
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Deploying Run-Time Adaptive
Binarized Neural Network in
Programmable Data Planes

Supervisors:
Alessio Sacco
Guido Marchetto
Flavio Esposito

Candidate:
Simone Geraci

Academic Year 2024-2025

Acknowledgements

I would like to express my deepest gratitude to all my family for their unwavering
love, support, and encouragement throughout this journey. Your constant support,
especially during difficult times, have been truly meaningful.

A special thanks goes to my Mum and Dad, whose have been with me since the
beginning. You have always believed in me, and thanks to you, I have become the
person I am. My love and gratitude for you come from the depths of my heart
and it won’t never vanish.

My heartfelt thanks go to my beloved Carola, whose patience, understanding, and
constant motivation have been invaluable. You taught me what real love is and I
will always be grateful to you for that.

Finally, I wish to thank Lorenzo, Giorgio, Giacomo, Mattia, Riccardo and all my
dear friends — the old and new ones — for their companionship and support,
which made this experience both enriching and memorable.

This thesis represents a part of myself, my story, and it closes the most important
chapter of my life so far. I’m excited to see which doors life will open for me next,
but above all, I’m grateful to share this journey with my family, the love of my
life, and the friends who have profoundly shaped who I am.

Thank you.

1

Abstract

Switches and other network devices process data at wire rate, meaning they
can handle packets at the maximum capacity of the data-link connection. Modern
switches separate functionality into two layers: the control plane for slower, high-
level decisions (e.g., forwarding tables) and the data plane, which is the hardware-
accelerated path through which each packet is actually processed (e.g., port for-
warding).

In recent years, with the rise of Programmable Data Planes (PDPs), a major
research trend has explored how deep neural network (DNN) models can be lever-
aged to address long-standing network challenges (e.g., flow classification, anomaly
detection) by deploying deep learning models within PDPs. However, deploying
DNNs directly on PDPs is challenging due to limited memory and computational
resources, the lack of support for neural network–oriented operations, and the need
to maintain line-rate packet processing speed.

Our work introduces an innovative split-inference architecture that addresses
key challenges found in existing in-network deep learning approaches. We focus
on the anomaly detection use case, where the objective is to classify network flows
as benign or malicious using flow statistics as features. We propose an inference
framework that integrates two different DNNs: a Binarized Neural Network (BNN)
deployed entirely in the data plane, and a more complex high-precision model
operating in the control plane. The two models are linked through a fused training
strategy based on Knowledge Distillation (KD). The quantized model is trained
using both the ground truth and the full-precision model’s predictions. In this
way, we “guide” the binarized model to mimic the behavior of a deeper, denser
network. Then, during the inference phase we selected critical samples based on an
in-network confidence score and the most relevant flow features according to recent
traffic; both of them fed an adaptive learning mechanism that continuously refines
the in-switch model from the control plane. Our solution adapts dynamically to
evolving conditions. This prevents accuracy degradation and facilitates long-term
performance improvements in dynamic environments.

This thesis will provide comprehensive documentation of the key aspects of
in-network machine learning, detailing all the implementation, architectural deci-
sions, and obtained results.

We anticipate that the overall classification performance gap between BNNs
and DNNs was not greater than a few percentage points in favor of the latter; how-
ever, BNNs outperformed DNNs in terms of CPU efficiency and memory consump-
tion. The programmable switch architecture we targeted was Intel’s Tofino ASIC,
one of the fastest switches on the market. Achieving a complete forward pass in a

single packet traversal was not feasible; to address this limitation, we exploited the
recirculation and mirroring mechanisms provided by the device. Our evaluations
indicated that, in some cases, combining knowledge distillation with quantization-
aware training led to faster convergence and improved accuracy. Under realistic
and dynamic traffic conditions, our system demonstrated strong adaptability to
distribution shifts, owing to the implemented refinement mechanism.

Starting from these results, the work can be extended in several directions. For
example, expanding the bit width of the quantized neural network can effectively
increase its performance.

2

Contents

List of Figures 5

List of Tables 7

List of Acronyms 9

1 Introduction 11
1.1 Motivation . 11
1.2 Objective . 12

2 Background 14
2.1 Binarized Neural Network . 14

2.1.1 Forward Propagation . 15
2.1.2 Backward Propagation . 16
2.1.3 Gradient Approximation . 16

2.2 Programmable Data Planes . 17
2.2.1 Protocol-Independent Switch Architecture 17
2.2.2 Data Plane Programming Language 18
2.2.3 Targets . 19
2.2.4 Control Plane . 20

2.3 Intel Tofino ASIC . 20

3 Related Work 22
3.1 Neural Network-based works . 22
3.2 Non Neural Network-based works 25

4 System 27
4.1 System Overview . 27

4.1.1 Datasets . 29
4.1.2 Deep Learning Models . 30

4.2 Control Plane . 32
4.2.1 Model training . 32

3

4.2.2 Model deployment . 35
4.2.3 BNN Weights and Inputs Deployment 36
4.2.4 Model refinement . 37

4.3 Data Plane . 40
4.3.1 P4-based Feature Extraction Pipeline Implementation 40
4.3.2 Binarized Neural Network Executor Pipeline 41
4.3.3 Recirculation logic . 44
4.3.4 Input Layer . 46

5 Results 48
5.1 SHAP Feature Selection Comparison: MLP vs BNN Base Models . 50
5.2 Training on SHAPed features . 51

5.2.1 Architecture-Wise Comparison 52
5.3 Retraining Evaluation under Distribution Shift 55
5.4 Performance Evaluation of BNN Executors 58

5.4.1 Inference Delay Analysis . 58
5.4.2 Resource Utilization Analysis 59

6 Conclusion 61
Future Work . 62

Appendices 64

Appendix A — Extended Training Plots 64

Appendix B — SHAP Feature Importance Plots 70

Bibliography 75

4

List of Figures

2.1 SIGN vs STE . 17
2.2 Protocol-Independent Switch Architecture overview. 18

3.1 NetNN overview. 25
3.2 Match-action table and decision tree similarity. 26

4.1 In-Network Adaptable Anomaly Detection design overview. 28
4.2 Brevitas quantizer definition. 33
4.3 BNN weights upload using Tofino native API. 36
4.4 Binarized weights extraction code. 37
4.5 Forward pass in PISA overview. 41

5.1 SHAP features importance from base BNN. 50
5.2 SHAP features importance from teacher MLP. 51
5.3 SHAP Evaluation performance comparison over CICIDS2017 54
5.4 Gradual Shifting Domain Evaluation on BNN Tiny architecture . . 55
5.5 Gradual Shifting Domain Evaluation on BNN Dense architecture . . 56
5.6 Delays of Tiny, Dense and Wide BNN executors. 58

1 Appendix A - BNN-SHAP Wide Training over CIC-UNSW-NB15 . 65
2 Appendix A - BNN-SHAP Dense Training over CIC-UNSW-NB15 . 65
3 Appendix A - BNN-SHAP Tiny Training over CIC-UNSW-NB15 . 65
4 Appendix A - BNN-SHAP Wide Training over CICIDS2017 66
5 Appendix A - BNN-SHAP Dense Training over CICIDS2017 66
6 Appendix A - BNN-SHAP Tiny Training over CICIDS2017 66
7 Appendix A - MLP-SHAP Wide Training over CIC-UNSW-NB15 . 67
8 Appendix A - MLP-SHAP Dense Training over CIC-UNSW-NB15 . 67
9 Appendix A - MLP-SHAP Tiny Training over CIC-UNSW-NB15 . 67
10 Appendix A - MLP-SHAP Wide Training over CICIDS2017 68
11 Appendix A - MLP-SHAP Dense Training over CICIDS2017 68
12 Appendix A - MLP-SHAP Tiny Training over CICIDS2017 68
13 Appendix A - SHAP comparison for Dense Training 69

5

14 Appendix A - SHAP comparison for Tiny Training 69
15 Appendix B -Features importance ranking using SHAP for Tiny

BNN base model over CIC-UNSW-NB15. 71
16 Appendix B -Features importance ranking using SHAP for Dense

BNN base model over CIC-UNSW-NB15. 71
17 Appendix B -Features importance ranking using SHAP for Wide

BNN base model over CIC-UNSW-NB15. 71
18 Appendix B -Features importance ranking using SHAP for Tiny

BNN base model over CICIDS2017. 72
19 Appendix B -Features importance ranking using SHAP for Dense

BNN base model over CICIDS2017. 72
20 Appendix B -Features importance ranking using SHAP for Wide

BNN base model over CICIDS2017. 72
21 Appendix B -Features importance ranking using SHAP for Tiny

MLP base model over CIC-UNSW-NB15. 73
22 Appendix B -Features importance ranking using SHAP for Dense

MLP base model over CIC-UNSW-NB15. 73
23 Appendix B -Features importance ranking using SHAP for Wide

MLP base model over CIC-UNSW-NB15. 73
24 Appendix B -Features importance ranking using SHAP for Tiny

MLP base model over CICIDS2017. 74
25 Appendix B -Features importance ranking using SHAP for Dense

MLP base model over CICIDS2017. 74
26 Appendix B -Features importance ranking using SHAP for Wide

MLP base model over CICIDS2017. 74

6

List of Tables

2.1 Tofino architecture constraints. 21

4.1 Defining attributes of a network flow. 29
4.2 Multiplication and XNOR relation. 43

5.1 Tiny architecture evaluation results with SHAPed features. 52
5.2 Dense architecture evaluation results with SHAPed features. 53
5.3 Wide architecture evaluation results with SHAPed features. 53
5.4 Resource consumption of Tiny, Dense and Wide BNN executors on

Tofino ASIC target. 59

7

List of Algorithms

1 BNN Tofino executor inference algorithm for Dense architecture. . . 45

8

List of Acronyms

BNN Binarized Neural Network

NN Neural Network

FP Forward Pass

BP Backward Propagation

DNN Deep Neural Network

MLP Multi-Layer Perceptron

IDS Intrusion Detection System

ASIC Application-Specific Integrated Circuit

PISA Protocol Independent Switch Architecture

SHAP SHapley Additive exPlanations

QAT Quantization-Aware Training

TCAM Ternary Content-Addressable Memory

STE Straight Through Estimator

TNA Tofino Native Architecture

PHV Packet Header Vector

MAU Match-Action Unit

RMT Programmable Switch Architecure

GPU Graphical Processing Unit

TPU Tensor Processing Unit

9

IAT Inter Arrival Time

SVM Support Vector Machine

CNN Convolutional Neural Network

TTL Time To Live

SWAR SIMD Within a Register

SIMD Single Input Multiple Data

ALU Arithmetic Logic Unit

XAI EXplainable Artificial Intelligence

10

Chapter 1

Introduction

1.1 Motivation

Over the past decade, network infrastructures have undergone an unprecedented
transformation in both scale and complexity. The ever-increasing demand for
bandwidth, combined with the growth of connected devices and services, has led
to a significant rise in network traffic diversity and volume. This evolution has also
expanded the attack surface of modern networks, making security and adaptability
fundamental requirements rather than optional features. Within this context,
Intrusion Detection Systems (IDS) play a central role in safeguarding network
infrastructures by identifying and mitigating abnormal or malicious traffic patterns
before they can cause harm.

Traditional IDS solutions are typically deployed on external servers that receive
and analyze mirrored traffic from switches and routers. Although this centralized
design offers flexibility and computational power, it requires constant communi-
cation between the data plane and the IDS server, which introduces additional
latency and may cause network congestion under heavy loads. As network speeds
increase toward terabit-per-second levels, such centralized architectures struggle to
maintain real-time performance, and their scalability becomes increasingly limited.

Recent advances in programmable networking hardware, such as the
Tofino ASIC and the P4 programming language, have made it possible to
embed custom logic directly into the data plane. These devices can execute user-
defined operations at line rate, allowing packet inspection and even lightweight
learning tasks to occur directly within the switch. This paradigm—known as
in-network computing—brings computation closer to where data is generated,
enabling faster and more responsive network functions. However, despite their im-
pressive capabilities, programmable switches are constrained by hardware restric-
tions: operations like multiplication, division, loops, and floating-point arithmetic

11

Introduction

are not supported, and available memory is limited to small, specialized hardware
blocks.

These limitations make it difficult to deploy complex deep learning models di-
rectly in the data plane. As a result, existing intelligent systems continue to rely
heavily on external control or cloud-based inference, which reintroduces latency
and dependence on centralized resources. What we currently possess are fast,
programmable networks capable of limited operations; what we aim for are intel-
ligent, self-adaptive networks capable of learning and acting locally. Bridging
this gap is the core motivation of this thesis.

To address this challenge, we explore how lightweight, quantized neural models
can be integrated directly into the programmable data plane. The main objective is
to achieve real-time classification of network traffic at line rate while retaining the
ability to adapt to evolving patterns and threats. Achieving this balance between
speed, adaptability, and resource efficiency is at the heart of this research.

1.2 Objective
The primary goal of this thesis is to design, implement, and evaluate a novel split-
inference framework for adaptive intrusion detection within a programmable
switch. The system distributes intelligence between the data plane and the control
plane, combining high-speed execution with continuous learning. In the proposed
approach, a Binarized Neural Network (BNN) is deployed within the Tofino
ASIC data plane to perform classification at line rate using binary operations such
as XNOR and population count. The control plane, on the other hand, oper-
ates as a supervisory entity responsible for training, retraining, and maintaining
synchronization between model updates and hardware deployment.

