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Abstract

Graphs are a widely used data structure to represent relationships between en-

tities, where vertices correspond to objects and edges describe the connections be-

tween them. Examples range from chemical structures, where atoms are connected

by bonds, to social networks, where users are linked by friendships.

In this work, we focus on undirected, vertex-labeled graphs, a common represen-

tation in many domains where entities and their relationships need to be modeled.

The main problem addressed is the subgraph isomorphism task, which aims to iden-

tify occurrences of a smaller graph pattern within a much larger graph dataset. This

problem is known to be computationally challenging and has applications across di-

verse areas such as network analysis, bioinformatics, and cheminformatics. Graph

datasets pose unique memory challenges due to their irregular access patterns and

lack of spatial locality. Even if two vertices are connected, their data is often stored

far apart in memory, resulting in frequent cache misses and inefficient data retrieval.

The subgraph matching algorithm itself, responsible for checking vertex corre-

spondences and label equality was already implemented as part of previous research

work and is not the focus of this work. Instead, the focus is on memory caching and

its role in optimizing data access for FPGA-based subgraph isomorphism accelera-

tion. To address these challenges, the DataGraph is stored using large hash tables,

with a hash function mapping each vertex to a memory location. Although this ap-

proach increases the overall memory footprint compared to storing the graph in its

original adjacency-list format, the reason is that large hash tables and Bloom filters

require additional space to represent vertices and their adjacency information in a

more uniform layout. The approach also reorganizes the data to enhance locality



based on the specific access pattern of the subgraph isomorphism algorithm, which

further improves cache utilization and reduces irregular memory accesses.

The FPGA architecture designed in this thesis is built around a parameterizable

cache positioned between the external DDR memory and the processing kernel.

The kernel executes a multi-way join algorithm, which identifies query matches by

intersecting adjacency sets retrieved from the hash tables. The system operates in

two main phases:

1. Preprocessing – Constructs hash tables and Bloom filters for the DataGraph
according to the QueryGraph structure.

2. Multi-way join – Identifies matches by intersecting adjacency sets, relying
primarily on cached data accesses to reduce memory latency and improve
efficiency.

The cache size is parameterized so that different configurations can be synthe-

sized, enabling an empirical study of how cache capacity affects performance. The

evaluation focuses on the impact of cache dimensions, with particular attention to

line sizes and set sizes in the proposed accelerator.

The results show that, while larger caches generally improve performance, the

choice of cache granularity also plays an important role: for the same total cache

size, certain line size and set size configurations provide more favorable results. In

particular, identical caches in terms of memory occupation can perform differently

depending on their configuration, due to the specific access pattern of the function

reading from the cache. This highlights the importance of carefully tuning cache

parameters rather than simply increasing capacity.



List of Figures
1 Vivado Block Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Kria KV260 FPGA Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Cache Type A (18 Configurations) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Cache Type B (25 Configurations) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



Contents

1 Introduction and Background 7

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Subgraph Isomorphism Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 FPGA Acceleration and High-Level Synthesis . . . . . . . . . . . . . . . . . . . . . 8

1.4 Memory Hierarchy and Caching in FPGAs . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Problem Definition and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Methodology and System Overview 12

2.1 Overall System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Design Flow (HLS → Vivado → FPGA Board) . . . . . . . . . . . . . . . . . . . . 13

2.3 Parameterizable Cache Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Preprocessing Phase: Hash Tables and Bloom Filters . . . . . . . . . . . . . . . . . 15

2.5 Multi-way Join Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Implementation Details 17

3.1 Development Environment and Tools . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 HLS Implementation of the Accelerator . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Cache Parameterization (Set Size, Line Size) . . . . . . . . . . . . . . . . . 18

3.2.2 AXI Interfaces and DDR Memory Access . . . . . . . . . . . . . . . . . . . 19

3.3 Vivado Integration and Block Design . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Execution on Kria KV260 Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Experimental Setup 23

4.1 Target Platform (Kria KV260) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Benchmark Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Cache Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.1 Cache A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.2 Cache B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Data Collection and Result Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Performance Evaluation Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Results and Discussion 31

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Hit and Miss Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



5.3 Execution Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4 Distance from the Best Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.5 Comparison Between Cache Type A and B . . . . . . . . . . . . . . . . . . . . . . 33

5.6 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Conclusion and Future Work 35

7 Appendix 38

7.1 Appendix A Resource Utilization Reports . . . . . . . . . . . . . . . . . . . . . . . 38

7.1.1 Vivado Implementation Report . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.2 Appendix B Extended Performance Results . . . . . . . . . . . . . . . . . . . . . . 39

7.3 Appendix C Python Automation Script . . . . . . . . . . . . . . . . . . . . . . . . 40



1 Introduction and Background

1.1 Background and Motivation

Graphs are powerful structures used to represent relationships between entities.

Each vertex (node) represents an element, and each edge represents a connection be-

tween two elements. Graphs are widely used in many fields, such as social networks,

biology, and computer-aided design, to model relationships and analyze patterns.

The subgraph isomorphism problem consists of finding all occurrences of a smaller

“query graph” inside a larger “data graph”. This process is computationally expen-

sive because it requires checking many possible combinations of vertices and edges.

