Finally, if we focus on the only domains that are not considered malicious, but sub-
sequently they respect both maliciousness and popularity constraints.

e The RF model anticipates the blocklist rpiList-malware by classifying s.optnx.com
3 days earlier.

e The MLP model anticipates the blocklist rpiList-malware, classifying blockadsnot.com
and s.optnx.com approximately one and a half months and 3 days earlier, respec-
tively.

e The LSTM model anticipates the blocklists iam-py-test and rpilist-malware,
classifying ptaimpeerte.com 4 days earlier for both blocklists.

It is worth noting that only LSTM was able to anticipate both blocklists that would
render the access malicious after 4 days from the time of access. However, each classifier
has at least one instance of malicious classified access that anticipates the classification
of one or more blocklists. In addition, all classifiers anticipate accesses by only a few days
with respect to the blocklist.

Model URL Time of accesses Report date Blocklist
login.live.com 2022-07-03 16:21:14 2022-08-12 tweet-feed-today
jrpkizae.com 2022-06-20 00:11:54 2022-08-12 rpiList-malware

effusedprankle.com 2022-08-06 23:30:19 2022-08-12 rpiList-malware

Random Forest rtbrvdirect.com 2022-07-11 22:10:59 2022-08-12 rpiList-malware
s.optnx.com 2022-08-09 20:55:46 2022-08-12 rpiList-malware

www.safestgatetocontent.com 2022-07-11 22:11:09 2022-08-12 rpiList-malware
blockadsnot.com 2022-06-24 01:27:36 2022-08-12 rpiList-malware
login.live.com 2022-06-07 08:23:03 2022-06-10 tweet-feed-today
login.live.com 2022-06-10 07:52:33 2022-06-27 tweet-feed-today
login.live.com 2022-07-03 16:21:14 2022-08-12 tweet-feed-today
grandsupple.com 2022-09-16 23:29:00 2022-09-18 rpiList-malware
jrpkizae.com 2022-06-20 00:11:54 2022-08-12 rpiList-malware
effusedprankle.com 2022-08-06 23:30:19 2022-08-12 rpiList-malware
snoreempire.com 2022-07-05 02:36:24 2022-08-12 rpiList-malware
go.xlviirdr.com 2022-06-23 23:50:14 2022-07-01 ultimate-host-blacklist-1
MLP download-ready.net 2022-06-24 02:01:57 2022-08-12 rpiList-malware
rtbrvdirect.com 2022-07-11 22:10:59 2022-08-12 rpiList-malware
s.optnx.com 2022-08-09 20:55:46 2022-08-12 rpiList-malware
ad.doubleclick.net 2022-06-16 13:34:04 2022-08-12 rpiList-malware
ad.doubleclick.net 2022-07-14 03:11:22 2022-08-12 rpiList-malware
ptaimpeerte.com 2022-07-08 21:07:44 2022-07-12 iam-py-test
LSTM ptaimpeerte.com 2022-07-08 21:07:44 2022-08-12 rpiList-malware

Table 7.7. Summary Table of the anticipated domains.

7.4 Discussion

The experimental results demonstrate the varying behaviors of the evaluated classifiers
under different conditions. Firstly, in the 80/20 split, all models (with the exception

61

7 — Results

of Random Forest) achieved good performance in distinguishing between benign and
malicious accesses. LSTM achieved the best overall performance thanks to its ability
to capture temporal dependencies in sequential accesses, confirming its suitability for
sequential data modeling. The MLP also demonstrated balanced precision and recall,
while the Random Forest exhibited a tendency to misclassify malicious accesses as benign,
but the cause can be attributed to a malicious 80/20 split as it later showed improvements
in both unbalance ratio and LOUOQO, bucking the trend of the remaining models.

In LOUO evaluation, all models experienced a decrease in performance, especially in
the recall of the malicious class. This is an expected outcome, as the LOUO scenario
introduces a more realistic condition where the model must generalize to users whose
behavior it has never seen before. Among the three models, the LSTM maintained the
most stable performance, showing that temporal models can better generalize across
users sequences of accesses by learning behavioral patterns rather than access-specific
features. The analysis of the unbalance ratio confirmed that the disproportion between
classes significantly affects classifier behavior. Excessive oversampling of the legitimate
class leads to an artificial bias that reduces the model’s ability to detect rare malicious
accesses. Finally, it is important to note that every model has demonstrated anticipatory
capabilities by detecting malicious accesses before the report date of the access domain
in a blocklist.

