
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Agent Engineering for the Enterprise: An
MCP-Based Framework

Supervisor

Prof. Stefano QUER

Candidates

Alessio GIOÈ

Vincenzo CATALANO

A.A 2024/2025





Abstract

The rapid evolution of artificial intelligence has driven organizations across sectors
to develop agents that genuinely augment human expertise and automate complex
tasks. Retrieval-Augmented Generation (RAG) has proven to be a promising
paradigm: it unites large language models with external knowledge retrieval to
boost factual accuracy and domain relevance. However, the seamless integration of
heterogeneous tools and context sources remains a thorny challenge.

The Model Context Protocol (MCP) is a lightweight and extensible framework
designed to unify the exchange of structured context between RAG-powered agents
and external services. MCP defines a clear JSON schema for context requests
and responses, encompassing metadata, user session state, and tool interfaces. In
particular, we found that standardizing these exchanges simplifies the orchestration
of multi-modal capabilities, whether database queries, knowledge-base lookups, or
custom computations.

MCP establishes a unified and extensible standard for context exchange, aimed
at simplifying integration of AI agents with heterogeneous tools and services. By
clearly defining request and response schemas, it reduces implementation ambiguity
and promotes consistency between teams. The modular design of the protocol
facilitates interoperability, accelerates development cycles, and reduces maintenance
overhead, also helping enforce governance policies and scalable, stateful agent
interactions. Ultimately, MCP provides a solid foundation for building reliable AI
solutions in dynamic enterprise environments.

The project was developed collaboratively by the two candidates. Responsibilities
were intentionally divided to exploit complementary expertise. This collaborative
approach accelerated development, improved the robustness of the prototype
through peer review, and ensured that both design and evaluation received balanced
attention.
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Chapter 1

Introduction

In recent years, artificial intelligence has undergone rapid and transformative ad-
vances, driven in particular by the emergence of large language models (LLMs)
capable of fluent natural language generation, contextual reasoning, and flexible
interaction patterns. These capabilities have opened a new horizon for intelligent
assistants within organizations: agents that do not merely answer questions but
actively assist in workflows, orchestrate multi-step processes, and operate against
heterogeneous enterprise systems. However, real enterprise adoption requires more
than strong language capabilities; it demands reliable integration with existing tool-
ing, auditable side effects, and governance mechanisms that respect authentication,
authorization, and data residency constraints.

Early practical deployments often treated LLMs as monolithic problem solvers:
developers relied on the models’ generative abilities directly, prompting them to
produce instructions, synthesize documents, or suggest actions. While this approach
leverages the impressive generalist reasoning of modern models, it exposes several
limitations when applied to operational settings. First, purely generative usage
can lead to brittle and inconsistent behaviour: models may produce plausible but
incorrect outputs (hallucinations), or they may overfit behavioural patterns seen
in pretraining and fine-tuning data, yielding responses that are either too generic
or excessively specialised for a particular prompt style. Second, LLMs operating
without explicit tool interfaces lack the means to safely perform side effects: invoking
an API, modifying a ticketing system, or scheduling a meeting requires precise
authentication, error handling and auditable logs—features not natively provided
by bare-text generation. Third, state management and long-term memory are
difficult to guarantee through prompt engineering alone: maintaining coherent
multi-turn interactions, respecting authorization scopes across conversations, and
handling conversational context drift demand explicit mechanisms beyond single-
turn generation.

These shortcomings motivated a transition from monolithic LLM usage to
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Introduction

agentic architectures. In agentic designs, the LLM is one component within a mod-
ular system where responsibilities are clearly separated: perception and retrieval
modules ground the model in up-to-date and verifiable knowledge; a planning
component decomposes complex requests into sub-tasks; specialised tooling compo-
nents perform side-effecting operations under enforced contracts; and a memory or
state store preserves long-term context and provenance. This decomposition brings
several practical benefits. Grounding retrieval reduces hallucinations by providing
explicit evidence for answers. Planners enable robust orchestration of multi-step
flows, reasoning about dependencies and fallback strategies. Tooling modules
encapsulate access controls and transactional guarantees, making it possible to
invoke operations with explicit consent, logging, and rollback capabilities. Finally,
modularity supports targeted testing, monitoring and incremental improvement,
aligning system reliability with enterprise risk models.

Despite these advantages, moving to agentic architectures introduces new en-
gineering challenges: the need for standardised interfaces between components,
clear schemas for tool manifests, and runtime protocols that can mediate model
requests while enforcing security and observability. Protocols such as the Model
Context Protocol (MCP) aim to fill this gap by providing a structured, type-aware
contract for how a model may request tools, how results are streamed back, and
how side effects are recorded and audited. By separating the model’s reasoning
from execution semantics, MCP-style approaches enable developers to retain the
flexibility of LLM reasoning while imposing the operational constraints required in
production.

This thesis documents the design, implementation, and evaluation of a task-
oriented conversational agent developed for AROL S.p.A. The project was driven by
the concrete goal of supporting the company IT department in common operations
such as ticket lifecycle management, document retrieval, meeting scheduling and
basic diagnostics. From the outset we prioritized pragmatic constraints: minimal
disruption to existing user workflows (hence Microsoft Teams as the primary entry
point), strict conformance to corporate authentication flows, and clear provenance
for any side-effecting operation. To satisfy these requirements we combined Mi-
crosoft Copilot Studio’s RAG capabilities with a custom MCP server that exposes
typed tools and controlled sampling of contextual data. The outcome is a layered
architecture in which the LLM handles reasoning and natural language ground-
ing, while MCP mediates discovery, sampling, and explicit tool invocation under
schema-driven contracts.

On the implementation side, several concrete engineering decisions and con-
tributions are documented. First, to provide an up-to-date retrieval backbone
we developed an ingestion pipeline that exported historical Jira artifacts (issues,
comments and attachments), normalised them, converted heterogeneous attach-
ments to PDF, and indexed chunks and embeddings for SharePoint ingestion; this
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allowed Copilot Studio’s RAG layer to reference ticket-level provenance directly
when answering user queries. The ingestion pipeline included practical heuristics for
chunking, OCR of image-only PDFs, and metadata sidecars to preserve traceability
to original Jira keys. Second, we implemented a custom MCP server and iterated
on SDK-level behaviour: early prototyping used the MCP Python SDK for rapid
iteration and we contributed fixes upstream to stabilise transport reconnection,
manifest parsing and streaming tests. Third, because production-grade integration
with Microsoft services required more reliable OAuth handling, we migrated critical
parts of the server to a TypeScript stack based on the official reference, improving
interoperability with Copilot Studio and reducing deployment friction.

The thesis also examines operational considerations that surfaced during the
pilot deployment. We deployed the MCP server on Azure Web Services, connected
Copilot Studio to SharePoint-backed RAG indices, and integrated the conversa-
tional front-end within Microsoft Teams to reduce end-user friction. A structured
validation phase with company employees produced broadly positive feedback:
users appreciated faster access to relevant documentation and the conversational
interaction style, while QA and IT highlighted important non-functional areas to
address, such as latency sensitivity, context-management across turns, and the
need to prevent unintended disclosure of sensitive fields unless the requester is
properly authorised. Moreover, the validation highlighted an architectural fragility:
the hybrid dependence on our self-managed MCP server and Microsoft’s managed
services implies that outages or behavioural changes in any layer can interrupt
the conversational flow; practical mitigations include fallback modes, improved
observability and runbooks, and contract-driven monitoring.

Contributions of this work are threefold. Practically, we deliver a working proto-
type that integrates Copilot Studio, a SharePoint-backed RAG index sourced from
Jira, and a schema-driven MCP server capable of authenticated tool invocations
suitable for IT workflows. Technically, we report and upstream fixes to the MCP
Python SDK, describe migration challenges and solutions to a TypeScript imple-
mentation, and present reproducible patterns for manifest validation, streaming
testing (Inspector-driven fixtures) and CI contract tests. Finally, methodologically,
we outline an evaluation strategy for enterprise pilots that combines qualitative user
feedback, telemetry-informed analytics and a clear distinction between development
flexibility and production governance.

The work presented in this thesis is the result of a research and development
effort carried out collaboratively by the two candidates. To exploit complementary
skills and optimize implementation time, responsibilities were deliberately divided:
Vincenzo Catalano took charge of Chapters 3–6, focusing on the design and
reasearch of the system, while Alessio Gioè developed Chapters 7–9, concentrating
on integration, development, and practical evaluation. The remaining chapters
were written jointly. Moreover, although primary responsibility for individual

3



Introduction

chapters was assigned, both authors continuously assisted one another and carried
out reciprocal peer review of drafts and implementations. This organization
enabled parallel development, improved the quality of the prototype through
continuous cross-checking, and contributed to making the description of the adopted
methodologies clearer and more reproducible.

The remainder of this thesis is organised as follows. Chapter 2 formalises the
problem statement and constraints. Chapter 3 summarises the requirements and
the use-case analysis that guided the design. Chapter 4 discusses architectural
alternatives and motivates the choice of Copilot Studio and MCP. Chapter 5
describes the RAG pipeline and the Jira-to-SharePoint ingestion process. Chapter
6 presents MCP concepts, SDK work and our specific server implementation.
Chapter 7 documents the Azure deployment and operational practices. Chapter 8
reports the validation campaign, results and lessons learned. Finally, Chapter 9
concludes and outlines directions for future work.
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Chapter 2

Problem Definition

In modern enterprises, the reliance on digital tools and software platforms is
ubiquitous. Organizations use a variety of systems to manage operations, track
data, and facilitate collaboration across teams and departments. These systems
often range from legacy databases and custom applications to cloud-hosted services,
REST APIs, and message queues. Each tool embodies its own design philosophy,
interaction model, and security paradigm. Consequently, the integration of multiple
systems into a coherent workflow poses significant challenges, as each system expects
specific communication patterns, data formats, and authentication mechanisms.
The lack of a unifying interface or standard makes it difficult to orchestrate these
tools effectively, particularly when automation is desired at scale.

One of the central challenges arises from the heterogeneity of enterprise systems.
Every platform may use distinct protocols, implement different data schemas,
and expose unique operational semantics. For example, a ticketing system may
provide a REST API with JSON responses, while an internal database exposes
SQL queries with strict schema constraints. Similarly, message brokers or event-
driven architectures may require asynchronous handling and acknowledgment
semantics that differ from synchronous API calls. Bridging these diverse paradigms
demands the development of translation layers or “glue code” that can harmonize
interactions, convert data formats, and manage error propagation. Without such
careful integration, even a simple multi-step operation spanning multiple systems
can fail unpredictably or produce inconsistent results.

Beyond technical heterogeneity, authentication and authorization represent a
further layer of complexity. Modern enterprise environments enforce strict access
controls, often employing OAuth2, token-based authentication, or enterprise single
sign-on mechanisms. An AI agent orchestrating multiple tools must navigate
these flows correctly, ensuring that credentials are valid, scopes are respected,
and sensitive data is never exposed improperly. Misconfigured authentication
can result in operational failures or, worse, security breaches. Moreover, different
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systems may impose additional constraints, such as rate limiting, multi-factor
authentication, or token expiration, which the orchestrating agent must handle
dynamically. Designing a solution that reliably manages these interactions requires
careful attention to detail and robust error handling to maintain service continuity
and security compliance.

Maintainability and resilience are equally critical in enterprise-scale automation.
As the number of integrated systems grows, the orchestration layer often becomes
increasingly complex. Tracking the source of failures—whether originating in a
tool, an integration component, or the agent itself—can be extremely challenging.
Without clear modularization, standardized interfaces, and comprehensive logging,
diagnosing and mitigating issues may require significant manual effort. Furthermore,
the dynamic nature of enterprise software means that tools evolve, APIs change,
and internal processes are updated. A solution that is brittle or tightly coupled to
specific versions of systems risks becoming obsolete rapidly, leading to downtime
or operational inconsistencies. Therefore, long-term maintainability requires the
adoption of structured design principles, rigorous testing pipelines, and observability
mechanisms that allow teams to detect, diagnose, and resolve issues efficiently.

Building an AI agent capable of managing heterogeneous enterprise systems is
more than a simple software engineering task; it is a multi-dimensional problem
involving systems design, security, operational reliability, and user experience. It
involves orchestrating interactions across multiple services while respecting authen-
tication and access controls, preserving data integrity, and maintaining coherent
operational workflows. Moreover, it requires the ability to handle unexpected
failures gracefully, provide transparency and traceability for all operations, and
scale to support multiple concurrent users or processes. In essence, the challenge
is to design a layer that abstracts the inherent complexity of enterprise ecosys-
tems, enabling AI agents to act reliably and predictably while minimizing manual
oversight.

The need for robust agentic architectures emerges from these challenges. Tradi-
tional approaches in AI-driven automation often relied on monolithic systems or
directly prompting models to perform actions. While large language models offer
impressive capabilities in natural language understanding and generation, their
use as standalone reasoning engines exposes significant limitations in operational
environments. Generative outputs may be plausible but incorrect, contextual de-
pendencies may be lost across multi-turn interactions, and side effects such as API
calls or database updates require strict auditing and transactional guarantees that
language models alone cannot enforce. These limitations underline the necessity
of separating reasoning from execution and establishing well-defined interfaces
between components.

In response, agentic systems introduce modularity and structured orchestration.
In such designs, an AI model is one component among several, interacting with
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planning, retrieval, and tooling modules. Retrieval modules provide grounding and
evidence-based responses, planners break complex tasks into manageable sub-tasks,
and specialized tooling modules perform actions under clearly defined contracts.
State management components maintain context and provenance, enabling long-
term memory and traceable operations. This decomposition addresses multiple
enterprise concerns simultaneously: it reduces hallucinations by grounding decisions
in verifiable data, ensures secure and auditable execution of side effects, and allows
targeted monitoring and testing of each module independently. Ultimately, this
approach enables AI agents to operate at scale in environments that demand
reliability, accountability, and compliance.

Finally, the operationalization of such systems introduces additional engineering
considerations. Standardized interfaces between modules, schema-driven contracts
for tools, and runtime protocols that enforce security and observability are essential.
Model Context Protocols (MCP) exemplify frameworks designed to address these
challenges, providing structured contracts for tool invocation, streaming of results,
and logging of side effects. By decoupling the reasoning performed by the model
from the execution semantics of underlying tools, such frameworks allow developers
to leverage the flexibility of AI while imposing the operational constraints required
for enterprise deployment. Through careful design, testing, and validation, agentic
architectures empowered by structured protocols can deliver the benefits of AI
reasoning without compromising security, reliability, or maintainability.

In this work, we focus specifically on the development of an AI agent for
the IT operations of a mid-sized enterprise. The agent is designed to integrate
seamlessly with existing enterprise tools, respecting their diverse authentication
mechanisms and operational semantics, while providing users with a conversational
interface for common tasks such as ticket management, document retrieval, and
workflow automation. By abstracting the heterogeneity of underlying systems and
enforcing strict contracts for tool usage, the proposed framework demonstrates a
practical approach to enabling AI agents to operate reliably in real-world enterprise
contexts. The following chapters describe in detail the problem space, design
requirements, architectural decisions, and implementation considerations that
guided the development of this system.
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Chapter 3

System Design

In order to design a reliable and enterprise-ready system, it is essential to begin
with a structured definition of requirements. This phase provides the foundation on
which all subsequent design and implementation activities are built, ensuring that
the solution aligns with organizational objectives, user expectations, and technical
constraints. The following sections present the methodology adopted for require-
ments gathering and the resulting functional and non-functional specifications.

3.1 Requirements Gathering
The process of requirements gathering represents one of the most critical phases in
the development of complex software systems, especially when the target solution
involves interaction with heterogeneous platforms and end-users with diverse needs.
This activity goes beyond the mere collection of technical specifications; it requires
a structured approach that combines observation, stakeholder engagement, and
iterative validation. The objective is to capture not only what the system must do,
but also the constraints, expectations, and contextual conditions under which it
will operate.

A fundamental aspect of requirements gathering is the identification of stake-
holders and the analysis of their needs. In the context of an AI-powered assistant,
this involves employees at different organizational levels, IT administrators, and
even external service providers who contribute to the company’s digital ecosystem.
Each of these actors has distinct expectations: employees demand a tool that
simplifies daily operations and reduces friction in tasks such as support requests,
knowledge retrieval, and communication management, while IT departments focus
on security, compliance, and integration reliability. Balancing these perspectives
ensures that the final system aligns with both usability goals and enterprise-grade
robustness.
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Another important dimension of this phase concerns the definition of the opera-
tional environment. The assistant must function within an enterprise ecosystem
that includes ticketing systems, email platforms, scheduling tools, and knowledge
repositories, each with its own access policies, APIs, and technical constraints. This
requires the early identification of integration points, dependencies, and possible
incompatibilities between systems. The analysis of authentication methods, data
formats, and service limitations allows development teams to anticipate potential
barriers and design appropriate mitigation strategies.

Finally, requirements gathering also includes the prioritization and validation
of the features to be implemented. Not all requirements carry the same weight:
some are essential for system viability, such as secure access and basic support
ticket management, while others enhance usability or efficiency, like image-based
diagnostics or advanced scheduling features. Through iterative validation with
stakeholders, the development team can refine these priorities and ensure that
the assistant evolves in response to real organizational needs rather than abstract
assumptions.

3.2 Requirements
Based on the insights gathered during the requirements elicitation phase, a com-
prehensive set of functional and non-functional requirements was established to
guide the design and development of the proposed system. The definition of these
requirements plays a central role in bridging the gap between the expectations of
stakeholders and the concrete technical solutions that can be implemented. While
functional requirements describe the services, behaviors, and interactions that the
assistant must support in order to provide tangible value to its users, non-functional
requirements capture broader quality attributes such as performance, reliability,
scalability, and security.

This dual perspective ensures that the resulting system is not only capable of
carrying out specific tasks but also operates within the standards and constraints
expected in an enterprise environment. For instance, functionality related to
support ticket management, knowledge base access, and meeting scheduling must
be complemented by guarantees of data protection, compliance with authentication
protocols, and resilience under heavy usage. By explicitly distinguishing between
what the system should do and how it should perform, the development team
can create a roadmap that balances user-facing features with underlying technical
robustness.

