
POLITECNICO DI TORINO

Master degree course in Electronic Engineering

Master Degree Thesis

Optimization of Test Architecture in RISC-V Based
System-on-Chip

In collaboration with:
STMicroelectronics srl

Supervisors Candidate
prof. Riccardo Cantoro Mauro Lubrini
prof. Michelangelo Grosso
Iacopo Guglielminetti

Academic Year 2024-2025

Abstract

This thesis optimises test architecture for RISC-V System-on-Chip designs by improv-
ing observation coverage for Software-Based Self-Test (SBST) on the open-source CVA6
processor. As silicon now drives appliances, vehicles, smartphones, and medical devices,
robust System On Chip (SoC) and thorough testing are essentials. Designs that are easier
to test could rise the yield and shorten the time-to-market; periodic online tests exe-
cuted during normal operation improve reliability and enable at-speed checks. Developed
with STMicroelectronics, this work extends an earlier CVA6 study that boosted SBST by
inserting observation monitors at random Register Tranfer Level (RTL) points. Here, ran-
domness is replaced with a principled selection of internal signals whose fault effects are
masked and cannot reach primary outputs. Synopsys SpyGlass identifies such locations;
although usually applied to place scan elements, its suggestions are repurposed as direct
strobe points in functional mode. The study evaluates whether SpyGlass-detected nodes
improve coverage over random insertion and over having no added points. Four workflows
target the Execution Stage of the RISC-V. First, SpyGlass runs at RTL; the design is
synthesised; a functional fault simulation then runs while an assembly SBST program
exercises the core. Second, after synthesis, SpyGlass analyses the netlist while sequential
Automatic Test Pattern Generation (ATPG) patterns are generated; coverage is assessed
by comparing Good and Faulty Machines, with selected points routed to extra primary
outputs. Third, to isolate point-placement effects, the same ATPG pattern set is reused
across SpyGlass, random, and no-point cases. Finally, the Execution Stage is flattened by
separating combinational from sequential logic so SpyGlass can assess the combinational
portion as a single block; the same simulations are repeated. Results depend on circuit
typology. In the purely combinational Aritmetic Logic Unit (ALU), SpyGlass-selected
points deliver a clear uplift, with coverage rising by up to 6.58% over random selection.
In the unmodified Execution Stage, where sequential and combinational logic interleave,
the advantage is negligible and coverage trends overlap. When the stage is flattened
to expose its combinational core, the improvement reappears: coverage with SpyGlass-
guided points is higher by 18,83% than with random points under the same stimulus.
This indicates that SpyGlass is effective on combinational regions, while sequentially rich
blocks may require additional measures. In conclusion, the thesis validates a method for
selecting observation points to enhance SBST on CVA6. It documents flows at RTL and
post-synthesis and clarifies where the method has the most impact: in combinational logic
or in designs refactored to make that structure explicit. Combining structural analysis
with modest refactoring supports higher at-speed, in-field coverage; modules dominated
by state may benefit from additional architectural hooks or alternative stimuli.

Contents

1 Introduction 7
1.1 Objectives and motivations . 8
1.2 Structure of this thesis . 8

2 Background 11
2.1 Risc-V ISA . 11
2.2 CVA6 architecture . 11

2.2.1 Frontend . 14
2.2.2 Issue Stage . 17
2.2.3 Instruction Decode Stage (ID) . 18
2.2.4 Execute stage . 19
2.2.5 Commit Stage . 24
2.2.6 CSR file . 24
2.2.7 Controller . 24

2.3 The discipline of Design For Testability (DFT) 25
2.3.1 Design for Testability (DfT) testing techniques 26
2.3.2 Test pattern generation . 32
2.3.3 Fault models . 36
2.3.4 Fault simulation . 38
2.3.5 Design for Testability (DfT) testing metrics 41

2.4 Previous work and starting point . 42

3 Approaches 45
3.1 RTL observation points insertion and SBST based fault simulation workflow 46

3.1.1 Design analysis and optimal test point insertion at RTL level 46
3.1.2 Random test points selection and insertion at RTL level 47

3.2 Post-synthesis observation points insertion and ATPG based fault simula-
tion workflow . 48
3.2.1 Post-synthesis design analysis and optimal test point insertion . . . 48
3.2.2 Post-synthesis random test points selection and insertion 49

3.3 Fault simulation with unique precomputed ATPG test patterns workflow . 50
3.3.1 Fault simulation with optimal test point insertion 50
3.3.2 Fault simulation with random test point insertion 50

2

4 Implementation 53
4.1 SpyGlass analysis . 53
4.2 Observation points insertion at RTL level and SBST based fault sim 58

4.2.1 Synthesis . 58
4.2.2 Fault simulation run . 67
4.2.3 Random buffer insertion . 75

4.3 Post-synthesis observation points insertion and ATPG based fault simulation 79
4.3.1 TestMAX ATPG working principle 80
4.3.2 ATPG Fault simulation . 82
4.3.3 ATPG with random test point insertion 85
4.3.4 Hierarchy flattening . 90

4.4 Post-synthesis observation points insertion and fixed functional test pat-
terns fault sim . 92

5 Results 97
5.1 SBST with observation point inserted at RTL level 98

5.1.1 Observation points on ALU . 98
5.1.2 Observation points on Execution Stage 99

5.2 ATPG with observation points inserted at netlist level 100
5.2.1 Observation points on Execution Stage 101
5.2.2 Observation points on ALU . 102
5.2.3 Observation points on flattened Execution Stage 103

5.3 Fault simulation with ATPG test pattern, observation point at netlist level 104
5.3.1 Observation points on ALU . 105
5.3.2 Observation points on Execution Stage 106
5.3.3 Observation points on flatten Execution Stage 107

6 Conclusion 109
6.1 Results analysis and conclusion . 109
6.2 Final conclusions . 111
6.3 Future works . 112

A Matlab scripts 113
A.1 Graph plots . 113
A.2 Data extrapolating functions . 122

B General scripts 127
B.1 Reports . 127

B.1.1 SpyGlass optimal observation points on Execution Stage 127
B.1.2 Random selection of test points in the netlist 133

3

4

Acronyms

ALU Aritmetic Logic Unit
ATE Automated Test Equipment
ATPG Automatic Test Pattern Generation
BGA Ball Grid Array
BHT Brench History Table
BIST Built-In Self-Test
BS Joint Test Action Group
BS Boundary Scan
BTB Branch Targhet Buffer
CMOS Complementary Metal–Oxide–

Semiconductor
CPU Central Processing Unit
CSR Control Status Register
CUT Circuit Undet Test
DfT Design for Testability
DRC Design Rule Check
DTLB Data Translation Lookaside Buffer
DUT Device Under Test
ECL Emitter-Coupled Logic
EDA Electronic Design Automation
ELF Executable and Linkable Format
FIFO First In First Out
FM Faulty Machine
FPU Floating Processing Unit
FSM Finite State Machine
FU Functional Unit
GM Good Machine
GUI Graphic User Interface

HDL Hardware Description Language
IC Integrated Circuit
IEEE Institute of Electrical and Electronics

Engineers
IoT Internet of Things
IP Intellectual Propriety
IPC Instruction Per Cycle
IQ Instruction Queue
ISA Instruction Set Architecture
JETAG Joint European Test Action Group
LRM Language Reference Manual
LSB Least Significant Bit
LSU Load Store Unit
MMU Memory Management Unit
MSB Most Significant Bit
ODE Output Data Evaluator
OS Operating System
PA Physical Address
PC Program Counter
PCB Printed Circuit Board
PGA Pin Grid Array
PI Primary Inputs
PMP Physical Memory Protection
PO Primary Outputs
PPA Power Performance and Area
PTW Page Table Walker
RAM Random Access Memory
RAS Return Address Stack
RISC Reduced Instruction Set Computer
RTL Register Tranfer Level
SBST Software-Based Self-Test
SFF Scan Flip-Flop
SGDC SpyGlass Design Constraints
SoC System On Chip
STIL Standard Test Interface Language
TAP Test Access Port
TCK Test Clock

5

Acronyms

TCL Tool Command Language
TDI Test Data Input
TDO Test Data Output
TLB Transition Lookaside Buffer
TMS Test Management Signal

TPG Test Pattern Generator
TRST Test Reset
TTL Transistor Transistor Logic
VA Virtual Address
VIPT Virtually Indexed Physically Tagged

6

Chapter 1

Introduction

Today’s world is powered by tiny components made of silicon. They control everything,
from home appliances to cars, smartphones, Internet of Things (IoT) devices, medical
equipment, and many more. Nowadays, more than ever, it is important to have reliable
and robust SoC capable of working a relentless number of times without having issues: in
particular in safety-critical applications like in the automotive or in the medical industry,
where a small issue could lead to critical consequences. Ensuring these tiny devices are
thoroughly tested before they’re released to the market is a crucial part of the integrated
circuit design process. Having a design that is easy and highly testable can allow a
company to have a higher yield during production and a faster time to market, increasing
the income and the profit. Another key aspect in the design of an SoC is the ability to
execute periodic online tests run in the background during the processor’s normal working
activity, so the architecture is automatically tested within itself, without the need for any
additional test equipment. This methodology can lead to incredible benefits, starting from
the improvement of reliability over time by checking at the processor’s activity throughout
its lifetime, to the execution of at-speed testing, essential for modern high-speed SoCs. In
this context, Design for Testability (DfT) plays a fundamental role, studying new ways
to improve testing and the related procedures during the design of an SoC. With circuits
becoming increasingly complex, testing becomes more difficult, making the need for more
advanced and efficient methods of analysis and testing even more crucial.

Lots of different testing techniques have been developed during the course of these
years, but nowadays, more than ever, the need for efficient, low-power, and compact SoCs
lead to the development of new methodologies that can reduce the area overhead induced
by additional testing elements or modules implemented inside the design. In particular, as
the geometries shrink and delay effects become more relevant, an at-speed test is needed,
but due to the increment core frequencies of modern SoC, new high-speed interfaces and
more expensive test equipment are required. Additionally, for more advanced multi-core
architectures, the testing time scales with the number of cores if the test is not executed
in parallel. These challenges led the semiconductor companies to find new testing meth-
ods. Starting from the 1980s, functional self-testing (also known as SBST) gain more and
more interest in the semiconductor industry, allowing to run test programs directly on the
device, running them at it’s native clock frequency and removing the need of expensive

7

Introduction

and cumbersome test equipment. [1]

1.1 Objectives and motivations
This thesis, developed in collaboration with ST-Microelectronics, builds upon a previous
work that used a Software-Based Self-Test (SBST) approach to improve the test coverage
of an open-source RISC-V architecture developed by ETH Zürich and the University of
Bologna called CVA6. Test coverage refers to the computation of detected faults relative
to the testable fault count. Given a fault model, which is the mathematical representa-
tion and characterization of real defects within a circuit, a list of faults inside the circuit
is created. A set of test stimuli is then simulated on the list, proving which faults are
controllable or observable by them, i.e., detected by the stimuli. This thesis builds upon
previous work that used a SBST approach to functionally simulate the design and by
inserting some observation monitors improve the test coverage of the RISC-V architec-
ture. The original study inserted these set of additional observation monitors at random
points, mainly on the highest hierarchical modules. In this thesis work, an alternative
methodology is proposed and implemented for strategically selecting the optimal loca-
tions of these observation points. The coverage results of this new approach will then
be compared against the previous random method to determine its effectiveness. To the
best of our knowledge, no commercial tools are available for such a purpose. However, a
commercial static analysis tool for RTL circuits, Spyglass by Synopsys, was used in this
thesis to evaluate its potential in helping to discover the optimal location of observation
points. The goal of this thesis is to demonstrate that the points detected by Spyglass
are useful to increase the test coverage in functional mode, even though Spyglass is orig-
inally intended to suggest optimal locations for scan-enabled flip-flops during scan-chain
insertion. The locations pinpointed by Spyglass are then used as additional observation
points during fault simulation. This research work aims to validate this methodology for
the improvement of the test coverage and its effectiveness over a random insertion of test
points.

1.2 Structure of this thesis
• Chapter 2: This chapter starts with a brief introduction to the CVA6 architecture

to contextualize the device under test. Next, a general overview on different testing
techniques, fault models, and fault classifications providing the reader with some
fundamental concepts needed to understand the methods and the results of this
thesis. In conclusion, a summary of the former thesis work on which the present
work builds upon.

• Chapter 3: This chapter is dedicated to explaining at a high level the different
workflows developed during this thesis work. A general overview, with no specific
implementation details, of the different methodologies is proposed. The idea is that

8

1.2 – Structure of this thesis

these workflows could be theoretically mapped to any possible working environments
and toolchains.

• Chapter 4: This chapter contains a detailed description of the different workflows
implementation. Some attention has been given to the software tools used during
this research, explaining at a high level how they work and how they have been set
up to perform the different tasks constituting each methodology. Here are explained
the reasoning and the motivations behind each test procedure.

• Chapter 5: In this chapter, the reader can find all the results obtained by all the
different tests mentioned previously in chapter 3. Comparisons and comments are
carried out to provide a better understanding of the results showing the pros and
cons of each different approach.