The problem is NP-complete, meaning that the time required to solve it grows ex-

ponentially with the graph size.

Traditional processors such as CPUs and GPUs face difficulties with graph prob-

lems because of irregular memory-access patterns. In graph workloads, connected

vertices are often stored far apart in memory, causing frequent cache misses and low

data reuse. This makes memory performance one of the main bottlenecks.

To overcome these limitations, Field-Programmable Gate Arrays (FPGAs) are

an excellent choice. They offer high parallelism, customizable architectures, and low

power consumption, making them suitable for data-driven and memory-intensive

algorithms. However, even in FPGA systems, the communication between the kernel

and external memory can limit performance. This motivates the exploration of

cache-based memory structures inside FPGA accelerators.

1.2 Subgraph Isomorphism Problem

The goal of subgraph isomorphism is to determine whether a small query graph

exists as a subgraph within a larger data graph. Formally, given a query graph
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q(Vq, Eq, Lq) and a data graph g(Vg, Eg, Lg), the task is to find an injective

mapping f: Vq → Vg such that:

• For every edge (v1, v2) in the query graph, there exists a corresponding edge
(f(v1), f(v2)) in the data graph.

• The labels of corresponding vertices match, i.e., Lq(v) = Lg(f(v)).

This mapping ensures that both structure and labels are preserved.

Subgraph isomorphism is widely used in:

• Social networks – to find recurring user-interaction patterns.

• Chemistry and biology – to detect molecular substructures.

• Cybersecurity – to recognize attack signatures in communication networks.

1.3 FPGA Acceleration and High-Level Synthesis

FPGAs are reconfigurable hardware devices composed of logic blocks, routing chan-

nels, and embedded memory. They allow implementing customized architectures

that execute specific computations in parallel. This flexibility makes them a good

fit for algorithms where both computation and memory access can be optimized for

specific patterns.

However, hardware design in low-level languages such as VHDL or Verilog is

complex and time-consuming. High-Level Synthesis (HLS) tools address this prob-

lem by generating RTL hardware directly from C/C++ code. Using HLS, designers

can rapidly prototype hardware accelerators while maintaining good control over

performance through pragmas like:

• PIPELINE for operation-level parallelism,

• DATAFLOW for task-level parallelism, and

• INTERFACE pragmas for memory and control connections.
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In this thesis, Vitis HLS 2024.1 is used to create a parameterizable hardware

accelerator. It allows exploring multiple cache configurations quickly without re-

designing the hardware from scratch.

1.4 Memory Hierarchy and Caching in FPGAs

FPGAs contain different types of memory with various speeds and capacities:

• On-chip memory (BRAM, URAM): fast but limited in size.

• External DDR memory: large capacity but slower access.

Since most graph algorithms have irregular and data-dependent access patterns,

memory operations dominate the total execution time. A cache is introduced be-

tween the DDR and the kernel to improve access locality. It stores recently used

data, reducing DDR accesses and improving execution speed.

The cache architecture used in this thesis is parameterizable, meaning it can be

configured by two parameters:

• Line size: number of elements per cache line (affects burst transfer efficiency).

• Set size number of independent cache sets (affects parallel access and map-
ping).

Different combinations of these parameters were tested to find how cache geom-

etry influences:

• Hit and miss rates,

• Kernel latency, and

• Overall execution time.
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1.5 Problem Definition and Objectives

The main problem addressed in this thesis is to analyze how cache parameters impact

the performance of a graph-matching accelerator implemented on FPGA. Although

the total cache capacity can be constant, the internal organization (sets and lines)

strongly affects memory behavior and execution efficiency.

Objectives of this research are as follows:

• Implement two parameterizable cache architectures in Vitis HLS:

– Cache Type A, including 18 different configurations.

– Cache Type B, including 25 different configurations.

• Integrate both cache types into a complete FPGA-based subgraph-isomorphism

accelerator.

• Perform synthesis, implementation, and on-board execution on the Kria

KV260 platform.

• Measure and compare the hit rate, miss rate, and execution time for all con-

figurations.

• Visualize and analyze the results using heatmaps and the “distance from the

best” metric to highlight performance trends and optimal cache geometries.

1.6 Thesis Contributions

This work provides the following contributions:

• A configurable cache system implemented with HLS and integrated into a real

FPGA design.

• A complete development flow from software modeling to on-board testing.
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• A systematic exploration of two cache architectures across different line and

set sizes (18 + 25 configurations).

• A visual heatmap representation of performance across configurations.

• Insights into how cache geometry affects FPGA accelerator efficiency in

memory-bound workloads.
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2 Methodology and System Overview

2.1 Overall System Architecture

The FPGA accelerator developed in this work is designed to speed up the subgraph

isomorphism task by improving the way data is accessed from memory. The complete

system is composed of three main components:

1. External DDR Memory

Stores the data graph, hash tables, and Bloom filters.

It offers large capacity but high latency, meaning data access from DDR is

slow compared to on-chip memory.

2. Parameterizable Cache

Placed between the DDR and the kernel, this cache temporarily stores data

that has been recently accessed.