The results demonstrate that:

e LSTM is the most robust classifier across different testing conditions, maintaining
acceptable performance even in realistic scenarios.

e MLP provides a good trade-off between computational efficiency and accuracy, but
is more sensitive to data distribution variations.

e Random Forest. The preliminary results are not satisfactory, but , subsequently,
we have demonstrated that Random Forest is a valid solution that can be used to
train on a bigger set of data, because its light computational weight.

These findings suggest that temporal and sequential models such as LSTM are prefer-
able for real-world applications of malicious access detection, where user behavior and
access patterns play a crucial role.

62

Chapter 8

Conclusions and future works

The objective of this thesis was to detect malicious web accesses through the analysis of
users’ browsing data. To this end, we label the Pimcity dataset’s accesses by limning them
with malicious domains reported by various open-source blocklists. Next, we researched
for relevant features in the literature, and validates the proposed approach through mul-
tiple experiments. To ensure a combination of results from different models, and to
guarantee a more reliable and accurate result, a total of three distinct machine learning
classifiers were developed based on Random Forest, Multilayer Perceptron (MLP), and
Long-Short Term Memory (LSTM) respectively. The experimental results demonstrated
that each model achieved a satisfactory level of accuracy in classifying malicious accesses.
In particular, the LSTM model outperformed both the MLP and the Random Forest clas-
sifiers, highlighting the importance of navigational patterns in such tasks. Subsequently,
the classifiers were examined under different conditions to make the classification task
more challenging. The results on the oversampling variations revealed a strong corre-
lation between label imbalance and the classifiers’ ability to correctly detect malicious
activity.

Moreover, we create a more challenging dataset (Leave One User Out (LOUQ) dataset)
to test all the classifiers. The LOUO dataset was constructed by removing all accesses
(or sequences) belonging to a single user from the original dataset and utilizing the re-
maining accesses for the training process. The objective of the experiment is to simulate
the behavior of a model that is installed on a machine as a countermeasure to malicious
accesses. Although performance experienced a slight decrease, experiments conducted
using the LOUO dataset consistently demonstrated that training on a proportionally im-
balanced dataset was sufficient to detect malicious accesses in an strongly unbalanced
test set.

Despite the promising results, limitations exist, and the outcomes could be further
improved. Firstly, analyzing and identifying an access only by the domain imposes a
restrictive condition. As discussed in Chapter 2.1.3, many hosts require additional in-
formation, resulting in extensive communication between clients and servers. The incor-
poration of more detailed access information would therefore be of crucial importance,
as it would enable the application of the classifier to the entire Internet communication,
and not only to direct requests. In addition, data on user-browser interactions — such

63

8 — Conclusions and future works

as clicks, cursor movements, and information about open tabs — could provide a more
accurate representation of user behavior. Moreover, larger and updated datasets could
better investigate the anticipatory capabilities of the classifiers.

Encompassing the various limitations, however, the study shows that it is possible to
use users’ navigational patterns to achieve satisfactory levels of accuracy in the classifica-
tion of web accesses. The application of classifiers is multiple. For instance, the classifier
could be integrated with other security mechanisms for improving reliability during com-
munication. An Intrusion Detection System (IDS) could monitor the traffic of a network
through a behavioral recognition classifier to detect suspicious behavioral patterns and
select them for further analysis. In conclusion, this thesis represents a preliminary step
towards future research on adaptive, behavior-based cybersecurity systems.

64

Bibliography

1]

[16]

Areej Alhogail and Isra Al-Turaiki. Improved detection of malicious domain names
using gradient boosted machines and feature engineering. Information Technology
and Control, 51(2):313-331, 2022.

antiscam-squad-cypto scam. antiscam-squad-cypto-scam. https://raw.
githubusercontent.com/AntiScam-Squad/pi-hole/main/crypto_scam.txt. Ac-
cessed: 2025-09-19.

azorult tracker. agorult-tracker. https://azorult-tracker.net/api/list/
domain?format=plain. Accessed: 2025-09-19.

blocklist malware. blocklist-malware. https://raw.githubusercontent.com/
blocklistproject/Lists/refs/heads/master/alt-version/malware-nl.txt.
Accessed: 2025-09-19.

blocklist phishing. blocklist-phishing. https://blocklistproject.github.io/
Lists/alt-version/phishing-nl.txt. Accessed: 2025-09-19.

blocklistproject abuse. blocklistproject-abuse. = https://blocklistproject.
github.io/Lists/abuse.txt. Accessed: 2025-09-19.