Furthermore, these requirements serve as a reference point throughout the
development lifecycle. They provide measurable criteria against which prototypes
can be evaluated, facilitate communication among stakeholders with different
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technical backgrounds, and reduce ambiguity by formalizing expectations in advance.
In the specific context of AROL, this structured set of requirements ensures that
the proposed assistant integrates smoothly with the existing IT infrastructure while
simultaneously addressing the daily operational challenges faced by employees. The
combination of functional and non-functional specifications thus establishes a solid
foundation for subsequent design choices, architectural decisions, and validation
activities.

3.2.1 Functional Requirements
The functional requirements define the core capabilities expected from the system
and the interactions it must support with users and external platforms. Central to
its functionality is the management of support tickets: the assistant must be able to
assist employees in creating, updating, and resolving tickets, including the automatic
escalation of issues that cannot be addressed autonomously. In addition, the system
is expected to provide efficient access to the company knowledge base, retrieving the
most relevant and up-to-date documentation upon request. Scheduling and meeting
management are also fundamental, requiring the assistant to interact seamlessly
with Microsoft Teams to organize meetings, manage participants, and deliver timely
notifications. Email handling represents another critical functionality, as the system
must allow users to send, receive, and review Outlook messages directly through
a conversational interface. Furthermore, the assistant is expected to support
image-based diagnostics by processing screenshots of error messages, such as those
generated by Outlook, and providing targeted, context-aware troubleshooting
guidance.

3.2.2 Non-Functional Requirements
Non-functional requirements specify the quality attributes, operational constraints,
and performance expectations of the system. High performance is essential, with
responses delivered within a few seconds to ensure smooth usability during daily
workflows. Scalability is another key consideration, as the system must accommo-
date an increasing number of users and requests without compromising service
quality. Maintainability is addressed through modular design, enabling future exten-
sions or integration of new tools with minimal modification. Security requirements
mandate compliance with corporate authentication and authorization standards,
such as OAuth2 and Microsoft Graph protocols, to guarantee confidentiality, in-
tegrity, and controlled access to all communications and data exchanges. Reliability
is also critical, with the system designed to maintain high availability, handle errors
gracefully, and recover from partial failures of external services. Finally, compliance
with company policies and relevant data protection regulations is enforced for all
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interactions with external APIs, ensuring that the system operates within legal
and organizational frameworks.

3.3 Actors

The system involves a set of actors, both human and digital, that interact with
the AI assistant to support daily operations within AROL. The primary actor
is the employee, who represents the end user interacting with the AI assistant
through Microsoft Teams. Employees rely on the assistant to submit requests, pose
questions, and receive guidance in completing routine IT and administrative tasks,
benefiting from a conversational interface that streamlines interaction with various
company services.

Supporting actors include several digital systems and services that enable the
assistant to fulfill its functions. The AI assistant itself acts as an intelligent agent,
interpreting employee requests, orchestrating workflows, querying external services,
and delivering results in natural language. Microsoft Teams serves as the main
communication channel, providing both the conversational interface and the message
delivery infrastructure. The Microsoft Graph API offers unified access to Outlook,
Calendar, and Directory services, allowing the assistant to send and retrieve emails,
manage calendar events, check participant availability, and query organizational
data efficiently. SharePoint, accessed through Microsoft RAG, functions as the
company’s knowledge base, granting the assistant access to official documentation
and guides. For project management and development tracking, the assistant
integrates with Jira Software, enabling the creation, updating, and retrieval of tasks
to support ongoing projects. Similarly, Jira Service Management is used for IT
service requests and support tickets, allowing the assistant to open, escalate, and
track incident reports. Finally, external services such as wttr.in provide weather
information upon employee request, demonstrating the assistant’s ability to access
and present real-time data from outside the corporate ecosystem.

The system also indirectly benefits key stakeholders within the organization.
IT support staff gain efficiency, as the assistant reduces the volume of repetitive
requests and allows them to focus on more complex issues. Company management,
on the other hand, has a vested interest in the efficiency, compliance, and reliability
of the assistant, ensuring that it contributes positively to overall business workflows.

In summary, the actors involved in the system encompass both the direct users,
represented by employees, and the digital services integrated via APIs, with the
AI assistant serving as the central coordinator. This comprehensive classification
facilitates the subsequent analysis of use cases by clearly identifying the roles and
interactions within the system.
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3.4 Use Case Analysis
The software system developed in this work is designed to act as an intelligent
assistant within a corporate IT environment, enabling automation and streamlining
of various daily tasks typically handled by support staff. Its capabilities span several
key use cases that demonstrate the integration of natural language understanding,
image recognition, and enterprise API interaction.

One fundamental use case is support for company software usage, such
as configuring secure VPN access for remote work. In this scenario, the AI
system interprets the user’s request and provides guided, step-by-step instructions,
including security best practices and troubleshooting suggestions. This reduces the
need for human intervention in standard IT setup procedures, improving efficiency
and minimizing delays.

Another important use case is software issue resolution, where employees can
report problems by uploading screenshots of error messages (e.g., in Outlook). The
AI system leverages image analysis to understand the issue and returns a tailored
resolution process. This not only speeds up problem-solving but also empowers
employees to resolve issues independently without relying on IT personnel.

The software also includes a document retrieval function, allowing users to
request specific versions of internal documentation. The system interfaces with a
centralized knowledge base to identify and deliver the most recent version of the
requested file, saving time and ensuring version consistency across teams.

In cases where the AI cannot fully resolve an issue, the system is capable of
issuing a support ticket. By collecting user input (including descriptions and
attachments), it automatically generates and submits a Jira ticket through API
integration, ensuring smooth escalation and traceability of unresolved issues.

Furthermore, the solution enhances collaboration through features like Teams
meeting management. Users can message the bot directly in Microsoft Teams
to schedule meetings. The bot collects necessary details, participants, date, time,
and uses the Microsoft Graph API to create and distribute the calendar invite,
eliminating manual coordination.

Finally, the system supports email dispatch via Teams, enabling users to send
Outlook emails simply by chatting with the bot. The assistant parses the content,
identifies recipients, and sends the message using the same Microsoft Graph interface,
allowing communication tasks to be completed quickly and conversationally.

Overall, these use cases illustrate the system’s versatility and the practical
value of AI-driven automation in enterprise workflows. By reducing the need for
manual interventions in routine operations, the software improves response times,
enhances user autonomy, and integrates seamlessly with existing company tools
and platforms.

In order to provide a structured overview of the AI Assistant’s functionalities,
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the use cases can be grouped into four main categories: Knowledge Access,
Communication & Messaging, Calendar & Scheduling Management, and
Task & Issue Management. Each category highlights a specific aspect of the
assistant’s role within the corporate environment, illustrating how it supports
employees in accessing information, coordinating activities, and managing tasks
efficiently.

Knowledge Access It encompasses scenarios in which the assistant provides
existing information or documentation without modifying external data sources.
The first use case within this category involves the retrieval of documentation from
SharePoint. In this context, the employee represents the primary actor, while the
assistant and the SharePoint platform operate as supporting systems. The scenario
assumes that the requested material is already available and correctly indexed
within SharePoint. When the employee expresses a need in natural language, such
as requesting a “VPN setup guide,” the assistant formulates a query and searches
the document repository via Microsoft RAG. The system then identifies the most
relevant version of the document and delivers it seamlessly within the Teams chat
environment. If multiple plausible results are found, the assistant actively engages
with the employee by requesting further refinement, ensuring the accuracy and
relevance of the delivered content.

Within the same category, the assistant also facilitates access to external in-
formation sources, such as weather data. Here, the employee specifies a valid city
name, and the assistant forwards the request to the external service wttr.in, which
responds with up-to-date meteorological information. The assistant then presents
the results in Teams, making the information immediately accessible. In cases
where the city name is incomplete or invalid, the assistant prompts the employee for
clarification, thereby minimizing errors and ensuring the provision of contextually
appropriate data.

By grouping these use cases, it becomes evident that the assistant primarily acts
as an informational intermediary in the Document Retrieval / Knowledge Access
category, seamlessly bridging the gap between the employee’s natural language
queries and structured data repositories, whether internal or external.

Communication & Messaging It encompasses scenarios in which the assistant
facilitates corporate communications, whether through email or internal messaging,
thereby reducing context switching and improving workflow efficiency. Within this
category, the assistant supports sending emails directly from Teams. When the
employee provides the necessary elements, such as recipient, subject, and message
body, the assistant interprets the request, structures the email appropriately, and
dispatches it through the Microsoft Graph API to Outlook. Following successful
delivery, a confirmation is returned to the employee within Teams. If an invalid
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recipient address is detected, the assistant requests clarification or correction before
proceeding, ensuring reliability and minimizing communication errors.

In addition to sending messages, the assistant enables rapid inspection of
the mailbox by listing recent emails. Upon the employee’s request, the system
interprets the number of messages to be displayed, applying a default of five if not
specified, and retrieves the corresponding entries from the mailbox. Each message is
presented in Teams with sender, subject, and date. To maintain system performance
and user experience, the assistant enforces an upper limit of fifty messages and
automatically adjusts the output when the requested number exceeds this threshold.
This capability allows employees to remain informed without switching between
applications, streamlining their workflow within the conversational context of
Teams.

Complementing these email-focused operations, the assistant also addresses
collaborative and directory-oriented needs. When the employee provides a locating
cue, such as an office location or a department name, the assistant queries the
corporate directory via the Microsoft Graph API and returns a structured roster
of matching colleagues, including role, email address, and telephone number where
permitted. The results are presented inline within Teams and can be used as
actionable items: the employee can initiate a direct conversation, prefill meeting
invitations, or select participants for availability checks, all without leaving the
current conversational context. Collectively, these features highlight the assistant’s
role as an intermediary that streamlines communication and coordination across
the organization.

Calendar & Scheduling Management It encompasses all operations related
to planning, coordinating, and optimizing the availability of colleagues. Within this
domain, the assistant interacts closely with the Microsoft Graph API to manage
calendar events efficiently, serving as a coordinator that streamlines scheduling and
reduces administrative overhead.

Calendar-related requests include the creation, modification, and deletion of
meetings. When an employee initiates a request, the assistant collects the necessary
parameters, such as the event title, date, time, participants, and, when applicable,
an existing event identifier. For updates or cancellations, the assistant first validates
the provided event ID to ensure that it corresponds to an existing entry. Once
the parameters are verified, the assistant invokes the Calendar API to perform
the requested operation and confirms the outcome by returning salient details,
including the event identifier or a Teams meeting link. In the case of scheduling
conflicts due to participant unavailability, the assistant actively contributes to
resolution by suggesting alternative time slots, thereby minimizing negotiation
overhead and preserving calendar consistency.

In addition to managing individual events, the assistant facilitates the planning
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of group activities by checking team availability. When the employee provides
a list of participants along with a preferred time interval, the system leverages
the corporate directory to prefill participant information and queries the calendar
service for availability data. The assistant then identifies all time slots in which
every participant is free and returns a ranked set of candidate options. If no common
availability exists, the assistant proposes the closest alternatives, ensuring that
scheduling conflicts are efficiently mitigated without requiring extensive manual
coordination.

The assistant also supports the refinement of existing events. Employees can
request updates to an event’s title, schedule, or list of participants, referencing
an existing event ID. The assistant validates the identifier, applies the requested
modifications via the Calendar API, and provides confirmation with relevant
metadata. If the identifier is invalid, ambiguous, or no longer exists, the system
prompts the employee for clarification to prevent unintended changes and maintain
the integrity of the calendar.

By combining these capabilities, the assistant acts as a central facilitator for both
individual and group scheduling, integrating event management with participant
availability checks, updates, and cancellations. This comprehensive approach
ensures that employees can efficiently organize their time and coordinate with
colleagues, all within the conversational context of Teams.

Task & Issue Management The final category, Task & Issue Management,
focuses on the assistant’s capabilities to support employees in handling project
tasks, issue tracking, and IT support requests directly within Teams. Central to
this category is the management of Jira tickets, which allows employees to create,
update, search, comment on, and close tickets without leaving the conversational
interface.

When creating a new Jira ticket, the assistant collects all necessary information,
including the ticket title, description, priority, and assignee, and uses the Jira API
through MCP to generate the ticket within the appropriate project. The system
returns the ticket identifier to the employee, and if any information, such as the
project key, is missing or unclear, the assistant proactively requests clarification to
ensure the ticket is correctly created and assigned.

For existing tickets, the assistant enables modifications to key attributes such as
status, priority, or assignee. Prior to making any changes, the assistant validates
the ticket identifier to ensure that the requested update applies to a valid entry.
Once confirmed, the update is performed via the Jira API, and the employee
receives a confirmation in Teams. In cases where the ticket ID is ambiguous, the
assistant requests clarification, thereby preventing errors and maintaining accurate
task tracking.

15



System Design

The assistant also streamlines the retrieval and oversight of Jira tickets. Em-
ployees can request lists of open tickets or apply filters based on assignee, status,
or tags. The assistant queries Jira Software according to these criteria and presents
a structured list of matching tickets directly in Teams. If no tickets meet the
requested conditions, the system informs the employee and, when appropriate,
suggests refining the search parameters to improve relevance. This capability
facilitates efficient project management and reduces the need to switch between
tools.

Collaboration is further supported by the assistant’s ability to add comments
to existing Jira tickets. Upon receiving a request to comment, the assistant first
verifies that the ticket exists and that the employee has the necessary permissions.
Once validated, the comment is appended in Jira Software, and confirmation is
provided within Teams. In cases where permissions are insufficient, the assistant
informs the employee, preserving transparency and adherence to access controls.

Closure of Jira tickets is similarly managed. The assistant allows employees
to mark completed tickets as closed, updating the status in Jira Software and
confirming the action within Teams. If the ticket is linked to unresolved subtasks,
closure is blocked and the employee is notified, ensuring that task dependencies
are respected and project tracking remains accurate.

Extending beyond project management, the assistant facilitates IT support
operations via Jira Service Management. Employees can report technical issues,
such as VPN problems or blocked access, and the assistant identifies the appropriate
service desk to create a support ticket. The system provides the ticket ID and
relevant details, ensuring proper tracking of the request. When the correct service
desk cannot be determined automatically, the assistant prompts the employee for
clarification, maintaining accuracy and streamlining resolution.

Finally, the assistant supports the closure of resolved IT tickets. Once an IT agent
marks a ticket as resolved, the assistant notifies the employee in Teams, requesting
confirmation of the resolution. Only upon receiving confirmation does the assistant
close the ticket in Jira Service Management. If the employee does not confirm, the
ticket remains in the “resolved” status, thereby preserving accountability, ensuring
transparency, and maintaining control over IT support workflows.

Collectively, these capabilities illustrate how the assistant integrates task track-
ing, project management, and IT support into a unified conversational interface,
enhancing efficiency, accuracy, and collaboration within the organization.
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Chapter 4

Architecture Design

In recent years, the concept of AI agents has gained significant relevance in
enterprise environments. An agent can be described as a software entity capable of
autonomously perceiving inputs, reasoning about them, and producing an output
tailored to the context. Unlike traditional applications, an agent is designed to
interact continuously with users and systems, often relying on Large Language
Models (LLMs) to interpret natural language queries and provide structured
responses. The fundamental flow can therefore be summarized as: user input →
agent reasoning → agent output.

In our project, the input and output channel is represented by Microsoft
Teams. This choice was motivated by practical reasons: Teams is already widely
adopted within the organization, and employees are familiar with its interface and
usage patterns. Embedding the agent into Teams allows us to reduce the learning
curve for end-users and seamlessly integrate the new functionality into their daily
workflow.

The core of the architecture lies in the choice of the AI engine that powers the
agent. Several alternatives were evaluated, with particular focus on three main
candidates: Azure OpenAI, Azure Agents in AI Foundry and Microsoft
Copilot Studio. Each solution provides specific advantages and limitations, which
we discuss in the following sections.

4.1 Components
At its core, an AI agent can be decomposed into three fundamental components:
the input channel, the reasoning and knowledge layer, and the output
channel. In our architecture, these elements are combined to ensure seamless
interaction between end-users and the underlying intelligence.

The input and output are both represented by Microsoft Teams. This
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Figure 4.1: RAG (Source)

decision stems from practical considerations: Teams is already the central com-
munication hub in the organization, and embedding the agent directly within it
minimizes the learning curve for users. Requests are initiated as natural language
messages within Teams, while the responses generated by the agent are returned in
the same environment, ensuring a smooth and familiar workflow for employees.

The reasoning layer is the heart of the agent and is designed around the
Retrieval-Augmented Generation (RAG) paradigm, as illustrated in Fig-
ure 4.6. RAG enriches the reasoning process of the Large Language Model (LLM)
by integrating external domain-specific knowledge. Instead of relying solely on the
general knowledge embedded in the model, the agent retrieves relevant documents
or data from connected sources and augments its responses accordingly. This
approach ensures that answers are not only linguistically coherent but also accurate
and contextualized for the specific needs of the company.

Within this reasoning layer, the agent can also leverage additional tools that
extend its capabilities beyond pure text generation. Examples include APIs for
querying structured data, connectors to enterprise knowledge bases, or utilities for
automating workflows. The orchestration of these components allows the agent to
move closer to real problem-solving rather than simply producing text.

In summary, the architecture of our agent revolves around a clear flow: user
input in Teams → reasoning through RAG and tools → agent output
in Teams. This modular design not only simplifies the integration of different
AI components but also guarantees that the solution remains adaptable to future
extensions, such as new tools or alternative communication channels.
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4.2 Azure OpenAI

Figure 4.2: Azure OpenAI

The first option we analyzed is Azure OpenAI, which provides access to
OpenAI’s language models through the Azure ecosystem. This service enables
seamless integration of GPT models with enterprise security, compliance, and
scalability guarantees. In our case, the API plays a central role in handling
multimodal inputs, such as text and images, as shown in Figure 4.3. Moreover, the
integration with Copilot (Figure 6.11) demonstrates how Azure OpenAI can be
extended to support productivity scenarios within Microsoft applications.

A further strength of Azure OpenAI lies in its native compatibility with Azure
identity and access management, which allowed us to integrate authentication and
authorization flows without the need for custom logic. This was particularly useful
in ensuring that only authorized employees could interact with the agent, while
keeping the deployment compliant with enterprise policies. Additionally, the service
offers built-in monitoring and usage analytics, which proved valuable for tracking
performance and anticipating scaling needs.