To achieve these objectives, the work integrates several key elements:

• A P4-based feature extraction module that computes and encodes flow-level
statistics within the switch;

• A hardware-compatible BNN inference engine designed to operate under
Tofino’s architectural constraints;

• A control-plane refinement loop based on a teacher-student paradigm,
enabling periodic retraining and adaptation;

• A confidence-based feedback mechanism that quantifies prediction re-
liability and triggers retraining when needed.

To reduce model complexity and improve generalization, feature selection is
performed using SHapley Additive exPlanations (SHAP), which identifies

12

Introduction

the most influential features contributing to accurate classification. In addition,
Quantization-Aware Training (QAT) is employed to mitigate the impact of
low-precision operations and ensure robust learning despite binarization.

The framework was evaluated on two well-known benchmark datasets for in-
trusion detection: CICIDS2017 and CIC-UNSW-NB15. Experimental results
demonstrate that the proposed architecture achieves strong predictive performance
even under extreme quantization. The Wide BNN configuration achieved an F1-
score of 0.952 on CICIDS2017, while the Dense model reached 0.943 on CIC-
UNSW-NB15. Open source Tofino SDE further confirmed that the most complex
model required less than 8% of total SRAM validating the feasibility of in-network
inference on constrained devices.

Beyond these quantitative results, the work highlights a broader implication:
the possibility of merging data-plane speed with adaptive intelligence. By embed-
ding learning mechanisms directly within network hardware, we move closer to
a new class of self-optimizing networks capable of reacting to changes in real
time without centralized coordination. This paradigm has the potential to trans-
form not only network security but also other domains, such as traffic engineering,
quality-of-service management, and distributed telemetry.

In conclusion, this thesis provides both a conceptual and practical foundation
for embedding neural inference within programmable switches. It demonstrates
that deep learning principles can be adapted to operate under stringent hard-
ware constraints without losing predictive power, paving the way for intelligent,
autonomous network infrastructures.

13

Chapter 2

Background

Many concepts and entities play important roles in the development of this work,
in the following chapter I highlights them. Having a prior knowledge on the follow-
ing topics will ease the understanding of HYNN. Machine learning and advanced
networking are the main areas of interest that are collaborating in the project
development.

2.1 Binarized Neural Network

Deep Learning(DL) is an active branch of Machine Learning, precisely we will
consider Neural Networks(NN) in the classification use case. The objective of a
NN is to create a non-linear function representing the features space, that is used
to yield a label, it is the class in which the sample is belonging to. The resulting
function (i.g. model) must capture hidden patterns behind data, thus producing
a generic decision making module which can correctly classify unseen data. In
this way, the application can dynamically adopt different behaviors, based on the
NN output, without using static concepts or logic. The process of creating the
sudden function is called training phase. After that, the process of predicting the
belonging class for unseen data is called inference.

DL is known to be resource demanding, especially during training; First, it
requires a lot of fast-access memory to store and operate Neural Network weights.
In the other hand, to achieve a reasonable speed and execution time, the device
on which the NN is running needs some type of parallel-based processor to achieve
full-layer execution in a single time-unit. Most DL models are operating float
data type to achieve more precise model update during backpropagation; this
guarantees a better final model.

14

Background

Even if advanced AI application requires many computational resources, em-
bedded systems or ASICs, whose are natively hardware constrained, could not
remain behind in this field. In 2016, Courbariaux et al. published [2], the pi-
oneering work about Binarized Neural Networks(BNN). They introduce an
extremely quantized NN using weights and activation constrained between +1 and
−1 , hence 1-bit values.

The advantages introduced by this innovative work are two-fold. First, ex-
pensive FP operations are replaced by faster and more efficient bitwise operation.
Second, weights dimension is reduced by a numbers of magnitude order. However,
quantizing ML models can introduce counterbacks as well, model precision can be
substantially lower than the FP counterparts, for instance.

We will discuss the disadvantages in the following subsections.

2.1.1 Forward Propagation
Forward propagation is the process of moving intermediate results from the in-
put/first layer, through all the hidden units, arriving to the output/last layer. It
is basically the process of gradually producing the result starting from the raw
features and this step is shared between training and inference. The forwarding
pass, in our context, is characterized by a binarization step added to the standard
matrix multiplication. If the forward pass in a full-fledge NN is expressed:

Y (l) = σ
(︂
W (l)X(l−1)

)︂
the forward pass for a BNN is:

Y (l) = SIGN
(︂
popcount

(︂
W (l) ⊕ x(l−1)

)︂)︂
Binarization functions

This is the binarization function suggested by [2]:
The previous function is the first and most used version of a binarization func-

tion, in the past years many variation of it were presented, each one with pros and
cons.

Sign(x) =

⎧⎨⎩+1, if x ≥ 0,

−1, otherwise.

Between all of its variations, the binarization function proposed by XNOR-
Net [3] has been appreciated by researchers and has the following formalization:

I ≈ α ∗ sign(I) = α ∗BI

W ≈ β ∗ sign(W) = β ∗BW

15

Background

Where α and β are defined as follow:

α = 1
n
∥I∥L1

β = 1
n
∥W∥L1

Rastegari et al., to reduce the quantization loss during the 32bit conversion to
1b added two scale factors α and β for weights and activations to the classical Sign
function. We will discuss deeper the role of this function in the section

2.1.2 Backward Propagation

The backpropagation (BP) step is the fundamental process of learning of every
NN. It is an iterative process that adjusts the weight parameters according to
some multi-dimensional directions. A variant of the know Gradient Decent is used
normally to train DNN, the Stochastic Gradient Descent, where the gradient of
the loss function, with respect of the parameters is computed over a small batch,
instead of all the samples; that for a computational resource motivation. Since
the derivative of the loss must be computed, it has to be differentiable. However,
in BNNs, propagating the error backward is not that simple; the sign function is
not differentiable and in some parts of it, the gradient vanishes to 0.

2.1.3 Gradient Approximation

Nowadays, in order to successfully train a BNN, the sign function is applied to
activations during forward propagation, but then, when the backpropagation needs
to be performed, the Straight Through Estimator [1] is operated. Bengio et al.
proposed it in 2012, and Courbariaux et al. were the first to integrate it in a BNN
training context [2]. The function of STE is defined as follows:

clip(x,−1, 1) = max(−1, min(1, x)). (2.1)

This estimator solves the derivative problem of the sign binarization function
during BNN training, but another issue was noticed about this solution. Since the
clipping operation makes the gradient vanishes for absolute input values greater
than 1, researcher noticed how bad it affected the training, making it more instable
and prone to stall in terms of accuract and learning. In practical scenarios, the
Identity function is indeed, preferred; propagating gradients also in cases where
absolute value of the gradients were outside the the range [−1, +1].

16

Background

Figure 2.1. This plot shows the difference between the clipped and identity
version of the Straight Through Estimator during backpropagation. The
clipped version makes the gradients vanishes in ranges outside [−1, +1],
while the identity STE avoids these "dead zones", actually improving and
stabilizing BNNs training.

2.2 Programmable Data Planes
The emergence of programmable data planes has radically changed the way re-
searchers and practitioners conceive of computer networks. For decades, switching
hardware was built around fixed-function ASICs that supported only a narrow set
of standardized protocols. While efficient, this approach was fundamentally rigid,
preventing operators from deploying new features or adapting the network to novel
use cases without long hardware development cycles. Programmable Data Planes,
in contrast, expose an interface where the behavior of the forwarding hardware
can be defined through a high-level programming language, enabling networks to
evolve at the speed of software while preserving line-rate performance.

2.2.1 Protocol-Independent Switch Architecture

The Protocol-Independent Switch Architecture (PISA) has become the canonical
abstraction for programmable switches. In PISA, the data plane is structured

17

Background

as a sequence of stages that can be reconfigured by the programmer. Incoming
packets first traverse a parser, which extracts header fields based on a grammar
defined in software rather than by fixed hardware logic. After parsing, packets
enter a pipeline of match-action stages. Each stage compares selected header fields
against tables that may be populated at runtime and, depending on the match,
executes an associated action such as modifying headers, updating metadata, or
changing forwarding decisions. Finally, the packet is reassembled by the deparser
and transmitted on the output port.

Parser
Match-Action

Stage 1
Match-Action

Stage 2
Match-Action

Stage N Deparser
Packet In Packet Out
Metadata

Figure 2.2. Protocol-Independent Switch Architecture (PISA). Packets traverse
a programmable parser, a sequence of match-action stages, and a deparser, while
metadata flows along the pipeline.

This design is significant because it decouples the forwarding pipeline from
specific protocols. Instead of being bound to Ethernet, IPv4, or TCP, the switch
can be programmed to recognize arbitrary headers and behaviors. This protocol
independence is what makes PISA versatile for research in new architectures, in-
network computing, and advanced telemetry.

2.2.2 Data Plane Programming Language
To realize the potential of PISA, a dedicated programming language was needed.
The result is P4, the Programming Protocol-Independent Packet Processors lan-
guage. P4 allows developers to define custom headers, write parsers that extract
those headers from raw packets, declare match-action tables, and specify the con-
trol flow that determines how a packet progresses through the pipeline.

The first version, P4_14, provided proof of concept but was closely tied to
particular implementations. Its successor, P4_16, refined the model by emphasiz-
ing modularity and target-independence. In P4_16, the architecture is explicitly
defined, so a single program can be compiled against different back ends such as
the v1model for software switches, the PSA (Portable Switch Architecture), or
TNA (Tofino Native Architecture). This separation of language and architecture
enabled both academic and industrial adoption, making P4 the de facto standard
for data plane programming.

18

Background

1 parser start {
2 extract (ethernet);
3 return ingress ;
4 }
5
6 control ingress {
7 table forward {
8 reads { ethernet . dstAddr : exact ; }
9 actions { set_port ; drop; }

10 size : 256;
11 }
12
13 action set_port (bit <9> port) { modify_field (metadata . egress_spec , port); }
14
15 apply { forward . apply (); }
16 }

Listing 2.1. Concise BMv2 P4 snippet

In order to guarantee a certain speed standard, the P4 language has a very
limited instruction set, both in quantity and functional sense. No support for
loop-like construct and high-precision data type. In addition, there are no native
implementation for multiplication or division; it is worth to mention that a barrel
shifter is present and it allows to approximate the previous two computations.

2.2.3 Targets
A P4 program is not executed in the abstract: it must be compiled against a
concrete target. Different targets expose different capabilities, reflecting trade-offs
between speed, programmability, and deployment feasibility.

One of the most common research targets is BMv2, the behavioral model soft-
ware switch. BMv2 implements the v1model architecture, a simplified represen-
tation of PISA suitable for prototyping. It runs on commodity CPUs, allowing
developers to test P4 programs functionally even though it lacks hardware-level
performance.

On the opposite end of the spectrum is Intel’s Tofino ASIC, which implements
the Tofino Native Architecture (TNA). Tofino is a fully programmable, production-
grade switch capable of terabit throughput at line rate. The TNA architecture
reflects the real hardware pipeline and provides developers with fine-grained control
while enforcing constraints that ensure deterministic timing. Thanks to the high-
performance hardware installed in this ASIC, Tofino makes a really good option
to offload BNN inference, this is why we chose this target as foundation for our
system.

Between these extremes are SmartNICs, which embed limited P4 programma-
bility into network interface cards. While not as powerful as dedicated ASICs,
SmartNICs allow certain packet processing tasks to be offloaded from the host
CPU, making them attractive in cloud and edge environments.

19

Background

2.2.4 Control Plane

The data plane alone cannot operate without a control plane. Whereas the data
plane processes packets at line rate according to the logic defined in P4, the control
plane is responsible for populating tables, updating rules, and reacting to network
dynamics. In the P4 ecosystem, the main interface between these two components
is P4Runtime, a standardized API that allows an external controller to install,
modify, and remove entries from match-action tables. This separation preserves
the performance of the data plane while ensuring flexibility: the same P4 program
can be reused across different environments, while the control plane adapts it to
the needs of specific applications.

2.3 Intel Tofino ASIC

Among all existing targets, Intel Barefoot’s Tofino stands out as the most im-
pactful. Tofino ASICs implement the PISA model while delivering multi-terabit
performance. The pipeline consists of a programmable parser, a large sequence of
match-action stages, and a deparser, each optimized to sustain line-rate through-
put regardless of traffic patterns. Unlike software switches, Tofino’s constraints
are dictated by hardware realities: the number of tables, size of memories, and or-
dering of operations are limited. During this ASIC the development a huge effort
was put in place to enhance the parallelization aspect of non-dependent operation;
tables lookup, action execution, if not dependent on each other can be executed
in the same stage without any further delay.