It helps reduce DDR transactions by serving repeated requests directly from

the cache.

The cache can be configured by changing two parameters:

• Line size (how many words are loaded together per burst)

• Set size (how many independent groups exist inside the cache)

3. Processing Kernel

Executes the main computation of the subgraph matching algorithm.

It communicates with the cache through AXI interfaces.

If the required data is found in the cache (hit), it is processed immediately;

otherwise, a miss occurs and the data is fetched from DDR.

This modular design allows experimenting with different cache configurations

without changing the main logic of the kernel.
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2.2 Design Flow (HLS → Vivado → FPGA Board)

The design and implementation of the accelerator follow a structured flow that

ensures consistency and reproducibility across all tests.

The flow is divided into three main steps:

1. High-Level Synthesis (HLS)

The design is written in C/C++ using Vitis HLS 2024.1.

HLS converts this high-level code into hardware (RTL) and automatically

applies optimizations such as pipelining or loop unrolling.

Key pragma directives used include:

• #pragma HLS INTERFACE m_axi for AXI4 memory ports connected to

DDR

• #pragma HLS INTERFACE s_axilite for control signals

• #pragma HLS PIPELINE to enable instruction-level parallelism

• #pragma HLS DATAFLOW to allow concurrent execution of multiple stages

Each cache configuration (defined by line and set size) is synthesized separately

to generate resource utilization and timing reports.

2. Vivado Integration

The exported IP core from HLS is imported into Vivado 2024.2.

Inside Vivado, a Block Design is created where:

• The kernel IP is connected to the Zynq UltraScale+ MPSoC process-

ing system.

• AXI Master ports link the cache to DDR memory through a SmartCon-

nect block.

13



• AXI-Lite interfaces handle configuration and control signals.

After validation, synthesis, and implementation, Vivado generates a bit-

stream (.bit) file that can be programmed onto the FPGA.

3. On-Board Execution

The bitstream is loaded onto the Kria KV260 board running Linux and

PYNQ (Python on Zynq).

Using Python scripts, the accelerator is executed, and results such as execu-

tion time, hit count, and miss count are collected.

Each run corresponds to one cache configuration, allowing easy comparison

among the 25 designs.

2.3 Parameterizable Cache Architecture

The cache was designed to be fully parameterizable, enabling efficient exploration

of different geometries without rewriting the hardware code.

Two main parameters are used:

• Line size: defines the number of elements fetched from DDR in one burst

transfer.

• Set size: defines the number of data groups stored independently inside the

cache.

Each cache line stores two key elements:

• Tag: identifies the corresponding DDR address range.

• Data block: contains the actual graph elements fetched from DDR.
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During kernel execution:

1. The requested address is compared with stored tags.

2. If a match is found (cache hit), data is read directly from the cache.

3. If not (cache miss), the data is fetched from DDR and written into the cache

line.

Caches with larger lines allow burst reads, which reduces latency per access but

increases resource usage.

In contrast, caches with many sets improve parallelism but may require more control

logic.

Finding the right balance between these parameters is one of the main goals of this

work.

2.4 Preprocessing Phase: Hash Tables and Bloom Filters

Before the accelerator runs on the FPGA, a preprocessing phase is executed on

the host processor.

This phase organizes the input data graph to make it easier for the FPGA to access

relevant information.

Two data structures are generated:

1. Hash Tables

Used to map vertices and edges efficiently.

They allow the FPGA to quickly find all neighbors of a given vertex based on

its label or ID.
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2. Bloom Filters

Probabilistic structures used to test membership quickly.

They help skip unnecessary comparisons by filtering out invalid candidates

early in the process.

These precomputed structures are stored in DDR memory and later accessed by

the accelerator during execution.

This reduces redundant computations and improves memory locality.

2.5 Multi-way Join Phase

The subgraph isomorphism algorithm implemented in the accelerator is based on

the multi-way join approach. This technique gradually matches the vertices of the

query graph to those of the data graph by intersecting candidate sets. The steps

are as follows:

1. Each vertex in the query graph is associated with a list of possible matching

vertices in the data graph.

2. The kernel performs intersection operations to find valid matches that satisfy

both edge connections and label constraints.

3. Partial results are combined progressively to form complete subgraph matches.

The efficiency of this phase strongly depends on memory access speed. The cache

allows the accelerator to reuse data across join operations, minimizing DDR reads.

When the cache hit rate is high, the total execution time decreases significantly.
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3 Implementation Details

3.1 Development Environment and Tools

The entire development and experimentation process was carried out using AMD/Xilinx

tools on the Kria KV260 Vision AI Starter Kit, based on the Zynq UltraScale+

MPSoC.

This board integrates both processing cores (ARM Cortex-A53) and reconfigurable

logic (FPGA fabric), allowing efficient testing of hardware accelerators directly on

the platform.

The main software tools used are:

• Vitis HLS 2024.1: for writing, synthesizing, and exporting the accelerator

design as a hardware IP core.

• Vivado 2024.2: for creating the block design, connecting the IPs, and gen-

erating the final bitstream.

• PYNQ Framework (Python): for controlling and running the accelerator

on the board.