• Chapter 6: This final chapter is dedicated to the conclusions on the carried work
and results, with some possible proposal on future works that could be undertaken
starting from the results obtained.

9

10

Chapter 2

Background

2.1 Risc-V ISA
RISC-V is an open and royalty-free standard Instruction Set Architecture (ISA) based on
the Reduced Instruction Set Computer (RISC) architecture. Developed in 2010 by the
University of Berkeley, RISC-V has experienced an exponential growth in popularity over
the course of the last few years. Its modularity, scalability, simplicity and open nature
make it the best choice for simple embedded systems, but also for high-performance micro-
processors running on mobile, desktop, and servers. In an industry where the main semi-
conductor companies own their proprietary architectures and Intellectual Propriety (IP)
(Such as ARM, MIPS, x86 from Intel), the RISC-V architecture proposes an open source
alternative usable both academically and commercially without any royalties. Moreover,
RISC-V is strongly supported by a vast community of developers who maintain and ex-
tend the ISA through time. [2]

2.2 CVA6 architecture
The CVA6 is a RISC-V single issue, in order Central Processing Unit (CPU). It imple-
ments the 64-bit RISC-V ISA and the I, M, A and C (compressed) extensions; furthermore
can also fully support a Unix-like operating system. It is an industrial evolution of AR-
IANE architecture created by ETH Zürich and the University of Bologna. It is written
in SystemVerilog and maintained by the OpenHW Group. The CVA6 can be config-
ured as a 32 (RV32) or 64-bit (RV64) processor core, and it implements L1 caches and
optional Memory Management Unit (MMU), Physical Memory Protection (PMP), and
Floating Processing Unit (FPU). Its flexibility and modularity allows designers to modify
the processor to the required Power Performance and Area (PPA) metrics or extend it
with additional peripherals which allows the CVA6 to implement new and advanced func-
tionalities. In this thesis work, the 64-bit version of the CVA6 (CV6A_MMU) has been
used. This variant of the architecture implements an optional MMU capable of manag-
ing efficiently the interfacing with the external Random Access Memory (RAM) memory.

11

Background

Moreover, it can also handle a 64-bit memory address space and execute the RV64I Base
Integer Instruction Set. [3], [4], [5], [6]

The CVA6 core has the following characteristics:

• Multiple Issue Pipelines: The CVA6 features a 6-stage pipeline allowing the core
to issue continuously in sequence new instructions per clock cycle; so in the case of
a sequentially executed program (without any branches), this feature significantly
increases the throughput. Nevertheless, in case of a non perfectly sequential program,
the CVA6 has some countermeasures against pipe flushing to improve the instruction
issuing, by implementing a Brench History Table (BHT).

• Out-of-Order Execution: Thanks to this feature, the processor is capable of
executing any fetched instruction as soon as the corresponding execution unit is
available, without waiting for previous instructions to be committed. This allows
the processor to run faster and more efficiently.

• Instruction and Data Caches: The processor has two separate caches, one ded-
icated to the data and the second to the instructions. Exploiting the locality of
reference principle, these two caches allows the required data to be much closer to
the core, reducing the number of accesses to the main memory and so the overall
latency related to that.

• Optional Hardware Accelerators: One of the defining features of the RISC-V
architectures is their modular design, and the CV6 allows connecting to the core
additional hardware accelerator or IP, extending its functionalities to target specific
tasks.

Figure 2.1 presents a diagram illustrating the architecture organization.

PC generation
& instruction
fetch stages

Instruction
Decode Stage

Commit
stage

Performance
counter CSR register Controller

Execution Stage

MMU

PMP

FPU

Cache

D Cache I Cache

Internal Bus

External Bus
(AXI or P-Mesh)

Issue
stage

CVA6

6-stage pipeline

Figure 2.1: CVA6 architecture

12

2.2 – CVA6 architecture

• CVA6 core: The core of the CVA6 IP containing all the sub-modules of the archi-
tecture.

• L1 write-through cache: Provides frequently used data to be accessed more
rapidly, avoiding frequent memory accesses.

• FPU: allows to extend the computational capability with floating-point calculations.

• MMU: stands for Memory Management Unit and manages the memory interface
and translates virtual addresses used by programs into physical addresses in memory,
enabling virtual memory, process isolation, and efficient multitasking.

• PMP: stands for Physical Memory Protection, a hardware feature that divides
a system’s physical memory into regions with configurable permissions to control
access.

• Control Status Register (CSR): for system configuration and status reporting.

• Performance counters: Additional hardware counters used to detect and analyze
the system performance.

• AXI interface: Module to manage the communication with external interfaces
through AXI protocol.

• Controller: Generates and elaborates all the control signals that manage all the
different stages and modules of the core.

After introducing how the CVA6 architecture has been conceptualized in its organiza-
tion, the following sections propose a more detailed analysis of the main modules which
compose the core, a quick list is depicted in Figure 2.2.

Subsystem

Frontend

Issue

Decode

Execute

Commit

CSR file

Controller

Cache

Figure 2.2: CVA6 submodule division

13

Background

2.2.1 Frontend
The frontend of the CV64A6 processor is the entry point of the pipeline. It is responsible
for Program Counter (PC) generation, instruction fetching, and prediction mechanisms
that enable efficient instruction supply to the decode stage. Designed as a modular sub-
system, it integrates branch prediction units, instruction buffering, and scanning logic to
maximize throughput while maintaining low power and area efficiency. It provides the es-
sential capabilities for speculative execution, compressed instruction support, and robust
pipeline feeding even in the presence of frequent control-flow changes.

Frontend

BHT

RAS

BTB

Instruction queue

Instruction realign

Figure 2.3: Frontend units division

Breaking down the main subsection of this module, we have:

• PC Generation and Control Flow Management: this subsection creates the
PC value that points to the next instruction. This component strongly interacts
with the prediction units to speculate on the possible branch that will be taken
afterwards.

• Branch Prediction Subsystem: this subsection is where all the speculative and
predictive actions are taken. In this unit is possible to find the Branch History Table
BHT, Branch Targhet Buffer (BTB), Return Address Stack (RAS).

• Instruction Handling: this section uses the Instruction Realign unit to align the
fetched instruction words and uses the Instruction Queue module to store the de-
coded instructions while they wait to be issued from the issue stage.

Branch History Table (BHT)

The BHT is a PC direction predictor and it predicts whether a conditional branch is
taken or not taken, keeping the fetch stage supplied with the most likely branch path;
target addresses are provided elsewhere by the BTB or the RAS. This separation keeps
the predictor fast enough for per-cycle use across all instruction “slots” in a fetch bundle.

Each BHT entry is a tiny record comprising a valid bit and a two-bit saturating counter.
The prediction rule is quite simple: if the entry is valid and the counter’s most significant
bit is one, the branch is predicted to be taken; if the Most Significant Bit (MSB) is zero,

14

2.2 – CVA6 architecture

it is predicted not to be taken. The second bit acts as hysteresis, preventing the predictor
from flipping direction on a single anomalous outcome; this rule is better depicted with a
simple diagram in Figure 2.4. The conventional encoding applies: 00 represents strongly
not taken, 01 weakly not taken, 10 weakly taken, and 11 strongly taken. Because only
the MSB participates in the decision, the predictor offers a clean one-cycle datapath while
still damping noise via the Least Significant Bit (LSB).

Strongly not taken
"00"

Weakly not taken
"01"

weakly taken
"10"

Strongly taken
"11"

Taken Taken Taken

Not takenNot takenNot taken

Not
taken

Taken

Figure 2.4: BHT rule diagram

Updates arrive from the backend when a branch resolves. Provided updates are marked
valid, the BHT locates the corresponding entry using the resolving instruction’s PC, sets
the entry valid, and adjusts the counter towards the observed outcome. A taken result
increments the counter unless it is already 11; a not-taken result decrements it unless it
is already 00. This is the standard “two-bit” learner, proven to work well on loop bodies
and other locally correlated control-flow patterns typical of embedded workloads.

Branch Target Buffer (BTB)

The BTB is responsible for predicting the destination address of control-flow instructions
so that the processor can redirect instruction fetch without waiting for branch resolution
in the execute stage. While the BHT decides whether a branch is likely to be taken, the
BTB provides the actual target address, ensuring that the frontend can immediately fetch
from the predicted path. Together with the RAS), which specializes in handling function
returns, the BTB forms the target half of the prediction mechanism. Each BTB entry
contains a valid bit, a tag, and a target address. On lookup, if the tag matches and the
entry is valid, the BTB produces a hit and provides the predicted target address for that
instruction slot. This address is then passed to the PC logic, which priorities targets as
follows: for returns, the RAS takes precedence; otherwise, a BTB hit supplies the target; if
neither applies, the frontend proceeds sequentially. In this way the BTB integrates cleanly
with both the BHT and the RAS: the BHT determines whether a branch is taken, the
BTB supplies the target if the branch is indeed taken, and the RAS handles the special
case of function returns. Updates to the BTB occur when control-flow instructions resolve
in the backend. If the instruction has a stable and determinate target, such as a taken
conditional branch, a direct jump, or a function call, the BTB entry is written with the
instruction’s PC tag and the resolved target. The valid bit is set, and the entry becomes
eligible for future predictions. On reset, the entire BTB is invalidated: all valid bits are
cleared and no predictions will be made until new control-flow instructions are resolved
and populate the table. On a flush, which may be triggered by a misprediction or an

15

Background

exception, the table is also cleared to prevent stale targets from being used. This design
keeps recovery simple and predictable, with the cost that the predictor must warm up
again after a flush, repopulating entries as instructions retire.

Return Address Stack (RAS)

The RAS is a specialized branch prediction structure dedicated to handling function calls
and returns. Unlike the Branch History Table BHT, which predicts the direction of
conditional branches, or the BTB, which stores general branch and jump targets, the
RAS is designed to exploit the highly structured nature of subroutine calls and returns.
In RISC-V, a call instruction such as jal or jalr saves the return address (the address
of the instruction following the call) in the link register (ra), and a return instruction
typically jumps back to the value stored in the ra register. So the RAS maintains a
small stack of predicted return addresses, allowing the frontend to supply the correct
target for a return instruction without waiting for the backend to resolve it. In other
words, the RAS operates as a last-in, first-out stack. When the frontend fetches a call
instruction, it pushes the predicted return address (current PC + instruction length) onto
the stack. When the frontend later encounters a return instruction, it pops the top entry
and uses it as the predicted target address. This mechanism is extremely effective for
nested and recursive subroutines, since each call has a matching return, and the addresses
can be predicted with high accuracy. In practice, the RAS dramatically reduces the cost
of returns, which otherwise would often be mispredicted by a generic BTB due to their
indirect nature. Integration with the rest of the frontend is straightforward. The RAS
supplies its prediction only when the instruction being fetched is identified as a return.
For other control-flow types, the BTB or sequential PC logic is used instead. In the
prioritization logic of the frontend’s next-PC selection, the RAS target typically has the
highest priority for return instructions, ensuring that it overrides any BTB entry that
might also be present for the same slot. The RAS is updated speculatively at fetch time
(on calls) and corrected if necessary when the backend resolves the instruction and signals
mispredictions or flushes. On a pipeline flush or reset, the stack pointer and contents are
cleared to prevent stale return addresses from being used after recovery.

Instruction Realign

The Instruction Realign unit in the frontend is the first stage that processes raw instruction
words arriving from memory and prepares them for the rest of the fetch pipeline. Its role is
essential because it takes the fixed-width words delivered by the instruction fetch interface
and it realigns them into a continuous stream of correctly aligned RISC-V instructions.
This becomes particularly important in a processor like the CV64A6 that supports both
standard 32-bit instructions and 16-bit compressed instructions, which may cross natural
word boundaries. Without a realignment stage, instructions could be misinterpreted,
misaligned, or split incorrectly across fetch beats, leading to incorrect decoding. At the
interface level, the realign unit accepts instruction words fetched from memory, typically
32-bit aligned and delivered in bundles depending on the frontend configuration. The fetch
stage itself is agnostic to whether the instructions are compressed or not: it simply supplies

16

2.2 – CVA6 architecture

the raw instruction words indexed by the current program counter. The challenge is that
compressed (RVC) instructions are 16 bits wide, and they can occur in any position relative
to 32-bit alignment. For example, a 16-bit instruction might be followed immediately by
another 16-bit instruction, together fitting into a single 32-bit word, or it might be followed
by a full 32-bit instruction, which then crosses the boundary between two words. The
job of the realign logic is to stitch these pieces together into clean instruction packets, so
that each downstream unit sees a valid and complete instruction starting at the correct
program counter.