Another key aspect is the availability of fine-tuning and embedding capabilities
directly within the platform. Although we primarily relied on base GPT models,
the possibility of enriching them with domain-specific corpora or generating vector
embeddings for semantic search makes Azure OpenAI especially attractive for
enterprise applications where context-awareness is critical. In our project, this
capability was considered as a potential extension to improve the retrieval of
company documents and to align the agent more closely with internal knowledge
bases.
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Figure 4.3: API dedicated to read images

From an operational perspective, Azure OpenAI also benefits from enterprise-
grade deployment options, such as regional availability and data residency guaran-
tees. This means that sensitive business data can be processed within predefined
geographic boundaries, an aspect that is often crucial for regulatory compliance
in corporate environments. Furthermore, the service supports network isolation
through private endpoints, which allows traffic to remain inside the organization’s
virtual network, thus reducing exposure to external threats.

The main advantages of this option are the maturity of the models, their
advanced natural language understanding, and the ease of integration into existing
Azure services. However, some limitations were observed, particularly regarding
customization: while powerful, the models tend to behave as black boxes, leaving
limited flexibility in deeply adapting the reasoning pipeline to domain-specific
workflows. This characteristic makes Azure OpenAI an excellent choice for general-
purpose tasks and rapid integration, but potentially less suited for scenarios that
demand highly specialized reasoning chains or granular control over intermediate
steps.
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4.3 Azure Agents in AI Foundry
The second candidate we considered is Azure Agents in AI Foundry. This
framework is designed to create modular AI agents that can combine reasoning
with task orchestration. Figure 7.9 illustrates the AI Foundry interface, which
supports the configuration of different agents and their connections with enterprise
data sources and APIs.

One of the main strengths of Azure Agents lies in their modularity. They
allow the creation of workflows where the LLM reasoning can be combined with
deterministic steps, external API calls, or the invocation of other agents. This makes
the system highly adaptable to different business requirements and particularly
suited for scenarios where the agent must integrate with heterogeneous services
within the company.

Figure 4.4: Azure Agents

For our project, this flexibility translated into the possibility of connecting the
agent not only to knowledge bases but also to external systems, such as ticketing,
monitoring, or workflow management tools, through pre-defined connectors. This
enabled the design of end-to-end automation pipelines where the agent could
interpret a user request, enrich it with contextual data, trigger backend processes,
and return structured outputs, all in a single seamless interaction.

Another advantage is the support for conditional logic and branching workflows
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directly within the agent orchestration. This allows the implementation of complex
reasoning paths, prioritization of tasks, and handling of exceptional cases without
hardcoding them into the LLM itself. Such capabilities are particularly valuable
in enterprise contexts, where processes are often highly structured and need to
comply with internal policies and governance standards.

However, this flexibility comes with operational considerations. The config-
uration complexity is higher compared to simpler LLM APIs, requiring careful
design to avoid redundant or conflicting agent behaviors. Moreover, monitoring
and maintaining multiple interconnected agents demands robust logging, telemetry,
and alerting mechanisms to ensure that the system remains reliable and performant
over time. Finally, deployment in production environments requires attention to
security, network isolation, and identity management, which are all supported by
Azure but must be explicitly configured to meet enterprise standards.

In summary, Azure Agents in AI Foundry provide a highly modular and extensi-
ble platform for building sophisticated agents, combining reasoning, orchestration,
and integration with multiple services, but at the cost of increased configuration
and operational complexity.

4.4 Azure Bot Framework

The Azure Bot Framework is an optional component that can be employed as a
communication layer between user-facing platforms and AI services. Its primary
function is to capture user inputs, manage basic dialog flow, and forward requests
to the appropriate backend, effectively acting as a connector.

In our case, the framework was only considered at a high level, since Microsoft
Teams already offered a direct interaction channel and Copilot Studio later be-
came our preferred environment. However, the Bot Framework remains useful in
scenarios where Teams is not the target interface or when a custom client needs
to communicate with services such as Azure OpenAI or Azure Agents in AI
Foundry.

Among its advantages are flexibility in integration, the possibility to standardize
the communication layer, and built-in support for authentication and message
routing. These aspects make it suitable for enterprise environments where an
agent might need to serve multiple front ends. For our project, it served mainly
as a reference option rather than a core component, but it highlights the broader
ecosystem available within Azure for connecting conversational agents to different
clients.
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Figure 4.5: Azure Bot Framework

4.5 Final Choice
After conducting a detailed comparison of the three approaches, it became evident
that while each of them provides strong features and enterprise-grade capabilities,
the option that best aligned with our context was Copilot Studio. The evaluation
process was not limited to a technical benchmark of functionalities, but rather
considered a broader set of factors including ease of adoption, long-term sustain-
ability, integration with existing platforms, and total cost of ownership. From this
perspective, Copilot Studio emerged as the solution that provided the best balance
between technical robustness and organizational feasibility.

A major reason behind this choice was the natural integration of Copilot Studio
into the Microsoft 365 environment, and in particular Microsoft Teams, which was
already central to the daily operations of the company. Unlike other solutions
that required additional configuration layers or complex orchestration workflows,
Copilot Studio offered a more direct path to adoption, reducing the time needed to
deliver a working prototype and lowering the learning curve for employees. This
characteristic translated into a smoother user experience, where employees could
start interacting with the assistant in a familiar environment without needing
extensive training or onboarding.

Beyond usability, commercial and strategic considerations also played a crucial
role. By leveraging the existing Microsoft licensing model, the deployment of Copilot
Studio introduced minimal overhead compared to adopting additional third-party
solutions. This aspect reduced both the financial cost and the administrative
burden of managing extra platforms, making it easier for the IT department to
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support and govern the system. At the same time, aligning the solution with the
company’s broader Microsoft ecosystem strategy ensures long-term maintainability
and compatibility with future updates or extensions introduced by the vendor.

Figure 4.6: Copilot Studio

Another decisive element was the extensibility potential offered by Copilot
Studio. Although not explored in detail at this stage, its architecture allows the
gradual addition of connectors, workflows, and integrations with other enterprise
services. This flexibility means that the assistant can start from a well-defined scope
and progressively evolve in response to new requirements, without forcing disruptive
redesigns of the overall system. In this sense, Copilot Studio not only addresses
the immediate needs identified during the requirements gathering phase but also
provides a forward-looking framework that can accommodate future developments.

In summary, Copilot Studio was selected as the most suitable option because
it combines practical deployment advantages, cost-effectiveness, and strategic
alignment with the organization’s technology stack. While alternatives such as
Azure OpenAI and Azure Agents in AI Foundry offered significant capabilities,
they required either greater customization efforts or introduced complexity that
was not justified by the expected use cases. By contrast, Copilot Studio provided a
balanced solution capable of delivering value quickly while leaving room for gradual
expansion.

The following chapter will examine this choice in greater detail, presenting
the architectural principles, key features, and advantages of Copilot Studio, and
showing how it became the cornerstone of our LLM-based agent implementation.
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Chapter 5

Foundations of Artificial
Intelligence

5.1 Historical Foundations
Artificial intelligence, as we know it today, is the result of decades of exploration,
experimentation, and gradual evolution rather than a sudden breakthrough. Early
efforts in AI focused on symbolic reasoning and explicit rule-based systems. These
systems excelled in highly structured domains, such as theorem proving and expert
systems, where rules could be fully specified. However, their rigidity made them
ill-suited for tasks that required adaptability, generalisation, or understanding of
naturalistic data.

As computational resources and data availability increased, statistical methods
and early machine learning approaches gained prominence. Models could now learn
patterns from examples rather than relying solely on handcrafted rules. This shift
from knowledge engineering to data-driven techniques marked a crucial turning
point in AI research, enabling systems to tackle more complex and varied tasks.
In the domain of natural language processing, this evolution is reflected in the
progression from bag-of-words models, which captured simple word frequencies,
to word embeddings that represented semantic relationships in continuous space,
followed by transformer architectures that modelled contextual dependencies across
sequences, and ultimately to large language models (LLMs) capable of capturing
intricate patterns, context, and reasoning in text.

The emergence of deep learning further accelerated these trends: multi-layer
neural networks demonstrated unprecedented abilities in computer vision, speech
recognition, and natural language processing, establishing new benchmarks for
performance. This historical trajectory, from symbolic logic to statistical learning
and deep representation learning, laid the foundation for contemporary AI systems.
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In particular, it set the stage for transformer-based LLMs, which leverage massive
amounts of data to learn nuanced patterns in text. These models now form the
backbone of many modern AI applications, enabling sophisticated reasoning, fluent
language generation, and integration into agentic architectures capable of operating
in real-world enterprise environments.

5.2 From LLMs to Agentic Systems

Artificial intelligence in its modern form is dominated by data-driven, representation-
learning approaches, among which large language models (LLMs) occupy a central
role. These models, trained on massive corpora with self-supervised objectives,
possess an exceptional ability to model natural language and produce fluent, con-
textually appropriate continuations. When applied to tasks such as summarisation,
code generation or question answering, LLMs have demonstrated remarkable gen-
eralisation capabilities that make them powerful building blocks for conversational
systems. However, the raw generative paradigm has intrinsic limitations when
the objective is robust, auditable and safe operation within operational settings.
Models that are relied upon solely as generators tend to produce outputs that
prioritise linguistic plausibility over verifiable correctness. This gap manifests as
hallucination, a failure mode in which models assert facts or relationships that
are not supported by evidence. Hallucinations arise from a combination of factors,
including biases in training data, the absence of explicit grounding mechanisms
and the probabilistic nature of continuation models.

Prompt engineering Prompt engineering is a foundational technique to guide
LLMs toward producing more reliable, context-aware outputs. At its core, it involves
structuring inputs with clear instructions and providing illustrative examples
through few-shot prompting, which helps the model recognise patterns and adapt
its responses to a desired task. Zero-shot prompting, by contrast, challenges the
model to generalise purely from the instructions without examples, testing its
inherent ability to apply learned patterns to novel tasks. Role prompts can assign
the model a specific persona or domain expertise, ensuring responses are framed
appropriately for the intended context. Sampling parameters, such as temperature,
top-k, and top-p, offer additional control over output diversity, while system-level
instructions maintain consistency in style, tone, and behaviour. Together, these
methods help constrain the model’s generative space, improving both factual
correctness and linguistic coherence, though they remain inherently limited by the
model’s architecture and the data on which it was trained.
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Chain-of-thought and reasoning techniques To enhance reasoning capabili-
ties, advanced prompting methods encourage LLMs to explicitly articulate inter-
mediate steps before producing a final answer. Chain-of-thought (CoT) prompting
instructs the model to decompose complex problems into sequential sub-steps,
fostering logical reasoning and reducing errors that arise from skipped or implicit
inference. CoT can be combined with few-shot examples to illustrate structured
reasoning patterns, allowing the model to internalise the stepwise approach while
solving similar problems. Role-based prompts can additionally frame the model as
an expert or decision-maker in a given domain, further improving interpretability
and confidence in outputs where correctness and traceability are critical. In en-
terprise contexts, reasoning-enhanced prompts are particularly valuable for tasks
requiring multi-step problem solving, careful planning, or compliance with strict
operational standards.

Multimodal models and expanded reasoning Recent advances in AI have
introduced multimodal models that process and integrate multiple types of in-
put—such as text, images, structured data, and audio—allowing LLMs to extend
their reasoning capabilities far beyond traditional text-only models. By combining
information from diverse sources, these models can perform more complex and
contextually informed inferences, plan multi-step operations across heterogeneous
data, and ground their outputs in real-world domains with greater fidelity. The
integration of multimodal inputs not only enhances understanding and decision-
making, but also amplifies the importance of structured retrieval, tool interfaces,
and state management, laying the groundwork for agentic architectures where
complex input types must be handled reliably and outputs need to remain verifiable
and auditable.

Agentic architectures and MCP To address these shortcomings the com-
munity has increasingly adopted agentic architectures. In such designs the LLM
functions as the reasoning and language interface within a modular system where
retrieval modules, planners, tool interfaces and state managers implement spe-
cialised responsibilities. Retrieval components provide up-to-date, domain-specific
evidence that can be surfaced to the model and to end users. Planning components
decompose complex requests into explicit sub-tasks and determine execution order
and fallback strategies. Tool interfaces encapsulate interactions with external
systems and enforce input validation, authentication, and logging. State managers
and memory stores preserve long-term context across sessions. This separation of
concerns enables practical benefits: grounding via retrieval reduces the frequency
of hallucinated claims by anchoring responses to verifiable documents; planners
increase robustness for multi-step operations by making dependencies explicit;
and tool interfaces allow side-effecting actions to be executed with transactional
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semantics and audit trails.
Protocols such as the Model Context Protocol (MCP) instantiate these ideas by

providing typed contracts that describe available tools, expected inputs and outputs,
streaming behaviours and error semantics. MCP-style contracts decouple model
reasoning from execution semantics and allow operators to impose governance
policies while preserving the model’s flexible reasoning capabilities. The result
is a hybrid approach where the LLM remains the creative and reasoning engine,
but actions that could affect production systems are mediated by deterministic,
auditable software components. This architectural evolution is foundational to
the system described in this thesis and motivates many of the engineering choices
documented in later chapters.

ChatGPT-4 and enterprise agents An illustrative example of modern LLM
deployment is ChatGPT-4, which underpins Microsoft’s Copilot Studio. Here, the
model serves as a natural language interface that helps users orchestrate workflows
and interact with enterprise applications. Its role extends beyond text generation
to mediating tool interactions, demonstrating the shift from stand-alone LLMs to
embedded reasoning engines within larger ecosystems. The integration of ChatGPT-
4 into Copilot Studio highlights the balance between generative flexibility and the
need for oversight, grounding, and security mechanisms in enterprise settings.

5.3 Practical Considerations
Beyond model accuracy Bringing AI systems into production environments re-
quires attention to issues that extend beyond model accuracy. While achieving high
predictive performance is important, enterprise deployment demands consideration
of reliability, interpretability, and operational robustness. Prompt engineering,
together with advanced techniques such as chain-of-thought reasoning, few-shot
and zero-shot examples, ensemble prompts, self-consistency, and temperature/top-k
tuning, provides critical mechanisms to influence model behaviour in predictable
ways. For instance, carefully designed prompts can guide an LLM to reason step
by step, reduce hallucinations, or adopt a specific professional persona suited to
the enterprise workflow. In practice, these techniques must be embedded within
broader frameworks that include retrieval, validation, and governance, ensuring
that outputs are not only contextually accurate but also auditable, reproducible,
and aligned with organisational policies.

Retrieval-Augmented Generation and system design Retrieval-Augmented
Generation (RAG) bridges LLMs with domain-specific knowledge by dynamically
retrieving relevant information from curated indices to condition the model’s
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responses. This approach enhances transparency by making claims traceable
to source documents, and decouples knowledge updates from expensive model
retraining: updating the retrieval index is often sufficient to reflect changes in
the underlying knowledge base. However, RAG effectiveness strongly depends on
the quality of the retrieval pipeline, including index freshness, document chunking
strategy, embedding model selection, and re-ranking methods. Rigorous engineering
practices are essential to ensure reliable outputs: relevance scoring, entailment
verification, and provenance-aware presentation of retrieved content help mitigate
the risk of misinformation or contextually inappropriate answers. Thoughtful
integration of RAG into agentic systems also allows for access controls, content
redaction, and compliance with organisational policies, making it an indispensable
component of enterprise-ready AI architectures.

Security, fairness, and observability Safety, privacy, and fairness are central
concerns when deploying AI systems in production. Broadly trained models may
inadvertently reproduce harmful stereotypes, amplify bias, or expose sensitive
information if retrieval indices are poorly curated or access permissions are mis-
configured. Operational safeguards must therefore include sensitive content filters,
role-based access controls, and human-in-the-loop approvals for high-risk actions.
Observability and auditing are critical for maintaining accountability: detailed
logging of tool invocations, contextual inputs, user identity, model outputs, and
system responses enables forensic investigation, supports supervised fine-tuning,
and facilitates continuous monitoring for anomalous or unsafe behaviour. Moreover,
these practices allow organisations to track performance metrics over time, identify
potential vulnerabilities, and iteratively refine system policies to maintain both
ethical and operational standards.

Evaluation strategies Evaluation of agentic AI systems requires a multipronged
approach that combines automated testing, synthetic benchmarks, and human-
centered assessment. Unit and integration tests validate tool manifests, schema
conformance, and authorization flows, while telemetry and synthetic workloads
provide quantitative measures of latency, error rates, throughput, and resource
utilization under realistic operating conditions. Human evaluation is equally im-
portant: pilot deployments and controlled studies assess user experience, clarity,
explainability, trustworthiness, and the appropriateness of fallback strategies and
escalations. Collectively, these evaluation practices ensure that AI agents meet
functional requirements while also supporting softer dimensions such as user confi-
dence, transparency, and organisational fit. Continuous monitoring and iterative
refinement of both model behaviour and system interfaces are necessary to adapt
to evolving operational demands and maintain high standards of performance and
reliability.
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Regulatory landscape The European Union’s AI Act represents a milestone
in codifying responsibilities and safeguards for high-risk AI systems, influencing
the design, deployment, and governance of enterprise AI agents. By mandating
transparency, audit trails, human oversight, and documentation of risk management
processes, the Act imposes clear obligations on both developers and operators.
Enterprise AI agents, particularly those interacting with sensitive data or performing
actions with potential legal or safety implications, must incorporate comprehensive
logging, strict access controls, verifiable execution paths, and mechanisms for human
intervention. Compliance with such regulations reinforces the need to integrate
governance and accountability directly into system architectures, ensuring that AI
foundations encompass not only technical performance but also ethical, legal, and
organisational considerations from the outset.
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Chapter 6

The Conversational Layer:
Implementation with
Microsoft Copilot Studio

Copilot Studio represents a natural evolution in the use of artificial intelligence
within the modern workplace. It does not present itself as yet another static tool,
but rather as a system that adapts to the user’s needs. Through a conversational
interface, it enables the creation, management, and customization of virtual assis-
tants in an intuitive way, without requiring complex coding skills. Embedded within
the Microsoft ecosystem, Copilot Studio integrates seamlessly with Teams, Out-
look, and other enterprise applications, allowing users to automate tasks, retrieve
information, or orchestrate workflows with ease.

Among its key capabilities, Copilot Studio offers integration with knowledge
sources through retrieval-augmented generation (RAG), allowing assistants to
access and reference content from SharePoint, which is capable of automatically
indexing the file you give to it. It also provides built-in analytics to monitor usage
and performance, offering insights into user interactions. Additionally, it supports
custom actions, enabling bots to trigger workflows or external services as part of a
conversation.