blocklistproject ads. blocklistproject-ads. https://blocklistproject.github.
io/Lists/ads.txt. Accessed: 2025-09-19.

blocklistproject crypto. blocklistproject-crypto. https://blocklistproject.
github.io/Lists/crypto.txt. Accessed: 2025-09-19.

blocklistproject fraud. blocklistproject-fraud. https://blocklistproject.
github.io/Lists/fraud.txt. Accessed: 2025-09-19.

blocklistproject malware. blocklistproject-malware. https://blocklistproject.
github.io/Lists/malware.txt. Accessed: 2025-09-19.

blocklistproject ransomware. blocklistproject-ransomware. https:
//blocklistproject.github.io/Lists/ransomware.txt. Accessed: 2025-09-19.
blocklistproject redirect. blocklistproject-redirect. https://blocklistproject.
github.io/Lists/redirect.txt. Accessed: 2025-09-19.

blocklistproject scam. blocklistproject-scam. https://blocklistproject.github.
io/Lists/scam.txt. Accessed: 2025-09-19.

Google Safe Browsing. Google safe browsing.

Renée Burton and Laura Rocha. Whitelists that work: Creating defensible dynamic
whitelists with statistical learning. In 2019 APWG Symposium on Electronic Crime
Research (eCrime), pages 1-10. IEEE, 2019.

Davide Canali, Leyla Bilge, and Davide Balzarotti. On the effectiveness of risk

65

https://raw.githubusercontent.com/AntiScam-Squad/pi-hole/main/crypto_scam.txt
https://raw.githubusercontent.com/AntiScam-Squad/pi-hole/main/crypto_scam.txt
https://azorult-tracker.net/api/list/domain?format=plain
https://azorult-tracker.net/api/list/domain?format=plain
https://raw.githubusercontent.com/blocklistproject/Lists/refs/heads/master/alt-version/malware-nl.txt
https://raw.githubusercontent.com/blocklistproject/Lists/refs/heads/master/alt-version/malware-nl.txt
https://blocklistproject.github.io/Lists/alt-version/phishing-nl.txt
https://blocklistproject.github.io/Lists/alt-version/phishing-nl.txt
https://blocklistproject.github.io/Lists/abuse.txt
https://blocklistproject.github.io/Lists/abuse.txt
https://blocklistproject.github.io/Lists/ads.txt
https://blocklistproject.github.io/Lists/ads.txt
https://blocklistproject.github.io/Lists/crypto.txt
https://blocklistproject.github.io/Lists/crypto.txt
https://blocklistproject.github.io/Lists/fraud.txt
https://blocklistproject.github.io/Lists/fraud.txt
https://blocklistproject.github.io/Lists/malware.txt
https://blocklistproject.github.io/Lists/malware.txt
https://blocklistproject.github.io/Lists/ransomware.txt
https://blocklistproject.github.io/Lists/ransomware.txt
https://blocklistproject.github.io/Lists/redirect.txt
https://blocklistproject.github.io/Lists/redirect.txt
https://blocklistproject.github.io/Lists/scam.txt
https://blocklistproject.github.io/Lists/scam.txt

8 — Conclusions and future works

prediction based on users browsing behavior. In Proceedings of the 9th ACM Sym-
posium on Information, Computer and Communications Security, ASIA CCS ’14,
pages 171-182, New York, NY, USA, 2014. Association for Computing Machinery.
cert-pl domains. cert-pl-domains. https://hole.cert.pl/domains/domains.txt.
Accessed: 2025-09-19.

chainapsis-phishing-block list. chainapsis-phishing-block-list. https:
//raw.githubusercontent.com/chainapsis/phishing-block-list/main/
block-1list.txt. Accessed: 2025-09-19.

Kyle Crichton, Nicolas Christin, and Lorrie Faith Cranor. How do home computer
users browse the web? ACM Trans. Web, 16(1), September 2021.

Sumitra Das Guptta, Khandaker Tayef Shahriar, Hamed Algahtani, Dheyaaldin Al-
salman, and Igbal H Sarker. Modeling hybrid feature-based phishing websites de-
tection using machine learning techniques. Annals of Data Science, 11(1):217-242,
2024.

Politecnico di Torino. Pimcity - building the next generation personal data plat-
forms. https://www.pimcity-h2020.eu/, 2020. Accessed: 2025-09-30.

discord antiscam. discord-antiscam. https://github.com/Discord-AntiScam/
scam-links/blob/main/list.txt. Accessed: 2025-09-19.