Packet Header Vector

In a Tofino switch, each packet’s parsed header fields are collected into a fixed-
size Packet Header Vector (PHV), which serves as the operand space for
match–action tables and ALU units. The PHV allocator is a compile-time tool
that maps individual header fields (and metadata) into contiguous slices within the
PHV, respecting hardware constraints on alignment, width, and access granularity.
It groups fields that are often used together into the same 32B or 64B PHV blocks
to minimize cross-block accesses and ensure that each stage’s match and action
pipelines can read/write their required slices in a single cycle. When a user-defined
P4 program declares headers, metadata, and tables, the allocator analyzes all
read/write patterns, co-locates dependent fields, and flags conflicts (e.g., rotated
writes, overlapping slices) so that the final PHV layout maximizes throughput and
avoids pipeline stalls.

20

Background

Match-Action Unit

The packet is then processed by a Match-Action Unit (MAU) pipeline, com-
posed of multiple MAU stages. Each MAU stage performs match-action oper-
ations where packet fields are matched against lookup tables, and corresponding
actions are applied. The sequential nature of MAU stages enables complex packet
processing logic to be built incrementally, while maintaining high throughput and
low latency.

Feature Constraint
MAU stages 12
SRAM 120 Mbit
TCAM 6.2 Mbit

PHV 4 Kb total size limit
Limited fix-sized containers

Registers Read or update once per packet
RegisterAction must fit in one stage

Action Simple comparisons allowed
Cannot span over multiple stages

Table Up to 1 sequential lookup per stage
Up to 16 parallel lookup per stage
One possible look-up per table

Table 2.1. The above table lists the main constraints we have complied
during the development of the system. Each constraint is referred to a
single Tofino pipeline.

With the now open-source open-p4studio, Barefoot/Intel enabled researchers
to evaluate their ideas on production-grade SDE, when code structure allows it.
This accessibility, coupled with the BFRuntime Interface for control-plane interac-
tion, created a vibrant ecosystem of tools and projects that rely on programmable
switches.

21

Chapter 3

Related Work

During the development of my work, I encountered numerous articles and previous
projects from which I draw inspiration; in this section, I will highlight the core
aspects about the approach they have chosen.

Since 2016, researchers have dreamed of a smart networking system, and to
fulfill this goal, they have tried to place ML models inside the network. Thanks to
evolving capabilities of network devices and programmability, trying to AI-enable
them has never been more feasible.

Researchers have successfully integrated different ML models despite the com-
putational capabilities of these devices. We can separate them into three main
categories: Decision Tree Ensemble Models (DT), Neural Network(NN),
and other models.

3.1 Neural Network-based works
Network devices hardly support the sophisticated and power-consuming operations
needed to execute a full-fledged neural network; this is why the vast majority of
ML inference implementations on the data plane are characterized by the presence
of some compromises.

Binarized models

N2Net [14] extremely quantizes a NN to the point that a single bit is used to
represent the weight of each neuron (e.g BNN). It combines a series of bitwise
operations to compute the result of the layer. It does not present a complete
implementation, nor the underlying architecture, and we only know that it is an
RMT-like switch pipeline. I personally define it as the pioneer article of this
research trend; the same approach and heuristics will drive many future works.

22

Related Work

However, it does not discuss the performance aspect of the NN forward pass, nor
the possible limitations of its approach in relation to the size of the model.

BaNaNa SPLIT [12] focused its analysis on the assumption that SmartNICs
and other network-programmable devices can be successfully used as AI-accelerator
components. The study highlights the limitations of CPU-based machines in the
NN inference context. It shows that CPUs are efficient executors for conv, pool,
and norm layers, but far less efficient when fc layers must be executed; when these
types of blocks are processed, the degree of multi-programmability decreases and
the system wastes many clock cycles. Its intuition came from this drawback; in
fact, it offloads the fc computation to the SmartNIC. Before NN execution, Ba-
NaNa SPLIT takes the full-fledged NN result before the fc layers and subjects it
to a binarization stage. Then, the same methodology as [14] is followed to achieve
the final result. However, the binarization process and communication between
NIC and CPU noticeably increase the system’s latency; as with [14], it does not
provide precise benchmarks or evaluation sections.

Network devices rely on a very heterogeneous set of underlying architectures,
each suitable for different tasks, which is why choosing the correct target for the
selected use case is fundamental. N3IC [15] is one of the first papers to deploy a
working BNN executor on different architectures. The authors demonstrate the
feasibility of their idea on BMv2 (Software Switch), a very flexible and simplified
version of a programmable switch. They decided to use a BNN to perform anomaly
detection and traffic identification. They propose different BNN configurations,
and with all of them they achieved a complete NN forward pass in a single packet
processing. After that, they created a standalone compiler able to translate the
definition of a BNN network into implementations that can be directly deployed
on data-plane SmartNICs. They managed to support different targets using both
micro-C and P4 languages.

Quantized models

The next section of models that will be discussed are the quantized models. In
a standard scenario, where GPUs and TPUs can be used to infer NN results, a
common weight size is 32b, even 64b. This generous dimension guarantees the
maximum precision when gradient comes and small adjustment to weights are
performed. However, many studies have shown that reduced weight dimension to
a certain point decreases the overall NN accuracy of a small fraction; this is the
assumption on which the following works are based.

INQ-MLT [18] quantizes weights and activations to a standard integer bit-
width, natively supported by a variety of targets such as v1model, psa and tna.
In this work, Kaiyi Zhang et al. proposed a novel approach named Quantization

23

Related Work

Aware Training [10] where quantization nodes are added to the forward pass, simu-
lating the quantization loss; in such a way the network is aware of the quantization
process and can adjust its parameters, reducing the derived loss. In the proposed
toolbox, they show two ML models, CNN and MLP, showing their superiority to
BNN models mentioned in the previous subsection. In this proof of concept, they
demonstrate that quantized ML models are worth to be explored in data plane
configuration; however, their implementation remains too complex for the major-
ity of hardware target, they proposed the toolbox for BMv2/v1model indeed. In
fact, INQ-MLT explicitly mentions that a prior multiplication extern (support) is
necessary of the deployment of the described toolbox; and such a support is all
but common in data plane.

Following the footsteps of Kaiyi Zhang et al., Quark [19] proposed a framework
for quantized CNN execution. In their analysis, they demonstrated that weights
and activations with 7-bit width were optimal for storage and accuracy efficiency
in the flow anomaly detection use case. Mai Zhang et al. adopted the Tofino/tna
model to empower the entire project; they chose a hardware target, which allowed
for a more precise and rigorous evaluation phase in the paper. Given the com-
plexity of the ML model, a forward pass could not be achieved in a single switch
traversal of a packet; more than 100 packet recirculations were needed to predict
a unique flow classification. In addition, Quark supports domain shifting: changes
in traffic behavior are addressed by constant feature tracking and retraining of the
model.

In addition, some projects explored the distributed execution of more complex
ML models. NetNN [11] implemented a complete data plane-based intrusion detec-
tion system. By mapping different parts of a DNN into a series of programmable
switches, Kamran Razavi et al. showed the execution of full-fledged DNN architec-
tures at line rate. They considered the entire raw packet as input features, avoiding
complicated feature engineering on the data plane, which allowed them to use all
the available resources for the DNN executor. Moreover, an enhanced version of
the model was analyzed, taking into account the inter-arrival time (IAT) between
packets belonging to the same flow as an additional feature. Their proposed work
offered direct support for conv and fc layers. Finally, their work showed that
DNN inference systems on a distributed data plane can achieve state-of-the-art
performance while meeting real-time requirements.

Modern datacenter networks are often partitioned into ultra-fast data plane
modules and control planes, where the latter accomplish complex data-driven
management policies to update the former’s parameters. Taurus [16] addressed
the unavoidable delay between data and control plane communication by imple-
menting an external FPGA-based module as an AI accelerator. The dedicated
chip supports the MapReduce paradigm, often used in ML for vector-to-vector and

24

Related Work

Figure 3.1. This NetNN overview shows clearly how distributed computation
can map seamlessly to NN. The picture is taken from [11].

vector-to-scalar operations like dot products for NN neurons. Their implementa-
tion added a dedicated control block into P4, named MapReduce. By offloading
the heaviest ML operations from the switch and exploiting the dedicated Taurus
hardware, the latency with the control plane can be avoided while introducing only
minimal delay compared to a full data plane approach.

3.2 Non Neural Network-based works
Since 2019, many works have deployed Decision Trees (DT) and tree based En-
semble models following two main approaches: encode-based and depth-based. As
showed in 3.2, the encode-based uses a varying number of MAT depending on how
many levels the tree has. A single MAT table is used for each level of the tree.
The latter encodes each feature and uses an additional code-label table for the DT
model; this is the case of IIsy [17] and the Planter [20].

IIsy is a framework for mapping traditional machine learning classifiers into
programmable switches. The authors prototyped four algorithms on match-action
pipelines: decision trees, where features are sequentially matched and encoded
into metadata, reducing depth compared to naive stage-per-branch designs; SVMs,
either by assigning votes per hyperplane through multiple tables or by aggregat-
ing feature-based vectors to approximate classification boundaries; Naive Bayes,

25

Related Work

which replaces probability multiplications with lookup-based encodings or wide
feature-to-class tables, trading precision for feasibility; and K-means, realized
by storing per-feature distance vectors and summing them in the final stage to
assign clusters. These designs emphasize lookup tables over arithmetic to fit hard-
ware constraints. Implemented in both software (BMv2) and hardware (NetFPGA
SUME), IIsy achieves full line rate and practical accuracy on IoT traffic classifica-
tion, though limited by the number of features and classes that can be supported
with available table depth and stage count.

Figure 3.2. This scheme shows the similarity between MAT of a simple switch
and a decision tree. The picture is taken from [17].

While IIsy focused only on traditional ML models, in 2024 Planter introduced a
novel framework that supports all previously mapped models and extends coverage
with adaptations for neural networks. Planter also supports a broad set of targets,
including all major programmable architectures currently available on the market.

Together, these two papers highlight a clear trend: recent projects increasingly
emphasize complete and extensible frameworks, rather than isolated algorithmic
mappings or incremental optimizations.

26

Chapter 4

System

Modern Intrusion Detection Systems (IDS) for networks are typically based on
separate external servers with dedicated computational resources. However, this
well-known design requires constant communication between the core of the net-
work and the IDS server, potentially leading to network overload. In addition,
the time needed for this communication increases with the amount of traffic in
the safeguarded network, causing potential delays in the IDS’s ability to take pro-
tective measures against threats. Finally, the use of external servers represents a
significant cost for large companies, and constant maintenance is required.

In contrast, in-network inference systems offer microsecond-scale decisions ca-
pabilities, enabling immediate reaction to events. For example, an in-network DNN
could identify a malicious packet or a congestive flow and trigger mitigation on the
very next switch hop, something not feasible with cloud or CPU-based analytics
that operate at millisecond or higher timescales. This ultra-low latency processing
not only improves responsiveness but also reduces network load, as fewer packets
need to be mirrored to external analyzers. Our system overcomes the limitations

of traditional approaches by deploying a dynamic all-in-one framework entirely
within a programmable switch.

4.1 System Overview
The system is composed of two neural network instances: a DP-resident BNN and
a CP-resident DNN.
After a fixed number of packets belonging to the same flow traverse the switch,
the latter is marked as mature and becomes ready for classification. At this point,
the BNN in the DP infers its class and sends the predicted label, together with the

27

System

confidence score, to the CP. The confidence score is a metric indication representing
how sure is the network about the prediction.

Figure 4.1. This figure illustrates the complete workflow of our adaptive intru-
sion detection framework. Network flow statistics are first extracted in the data
plane and passed through the BNN executor, where bitwise XNOR, popcount
and SIGN perform real-time inference. The classification results and confidence
scores are then analyzed in the control plane to determine whether samples are
confidently classified or marked as critical for retraining. Critical samples are
then labeled by the teacher MLP, whose computes SHAP-based feature impor-
tance, and guides the student BNN during retraining, enabling the system to
continuously adapt to evolving network behaviors.

When the flow classification is high-confident, the corresponding flow is consid-
ered handled, with actions dictated by the inference outcome(e.g., drop or quaran-
tine for attacks, forwarding for benign traffic). If the confidence score is below the
threshold the control CPU records the critical flow as fine-tuning material during

28

System

the BNN retraining phase.
For each refinement process, the best n ∈ {133,128,98} bit-features (depending

on the deployed BNN variant) are selected and used for retraining.

Thanks to the data plane and control plane co-design we are able to take
advantage of both components. Exploiting the control plane CPU, we can tailor
extremely quantized Neural Networks and their associated features to suit the
anomaly detection use case. Moreover, by using the provided API, we interact
with the data plane through a robust and reliable protocol, allowing us to deploy
the just-trained model efficiently.

The benefits of leveraging the DP processing pipeline to execute the BNN
inference phase are two-fold. First, the ultra-fast per-packet processing time of the
switch is highly suitable for offloading the inference phase of our neural network
models, basically at wire speed. Second, by analyzing the flows as they naturally
traverse the switch en route to their final destination, we are able to gather up-to-
date flow statistics necessary both for fast and reliable classification and for the
model refinement phase.

We define flow as a group of packets that traverse the network and have the
shares fundamental properties as shown in the Table 4.1.

Field Description
Source IP address The IP address of the device that initi-

ated the communication.
Source port The port number on the source device

used for the communication.
Destination IP address The IP address of the device intended

to receive the communication.
Destination port The port number on the destination de-

vice designated to receive the data.
Protocol The communication protocol used for

the data transfer (e.g., TCP, UDP).