Instruction Queue (IQ)

The Instruction Queue (IQ) is the final buffering stage before instructions are handed over
to the decode and issue logic. Its purpose is to decouple the timing of instruction fetch
from the demands of the backend pipeline, creating elasticity between the two halves
of the processor. By providing a small buffer that sits between the frontend and the
decode stage, the queue allows the frontend to continue fetching instructions even when
the backend is temporarily stalled, and conversely ensures that the backend can keep
working on buffered instructions when the fetch side experiences a hiccup, such as a
cache miss or a redirection. Architecturally, the Instruction Queue is a First In First
Out (FIFO) structure sized to hold a handful of instructions. It supports both the 32-
bit RISC-V standard instructions and the 16-bit compressed instructions. Because the
frontend fetches instructions in aligned bundles, the queue must be able to accept multiple
instructions in a single cycle and then present them to the backend in order and one at
a time. This means that the queue’s internal organization is more sophisticated than a
simple one-word FIFO: it must track instruction boundaries, manage validity for each
slot, and keep instructions aligned correctly for the decode logic.

2.2.2 Issue Stage
The Issue Stage is situated between decode and execute. Each cycle it accepts a decoded
micro-op, checks for hazards and Functional Unit (FU) availability, fetches or forwards
source operands, and fires exactly one instruction to the selected FU. At every issued
instruction it hands a transaction ID that is going to be used later when any results or
flags are returned. The issue stage interacts with different functional units independently;
so it means that it has to check for their readiness each time an instructions request the
use of one of them. It also receive and store their write-back data unconditionally, while
the instructions are issued in order (contrary to the write back which can happen out-of-
order). The issue stage is composed of two main units: a scoreboard and the issue read
operands.

Scoreboard

The scoreboard is essentially a FIFO buffer with one read and one write port, both paired
with a valid and an acknowledge signal. The instruction decode stage writes directly to

17

Background

the scoreboard only if the latter is not already full. The commit stage instead looks for
already ended instructions and updates the architectural state.

Issue Read Operands

The Read-Operands unit runs in the same cycle as issue and decides whether the head
instruction can be run while sourcing the required operands. It consults the scoreboard’s
clobber maps to detect RAW/WAW hazards and uses a forward-first policy: for each
source (rs1, rs2) prefers a forwarded value from in-flight or just-written results; only if no
newer value exists does it read the register file. WAW is blocked unless the commit stage
writes the same rd in the same cycle of issue.

2.2.3 Instruction Decode Stage (ID)
The instruction decode has the purpose of distinguishing instructions from the data that
the instruction fetch stage outputs. This unit decodes the instructions and sends them
to the issue stage. With the introduction of compressed instructions, the Instruction
Decode also has to realign instructions that fall off the word boundaries: for example, if a
compressed instruction (16-bit wide) is followed by a non-compressed instruction (32-bit
wide), the latter is split in half across two consecutive words. In case of this event, the
instruction is fully decoded only after two memory accesses; therefore, a properly sized
fetch FIFO is needed. Furthermore, the information coming from the branch predictor is
used to output the correct instruction and send it to the issue stage.

Compressed Decoder

The Compressed Decoder is used to decompress all compressed instructions (RV32C). It is
composed of a purely combinational circuitry which takes a 16-bit compressed instruction
and expands it to the 32-bit version.

Decoder

The decoder takes the raw instruction (also 16-bit compressed instructions) data and
decodes it accordingly, transforming it into a scoreboard entry that the issue stage can
consume:

• PC: PC of instruction;

• FU: functional unit to use;

• OP: operation to perform in each functional unit;

• RS1: register source address 1;

• RS2: register source address 2;

• RD: register destination address;

18

2.2 – CVA6 architecture

• Result: for unfinished instructions, this field also holds the immediate;

• Valid: is the result valid;

• Use I Immediate: should we use the immediate as operand b;

• Use Z Immediate: use zimm as operand a;

• Use PC: set if we need to use the PC as operand a, PC from exception;

• Exception: exception has occurred;

• Branch predict: branch predict scoreboard data structure;

• Is compressed: signals a compressed instructions, we need this information at the
commit stage if we want jump accordingly e.g.: +4, +2;

The scoreboard entry is fundamental since it controls operand selection, dispatch and
execution.

2.2.4 Execute stage
The execution stage (EX) of the CV6 pipeline is where instructions are actually executed.
After an instruction has been issued, the execution stage steers it to its appropriate
functional unit, waits for the result (in case the unit is multi-cycle), and feeds back both
data and control outcomes to the rest of the core. In CVA6 this stage is deliberately
modular, and its subdivision is described in Figure 2.5: an integer ALU for single-cycle
integer ops; a Branch Unit that resolves control flow and produces the definitive next PC;
a CSR buffer that arbitrates access to Control and Status Registers; hardware multipliers
and dividers for the M instruction extension; a Load/Store path (with an explicit load
unit) that computes effective addresses and talks to memory; an floating point unit and
a custom-extension endpoint (CV-X-IF) that lets designers attach accelerators.

EX_STAGE

ALU

CSR buffer

Branch unit

multiplier

LSU

CVXIF_fu

Figure 2.5: Execution Stage (EX) units division

19

Background

Aritmetic Logic Unit (ALU)

The ALU performs all base integer arithmetic and logical operations (subtraction, addi-
tion, shifts and comparisons) in a single cycle so no sequential logic is present inside it.
It takes two operands plus control bits from decode, and produces one result per cycle
for write-back unless the instruction is routed to a different functional unit, or a cus-
tom hardware accelerator extension). Operand A is selected from the integer register file
or, for PC-relative instructions, from the current PC forwarded into the execution stage;
operand B is chosen between the second source register and one of several immediate
decoded from the executed instruction (I/U/B/J/S forms), so the same adder can serve
ADD/ADDI as well as AUIPC and the link-address computation for JAL/JALR. With a
front-end muxing, the ALU covers ADD/SUB, logical AND/OR/XOR, shifts (SLL/SR-
L/SRA), set-less-than (SLT/SLTU), and the immediate variants; LUI/AUIPC are realized
by feeding the 20-bit U-immediate into the datapath and selecting the appropriate source
on the other side.

Multiplier

The multiplier in the execution stage implements the RV64M multiply subset and delivers
the product bits required by the four architectural instructions MUL, MULH, MULHSU,
and MULHU. Functionally, it accepts two XLEN-wide operands from the issue/execute
wrapper, forms a full 2×XLEN-bit product, and selects either the lower XLEN bits (for
MUL) or the upper XLEN bits with the correct sign (for MULH/MULHSU/MULHU)
before write-back. In the CV64a6 configuration (64-bit) this is a 128-bit internal product;
the low 64 bits implement MUL, while the high 64 bits implement the three “H” variants
according to signed×signed, signed×unsigned, and unsigned×unsigned semantics defined
by the RISC-V M extension. The multiplier is paired in the EX stage alongside the divider.
The decode/issue logic routes an instruction to the mult wrapper, which steers it to the
multiplier for product or the divider for division computations. The wrapper exposes a
single result and a “busy/ready” status to the execution stage so that the pipeline stalls
only while a mult/div operation is in flight since multiplication is performed in two cycles
while the division is performed by a simple serial divider which needs 64 cycles in the
worst case.

Floating point unit (FPU)

The FPU provides IEEE-754 compliant computation for the RISC-V floating-point ex-
tensions: it can handle single precision (RVF), double precision (RVD), and, when con-
figured, reduced-precision formats such as FP16, FP16ALT (bfloat16-like), and FP8. At
the interface, the FPU receives three operands (A, B, C), a rounding mode, format se-
lectors, and a decoded operation. The FPU accepts these via a ready/valid handshake
and returns a result together with the five exception flags (inexact, underflow, overflow,
divide-by-zero, invalid). A small two-state Finite State Machine (FSM) in the wrapper
(“READY/STALL”) holds inputs when the new result is not ready, so the rest of the
pipeline only ever sees a single clean signal.

20

2.2 – CVA6 architecture

Branch unit

The branch unit in the CVA6 execution stage is the block that finalizes control-flow
decisions, computes the correct next PC, and reconciles the frontend speculation. It takes
as inputs the current instruction’s PC, a flag indicating whether that instruction is 16-bit
(compressed) or 32-bit, the decoded operation and operands, the ALU’s boolean branch-
condition result, and the predictor’s per-slot speculation (control-flow type and predicted
target). From these, it builds two addresses: next_pc, which is simply PC + instr_len
(advancing by 2 or 4 bytes depending on whether the instruction is compressed), and a
potential prospect target_adress, which is formed by adding a base and an immediate.
With those addresses available, the branch unit resolves speculation and drives redirection.
For conditional branches, it uses the ALU’s comparison result to choose between the
computed target_address (taken) and next_pc (not taken), marks that decision as the
resolved outcome, and sets the output control-flow type to “branch” so the BHT can be
trained. A misprediction is flagged precisely when the ALU’s outcome disagrees with
what the predictor classified as a branch in this slot. For register-indirect jumps jalr, it
declares a misprediction if the predictor did not mark this slot as a control transfer or if
the predictor’s target does not match the computed target_address. In that case the
control-flow type is reported as “jump-register” so the BTB can learn the site.

Load store unit

The Load Store Unit (LSU) is an essential block which houses different functional units
responsible for interfacing with the data memory. In particular, it houses the MMU which
contains the Data Translation Lookaside Buffer (DTLB), the Page Table Walker (PTW),
and the Transition Lookaside Buffer (TLB). To solve as fast as possible any possible TLB
misses, the LSU arbitrates the accesses to the data memory between loads and stores;
it prioritizes the PTW lookup. The LSU issues load requests as soon as possible, while
the stores’ requests are kept back as long as the scoreboard does not decide to issue a
commit signal: having a single commit point, the processor is constrained to behave with
an in-order commit. This way of behaving is referred to as “posted-store” because the
store request is kept waiting in the store queue for the commit signal to be high and the
memory interface not being in use. So during a load procedure, the LSU has to check
the store buffer for potential aliasing and in the case it finds uncommitted data, it should
stall to wait for the data commitment.

This means that the LSU should follow these rules:

• Two loads to the same address are allowed and are returned in the order they were
issued.

• Two stores to the same address are allowed, and the scoreboard will issue and store
them in order. If the commit signal is off, the stores happen in the store buffer;
otherwise, they are done inside the main memory.

• A store followed by a load to the same address is permitted only if the store has
already been committed (marked as committed in the store buffer). Otherwise, the
LSU stalls until the scoreboard commits the instruction.

21

Background

In case of misaligned accesses (so words not aligned with 64-bit, 32-bit, or 16-bit
boundaries), a misaligned exception is thrown, and the exception handler will resolve the
load or store.

The design of the LSU is split in 6 main units, Figure 2.6:

1. LSU Bypass

2. D$ Arbiter

3. Load Unit

4. Store Unit

5. MMU (including TLBs and PTW)

6. Non-blocking data cache

9-state
FSM

Load Unit

MMU

4-state
FSM

Store Unit

PTW
TLB

DTLB

commit

32-state
FSM

LSU Bypass

Issue

$D

R
es

ou
lt

ar
bi

te
r

+

AGU

Is
su

e Operator A

Operator

Immediate

lsu_ctrl

vaddr

Store

 Buffer

1

0

2

Figure 2.6: Load Store Unit (LSU) scheme

LSU Bypass

The LSU bypass is a small auxiliary block that shields the issue stage from the LSU’s
late “go” or “no-go” decision. Because the LSU talks to relatively slow SRAMs and must
perform sequential, time consuming work, address generation, address translation, and
store-buffer check for potential aliasing. The true readiness of a load/store is often known
only very late due to TLB misses and store aliasing, which are the most common causes.
Driving that late ready signal directly back to the issue stage would create a long critical
path and slow the whole core, and the issue stage cannot stall once it has issued an
instruction. The bypass solves this by interposing a tiny FIFO so that issuing can hand
off one more request even if the LSU is not yet ready, allowing the LSU’s ready signal to

22

2.2 – CVA6 architecture

be delayed by one cycle, easing the timing. When the LSU is free, requests are bypassed
straight through.

Load Unit

The load unit issues loads as early as possible (since, contrary to storing, issuing does not
alter the architectural state), but before that it checks the store buffer to avoid reading
out of date data (that would create aliasing). For speed, it compares only the 12-bit page
offset of the load against all pending stores: this keeps the check on 12 bits (rather then
64) and it is performed before translation since at that point Physical Address (PA) and
Virtual Address (VA) share the same offset. If any offset matches, the load stalls until the
store drains its content. This unit also performs address translation and uses a Virtually
Indexed Physically Tagged (VIPT) D$ access scheme, in this way tag resolution reduce
the number of cycles needed for load accesses. On a TLB miss, the load may need to kill
its in-flight D$ request to let the PTW proceed, since a blocking cache can hold the port;
so implementing a non-blocking cache would solve this problem.

Store Unit

The store unit manages all stores by simply calculating the target address and setting the
appropriate byte enable bits. Other than that, it also performs address translation and
interacts with the load unit to communicate if any store waiting in its buffer matches any
load request.