DomCop. Openpagerank, 2025. Accessed: 2025-09-29.

Patcg Individual Drafts. Taxonomy v2. https://github.com/
patcg-individual-drafts/topics/blob/main/taxonomy_v2.md, 2025. Ac-
cessed: 2025-09-29.

durablenapkin scamblocklist. durablenapkin-scamblocklist. https://raw.

githubusercontent.com/durablenapkin/scamblocklist/master/hosts.txt.
Accessed: 2025-09-19.

eth-phishing detect. eth-phishing-detect. https://raw.githubusercontent.com/
MetaMask/eth-phishing-detect/master/src/hosts.txt. Accessed: 2025-09-19.
World Economic Forum. 72% of cyber leaders say cybersecurity risks are rising,
2025. Accessed: 2025-09-16.

foxwallet domains. foxwallet-domains. https://raw.githubusercontent.com/
foxwallet/blacklist/master/domain. json. Accessed: 2025-09-19.

GitHub, Inc. Github, 2025.

global-anti-scam-org-scam urls. global-anti-scam-org-scam-urls. https://raw.
githubusercontent.com/elliotwutingfeng/GlobalAntiScamOrg-blocklist/
main/global-anti-scam-org-scam-urls.txt. Accessed: 2025-09-19.
global-anti-scam-org-scam-urls pihole. global-anti-scam-
org-scam-urls-pihole. https://raw.githubusercontent.
com/elliotwutingfeng/GlobalAntiScamOrg-blocklist/main/
global-anti-scam-org-scam-urls-pihole.txt. Accessed: 2025-09-19.

Google. Google topics api. https://developers.google.com/topics. Accessed:
29 settembre 2025.

Muhammad Yasir Muzayan Haq, Mattijs Jonker, Rol Van Rijswijk-Deij, Kimberly C
Claffy, Lambert JM Nieuwenhuis, and Abhishta Abhishta. No time for downtime:
understanding post-attack behaviors by customers of managed dns providers. In

66

https://hole.cert.pl/domains/domains.txt
https://raw.githubusercontent.com/chainapsis/phishing-block-list/main/block-list.txt
https://raw.githubusercontent.com/chainapsis/phishing-block-list/main/block-list.txt
https://raw.githubusercontent.com/chainapsis/phishing-block-list/main/block-list.txt
https://www.pimcity-h2020.eu/
https://github.com/Discord-AntiScam/scam-links/blob/main/list.txt
https://github.com/Discord-AntiScam/scam-links/blob/main/list.txt
https://github.com/patcg-individual-drafts/topics/blob/main/taxonomy_v2.md
https://github.com/patcg-individual-drafts/topics/blob/main/taxonomy_v2.md
https://raw.githubusercontent.com/durablenapkin/scamblocklist/master/hosts.txt
https://raw.githubusercontent.com/durablenapkin/scamblocklist/master/hosts.txt
https://raw.githubusercontent.com/MetaMask/eth-phishing-detect/master/src/hosts.txt
https://raw.githubusercontent.com/MetaMask/eth-phishing-detect/master/src/hosts.txt
https://raw.githubusercontent.com/foxwallet/blacklist/master/domain.json
https://raw.githubusercontent.com/foxwallet/blacklist/master/domain.json
https://raw.githubusercontent.com/elliotwutingfeng/GlobalAntiScamOrg-blocklist/main/global-anti-scam-org-scam-urls.txt
https://raw.githubusercontent.com/elliotwutingfeng/GlobalAntiScamOrg-blocklist/main/global-anti-scam-org-scam-urls.txt
https://raw.githubusercontent.com/elliotwutingfeng/GlobalAntiScamOrg-blocklist/main/global-anti-scam-org-scam-urls.txt
https://raw.githubusercontent.com/elliotwutingfeng/GlobalAntiScamOrg-blocklist/main/global-anti-scam-org-scam-urls-pihole.txt
https://raw.githubusercontent.com/elliotwutingfeng/GlobalAntiScamOrg-blocklist/main/global-anti-scam-org-scam-urls-pihole.txt
https://raw.githubusercontent.com/elliotwutingfeng/GlobalAntiScamOrg-blocklist/main/global-anti-scam-org-scam-urls-pihole.txt
https://developers.google.com/topics

8 — Conclusions and future works

[34]

2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW),
pages 322-331. IEEE, 2022.