Table 4.1. All the packet traversing the network that shared these at-
tributes are considered a flow

4.1.1 Datasets
In the following two subsection I will presents the key aspects of the datasets
used to evaluate our system. Even if multi-class categorization are present for

29

System

UNSW-NB15 and CICIDS2017, we focused on binary anomaly detection, taking
into account just the label for bening and malicious flows.

CICIDS2017

The CICIDS2017 dataset [13], produced by the Canadian Institute for Cyber-
security, offers another comprehensive benchmark designed to reflect real-world
network traffic. It was captured over five days of operation in a testbed that sim-
ulated both legitimate user behavior and diverse attack vectors, including DDoS,
brute force, botnets, and infiltration attempts. Each flow is annotated with 80
statistical features covering packet- and flow-level characteristics. CICIDS2017 is
particularly valued for its temporal realism and traffic diversity, which allow a
robust evaluation of intrusion detection approaches under dynamic and evolving
conditions.

UNSW-NB15

The UNSW-NB15 dataset [7–9] is a widely used benchmark for evaluating in-
trusion detection systems. It was generated at the Australian Centre for Cyber
Security using the IXIA PerfectStorm tool, which combines modern normal traffic
with synthetic attack scenarios. The dataset contains nine categories of mali-
cious activity, including exploits, DoS, reconnaissance, and backdoors, along with
a rich set of flow-based features. Compared to earlier datasets such as KDD’99
or NSL-KDD, UNSW-NB15 provides more realistic traffic patterns and a better
balance between benign and malicious samples, making it suitable for training and
validating machine learning models under contemporary network conditions.

CIC-UNSW-NB15 [6], an augmented version of the original UNSW-NB15, has
been generated analyzing the original pcap files with the same tool used by CI-
CIDS2017 and, in fact, the two datasets share the same features. For UNSW-NB15
We will use the augmented version for our evaluation test in order to ensure con-
sistency between features and features values.

4.1.2 Deep Learning Models
Nowadays, with the arising popularity of ML framework, a variety of DL models
are available and easy to deploy; we could opt for some complex DL network archi-
tecture to ensure the highest possible performance, however, we were constrained
by the control plane resources and by the data plane custom architecture. In ad-
dition to that, spending a large amount of time training the network can cause
a late adaption to the dynamic network traffic, causing a mismatch between the
data distribution where we trained the BNN and the live data we will infer on.

30

System

These were the reasons why we chose the well-know Multilayer Perceptron(MLP)
for both control plane and data plane resident NNs architecture. It is one of the
pioneer NNs used in the classification task, and is widely used today as last mod-
ule in more complex networks, often named flatten. Unlike some other popular
architectures, Convolutional Neural Network (CNN) for instance, MLPs lack of
capacity to capture locality patterns behind the analyzed data. However, since
our training data are in tabular format, this is not threatening our scope.

31

System

4.2 Control Plane
The orchestrator of our system is represented by the control CPU, it is in perpetual
communication with the data plane; in such manner, it is able to install certain
rules and apply specific policies in order to adapt in the best possible way to
the actual network scenarios. More specifically, a number of tasks are under its
control. First, receiving network statistics, inference results — together with the
confidence score —from the data plane pipelines. Second, keep track of critical
samples and use them for future model refinement. Third, trigger the refinement
phase for the binarized NN. And finally, it processes weights and input flow in
order to make them suitable for the data plane deployment.

4.2.1 Model training
In this section, I will explain in detail the NN training methods I adopted and,
in addition, I will make a brief introduction about the main concepts and logic
behind the ML frameworks I operated.

Quantization Framework — Brevitas

All our quantized models are built with Brevitas [4], a PyTorch-integrated frame-
work for FPGA-oriented NN quantization. Brevitas implements a flexible uniform-
affine quantization scheme with trainable scale factors and per-tensor (or per-
channel) clipping thresholds, using the Straight-Through Estimator (STE) for
backpropagation. Instead of relying solely on SIGN-based binarization (which
maps values to ±1 with no intermediate precision), Brevitas allows arbitrary bit-
widths for both weights and activations, supports symmetric or asymmetric ranges,
and can optionally learn the quantization step size during training. This richer
setup preserves more of the original dynamic range—improving accuracy on more
complex tasks—while still yielding hardware-friendly integer representations for
deployment.

Brevitas, indeed, allows for generic quantization training approaches, indepen-
dent from the chosen quantization strength. We focused on BNN training, and
to fullfill that objective, we implemented a custom binary quantizer by subclass-
ing Brevitas’s Quantizer interface. This BinaryQuantizer forces both weights and
activations to −1, +1 during the forward pass, while still leveraging the STE for
gradient updates.

Quantization Aware Training

Quantization-aware training (QAT) in Brevitas seamlessly integrates quantization
operations into the forward pass, so that both weights and activations are “aware”

32

System

of their limited precision during training. By replacing standard layers with their
quantized counterparts and specifying bit-widths, scale constraints, and quantizer
classes, Brevitas simulates the effects of low-precision inference while still perform-
ing full-precision gradient updates via the STE. Since quantization is not differ-
entiable, the STE is used to approximate gradients and enable backpropagation.
This approach allows the model to adapt its parameters around quantization noise
and non-idealities, typically yielding significantly higher accuracy at deployment
compared to post-training quantization alone.

1 class CommonBinQuant(ExtendedInjector):
2 quant_type = QuantType.BINARY
3 bit_width_impl_type = BitWidthImplType.CONST
4 scaling_impl_type = ScalingImplType.CONST
5 restrict_scaling_type = RestrictValueType.FP
6 zero_point_impl = ZeroZeroPoint
7 float_to_int_impl_type = FloatToIntImplType.ROUND
8 scaling_per_output_channel = False
9 narrow_range = True

10 signed = True
11 bit_width = 1
12

13 class CommonBinWeightQuant(CommonBinQuant, WeightQuantSolver):
14 scaling_const = 1
15

16 class CommonBinActQuant(CommonBinQuant, ActQuantSolver):
17 min_val = -1.0
18 max_val = 1.0
19 scaling_const = 1

Figure 4.2. The above code block show how a Brevitas Quantizer is de-
clared. Particularly important attributes are bit_width, min/max_val and
scaling_cost. They define respectively, min/max values for weights and ac-
tivation and the corresponding bit width; the scaling_cost refer to the affine
quantization that Brevitas supports, however we are not using it.

Confidence Score Implementation in Binary Neural Networks

The confidence score represents a quantitative measure of the certainty showed
by a BNN about its classifications. Unlike traditional neural networks that oper-
ate with continuous activations, BNNs employ binarized weights W ∈ {−1, +1}

33

System

and activations a ∈ {−1, +1}, which fundamentally alters the interpretation of
intermediate layer outputs as confidence indicators.

When multi-class classification task is involved, full-fledge NNs are often using
a Softmax layer — defined as 4.1 — at the end of inference pipeline in order to
enable the corresponding output to a probabilistic interpretation.

Softmax(zi) = ezi∑︁K
j=1 ezj

(4.1)

However — even if we are treating out binary classification task as multi-class
classification with only two classes — we could not use the aforementioned layer
to compute confidences since binary values {0, 1} are not intrinsically suitable for
probabilistic interpretation. In our configuration the possibles BNN outputs span
over 2output_layer = 22 = {00, 01, 10, 11}.
Rather than Softmax, we exploited the number of active neuron units in the penul-
timate BNN hidden layer as confidence score. By gathering statistics on neurons
activation on the validation set, we can helpful insights about the BNN classifica-
tion trend.

Mathematical Formulation
In a BNN with architecture f : Rd → Rc where d represents the input dimen-
sionality and c the number of classes, the confidence score C(x) for input x is
computed as:

C(x) =
h∑︂

i=1
max(0, a

(L−1)
i) (4.2)

where a
(L−1)
i represents the i-th activation of the penultimate hidden layer, and

h denotes the number of hidden units in that layer. The max(0, a
(L−1)
i) converts

the bipolar activations {−1, +1} to the corresponding {0, 1}, counting the number
of "active" neurons.

Confidence histogram and Weighted Accuracy
The practical evaluation of confidence scores involves analyzing their distribution
across validation samples and computing weighted accuracy metrics. For a given
confidence value c, we define the weighted accuracy contribution as:

W (c) = A(c)× P (c) (4.3)
where A(c) represents the accuracy of samples with confidence score c, and

P (c) denotes the percentage of samples exhibiting that confidence level:

A(c) =
∑︁

i:C(xi)=c I[ŷi = yi]∑︁
i:C(xi)=c 1 (4.4)

34

System

P (c) =
∑︁

i:C(xi)=c 1
N

(4.5)

where I[·] is the indicator function, ŷi and yi are the predicted and true labels
respectively, and N is the total number of validation samples.

This weighted formulation provides a practical interpretation: samples with
higher confidence scores should ideally demonstrate higher accuracy, while the per-
centage weighting ensures that confidence values affecting more samples contribute
proportionally more to the overall model assessment. The confidence histogram
visualization plots these weighted values W (c) against confidence scores, revealing
the relationship between network certainty and prediction reliability across the
sample distribution.

Thanks to this mechanism we are able to understand whether a sample is hard
to classify for the current model. During the successive refinement phase, we will
select the retraining sample looking at the corresponding confidence score.

4.2.2 Model deployment
Upon training, the model has to be deployed within the data plane environment.
We need to extract the binarized weights from the Binarized model, transform
weights from the bipolar configuration to the binary one — {−1,1} → {0,1} —
and finally, load them withing the Tofino ASIC’s dedicated tables.

The controller organizes the upload of weights and inputs into Tofino registers
in a way that matches the parallelism and stage constraints of the hardware.
Instead of loading full vectors directly, both weights and inputs are divided into
smaller fixed-size slices with a suitable size depending on the BNN architecture.
These slices are grouped into batches, so that each hardware stage can process
a subset of neurons in parallel without exceeding the register width or pipeline
capacity 4.3. The weight batches are stored in dedicated tables, indexed by their
batch identifiers, ensuring that each group of slices is associated with the correct
neurons. Input vectors are split following the same principle and written into
registers so that their alignment matches the weight organization. This batching
strategy allows the execution pipeline to perform consistent parallel XNOR and
popcount operations across neurons while keeping register usage predictable and
hardware-friendly.

35

System

1 # push weight into weight table l0
2 for j in range(num_neuron_batches):
3 for ix in range(weight_batches_no):
4 base = self.parallel_neurons_cap * j
5

6 w1 = w_mx[ix]
7

8 (w0, w1, w2, w3, w4, w5, w6) = w1[base:
base+self.parallel_neurons_cap]↪→

9

10 self.bfrt_l0_weights.add_with_get_weights(
11 f"{ix}", # key “weight_batch”
12 f"{j}", # key “neuron_batch”
13 f"0b{w0}", # bit<14> nr1_w
14 f"0b{w1}", # bit<14> nr2_w
15 f"0b{w2}", # bit<14> nr3_w
16 f"0b{w3}", # bit<14> nr4_w
17 f"0b{w4}", # bit<14> nr5_w
18 f"0b{w5}", # bit<14> nr6_w
19 f"0b{w6}" # bit<14> nr7_w
20)

Figure 4.3. Upon weights extraction, the binarized parameters are pushed within
the BNN pipeline through the bfrt_l0_weights.add_with_get_weights API
call. They are pushed by batches, a slice of weights is loaded per neurons batch,
that will guarantee parallel neuron execution in dataplane.

4.2.3 BNN Weights and Inputs Deployment
The deployment of trained BNN model onto the Tofino ASIC requires a controller
mechanism that manages both weight distribution and real-time input process-
ing through the P4 dataplane. Our controller architecture, operates as a bridge
between the trained PyTorch-like models and the hardware-accelerated BNN ex-
ecutor running on the Tofino switch.

The deployment process begins loading the final trained model weights inyo
the BNN hardware implementation. This is possible by accessing the model’s
quant_tensor object from Brevitas model 4.4, containing already weights in a
binarized format, suitable for successive deployment.

36

System

1 def extract_binary_weights(model: torch.nn.Module):
2 binary_weights = []
3 for name, module in model.named_modules():
4 if isinstance(module, qnn.QuantLinear):
5 qt: torch.Tensor = module.weight_quant(module.weight)
6 bw = qt.int().detach().cpu().numpy()
7 binary_weights.append((name, bw.tolist()))
8

9 return binary_weights

Figure 4.4. The code block above is responsible of extracting binarized
weights from the BNN model. This is the first step to achieve the BNN
deployment on data plane.

The weight deployment leverages the bfrt interface to configure the Tofino’s
match-action tables with the binarized network parameters. Each layer’s weights
are transformed from the PyTorch state dictionary format into the specific binary
encoding required by the P4 program, where weights are represented as single
bits (+1/-1 values converted to 0/1). The controller establishes communication
channels through virtual Ethernet interfaces to coordinate between the feature
extraction CPU interface and the BNN execution engine.