Store buffer buffer

The store buffer tracks all stores using two queues: a speculative queue for not-yet-
committed stores and a commit (non-speculative) queue for committed ones. On a flush,
only the commit queue is preserved; the speculative queue is fully cleared. Each queue
has its own full flag: the speculative full flag blocks the LSU bypass module (blocking new
LSU requests), while the commit full flag stalls the commit stage. When the commit stage
retires a store, it asserts the signal lsu_commit, moving that entry from the speculative
queue to the commit queue. The commit queue, as soon as a store has been committed, it
tries to commit the oldest store in the memory, cache grants permitted. Address handling
is physical in the commit queue (translation is final by commit time). Speculative entries
may have unresolved or stale translations; if translation structures change (e.g., TLB
shootdown), the pipeline flushes, which also clears the speculative queue, ensuring only
correctly translated stores reach the memory system.

Memory Management Unit (MMU)

The MMU performs virtual-to-physical translation and access control for both instruction
fetch and data. Internally, it has an ITLB, a DTLB, and a shared hardware page-table
walker (HPTW). There are two separate main paths in the MMU: the Instruction fetch
stage and the LSU path. The instruction fetch path accepts virtual addresses: if address
translation is disable, it passes straight to the I$, otherwise, it delays the I$ request until

23

Background

a valid TLB translation (ITLB hit is combinational), or it returns a page/access fault. In
the case of faults, the fetch path uses a small exception FIFO to return exceptions with
valid responses. The data path (LSU side) is a response-request interface managed with a
handshake protocol: the load/store units request translation and, on a DTLB hit, get the
result one cycle later (added for timing). Since the D-cache is VIPT, this extra cycle does
not hurt Instruction Per Cycle (IPC), but it makes the memory request more cumbersome
since any possible exceptions could abort memory access. In case of a load exception, the
load unit is responsible to kill the memory request sent a clock cycle earlier.

CSR buffer

The CSR buffer module holds temporarily the CSR address at which the instruction is
going to read/write. As the CSR instruction alters the processor architectural state, so
this instruction has to be buffered until the commit stage decides the best time instant to
execute the instruction.

2.2.5 Commit Stage

The commit stage is the last stage in the pipeline. It takes incoming retiring instructions
and updates the architectural state. It does this by writing in the CSR register, com-
mitting stores, and writing back data to update the architectural state. Other than the
retiring instructions, the commit stage also manages different exceptions that arise from
three different sources: the first exception can come from any of the previous four pipeline
stages, the second exception can come from during commit, and the third one from an
interrupt (Interrupts are considered only during the commit stage, ensuring a precise and
reliable event) Lastly, the commit stage controls the overall stalling of the processor by
blocking any other instruction commitment generating a back-pressure in the pipeline.

2.2.6 CSR file

The Control and Status Register (CSR) subsystem in the RISC-V core implementation.
CSRs are special-purpose registers that control processor behavior, manage exceptions
and interrupts, store privilege levels, and configure the memory management unit. [6]

2.2.7 Controller

The controller in CVA6 is the small, centralized unit that decides when the pipeline must
be flushed or halted and who “owns” the next PC. From the backend it watches for branch
mispredicts, exceptions, returns from exception, and PC requests. From the architectural
side it observes CSR-triggered flushes and halts and on a mispredict it performs a light
recovery dropping only unissued scoreboard entries.

24

2.3 – The discipline of Design For Testability (DFT)

2.3 The discipline of Design For Testability (DFT)
Design for Testability (DfT) is a discipline that aims to develop and implement techniques
tailored to add and improve testability features to hardware designs. This is an essential
aspect of the design process of a device because it can help to build a chip in which
defects, even the most isolated ones, more easily detected, reducing effort, time and cost
in testing the architecture. In practice, DfT group together architectural choices, design
rules, and dedicated on-chip structures (e.g., scan chains, test points, built-in self-test
controllers, boundary-scan cells, and embedded monitors) that increase controllability
and observability while keeping functional impact and overhead within acceptable limits.
DfT therefore could shorten the time spent in debugging procedures, improve yield, and
reduce overall time-to-market by enabling efficient production screening and systematic
diagnosis. [7], [8]

Rudimentary DfT techniques were developed starting in the 1940s–50s, when engi-
neers came up with ways to probe voltages and currents on internal nodes in analogue
computers. As digital computers quickly developed, DfT techniques evolved in new di-
rections, introducing additional circuitry or physical probing that allowed much easier
control and observation (controllability/observability) of a design’s internal state. By the
late 1970s–80s, scan design had become standard practice, enabling ATPG to reach deep
sequential logic through scan chains instead of relying on complex functional sequences.
In the 1990s, Built-In Self-Test (BIST), boundary-scan access for board-level interconnect
test, and at-speed structural testing using transition and path-delay fault models became
very popular and have remained widely used. More recently, SBST and Cell-Aware fault-
modelling methodologies have grown in popularity, complementing conventional stuck-at
and transition models by focusing on realistic defect mechanisms and, in the case of SBST,
exploiting software-driven test programs to exercise hardware at speed. Today, more than
ever, the dramatic increase in the number of Integrated Circuit (IC)s produced and their
rapid growth in architectural and physical complexity have pushed traditional testability
techniques to their limits, making them unable to satisfy modern industry demands on
cost, quality, safety, and performance. This has led to the need for more advanced and
efficient methodologies to test and detect any possible faulty chips produced, while also
enabling faster diagnosis and yield improvement. Although design complexity has grown
exponentially and the manufacturing cost per transistor has decreased over time, the
testing cost per transistor has actually increased, making the testing phase a substantial
portion of the total cost of production of a device. So discovering new and more efficient
testing techniques, while improving their effectiveness in detecting and diagnosing faulty
devices, has become a central topic in the semiconductor industry. Within this context,
newer approaches such as SBST aim to reduce the need for additional test-specific hard-
ware by leveraging on-chip processors and microcontrollers to execute carefully designed
test programs. This enables at-speed testing using the native clock signal, avoiding the
over-stimulation of the architecture, making test procedures faster, more efficient, and
less expensive (no additional test-specific hardware is needed) than classical methodolo-
gies such as scan chains.[1]

In modern design flows, a strong focus has been placed on Electronic Design Automa-
tion (EDA) software that implements advanced DfT techniques and algorithms to analyze,

25

Background

insert, and verify sophisticated test structures in complex designs. Contemporary tools
automate scan insertion and compression, power-aware pattern generation. They sustain
high defect coverage and actionable diagnostics while containing test time and data vol-
umes, and they provide a scalable solution as devices continue to integrate more cores,
memories, high-speed interfaces, and heterogeneous IP.

Two different approaches can be followed in testing an architecture: the first being
the structural testing, which focuses on the analysis of the Device Under Test (DUT)
internal structure; it mainly focuses on detecting internal physical defects and anomalies,
adopting their corresponding fault model, and it makes large use of DfT techniques to
ease and improve the accuracy and efficiency of the internal analysis. In opposition to
that, functional testing tries to adopt alternative methodologies to verify the DUT by
testing the logic functionalities, trying to detect, without the use of DfT techniques (like
scan-chains analysis), any anomalies inside the architecture. The two approaches can be
complementary, as one does not exclude the other. For example, a structural test using
scan chains can detect faults that otherwise, with a functional test running the ISA of
the microprocessor, would never be excited; on the other hand, running a functional test
can allow for the detection of logic faults or timing issues, something that a structural
analysis could not detect.

2.3.1 DfT testing techniques

In the DfT discipline, various methodologies can be employed to enhance a design’s test
coverage. These techniques, developed over time, vary in effectiveness, applicability, and
their impact on PPA metrics. The introduction of additional hardware components, for
example, may increase area and power consumption, and in some cases—such as scan-
chain methods—can also affect timing. Often, these methodologies are tailored to specific
circuits or scenarios, resulting in varying degrees of efficiency, speed, and reliability when
testing an architecture. The following sections describe three of the most widely used
techniques.

Scan based

Scan-based technique controls and observes the design’s internal state by forcing or sam-
pling values at specifically selected internal nodes. It does this by adding (or converting
existing) flip-flops into multiplexed Scan Flip-Flop (SFF) and linking them in series to
form a scan chain, which acts as a sort of shift register that can be loaded with a given
input pattern or it can be unloaded to read the internal state of the logic. The basic block
that constitutes a scan chain is the SFF, which is a modified version of the standard D
flip-flop, but capable of receiving the input data from two different paths (Figure 2.7).

26

2.3 – The discipline of Design For Testability (DFT)

D-FF

0

1

CLK

Q

SDO

Q

SDI

D

CLK

SE

Mux Scan D-FF

D

Figure 2.7: Multiplexed Scan Flip-Flop

The cell itself has the following ports:

• Data (DI): functional input from the upstream combinational logic;

• Scan Data In (SDI): serial input which takes the data from the preceding SFF;
for the first SFF of the chain, the data arrives from the external scan-in stream.

• Scan Enable (SE): it drives the internal multiplexer and selects which input is
captured on the clock edge, switching between DI during capture mode or SDI
during scan mode;

• Output (Q): functional output to the downstream combinational logic; also reflects
the captured/shifted value;

• Scan Data Out (SDO): serial output (typically the same value as Q or a buffered
replica) feeding the next scan SFF; for the last SFF, this is connected to the scan-out
stream.

Scan chain has two operating modes:

• Normal Mode: This is used to operate the circuit in functional mode, and it is
activated when the Scan Enable signal is disabled (SE=0). In this case, the serial
connection between the scan elements is interrupted, and the data entering the SFFs
come from the functional inputs (Figure 2.8a).

• Scan Mode: This mode is used to load or unload the chain and is activated by
asserting the Scan Enable signal (SE=1), which detaches the functional inputs/out-
puts from the internal logic and establish the serial connections between each scan
cell. In this way, the SFF works in series, taking the data from the previous SFF
and feeding it to the following (Figure 2.8b).

The main idea is to control internal nodes by preparing a vector of ones or zeros (mainly
ATPG is used for this purpose) which, by enabling the SE signal (SE=1), is shifted inside

27

Background

Comb. logic
D

SDI

Q
SE

SDO

D
SDI

Q
SE

SDO

D
SDI

Q
SE

SDO

D
SDI

Q
SE

SDO

Comb. logic

Comb. logic

D
SDI

Q
SE

SDO

D
SDI

Q
SE

SDO

SE=0
PI_1

PI_2

PI_n

SDI

PO_1

PO_2

PO_n

SDO

(a) Scan chain in normal mode, SE = 0

Comb. logic
D

SDI

Q
SE

SDO

D
SDI

Q
SE

SDO

D
SDI

Q
SE

SDO

D
SDI

Q
SE

SDO

Comb. logic

Comb. logic

D
SDI

Q
SE

SDO

D
SDI

Q
SE

SDO

SE=1
PI_1

PI_2

PI_n

SDI

PO_1

PO_2

PO_n

SDO

(b) Scan chain in scan mode, SE = 1

Figure 2.8: Scan chains working modes

the scan chain from the scan-in input; this procedure can take several clock cycles, as
many as the number of scan elements in the chain. Once the entire chain has been filled,
the Scan Enable signal is disabled (SE=0) and the circuit starts to operate in the standard
mode, but with the internal nodes set by the values of the formerly shifted pattern. To
read the internal state, the procedure is the same: by enabling the SE signal (SE=1), the
internal nodes of the logic are sampled by the SFFs, and the values are sent out serially
to the scan-out stream, ready for analysis.

This DfT technique is very versatile, easy to implement, and has a low pin overhead,
allowing for an easy control/observation of the internal state of a circuit for debug purposes
or for sequential circuits testing in a combinational manner. On the contrary, the addition
of scan elements increases the area overhead, and the multiplexers introduce additional
delay to the signal path. [8]

Boundary scan

Boundary Scan (BS) is a standard developed during the 80s, started under the name of
Joint European Test Action Group (JETAG), then later changed in Joint Test Action
Group (BS) (with the addition of American companies), and finally in 1990, the Insti-
tute of Electrical and Electronics Engineers (IEEE) formalized it with the IEEE 1149.1
standard. BS was shared between different IC manufacturers and provides an efficient
and unique way to test the devices directly on the Printed Circuit Board (PCB), allowing
to access to their pins without the need for physical contact with ATE probes (which,
with modern packaging like Ball Grid Array (BGA), Pin Grid Array (PGA), is often very
difficult to establish). BS supports both single device or IC interconnections testing: the
first can be done by shift in the values to apply the circuit Primary Inputs (PI), then to
validate the results, the Primary Outputs (PO) are latched and shifted out from the chain
(Figure 2.9a); the latter, instead, involves scanning into circuit A the values to apply at
the interconnections, then circuit B latches the values received from A and finally B scans

28

2.3 – The discipline of Design For Testability (DFT)

out the values (Figure 2.9b). Other than the two “test mode” , the BS can also act in
“normal mode”, allowing for the normal behavior of the device, receiving/retrieving the
data from the PI and PO. [8]

Internal logic

(a) Single chip test

Circuit A Circuit B

(b) Interconnection test

Figure 2.9: Scan chains working modes

Figure 2.10 shows the general architecture of a chip that implements BS. The boundary
scan structure is composed of different components, starting from the Test Access Port
(TAP), which is the interface of the BS which contains the following signals:

• Test Data Input (TDI): it is used to load serially the data and the instructions
to the BS;

• Test Data Output (TDO): it is a three-state output used to serially unload the
content of the BS register or the internal registers;

• Test Clock (TCK): independent from the system clock, at the rising edge it sam-
ples the input signals Test Management Signal (TMS) and TDI, while at the falling
edge it enables the output signal TDO;

• Test Reset (TRST): optional signal used to asynchronously reset the TAP con-
troller.