Zhongyi Hu, Raymond Chiong, [lung Pranata, Willy Susilo, and Yukun Bao. Iden-
tifying malicious web domains using machine learning techniques with online credi-
bility and performance data. In 2016 IEEE Congress on FEvolutionary Computation
(CEC), pages 5186-5194. IEEE, 2016.

iam-py test. iam-py-test. https://raw.githubusercontent.com/iam-py-test/
my_filters_001/main/Alternative’20list}%20formats/antimalware_domains.
txt. Accessed: 2025-09-19.

Muhammad Ikram, Rahat Masood, Gareth Tyson, Mohamed Ali Kaafar, and
Roya Ensafi. A study of third-party resources loading on web. arXiv preprint
arXiw:2203.03077, 2022.

inversions-dnsbl blocklists. inversions-dnsbl-blocklists. https://raw.
githubusercontent.com/elliotwutingfeng/Inversion-DNSBL-Blocklists/
main/Google_hostnames.txt. Accessed: 2025-09-19.

Nikhil Jha, Martino Trevisan, Emilio Leonardi, and Marco Mellia. On the robustness
of topics api to a re-identification attack. arXiv preprint arXiv:2306.05094, 2023.
Wei Jiang, Yuan Tian, Weixin Liu, and Wenmao Liu. An insider threat detection
method based on user behavior analysis. In International conference on intelligent
information processing, pages 421-429. Springer, 2018.

kadomains. kadomains. https://raw.githubusercontent.com/FiltersHeroes/
KADhosts/master/KADomains.txt. Accessed: 2025-09-19.

kitsapcreator =~ malware. kitsapcreator-malware. https://raw.
githubusercontent.com/ClovisWebDev/pihole-blocklists/refs/heads/
master/malware-malicious.txt. Accessed: 2025-09-19.

kitsapcreator spam. kitsapcreator-spam. https://blocklists.kitsapcreator.
com/scam-spam.txt. Accessed: 2025-09-19.

Geza Kovacs. Reconstructing detailed browsing activities from browser history.
arXiv preprint arXiv:2102.03742, 2021.

Juhi Kulshrestha, Marcos Oliveira, Orkut Karacalik, Denis Bonnay, and Claudia
Wagner. Web routineness and limits of predictability: investigating demographic and
behavioral differences using web tracking data. In Proceedings of the international
AAAI conference on web and social media, volume 15, pages 327-338, 2021.

L Lakshmi, M Purushotham Reddy, Chukka Santhaiah, and U Janardhan Reddy.
Smart phishing detection in web pages using supervised deep learning classification
and optimization technique adam. Wireless Personal Communications, 118(4):3549—
3564, 2021.

Christian Ludl, Sean McAllister, Engin Kirda, and Christopher Kruegel. On the
effectiveness of techniques to detect phishing sites. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment, pages 20-39.
Springer, 2007.

Sylvain Lugeon, Tiziano Piccardi, and Robert West. Homepage2vec: Language-
agnostic website embedding and classification. In Proceedings of the International
AAAI Conference on Web and Social Media, volume 16, pages 1285-1291, 2022.

67

https://raw.githubusercontent.com/iam-py-test/my_filters_001/main/Alternative%20list%20formats/antimalware_domains.txt
https://raw.githubusercontent.com/iam-py-test/my_filters_001/main/Alternative%20list%20formats/antimalware_domains.txt
https://raw.githubusercontent.com/iam-py-test/my_filters_001/main/Alternative%20list%20formats/antimalware_domains.txt
https://raw.githubusercontent.com/elliotwutingfeng/Inversion-DNSBL-Blocklists/main/Google_hostnames.txt
https://raw.githubusercontent.com/elliotwutingfeng/Inversion-DNSBL-Blocklists/main/Google_hostnames.txt
https://raw.githubusercontent.com/elliotwutingfeng/Inversion-DNSBL-Blocklists/main/Google_hostnames.txt
https://raw.githubusercontent.com/FiltersHeroes/KADhosts/master/KADomains.txt
https://raw.githubusercontent.com/FiltersHeroes/KADhosts/master/KADomains.txt
https://raw.githubusercontent.com/ClovisWebDev/pihole-blocklists/refs/heads/master/malware-malicious.txt
https://raw.githubusercontent.com/ClovisWebDev/pihole-blocklists/refs/heads/master/malware-malicious.txt
https://raw.githubusercontent.com/ClovisWebDev/pihole-blocklists/refs/heads/master/malware-malicious.txt
https://blocklists.kitsapcreator.com/scam-spam.txt
https://blocklists.kitsapcreator.com/scam-spam.txt

8 — Conclusions and future works

[48]
[49]

[50]
[51]

[52]

[53]

[54]

[56]
[57]

[58]

[64]

[65]

Trend Micro. Trend 2025 cyber risk report, 2025. Accessed: 2025-09-16.