For real-time input processing, the controller implements a packet-based in-
ference pipeline where network traffic features are extracted, binarized according
to the SHAP-selected feature set, and formatted into BNNFeaturesHeader pack-
ets for transmission to the Tofino dataplane. The FEATURE_EXTRACTOR_CPU_INTF
receives raw network flows, applies the same binarization logic used during train-
ing (reducing from 168 to the selected subset of features), and forwards the bi-
nary feature vectors to the BNN executor. The controller maintains synchroniza-
tion between concurrent active flows (CONCURRENT_ACTIVE_FLOWS) and handles
the bidirectional communication required for retrieving inference results from the
hardware-accelerated BNN, enabling sub-microsecond anomaly detection directly
within the network dataplane.

4.2.4 Model refinement
In dynamic network environments, evolving traffic patterns often lead to perfor-
mance degradation in static models. To preserve accuracy and adaptability, our
framework integrates a model refinement mechanism based on a teacher–student

37

System

paradigm, where a stable MLP supervises the BNN through confidence-guided
retraining. When the system detects low-confidence predictions, uncertain samples
are labeled by the teacher and used to update the BNN weights. This iterative pro-
cess enables the model to adapt to distribution shifts while maintaining efficient,
hardware-friendly inference.

SHapley Additive exPlanations-based Feature Selection

SHAP [5] values represent a principled framework for interpreting machine learning
models through the lens of cooperative game theory. They attribute each feature
a “Shapley value” quantifying its marginal contribution to the model’s prediction
by considering all possible feature combinations. This approach ensures fairness
and consistency in feature attribution, addressing the limitations of traditional fea-
ture importance measures. SHAP values provide both global interpretability—by
summarizing overall feature influence—and local interpretability, explaining indi-
vidual predictions. Applicable to a wide range of model architectures, including
tree ensembles, neural networks, and linear models, SHAP offers a unified, math-
ematically rigorous method for understanding complex predictive systems. By
enhancing transparency and accountability, SHAP has become a foundational tool
in the field of explainable artificial intelligence (XAI).

When a refinement phase is triggered, we optimize the feature set for deploy-
ment on the Tofino ASIC’s BNN executor. We implement a SHapley Additive ex-
Planations (SHAP) based feature selection methodology specifically designed for
binarized network traffic datasets. Our approach begins with the full 168-feature
— the standard statistics size gathered from the statistics pipeline — binarized
dataset, where each feature represents a single bit extracted from network flow
characteristics. The SHAP analysis is performed using trained neural network
models (both BNN and MLP architectures) to compute feature importance scores
through Shapley values, which quantify each feature’s contribution to the model’s
prediction output.

The feature selection process operates in two phases: first, we train baseline
models on the complete 168-bit feature space and apply SHAP explainability to
rank features by their mean absolute SHAP importance values. Subsequently, we
select the top-ranked features to create reduced feature sets suitable for the hard-
ware constraints of the Tofino BNN executor. This reduction is critical as the P4-
programmable dataplane has limited computational resources and register space
for real-time inference. The selected features maintain the binary nature of the
original dataset, ensuring compatibility with the BNN’s binary operations while
significantly reducing the computational overhead from 168 to a more manageable
number of features (typically 92-133 features, depending on the architecture and

38

System

SHAP source model).

This SHAP-guided dimensionality reduction preserves the most discriminative
network flow characteristics for anomaly detection while enabling efficient deploy-
ment in network hardware.

The resulting models, trained on SHAP-selected features, demonstrate compa-
rable or improved performance compared to their full-feature counterparts, vali-
dating the effectiveness of our feature selection strategy for hardware-accelerated
network intrusion detection systems.

Retraining

The retraining phase serves as a fundamental adaptation mechanism aimed at
mitigating performance degradation under evolving data distributions. When a
model encounters inputs that diverge from its original training domain, its pre-
dictive confidence tends to decrease, signaling a potential loss of generalization.
These out-of-distribution samples — or "critical samples" — for which the model
exhibits uncertain predictions—are systematically collected throughout the eval-
uation process, creating a repository of challenging cases that expose the model’s
limitations under distributional change. When enough critical cases are gathered,
typically after sufficient exposure to the shifted distribution, the BNN model un-
dergo s complete reinitialization and retraining using a combination of the original
training data and the accumulated critical samples. Crucially, the SHAP feature

selection process is recalculated at this juncture using the MLP teacher model,
which demonstrates superior robustness to domain shift compared to the BNN
models. This strategic choice leverages the MLP’s stable performance character-
istics to identify features that remain informative across both domains, ensuring
that the retrained BNN with SHAP features benefits from feature selections that
are less susceptible to the distributional changes that have degraded the original
models’ performance. The retraining process thus creates an adaptive learning cy-
cle where model weaknesses inform targeted improvements through both sample
augmentation and refined feature selection.

39

System

4.3 Data Plane

The data plane implements the real-time packet processing logic of the proposed
framework directly on the Tofino ASIC. It is divided into two main components: a
P4-based feature extraction pipeline, responsible for collecting and encoding
flow-level statistics, and a BNN executor pipeline, which performs in-network
inference through bitwise operations and controlled packet recirculation. Together,
these modules enable fully hardware-embedded anomaly detection at line rate.

4.3.1 P4-based Feature Extraction Pipeline Implementa-
tion

The Tofino feature extraction pipeline, implemented in feature_extractor.p4,
operates as a high-performance stateful packet processing system that computes
network flow statistics directly within the switch dataplane at line rate. The
pipeline processes incoming packets through a series of specialized control mod-
ules including flow hashing (FlowHashing), packet counting (PacketsCounter),
TTL analysis (TTL), packet type classification (PacketType), inter-arrival time
computation (IAT), and byte statistics (Bytes). Each flow is tracked using a hash-
based indexing system that maintains state across multiple packets until the flow
reaches maturity (defined by BIDIRECTIONAL_FLOW_MATURE_TIME), at which point
the extracted features are packaged into a BNN header and forwarded to the neural
network executor.

The complete feature vector comprises 168 binary features that capture com-
prehensive network flow characteristics extracted during the stateful processing
phase. While basic counters, flags, and discrete measurements are computed di-
rectly within the P4 dataplane’s match-action pipeline, more complex statistical
features requiring floating-point arithmetic—such as mean packet sizes (smean,
dmean) and derived statistical measures—are computed in the control plane be-
fore being binarized and integrated into the final feature vector. This hybrid
approach leverages the Tofino’s line-rate processing capabilities for simple aggre-
gations while offloading computationally intensive operations to the control CPU,
ensuring that the overall system maintains sub-microsecond processing latency for
real-time intrusion detection.

The pipeline’s architecture ensures that feature extraction occurs transparently
within the network forwarding process, with minimal impact on packet forwarding
latency. When a flow reaches maturity, the system activates the BNN header val-
idation, triggers packet clonation through egress mirroring (set_mirror()), and

40

System

formats the extracted features for consumption by the BNN executor. This de-
sign enables the deployment of machine learning-based intrusion detection systems
directly within the network infrastructure, providing real-time anomaly detec-
tion capabilities with hardware-accelerated performance characteristics essential
for high-speed network security applications.

4.3.2 Binarized Neural Network Executor Pipeline
On data plane side, deployed within a Tofino ASIC model, the BNN pipeline is
running, allowing classifications to be inferred at wire-rate. In this subsection, I
will explain how we implemented the executor using the native operations offered
by the ASIC device.

Our work propose three BNN variants, with different neural units counts and
hidden layer number, exploring different scenarios, resource consumptions and
performances. We will refer to them with the following names and architectures:
Tiny ←− [98, 21, 2], Dense ←− [133, 43, 2] and Wide ←− [128, 32, 8, 2]. Since they
basically are Binarized Multi Layer Perceptron, I recall that each of the sudden
layers is a fc.

Figure 4.5. The above image represents the forward pass logic overview. Every
inference step is showed where each input features are replicated, processed, and
then aggregated to produce the output that will feed the next layer’s input vector.

Forward-pass on Tofino

The forward-pass (FP) logic uses a combination of bit-wise operations and packet
recirculation to iteratively produce the BNN prediction. Upon flow maturity in
achieved, inference is triggered by the reception of an Ethernet packet with a prior
defined ether_type and a custom nested header(BNNHdr). The latter contains

41

System

all the necessary fields needed by the data plane to store and compute partial and
final results.

1 header bnn_pkt {
2 bit <8> layer_no ;
3 bit <8> l0_out_1 ;
4 ...
5 bit <8> l0_out_4 ;
6 bit <8> l1_out ;
7 bit <16 > input_offset ;
8 bit <16 > input_offset_cp ;
9 bit <8> pop_recirc ;

10 bit <8> nrs_recirc ;
11 popcount_t pop1;
12 ...
13 popcount_t pop7;
14 }

Listing 4.1. In the BNN tiny variant, this is the
BNNHdr definition.

Copy step

Upon trigger, the forward-pass starts and input features are replicated once per
neuron in the current layer, enabling fully parallel per-neuron computation in a
single pipeline stage. In the proposed three BNNs variants, Dense and Tiny are 7-
parallel-neurons enabled, Wide computes 4 neurons results at a time instead. This
is due to the increased hidden layers number, Tofino ASIC model limitation obliged
us to reduce that parameter in order to successfully compile the P4 program.

XNOR as Dot Product

Once the BNN input has been replicated and all the available parallel neurons are
ready, the weights are retrieved from the corresponding table and combined with
the input features via the bitwise XNOR (⊕) operator.

During preprocessing, all weights equal to −1 are converted to 0 before being
loaded into the data plane. This conversion is necessary for representing signed
binary values in a way that is compatible with the XNOR operation. Table 4.2
illustrates why the conversion is required: it ensures that the XNOR can act
as a direct replacement for multiplication in neural networks where weights are
constrained to the bipolar set [−1, +1].

In practice, this mapping leverages the fact that binary multiplication and
logical equivalence (XNOR) yield the same outcome when 1 encodes +1 and 0
encodes −1. Thus, the XNOR operator can efficiently simulate a dot product
between the input vector and the weight vector.

42

System

Bin activations Bin weights XNOR
−1 (0) −1 (0) +1 (1)
−1 (0) +1 (1) −1 (0)
+1 (1) −1 (0) −1 (0)
+1 (1) +1 (1) +1 (1)

Table 4.2. The table shows the relation between the multiplication and XNOR
result with {1,0(−1)} input, since Tofino supports only positive integers.

Popcount operation

Next, the popcount operation is computed to measure how many neurons from
the previous calculation contribute positively to the classification. Network ASIC
hardware does not natively support this operator, and two main approaches are
commonly used to address this limitation.

One approach is the technique called SWAR (or SIMD Within a Register),
where the result is obtained by applying a sequence of parallel operations within
a single variable. Even if SWAR focuses on small and parallel computations (4.2),
it does not adapt well to hardware constraints. Every register assignment (assign-
ments to x in 4.2) depends on the previous one. Each sequential assignment or
computation is mapped to an independent stage in the hardware pipeline, and the
number of required stages to complete the execution would be unsustainable. Fur-
thermore, the lack of flexibility in reusing intermediate results makes this solution
inefficient when scaling to wider architectures.

An alternative approach is to use prefilled popcount tables. All x-bit per-
mutations are mapped to the corresponding popcount value. The parameter x
must be chosen as a divisor of the weights’ width, which ensures efficiency in the
recirculation logic (discussed in Section 4.3.3). The exact value of x depends on
the underlying BNN architecture: for Tiny and Dense, x = 14, while for Wide,
x = 16. Depending on the chosen variant, a popcount table consumes between
3.25% (14K entries) and 13% (64K entries) of the available SRAM in the stage
where it is placed. In addition, once prefilled, the tables can be reused without
further computation overhead, which makes them appealing in scenarios where
memory availability is less critical than processing speed.

Considering that our ASIC model platform supports multiple parallel lookups
(up to 16 per stage) and that only a fraction of the available SRAM is consumed,
we believe this method is more sustainable than SWAR. In practice, this strategy
balances memory usage against computational overhead, leading to a design that
better matches the throughput requirements of modern BNN inference.

43

System

1 def popcount32 (uint32_t x):
2 // m* are statics masks
3 x = (x & m1) + ((x >> 1) & m1);
4 x = (x & m2) + ((x >> 2) & m2);
5 x = (x & m4) + ((x >> 4) & m4);
6 x = (x & m8) + ((x >> 8) & m8);
7 x = (x & m16) + ((x >> 16) & m16);
8 return x;

Listing 4.2. Popcount algorithm on 32bit string using
SWAR. Every assignment to x is depending on its previous
value and that leads to an high stages consumption.

Aggregation step

To obtain binary activations, the XNOR operation is first performed between the
inputs and the corresponding binary weights. The raw results of these XNOR
computations are then passed through the SIGN function, which binarizes the
outcome and introduces the necessary non-linearity for the network. In this way,
each neuron produces a 1-bit output rather than a integer-valued activation. Fi-
nally, the 1-bit outputs from all neurons in the current layer are concatenated to
form a compact binary vector, which serves as the input to the next layer of the
network.

4.3.3 Recirculation logic

Complete and entire forward pass in a single packet traversal is not feasible within
our choosen ASIC, recalling the stages number constraint. To overcome the issue
we propose a recirculation protocol that splits the inference phase in a series of
modular partial processing. Each recirculation advance the current result to a
certain grade, until we reach the final outcome.