• Linux Terminal (remote server environment): all synthesis and test-

ing steps were manually executed through the command-line interface on the

university’s remote server.

The environment was configured on the dedicated server kriahlslab0, where all

synthesis and experiments were executed.

3.2 HLS Implementation of the Accelerator

The accelerator was designed using C/C++ in Vitis HLS.
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It contains two main modules:

1. Cache Module

Responsible for managing memory accesses between the kernel and DDR.

It supports both burst and single-word transactions and is parameterizable by

line and set size.

2. Kernel Module

Implements the main computation of the subgraph isomorphism algorithm,

performing vertex comparisons and multi-way join operations.

The design uses AXI interfaces for communication and includes multiple opti-

mization directives to improve performance.

3.2.1 Cache Parameterization (Set Size, Line Size)

The cache module was implemented so that its geometry can be easily changed by

modifying two constants:

• Set size – defines how many independent sets (or groups) exist in the cache.

• Line size – defines how many words are stored per line and fetched in one

burst.

This flexibility allows quick generation of multiple cache architectures without

modifying the hardware logic manually.

For example:

• A configuration of 16×512 means 16 data words per line and 512 sets.

• A configuration of 8×4096 means 8 words per line and 4096 sets.

Both configurations have similar capacity but different behavior:
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• The 16×512 cache supports large bursts and better data reuse.

• The 8×4096 cache provides finer granularity but more random DDR accesses.

These variations were analyzed across 25 total configurations to understand

how geometry affects hit rate, miss rate, and execution time.

3.2.2 AXI Interfaces and DDR Memory Access

The accelerator communicates with DDR memory through AXI (Advanced eX-

tensible Interface) buses. Two types of AXI interfaces are used:

1. AXI4 Master Interface

Used for reading and writing data blocks between the cache and DDR memory.

This interface supports burst transfers, reducing overhead when reading mul-

tiple contiguous addresses.

2. AXI4-Lite Interface

Used for control and configuration signals, such as kernel start, stop, and

parameter initialization.

The following pragmas were applied in HLS to define these connections:

#pragma HLS INTERFACE m_axi port=A offset=slave bundle=gmem

#pragma HLS INTERFACE m_axi port=B offset=slave bundle=gmem

#pragma HLS INTERFACE s_axilite port=A bundle=control

#pragma HLS INTERFACE s_axilite port=B bundle=control

#pragma HLS INTERFACE s_axilite port=return bundle=control

Additionally, performance optimization directives such as PIPELINE and DATAFLOW

were used to increase concurrency between memory operations and computation.

After synthesis, HLS generated detailed reports including:
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• Latency (cycles)

• Resource Utilization (LUTs, FFs, BRAMs)

• Clock Frequency (MHz)

These results were later compared among all cache configurations to identify per-

formance trends.

3.3 Vivado Integration and Block Design

After synthesis, the accelerator was exported from Vitis HLS as an IP core and

integrated into Vivado 2024.2. A new Block Design was created where the IP core

was connected to the Zynq MPSoC processing system through AXI interfaces. The

integration process included the following steps:

1. Adding the Processing System (PS):

The Zynq UltraScale+ MPSoC block was added and configured to enable the

High Performance (HP) AXI ports and DDR memory interface.

2. Adding the Custom IP (PL):

The cache–kernel IP exported from HLS was imported and connected to the

processing system.

AXI-Lite ports were linked to the General Purpose (GP) interface for control,

while AXI Master ports were connected to the HP interface for data.

3. Connecting SmartConnect Blocks:

Vivado automatically inserted SmartConnect modules to manage multiple AXI

ports efficiently.

4. Validation and Bitstream Generation:

The design was validated successfully, synthesized, implemented, and exported
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as a .bit file.

This bitstream was then used to configure the FPGA on the Kria board. As

shown in Figure 1, the Vivado Block Design illustrates how the custom accel-

erator is connected to the Zynq UltraScale+ MPSoC through AXI interfaces.

Figure 1: Vivado Block Design

Vivado Block Design showing the integration of the custom loop pipeline IP with

the Zynq UltraScale+ MPSoC.

The custom accelerator, generated in Vitis HLS, is connected to the processing

system via AXI interfaces. The design includes SmartConnect and Reset modules

to manage clock and synchronization signals between the programmable logic and

the processing system.
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3.4 Execution on Kria KV260 Board

After generating the bitstream, the project was deployed on the Kria KV260 Vision

AI Starter Kit. The board runs a Linux-based PYNQ environment, which allows

direct communication with the accelerator through Python APIs. The execution

flow is as follows:

1. Bitstream Loading

The bitstream file is programmed into the FPGA to configure the hardware.

2. Buffer Allocation

Input and output buffers are allocated in DDR using the PYNQ allocate()

function.

3. Kernel Configuration

The control registers (AXI-Lite) are programmed with input addresses, output

addresses, and parameters such as line and set size.

4. Kernel Execution

The kernel is started, and Python waits for completion through interrupt mon-

itoring or polling.

5. Data Collection

After execution, results such as hit count, miss count, and total execution time

are read back and stored in CSV files for later analysis.