Rida Nasir, Mehreen Afzal, Rabia Latif, and Waseem Igbal. Behavioral based insider
threat detection using deep learning. IEEE Access, 9:143266-143274, 2021.
nocoin-adblock list. nocoin-adblock-list. https://raw.githubusercontent.com/
hoshsadiq/adblock-nocoin-list/master/hosts.txt. Accessed: 2025-09-19.
null-host-bad domains. null-host-bad-domains. https://raw.githubusercontent.
com/kioan/null-hosts/main/hosts. Accessed: 2025-09-19.

Changkun Ou, Daniel Buschek, Malin Eiband, and Andreas Butz. Modeling web
browsing behavior across tabs and websites with tracking and prediction on the client
side. arXiv preprint arXiv:2103.04694, 2021.

phishfort domains. phishfort-domains. https://raw.githubusercontent.
com/phishfort/phishfort-lists/master/blacklists/domains. json. Accessed:
2025-09-19.

PIMCity Project. Personal privacy preserving analytics (p-ppa). https://gitlab.
com/pimcity/wp2/personal-privacy-preserving-analytics, 2020. Accessed:
2025-09-30.

A Saleem Raja, R Vinodini, and A Kavitha. Lexical features based malicious url
detection using machine learning techniques. Materials Today: Proceedings, 47:163—
166, 2021.

referer spam. referer-spam. https://raw.githubusercontent.com/desbma/
referer-spam-domains-blacklist/master/spammers.txt. Accessed: 2025-09-19.
rpiList malware. rpilist-malware. https://raw.githubusercontent.com/
RPiList/specials/master/Blocklisten/malware. Accessed: 2025-09-19.
rpilist-phishing angriffe. rpilist-phishing-angriffe. https://raw.
githubusercontent.com/RPilList/specials/master/Blocklisten/
Phishing-Angriffe. Accessed: 2025-09-19.

Marc Schmitt and Ivan Flechais. Digital deception: Generative artificial intelligence
in social engineering and phishing. Artificial Intelligence Review, 57(12):324, 2024.
search-engine spam. search-engine-spam. https://raw.githubusercontent.com/
no-cmyk/Search-Engine-Spam-Domains-Blocklist/master/blocklist.txt.
Accessed: 2025-09-19.

SentinelOne. Key cyber security statistics for 2025, 2025. Accessed: 2025-09-16.
Mahmood Sharif, Jumpei Urakawa, Nicolas Christin, Ayumu Kubota, and Akira
Yamada. Predicting impending exposure to malicious content from user behavior.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 18, pages 1487-1501, New York, NY, USA, 2018. Association
for Computing Machinery.

Yun Shen, Enrico Mariconti, Pierre Antoine Vervier, and Gianluca Stringhini. Tire-
sias: Predicting security events through deep learning. In Proceedings of the 2018
ACM SIGSAC conference on computer and communications security, pages 592—605,
2018.

soteria. soteria. https://raw.githubusercontent.com/soteria-nou/
domain-list/master/fake.txt. Accessed: 2025-09-19.

spam_ 404. spam_404. https://raw.githubusercontent.com/Spam404/lists/

68

https://raw.githubusercontent.com/hoshsadiq/adblock-nocoin-list/master/hosts.txt
https://raw.githubusercontent.com/hoshsadiq/adblock-nocoin-list/master/hosts.txt
https://raw.githubusercontent.com/kioan/null-hosts/main/hosts
https://raw.githubusercontent.com/kioan/null-hosts/main/hosts
https://raw.githubusercontent.com/phishfort/phishfort-lists/master/blacklists/domains.json
https://raw.githubusercontent.com/phishfort/phishfort-lists/master/blacklists/domains.json
https://gitlab.com/pimcity/wp2/personal-privacy-preserving-analytics
https://gitlab.com/pimcity/wp2/personal-privacy-preserving-analytics
https://raw.githubusercontent.com/desbma/referer-spam-domains-blacklist/master/spammers.txt
https://raw.githubusercontent.com/desbma/referer-spam-domains-blacklist/master/spammers.txt
https://raw.githubusercontent.com/RPiList/specials/master/Blocklisten/malware
https://raw.githubusercontent.com/RPiList/specials/master/Blocklisten/malware
https://raw.githubusercontent.com/RPiList/specials/master/Blocklisten/Phishing-Angriffe
https://raw.githubusercontent.com/RPiList/specials/master/Blocklisten/Phishing-Angriffe
https://raw.githubusercontent.com/RPiList/specials/master/Blocklisten/Phishing-Angriffe
https://raw.githubusercontent.com/no-cmyk/Search-Engine-Spam-Domains-Blocklist/master/blocklist.txt
https://raw.githubusercontent.com/no-cmyk/Search-Engine-Spam-Domains-Blocklist/master/blocklist.txt
https://raw.githubusercontent.com/soteria-nou/domain-list/master/fake.txt
https://raw.githubusercontent.com/soteria-nou/domain-list/master/fake.txt
https://raw.githubusercontent.com/Spam404/lists/master/main-blacklist.txt
https://raw.githubusercontent.com/Spam404/lists/master/main-blacklist.txt