The provided hardware ports can assume different usages, the vast majority
operates as normal communication links with external environment, however, a
small range can be used as a recirculation port. That means we can forward the
processed packet to them and it will be fed again in the Ingress pipeline, ready to
repeat the processing.

This section will target the Dense BNN, other variants can be easily adapted
changing the loop-unrolling length, the input vector length and the division factor
in the loop definition; some mention to different variants are present to ease the
explanation.

44

System

Algorithm 1 BNN inference algorithm for Dense.
L is the number of layers.
NL is the number of neurons of the layer l.
al is the output of layer l.
Wl,n,k,i is the partial weight on index i for layer l, neuron group n
and weight batch k

Require: a vector of 133-bit inputs a0, the binary weights W .
Ensure: the MLP output aL.

for l = 1 to L do
{Neurons-wise recirculation}
for n = 1 to (NL)//7 do

for k = len(Wl,n//14) to 1 do
{Weight-wise recirculation}
al ← al|| (Sign((al-1,k ⊕Wl,n,k,1))≪ 7(n-1) +6
al ← al|| (Sign((al-1,k ⊕Wl,n,k,2))≪ 7(n-1) +5
...
al ← al|| (Sign((al-1,k ⊕Wl,n,k,3))≪ 7(n-1) +1
al ← al|| (Sign((al-1,k ⊕Wl,n,k,4))≪ 7(n-1)

end for
end for

end for

Neurons batch

Parallel execution of neurons within the same layer is a key characteristic of neu-
ral networks, as it enables faster forward (and backpropagation) computation.
However, the number of available PHV containers is limited. After a thorough
analysis—taking into account all headers, weights, and intermediate results stored
in the PHV throughout the pipeline—we determined that the maximum feasible
number of parallel neurons is four for Wide variant and seven for the others.
This parallelization will result in an inner loop-unrolling of the Algorithm 1. Dif-
ferent grades of unrolling are achieved depending of the chosen BNN variant ; for
instance, the Dense variant will be composed by seven unrolling section.

Weights batch

Additionally, our popcount computation method, described in Section 4.3.2, presents
two limitations:

• It cannot compute the population count for binary strings longer than 16
bits.

45

System

• Seven (or four) popcount tables have to be instanced, given that just one
lookup is possible for each table per packet processing. However, since all
of them make independent lookups, they can be easily parallelized without
consuming more than one MAU stage.

To address constraints described in Sections 4.3.3 and 4.3.3, we introduced a
recirculation mechanism that effectively overcomes these limitations.
Algorithm 1 implements a multi-layer BNN inference entirely in the Tofino data
plane by interleaving two forms of recirculation: neuron-wise and weight-wise.
Let L be the total number of layers, and Nl the number of neurons in layer l.
The input to layer l is a 133-bit vector al−1, and the full binary weight matrix for
layer l is partitioned into batches Wl,n,k of 14 bits each, where n ∈ [1, . . . , Nl/7]
indexes groups of four neurons, and k ∈ [1, . . . , |Wl,n|/14] indexes successive 14-bit
segments of those four neurons’ weight vectors.

• Neuron-wise recirculation (outer loop): for each neuron group n, we
process seven neurons in parallel. We replicate al−1 once per group n so that
each pipeline instance computes the four Sign outputs.

• Weight-wise recirculation (inner loop): within a group, the 133-bit weight
vector for those four neurons is too wide to XOR in one pass. Instead, we
“stream” it 14 bits at a time. On each pass k, we extract the next 14-
bit chunk Wl,n,k, perform bit-wise XOR with the corresponding 16 bits of
al−1, look up its popcount via a preloaded SRAM table, threshold it into a
1-bit Sign result, and shift it into the correct 4-bit output slot (at offsets
(n − 1) × 7 + {6,5,4,3,2,1,0}). After each inner iteration, the packet is re-
circulated back through the same ingress pipeline to handle the next weight
chunk.

Once all neuron groups n are done, the 7 × Nl/7 = Nl bits of al have been
assembled (i.e., layer output), and the pipeline moves on to layer l + 1.

This double-recirculation approach trades time (multiple passes through the
ingress pipeline) for space: by slicing both the weight vectors and the neuron
outputs into manageable 14-bit and 4-bit pieces, we avoid exceeding Tofino’s per-
stage ALU and PHV-allocation limits, yet still achieve fully parallel per-neuron
inference across the entire network.

4.3.4 Input Layer
As explained in the FP introduction 4.3.2, the trigger packet does not contains the
input features, but rather just the needed fields for computations. This absence of
input is due to the Parser constraints of Tofino, it is not able to handle such long

46

System

sequence other than the required processing field. We will retrieve input batches
directly from Tofino Registers — hence, a persistent array-like blocks within the
data plane where each block is accessible just once per packet processing. — and
the control CPU is in charge of loading input batches before sending the trigger
packet. Each weight recirculation will have its corresponding input batch to be
retrieved and XNOR-ed with.

Multiple flows are managed through an input_offset_index passed by the con-
trol CPU, indicating the starting index from which the input flow can be analyzed.

This is valid just for the input layer, from the first hidden unit the needed
activations are carried out by the custom header.

47

Chapter 5

Results

This chapter presents the experimental evaluation of the proposed run-time adap-
tive intrusion detection framework built on top of programmable data planes. The
goal of this analysis is to validate the feasibility, accuracy, and efficiency of deploy-
ing BNN inference directly within a Tofino ASIC/TNA target, as well as to assess
how quantization-aware learning, SHAP-based feature selection, and confidence-
guided retraining contribute to system adaptability under dynamic traffic condi-
tions.

We begin by examining the training performance of the proposed architec-
tures — Tiny, Dense, and Wide — each representing a different balance between
computational cost and learning capacity. Through comparisons across two ma-
jor cybersecurity datasets (CICIDS2017 and CIC-UNSW-NB15), we analyze how
SHAP-based feature selection enhances the predictive accuracy and generalization
capability of the quantized models. We also investigate the influence of architec-
tural depth and width on F1-score, precision, and recall, providing insights into
the trade-offs between accuracy and hardware efficiency.

The second part of the chapter focuses on the inference performance of the
in-network BNN executors. Here, we quantify both latency and resource utilization
in the programmable pipeline, demonstrating that even under the architectural
constraints of a real ASIC, our models sustain acceptable delay. We further analyze
the impact of model size and recirculation depth on execution time, confirming that
pipeline traversal frequency is the primary latency factor.

Finally, we explore the framework’s adaptive behavior under distribution
shift. Using the confidence-based retraining mechanism, the system dynamically
detects performance degradation and selectively retrains on newly labeled traffic
samples provided by the teacher MLP. This experiment emulates a realistic evolv-
ing network scenario where traffic patterns change over time, highlighting the
framework’s ability to recover performance and maintain stability through online
refinement.

48

Results

Overall, this chapter provides both empirical and architectural evidence that
quantized neural inference within a programmable switch is not only fea-
sible but also effective. The presented results demonstrate how lightweight BNN
models, supported by SHAP-driven feature selection and adaptive retraining, can
form the foundation for intelligent, self-improving network monitoring directly in
the data plane.

49

Results

5.1 SHAP Feature Selection Comparison: MLP
vs BNN Base Models

Base models have the same input dimensionality as the CICIDS2017 and UNSWNB15
datasets, hence 168 bit/features. MLP and BNN base models are used as targets
on which SHAP values are computed to order bit features by importance. Even if
BNN base model is not realistically used in the final framework, it is important as
evaluation study since it helps us in the understanding of feature contributionsby
a real BNN, whose deeply different from a full-fledge model.

These plots reveal how individual features contribute to model predictions.
Each dot represents a single sample, with the horizontal position showing the
feature’s impact (SHAP value) on the final decision. Features are ordered by overall
importance from top to bottom. The color coding is straightforward: red dots
indicate high feature values(1) , blue dots show low values(-1), and the horizontal
spread tells us how consistently a feature behaves across different samples.

Figure 5.1. Top 10 SHAP features computed on Tiny BNN over the CI-
C-UNSW-NB15 dataset. This BNN model casts a wide net, identifying numerous
features with substantial variation in their contributions.

When examining the feature selection patterns, a clear divergence emerges be-
tween the two approaches. As showed in 5.1, the BNN teacher model demonstrates
a broader feature selection strategy, identifying numerous features with substan-
tial variation in their contributions. Features like bit_f89 and bit_f17 show par-
ticularly wide SHAP distributions, suggesting these features play different roles
depending on the specific sample being analyzed.

The MLP approach reveals a more focused trend. Here, fewer features domi-
nate the selection process, but their contributions appear more concentrated and

50

Results

consistent across samples as Figure 5.2 shows. Features such as bit_f149 and
bit_f148 emerge as clear priorities in the MLP-derived selection, yet they show
less prominence in the BNN’s feature ranking. This suggests the MLP has iden-
tified features that provide precise, targeted signals rather than those with broad
distributional importance.

Figure 5.2. Top 10 SHAP features computed on Tiny architecture over the CI-
C-UNSW-NB15 dataset. This MLP model casts a narrow net, identifying features
with minimal variation in their contributions.

SHAP values tendences: BNN vs MLP: These differences reflect the
distinct characteristics of each architecture’s feature learning capacity. The BNN’s
wider network structure enables it to distribute feature importance across multiple
pathways, leading to the selection of features whose contributions vary significantly
across different sample contexts. The MLP’s more constrained architecture focuses
its learning capacity on fewer, more critical features, gravitating toward those that
offer concentrated predictive value. This focused approach appears to guide the
model toward more selective feature identification that prioritizes precision over
breadth in feature utilization.

Further SHAP-based beeswarm plots are available in Appendix B.

5.2 Training on SHAPed features
A central aspect of our training methodology is the application of SHAP-based
feature selection, which identifies the most informative input bits within the 168-
dimensional dataset.

Each BNN configuration demonstrates a specific trade-off between complexity,
accuracy, and generalization. As the network width and depth increase, precision
and F1-score typically improve, albeit with diminishing returns.

51

Results

5.2.1 Architecture-Wise Comparison

Model Dataset SHAP Accuracy Precision Recall F1-Score

MLP base CICIDS2017 – 0.989 0.992 0.981 0.987
CIC-UNSW-NB15 – 0.964 0.904 0.996 0.948

BNN base CICIDS2017 – 0.950 0.944 0.936 0.940
CIC-UNSW-NB15 – 0.947 0.883 0.968 0.923

TF BNN CICIDS2017 BNN 0.954 0.974 0.914 0.944
CIC-UNSW-NB15 base 0.955 0.886 0.992 0.936

TF BNN CICIDS2017 MLP 0.956 0.996 0.897 0.943
CIC-UNSW-NB15 base 0.952 0.886 0.981 0.931

Table 5.1. Detailed performance comparison for Tiny architecture
[168/98,21,2]. SHAP feature selection improves model performance for
both MLP- and BNN-based masks. Tiny achieves the highest F1-score
on CIC-UNSW-NB15 (0.936).

Tiny architecture. Table 5.1 illustrates how SHAP enhances the performance
of the lightweight Tiny model. The MLP-derived SHAP mask yields the best
results overall, achieving an F1-score of 0.944 on CICIDS2017 and 0.936 on CIC-
UNSW-NB15. Compared to the base BNN, these results show an improvement of
approximately 1.5% in F1-score, confirming the effectiveness of SHAP in guiding
feature relevance. The slightly higher precision (0.996) compared to recall (0.897)
on CICIDS2017 indicates that the model makes fewer false positives, though it
remains somewhat conservative in attack detection.

Dense architecture. The Dense model [168/132,21,2] expands the hidden rep-
resentation compared to Tiny, resulting in stronger balance between recall and
precision.

As seen in Table 5.2, the Dense configuration provides balanced results with
F1-scores of 0.943 on CICIDS2017 and 0.927 on CIC-UNSW-NB15, demonstrat-
ing consistent robustness across datasets. The MLP-based SHAP mask achieves
the best overall performance, but the BNN-derived mask performs comparably,
suggesting that both approaches capture largely overlapping informative features.
This confirms that as model capacity increases, dependence on the teacher model
for SHAP importance diminishes.

52

Results

Model Dataset SHAP Accuracy Precision Recall F1-Score

MLP base CICIDS2017 – 0.990 0.991 0.984 0.988
CIC-UNSW-NB15 – 0.965 0.905 0.997 0.949

BNN base CICIDS2017 – 0.957 0.965 0.931 0.948
CIC-UNSW-NB15 – 0.949 0.889 0.967 0.926

TF BNN CICIDS2017 BNN 0.953 0.954 0.933 0.943
CIC-UNSW-NB15 base 0.948 0.891 0.959 0.924

TF BNN CICIDS2017 MLP 0.953 0.953 0.932 0.943
CIC-UNSW-NB15 base 0.950 0.889 0.969 0.927

Table 5.2. Detailed performance comparison for Dense architecture
[168/132,21,2]. SHAP-based training enhances recall and stability across
datasets.

Wide architecture. The Wide model [168/128,32,8,2] introduces greater rep-
resentational capacity by adding a second hidden layer and wider neuron groups,
allowing more complex feature interactions.