This process was automated with Python scripts so that all 25 cache configura-

tions could be executed sequentially. Each configuration was tested with the same

datasets to ensure consistency.
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4 Experimental Setup

4.1 Target Platform (Kria KV260)

All experiments were carried out on the Kria KV260 Vision AI Starter Kit, a

development board based on the Zynq UltraScale+ MPSoC.

This device integrates ARM Cortex-A53 processing cores and reconfigurable

FPGA fabric within a single chip, enabling tight cooperation between software

and hardware.

The platform supports high-speed DDR access through AXI interfaces and

is fully compatible with the PYNQ framework, allowing the accelerator to be

executed and monitored directly through Python scripts.

The FPGA resources available on the KV260 were sufficient to synthesize and test

multiple cache configurations while maintaining stable operating frequency and rout-

ing performance throughout all experiments.

Figure 2: Kria KV260 FPGA Board
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4.2 Benchmark Datasets

To ensure a comprehensive evaluation, five real-world graph datasets were selected,

each characterized by different structures and access patterns:

DataSet Description Type Approx. Size
Enron Email communication network Directed ˜ 0.36M edges
GitHub Developer collaboration network Directed ˜ 0.8M edges
Gowalla Location-based social network Undirected ˜ 1.2M edges
DBLP Scientific co-authorship network Undirected ˜ 1M edges

Wikitalk Wikipedia user interaction graph Directed ˜ 2.4M edges

Table 1: Benchmark datasets used for cache performance evaluation

Each dataset was used as the DataGraph, while smaller randomly generated Query-

Graphs were used to define search patterns. This selection ensured that the accel-

erator was tested under diverse connectivity and memory-access conditions.

4.3 Cache Configurations

Two parameterizable cache architectures were implemented in Vitis HLS to investi-

gate how cache geometry influences the performance of the FPGA accelerator.

Each cache is defined by two key parameters:

• Line size: determines the number of data words fetched from DDR in a single

burst.

• Set size: defines how many independent groups are stored in the cache.

By changing these parameters before each synthesis and execution, multiple cache

architectures were generated and tested.

Cache Type A was implemented with 18 configurations, mainly exploring smaller

set ranges and different line widths to study their impact on burst efficiency and
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data reuse.

Cache Type B included 25 configurations, extending the exploration range

to larger set sizes and wider lines in order to analyze scalability and performance

stability.

Both cache types were synthesized and executed under identical conditions using

the same datasets and hardware setup. The goal was to understand how the inter-

nal geometry rather than total capacity influences hit rate, miss rate, and overall

execution time.

4.3.1 Cache A

The heatmap in Figure 3 presents the performance of Cache A configurations,

which include 18 setups characterized by larger line sizes and fewer sets. Each

cell corresponds to a specific line–set combination, and the color intensity represents

the distance from the best configuration in percentage. Lower values indicate better

performance, meaning shorter execution times.

A clear and consistent trend can be observed: moving to the right (increasing the

line size) and upward (increasing the set count) both improve performance. The

best configuration corresponds to a line size of 8 and a set size of 512, used

as the 0% baseline.

Configurations such as 8×1024 and 4×2048 remain close to the best, showing less

than 15% performance difference.

Smaller caches, such as 1×128 or 2×256, exhibit very poor performance over 500%

slower than the baseline mainly because of their limited capacity, which leads to

frequent cache misses and higher memory access latency. As the diagonal arrow in

the heatmap shows, performance improves along the direction of increasing total
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cache size until it reaches a saturation point. Beyond this point, enlarging the cache

yields marginal benefits compared to the additional hardware cost in LUTs and

BRAMs.

Overall, Cache A demonstrates that cache performance is highly dependent on

the line size, with the configuration 8×512 providing the optimal trade-off between

speed and resource utilization. This confirms that, in this system, performance

scaling is mainly governed by line width rather than the number of sets.

Figure 3: Cache Type A (18 Configurations)

Heatmap of cache configurations for Cache A (distance from best). The plot shows

the performance of 18 configurations characterized by larger line sizes and smaller

set counts. Darker green cells indicate configurations closer to the best execution

time, with the 8×512 cache achieving the optimal result.
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4.3.2 Cache B

The heatmap in Figure 4 illustrates the performance of Cache B configurations,

which consist of smaller line sizes and a larger number of sets. Each cell

represents one combination of line and set sizes, with the color indicating the distance

from the best configuration expressed as a percentage. Lower values correspond to

better performance and therefore shorter execution times.

A clear trend can be observed across the heatmap. As the line size increases (mov-

ing horizontally to the right), performance steadily improves, as indicated by the

transition from orange and yellow tones to green. This shows that a larger line size

allows the cache to exploit spatial locality more effectively, reducing memory access

latency. Increasing the set size (moving vertically upward) also enhances perfor-

mance, but with a smaller impact compared to the line size. This means that the

cache performance in this system is more sensitive to the line size than to the

number of sets.