8 — Conclusions and future works

[72]

[73]

[74]

[75]

[76]

[77]
78]
[79]
[80]

[81]

master/main-blacklist.txt. Accessed: 2025-09-19.

stevenblack hosts. stevenblack-hosts. https://raw.githubusercontent.com/
StevenBlack/hosts/master/hosts. Accessed: 2025-09-19.

DNSFilter Team. Dnsfilter finds rise in malicious domains underscores importance
of cybersecurity awareness at all levels, 2024. Accesso: 25 settembre 2025.

thiojoe spamdomainslist. thiojoe-spamdomainslist. https://raw.
githubusercontent.com/ThioJoe/YT-Spam-Lists/main/SpamDomainsList.txt.
Accessed: 2025-09-19.

Virus Total. Virus total.

tweet-feed today. tweet-feed-today. https://raw.githubusercontent.com/
OxDanielLopez/TweetFeed/master/today.csv. Accessed: 2025-09-19.
ultimate-host-blacklist 0. ultimate-host-blacklist-0. https://raw.
githubusercontent.com/Ultimate-Hosts-Blacklist/Ultimate.Hosts.
Blacklist/refs/heads/master/superhosts.deny/superhosts0O.deny. Accessed:
2025-09-19.

ultimate-host-blacklist 1. ultimate-host-blacklist-1. https://raw.
githubusercontent.com/Ultimate-Hosts-Blacklist/Ultimate.Hosts.
Blacklist/refs/heads/master/superhosts.deny/superhostsl.deny. Accessed:
2025-09-19.

ultimate-host-blacklist 2. ultimate-host-blacklist-2. https://raw.
githubusercontent.com/Ultimate-Hosts-Blacklist/Ultimate.Hosts.
Blacklist/refs/heads/master/superhosts.deny/superhosts2.deny. Accessed:
2025-09-19.

ultimate-host-blacklist 3. ultimate-host-blacklist-3. https://raw.
githubusercontent.com/Ultimate-Hosts-Blacklist/Ultimate.Hosts.
Blacklist/refs/heads/master/superhosts.deny/superhosts3.deny. Accessed:
2025-09-19.

Hai Truong Van Thanh. Relationships between web traffic ranks and online sales
revenue of e-retailers in australia. Unpublished manuscript, Central Queensland Uni-
versity. hitps://doi. org/10.13140/RG, 2(20883.37924), 2018.

Alberto Verna, Nikhil Jha, Martino Trevisan, and Marco Mellia. A first view of
topics api usage in the wild. In Proceedings of the 20th International Conference on
emerging Networking EXperiments and Technologies, pages 48-54, 2024.

Jialei Wang, Ji Wan, Yongdong Zhang, and Steven CH Hoi. Solar: Scalable online
learning algorithms for ranking. ACL, 2015.

IBM X-Force. Ibm x-force 2025 threat intelligence index, 2025. Accessed: 2025-09-
16.

Wei Xu, Kyle Sanders, and Yanxin Zhang. We know it before you do: predicting
malicious domains. In Virus Bulletin Conference, pages 73-77, 2014.

Yuanhui Yu. Web page classification algorithm based on deep learning. Computa-
tional intelligence and neuroscience, 2022(1):9534918, 2022.

Fangfang Yuan, Yanan Cao, Yanmin Shang, Yanbing Liu, Jianlong Tan, and Binxing
Fang. Insider threat detection with deep neural network. In International Confer-
ence on Computational Science, pages 43—-54. Springer, 2018.