Model Dataset SHAP Accuracy Precision Recall F1-Score

MLP base CICIDS2017 – 0.990 0.991 0.984 0.988
CIC-UNSW-NB15 – 0.965 0.906 0.997 0.949

BNN base CICIDS2017 – 0.956 0.991 0.903 0.945
CIC-UNSW-NB15 – 0.944 0.868 0.979 0.920

TF BNN CICIDS2017 BNN 0.961 0.990 0.916 0.952
CIC-UNSW-NB15 base 0.952 0.888 0.979 0.931

TF BNN CICIDS2017 MLP 0.961 0.991 0.914 0.951
CIC-UNSW-NB15 base 0.952 0.884 0.985 0.932

Table 5.3. Detailed performance comparison for Wide architecture
[168/128,32,8,2]. Wide achieves the best F1-score on CI-
CIDS2017 (0.952).

From Table 5.3, it is evident that the Wide model delivers the best overall
classification performance, achieving an F1-score of 0.952 on CICIDS2017 and
0.932 on CIC-UNSW-NB15. Precision and recall remain well balanced, confirming
that widening the architecture enhances discriminative power without overfitting.
However, this improvement comes at the expense of higher hardware cost and
delay, as we will discuss in Section 5.4. Consequently, Wide demonstrates the
upper bound of attainable accuracy, while smaller models achieve near-optimal

53

Results

results at significantly lower complexity.

Figure 5.3. The above image shows the evaluation performance of the Wide ar-
chitecture over the CICIDS2017 under the same Training configurations. Feature
selection by SHAP not only allowed to reduce the input dimensionality by a factor
minimum factor of 20%, but also achieved a consistent performance improvement
in every metrics. MLP and BNN are the base models without feature selection,
TF_*_SHAP are the BNNs models trainedon best SHAP features computed
respectively from MLP and BNN base models.

For a more detailed view of the SHAP-derived training across all architectures,
— including accuracy, loss and confidence score behavior — the complete set of
plots is provided in Appendix A.

54

Results

5.3 Retraining Evaluation under Distribution Shift

The retraining phase evaluation was conducted on the Tiny and Dense architec-
tures, as these models are better suited for deployment on the Tofino ASIC. Their
reduced recirculation depth and higher degree of parallelization make them more
compatible with the hardware’s pipeline constraints, ensuring efficient and stable
execution. Moreover, the confidence score mechanism performs more reliably on
these architectures, since the larger number of neurons in the penultimate layer
provides a smoother and more statistically meaningful distribution of activation-
based confidence values.

Figure 5.4. Distribution shift evaluation for the Tiny architecture. Left: Accu-
racy trend across batches as CIC-UNSW-NB15 samples are gradually introduced
into CICIDS2017 traffic. The vertical dashed lines indicate the distribution shift
and subsequent retraining points. After retraining, the model presents a 6.2% ac-
curacy gap vs the random BNN, demonstrating improved adaptability to evolving
data. Right: Confidence score distribution fitted with a Gaussian curve, showing
that prediction correctness correlates with higher confidence values, validating the
reliability of the confidence-based retraining trigger. In addition, the latter shows
that certain confidence score are correctly recurring, we will use the higher 80%
percentile confidence score value to select the "confident" scores; In that plot, the
darker bins on the right represent the chosen "confident" score.

To assess the adaptability of the proposed system under dynamic network
conditions, we evaluated the Tiny and Dense BNN architectures in a controlled
domain-shift experiment. The goal was to simulate a realistic scenario where the
network traffic gradually changes over time. Initially, both models operated on
pure CICIDS2017 batches, representing a stable environment. After a defined
distribution shift point, CIC-UNSW-NB15 samples were progressively introduced
into the batch stream, increasing linearly until they accounted for 40% of the
traffic. When the confidence monitoring module detected a consistent decline

55

Results

in reliability, the teacher MLP triggered the retraining phase by labeling low-
confidence samples, aggregating them with the initial training set, and initiating
a new refinement cycle.

As shown in Fig. 5.4, the Tiny model experienced a gradual degradation as
the distribution drift intensified. Its accuracy decreased from 0.960 on pure CI-
CIDS2017 data to 0.906 under moderate shift, reaching a minimum of 0.856 at
the highest level of contamination. After the retraining phase, accuracy stabilized
around 0.874, with a peak of 0.900, corresponding to a recovery of about 6.2%.
Despite its minimal structure, the model proved capable of adapting to the new
data distribution, outperforming the randomized baseline that suffered a larger
total degradation of 13.8%. These results indicate that SHAP-based feature selec-
tion significantly improves generalization, allowing even compact architectures to
maintain robustness with limited resources.

The Dense model, reported in Fig. 5.5, exhibited a more stable trend during the
same experiment. Starting from a baseline accuracy of 0.957, it dropped to 0.903
during the shift and reached 0.848 at maximum drift intensity. Following retrain-
ing, accuracy recovered to an average of 0.891 and peaked at 0.907, corresponding
to a 3.9% improvement with respect to the randomized model. The confidence
score distribution shown in Fig. 5.5 confirms a clear relationship between predic-
tion correctness and confidence, validating the reliability of the confidence-guided
sample selection strategy. Compared to its random-feature baseline, which ex-
perienced an 11.6% drop, the SHAP-enhanced Dense architecture demonstrated
stronger resilience and faster recovery.

Figure 5.5.

Overall, these results highlight the effectiveness of the proposed confidence-
based retraining approach in mitigating the effects of distribution shift. While the
Dense model provides higher stability and smoother adaptation, the Tiny model
achieves comparable recovery with substantially fewer resources. The combination

56

Results

of SHAP-guided feature selection and teacher–student refinement enables quan-
tized models to remain adaptable and efficient under evolving traffic patterns, val-
idating the framework’s potential for real-time deployment within programmable
data planes.

57

Results

5.4 Performance Evaluation of BNN Executors
In this section, we evaluate the runtime behavior and hardware efficiency of the
three proposed Binarized Neural Network (BNN) executors — Tiny, Dense, and
Wide — deployed within the Tofino ASIC. Our analysis focuses on two key per-
formance aspects: inference delay and resource utilization. The objective is to
understand how architectural variations and recirculation strategies impact both
latency and hardware footprint, thereby guiding design trade-offs for in-network
intelligence at line rate.

5.4.1 Inference Delay Analysis
The inference delay measures the time required for a single input packet to com-
plete the neural inference process within the data plane. Delay is normalized
against a baseline P4 program implementing a simple L3 switch, used as a refer-
ence for comparison.

Figure 5.6. Relative inference delay of BNN architectures on the Tofino ASIC.
The X-axis represents the model dimension in terms of neuron count, while the
Y-axis reports delay relative to a baseline L3 switch. The goal of this analysis
is to quantify how model size and recirculation depth affect inference latency.
Although the Tiny architecture requires about 50× the unit time of a simple L3
switch, this overhead remains acceptable given the high-speed per-packet process-
ing capabilities of the data plane. The results confirm the hypothesis that larger
models incur greater delay due to increased pipeline traversals.

Figure 5.6 illustrates the relative inference delay for the three architectures.

58

Results

The Tiny variant achieves the lowest delay, benefiting from its compact struc-
ture and reduced number of recirculation passes. In contrast, the Dense model
introduces moderate delay, balancing neuron parallelism and computational depth
through efficient stage utilization and seven-way parallel neuron execution. The
Wide architecture, which increases layer count but reduces neuron parallelism to
four, exhibits the highest delay, as it requires more recirculations to complete a
full inference pass.

Overall, the results highlight a clear trade-off: as model size and layer depth
increase, inference delay grows proportionally to the number of required pipeline
traversals. Pipeline traversal frequency thus emerges as the dominant latency
factor. For completeness, the feature_extractor.p4 module — which performs
only flow feature extraction without any recirculation — operates at approximately
2× the unit time of a simple L3 program, confirming that recirculation overhead
is the principal contributor to inference delay.

5.4.2 Resource Utilization Analysis
To complement the delay study, we now analyze how each architecture impacts
hardware resource usage on the Tofino ASIC. This evaluation provides insights into
the trade-off between model complexity and available memory resources, which
directly influence scalability and deployability under line-rate constraints.

Table 5.4. Hardware resource utilization per packet traversal for each BNN executor.

Model SRAM [%] MaxStageSRAM [%] Recirc

Tiny 4.7 35 25
Dense 4.7 35 64
Wide 7.6 65 69

Table 5.4 summarizes resource utilization for a single packet traversal within
the programmable data plane. The results reveal important distinctions in memory
occupancy and recirculation demand across the three architectures.

The Wide model consumes noticeably more SRAM, primarily due to its 16-
bit prefilled popcount lookup tables, which are used to emulate neuron activation
counting. In contrast, both the Tiny and Dense models employ 14-bit tables,
significantly reducing their memory footprint. This design difference reflects the
Wide architecture’s need to accommodate larger intermediate computations, re-
sulting from its increased layer width.

The Tiny and Dense models share the same fundamental pipeline structure and
memory allocation strategy, but differ in their recirculation behavior. The Dense

59

Results

executor requires 64 recirculations compared to the Tiny model’s 25, highlight-
ing how deeper network topologies directly translate into additional processing
rounds. Each recirculation corresponds to an additional packet traversal through
the match-action pipeline, increasing both latency and aggregate resource con-
sumption.

The MaxStageSRAM metric indicates the highest memory occupancy reached
in any single pipeline stage. The Wide model approaches 65% of available mem-
ory bandwidth, whereas Tiny and Dense remain around 35%, leaving sufficient
headroom for additional tasks or simultaneous packet processing. This considera-
tion becomes critical for real-time network operations, where multiple packets may
require concurrent processing.

It is important to note that all values reported in Table 5.4 refer to a single
packet traversal. The total inference cost scales roughly linearly with the number
of recirculation cycles, making the Tiny model approximately 2.5 times more effi-
cient than the Wide model in aggregate resource consumption. TCAM utilization
remains negligible (0.3%) for all architectures, since the BNN design exclusively
relies on exact matches, consistent with the deterministic and quantized nature of
binary weight operations.

In summary, the performance characterization demonstrates that lightweight
BNN configurations such as Tiny are the most suitable candidates for real-time
inference in programmable switches. They achieve a favorable balance between la-
tency, memory footprint, and architectural simplicity, while still delivering mean-
ingful classification capability at line rate.

60

Chapter 6

Conclusion

This thesis has explored the integration of adaptive deep learning mechanisms
within programmable network devices, focusing on the implementation of Bina-
rized Neural Networks (BNNs) on the Intel Tofino ASIC. Through the proposed
system, it has been demonstrated that it is feasible to perform neural inference
directly within the data plane while low delay and minimal hardware footprint.
The presented architecture merges the responsiveness of line-rate packet processing
with the intelligence of adaptive learning, forming the basis for a new generation
of self-optimizing network systems.

The work successfully bridges the gap between two traditionally separate do-
mains: machine learning and high-performance network programmability. By
combining a P4-based feature extraction pipeline, a hardware-constrained BNN
executor, and a control-plane refinement loop based on confidence-driven feed-
back, this framework provides an autonomous mechanism capable of identifying,
learning, and reacting to evolving traffic patterns. The proposed retraining logic,
triggered by confidence degradation, proved effective under simulated distribution
shifts, allowing both Tiny and Dense models to recover accuracy after exposure to
unseen traffic. Notably, SHAP-guided feature selection enhanced generalization,
reducing model size while preserving discriminative power.

From a hardware perspective, the system efficiently utilized Tofino’s limited
on-chip memory, with even the largest model (Wide) consuming less than 8% of
total SRAM. The trade-off analysis across Tiny, Dense, and Wide configurations
revealed clear relationships between architectural complexity, inference delay, and
resource consumption. These insights enable informed design choices for future
in-network learning deployments, balancing accuracy, latency, and scalability.

Beyond its immediate results, this work highlights a broader paradigm: the con-
vergence of learning and forwarding within the same physical plane. The ability to
adapt models dynamically at line rate opens the door to distributed intelligence in
networking—where the network itself contributes to understanding and managing

61

Conclusion

traffic in real time, without reliance on external compute resources.

It is important to note that the two datasets used in this work, CICIDS2017 and
CIC-UNSW-NB15, share similar feature spaces and comparable traffic character-
istics. While this similarity facilitates controlled experimentation and model com-
parison, it may also limit the diversity of behaviors observed during evaluation. In
a real network environment, traffic dynamics are likely to be more heterogeneous,
encompassing unseen attack patterns, protocol variations, and device-specific be-
haviors. Consequently, future validation should focus on deploying the framework
in operational scenarios to assess its robustness under truly unpredictable con-
ditions and to better understand how the retraining and confidence mechanisms
respond to complex, non-stationary traffic distributions.

Future Work
Several research directions naturally emerge from this foundation. First, while
binarization enables unprecedented hardware efficiency, future explorations into
multi-bit quantization on Tofino (e.g., 2- to 4-bit precision) could provide a
more flexible compromise between accuracy and speed. Frameworks such as Bre-
vitas already offer support for variable quantization, suggesting that partial pre-
cision models can be trained and mapped efficiently to PISA architectures. This
evolution could allow finer gradient representation and more expressive feature
interactions without exceeding hardware constraints.