The best-performing configuration is highlighted in dark green at the bottom-

right corner, corresponding to a line size of 16 and a set size of 512, defined as

the 0% baseline. This configuration achieves the lowest execution time among all

tested setups. Nearby configurations, such as 8×512 and 16×1024, remain within

5% of the best result, representing an efficient trade-off between cache size and

performance. This region of the plot (covering 8×512 to 16×2048) can therefore be

considered the optimal zone for this family.

In contrast, configurations with very small caches, such as 1×128 or 2×256, perform

significantly worse — more than 80 to 100 percent slower than the best configuration.

The reason is that these caches are too small to hold enough working-set data,

causing frequent cache misses and increasing memory access time.
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The diagonal arrow labeled Cache size indicates the direction of increasing overall

cache capacity. As we move along this arrow, both parameters grow, and the execu-

tion time decreases until a saturation point is reached. Beyond that point, further

increasing the cache capacity yields diminishing returns, meaning that performance

improvement becomes marginal while the hardware cost (in LUTs and BRAMs)

continues to rise.

In conclusion, the analysis of Family B demonstrates that:

• Increasing both the line size and set count improves performance,

• The line size has the dominant effect on reducing execution time, and

• The configuration 16×512 provides the best compromise between speed and

resource usage.

Therefore, both families reveal complementary behaviors: Cache A highlights the

impact of line width, while Cache B emphasizes the role of set associativity

in overall cache performance.

Figure 4: Cache Type B (25 Configurations)
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Heatmap of cache configurations for Cache B (distance from best). This plot il-

lustrates 25 cache configurations with smaller line sizes and larger set counts. The

16×512 configuration achieves the shortest execution time, while performance grad-

ually degrades for smaller caches.

4.4 Data Collection and Result Structure

During each experiment, three performance metrics were recorded:

1. Hit Count: number of memory requests successfully served from the cache.

2. Miss Count: number of memory requests that required data retrieval from

DDR (including both compulsory and conflict misses).

3. Execution Time: total runtime of the kernel on the FPGA, including mem-

ory and computation phases.

All tests were executed on the Kria KV260 board using Python scripts in the PYNQ

environment. For every cache configuration (18 from Type A and 25 from Type B)

and for each dataset, the results were automatically stored in structured .csv files.

Each file contained the following fields:

LineSize SetSize ExecutionTime (s) HitRate (%) MissRate (%)
1 512 610.4 70.8 29.2
2 1024 505.9 78.5 21.5
4 2048 437.2 82.6 17.4
8 1024 318.7 88.9 11.1
8 4096 276.3 91.5 8.5
16 512 204.8 93.4 6.6

Table 2: Collected results for different cache configurations

Each row reports the execution time, hit rate, and miss rate obtained from the

experiments on the Kria KV260 board. The data illustrate how increasing the line
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and set sizes generally leads to better cache efficiency and shorter execution times.

Only a few representative configurations are shown here to illustrate the structure

and format of the collected data. The complete set of raw results — including all

43 cache configurations tested across all datasets — is provided in Appendix

C. All CSV files follow this same structure, enabling automated comparison and

visualization through Python scripts.

4.5 Performance Evaluation Flow

The entire testing procedure followed a reproducible and structured workflow to

ensure fairness among all configurations.

The process was as follows:

1. Parameter Setup: line and set sizes were defined in the HLS source code.

2. Synthesis and Export: the design was synthesized in Vitis HLS and ex-

ported as an IP core.

3. Vivado Integration: the IP was imported into Vivado, connected via AXI

interfaces, and the bitstream was generated.

4. Deployment and Execution: the bitstream was programmed on the Kria

KV260, and the Python control scripts executed the kernel for each dataset.

5. Data Aggregation: the results were merged into summary files for visualiza-

tion through heatmaps and comparison using the “Distance from the Best”

metric.

This workflow guaranteed consistent testing conditions for both cache architectures

and enabled direct performance comparison based on hit/miss behavior and execu-

tion time.
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5 Results and Discussion

5.1 Overview

This chapter presents and discusses the experimental results obtained from the two

cache designs implemented in this work:

Cache Type A, containing 18 configurations, and Cache Type B, containing

25 configurations. Each cache was tested using the same datasets (DBLP, Enron,

Gowalla, GitHub, and Wikitalk) to guarantee fair comparison conditions. For every

configuration, the number of cache hits, cache misses, and the execution time

were collected.

To better visualize and interpret the performance results, the data were processed

and represented using heatmaps. These plots show how performance changes with

cache geometry, i.e., different combinations of line size and set size.

5.2 Hit and Miss Behavior

The first set of analyses focused on the hit rate and miss rate of the cache under

different configurations.

• Caches with larger line sizes generally achieved higher hit rates. This is

because a larger line allows loading multiple consecutive elements from DDR

in a single burst, increasing data reuse

• Configurations with smaller line sizes but more sets experienced more

frequent misses. The higher number of sets provided finer memory mapping,

but also caused more random access patterns, increasing DDR transactions.

• The 1×128 and 1×256 caches consistently showed the lowest hit rates, con-

firming that minimal burst width results in poor locality.
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• The 8×512 and 16×512 caches achieved the best hit rates among all tested

setups, showing stable behavior across all datasets.