29

Background

Data registers

Instruction reg.

TAP controlelr

Internal logic

TDI TCK TMS #TRST TDO

TAP interface

Figure 2.10: Boundary Scan (BS) internal architecture

The remaining components of the BS are the Instruction Register, which stores the
instructions that define which actions that the BS system should perform and the data
registers, a set of registers of which two mandatory (Boundary Scan Register and the
Bypass Register), and others optional like the Device ID registers which stores information
about the device or any additional user defined registers. Then an important component
in the BS architecture is the TAP controller, which is composed of a finite state machine
that reads the input signals coming from the TAP interface and the instruction stored
inside the Instruction Register, and manages accordingly the BS system. Two different
operative modes are possible depending on the uploaded instruction:

• Non-invasive modes: the BS does not influence, by any means, the normal be-
havior of the device.

• Pin-permission modes: the BS acts on the internal logic, forcing the values of the
I/O pins which, in that case, are detached from the rest of the system.

The “non-invasive” supported instructions are:

❋ bypass: is a mandatory instruction coded with all ones (11...11) which disables all
the registers except the bypass one which creates a one-bit connection between TDI
and TDO. This instruction allows mainly used to test only one IC at a time;

30

2.3 – The discipline of Design For Testability (DFT)

❋ idcode: this instructions is optional and is used to access the ID Register to read
the identification code of the IC. It allows to automatically understand the devices
mounted on an unknown board;

❋ usercode: this is an optional instruction used to connect the ID register to TDI and
TDO and it allow to load a user defined code;

❋ ecidecode: this is an optional instruction which allows to read the serial number of
the IC;

❋ sample/preload: is a mandatory instructions which connects the BS register to TDI
and TDO without detaching the internal logic from it, so in this way the register
respectively capture the values of the I/O pins during the normal IC activity or it
can preload the data into the BS cells.

The “pin-permission” supported instructions are:

❋ extest: is a mandatory instruction coded with all zeros (00...00) which is used to
isolate the ICs from the rest of the system in order to test the interconnections on
the PCB through the values loaded in the BS cells;

❋ intest: this is a very common instruction used to connect the BS register to TDI
and TDO in order to perform a low speed static test of the internal logic (only if the
chip supports single-step operations);

❋ runbist: it allows the execution of a self-test (BIST) producing a Go/Nogo value;

❋ highz: it forces all the outputs and bidirectional pins to high impedance for allowing
external Automated Test Equipment (ATE) forcing values on them;

❋ clamp: it clamps the output to the values stored int the BS register.

Built In Self Test (BIST)

Built-in self-test (BIST) is a DfT technique that has been developed to overcome the
increasing cost of ATE and the long testing time associated with ATPG. The idea is to
embed the testing equipment inside the device, making the test procedure more efficient
with a lower of cost, since no expensive ATEs are needed, and a faster testing time, since
at-speed testing are possible. This technique also aims to improve the quality and effec-
tiveness of the tests. BIST can be used as a final test at the end of the chip manufacturing,
and during the normal operation of a device, allowing for performing in-field tests dur-
ing its lifetime. Besides its advantages, BIST can lead to an increase in area and power
consumption since additional modules have to be implemented.

31

Background

Test Pattern
Generator (TPG)

BIST controllerCUT

Output Data
Evaluator

MUX

PI

PO

Go/NoGo

Normal/Test

Reconf.

Figure 2.11: BIST general scheme

Figure 2.11 shows the main working scheme, which is composed of several elements:
A multiplexer is used to switch between the PI and the test patterns generated by an
appropriate module called Test Pattern Generator (TPG). The Circuit Undet Test (CUT)
generates the results, which are sent to the PO and to the Output Data Evaluator (ODE),
whose role is to compare the results of the CUT with the expected values. The BIST
controller then takes the feedback provided by the ODE and manages the behavior of
the whole testing architecture: it re-configures the CUT to improve the controllability or
the observability of the device, then it controls the TPG module to manage the patterns
generation accordingly to the ODE feedback, and finally it generates the Go/NoGo signal
which is used to send to the external environment the CUT working status: “Go” means
that the CUT is working correctly, while “NoGo” means that a failure has been detected.
A signal called Normal/Test that comes from the outside sets the working modality of
the BIST structure, activating the normal operating mode or the test mode. During test
mode, the CUT works using the patterns generated by the TPG, and its outputs are
analyzed by the ODE to detect any failures. On the contrary, while working in normal
mode, the CUT takes the inputs from the PI and returns the outputs on the PO. [8]

2.3.2 Test pattern generation
Generating a set of test patterns that deeply exercises the design is a crucial aspect of
the testing process. Indeed, depending on how effectively the test stimulus can excite
the various faults in the design, a higher or lower coverage can be obtained. So it is
fundamental to generate the patterns so that they can extensively simulate all the parts
of a system. These patterns not only have to excite the faults, but they also have to

32

2.3 – The discipline of Design For Testability (DFT)

propagate the faults to the PO so that they can be observed, so the justification of
the downstream logic should also be taken into account during the patterns generation.
Sometimes, certain parts of the design result in hard-to-test locations, since the vectors
used to stimulate the circuit hardly succeed in controlling or observing the faults in that
particular sites; to overcome this issue, it is possible to directly control or observe those
faults by inserting some additional elements like scan chains or more simply a direct
connection (test point).

Test patterns can be produced either randomly or by following certain criteria, for
example, by using specific algorithms. In the following sections, two of the most common
methods for generating test patterns are discussed.

Automatic Test Pattern Generation (ATPG)

Figure 2.12 shows a general scheme depicting the basic ATPG flow: The Fault Manager
takes the design description and generates a list of faults, collapsing the equivalent ones.
Then the fault list is sent to the Test Pattern Generator, which analyzing the topology of
the circuit from the design description files, it generates a set of test patterns targeting
the faults present in the list.

Test pattern
Generation

Fault Manger
Fault listCircuit

description

Test
Vector
.STIL

Fault coverage Untested faults

Figure 2.12: ATPG generic scheme

The test vector generation starts by selecting a fault in the fault list and generating a
test pattern (or multiple, depending on the design and on the type of fault). Then a fault
simulation is performed, and if the pattern is able to detect the selected fault, then that
fault is dropped from the fault list and a new fault is selected; otherwise, the fault is kept
and a new pattern is generated up until either the fault is detected or an exit condition
is reached; in that case the fault is labeled as “aborted”. In general faults can be labeled
in different ways:

33

Background

• Untestable: it is proven that due to the layout of the circuit, the fault cannot be
controlled or observed, so its dropped from the fault list;

• Tested: at least one pattern was able to detect it, and once this happens, the fault
is dropped from the fault list;

• Aborted: this happens when, after a certain number of trials, some threshold metric
is reached (CPU time, memory space, number of iterations). In this case, no test
pattern was capable of detecting the fault, and its presence is kept in the fault list.

Sometimes ATPG algorithms can optimize the test vector list by exploiting don’t care
values or running a second campaign of fault simulations with the generated patterns, but
in the opposite order, eliminating in this way the ones that do not provide any coverage
improvement. The algorithms that generate the test vectors are different and they can
change accordingly to the type of circuit (combinational, sequential, memories), the fault
model (stuck-at, bridge, delay), or the type of simulation strategies (topological ATPG,
which exploits the structural knowledge of the circuit, or functional ATPG, which on
the contrary exploits the functional knowledge). Generating a pattern for a single stuck-
at fault in a purely combinatorial circuit is considered to be an NP problem, while for
sequential ones the complexity increases exponentially, and even if some studies have been
carried out on this topic, the ATPG effectiveness on sequential logic is still limited to very
small circuits.

To approach ATPG, different methodologies can be undertaken:

• Exhaustive testing: it generates all the possible input combinations, and is recom-
mended only for small circuits with a limited number of inputs. This is very effective
but can also be quite time-consuming.

• Pseudo-exhaustive testing: involves dividing the circuit into smaller sub-modules,
each of which is then subjected to exhaustive testing individually.

• Algebraic methods: starting from the Boolean function of the faulty and the
good machine, supposing that at least one output between the two should differ, by
combining the two functions, the input vectors that generates that discrepancy are
retrieved. The result should be a Boolean function capable of representing all the
test vectors that activate that fault. Even if this is a complete method, the memory
required to store those Boolean functions is often too big.

• Topological method: is the most used approach in commercial ATPG tools, and it
consists of two main steps. First is the excitation phase, in which a fault is forced in
its location and, through logic backtracking, the input pattern that excites that fault
is determined. The second is the observation phase, where the fault is propagated
along all possible paths and, using backtracking, the input patterns that enable its
propagation are identified. The most common algorithms used for this methodology
are the D-Algorithm, the PODEM and the FAN algorithm. [8]

34

2.3 – The discipline of Design For Testability (DFT)

ATPG is exceptional in generating test patterns capable of testing combinational cir-
cuits, but it suffers from a higher degree of complexity when used to generate a set of
patterns to test sequential circuits.

In particular, in case the ATPG algorithm has to exercise a fault state machine, the
patterns generated have to take care of three things:

• initialized the FSM to a known state;

• excite the fault;

• propagate the fault to the PO in order to be detected.

Two main methods are adopted to perform ATPG on a sequential circuit: the one first
is called the “Time-Frame expansion“ method, which consists of replicating the combi-
national part of a sequential circuit as many times as the number of test vectors needed
to test a given single stuck-at fault. Then, the same fault is placed in each replicated
block, and a test for the multiple stuck-at faults is performed using combinational ATPG.
The second approach is the “Simulation-based” method, which instead tries to run a se-
quential ATPG across the circuit. Under the assumption of working with a synchronous
circuit, two possible cases exist: the first one is a cycle-free circuit with no feedback loop
between the flip-flops, and this is the simplest case, where the complexity for the test
pattern generation targeting a single fault can take a maximum of (sequential_depth)+1
time frames. In case of a circuit that has feedback loops between the different flip-flops,
working with a 9-valued1 logic, it could take up to 9Nff time frames (Nff represents the
number of flip-flops); in this case, the complexity increases exponentially with the number
of flip-flops. [9]

Software-Based Self-Test (SBST)

One very effective methodology for functionally testing the architecture is the Software-
based Self-Test (SBST). This approach involves the use of a test code, which is first
loaded inside the microprocessor’s program memory, then executed, and finally the results
are stored inside the internal data memory, ready to be either verified from the outside
or directly analyzed by the microprocessor itself. SBST provides many benefits since
it enables the architecture to self-test, enabling online and at-speed testing, ensuring
a higher reliability of the system and a more accurate analysis executed under normal
working conditions. The downsides of this technique is the difficulty in designing a test
program capable of extensively and deeply exercising the design, which can take into
account all the possible exceptions and corner cases; indeed, a bad program could lead to
bad coverage performances. Another drawback is that each SBST test program is tailored
to a specific architecture, so it cannot be easily reused for other designs. The SBST test
program can be either loaded once into the internal processor’s flash memory, ensuring
that the test program is always ready to be executed at any time to perform a periodic
check of the system for reliability purposes, or it can be loaded at every test execution

19-valued logic consists in: 0, 1, 1/0, 0/1, 1/X, X/1, 0/X, X/0, X.

35

Background

in the RAM, but this is done mainly for final manufacturing tests. The execution of this
online test can be triggered in different ways. One possibility is to run the test at the
system reset, or power on; it can also be triggered by an interrupt or an exception, either
raised internally or externally or, in case it is present, the Operating System (OS) can
managed the testing scheduling, performing a cyclic and periodic test of the device. [8]

2.3.3 Fault models

Many different fault models have been developed over the years. Those models aim to
simplify the testing process by modeling real physical faults2 in abstract logical ones. The
most used one is the Stuck-At fault model. But there are many more, each one specifically
tailored to test and detect a specific type of fault, like short or bridge model, delay fault
model, or cell-aware test model. In the following sections, some of the most common fault
models are analyzed in details.

Stuck-at model

Within all the possible fault models, Stuck-At is one of the most common ones: it models
faults assuming that the value at a specific node of the circuit is either fixed to one (stuck-
at-1) or zero (Stuck-at-0), independently of the signal value that drives it. In Figure 2.13,
an example is shown where the inverter output port is fixed at 1 (stuck-at-1) even if the
value at its input is 1. To test a stuck-at fault, two things have to be done, exciting the
fault and observing it:

1. To excite a fault, the input test vector should induce a value at the fault location
that is opposite with respect to the stuck-at. In Figure 2.13, it is possible to see
how by setting the value 1 to the input a that induces a 0 at the output of the
inverter (location of a stuck-at-1 fault), generating a discrepancy between the faulty
and good circuits.