Second, the confidence-driven retraining mechanism can be extended to-
ward a more integrated and decentralized logic. Instead of reporting every infer-
ence result to the control plane, the data plane itself could act as a preliminary
filter—transmitting results only when confidence drops below a defined threshold.
Such a mechanism would offload the control channel, reduce communication over-
head, and enable selective refinement of uncertain samples. This shift of partial in-
telligence toward the data plane would represent a step closer to fully autonomous,
in-network learning systems.

Third, future developments should explore alternative neural architectures
suited for in-network deployment. While Multilayer Perceptrons have proven effec-
tive for tabular flow features, other topologies—such as lightweight Convolutional
or Graph Neural Networks—could better capture structural or temporal depen-
dencies within packet sequences. Hybrid or hierarchical models distributed across
multiple switches might also enhance scalability and cooperative learning in large-
scale topologies.

Finally, integrating this work into real-time, multi-switch environments would
enable large-scale validation and pave the way for fully distributed, self-adaptive

62

Conclusion

network intelligence. Such systems could not only detect and mitigate anoma-
lies but also orchestrate resources, manage quality-of-service, and even predict
network conditions—achieving the long-envisioned goal of a truly cognitive data
plane.

In summary, this thesis establishes a concrete proof of concept that deep learn-
ing can coexist with the strict constraints of programmable switches. By em-
bedding intelligence where data resides, we move toward networks that are not
merely programmable but perceptive—capable of learning from the traffic they
forward. The path forward lies in enriching this foundation with multi-bit preci-
sion, on-chip confidence reasoning, and diverse architectures, transforming today’s
programmable pipelines into tomorrow’s intelligent network fabrics.

63

Appendix A — Extended
Training Plots

This appendix presents the complete set of training-related plots for the three Bi-
narized Neural Network (BNN) architectures — Tiny, Dense, and Wide. While
the main body of the thesis discusses the overall training performance and key
metrics, the following figures provide a more detailed view of each model’s opti-
mization dynamics and predictive behavior throughout the training process.

For each architecture, we report the evolution of the training and validation
loss, the accuracy progression over epochs, and the corresponding confidence
score distribution derived from active neuron statistics in the penultimate layer.
These plots help visualize the convergence patterns achieved through Quantization-
Aware Training (QAT) and highlight how model capacity influences stability and
generalization. In particular, they allow for the identification of overfitting ten-
dencies and fluctuations in prediction confidence, which are more pronounced in
smaller networks due to their limited representational flexibility.

In addition to per-model plots, we include a series of comparison figures
contrasting the training behaviors of Tiny, Dense, and Wide architectures under
identical training conditions.

Overall, the plots reported in this appendix serve as a visual complement to
the quantitative analyses presented in the Results chapter, providing a more com-
prehensive understanding of the learning dynamics and reliability of the proposed
in-network BNN models.

64

Appendix A — Extended Training Plots

Figure 1. BNN accuracy and loss convergence during from-BNN-
SHAP training forWide over CIC-UNSW-NB15.Cross-validation confi-
dence score trend on the right

Figure 2. BNN accuracy and loss convergence during from-BNN-SHAP
training for Dense over CIC-UNSW-NB15.Cross-validation confidence
score trend on the right

Figure 3. BNN accuracy and loss convergence during from-BNN-SHAP
training for Tiny over CIC-UNSW-NB15.Cross-validation confidence
score trend on the right

65

Appendix A — Extended Training Plots

Figure 4. BNN accuracy and loss convergence during from-BNN-SHAP training
for Wide over CICIDS2017.Cross-validation confidence score trend on the right

Figure 5. BNN accuracy and loss convergence during from-BNN-SHAP training
for Dense over CICIDS2017.Cross-validation confidence score trend on the right

Figure 6. BNN accuracy and loss convergence during from-BNN-SHAP training
for Tiny over CICIDS2017.Cross-validation confidence score trend on the right

66

Appendix A — Extended Training Plots

Figure 7. BNN accuracy and loss convergence during from-MLP-SHAP
training for Wide over CIC-UNSW-NB15.Cross-validation confidence
score trend on the right

Figure 8. BNN accuracy and loss convergence during from-MLP-SHAP
training for Dense over CIC-UNSW-NB15.Cross-validation confidence
score trend on the right

Figure 9. BNN accuracy and loss convergence during from-MLP-SHAP
training for Tiny over CIC-UNSW-NB15.Cross-validation confidence
score trend on the right

67

Appendix A — Extended Training Plots

Figure 10. BNN accuracy and loss convergence during from-MLP-
SHAP training for Wide over CICIDS2017.Cross-validation confidence
score trend on the right

Figure 11. BNN accuracy and loss convergence during from-MLP-
SHAP training for Dense over CICIDS2017.Cross-validation confidence
score trend on the right

Figure 12. BNN accuracy and loss convergence during from-MLP-
SHAP training for Tiny over CICIDS2017.Cross-validation confidence
score trend on the right

68

Appendix A — Extended Training Plots

Figure 13. SHAP comparison for Dense Training: Right. evaluation over the
CICIDS2017 dataset.Left. evaluation over the CIC-UNSW-NB15 dataset

Figure 14. SHAP comparison for Tiny Training: Right. evaluation over the
CICIDS2017 dataset.Left. evaluation over the CIC-UNSW-NB15 dataset

69

Appendix B — SHAP Feature
Importance Plots

This appendix reports the complete set of SHAP beeswarm plots generated during
the feature selection analysis for the Tiny, Dense, and Wide architectures. Each
figure illustrates the contribution and variability of the most influential input fea-
tures within the CICIDS2017 and CIC-UNSW-NB15 datasets. These visualiza-
tions complement the quantitative results discussed in Chapter ??, providing a
more detailed understanding of how individual bits influence model predictions.
By comparing the distributions across architectures and teacher models (MLP-
and BNN-based SHAP masks), we can observe how feature relevance evolves with
network capacity and dataset characteristics, confirming the effectiveness of SHAP-
based selection in guiding compact yet discriminative BNN training.

70

Appendix B — SHAP Feature Importance Plots

Figure 15. Features importance ranking using SHAP for Tiny BNN base
model over CIC-UNSW-NB15.

Figure 16. Features importance ranking using SHAP for Dense BNN base
model over CIC-UNSW-NB15.

Figure 17. Features importance ranking using SHAP for Wide BNN base
model over CIC-UNSW-NB15.

71

Appendix B — SHAP Feature Importance Plots

Figure 18. Features importance ranking using SHAP for Tiny BNN base
model over CICIDS2017.

Figure 19. Features importance ranking using SHAP for Dense BNN
base model CICIDS2017.

Figure 20. Features importance ranking using SHAP for Wide BNN
base model CICIDS2017.

72

Appendix B — SHAP Feature Importance Plots

Figure 21. Features importance ranking using SHAP for Tiny MLP base
model over CIC-UNSW-NB15.

Figure 22. Features importance ranking using SHAP for Dense MLP base
model over CIC-UNSW-NB15.

Figure 23. Features importance ranking using SHAP for Wide MLP base
model over CIC-UNSW-NB15.

73

Appendix B — SHAP Feature Importance Plots

Figure 24. Features importance ranking using SHAP for Tiny MLP base
model over CICIDS2017.

Figure 25. Features importance ranking using SHAP for Dense MLP
base model CICIDS2017.

Figure 26. Features importance ranking using SHAP for Wide MLP
base model CICIDS2017.

74

Bibliography

[1] Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or
propagating gradients through stochastic neurons for conditional computa-
tion. CoRR, abs/1308.3432, 2013.

[2] Matthieu Courbariaux and Yoshua Bengio. Binarynet: Training deep neu-
ral networks with weights and activations constrained to +1 or -1. CoRR,
abs/1602.02830, 2016.

[3] Suvrima Datta, Aditya Kotha, U. Venkanna, and K. Mallikharjuna Rao.
Xnetiot: An extreme quantized neural network architecture for iot environ-
ment using p4. IEEE Transactions on Network and Service Management,
21(5):5756–5767, 2024.

[4] Giuseppe Franco, Alessandro Pappalardo, and Nicholas J Fraser. Xilinx/bre-
vitas, 2025.

[5] Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model
predictions. CoRR, abs/1705.07874, 2017.

[6] Hesamodin Mohammadian, Arash Habibi Lashkari, and Ali A. Ghorbani.
Poisoning and evasion: Deep learning-based nids under adversarial attacks.
In 2024 21st Annual International Conference on Privacy, Security and Trust
(PST), pages 1–9, 2024.

[7] Nour Moustafa and Jill Slay. Unsw-nb15: a comprehensive data set for net-
work intrusion detection systems (unsw-nb15 network data set). In 2015 Mil-
itary Communications and Information Systems Conference (MilCIS), pages
1–6, 2015.

[8] Nour Moustafa and Jill Slay. The evaluation of network anomaly detection
systems: Statistical analysis of the unsw-nb15 data set and the comparison
with the kdd99 data set. Information Security Journal: A Global Perspective,
25(1-3):18–31, 2016.

[9] Nour Moustafa, Jill Slay, and Gideon Creech. Novel geometric area analysis
technique for anomaly detection using trapezoidal area estimation on large-
scale networks. IEEE Transactions on Big Data, 5(4):481–494, 2019.

[10] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko,
Mart van Baalen, and Tijmen Blankevoort. A white paper on neural network

75

Bibliography

quantization. CoRR, abs/2106.08295, 2021.
[11] Kamran Razavi, Shayan Davari Fard, George Karlos, Vinod Nigade, Max

Mühlhäuser, and Lin Wang. Netnn: Neural intrusion detection system in
programmable networks, 2024.

[12] Davide Sanvito, Giuseppe Siracusano, and Roberto Bifulco. Can the network
be the ai accelerator? In Proceedings of the 2018 Morning Workshop on
In-Network Computing, NetCompute ’18, pages 20–25, New York, NY, USA,
2018. Association for Computing Machinery.

[13] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. Toward
generating a new intrusion detection dataset and intrusion traffic character-
ization. In International Conference on Information Systems Security and
Privacy, 2018.

[14] Giuseppe Siracusano and Roberto Bifulco. In-network neural networks.
CoRR, abs/1801.05731, 2018.

[15] Giuseppe Siracusano, Salvator Galea, Davide Sanvito, Mohammad
Malekzadeh, Gianni Antichi, Paolo Costa, Hamed Haddadi, and Roberto Bi-
fulco. Re-architecting traffic analysis with neural network interface cards. In
19th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 22), pages 513–533, Renton, WA, April 2022. USENIX Association.

[16] Tushar Swamy, Alexander Rucker, Muhammad Shahbaz, Ishan Gaur, and
Kunle Olukotun. Taurus: a data plane architecture for per-packet ml. In
Proceedings of the 27th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS ’22, page
1099–1114, New York, NY, USA, 2022. Association for Computing Machinery.

[17] Zhaoqi Xiong and Noa Zilberman. Do switches dream of machine learning?
toward in-network classification. In Proceedings of the 18th ACM Workshop
on Hot Topics in Networks, HotNets ’19, page 25–33, New York, NY, USA,
2019. Association for Computing Machinery.

[18] Kaiyi Zhang, Nancy Samaan, and Ahmed Karmouch. A machine learning-
based toolbox for p4 programmable data-planes. IEEE Transactions on Net-
work and Service Management, 21(4):4450–4465, 2024.

[19] Mai Zhang, Lin Cui, Xiaoquan Zhang, Fung Po Tso, Zhang Zhen, Yuhui Deng,
and Zhetao Li. Quark: Implementing convolutional neural networks entirely
on programmable data plane. In IEEE INFOCOM 2025 - IEEE Conference
on Computer Communications, pages 1–10, 2025.

[20] Changgang Zheng, Mingyuan Zang, Xinpeng Hong, Liam Perreault, Riyad
Bensoussane, Shay Vargaftik, Yaniv Ben-Itzhak, and Noa Zilberman. Planter:
Rapid Prototyping of In-Network Machine Learning Inference. ACM SIG-
COMM Computer Communication Review, 2024.

76

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Objective

	Background
	Binarized Neural Network
	Forward Propagation
	Backward Propagation
	Gradient Approximation

	Programmable Data Planes
	Protocol-Independent Switch Architecture
	Data Plane Programming Language
	Targets
	Control Plane

	Intel Tofino ASIC

	Related Work
	Neural Network-based works
	Non Neural Network-based works

	System
	System Overview
	Datasets
	Deep Learning Models

	Control Plane
	Model training
	Model deployment
	BNN Weights and Inputs Deployment
	Model refinement

	Data Plane
	P4-based Feature Extraction Pipeline Implementation
	Binarized Neural Network Executor Pipeline
	Recirculation logic
	Input Layer

	Results
	SHAP Feature Selection Comparison: MLP vs BNN Base Models
	Training on SHAPed features
	Architecture-Wise Comparison

	Retraining Evaluation under Distribution Shift
	Performance Evaluation of BNN Executors
	Inference Delay Analysis
	Resource Utilization Analysis

	Conclusion
	Future Work

	Appendices
	Appendix A — Extended Training Plots
	Appendix B — SHAP Feature Importance Plots
	Bibliography