The same pattern appeared for both cache types:

as the cache capacity (in terms of line × set product) grows, hit rates improve, but

the impact of geometry (line vs. set) remains the dominant factor.

5.3 Execution Time Analysis

The total execution time of the accelerator depends directly on the hit/miss behav-

ior. When the cache hit rate is high, fewer DDR transactions are required, reducing

memory latency and overall runtime.

In Cache Type B, where the maximum configuration reached 16×512, the execu-

tion time improved significantly compared to smaller caches (e.g., 1×256 or 2×512).

In Cache Type A, the same trend was observed: the 8×512 configuration consis-

tently provided the fastest execution among its group.

However, simply increasing cache size does not always result in proportional speedup.

Some very large configurations slightly reduce the maximum achievable frequency

after synthesis due to increased routing complexity. Therefore, the best configura-

tions are those that balance line size and set size effectively.

5.4 Distance from the Best Metric

Instead of using average execution time, which may hide variations across datasets,

the results were normalized using the “distance from the best” metric suggested

by the supervisor.

This metric represents how far each configuration’s performance is from the fastest

one for that dataset:
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Distance from Best = Ti

Tbest
× 100%

where Ti is the execution time of configuration i, and Tbest is the minimum execu-

tion time among all tested configurations for that dataset.

Using this approach provides two main advantages:

• The values are expressed as percentages, making comparisons intuitive.

• It allows combining results from different datasets into a single, consistent

scale.

In the generated heatmaps:

• Red represents configurations close to the best (lowest time, high perfor-

mance).

• Blue represents slower configurations.

This visualization made it easy to identify optimal cache geometries. In most

datasets, the area corresponding to large line sizes and moderate set counts was

clearly more reddish, confirming that wider bursts and balanced cache organization

lead to the best overall performance.

5.5 Comparison Between Cache Type A and B

To compare the two cache architectures:

• Cache Type A (18 configurations) was limited to smaller set sizes but

achieved stable timing and frequency.

• Cache Type B (25 configurations) offered a wider exploration range and

demonstrated slightly better scalability.
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• The 8×512 (Type A) and 16×512 (Type B) configurations were identified

as the most efficient among their respective groups.

• In terms of frequency, both maintained stable synthesis results, with only

minor variations in resource usage.

Overall, the comparison confirms that performance is not determined only by total

cache capacity but mainly by the internal organization of the cache (line and set

structure).

5.6 Summary of Findings

The main observations from the experiments are summarized below:

• Increasing line size improves data reuse and burst efficiency.

• Increasing set size alone does not guarantee better performance; beyond a

certain point, benefits diminish.

• The combination of large line size and moderate set count provides the best

trade-off between speed and area.

• Using “distance from the best” visualization made performance trends across

datasets clearer and comparable.

• The optimal configurations identified were 8×512 for Cache Type A and

16×512 for Cache Type B.

These findings validate the importance of cache geometry exploration in FPGA-

based memory-bound accelerators such as subgraph isomorphism.
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6 Conclusion and Future Work

This thesis investigated how cache configuration parameters influence the perfor-

mance of an FPGA-based accelerator for the subgraph isomorphism problem.

The main objective was to analyze the effect of line size and set size on execution

efficiency, memory behavior, and overall system performance. The work combined

high-level synthesis, hardware implementation, and real on-board testing to achieve

a comprehensive understanding of how memory hierarchy impacts computation in

graph-based workloads.

The results obtained throughout this research clearly demonstrated that cache ge-

ometry plays a decisive role in determining performance. Larger cache lines proved

to be more efficient in exploiting spatial locality, as they enable burst transfers that

reduce the number of DDR memory accesses.

This behavior resulted in a higher hit rate and shorter execution times for most

datasets. On the other hand, increasing the number of cache sets improved flexibility

and parallel access but provided diminishing returns when the number of sets became

too large. These observations confirm that the optimal configuration must balance

both dimensions, combining a sufficiently large line size with a moderate set count.

The experiments also highlighted the trade-off between hardware cost and perfor-

mance. Although larger caches improve speed, they consume more FPGA resources

such as BRAMs and LUTs, which can limit scalability. Therefore, simply enlarging

the cache is not always beneficial; understanding the specific access pattern of the

application is essential for choosing the best configuration.

This conclusion is especially relevant for FPGA systems, where resources are limited

and efficiency is often more important than absolute speed.
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Another key contribution of this work is the systematic and reproducible method-

ology adopted for design exploration. By using a parameterizable cache model im-

plemented in Vitis HLS and an automated testing framework in Python, dozens of

configurations could be generated, synthesized, and executed under identical condi-

tions.

The “distance from the best” metric used in the analysis proved to be an effective and

intuitive way to compare results across multiple datasets, avoiding the misleading

effects of average execution times. This approach ensured a fair comparison and

allowed clear visualization of performance trends through heatmaps.

From a broader perspective, the outcomes of this thesis demonstrate the importance

of analyzing memory access behavior early in the hardware design process. Graph-

based algorithms are inherently irregular, and their performance strongly depends

on how efficiently data can be fetched and reused.

The findings obtained here can guide future accelerator designs for similar data-

intensive applications, not only for subgraph isomorphism but also for other work-

loads such as graph analytics, sparse computations, and network analysis.