2. To observe a fault, the input test vector should justify all the rest of the logic not
affected by the fault, so that the latter can propagate to at least one PO to be
detected, so that at the end, by comparing the faulty and the good circuit results,
a difference is observed. In the example of Figure 2.13, the test vector X111 allows
for propagating the s-a-1 to the output U.

2For physical defects, we refer to any physical imperfections within the IC, such as a metal drop
that short-circuits two lines, a defect on the mask that results in an incorrect photo-impression on the
wafer or a different doping concentration that leads to a transistor malfunction.

36

2.3 – The discipline of Design For Testability (DFT)

U

a

b

c

d

1

1

1

1

s-a-1
0/1

0/1

0/1!

Figure 2.13: Stuck-at-1 example

Faults that cannot be either controlled or observed by any possible input test vector
are labeled as “unstable”, and they can be considered “safe” since the system outputs are
unaffected by their existence so they can be dropped from the fault list. This type of
fault is usually obtained from redundant logic and the detection of them can be made by
looking at the topology of the circuit, finding gates that are either not reachable from PI,
not connected to PO, or nodes connected to fixed values.

Another aspect to take into consideration is the fault equivalence, which can be ex-
ploited to collapse the fault list, reducing in that way the number of test patterns that
are needed to test all the contained faults. There are two types of equivalence: the test
equivalence and the functional equivalence. [8]

• Two faults a and b are said to be “test equivalent” if all the test vectors that test a
also test b, and vice versa.

• Two faults a and b are said to be “functional equivalent” if the faulty function of A
returns the same result as the faulty function of B.

Short (Bridge) model

Short (or Bridge) model is used to mock-up possible shorts that can happens in the
interconnections of the circuit. Depending on the used technology and sometimes on the
downstream logic from the fault location, the value imposed by this fault can change. For
example, working with a Transistor Transistor Logic (TTL) logic (which is a zero-dominant
logic), a short that bridges two connections will force a one only if both lines have a high
value; otherwise, a zero. This can be modeled with an AND gate at the fault location.
On the contrary, working with Emitter-Coupled Logic (ECL) (a dominant technology),
the fault can be modeled with an OR port. With Complementary Metal–Oxide–
Semiconductor (CMOS) technology, the imposed value depends on the final state of the
downstream circuit, so it cannot be defined in advance.

In general, given a circuit with N nodes, the number of possible bridge faults is:

#Fbridge = N(N − 2)
2 (2.1)

37

Background

So this fault model is quite heavy for large circuits. In those cases, the best approach
is to divide the circuits into subpart and then analyze the most critical ones.[8]

Delay fault model

The Delay fault model is used to detect defects that are critical for the timing characteris-
tics of the circuit. These defects are usually produced by process variations, which lead to
variation of the delays of the combinational paths of the circuit, increasing the chance of
misses in the sampling of the signal or unstable outputs due to unmet timing constraints.
These faults happen when the systems run at their normal working frequency, so to test
these defects, an at-speed test must be performed.[8]

Cell-aware test model (CAT)

While the majority of fault models act on the inputs/outputs of the cells, the cell-aware
test model (CAT) focuses on identifying possible defects inside the physical structure of
the cell. This is a more complex approach to testing since it involves analog simulations
to characterize all the cells of the library, and for every faults inside the cells, a list of
inputs controls and outputs observable values, that are able to test that specific fault, are
created. [8]

2.3.4 Fault simulation
Fault simulation is a procedure that enables designers to evaluate the testability of a
design. A fault list containing all possible detectable faults is created on the basis of the
design layout and the selected fault model. Then, these hypothetical faults are injected
inside the model of the faulty DUT, to perform the fault simulation on a given collection of
test patterns in order to see whether the injected faults are detected at the circuit outputs.
To quantify the effectiveness of this simulation, the test coverage metric is computed at
the end by considering the percentage of detected faults over the total number of all
possible detectable faults. The goal is to increase as much as possible the test coverage
by detecting the highest number of faults possible.

Test
Stimuli

Comparison
Good machine

(GM)

Good/faulty

Faulty Machine
(FM)

Good
Response

Faulty
Response

Figure 2.14: Basic test principle scheme

Figure 2.14 depicts the basic flow of a fault simulation campaign. The process begins

38

2.3 – The discipline of Design For Testability (DFT)

with the creation of a set of test patterns to exercise the DUT; these patterns may be
generated using various methods, using various techniques like ATPG, random, or pseudo-
random approaches. The patterns are then applied to the two models of the circuit under
test: the Good Machine (GM), representing the fault-free design, producing the good
response, and the Faulty Machine (FM), which is the fault-injected design producing the
faulty response. After running a simulation on both machines, the respective results are
collected and compared to see if any discrepancies are present; if this is the case, it means
that the test patterns used to simulate both models are capable of detecting the injected
faults so these are labeled as detected. On the contrary, in case no patterns produced a
difference in the two models’ responses, the injected faults are labeled as undetected; in
this case, further measures have to be implemented trying to detect as much as possible of
those faults, maybe by generating a new set of test patterns or by introducing additional
control or observation points.

Fault classification

Faults can be labeled in different ways accordingly to characteristic, observability, con-
trollability, and position inside the circuit. Five main classes of faults exist, and each one
has its own peculiarities.

DT - Detected: these are faults that have been identified as “hard detected”. They are
divided into two subcategories:

• Detected by Simulations (DS): are those faults that are hard to detect by simu-
lations of the ATPG patterns, and at least one of them causes the fault to be placed
in that class and retained.

• Detected by Implications (DI): are faults detected by implication analysis, and
they can come from:

– Faults on pins in the scan chain path.
– Faults on ungated circuitry that connect to the shift clock lines of scan chains

or set/reset lines of scan cells.

PT - Possibly Detected: are divided into two subcategories.

• ATPG unstable, Possibly detected (AP): these faults are simulated in the
faulty machine with “X” rather than “1” or “0”, and no ATPG patterns are capable
of detecting them, so these faults are removed from the active fault list;

• Not analyzed, Possibly detected (NP): are faults whose analysis is not com-
plete, or it cannot be proven that the fault is always simulated with an “X”, but it
is still possible that some patterns are capable of detecting them.

UD - Undetectable: this class includes faults that cannot be detected under any con-
ditions. Since they have no logical effects on the circuit behavior, these faults are not
inserted in the fault list. There are different subcategories of this class:

39

Background

• Undetectable Unused (UU): refers to faults that are located in points that have
no connectivity to any external observable point. Usually, in the creation of the
simulation model, the unused circuitry that produces these faults is removed;

• Undetectable Unobservable (UO): similar to the UU fault, this is located on
unused gates with fanout;

• Undetectable Tied (UT): this fault is located on pins that are tied to the same
value as the fault;

• Undetectable Blocked (UB): this fault is blocked from its propagation to ob-
servable outputs due to a tie logic.

AU - ATPG Untestable: this set of faults can neither be hard detected from ATPG
patterns nor proved to be redundant. Since these faults have the potential to cause
failures, they are considered the same as untested faults.

• ATPG Untestable, Not Detected (AN): these faults are removed from the
active fault list, so there is no opportunity for them to possibly be detected. Usually,
these condition happens because:

– Faults are untestable due to certain types of constraints.
– Faults are detected through sequential patterns.
– Faults require an unresolvable state to be detected.

ND - Not Detected: In this class, the faults are not being controlled nor observed yet,
but there is a chance that by increasing the ATPG effort, these results would be labeled
in a different category.

• Not Controlled (ND): this is the initial fault state for every fault at the beginning
of the ATPG process. In this case, no pattern has been capable of controlling the
fault state yet.

• Not Observed (NO): even though the fault site is controllable, no ATPG pattern
has been capable to observe the fault yet.

Standard Test Interface Language Standard

In fault simulation often runs on a set of precomputed input test patters, that are sim-
ulated to exercise the DUT. These test vectors can be generated in multiple ways using
different approaches and algorithms. Once they are created they are often exported in
a standard format called Standard Test Interface Language (STIL) which is an IEEE
standard designed to carry digital test information between test-generation tools (e.g.,
ATPG) and ATE. It represents everything needed to define manufacturing-time digital
tests. Patterns are expressed as sequences of cycled waveform executed over time; tools
can emit STIL directly or use it as an intermediate, tool-agnostic format. This standard
has been widely adopted, primarily due to its flexibility and extensibility, as it can de-
scribe complex constructs and be easily translated to reconstruct data. It is also a very

40

2.3 – The discipline of Design For Testability (DFT)

portable format, allowing for high-volume vector transport in a small form factor. STIL
files are built from top-level blocks with a “define-before-use” rule and a simple domain
(named-block) referencing model. Untitled blocks are global, while named blocks must
be referenced to use their contents. The spec also details the expected ordering to make
references resolvable.

A STIL file is composed of different sections: the first statement is STIL followed by
the language version used; then it follows the header{}, which contains optional metadata
about the file. In our case, it includes information on the file’s name, the simulation date,
the uncollapsed stuck fault summary report, and a list of all the added primary output
ports. Next, the signal{} section includes the list of all the primary I/O signals of the
DUT module, followed by the SignalGroups{ } in which multiple signals are grouped
and defined as an ordered set of signals to be referenced in subsequent operations. Usu-
ally, signals belonging to buses are grouped, and groups may be global or domain-scoped
and require explicit reference when domained. The Timing { WaveformTable ... } is a
block in which “WaveformTables” are defined. Each WaveformTable describes the wave-
form to be applied to each signal in a vector. The PatternBurst{ } block defines a
collection of pattern names to be executed sequentially. All patterns defined in a single
PatternBurst are executed under a similar context, the context being defined by the sub-
sequent PatternExec statement. The PatternExec{} block defines how PatternBurst
and timing information is assembled to create the set of tests to execute. Finally, the
pattern_data{} block is defined, which constitutes the bulk of data in the STIL data
set, and is generally processed one-vector-at-a time. Here, the different test patterns gen-
erated during ATPG are applied to the primary input ports “V { "_pi" = ...}” and
the results are read from the primary output ports “V { "_po" = ...}”3.[10]

2.3.5 DfT testing metrics
There are different metrics that can be used to quantify the effectiveness of a DfT tech-
nique, such as: fault coverage (FC), test coverage, test time (TT), test cost (TC).

Fault Coverage is defined as the number of faults detected by the test over the total
number of possible faults in the system and it refers to a given fault model (e.g., Stack-at).

Fault Coverage = Detected faults
Total faults (2.2)

Test Coverage is defined as the number of detected faults over the total number of
detectable faults. This metric quantifies how effectively a given DfT technique increases
the number of detected faults relative to those detectable in the specific test run.” This
is the metric used to evaluate the effectiveness of the proposed methodology during this
thesis work.

Test Coverage = Detected faults
Detectable faults (2.3)

3V = Vector statement. It applies one test cycle and sets the WaveformChars for the listed signals.

41

Background

In particular for software like TMAX from Synopsys the test coverage is computed in
this way:

TC = DT + (PT × PTcredit)
All_faults · UD · (AN × AUcredit)

(2.4)

Where DT represents the number of detected faults, PT is the number of possibly
detected faults, UD is the number of undetectable faults, while AN is the number of
untestable not-detected faults4; PTcredit and AUcredit are some weights that by default are
set respectively to 0.5 and 0.[11]

Test Time refers to the time needed to perform a test run, and is defined as the
number of the test patterns (ntp) times the time each of them takes to be tested (tp).

TT = ntp ∗ tp (2.5)

Test Cost refers to the total cost for a given test, which is defined as the sum of the
costs of: test equipment (Cequip), test development (Cdev) and test process (Cprocess).

TC = Cequip + Cdev + Cprocess (2.6)

2.4 Previous work and starting point
As outlined in the introduction, this thesis is a sequel to the work of a previous student
who developed an automated workflow for inserting observation monitors at the RTL level
to improve observation coverage in SBST. In that workflow, the designer compiles a .json
file, listing all the monitors to be instantiated, declaring their type and precise location in
the RTL design. A bash script then parses the .json and injects the corresponding mod-
ules into the SystemVerilog sources, producing a design ready for synthesis and simulation.
While this approach brought modest gains of only a few percentage points in observation
coverage, it lacked a systematic method for deciding where monitors should be placed.
The placement was left to the designer’s intuition, which often could potentially led to
sub-optimal choices and limited improvements in test coverage.

The central aim of the present thesis is to address this gap by identifying hard-to-
observe regions of the design in a systematic way and then merging the existing insertion
flow to insert them at RTL level. More in detail, the thesis investigates the use of a
software from Synopsys called “Spyglass” to highlight low-observability nodes, electing
candidate insertion points, and selects a minimal set of locations that is expected to
maximize coverage improvements for a given area/overhead budget. Once these sites
are pinpointed, the established .json-driven workflow should be used to instantiate the
monitors at RTL level. Since this is a novel approach, a series of tests and analyses should
be performed to validate the effectiveness of this methodology and ensure that it actually
brings benefits and improvements in test coverage. If the results of this analysis are
positive, the final objective would be to implement the already well-tested flow, created

4For more detail see Section:2.3.4

42

2.4 – Previous work and starting point

by the former student, and improve it by exploiting the information obtained from the
SpyGlass analysis to insert a more accurate way of the set of monitors used to observe the
internal states of the design. This thesis work, which will be described in the following
chapters, will primarily focus on conducting a series of tests to validate the effectiveness
of this methodology.