6.1 Retrieval-Augmented Generation
One of the most impactful capabilities introduced in Copilot Studio is the use of
Retrieval-Augmented Generation (RAG), a technique that significantly enhances
the assistant’s ability to provide accurate and context-aware responses. At its
core, RAG allows the virtual agent to access external knowledge sources in real
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Figure 6.1: SharePoint Rag

Figure 6.2: SharePoint folder

time, retrieve relevant content, and use it to generate more informed and grounded
answers.

In the context of Copilot Studio, RAG is primarily used to extend the assistant’s
knowledge beyond pre-defined prompts or static data. Instead of relying solely
on what is built into the assistant at design time, RAG enables dynamic access
to enterprise documents, guidelines, FAQs, and other internal resources. This
proves especially useful in large organizations, where institutional knowledge is
often scattered across platforms and formats.

The integration with SharePoint plays a central role in this process. SharePoint
document libraries and pages can be connected as data sources, allowing Copilot
Studio to retrieve content directly from these repositories when answering user
queries. This means that a user can, for example, ask a question about a company
policy or procedure, and the assistant will respond based on the most recent version
of the document stored on SharePoint without the need for manual updates or
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hardcoded answers.
To mitigate hallucinations, the assistant relies on strict retrieval scoring and

ranking to surface high-quality documents and always displays provenance (source
snippets and links) alongside generated answers. A conservative answer policy is
enforced: when confidence is low the assistant replies with an explicit uncertainty
message (e.g., “I’m not sure”) and offers to escalate or open a ticket for human
follow-up. These measures reduce incorrect assertions and provide traceability for
auditing and manual verification.

Figure 6.3: The piece of text inside the file in SharePoint

Figure 6.4: The actual Copilot response

6.1.1 Extraction from Jira
To populate the RAG index, we began with a raw export of the Jira instance for
our project and implemented an exploratory extraction and conversion pipeline to
produce PDFs suitable for SharePoint ingestion. This approach was motivated by
the practical need to consolidate institutional knowledge, which primarily resided
in Jira tickets, including descriptions, comments, and attachments, without any
unified documentation. The pipeline provides a reproducible method to collect,
normalize, and surface this content for retrieval within the AI assistant.

High-level workflow The pipeline was organized in several sequential stages.
Initially, the Jira export, available in JSON or CSV format, was loaded into a data
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analysis environment, such as a Jupyter notebook, to inspect projects, issue types,
fields, and attachments. Given the absence of formal documentation regarding Jira
organization, an iterative exploration of projects, components, labels, and custom
fields was performed to identify relevant sections and subsections, for instance
project keys, epic links, or subsets of components containing design notes.

For each relevant issue, canonical text fields, including summary, description,
comments, and changelog entries, were extracted and normalized by stripping
HTML or converting markdown-like markup to plain text or HTML. Attachments
referenced by issues, such as images, documents, and archives, were downloaded
using authenticated HTTP requests against Jira endpoints. Non-PDF attachments,
including Markdown, HTML, and Word documents, were converted to PDF using
utilities such as pandoc, wkhtmltopdf, or headless LibreOffice to ensure uniform
storage in SharePoint; native PDFs were retained unchanged. Each PDF was
accompanied by a metadata sidecar in JSON format containing provenance in-
formation, such as the original issue key, attachment ID, author, creation and
modification dates, source URL, and a short extracted snippet. Finally, the pro-
cessed PDFs and metadata were uploaded into a dedicated SharePoint document
library, organized according to a predictable folder structure, and indexed either via
the organization’s ingestion connector or directly by a dedicated script to produce
text chunks, compute embeddings, and populate the vectorstore used during query
time.

Practical notes from the notebook The pipeline was implemented in a Jupyter
notebook (DumpJIRA.ipynb), where several practical heuristics proved valuable.
Exploratory filtering involved computing value counts for fields such as project,
component, labels, and issuetype to locate dense regions of useful textual con-
tent. The attachment downloader incorporated retry mechanisms with exponential
backoff to handle transient HTTP errors, logging any failures for later reattempt.
Conversion rules were standardized: pandoc was preferred for Markdown to PDF,
wkhtmltopdf for HTML pages to preserve layout, and headless LibreOffice for
office formats. Filenames were normalized, and problematic characters removed.
Metadata was carefully designed to include original Jira identifiers, ensuring trace-
ability for audit purposes and enabling user-facing provenance display in Copilot
responses. For RAG preparation, text was split into overlapping chunks (e.g.,
800-token segments with 150-token overlap) to maintain context continuity across
retrieval boundaries.

SharePoint ingestion and RAG indexing Once uploaded, the documents
were surfaced via the organization’s SharePoint connector for Copilot Studio.
Additionally, a dedicated ingestion step was performed, in which documents were
downloaded from the target SharePoint folder, textual content was extracted
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(including OCR for image-only PDFs when necessary), and chunking was applied
at the sentence or paragraph level with overlap. Embeddings were then computed
using the selected model, and vectors and metadata were stored in the chosen
vectorstore, such as FAISS, Milvus, or Azure Cognitive Search with vector indexing.
Metadata fields, including issue key, attachment ID, and original URL, were
preserved alongside each vector to guarantee provenance and provide direct links
to the original Jira artifacts in Copilot responses.

Limitations and future work The heterogeneous content and inconsistent use
of fields within the Jira dump necessitated some manual curation, for example to
exclude ephemeral or test issues. Automated heuristics for filtering low-quality
pages, such as very short issues or test tickets, improved retrieval precision. Future
iterations should consider scheduling incremental crawls to ingest newly created
Jira tickets and attachments, implementing a light quality assurance pass combining
automated filters with brief manual review before promoting documents to the
production RAG index, and maintaining a mapping registry linking SharePoint
paths to Jira keys to facilitate traceability and potential rollback.

6.2 Analytics

Figure 6.5: Analytics
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Copilot Studio provides a comprehensive analytics dashboard that allows creators
and administrators to monitor the performance, usage, and overall health of their
virtual assistants. This functionality is particularly valuable in enterprise contexts,
where understanding user interactions and identifying potential issues is critical to
ensure adoption and effectiveness. Among the key metrics available are the total
number of sessions initiated, the volume and type of user messages, the frequency
with which specific topics or intents are triggered, and conversation abandonment
rates. By analyzing these indicators, developers can gain insights into how users
engage with the assistant, identify recurring patterns, and detect points where the
interaction flow may break down or require refinement.

In addition to quantitative metrics, Copilot Studio offers qualitative tools for
assessing response quality and user satisfaction. For instance, unhandled questions
can be automatically grouped into thematic clusters, allowing developers to rec-
ognize gaps in the assistant’s knowledge base or reasoning capabilities. Moreover,
user feedback can be collected directly within conversations through embedded
rating prompts or satisfaction surveys. These mechanisms can be orchestrated via
Power Automate flows, enabling the automated collection, storage, and aggrega-
tion of feedback data, which is crucial for continuous improvement and iterative
development cycles.

Figure 6.6: Analytics

From an enterprise perspective, such analytics not only support the enhancement
of user experience but also facilitate compliance, monitoring, and reporting require-
ments. Advanced users can export the analytics data and integrate it with business
intelligence platforms such as Power BI, creating customized dashboards, trend
analyses, and alerts for anomalous behavior. This enables both technical teams
and management to track adoption, evaluate the impact of the assistant, and make
data-driven decisions regarding future enhancements or deployment strategies.
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Furthermore, analytics insights play a pivotal role in maintaining conversational
quality over time. By monitoring session duration, user engagement, and the
distribution of topics, teams can optimize training datasets, adjust intent recognition
models, and refine response generation strategies. Such continuous monitoring
ensures that the virtual assistant remains aligned with organizational objectives,
adapts to evolving user needs, and contributes positively to workflow efficiency.

Figure 6.7: Rating promt

Overall, the analytics framework within Copilot Studio provides a rich and
flexible set of tools that bridge the gap between user behavior, operational metrics,
and actionable insights. It empowers organizations to systematically evaluate
the performance of AI agents, drive iterative improvements, and maintain a high
standard of user-aligned conversational experiences in production environments.
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Figure 6.8: Tools

6.3 Agentic Tools
Within Copilot Studio, multiple integration options are available to extend the
assistant’s functionality, enabling the system to interact with external services,
internal databases, and custom workflows. These tools are critical in connecting
conversational intelligence with actionable enterprise processes, allowing virtual
assistants to perform operations beyond mere question-and-answer interactions.
The choice of tools directly impacts the agent’s capabilities, maintainability, and
scalability, and therefore constitutes a central design consideration.

Broadly, these integrations can be divided into two main categories: prebuilt
low-code tools provided by Microsoft or third-party vendors, and fully custom tools
developed through APIs. Prebuilt tools offer a convenient starting point, as they
provide ready-made connectors and actions for common tasks such as sending emails,
scheduling Teams meetings, querying external services, or interacting with internal
enterprise systems. These solutions are typically accessible via Power Automate
flows, which simplify configuration and reduce the need for extensive programming
expertise. However, while initially straightforward, prebuilt tools can become
limiting as business requirements evolve. Adjusting workflows, handling edge cases,
or troubleshooting unexpected behavior often requires deeper intervention, and
the visibility into internal logic is limited, which can complicate maintenance and
debugging.

Custom tools, on the other hand, provide greater flexibility and control. By
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exposing proprietary APIs and integrating them directly into Copilot Studio, de-
velopers can design precise business logic, access specialized data sources, and
orchestrate complex workflows tailored to the organization’s needs. This approach
supports more sophisticated automations, enabling the assistant to act as an inter-
mediary between various enterprise systems. The trade-off lies in the management
overhead: each API must be represented as a separate tool, requiring ongoing
monitoring, versioning, and documentation. As the number of APIs grows, the
complexity of maintaining and debugging the assistant can increase substantially,
necessitating careful governance and development practices.

Figure 6.9 illustrates an example of how Copilot handles standard prebuilt
tools, showing the interface for configuring and managing actions. This highlights
the intuitive visual environment provided by the platform, which supports rapid
prototyping and iterative testing, while also demonstrating the limits of low-code
solutions when enterprise-specific customization is needed.

Overall, the tools ecosystem in Copilot Studio offers a spectrum of options,
ranging from ease-of-use with low-code connectors to full programmability with
custom APIs. Design decisions must balance flexibility, maintainability, and the
operational context of the assistant, particularly when aiming to integrate AI agents
into real-world enterprise workflows.

6.3.1 Low-code tools (Microsoft and third-party)

Figure 6.9: This shows how Copilot handles standard pre-built tools

The Microsoft ecosystem and its certified partners provide a rich set of low-
code connectors and actions, often accessible directly via Power Automate
flows. These tools enable rapid integration of standard enterprise operations such
as sending emails, scheduling meetings in Teams, or querying commonly used

39



The Conversational Layer: Implementation with Microsoft Copilot Studio

services like weather, stock, or database APIs. For teams with limited development
resources, low-code tools offer an immediate way to make the assistant operational,
significantly shortening time-to-value.

However, despite their convenience, low-code solutions have intrinsic limitations.
Once initial configurations are in place, even minor changes in business logic or
workflows can become cumbersome. The underlying implementation is largely
abstracted, which reduces transparency and makes debugging unexpected behavior
challenging. Moreover, low-code tools often struggle with complex orchestration
scenarios, where multiple dependent actions need to be coordinated reliably across
different systems. In practice, this can hinder the assistant’s scalability and restrict
its ability to adapt to evolving enterprise needs.

6.3.2 Custom tools via APIs

Figure 6.10: Custom API REST tool

Custom tools represent the most versatile option for extending Copilot Studio’s
functionality, as they are developed by exposing proprietary APIs and integrating
them directly within the platform. Unlike low-code connectors, which rely on pre-
defined actions and workflows, custom APIs provide full control over the assistant’s
operations. Every component of the interaction pipeline—from input validation
and authentication to the execution of business logic—can be explicitly modeled,
ensuring that the assistant adheres precisely to enterprise requirements. This
approach is particularly beneficial when dealing with proprietary systems, legacy
applications, or sensitive data sources that are not supported by standard connectors.
Through API integration, the assistant can operate as an orchestrator, mediating
between heterogeneous enterprise services and enabling advanced workflows that
would otherwise be impossible to implement.
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The advantages of this strategy are strongly tied to its flexibility. Custom APIs
allow for the implementation of domain-specific logic, the extension of existing
enterprise applications, and the creation of new services tailored to organizational
needs.

Figure 6.11: How the API works with Copilot

Furthermore, they enable fine-grained access to internal databases and pro-
cesses, ensuring that the assistant can provide targeted, context-aware functionality.
Figure 7.9 illustrates an example of a custom REST API configuration, while
Figure 6.11 highlights how APIs are orchestrated within Copilot Studio, showcasing
the system’s ability to handle sophisticated enterprise operations. These visual
examples demonstrate not only the technical feasibility of API-based tools but
also their central role in bridging conversational intelligence with enterprise IT
infrastructure.

However, the flexibility of custom APIs comes with significant management
overhead. Each API endpoint must be carefully represented within the Power
Platform, with detailed configurations for authentication, error handling, and
data mapping. As the number of APIs integrated into the system increases, the
complexity of managing them also grows. This includes tasks such as monitoring
endpoints, ensuring compatibility across different versions, and documenting the
interfaces to support maintainability. Additionally, coordination across development,
DevOps, and support teams is essential, as errors or version mismatches can directly
disrupt the assistant’s behavior in production environments.

The trade-off, therefore, lies between flexibility and operational complexity.
While custom APIs make it possible to design highly specialized tools capable of ad-
dressing unique enterprise needs, they also demand a robust governance framework
to ensure stability and scalability. Without proper lifecycle management, including
regular updates, logging, and systematic debugging procedures, the assistant may
become difficult to maintain over time. In highly dynamic business contexts, this
burden can reduce agility, slowing down iteration cycles and complicating the
deployment of new features. For these reasons, organizations adopting custom
APIs must complement their technical implementation with structured governance
models and best practices for API management.
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Table 6.1: Comparison between Low-Code Tools and Custom APIs in Copilot
Studio

Aspect Low-Code Tools Custom APIs
Ease of Devel-
opment

Intuitive drag-and-drop con-
figuration, no coding re-
quired. Suitable for rapid
prototyping.

Requires programming
knowledge and integration
effort. Slower to implement
initially.

Flexibility Limited to predefined con-
nectors and templates pro-
vided by Copilot Studio.

Fully customizable, capable
of handling complex and
domain-specific workflows.

Maintenance Low maintenance; updates
are handled by the platform.

Requires continuous mainte-
nance and version manage-
ment.

Scalability Well-suited for simple use
cases with small to medium
workloads.

Can scale to enterprise-
grade solutions and inte-
grate with heterogeneous
systems.

Learning
Curve

Very low, accessible to non-
technical staff.

High, developers need exper-
tise in APIs, authentication,
and security.

Limitations Restricted extensibility; can-
not cover all business re-
quirements.

Higher cost of development
and risk of integration com-
plexity.

6.3.3 Towards a new approach
To address the limitations of both low-code and custom API approaches, we
explored a more scalable and developer-friendly paradigm: the Model Context
Protocol (MCP). Unlike traditional integration methods, MCP introduces a
structured protocol for defining, exposing, and consuming external capabilities
within conversational systems. It allows AI assistants to access a wide range of
functionalities, whether internal services, data stores, or third-party APIs, without
being tightly coupled to the low-code framework or requiring individual tool
definitions for every endpoint.

The MCP approach provides several practical benefits. It decouples the assis-
tant’s reasoning logic from external services, simplifying maintenance and enhancing
modularity. It also enables more dynamic workflows, where tools can be invoked
based on context, user intent, or agent reasoning, rather than being hardcoded into
fixed sequences. From a project perspective, adopting MCP allowed us to build
a more flexible, testable, and scalable system, while retaining the possibility of
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connecting both prebuilt and custom functionality. Overall, this paradigm aligns
well with enterprise needs for maintainable, extensible, and context-aware AI agents,
particularly in environments where multiple teams or services must coexist and
evolve independently.
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Implementing the
Orchestration Layer: A
Custom Model Context
Protocol Server

Figure 7.1: MCP

The Model Context Protocol (MCP) is an open specification designed to connect
AI applications with the systems that hold relevant contextual data and tooling.
Rather than relying on bespoke or ad-hoc integrations for every new assistant or
environment, MCP defines a small set of interoperable primitives (servers, tools,
resources, prompts and discovery mechanisms) that allow models and clients to
find and consume functionality and data in a predictable, secure way. By providing
a standardized interface for tool discovery, invocation and context sampling, MCP
reduces integration overhead and enables the same external capabilities to be reused
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across different assistants and platforms.

7.1 Origins

MCP emerged from community efforts to make AI assistants practical for real-
world workflows by giving them safe, auditable access to the user’s environment
(files, APIs, task trackers, etc.). The driving motivation was to avoid brittle,
single-vendor integrations and instead define a transport-agnostic protocol that
any client or server can implement. Early adopters and implementors include
a mix of open-source projects, desktop clients, IDEs and commercial platforms;
this ecosystem-driven growth has allowed MCP to evolve rapidly while keeping
implementation complexity low.

Historical context and goals. Beyond the immediate pragmatic need for
interoperability, MCP was shaped by three complementary goals: (1) portability —
make tools usable by different assistant implementations without per-client rewrites;
(2) auditable automation — provide clear provenance for model-driven actions; and
(3) incremental adoption — allow systems to implement a minimal subset of the
protocol and progressively expose more capabilities. These goals explain design
choices such as typed tool schemas, lightweight discovery mechanisms and optional
streaming transports.

Adoption dynamics. Because MCP is specification-first and transport-agnostic,
adoption tends to follow a multi-stage path: local developer experimentation
(stdio/CLI servers), integrations into developer tools (IDEs, local assistants), and
finally cloud-hosted registries and managed MCP servers for enterprise scenarios.
This staged adoption lowers the bar for experimentation while enabling more
mature deployments to adopt additional governance and access-control features.
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7.2 Core concepts and architecture

Figure 7.2: Architecture

Core concepts. The Model Context Protocol (MCP) is built around a set of
well-defined core concepts that work together to separate concerns in a modular
and extensible way. At its foundation, MCP introduces the notion of servers,
which are long-running services responsible for exposing tools, resources, and
prompt templates. These servers may operate locally, for instance as processes
communicating through standard input and output, or they may be deployed
remotely and accessed over HTTP or Server-Sent Events (SSE). In both cases, their
role is to act as providers of functionality and context that can later be discovered
and consumed by clients.