Future Work

There are several potential extensions and improvements that could build on this

research. One promising direction is the implementation of a multi-level cache hi-

erarchy, where a smaller and faster on-chip cache cooperates with a larger external

cache. Such an architecture could better adapt to varying access patterns and fur-

ther reduce memory latency.

Another direction involves enhancing the cache controller with more advanced re-

placement and prefetching strategies. Currently, the cache operates with a simple
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replacement policy, but incorporating adaptive mechanisms could allow the system

to adjust its behavior dynamically during runtime, improving performance under

diverse workloads.

In addition, exploring parallelism at a higher level could lead to substantial improve-

ments. Multiple kernel instances could operate concurrently on different graph parti-

tions while sharing a common cache infrastructure. This would increase throughput

and make better use of FPGA resources, especially for large-scale graph datasets.

Finally, extending the current framework to support real-time profiling and visu-

alization of cache behavior would provide deeper insight into system bottlenecks.

Integrating such profiling tools with HLS could create a powerful environment for

automated performance tuning and optimization.

In conclusion, this thesis provided a complete workflow from high-level modeling to

hardware implementation and on-board testing. It offered practical evidence of how

cache geometry directly affects performance in FPGA-based graph accelerators and

proposed a structured methodology for exploring and optimizing such systems.

The insights gained from this study can serve as a solid foundation for future designs

aiming to achieve efficient and scalable hardware acceleration for memory-intensive

applications.
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7 Appendix

7.1 Appendix A Resource Utilization Reports

7.1.1 Vivado Implementation Report

This section presents the results from the final routed design implemented in Vivado

2024.2, targeting the same Zynq UltraScale+ MPSoC on the Kria KV260 platform.

The data were taken from the files

project_6/project_6.runs/impl_1/design_6_wrapper_utilization_placed.rpt

and

project_6/project_6.runs/impl_1/design_6_wrapper_timing_summary_routed.rpt.

Post-implementation resource utilization on Kria KV260

Resource Used Available Utilization (%)
LUTs 27433 117120 23.4 %
FFs 37898 234240 16.2 %

BRAM 18K 118 288 41 %
DSPs 24 1248 1.9 %

Table 3: Resource utilization after implementation on the Kria KV260 board

Post-routing timing summary

Metric Value
Achieved clock period 4.13 ns
Achieved frequency 242 MHz

Worst Negative Slack (WNS) +0.12 ns

Table 4: Post-routing timing results including clock period,frequency, and worst
negative slack

The post-routing results confirm that the design comfortably meets its timing con-
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straints, achieving a frequency of approximately 242 MHz. All resources remain

within the device’s capacity, with BRAM usage being the most significant because

of the local buffering and caching structures used inside the kernel. These mea-

surements validate the quality of the synthesis results and demonstrate that the

implemented design achieves both high performance and moderate resource utiliza-

tion.

Interpretation of fields

• Used / Available: actual versus total hardware elements on the FPGA.

• Utilization (%): relative share of each resource type; a high percentage indi-

cates a potential bottleneck.

• Achieved clock period: real delay after place-and-route.

• WNS: timing margin; positive means timing constraints are satisfied.

Comparison between HLS and Vivado results

HLS provides early estimations before logic mapping, while Vivado reports the real

post-layout numbers. The comparison shows that, after optimization and placement,

resource consumption increased slightly (because of added control logic and routing),

while timing improved substantially, allowing the design to operate at more than

200 MHz on hardware.

7.2 Appendix B Extended Performance Results

This appendix presents the extended results of the FPGA experiments performed

on all the evaluated datasets. The analysis focuses on execution time and cache

efficiency (hit and miss rates) under multiple cache configurations. All measurements

were automatically extracted from the on-board CSV logs to guarantee consistency
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and reproducibility across runs.

five datasets (Enron, GitHub, Gowalla, DBLP, and Wikitalk) were used to val-

idate the accelerator under different graph structures. In all cases, increasing the

cache line size improved spatial locality and reduced execution time, while increasing

the number of sets provided smaller additional benefits. The parameterizable cache

demonstrated consistent and predictable performance across all datasets, confirming

the stability of the design.

7.3 Appendix C Python Automation Script

To streamline the experimental process, a dedicated Python framework was devel-

oped to automatically collect results from the FPGA, aggregate them into structured

CSV files, and visualize performance metrics.

The script scans all result directories, extracts execution times and cache statistics,

and computes the distance from best metric used for the heatmap representation.

This metric normalizes each configuration’s performance with respect to the best

result for the same dataset, enabling direct comparison among cache geometries.

The automation tool also generates color-coded heatmaps showing how line size and

set size affect execution time. These plots are produced using Matplotlib and are

saved for all datasets in a single batch, ensuring consistency and eliminating manual

intervention.

The script’s modular structure allows each function—data loading, metric computa-

tion, and plotting—to be reused independently in future experiments. It provides a

reproducible and scalable workflow that can be easily extended to additional cache

configurations or datasets, guaranteeing that every result presented in the thesis was

obtained under identical conditions.
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