In summary, this thesis aims to validate the proposed approach by evaluating that
the use of Spyglass reliably identifies hard-to-observe points within the design and by
quantifying their incremental contribution to the observation metric. The effectiveness is
evaluated by comparing the observation coverage obtained with this methodology against
the one obtained by a random insertion of the same set of observation points inside the
design.

43

44

Chapter 3

Approaches

This thesis work tries to find a methodology for strategically selecting the optimal locations
to insert these observation points, preferably on the RTL description of the circuit. The
optimal points to be observed are internal signals showing logical errors, which cannot
be propagated to the primary outputs (PO) due to some layer of logic that obstructs
or hides the faults. Two different approaches have been studied and compared under
different conditions. The first one exploits the use of an EDA tool to perform a static
circuit analysis and identifies the most critical points to observe, while the second one
involves a random selection of internal points. In this chapter, a high-level overview of
the different approaches investigated in this thesis is presented. Since this section provides
only a general description of the steps involved, the workflows here described could, in
principle, be applied in any environment using alternative software offering comparable
functionalities. In this thesis work, tools from the Synopsys suite were employed, and
their specific implementations are discussed in detail in Chapter 4, while in this chapter,
the workflows are outlined without reference to any particular software.

In this thesis work, has been decided to perform fault simulations in functional mode,
by applying a set of functional test stimuli at the primary input of the DUT and observing
the system response from the PO. Input test vectors can be created in different ways, from
ATPG algorithms to assembly test programs run directly on the architecture; no scan-
based approaches are planned in this thesis work. To facilitate the fault detection, some
additional test points can be used to observe a specific node inside the DUT. These test
points can be managed in different ways: they can be collected and processed by some
additional modules like monitors, which could process or compress the collected data,
they can be used directly as supplementary observation points, like additional probing
signals for the fault simulation tool, or connected directly to additional PO of the DUT.
In this thesis work, the latter approach has been followed, using directly the information
sampled by these additional test points without any conditioning of the data, sending
them directly to the fault simulation tool, or creating additional PO connected to these
points.

The general flow used to perform each test is depicted in the Figure 3.1: First, (1) the
design is analyzed by a static circuit analysis tool to retrieve a set of optimal locations to
strobe internal signals during the fault simulation (for now, only observation points are

45

Approaches

used). The next steps (2) consists of parsing the observation points locations and insert
them in the strobe list of the simulator; depending on the particular type of approach,
this last step can be either done by drawing from the optimal test point list (3.a) or by
selecting a certain number of random points from an external source like a fault list (3.b).
After these steps, a fault simulation is performed (4), and finally, the results are collected
and analyzed using MATLAB to plot them (5).

Optimal or random
tp insertion?

Test points list
parsing

Optimal test point
insertion

Random test point
insertion

 (from fault list)

Static
circuit analysis

Functional
fault simulation

Results collection
and analysis

(1)

(2)

(3.a)

(4)

(3.b)

(5)

Optimal tp Random tp

Figure 3.1: General test workflow

3.1 RTL observation points insertion and SBST based
fault simulation workflow

Since the previous thesis work focused on the direct implementation of monitors at the
RTL level, the first approach to test the proposed methodology has been to apply it
directly to the RTL design so that the points found by the static circuit analysis tool
could be directly used with the monitor insertion procedure previously developed. In this
section, the workflow established to test the performance of the proposed methodology
applied at the RTL level is outlined.

3.1.1 Design analysis and optimal test point insertion at RTL
level

This workflow (Figure 3.2) involves the use of a static circuit analysis tool (in this thesis
work SpyGlass has been adopted) to analyze the CUT to list a series of hard-to-test

46

3.1 – RTL observation points insertion and SBST based fault simulation workflow

locations in which the faults they hold are difficult to detect during the fault simulation;
for this reason, these points are worth being observed by inserting a test point directly at
the mentioned location. During the synthesis process, the list of optimal points is used
to implement those test points, which are later exploited during fault simulation to aid
in fault detection. In particular the inserted test points signals are brought out from the
hierarchy up to the DUT’s top level, where the fault simulator tool can read it’s value
and use it to perform the fault analysis. Fault testing is performed by launching an SBST
simulation test program capable of accurately testing the CUT. The system’s response is
then used to perform the fault simulation, returning a test coverage metric.

Static circuit
analysis

Design
Synthesis

Optimal RTL
observation
points list

SBST test
program

System
model
build

Fault
simulation

Fsim report

Design files
(.v, .lib)

Figure 3.2: General workflow diagram for design analysis and TP insertion at RTL level

3.1.2 Random test points selection and insertion at RTL level

SBST test
program

List of internal
desig nodes

Random selecctor List of test
random

point

Synthesis

System
model
build

Fault
simulation

run_fsim.sh
Fsim report

Design files
(.v, .lib)

Figure 3.3: General workflow diagram for random TP selection and insertion at RTL level

47

Approaches

The workflow for a random selection of test points (Figure 3.3) involves the use of a
custom-made program capable of reading a list of CUT’s internal points, which are then
randomly picked and used as test points during fault simulation. The list of internal
locations can be either self-made or taken from other external sources: in this thesis work,
for simplicity’s sake, the list has been retrieved from the fault list produced during previous
fault simulations, so that the locations holding faults are automatically reported without
the need for additional work. Apart from this detail, the rest of the workflow is identical
to the previous one: the design is synthesized with the defined, randomly selected test
points and then tested through an SBST program.

3.2 Post-synthesis observation points insertion and
ATPG based fault simulation workflow

After studying the RTL-based methodology, a new approach was followed to achieve
more relevant and meaningful results, which is also the procedure suggested by Synopsys
guidelines. Following the RTL-based approach, the analysis of the systems happens in
pre-synthesis, and this could lead to some problems related to the non-synthesized logic:
indeed, any blocks that are generated iteratively, through the construct generate or any
logic function that is described in a behavioral manner, are only instantiated during the
synthesis process. Fortunately, in our specific case, using SpyGlass, a quick synthesis is
performed during the design analysis, unfolding all the logic hidden behind the unsynthe-
sized Hardware Description Language (HDL) files. Nevertheless, this is something to take
into consideration, and for this reason, instead of working at the RTL level, the analy-
sis and the relative test point insertion are now performed post-synthesis directly on the
design netlist.

3.2.1 Post-synthesis design analysis and optimal test point in-
sertion

Design
synthesis

Static circuit
analysis

Optimal
observation

point list
Test

patterns
fault list

Fsim report

Design files
(.v, .lib)

ATPG fsim

Figure 3.4: General workflow diagram for post synthesis design analysis and TP insertion

48

3.2 – Post-synthesis observation points insertion and ATPG based fault simulation workflow

Concerning the fault simulation, a new method to exercise the architecture has been
adopted. Instead of relying on the use of a test program to perform an SBST, a set of test
patterns, generated in ATPG, is fed at the input of the CUT. Conscious of the fact that
the ATPG procedure is not ideal for the test of sequential logic, an attempt was made
to observe if this technique could provide sufficiently significant results. In Figure 3.4, a
general workflow to follow in order to proceed with the previously mentioned methodology
is represented: starting from the synthesis, the netlist is provided, and a static analysis is
performed on it, retrieving a list of optimal observation locations inside the netlist, which
is then modified by implementing additional signals connecting the aforementioned test
points to a new set of supplementary PO. The modified netlist is then loaded into the
ATPG tool, which generates a set of test patterns using full sequential algorithms to test
in functional mode at thePI the CUT. The system response read from the PO is then
used to compute the fault simulation and retrieve the test coverage of the CUT.

3.2.2 Post-synthesis random test points selection and insertion

fault list

Random selector

Design
synthesis

Design files
(.v, .lib)

Test
patterns

fault list

Fsim report

ATPG fsim

Figure 3.5: General workflow diagram for post synthesis random TP selection and inser-
tion

Similarly to the previous case, the workflow for a random selection of test points (Figure
3.5) involves the use of a custom-made program capable of reading a list of CUT’s internal
points, which are then randomly picked and used as test points during fault simulation.
The list of internal locations can be either self-made or picked from other external sources.
The design netlist, is modified by with the aforementioned test locations which are con-
nected directly to an additional set of CUT’s PO. Finally an ATPG campaign is run on
the modified netlist and a fault simulation is performed returning the test coverage metric.

49

Approaches

3.3 Fault simulation with unique precomputed ATPG
test patterns workflow

To achieve a more consistent and comparable analysis across simulations, it is crucial
to use a single, common set of test patterns. Therefore, a third approach has been
followed: performing fault simulation using the exact same stimulus conditions for every
test case. This means that the input test patterns for functional fault simulation are
not generated independently via ATPG for each simulation run but instead, it is used an
external common precomputed set (usually given in STIL or bin format). This workflow
allows for loading these external functional test patterns directly into the fault simulation,
bypassing the need for an internal pattern generation procedure; so this approach requires
that the test pattern set is available beforehand.

3.3.1 Fault simulation with optimal test point insertion

FsimSynthesis Static
circuit analysis

dft_unified_
testpoints.rpt

Test
 patterns

Fsim report

Design files
(.v, .lib)

Figure 3.6: General workflow diagram for fault simulation and optimal TP insertion

Figure 3.6 depicts the proposed workflow for analyzing the post-synthesis netlist and
running fault simulation on external test patterns. Similar to the previous methodology,
the process begins by creating a synthesized netlist of the design, which is then analyzed
using a static circuit analysis tool to identify the designated optimal observation points.
The netlist is then modified in the aforementioned locations by connecting them to an
added set of CUT’s PO. Finally, a functional fault simulation is run on the provided set
of external test patterns, which are fed into the CUT’s PI, while the extended set of PO is
used by the fault analysis tool to read the system response and compute the test coverage.

3.3.2 Fault simulation with random test point insertion
The workflow depicted in Figure 3.7 is very similar to the previous one (3.2) with the only
difference in the test point selection. Now, instead of relying on a circuit static analysis

50

3.3 – Fault simulation with unique precomputed ATPG test patterns workflow

tool to suggest an optimal location for test point insertion, a random pick is performed
across the whole CUT. These points, as before, are used to modify the netlist, which at the
end will implement an extended set of PO connected to the randomly selected positions.
Finally, a functional fault simulation is run on the provided set of external test patterns,
which are fed into the CUT’s PI, while the extended set of PO is used by the fault analysis
tool to read the system response and compute the test coverage.

fault list

Random selector

Design
synthesis

Test
patterns

Fault
simulation

Fsim report

Design files
(.v, .lib)

Figure 3.7: General workflow diagram for fault simulation and random TP insertion

51

52

Chapter 4

Implementation

In this chapter it will be presented a detailed overview of the steps needed to set up the
analyses and simulations, from how the scripts were created to how they are executed.
Multiple tools from the Synopsys suite were used; for each tool, a concise yet complete
explanation of its principles of operation is provided. A particular emphasis has been
placed on reproducibility: during this thesis work, a strong effort has been put into
developing a workflow that could be potentially replaceable to other working environments
and architectures with a few changes in the scripts. Here the flows described at a high level
in Chapter 3 are recalled and outlined in more detail, explaining all the implementation
procedure and steps needed to set put the different methodologies. At the heart of this
thesis work, there is the use of SpyGlass, a static circuit analysis tool from the Synopsys
suite. Other software from the same company has been adopted, like VCS, VC-Z01X to
perform SBST tests and TestMax ATPG to run ATPG based fault simulation.

4.1 SpyGlass analysis
SpyGlass is a software developed by Synopsys that uses advanced algorithms and analysis
techniques to aid designers and provide them with insights about their designs. This tool
is very powerful since it can be integrated at any stage of the design process (from RTL to
post-synthesis netlist). SpyGlass offers a vast selection of checks that can be used to test
and validate the current work, ensuring that specific constraints (such as timing or power)
are met. SpyGlass can also check for consistency and reliability, looking for design choices
that could potentially lead to a reduction of performance, reliability, or efficiency of the
SoC. SpyGlass is capable of doing so by running the so called “goals”, which are a set of
rules specifically intended to inspect and test a specific feature of the design. These goals
can be highly configurable, allowing the designer to customize the tool to fit its specific
use case. [12]

In this case, SpyGlass has been used to aid the testing process by analyzing the design
and suggesting optimal points in which to insert eventual observation monitors. The
set of goals used for this work belongs to the DfT-submethodologies, which helps in the
optimization of the design for DfT purposes. There is, in particular, a specific rule called

53

Implementation

“Info_random_resistance” which provides the capability to identify parts of the design
containing hard-to-test faults (either hard-to-detect or hard-to-control) which may cause
ATPG to abort.

SpyGlass setup

To set up a SpyGlass analysis two main files are needed to be created: a project file
which contains the design files (HDL, Libraries), the simulation options, the goal with its
related parameters, and a SpyGlass Design Constraints (SGDC) containing constraints
on signals, black-box, and clocks.