On the other side of the architecture stand the clients. These are applications
that connect to servers in order to discover the capabilities they expose. Clients
can then present these capabilities either to users or to language models, enabling
them to invoke the tools offered by the servers. The relationship between servers
and clients is intentionally flexible: servers evolve independently as long as they
continue to honour the primitives defined by the protocol, while clients act as
orchestrators that decide when and how to make use of the exposed capabilities.

Among the key elements provided by servers are the tools, which represent
discrete operations that can be performed. A tool might allow searching within a
document store, running a database query, or creating an issue in a tracking system.
Each tool is accompanied by a schema and metadata describing its expected inputs
and outputs, so that clients and models can reason about when and how to invoke
it. Alongside tools, servers can also expose resources or prompts. These may
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consist of static documents or parameterized prompt templates that can be used
as contextual grounding, or as part of elicitation strategies when interacting with a
model.

A final architectural component concerns the mechanisms of discovery and
sampling. Discovery allows a client to enumerate all available tools and resources,
while sampling introduces the possibility of retrieving a focused subset of context
that is most relevant to the current query. Sampling often provides only partial
or non-sensitive previews, enabling a conservative approach where decisions about
whether to proceed with side-effecting operations can be deferred until explicit
confirmation is obtained. This separation between preview and invocation is central
to MCP’s design philosophy: it reduces the risk of unintended operations, supports
human-in-the-loop workflows, and simplifies failure recovery because actions are
explicit and auditable.

Decision boundaries. The protocol therefore encourages explicit decision points
in the overall orchestration: first discover what exists; then sample lightweight
contextual material (metadata, short excerpts, schema-driven examples) to form
a preliminary judgement; and finally perform an invocation only when sufficient
confidence or authorization is present. In practice this pattern supports a variety of
enterprise workflows. For example, when a user asks the agent to locate a document,
the client can request sampled excerpts of candidate files, present these excerpts
either to the model or to the user for confirmation, and only after a confirmation
step perform a deeper retrieval or a side-effecting action such as sharing a document
link or creating a ticket. Such staged interaction reduces the surface area of sensitive
data exposure and makes the execution of side effects predictable and controllable.

Schema-driven interactions are another founding principle with strong UX and
safety implications. Tools declare input and output schemas using typed, JSON-
like descriptions. Clients can leverage these schemas to render structured input
forms for users, validate inputs generated by models, and provide UI affordances
such as required-field indicators, type hints, and constrained value pickers. From
a developer’s perspective, schema-first design dramatically reduces integration
friction: a well-formed schema makes a new tool immediately usable across different
client UIs without bespoke interface code. From an operational standpoint, schemas
enable automatic validation of model outputs before they are translated into actual
API calls, thereby catching malformed requests early and preventing many classes
of runtime errors.

Operational aspects. Security and governance concerns are woven throughout
the MCP model. Authentication and authorization are enforced at the level of server
endpoints and client connections, and the protocol design encourages least-privilege
exposure of capabilities. Sampling mechanisms are intentionally conservative:
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previews are often truncated, redacted, or metadata-only so that sensitive payloads
are not inadvertently transmitted to models or clients without explicit consent.
Additionally, manifest and tool metadata can include policy annotations that clients
must interpret: for example, which roles are allowed to invoke a tool, whether
invocation requires multi-factor confirmation, or if an operation should be logged at
higher fidelity for audit purposes. These features make MCP suitable for enterprise
deployments where compliance, data residency and role-based access control are
first-class requirements.

Operational aspects such as transport selection, streaming behaviour, and
long-running operations are also important design considerations. MCP supports
multiple transport adapters: stdio is convenient for local development and de-
bugging, while HTTP/SSE or WebSocket transports are preferable for remote,
production-grade deployments where streaming partial results and progress updates
are required. Long-running tools can emit incremental outputs or progress events;
clients can display these streaming updates to users, provide the option to cancel
operations, and manage reconnection semantics. This streaming-first mindset helps
implement responsive UIs for potentially slow tasks such as large-scale document
indexing, batch processing, or complex external API orchestration.

Versioning, compatibility and testing are critical to maintain a healthy ecosystem
of servers and clients. Manifests and tool schemas should be treated as contracts:
changes to schemas must be coordinated, documented, and properly versioned to
avoid breaking consumers. The recommended practice is to include contract tests
in continuous integration pipelines, spawn ephemeral servers during automated
tests, and employ mock servers where necessary to validate client behaviour. Such
testing practices ensure that evolution of server capabilities does not lead to silent
regressions in production client UIs or automated flows.

Observability rounds out the architecture. Servers and clients should emit
structured logs, metrics, and tracing information that capture discovery events,
sampling requests, invocation attempts, authorization checks, and the lifecycle of
streaming responses. Provenance metadata—caller identifiers, timestamps, tool
identifiers and request IDs—should be attached to outputs to enable post-hoc
analysis, auditing and debugging. Centralized dashboards and alerting systems
help teams detect anomalies such as sudden increases in failed invocations, repeated
schema validation errors, or suspiciously frequent sampling of sensitive documents.

Finally, the layered MCP design naturally supports incremental adoption and
future extensibility. Teams can start by exposing a handful of read-only tools
and sampling-enabled resources to demonstrate value and evaluate governance
implications. Over time they can add side-effecting tools, implement richer or-
chestration, and introduce more advanced prompts and template resources, all
while preserving the client-side abstractions that make the system predictable to
end users. A typical interaction under MCP therefore looks like a composed flow:
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the user asks a question, the client discovers relevant tools, the client samples
contextual material, a model (or the client) reasons about whether a tool invocation
is warranted, and, subject to policy and confirmation, an invocation is executed and
its results incorporated into a final, user-facing answer. This architecture balances
flexibility with control, enabling powerful agent behaviours while respecting the
operational constraints of enterprise environments.

7.3 Transports, formats and typical deployments

Figure 7.3: Context and Goals

The Model Context Protocol (MCP) has been conceived to operate across very
different deployment environments, from lightweight local prototypes to large-
scale enterprise services hosted in the cloud. This versatility is reflected in the
variety of transports it supports, each with its own advantages and trade-offs. The
most basic transport relies on STDIO, where a local process communicates over
its standard input and output streams. This approach is extremely convenient
for development, debugging, and privacy-preserving use cases, since all the data
remains confined to the local machine. It is also appealing for scenarios where
users or organizations want to experiment with new tools or workflows without
setting up complex infrastructure. At the same time, STDIO communication is
inherently limited to single-machine contexts, meaning it cannot easily be scaled
to multi-user or distributed environments. For those larger-scale scenarios, MCP
servers are typically deployed as remote services accessible over streamable HTTP
endpoints or through Server-Sent Events (SSE). These protocols are particularly
suited to long-lived connections, where results can be streamed incrementally and
clients are kept updated about the state of ongoing operations in near real time.
This is especially valuable in workflows where tasks may take minutes or even
hours to complete, such as indexing a large corpus of documents or performing
multi-step reasoning across multiple external APIs. Finally, for situations in which
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low latency interaction is not critical, or where the goal is simply to invoke a
single operation and retrieve its result, more traditional simple HTTP APIs can
be employed. This option sacrifices streaming capabilities but offers a lightweight
and widely compatible solution that can be integrated into existing web services
with minimal friction.

Performance and reliability considerations. The choice of transport mecha-
nism has direct implications for performance, reliability, and operational resilience.
Local STDIO transports are attractive because they eliminate network hops, thus
reducing latency and minimizing the attack surface for sensitive data. They are par-
ticularly effective in privacy-conscious environments, where keeping data on-device
is a hard requirement. However, their utility is confined to scenarios where a single
machine can handle the workload, limiting scalability and collaboration across
teams. In contrast, remote deployments using HTTP or SSE enable multi-user
access, distributed operation, and cloud-scale architectures, but they also introduce
complexity. Engineers must account for connection drops, network partitions, and
transient failures. Long-running tasks may require timeout management, periodic
heartbeat messages, or progress updates so that clients do not assume the connec-
tion has stalled. Robust implementations therefore make use of mechanisms such as
exponential backoff for retries, operation identifiers for ensuring idempotency, and
health-check endpoints to provide external monitoring systems with reliable indica-
tors of system status. In practice, these considerations are not merely theoretical:
in enterprise environments, failure to address them can quickly lead to cascading
issues where stalled requests, duplicate invocations, or unmonitored crashes com-
promise the stability of the whole system. MCP’s design therefore encourages a
systematic approach to reliability that combines protocol-level guarantees with
best practices in distributed system engineering.

Interoperability and content negotiation. Beyond performance, another
cornerstone of MCP’s design is interoperability. Because MCP is intended to be
transport-agnostic, it cannot assume that all clients and servers will share the
same technical environment or evolve at the same pace. To deal with this, the
protocol relies on explicit content negotiation mechanisms that allow participants
to agree on schema versions, supported features, and encoding formats before any
substantive interaction takes place. Metadata and schemas are always described
using structured JSON, but binary payloads can be optionally transmitted through
mechanisms such as multipart messages or base64 encoding when large attachments
are involved. This design choice ensures that even complex workflows, such as
retrieving a large document or passing along a media file for analysis, can be
handled in a standardized way. Equally important is the strategy for schema
evolution. In real-world deployments, servers inevitably add new capabilities, refine
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existing tools, or deprecate older ones. Without careful planning, such changes
can break existing clients, leading to downtime or unpredictable behaviour. MCP
addresses this risk by encouraging explicit version fields, clear deprecation warnings,
and soft-compatibility modes that allow clients to gracefully handle unfamiliar
schema elements. This makes it possible for organizations to upgrade incrementally,
introducing new tools or formats without forcing an immediate migration across
all consumers. The result is a protocol that is not only technically robust but also
operationally sustainable, providing a path for long-term evolution while protecting
stability in production environments where reliability, compliance, and backward
compatibility are essential.

7.4 Security, privacy and permissions

Figure 7.4: OAUTH 2.0

MCP explicitly recognises the sensitivity of enabling models to act on user systems
and treats authorization as an important cross-cutting concern. When HTTP-
based authorization is enabled, MCP relies on OAuth (the specification refers to
OAuth 2.1 / OAuth 2.0 families and related RFCs) and classifies MCP servers as
OAuth resource servers and MCP clients as OAuth clients. In practice this means
the protocol defines how servers advertise their authorization servers (Protected
Resource Metadata) and how clients discover and interact with those authorization
endpoints.Token handling and validation are central requirements. MCP servers
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acting as resource servers must validate access tokens according to OAuth rules
(for example OAuth 2.1 §5.2) and reject invalid or expired tokens with appropriate
HTTP responses, such as 401 for unauthorized, 403 for insufficient scopes, or 400
for malformed requests. Access tokens must never be sent in query strings; they
must be presented in the Authorization header and stored and rotated securely.
These requirements reduce token-theft risk and make it possible to reliably attribute
actions to authenticated principals.

Audience binding and resource indicators are mandatory safeguards. MCP
requires clients to include the ‘resource‘ parameter (RFC 8707) when requesting
tokens and requires servers to verify that received tokens were issued specifically
for that server (audience validation). Accepting tokens intended for other resources
or forwarding unvalidated tokens to downstream APIs (token passthrough) creates
"confused deputy" vulnerabilities and is explicitly forbidden by the MCP guidance.
Implementations must therefore validate audience claims and avoid passing client-
supplied tokens to other services without fresh, server-obtained credentials. OAuth
operational safeguards are required in authorization flows. All authorization end-
points must be served over HTTPS, redirect URIs must be pre-registered and either
localhost or HTTPS, and clients should use PKCE to protect the authorization-
code flow. Public clients should rotate refresh tokens and authorization servers are
encouraged to issue short-lived access tokens to reduce the blast radius of leaked
credentials. Additionally, clients and servers must use standard metadata discovery
(RFC8414 / RFC9728) and ‘WWW-Authenticate‘ headers to guide clients through
error and discovery flows.

Consent, scoping and least privilege are fundamental principles. Beyond simple
interactive confirmations in the UI, production deployments should apply fine-
grained permissioning, including per-tool scopes, role-based access control, temporal
tokens, and per-user or per-client quotas. UI surfaces must clearly present the
trust boundary, indicating what data will be shared with a remote server and
which tools are local-only, and request explicit consent before any side-effectful
operation. Audit trails and provenance metadata should be recorded for every
tool invocation so that actions can be traced and, where feasible, reversed. Local-
first and transport-specific guidance is also provided: MCP treats authorization
as transport-dependent, so HTTP(S)-based transports should follow the OAuth-
based authorization specification, whereas STDIO or local transports should not
implement the HTTP authorization flow and instead obtain credentials from the
environment, for example using local secrets, OS key stores, or host-managed
credentials. This allows private or local deployments to avoid sending sensitive data
to external authorization servers while still enabling secure cloud-hosted scenarios.

Operational recommendations, which in the original text were presented as a
checklist, can be described discursively as follows. All authentication endpoints
should use HTTPS and have redirect URIs precisely registered. Authorization
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code flows should implement PKCE, and public clients should rotate refresh
tokens regularly. Tokens must be stored securely, with preference for short-lived
access tokens, and incident response playbooks should include procedures for token
revocation and rotation. Clients and servers should expose clear UI consent prompts,
maintain detailed provenance logs for auditing, and provide users with mechanisms
to review and revoke permissions.

Granular permissioning and trust boundaries are further emphasized beyond
binary allow/deny confirmations. Production deployments benefit from more
nuanced policies, including per-tool scopes, role-based access control, temporal
tokens with short lifespans, and throttling quotas per client or per-user. Clients
should present clear indications of trust boundaries, showing what data will be sent
to remote servers and which tools are local-only, and offer mechanisms to audit
past actions explicitly. Defensive programming is required because MCP allows
models to request or manipulate external state: servers and clients should validate
all inputs against declared schemas, enforce rate limits, and implement circuit-
breakers for repeatedly failing tools. Clients should maintain a secure, append-only
audit trail containing tool identifiers, inputs, user confirmations, timestamps, and
returned outputs, enabling post-hoc review and rollback when needed.

Finally, data minimisation and telemetry principles should be applied whenever
observability is collected. Metrics on error rates, latencies, and feature usage should
avoid logging full user payloads, sensitive fields should be masked, and clients
should provide opt-in or opt-out controls. Whenever possible, aggregated metrics
should be preferred over per-request payload retention, balancing operational needs
with the protection of user privacy.

7.5 SDKs
A variety of SDKs exist to help developers both implement MCP servers and
connect clients to remote MCP servers. Commonly maintained SDKs include
Python and TypeScript/Node libraries, and other language bindings may be
available or community-contributed. These SDKs encapsulate recurring concerns
such as discovery, transport handling, schema validation, streaming, authentication,
and provenance, so developers can focus primarily on implementing tool logic rather
than low-level protocol plumbing. A typical language-agnostic developer workflow
involves defining a server manifest (for instance, mcp.json) listing tools, resource
endpoints, and authentication requirements, then implementing tool handlers in
a language-idiomatic way and registering them with a local server or a remote
HTTP/SSE endpoint using SDK helper functions. On the client side, developers
use the SDK to discover available tools, present them to the model or end user, and
orchestrate tool calls while performing validation and handling user-consent flows.
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SDKs, whether Python, TypeScript, or others, provide utilities that cover
manifest parsing, transport adapters for stdio, SSE, and HTTP, schema-driven
request/response validation, streaming helpers for long-running operations, and
small UI integration helpers such as form rendering hints or JSON-schema →
form metadata mappings that simplify client implementations. Python SDKs
are often chosen for server-side tooling, rapid prototyping, and integrations that
run on desktops or developer machines, frequently including simple stdio server
scaffolds and ephemeral testing helpers suitable for CI pipelines. TypeScript/Node
SDKs are popular for web and IDE integrations where strong typing and close
integration with front-end stacks are important. TypeScript SDKs can generate
typed clients directly from manifests and fit naturally into browser, extension, and
VS Code ecosystems. Community-contributed bindings in other languages broaden
adoption in environments such as JVM-based backends or systems programming
contexts. Modern SDKs also include code-generation tools that produce typed
client libraries or handler stubs from manifests, reducing boilerplate, preventing
client-server contract mismatches, and improving developer ergonomics through
auto-complete, compile-time checks, and type hints in IDEs.

Testing, CI, and contract validation are critical in SDK-driven development.
Since MCP tools behave like RPC endpoints, standard software engineering prac-
tices apply: unit tests for handler logic, contract tests to validate manifest com-
patibility, integration tests for discovery and streaming flows, and end-to-end tests
simulating client interactions including user-consent flows. SDKs provide utilities
to spin up ephemeral stdio or HTTP servers in CI pipelines. Interactive inspection
and replay tools such as MCP Inspector allow developers to debug and reproduce
complex edge cases by connecting to local or remote MCP servers, visualizing
discovered tools and resources, monitoring streaming events, and recording re-
quest/response sessions that can be exported as fixtures. This enables deterministic
replay tests, validation of user-consent and provenance flows, and demonstration
of issues in bug reports. Best practices combine unit and contract tests with
Inspector-driven exploratory testing: developers use Inspector during development
to triage streaming and reconnection behavior, generate small recorded fixtures
for CI contract tests, and add automated checks such as manifest linting, schema
validation, and replay-based integration tests. These combined practices ensure con-
tract compatibility between client and server, enhance observability of long-running
operations, and reduce runtime surprises in production deployments.

7.6 MCP Inspector.
The MCP Inspector is an interactive developer tool specifically designed for testing
and debugging Model Context Protocol servers. It complements programmatic test
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suites by providing a rapid, hands-on environment to inspect capabilities, exercise
tools and record realistic sessions for later automated replay. The Inspector can
be invoked directly via npx and does not require a prior global installation, which
simplifies adoption and makes it convenient to include in developer documentation
or troubleshooting guides.