69

https://raw.githubusercontent.com/Spam404/lists/master/main-blacklist.txt
https://raw.githubusercontent.com/Spam404/lists/master/main-blacklist.txt
https://raw.githubusercontent.com/StevenBlack/hosts/master/hosts
https://raw.githubusercontent.com/StevenBlack/hosts/master/hosts
https://raw.githubusercontent.com/ThioJoe/YT-Spam-Lists/main/SpamDomainsList.txt
https://raw.githubusercontent.com/ThioJoe/YT-Spam-Lists/main/SpamDomainsList.txt
https://raw.githubusercontent.com/0xDanielLopez/TweetFeed/master/today.csv
https://raw.githubusercontent.com/0xDanielLopez/TweetFeed/master/today.csv
https://raw.githubusercontent.com/Ultimate-Hosts-Blacklist/Ultimate.Hosts.Blacklist/refs/heads/master/superhosts.deny/superhosts0.deny
https://raw.githubusercontent.com/Ultimate-Hosts-Blacklist/Ultimate.Hosts.Blacklist/refs/heads/master/superhosts.deny/superhosts0.deny
https://raw.githubusercontent.com/Ultimate-Hosts-Blacklist/Ultimate.Hosts.Blacklist/refs/heads/master/superhosts.deny/superhosts0.deny
https://raw.githubusercontent.com/Ultimate-Hosts-Blacklist/Ultimate.Hosts.Blacklist/refs/heads/master/superhosts.deny/superhosts1.deny
https://raw.githubusercontent.com/Ultimate-Hosts-Blacklist/Ultimate.Hosts.Blacklist/refs/heads/master/superhosts.deny/superhosts1.deny
https://raw.githubusercontent.com/Ultimate-Hosts-Blacklist/Ultimate.Hosts.Blacklist/refs/heads/master/superhosts.deny/superhosts1.deny
https://raw.githubusercontent.com/Ultimate-Hosts-Blacklist/Ultimate.Hosts.Blacklist/refs/heads/master/superhosts.deny/superhosts2.deny
https://raw.githubusercontent.com/Ultimate-Hosts-Blacklist/Ultimate.Hosts.Blacklist/refs/heads/master/superhosts.deny/superhosts2.deny
https://raw.githubusercontent.com/Ultimate-Hosts-Blacklist/Ultimate.Hosts.Blacklist/refs/heads/master/superhosts.deny/superhosts2.deny
https://raw.githubusercontent.com/Ultimate-Hosts-Blacklist/Ultimate.Hosts.Blacklist/refs/heads/master/superhosts.deny/superhosts3.deny
https://raw.githubusercontent.com/Ultimate-Hosts-Blacklist/Ultimate.Hosts.Blacklist/refs/heads/master/superhosts.deny/superhosts3.deny
https://raw.githubusercontent.com/Ultimate-Hosts-Blacklist/Ultimate.Hosts.Blacklist/refs/heads/master/superhosts.deny/superhosts3.deny

8 — Conclusions and future works

[82] Hong Zhao, Zhaobin Chang, Weijie Wang, and Xiangyan Zeng. Malicious domain
names detection algorithm based on lexical analysis and feature quantification. IFEE
Access, 7:128990-128999, 2019.

70

	List of Figures
	List of Tables
	Introduction
	Overview
	Blocklists
	Thesis Objectives
	Thesis outline

	Background and related works
	Fundamental concepts
	Example of communication
	URL
	Indirect accesses and initiator
	Malicious access

	Literature Background
	Risk Prediction Based on Browsing History
	Domain Classification as Support for Prediction
	Choice of Machine Learning Algorithms

	Discussion

	Pimcity Dataset
	Initial Presentation
	Data cleaning
	Missing values
	Inappropriate values

	Data exploration
	URL
	Username
	Time
	Type
	Initiator

	Issues

	Unified Blocklist Dataset
	Introduction
	Limitations
	How GitHub works

	Blocklists' overview
	Data collection
	Data exploration
	Initial presentation
	Blocklist coverage period
	Update of the blocklists
	Number of reported domains
	Domain identification by threat type

	Data labeling
	Initial data labeling approach
	Data labeling strategies
	Results and Statistics

	Feature selection
	Popularity features
	Structural and lexical features
	Categorical features
	Behavioral features

	Models and evaluation metrics
	Non - sequential models
	Random Forest Classifier
	Multilayer perceptron (MLP)

	Sequential Model
	Long Short-Term Memory (LSTM)

	Evaluation Metrics

	Results
	Classifier performances
	Other results
	Unbalance ratio variation
	Leave one user out

	Classifiers and blocklists Comparison
	Discussion

	Conclusions and future works
	Bibliography