Getting started and basic usage. The Inspector is typically launched with
npx as follows:

1 npx @modelcontextprotocol/inspector <command>
2 npx @modelcontextprotocol/inspector <command> <arg1> <arg2>

To inspect published server packages from NPM or PyPI you can combine the
Inspector invocation with the package runner, for example:

1 npx -y @modelcontextprotocol/inspector npx <package-name> <args>
2 # example:
3 npx -y @modelcontextprotocol/inspector npx

@modelcontextprotocol/server-filesystem /path/to/dirñ→

To inspect a locally developed server (repository checkout), run the Inspector
and point it to the local entrypoint:

1 npx @modelcontextprotocol/inspector node path/to/server/index.js args...

Always consult the target server’s README for any package-specific invocation
details.

What the Inspector shows and why it matters. The Inspector UI is
divided into panes that collectively expose the runtime surface of an MCP server.
The Server connection pane allows selecting transport (stdio, HTTP/SSE, etc.)
and tuning command-line arguments or environment variables for local servers.
The Resources tab lists available resources with MIME types and metadata, and
supports content inspection and subscription testing. The Prompts tab displays
prompt templates, argument schemas and enables on-the-fly prompt testing with
arbitrary arguments, while the Tools tab lists all declared tools, shows their JSON
schemas and descriptions, and permits executing tools with custom inputs. The
Notifications pane aggregates logs, server notifications and streamed events so
developers can follow SSE or chunked outputs in real time.

Recording, replay and fixture generation. One of the most valuable
Inspector features is session recording: the Inspector can save full request/response
traces, including streamed updates, into fixtures that are exportable. These
recorded sessions are ideal for creating deterministic integration tests in CI: the
same sequence of interactions that reproduced an issue in the Inspector can be
replayed automatically by a test harness, enabling regression coverage for complex
streaming and reconnection scenarios.
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Inspecting different server sources. The Inspector supports inspecting
servers launched from NPM packages, PyPI packages or directly from a local
checkout. This makes it straightforward to combine the Inspector with continuous
integration: for example, CI can run the same server entrypoint used in development
and then exercise a suite of recorded Inspector fixtures to validate fresh builds.

Figure 7.5: MCP Inspector

Best practices when using the Inspector. Use the Inspector as part of
an iterative development loop: start it during development to verify connectivity
and capability negotiation, exercise tools and prompts after each change, and
use it to test edge cases such as invalid inputs, missing prompt arguments and
concurrent invocations. When streaming behaviour is involved, use the Inspector to
replicate reconnection and backpressure scenarios; record the sequence and add the
fixture to the CI suite. Finally, combine Inspector-driven exploratory testing with
automated checks (manifest linting, JSON-schema validation, and replay-based
integration tests) to catch regressions early and improve the overall robustness of
the client/server contract.

Development workflow recommendation. A recommended workflow is
to begin with the Inspector to triage and understand any runtime or streaming
issues, produce a minimal reproducible fixture, add a unit or integration test
that replays that fixture in CI, and then iterate on fixes in the server code. This
pattern shortens the feedback loop, provides concrete reproduction steps for issue
reports and ensures that complex behaviours—especially around streaming and
reconnection—are covered by automated tests rather than relying solely on manual
verification.
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Where to find more information. The Inspector repository and the MCP
documentation include an in-depth guide covering installation, feature descriptions
and example workflows. Consult the official MCP Inspector documentation for the
latest commands, platform-specific notes and troubleshooting tips.

Best practice is to combine unit/contract tests with Inspector-driven exploratory
testing: use Inspector during development to triage streaming and reconnection
behaviour, generate small recorded fixtures for CI contract tests, and add automated
checks (linting of manifests, schema validation, and replay-based integration tests)
into the CI pipeline. Together these techniques help ensure contract compatibility
between client and server, improve observability of long-running operations, and
reduce runtime surprises in production deployments.

7.7 Python SDK

Figure 7.6: MCP Python Framework

For our implementation, we adopted the Python ecosystem as the foundation for
the MCP server. Python remains the lingua franca in applied machine learning and
research-oriented engineering due to its extensive scientific libraries, large and active
community, and capabilities for rapid prototyping. These characteristics make it
a natural choice when the project demands close interaction with model tooling,
data pipelines, and experimental code, allowing developers to iterate quickly and
integrate seamlessly with existing ML workflows.
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Python offers several practical advantages for MCP development. Its ma-
ture ecosystem provides libraries for JSON schema validation, asynchronous I/O,
HTTP/SSE transport handling, testing frameworks, and CI integration tools, all of
which reduce boilerplate and simplify the creation of a robust server. The language’s
concise syntax and dynamic typing facilitate rapid iteration on tool handlers and
manifests, which is especially valuable for specification-driven development like
MCP. Additionally, Python’s interoperability with common ML frameworks and
data-processing tools makes it straightforward to construct tools that rely on model
outputs, perform file processing, or extract features from data. Finally, many
researchers and engineers on our team were already proficient in Python, which
reduced the ramp-up time and allowed faster debugging and testing cycles.

The Python SDK itself provides a rich set of capabilities that are particularly
useful for MCP servers. It includes utilities to read, validate, and serve mcp.json-
style manifests, ensuring that server capabilities are discoverable by clients. Built-in
transport adapters support both local (stdio) and remote (HTTP/SSE) servers,
while schema-driven request and response validation guarantees adherence to
declared contracts. Streaming helpers allow for partial outputs and progress
updates during long-running operations, and provenance and metadata conventions
enable auditing and rollback. Testing utilities facilitate the creation of ephemeral
stdio or HTTP servers in CI pipelines, verifying contract compatibility and end-
to-end flows. Optional code-generation or handler-stub features further reduce
boilerplate and provide typed client stubs, improving developer ergonomics.

For our server-side implementation, we based our work on the MCP Python SDK
repository published by Anthropic on GitHub. This repository offered immediate
scaffolding for stdio and HTTP transports and included the testing utilities required
to iterate quickly on manifests and handlers. The client-side integration for our
project was Copilot Studio, so our focus was on producing a server that was easily
discoverable and consumable, with stable streaming behavior, clear provenance
metadata, and robust manifest semantics. During development, we also identified
areas where improvements could be made to enhance reliability and interoperability,
which led us to contribute fixes upstream (see next section).

Despite the Python SDK’s strong support for local development and testing with
mcp-inspector, we encountered limitations when deploying the server on external
hosts, particularly in scenarios involving OAuth-based authentication for Microsoft
services. Tools that did not require authentication functioned correctly, confirming
that the core server logic was sound, but tools relying on OAuth consistently failed
due to the SDK’s handling of Microsoft OAuth flows in remote environments. This
ultimately motivated a transition to the TypeScript SDK, which provided a reliable
foundation for authenticated MCP tools in production.
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7.8 Contributions to the MCP Python SDK
During the development and deployment of the MCP-based server described
in this thesis, our team encountered a reproducible stability problem affecting
the streamable-http transport when the server was deployed in a public hosting
environment. The problem manifested as a failure after the OAuth authorization
phase: while local testing with MCP Inspector worked without issue, the same
flow deployed to Azure repeatedly failed at a subsequent POST request which
was observed to return an unauthorized response. This behaviour produced an
authorization loop that prevented the client from completing the MCP handshake.
The anomaly did not appear when using the SSE transport, which initially suggested
a transport-specific interaction between the HTTP stack, reverse proxying and the
authorization middleware.

Figure 7.7: MCP inspector successfully authenticate the user

Figure 7.8: Error on the browser when usign a tool

A systematic diagnosis, performed in collaboration with another contributor,
revealed the root cause: during an internal redirect from the route path “/mcp”
to “/mcp/” the Authorization header was being dropped. The header loss turned
an otherwise valid token exchange into an unauthorized POST that restarted the
redirect sequence. This subtle interplay did not surface in local tests because
certain local stacks (for example Uvicorn combined with HTTPX in development
configurations) re-attached or preserved the Authorization header, masking the
underlying defect. Once exercised under a public deployment model the discrepancy
became evident.

To address the issue we modified the streamable-http route registration so that
the handler would be attached directly as a Route rather than mounted with a
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Figure 7.9: The error logged on azure console

component that provoked a redirect. Concretely, the fix replaces a mount-based
registration with a direct Route mapping that passes requests to the handler
wrapped by the authorization middleware when token verification is enabled. The
key change can be expressed succinctly in code form; the critical fragment of the
server routing logic was adjusted as follows:

1 - from starlette.routing import Mount
2 + from starlette.routing import Route
3

4 - routes: list[Route | Mount] = []
5 + routes: list[Route] = []
6

7 - routes.append(
8 - Mount(
9 - self.settings.streamable_http_path,

10 - app=RequireAuthMiddleware(handle_streamable_http,
required_scopes, resource_metadata_url),ñ→

11 - )
12 - )
13 + routes.append(
14 + Route(
15 + self.settings.streamable_http_path,
16 + endpoint=RequireAuthMiddleware(handle_streamable_http,

required_scopes, resource_metadata_url),ñ→

17 + methods=["POST", "GET", "DELETE"],
18 + )
19 + )
20

21 - routes.append(
22 - Mount(
23 - self.settings.streamable_http_path,
24 - app=handle_streamable_http,
25 - )
26 - )
27 + routes.append(
28 + Route(
29 + self.settings.streamable_http_path,
30 + endpoint=handle_streamable_http,
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31 + methods=["POST", "GET", "DELETE"],
32 + )
33 + )

This change avoids an implicit redirect that was responsible for dropping headers
during the transition between mounted subpaths. After applying the fix the server
accepted the POST requests in the previously failing deployment scenarios and the
authorization loop disappeared. The implemented solution was verified against the
original failing Azure deployment and with the MCP Inspector to ensure parity
between local and public behaviours.

Beyond the immediate code modification, we extended the project work to
include a reproducible diagnosis and additional tests that exercise the streamable-
http transport path under authenticated conditions. The tests were designed
to simulate the redirect behaviour and to assert that authorization headers are
preserved across the relevant request lifecycles. These tests increase confidence
that regressions of the same class will be detected during continuous integration,
and they document the behavioural contract expected of the HTTP transport in
hosted environments.

Following standard open-source practice, the diagnosis, patch and tests were
prepared as a set of changes and submitted as a pull request to the upstream
MCP Python SDK repository. The contribution aimed not only to stabilise our
deployment but also to improve interoperability of the SDK for other users who
might encounter similar hosting nuances. Although the issue was resolved in the
upstream project, the eventual merge was applied from an alternative contribution.
Our patch preceded the accepted change in time and correctly addressed the
issue, but the maintainers elected to merge another submission that solved the
same problem. This outcome illustrates several aspects of collaborative open-
source development: the importance of clear reproduction steps and tests in
accelerating triage, the timing sensitivity of pull requests in active repositories, and
the sometimes independent evolution of parallel fixes. Even when a particular PR
is not merged, documenting the issue and demonstrating a robust fix with tests
contributes to collective knowledge and strengthens the case for integrating similar
safeguards in the codebase.

The technical and social outcomes of this episode were meaningful for the project
described in this thesis. Technically, fixing the transport header drop increased
runtime stability and reduced a class of environment-specific failures that would
have undermined operational reliability. The addition of targeted tests improved
the SDK’s resilience to routing and hosting idiosyncrasies and provided a basis for
future regression detection. Socially, the engagement with the upstream repository
reinforced good open-source hygiene: constructing minimal reproductions, pro-
viding thorough explanations of environment-dependent behaviour, collaborating
with other contributors during debugging, and submitting tests alongside code
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changes. From a governance perspective, the experience highlighted the utility of
contributing operational fixes upstream rather than maintaining long-term forks,
because upstream fixes benefit the entire ecosystem and reduce duplication of
maintenance effort.

Based on this experience, recommended follow-ups include expanding the in-
tegration test matrix in continuous integration environments to explicitly cover
authenticated transports under common hosting configurations, documenting known
hosting pitfalls in the SDK’s contributor guide, and asserting header-preservation
properties in end-to-end tests. These measures would help prevent regressions and
shorten the feedback loop for future contributors who encounter similar interactions
between routing primitives and authentication middleware.

7.9 TypeScript SDK
Following early experiments with the Python SDK, we decided to move parts of
the implementation to a TypeScript-based stack. The primary motivation for this
change was compatibility: our target client for the project was Copilot Studio, and
the Python server variant exhibited integration frictions that prevented reliable
operation with that client. To maximize interoperability, we adopted a TypeScript
reference implementation published by Microsoft as the starting point for the server-
side work. This reference provided a working example of the full authentication flow,
including OAuth for personal and organizational accounts, along with practical
scaffolding that mapped naturally to web and IDE client patterns.

The Microsoft TypeScript example was chosen because it implemented OAuth
flows and credential handling aligned with Copilot Studio expectations, followed
idioms common in web and extension ecosystems such as async/await and promise-
based handlers, and included clear examples for HTTP/SSE transports and manifest
exposure. These characteristics significantly reduced the effort required to produce
a server that Copilot Studio could reliably discover and interact with.

Migrating from Python to TypeScript revealed more than syntactic differences.
The two SDKs embody distinct architectural conventions for request/response
handling, stream semantics, and error propagation. Patterns that were straightfor-
ward in Python, such as sync-style handlers, blocking I/O assumptions, or certain
reconnection heuristics, required redesign to fit TypeScript/Node idioms, including
non-blocking I/O, explicit Promise lifecycles, and careful management of stream
backpressure. Long-running tools emitting incremental results needed adaptation
from Python generator or async-iterator models into Node streams or SSE chunking,
with attention to client reconnection behavior.

One immediate challenge was that mcp-inspector, previously used for Python
development, did not interoperate out-of-the-box with TypeScript due to differences
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in transport framing and manifest shapes. We addressed this by implementing
small compatibility adapters to normalize manifest and stream behavior, recording
request/response fixtures from manual Inspector sessions for deterministic replay
tests, and adding contract, manifest validation, and end-to-end streaming tests in
the TypeScript CI pipeline. These measures restored a productive development
loop while keeping Inspector useful for interactive debugging.

Despite the migration cost, the TypeScript stack delivered practical advantages.
OAuth integration became reliable, resolving authorization issues observed with
Python. TypeScript’s alignment with browser and IDE ecosystems simplified
client deployment and consumption, while static typing and IDE tooling reduced
runtime contract errors and improved ergonomics when generating typed clients
from manifests. Generated TypeScript client stubs could be used directly by Copilot
Studio plugins or web front-ends with minimal translation, further streamlining
integration.

Recommended practices for TypeScript-based MCP servers include enabling
strict TypeScript options, generating types from manifests to check client/server
contracts at compile time, incorporating schema validation and manifest linting
into CI pipelines, adding replay fixtures from Inspector or recorded sessions to
validate streaming deterministically, and providing a small compatibility proxy or
adapter layer when development tools assume different framing. Collectively, these
practices ensure reliable production deployments and maintain compatibility with
interactive development tools.

In conclusion, the TypeScript SDK, anchored on Microsoft’s reference imple-
mentation, proved to be a practical, production-ready foundation for the MCP
server designed to interoperate with Copilot Studio. The migration required careful
adaptation of streaming and reconnection semantics and modest investments in test
and compatibility infrastructure, but delivered robust authentication, smoother in-
tegration with IDE and web clients, and a cleaner contract surface for the remainder
of the project.

7.9.1 APIs

The following sub-sections document the RESTful endpoints and tool interfaces
exposed by our MCP server implementation for integration with Microsoft Copi-
lot agents. Each described endpoint includes a functional description, expected
authorization requirements, canonical request and response shapes, and brief oper-
ational notes regarding idempotency, time zone handling and error semantics. All
Microsoft Graph–backed endpoints require an OAuth2 access token valid for the
server resource; the only exception is the weather endpoint which queries a public
service and does not require authentication.
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Weather: get_weather

The weather tool provides a text description of current weather conditions for a
requested city by querying the public wttr.in service. The only input is the city
name; when the city is ambiguous the tool returns a short disambiguation hint.
Because the endpoint is unauthenticated, it is suitable for lightweight contextual
answers embedded in conversational replies.

1 GET https://{host}/mcp/tools/weather/get_weather?city=Rome
2 Authorization: none

{
"city": "Rome",
"summary": "Partly cloudy, temperature 18°C, wind 10 km/h from NW",
"raw": "...wttr.in response..."

}

Calendar: list_events

The list_events tool retrieves calendar events in a given UTC interval for the
authenticated user; callers must supply start and end in ISO 8601 UTC. The
server returns event summaries, start and end times (in UTC) and identifiers
suitable for subsequent update or deletion operations. Clients and models are
expected to present returned times to users in the Italian timezone.

POST https://{host}/mcp/tools/calendar/list_events
Authorization: Bearer $ACCESS_TOKEN
Content-Type: application/json

{"start":"2025-09-20T08:00:00Z","end":"2025-09-20T18:00:00Z"}

{
"events": [

{"id":"evt_1","subject":"Standup","start":"2025-09-20T08:30:00Z","e ⌋
nd":"2025-09-20T09:00:00Z"},ñ→

{"id":"evt_2","subject":"Project meeting","start":"2025-09-20T10:00 ⌋
:00Z","end":"2025-09-20T11:00:00Z"}ñ→

]
}

Calendar: create_meeting

create_meeting constructs a Teams meeting and registers it on the user’s calendar.
Inputs include subject, attendee emails and a date with local start/end times in
Italian locale; the server converts these to UTC for Graph API calls, creates
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the event and returns the event identifier together with the Teams meeting join
URL. The operation is side-effecting and requires explicit user consent via the
authorization flow.

POST https://{host}/mcp/tools/calendar/create_meeting
Authorization: Bearer $ACCESS_TOKEN
Content-Type: application/json

{
"subject":"Riunione con il team",
"attendees":["alice@example.com","bob@example.com"],
"date":"2025-09-25",
"startTime":"14:00",
"endTime":"15:00"

}

{
"eventId":"evt_abc123",
"teamsJoinUrl":"https://teams.microsoft.com/l/meetup-join/..."

}

Calendar: get_team_availability

This tool computes common free slots for a list of participants inside a date range,
using the specified slot granularity. Inputs are attendee emails and date bounds in
Italian local date format; outputs list only those slots where all participants are
free within working hours (08:00–19:00 CET/CEST) and present results in the
Italian timezone. The server enforces sensible defaults for the availability interval
and bounds the returned set to avoid overwhelming responses.

POST https://{host}/mcp/tools/calendar/get_team_availability
Authorization: Bearer $ACCESS_TOKEN
Content-Type: application/json

{"attendees":["alice@example.com","bob@example.com"],"start":"2025-09-2 ⌋
5","end":"2025-09-27","availabilityViewInterval":60}ñ→

{
"availableSlots":[

{"start":"2025-09-25T09:00:00+02:00","end":"2025-09-25T10:00:00+02: ⌋
00"},ñ→

{"start":"2025-09-26T11:00:00+02:00","end":"2025-09-26T12:00:00+02: ⌋
00"}ñ→

]
}

65



Implementing the Orchestration Layer: A Custom Model Context Protocol Server

Calendar: update_event and delete_event

The update_event endpoint accepts an event identifier and a partial update object
and applies the changes via Microsoft Graph after converting local times to UTC;
the delete_event endpoint removes the event and returns a confirmation message.
Both endpoints require authorization and perform schema validation on inputs
to prevent malformed requests. Clients should treat update and delete as non-
idempotent operations unless they supply an idempotency key at the transport
layer.

PATCH https://{host}/mcp/tools/calendar/update_event
Authorization: Bearer $ACCESS_TOKEN
Content-Type: application/json

{"eventId":"evt_abc123","updates":{"subject":"Updated subject","start": ⌋
"2025-09-25T13:00:00+02:00","end":"2025-09-25T14:00:00+02:00"}}ñ→

{"status":"ok","eventId":"evt_abc123","message":"Event updated"}

Mail: list_emails and send_email

list_emails fetches the most recent messages from the authenticated user’s inbox
constrained by a count parameter; the server returns a compact listing containing
date, sender and subject suitable for conversational summaries. send_email
composes and dispatches a plain-text message on behalf of the user, returning a
delivery confirmation. Both tools require valid Microsoft Graph scopes and include
clear error messages when the mailbox is unavailable or the token is insufficient.

POST https://{host}/mcp/tools/mail/list_emails
Authorization: Bearer $ACCESS_TOKEN
Content-Type: application/json

{"count":5}

{
"emails":[

{"id":"m1","from":"ceo@example.com","subject":"Quarterly
update","date":"2025-09-01T09:00:00Z"},ñ→

{"id":"m2","from":"hr@example.com","subject":"Policy
update","date":"2025-09-02T11:00:00Z"}ñ→

]
}

POST https://{host}/mcp/tools/mail/send_email
Authorization: Bearer $ACCESS_TOKEN
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Content-Type: application/json

{"to":"colleague@example.com","subject":"Meeting notes","body":"Please
find attached the notes from today's meeting."}ñ→

{"status":"sent","messageId":"msg_98765"}

Colleagues: find_colleagues_by_department

The colleagues tool searches the directory using the officeLocation attribute to
return personnel records; the mode parameter toggles between partial and exact
matching and a maxResults limit constrains response size. Returned records
include name, role, officeLocation, email and telephone numbers, and a structured
JSON representation suitable for programmatic consumption by front-ends.

POST https://{host}/mcp/tools/colleagues/find_colleagues_by_department
Authorization: Bearer $ACCESS_TOKEN
Content-Type: application/json

{"office":"R&D","mode":"partial","maxResults":25}

{
"results":[

{"name":"Giulia Rossi","role":"Researcher","officeLocation":"R&D
Rome","email":"giulia.rossi@example.com","phone":"+39061234567"}ñ→

]
}

Error handling and operational notes

When tokens are missing or expired, endpoints return clear, human-readable
diagnostics with standard HTTP codes (401 for unauthorized, 403 for forbidden).
API errors from Microsoft Graph are surfaced with status and body to facilitate
debugging while the server masks sensitive internal traces. Date and time inputs
must be normalised by the caller to the expected format: the LLM or client
should convert local Italian times to UTC before invoking Graph-backed tools, and
servers perform server-side validation and conversion to ensure correctness. For
streaming or long-running operations (for example large mailbox fetches or complex
availability computation), the server may emit incremental progress events over
SSE or streamable HTTP and provide an operation identifier for reconciliation and
retries.
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Operational environment variables and troubleshooting

The server relies on a small set of environment variables for OAuth configura-
tion and hostname resolution; operators should ensure the correct CLIENT_ID,
CLIENT_SECRET, tenant identifiers and callback paths are configured and that reg-
istered redirect URIs exactly match deployment endpoints. In hosted deployments,
care must be taken to select the appropriate transport (SSE or streamable HTTP)
and to verify that reverse proxies preserve Authorization headers, as described
earlier in the contributions section.

7.10 Copilot Integration
To make our MCP server fully usable within a Microsoft environment, we undertook
a direct integration with Microsoft Copilot Studio. This involved creating a
custom connector that allowed the server to communicate with Copilot agents
while ensuring that all calls were authenticated securely via Azure App Regis-
tration. The integration was designed so that tools exposed by our MCP server
would be automatically discoverable by Copilot, callable through the Streamable
HTTP transport, and protected using OAuth2. This setup provided both seamless
functionality for the end user and adherence to enterprise security standards.

Creating an Agent
The first stage in the integration workflow was the creation of a new agent inside
Copilot Studio. This required logging into https://copilotstudio.microsoft.
com, navigating to the Agents tab, and selecting New Agent. Once the agent
was created, its language and configuration parameters were set to match the
requirements of the target environment. Opening the Settings panel, we ensured
that the Generative AI orchestration feature was enabled. This setting is essential
because it allows Copilot agents to communicate with external MCP servers and
orchestrate tool invocations, forming the core of the integration pipeline. By
following these steps, we established the foundational agent that could later be
associated with custom connectors and OAuth credentials.

Creating a Custom Connector
Following agent creation, the next step was to enable communication between
the MCP server and Copilot through a custom connector. From Copilot Studio,
we accessed the Tools section, selected Add a Tool, and chose Custom Connector.
The connector was then imported from GitHub using the official MCP-Streamable-
HTTP template provided by Microsoft. Configuration required specifying the Host,
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Figure 7.10: Creation of a Copilot agent.

which pointed to the domain where our MCP server was hosted (omitting the
https:// prefix), while the Base URL remained fixed as /mcp. This step allowed
the connector to serve as a bridge between the agent and the MCP server, mapping
requests to the correct endpoints and enabling real-time streaming of tool outputs.
The connector also standardized authentication and ensured that calls could be
routed securely to the appropriate server resources.

Figure 7.11: Configuration of MCP server host and base URL in Power Apps
custom connector.

OAuth2 Authentication Setup
Authentication for the connector was handled via OAuth2 using Azure App Reg-
istration. Client credentials, including the Client ID and Client Secret, were
retrieved from the Azure portal. Additionally, the Authorization URL and
Token URL were obtained from Azure Endpoints, and the required Scope values
were copied from the API Permissions page. This configuration ensured that
the connector could authenticate on behalf of the agent, acquiring tokens that
allowed secure and auditable access to the MCP server. By relying on OAuth2, we
guaranteed that all interactions between Copilot and the MCP server adhered to
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Microsoft’s recommended security and identity management practices.

Figure 7.12: OAuth2 endpoint configuration in Power Apps form.

Redirect URI Configuration
During the OAuth2 setup, Copilot Studio generates a Redirect URI, which is critical
for completing the authorization flow. Initially, this URI triggers errors if it is
not explicitly registered in Azure. To address this, the URI provided by Copilot
Studio was copied and registered in the Azure App Registration portal under
Authentication as a Web redirect. This step ensured that token redirection would
be recognized as valid by the Azure authentication server, allowing seamless token
exchanges between Copilot and the MCP server. After registration, repeating the
connection process in Copilot Studio succeeded without errors, and the server tools
became visible and callable through the agent interface.

Figure 7.13: Adding the Redirect URI in Azure App Registration.

Outcome
Once fully configured, our MCP server was successfully integrated as a first-class
tool provider within Microsoft Copilot Studio. The integration relied on three
core components: the official MCP-Streamable-HTTP connector template, OAuth2
authentication via Azure App Registration, and proper registration of the Redirect
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Figure 7.14: Successful integration: MCP server tools exposed inside Copilot
Studio.

URI. With this setup, all server tools were discoverable, callable, and secured
according to enterprise-grade standards. This approach demonstrates that MCP
servers can be exposed in a highly controlled manner while remaining fully accessible
to conversational AI workflows, providing a robust bridge between external services
and Copilot agents.
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MCP Server Deployment on
the Azure Web Services on
Cloud

Cloud platforms have become the de-facto infrastructure for modern applica-
tions, providing elasticity, managed services and global availability. Among major
providers, Amazon Web Services (AWS), Google Cloud Platform (GCP) and
Microsoft Azure stand out for the breadth of their offerings and their enterprise-
oriented features. Although the MCP server could in principle be deployed on any
of these clouds — for instance using container orchestration or serverless products

— we selected Microsoft Azure because its ecosystem and native integrations aligned
directly with the goals of this project. Azure couples a wide range of platform
services with first-class identity and governance tooling, and it offers an AI-focused
toolchain and strong interoperability with Microsoft productivity software; these
attributes made it the most natural choice for an MCP deployment intended to
interoperate with Copilot Studio and Microsoft 365.

Azure’s global footprint and region model allowed us to position the service
close to end users and to respect potential data-residency constraints. From a
security and governance perspective, the tight integration with Entra ID / Azure
AD simplified the implementation of authentication and authorization flows, while
policy and resource management features helped enforcing compliance during
rollout. In practice, the platform’s integration with development toolchains —
GitHub Actions, Azure DevOps and IDEs like Visual Studio — accelerated our
CI/CD pipelines and shortened the feedback loop for iterative changes. These
factors are particularly relevant when integrating with Microsoft clients, because
they reduce the operational complexity required to obtain a stable and repeatable
connection between cloud services and enterprise-grade assistants.
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We opted for a Platform-as-a-Service approach by hosting the MCP front-end on
Azure Web Service (part of the App Service family) in order to minimise operational
overhead. Using App Service removes the need to manage operating system patches
or runtime updates: the platform handles the lifecycle of the runtime, supports slot-
based deployments for low-downtime releases, and exposes autoscaling primitives to
adapt to variable workloads. This allowed the team to concentrate on application
logic — MCP manifests, transport handling, and streaming semantics — while
relying on Azure for runtime, resilience and monitoring capabilities. In addition,
App Service integrates seamlessly with Key Vault for secure secret management and
with Application Insights for rich telemetry, which significantly sped up debugging
and the analysis of live behaviour.

Azure’s broader capabilities were also important to the project beyond simple
hosting. The platform provides managed services for data ingestion, OCR, indexing
and vector search that are useful when preparing and serving RAG corpora at
scale. It also supports hybrid deployment models (for example via Azure Arc or
on-premises gateways) which enable architectures where sensitive data remains
on-premise while a cloud-hosted MCP front-end handles client interactions. Finally,
App Service supports multiple hosting models and runtimes — from direct code
deployments to container images and Kubernetes-backed topologies — which eased
the migration from a local prototype to a production-ready instance by allowing us
to choose the most appropriate deployment model without being constrained by
the platform.

8.1 Azure Web Service

Figure 8.1: Azure Web Servic capabilities

73



MCP Server Deployment on the Azure Web Services on Cloud

Azure Web Service is designed to host web applications, APIs and microservices
in a managed PaaS environment that abstracts many of the operational details
of traditional infrastructure. The service manages runtime patching and platform
updates, simplifies deployments through slot-based release strategies and offers
autoscaling to cope with changing traffic patterns. Crucially for this project,
App Service provides native bindings to Entra ID / Azure AD for OAuth/OIDC
workflows, managed certificate handling and seamless integration with Key Vault,
all of which are essential when the service must interact with authenticated clients
such as Copilot Studio.

Operationally, App Service exposes diagnostic consoles and integrated logging
that proved essential during validation: real-time logs and application telemetry
allowed us to confirm that the server accepted requests, processed authentication
tokens correctly and emitted metrics useful for monitoring. For heavier workloads or
large-scale data processing, the front-end hosted on App Service can be paired with
specialised managed services — such as Blob Storage for document assets, Azure
SQL or Cosmos DB for structured state, and managed indexing or vector search
services for retrieval workloads — thereby separating the front-end responsibilities
from compute-intensive pipelines.

In short, choosing Azure Web Service provided a low-maintenance cloud presence
for the MCP server while preserving direct access to Azure’s identity, observability
and AI ecosystems. This allowed us to deliver a production-ready endpoint that
integrates securely with Copilot Studio and can evolve to use additional managed
services as the project’s data and AI needs grow.

8.2 MCP Server Integration
The integration of the MCP server into Azure marked a fundamental step in our
project, since it allowed us to move from a local prototype to a fully deployable
service accessible in the cloud. This transition required several configuration steps,
but also highlighted the advantages of adopting Azure Web Service as the hosting
environment.

The first step was the setup of the Azure environment, starting from the landing
page (Figure 8.2), which acts as the main hub for all resource management. From
here, we were able to create and configure the service instance that would host
our MCP server. Azure provides a wide range of deployment options, but for
our purposes we focused on building a lightweight web service that could handle
requests from the client and maintain integration with Microsoft’s authentication
flow.

Once the resource was created, attention shifted to the definition of the server
distribution (Figure 8.3). This step is crucial because it specifies how the server
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Figure 8.2: Azure landing page

code is packaged and deployed in the cloud. The configuration includes the choice
of runtime, the definition of scaling parameters, and the allocation of computing
resources. At this stage, we also encountered some differences compared to our
Python implementation: while the TypeScript SDK required slightly different logic
in the server setup, Azure provided a unified deployment framework that made the
migration smoother.

Figure 8.3: Server distributions

Another key aspect of the integration process involved the definition of environ-
ment variables (Figure 8.4).

These variables allowed us to externalize sensitive data (such as API keys,
project identifiers, and Microsoft account configurations) without hardcoding them
in the application. This approach not only improves security, but also makes it
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Figure 8.4: Server environment variables

easier to manage different environments (development, staging, production) without
modifying the source code.

Finally, after the service was deployed, we verified its functionality directly from
the Azure portal by inspecting the server logs (Figure 8.6).

Figure 8.5: Server log terminal

This step was essential for debugging and validation: through the real-time
output, we confirmed that the server was running correctly, responding to client
requests, and properly handling authentication. In some cases, the logs also
highlighted configuration errors or misalignments in environment variables, which
we could quickly fix thanks to the integrated monitoring tools.

Overall, the integration of the MCP server into Azure demonstrated how a cloud
environment can simplify deployment and maintenance. The platform not only

76



MCP Server Deployment on the Azure Web Services on Cloud

Figure 8.6: Server running script

provided us with a reliable hosting infrastructure, but also with integrated tools
for monitoring, authentication, and scaling. This reinforced our decision to adopt
Azure Web Service over alternative providers and underlined the importance of
cloud-native development in modern software projects.
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Chapter 9

End User Validation

A fundamental step in the development of enterprise AI systems is the validation
phase, where the solution is tested in a realistic business context. Designing and
implementing an intelligent agent in a controlled, laboratory-like environment can
provide useful insights on architecture, performance, and feature completeness, but
it is only by exposing the system to real users and real data that its true value
emerges. For this reason, once the main components of our solution had been
integrated, we carried out a structured testing activity within the company.

The validation process was not limited to verifying whether the bot could
technically answer queries, but aimed at assessing a broader set of dimensions.
These included: the usability of the interface, the effectiveness in solving concrete
business problems, the integration with existing workflows, and the stability
of the infrastructure under realistic conditions. In line with common practices
in enterprise IT projects, our approach can be described as a pilot test, where a
selected group of employees is involved in an exploratory deployment to provide
feedback before scaling the solution more widely. This methodology offers the
dual advantage of gathering valuable qualitative feedback from early adopters and
identifying potential issues in a safe, low-risk setting.

The chosen entry point for the validation was Microsoft Teams, a platform
already heavily adopted in the organization. Integrating the agent directly into
Teams provided several benefits: users were not required to learn a new tool, the
chatbot was seamlessly embedded into their daily collaboration environment, and
the barrier to adoption was significantly reduced. From a system perspective,
Teams acted as the front-end layer, routing all interactions to the MCP server,
which orchestrated reasoning and tool usage, and then returning the output back to
Teams in a natural conversation flow. This setup created an experience consistent
with common chat applications, but backed by a powerful AI engine capable of
addressing enterprise-specific needs.
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9.1 Test Scenario
For the testing phase, we defined a practical scenario based on an issue frequently
encountered by employees: the retrieval and management of company documents.
This choice was deliberate, since document-related queries are among the most
recurrent in corporate environments and provide a concrete test of the system’s
reasoning and retrieval capabilities.

The deployed bot was presented as a conversational assistant. Colleagues were
invited to formulate their requests in natural language, exactly as they would
do with a human colleague, without adapting their queries to rigid command
structures. The agent, leveraging its RAG-based reasoning pipeline, was expected
to interpret the request, retrieve relevant documentation, and provide structured
answers directly in the chat.

The following screenshots illustrate the sequence of interactions: from the user’s
initial request, through the system’s intermediate processing, to the final structured
response.

9.2 Results and Observations

Figure 9.1: Bot interaction – user request about company documents
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The internal feedback was broadly positive. Employees highlighted the bot’s
ability to reduce search times and its usefulness in structuring responses in a clear
and accessible way directly within Teams. A key added value was the naturalness
of the interaction: users did not need to adapt to a rigid syntax but could rely
on everyday language. This aspect is particularly relevant in enterprise adoption,
where user acceptance is often tied less to technical sophistication than to the
perceived ease of use.

At the same time, the test offered insights into aspects that go beyond func-
tionality. For example, participants pointed out the relevance of response time:
even small latencies can affect the perception of the tool’s usefulness, especially
in fast-paced working contexts. Similarly, the importance of context management
emerged: the agent’s ability to retain information across turns and provide coherent
follow-ups proved critical to sustaining a smooth user experience.

Figure 9.2: Bot processing the request and retrieving information

From a methodological standpoint, the testing activity also showed the im-
portance of structured monitoring. In enterprise environments, collecting logs,
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telemetry, and user interaction data is essential not only for debugging but also
for ensuring compliance with audit and security requirements. Although in our
prototype these aspects were handled at a minimal level, their role becomes decisive
when moving from an experimental deployment to production.

Figure 9.3: Bot providing a structured solution in Teams chat

9.3 Role of Feedback in Enterprise Testing
In enterprise contexts, the introduction of new AI-driven solutions requires not only
technical validation but also systematic collection of user feedback. This process
involves both final users, who act as early adopters and provide impressions of
usability and effectiveness, and quality assurance (QA) staff, who contribute
more structured evaluations with an eye on consistency, compliance, and long-term
maintainability.

The participation of colleagues as testers is particularly valuable in this phase.
Unlike formal laboratory testing, in which conditions are tightly controlled, in-
company trials expose the agent to realistic working dynamics, where expectations,
workflows, and habits influence the perception of utility. End users often focus
on immediacy: whether the system saves them time, whether the answers are
understandable, and whether the interaction feels natural. QA staff, on the other
hand, tend to emphasize robustness, reliability, and edge cases that could emerge
in broader adoption.
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In our case, QA observations provided concrete improvement directions. One
remark concerned the management of sensitive information: the agent should not
expose personal details, such as the name of the creator or reporter of a ticket,
when the requester is a standard user. This type of information, however, could be
legitimately included if the query comes from an IT operator, who is expected to
require such data for operational purposes.

Another suggested refinement involved the breadth of diagnostic insights. Rather
than limiting responses to detailed information about one or two specific tickets,
the agent could generate a broader list of potential causes, each accompanied by a
brief description. Such an approach would enrich the user’s perspective, reducing
the risk of bias from too small a sample and providing a more comprehensive basis
for troubleshooting. These contributions illustrate how QA feedback acts as a
bridge between technical feasibility and organizational adoption. By combining
experiential feedback from end users with methodological input from QA staff, the
evaluation process supports not only immediate usability but also the long-term
alignment of the system with enterprise standards.

9.4 From Development to Production
A further element that emerged during validation relates to the lifecycle management
of the solution. As is standard in enterprise IT, the entire system was first deployed
in a development environment, conceived as a safe playground for iterative
refinement and testing. This environment reproduced the architecture described
in previous chapters, including the MCP server, the Azure services, and the
Teams integration, but was isolated from the production environment to avoid any
interference with day-to-day business operations.

Once the development pipeline yielded stable results, the same infrastructure
can be replicated in a production environment. This migration is far from
trivial: while development emphasizes flexibility, experimentation, and rapid it-
eration, production requires robustness, high availability, and strict governance.
In particular, in production the solution must comply with enterprise policies for
data retention, identity management, and access control. Moreover, observability
mechanisms such as advanced logging, performance dashboards, and automated
alerting need to be in place to ensure operational continuity.

In our case, this distinction was crucial. In the development setup, we could
run tests with partial datasets, simulate failures, and directly inspect logs for
debugging purposes. In production, however, such liberties are not allowed: sta-
bility and predictability take precedence over flexibility. Therefore, the adoption
of Infrastructure-as-Code and pipeline-based deployment strategies becomes
essential. By defining the infrastructure declaratively, the same architecture can
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be consistently reproduced across environments, minimizing human errors and
ensuring reproducibility.

9.5 Infrastructure Limitations
Despite the encouraging results, the validation process also highlighted some
structural limitations of the architecture. Our solution relies on two distinct layers:

• An MCP server, developed and managed by us, responsible for reasoning
and orchestration of tools.

• A Copilot service, hosted and managed by Microsoft, over which we have
no direct control.

This dual dependency introduces a critical fragility. If the MCP server encounters
issues, we are in a position to intervene, diagnose, and fix the problem. However,
if the Copilot service suffers a malfunction, the entire conversational flow may
collapse without any possibility for us to mitigate the impact. During the test,
such a situation occurred: as shown in Figure 9.4, the bot session was abruptly
interrupted due to a failure in the Copilot layer.

Figure 9.4: Failure in Copilot service causing bot interruption

This observation underscores a broader point about enterprise AI adoption:
hybrid architectures that combine self-managed components with third-party man-
aged services inevitably entail trade-offs between control and convenience. While
relying on external services can drastically reduce development time and integration
effort, it also introduces dependencies that must be managed carefully. Future
evolutions of the system should thus include resilience strategies, such as fallback
mechanisms, redundancy, or at least monitoring dashboards that can promptly
detect and signal failures in external components.

In conclusion, the validation phase confirmed both the potential and the chal-
lenges of our approach. The prototype demonstrated its ability to support real
business tasks effectively and integrate smoothly into established workflows, but
at the same time revealed infrastructural dependencies and lifecycle management
requirements that must be addressed in order to ensure long-term sustainability in
production settings.
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Conclusion

This thesis has addressed the engineering challenge of designing and implementing
an intelligent conversational agent that is both operationally reliable and suitable
for enterprise contexts, with a specific focus on supporting the IT department of
AROL S.p.A. The research and development process highlighted that integrating
Large Language Models (LLMs) into real-world operational environments requires
an architecture that moves beyond the "monolithic" generative paradigm, embracing
instead a modular, secure, and governable agentic approach.

The primary contribution of this work lies in the conception, implementation,
and validation of a framework based on the Model Context Protocol (MCP),
which serves as a critical mediation layer between the natural language reasoning
capability of an LLM and the controlled execution of operations on external systems.
The proposed architecture combines the Retrieval-Augmented Generation
(RAG) capabilities , with a custom MCP server that exposes a set of tools for
interaction with services such as Microsoft Graph (Calendar, Mail, Directory).

The results from the end-user validation phase conducted within the company
confirmed the validity of the approach. The agent proved effective in handling
real-world use cases, such as ticket management, document retrieval, and meeting
scheduling, significantly reducing search times and simplifying otherwise fragmented
workflows. The native integration into Microsoft Teams ensured immediate adoption
and a fluid user experience, which are fundamental to the success of any tool
introduced into a productive environment.

However, the project also revealed significant challenges. The transition from a
functioning prototype in a development environment to a production-ready system
required meticulous attention to critical non-functional aspects. Security and
authentication emerged as a central concern: robust integration with Azure Entra
ID OAuth2 flows was indispensable, requiring iterative refinements at the SDK
level, first in Python and later in TypeScript, to guarantee both stability and secure
communications. Operational reliability represented another crucial issue, given
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the hybrid nature of the architecture. Since it depends on both a self-managed
component (the MCP server) and third-party managed services (Copilot Studio),
the system introduced a single point of fragility: as observed during testing, an
outage in Copilot could compromise the entire conversational flow, a vulnerability
beyond the control of the development team. Furthermore, questions of governance
and control arose, particularly the need to enforce granular policies for context
management and data access, ensuring that the agent’s operations conformed to
the principles of least privilege and information confidentiality.

In conclusion, this work demonstrates that modern LLMs, when encapsulated
within a well-designed, standardized agent architecture like the one enabled by
MCP, can effectively transition from promising prototypes into reliable components
of enterprise IT ecosystems. The presented framework provides a blueprint for
building intelligent assistants that not only understand natural language but also act
securely, auditably, and in an integrated manner within the complex technological
fabric of modern organizations.

Future Works Although the developed system has achieved its primary objec-
tives, the research path in this field remains open and full of promising directions.
A first avenue concerns the development of dynamic, role-based privacy and access
policies. At present, data access is mainly regulated at the initial authentication
stage. Future iterations should integrate more advanced authorization mechanisms
at the MCP tool level, enabling differentiated response schemas that adapt to the
role of the interlocutor. For example, while personal details such as the name of a
ticket’s creator should remain hidden from standard users, they may be legitimately
disclosed to authorized IT operators, thus ensuring a balance between operational
utility and confidentiality.

The resilience of the hybrid architecture also warrants further exploration. To
mitigate the strong dependency on external services such as Copilot Studio, future
work could introduce redundant LLM, to make sure that there is an agent always
available.

Moreover, the presence of better conversational memory and reasoning would
represent a significant improvement. While more advanced models exist that
could better handle multi-turn interactions and long-term user context, current
integration with Copilot Studio shows limitations in maintaining state reliably
over time. Addressing these limitations could enable the agent to provide a more
coherent experience.

Finally, improving the quality of the files, both in terms of structure and semantic
content, would lead to a more effective RAG. This enhancement would facilitate
the agent’s ability to accurately retrieve and interpret relevant information.

Overall, these directions point to a natural evolution of the presented system,
reinforcing its potential to act not only as a conversational interface but also
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as a trusted, resilient, and intelligent partner within enterprise IT ecosystems.
Importantly, the system remains fully manageable by the company, and many of
these improvements could be implemented internally by their own development
team.
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MCP Typescript Server

In this appendix, we present selected excerpts of the MCP TypeScript server
implementation. The code snippets illustrate key components, including server
initialization, OAuth authentication, middleware for token propagation, and the
definition of MCP tools. These examples aim to provide a concise technical overview
while highlighting the architectural decisions and security considerations applied in
the development of the server.

1

2 const {
3 AZURE_CLIENT_ID,
4 AZURE_CLIENT_SECRET,
5 AZURE_TENANT_ID,
6 AZURE_REDIRECT_URI,
7 MCP_ISSUER_URL,
8 PORT = 3000,
9 } = process.env;

10

11 // 1. Create the MCP Server istance
12 const server = new McpServer({name: "mcp-server", version: "1.0.0"});
13

Here we can see the initialization of the environment variables for Azure au-
thentication and create the MCP server instance. Since this thesis is produced in
collaboration with a company, secure handling of credentials and strong authenti-
cation/authorization are of fundamental importance.

1

2 const getWeather = server.tool(
3 "get_weather", "A tool to get the weather of a city. Does not need

any authentication.",ñ→
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4 {
5 city: z.string().describe("Name of the city to get the weather

for"),ñ→

6 },
7 async ({city}) => {
8 //console.log(`>>> get_weather called for city: ${city}`);
9

10 const response = await
fetch(`https://wttr.in/${encodeURIComponent(city)}?format=3`);ñ→

11 if (!response.ok) {
12 const text = await response.text();
13 throw new Error(`Weather API error: ${response.status} -

${text}`);ñ→

14 }
15

16 const weatherText = await response.text();
17

18 return {
19 content: [
20 {type: "text", text: `Weather for ${city}:

${weatherText}`}ñ→

21 ]
22 };
23 }
24 );
25

26 const createMeeting = server.tool(
27 "create_meeting","Create a new Microsoft Teams meeting in the

authenticated user’s calendar. The user provides a meeting title,
a list of attendees (emails), the meeting date, start time, and
end time. The user will always provide times in local Italian
time (CET/UTC+1 or CEST/UTC+2 depending on the date). The LLM is
responsible for converting these times into ISO 8601 UTC format
before calling this tool. The tool schedules the event and
returns the meeting ID and Teams join link.",

ñ→

ñ→

ñ→

ñ→

ñ→

ñ→

ñ→

28 {
29 subject: z.string().default("Riunione con il

team").describe("Meeting title"),ñ→

30 attendees:
z.array(z.string().email()).default([]).describe("List of
e-mails to invite"),

ñ→

ñ→

31 date: z.string().describe("Meeting date in YYYY-MM-DD format"),
32 startTime: z.string().describe("Start time in HH:mm (24h) format,

local time"),ñ→
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33 endTime: z.string().describe("End time in HH:mm (24h) format,
local time"),ñ→

34 },
35 async (
36 { subject, attendees, date, startTime, endTime }:
37 { subject: string; attendees: string[]; date: string; startTime:

string; endTime: string },ñ→

38 context: any
39 ) => {
40 // same mechanism pf send_mail
41 const msToken =
42 (context?.authInfo?.token as string | undefined) ??
43 ((server as any)?._authProviderLastToken as string |

undefined) ??ñ→

44 "";
45

46 if (!msToken || msToken.split(".").length !== 3) {
47 return {
48 content: [{ type: "text", text: " Token Microsoft

mancante o non valido in create_meeting." }],ñ→

49 };
50 }
51

52 const start = new Date(`${date}T${startTime}:00`);
53 const end = new Date(`${date}T${endTime}:00`);
54 const payload = {
55 subject,
56 start: { dateTime: start.toISOString().slice(0, 19),

timeZone: "UTC" },ñ→

57 end: { dateTime: end.toISOString().slice(0, 19), timeZone:
"UTC" },ñ→

58 location: { displayName: "Online" },
59 attendees: attendees.map((email) => ({
60 emailAddress: { address: email, name:

email.split("@")[0] },ñ→

61 type: "required",
62 })),
63 isOnlineMeeting: true,
64 onlineMeetingProvider: "teamsForBusiness",
65 };
66 const res = await

fetch("https://graph.microsoft.com/v1.0/me/events", {ñ→

67 method: "POST",
68 headers: {
69 Authorization: `Bearer ${msToken}`,
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70 "Content-Type": "application/json",
71 Accept: "application/json",
72 },
73 body: JSON.stringify(payload),
74 });
75 const bodyText = await res.text();
76 if (!res.ok) {
77 throw new Error(`Graph error ${res.status} – ${bodyText}`);
78 }
79 const data = JSON.parse(bodyText);
80 return {
81 content: [
82 {
83 type: "text",
84 text: ` Evento creato\nID: ${data.id}\nTeams link:

${data.onlineMeeting?.joinUrl ?? "N/A"}`ñ→

85 },
86 ],
87 };
88 }
89 );
90

Here we show two example MCP tools: a simple, unauthenticated weather
lookup and a more complex Teams meeting creator that integrates with Microsoft
Graph and requires valid user authentication. The MCP architecture grants the
industrial partner full freedom to select, integrate, and extend external tools and
APIs while retaining complete operational control.

1

2 // 3. Configure the OAuth Provider as a “proxy” to Azure AD
3 const authority =

`https://login.microsoftonline.com/${AZURE_TENANT_ID}`;ñ→

4 const authProvider = new ProxyOAuthServerProvider({
5 endpoints: {
6 // Azure AD OAuth2.0 endpoints (v2.0)
7 authorizationUrl: `${authority}/oauth2/v2.0/authorize` +
8 `?scope=openid profile offline_access` +
9

`+Mail.ReadWrite+Mail.Send+Calendars.ReadWrite+Calendars.ReadWrite.Shared+User.Read`,ñ→

10 tokenUrl: `${authority}/oauth2/v2.0/token`,
11 revocationUrl: `${authority}/oauth2/v2.0/logout`,
12 },
13 // This method is called by the middleware to validate the incoming

Bearer tokenñ→
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14 verifyAccessToken: async (token: string) => {
15 // Decode only for logging purposes
16 const [, p] = token.split('.');
17 const claims = JSON.parse(Buffer.from(p,

'base64url').toString());ñ→

18 //console.log('>>> claims', claims);
19

20 // Always return OK – only scope validation is handled here
21 return {
22 token,
23 clientId: claims.aud,
24 scopes: claims.scp?.split(' ') ?? [],
25 extra: claims
26 };
27 },
28 // The MCP client (Copilot) is pre-registered: associate the

redirect URIñ→

29 getClient: async (client_id: string) => ({
30 client_id,
31 redirect_uris: [AZURE_REDIRECT_URI!],
32 }),
33 });

Here the OAuth provider is configured to act as a proxy to Azure AD: authoriza-
tion, token and revocation endpoints are declared and a verifyAccessToken routine
decodes JWT claims (used here for logging and to extract clientId and scopes).
The getClient method binds pre-registered redirect URIs for MCP clients. While
this implementation relies on Azure AD for authentication, the MCP architecture
is fully provider-agnostic: organizations can integrate any OAuth 2.0 compliant
identity service

1

2 // 4. Middleware to protect /mcp with Bearer token and “user” scope
3 const tokenMiddleware = (req: Request, res: Response, next: Function) =>

{ñ→

4 const auth = req.headers.authorization;
5 if (!auth?.startsWith("Bearer ")) return res.status(401).end();
6

7 const raw = auth.slice(7);
8 const token = raw.replace(/^["']|["']$/g, '').replace(/\s+/g, '');

// ← cleanedñ→

9 const [, payload] = token.split(".");
10 let claims;
11 try {
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12 claims = JSON.parse(Buffer.from(payload,
"base64url").toString());ñ→

13 } catch {
14 return res.status(401).end();
15 }
16 const scopes = (claims.scp as string)?.split(" ") ?? [];
17 if (!scopes.includes("User.Read")) return res.status(403).end();
18 // Store the context (authInfo) in the req object
19 (req as any).authInfo = {token, claims, scopes};
20 next();
21 };

This middleware protects the /mcp endpoint by verifying the presence of a
valid Bearer token and ensuring that it includes the required User.Read scope. It
decodes the JWT payload, validates the structure, and attaches authentication
information to the request context. Such middleware ensures that only properly
authenticated users can access critical routes, enforcing basic authorization and
context propagation for subsequent operations.

1

2 // 5. Connects the server and defines the /mcp endpoint
3 const transport = new StreamableHTTPServerTransport({sessionIdGenerator:

undefined});ñ→

4 server.connect(transport).then(() => {
5 });
6 app.use("/mcp", (req, res, next) => {
7 try {
8

9 // If an Authorization Bearer token is present, extract it,
decode the claims, and propagate itñ→

10 const authHeader = (req.headers.authorization ?? "") as string;
11 if (authHeader.startsWith("Bearer ")) {
12 const token = authHeader.slice(7).replace(/^["']|["']$/g,

'').trim();ñ→

13

14 // Save it in req for later use
15 (req as any).authInfo = (req as any).authInfo || {};
16 (req as any).authInfo.token = token;
17

18 // Also store it in the server so that the SDK/transport can
access itñ→

19 (server as any)._authProviderLastToken = token;
20

21 // Try to decode the payload for logging (do not verify the
signature here)ñ→

92



MCP Typescript Server

22 try {
23 const payload = token.split(".")[1] ?? "";
24 const claims = JSON.parse(Buffer.from(payload,

"base64url").toString() || "{}");ñ→

25 } catch (e) {
26 console.warn(">>> Failed to decode token payload:", e);
27 }
28

29 } else {
30 console.log(">>> No Bearer token found in header");
31 }
32 } catch (err) {
33 console.warn(">>> Error in /mcp logging middleware:", err);
34 // Do not block the request: continue anyway
35 }
36 next();
37 });
38

This section connects the MCP server to the HTTP transport layer and defines
the /mcp endpoint. It also implements middleware logic to propagate the Bearer
token from incoming requests to the server context, allowing subsequent tools or
SDK components to access the authentication information. Although this step
does not perform cryptographic verification, it ensures token continuity across
requests, which is crucial for maintaining user context and enabling authenticated
interactions between the MCP client and server.

After this we defines the main /mcp endpoint that connects incoming HTTP
requests to the MCP server. We introduce a configurable flag to allow the system
to run either in authenticated or open mode. When authentication is enabled,
requests are validated through token-based middleware before being processed,
while discovery calls remain accessible without authentication. This flexible design
ensures a clear separation between development and production environments.
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