Project script (Project_tp_insertion.prj)

1 ###
2 ## Progect File for Spyglass:
3 ## In this file you will find all the TCL commands needed to perform the

specified goalsñ→

4 ## Author: Mauro Lubrini
5 ##
6

7 ##Data Import Section --
8 read_file -type verilog ../pd/synth/cva6_synth.v
9 read_file -type gateslib ../pd/synth/tech/NangateOpenCellLibrary.lib

10 read_file -type sgdc sg_setup/cva6.sgdc
11

12 ## Select the module on which run the goal -----------------------------
13 set_option top ex_stage_16_864949
14 ##--
15

16 ##Common option section --
17 set_option incdir ../vendor/pulp-platform/common_cells/include/
18 set_option incdir ../vendor/pulp-platform/common_cells/src/
19 set_option incdir ../vendor/pulp-platform/axi/include/
20 set_option incdir ../common/local/util
21 set_option incdir ../core/cache_subsystem/hpdcache/rtl/include
22

23 set_option sortmethod du
24 set_option sort yes
25 set_option allow_non_lrm 1
26

27 set_option language_mode mixed
28 set_option enable_gateslib_autocompile yes
29 set_option enable_gateslib_autocompile yes
30 set_option enableSV09 yes
31

32 ##set_option projectwdir ./output_dir
33 ##set_option projectcwd ./
34

54

4.1 – SpyGlass analysis

35 ## ignore multiple assignment bitwise or violations (W415a) in for loop
36 set_parameter ignore_bitwiseor_assignment yes
37 ## ignore multiple assignment violations (W415a) in if/else or case
38 set_parameter ignore_if_case_statement yes
39 set_option mthresh 20000
40

41 ##Goal Setup Section ---
42 current_methodology /software/synopsys/spyglass/V-2023.12-SP1/SPYGLASS_H ⌋

OME/GuideWare/2023.12/block/rtl_handoffñ→

43

44 ##current_goal dft/dft_scan_ready
45 ##set_parameter dftGenerateStuckAtFaultReport all
46 ##run_goal
47

48 current_goal dft/dft_dsm_random_resistance
49 set_parameter dftGenerateStuckAtFaultReport all
50 set_parameter dft_rrf_tp_type observe
51 set_parameter rme_active 1
52 ##set_parameter dft_insert_ta_tp on
53 set_parameter dft_insert_rrf_tp on
54 set_parameter rme_wrap_generate_loop on
55 set_parameter dft_pattern_count 64000
56 set_parameter dft_rrf_tp_count 200
57 set_parameter dft_rrf_tp_effort_level high
58 set_parameter dft_rrf_tp_report_final_coverage on
59 run_goal

Project_tp_insertion.prj is the project file that contains all the commands neces-
sary to run a goal. To run a SpyGlass analysis the content of this file should be copy and
paste inside the SpyGlass Graphic User Interface (GUI) shell. The script is composed of
different sections:

• Data Import Section: In this section, all the design files, such as the HDL files,
the libraries, and the constraints file cva6.sgdc, are imported. Note that for the
SystemVerilog files, it can be either declared a file list of HDL files (to run SpyGlass
at RTL level), or it can be declared the synthesized netlist (to run SpyGlass directly
on post-synthesis).

• Select the module: This option must be changed accordingly to the module that
SpyGlass have to analyze and in which to detect fault-resistant nodes. SpyGlass
explores the full hierarchy below the selected module; therefore, the recommended
observation points are not limited to that module and may be placed in any of its
submodules.

• Common option section: In this sections are defines general files like headers,
package files, and interface definitions. Also in this section, general project op-
tions are set, such as: set_option sortmethod du: which is used to sort auto-
matically the HDL files; set_option allow_non_lrm 1: which is used to enable

55

Implementation

parsing of not standard Language Reference Manual (LRM)1 constructs in Verilog
parser; enableSV09 yes: sets the SystemVerilog version, enabling SystemVerilog
IEEE Std 1800-2009 compatibility; set_option mthresh 20000: specifies the bit-
count threshold for the compilation of net or variables in a design unit which, by
default is set to 4096, but if too low, an error during the SpyGlass run arises, sug-
gesting a safe value (in this case 20000).

• Goal Setup Section: In this section, the specific goal and its parameters are
defined. Different options are set:

– current_methodology, which defines the sets of goals and rules tailored for a
specific scope in the chip design process;

– current_goal dft: defines the specific goals to run. In a single project files
multiple goals can be defined to run in sequence;

– dftGenerateStuckAtFaultReport all: generates a detailed fault report about
stuck-at faults;

– dft_rrf_tp_type observe: defines the typology of the test point to reports.
In this case, only observable points are searched;

– dft_pattern_count 64000: defines the number of patterns used to test the
design;

– dft_rrf_tp_count 200: defines the number of optimal test points to find in
the whole specified module;

– dft_rrf_tp_effort_level high: defines the effort that the simulation has to
adopt to find optimal test points. The higher the effort, the better the analysis
at the expense of the run time;

– run_goal: launch the actual goal run.

SpyGlass design constraints script (cva6.sgdc)

1 ##
2 ## File Name : SpyGlass Constraints File(sgdc file)
3 ## Purpose : To define additional design information like as clock,

reset, case analysis setting etcñ→

4 ## which needed for correct, accurate and meaningful design
analysis using SpyGlass.ñ→

5 ## Type : This is not a tcl compatible file and has it's own
command/construct, which can be specified here.ñ→

6 ## Usage : This file is read via SpyGlass Project File(.prj).
7 ##

1The SystemVerilog Language Reference Manual (LRM) was specified by the Accellera SystemVer-
ilog committee. More detail at: https://ece.uah.edu/ gaede/cpe526/SystemVerilog_3.1a.pdf.

56

4.1 – SpyGlass analysis

8 ## Note : The contents of this file is automatically created using
command line inputs provided to 'aipk_read'ñ→

9 ## script, SG designread results & clock/reset auto-inferrencing
feature in SpyGlass.ñ→

10 ## Note : User must review the auto-inferred/generated SG constraints
below before going to design analysisñ→

11 ## step(using 'aipk_run' script) and update/refine the constraints
appropriately as required.ñ→

12 ##
13

14 ## Declare Top-level Design Name
15 current_design cva6
16

17 ##### CLOCKS DECLARATION ###
18 ## Syntax: 'clock -name <clock_port/net> -domain <clk-domain> -period

<value> -edge {values} -testclock -atspeed'ñ→

19 ## Auto-inferred definite clocks (Add correct domain name, clock period
value etc)ñ→

20 clock -name "cva6.clk_i" -domain domain0 -tag SG_AUTO_TAG_1 -testclock
-atspeed -period 10 -edge {0 5}ñ→

21

22 ##### ENDING CLOCKS DECLARATION ##
23

24 ##### RESETS DECLARATION ##
25 ## Syntax: 'rest -name <reset_port/net> -value <0|1> [-sync]'
26 ## Auto-inferred asynchronous definite resets
27 reset -name "cva6.rst_ni" -value 0
28

29 ##### ENDING RESETS DECLARATION ##
30

31 ##### DFT CONSTRAINTS DECALARATION #####################################
32 ## Syntax: 'test_mode -scanshift -name <port/net-name> -value <0|1>'
33 ## Auto-inferred Testmode definitions (for scanshift mode only) for given

reset signal declarationñ→

34 test_mode -scanshift -name "cva6.rst_ni" -value 1
35

36 ##### ENDING DFT CONSTRAINTS DECALARATION ##############################
37

38

39 #### BLACK-BOX CONSTRAINTS DECLARATION #################################
40

41 ## Constraint for Black-Box: unread
42 ## Clocks in Black-Box:
43

44 #### ENDING BLACK-BOX CONSTRAINTS DECLARATION #########################

This constraints file with extension .sgdc contains the set of constraints that SpyGlass
should consider during the analysis. This particular template has been taken from the

57

Implementation

official CVA6 GitHub repository2. The file starts with current_design cva6 defining
the top module of the design hierarchy. Next, clock -name "cva6.clk_i" ... declare
the clock signal with its name, time period, and additional timing parameters. Then the
reset signal is defined with reset -name "cva6_rst_ni" ..., and since is an active low
signal, its active value is set to “0”. Finally test_mode -scanshift ... set the reset
signal value during scan-shifts to “1” (not active) which is something useful if a scan
chain methodology is used, but in our case this is irrelevant since no scan chains are
implemented.

4.2 Observation points insertion at RTL level and
SBST based fault sim

Since the previous thesis work focused on the direct implementation of monitors at the
RTL level, the first approach to test the proposed methodology has been to apply it
directly to the RTL design so that the points found by SpyGlass could be directly used
with the monitor insertion procedure previously developed. In this section, the workflow
established to test the performance of the proposed methodology applied at the RTL level
is outlined in Figure 4.1.

Spyglass analysis DC synthesis

dft_unified_
testpoints.rpt

cva6_synth.tcl source_buffer_
insertion.tcl strobing_nets.tcl sbst.SProject_tp_

insertion.prj cva6.sgdc

fault list

strobe.py

vcs
build

VC-Z01X

fsim

run_fsim.sh
Fsim report

Design files
(.v, .lib)

Figure 4.1: Workflow diagram

4.2.1 Synthesis
Once the SpyGlass analysis has been successfully completed, before launching the fault-
simulation, since SpyGlass has been run on RTL level, the design should be synthesized
to create a netlist to be fed to the simulator. But during the synthesis process, due to the
various optimizations that Synopsys Design Compiler performs, the locations pinpointed

2CVA6 GitHub repository: https://github.com/openhwgroup/cva6.

58

4.2 – Observation points insertion at RTL level and SBST based fault sim

by SpyGlass in the RTL design often are eliminated or changed by name. The workaround
to this problem was to insert a series of unitary buffers (BUF_X1) acting as placeholders,
exactly in the points pinpointed by SpyGlass. Then, during the synthesis process, those
buffers are set as “don’t touch” so that in case of further optimization steps, these buffers
are still kept in their original position and with their name untouched. Later, when
declaring the list of additional strobe points for the fault simulation, the only thing to do
is to search for those buffers in the synthesized netlist and attach a strobe point at their
output pin.

analyze
elaborate

${design}

source
buffer_insertion.tcl compile_ultra

source
strobing_nets.tcl write reports

Inserted_buffers.txt strobe_nets.txt

dft_unified_
testpoints.rpt

Figure 4.2: Synthesis flow diagram

Figure 4.2 shows the synthesis flow, which extends the standard procedure with two
additional steps: buffer insertion and strobe net extraction. In the first one, the Tool
Command Language (TCL) script buffer_insertion.tcl parses the SpyGlass test-point
list, inserts placeholder buffers into the RTL design, and writes their hierarchical design
paths to Inserted_buffers.txt. In the second one, the TCL script strobe_list.tcl
reads Inserted_buffers.txt where it resolves the listed design paths to each buffer’s
output pin in the post-synthesis netlist, and creates strobe_list.txt, which is later
used to edit the VC-Z01X strobe list .sff file. This second step cannot be performed
directly during the buffer insertion because net names change after synthesis; a separate
post-synthesis pass is therefore required to produce a syntax-correct list that matches the
post-synthesis naming.

Synthesis script (cva6_synth.tcl)

This is the modified version of the TCL script, which runs the synthesis process. This file is
invoked during the execution of Design Compiler by the Makefile target: make cva6_synth
run in the command window inside the ./pd/synth/ directory.

1 # Copyright 2021 Thales DIS design services SAS
2 #

59

Implementation

3 # Licensed under the Solderpad Hardware Licence, Version 2.0 (the
"License");ñ→

4 # you may not use this file except in compliance with the License.
5 # SPDX-License-Identifier: Apache-2.0 WITH SHL-2.0
6 # You may obtain a copy of the License at https://solderpad.org/licenses/
7 #
8 # Original Author: Jean-Roch COULON - Thales
9 #

10

11

12 source -echo -verbose scripts/dc_setup.tcl
13

14 set clk_name main_clk
15 set clk_port clk_i
16 set clk_ports_list [list $clk_port]
17 set clk_period $PERIOD
18 set input_delay $INPUT_DELAY
19 set output_delay $OUTPUT_DELAY
20 set CVA6_REPO_DIR "../../"
21 set TARGET_CFG $TARGET
22

23 set_app_var search_path "../../vendor/pulp-platform/common_cells/include/
$search_path"ñ→

24

25 # Enable GHM (guide_hier_map) flow (to aid Formality computing formal
verification, suggested by the SW)ñ→

26 set_app_var hdlin_enable_hier_map true
27

28 sh rm -rf work
29 sh mkdir work
30 define_design_lib ariane_lib -path work
31

32 set hdlin_keep_signal_name all
33

34 #==
35 # ANALIZE .sv
36 #==
37 analyze -vcs "-sverilog -f Flist.cva6_synth" -library ariane_lib
38

39 #==
40 # ELABORATE THE RTL DESIGN
41 #==
42 elaborate ${DESIGN_NAME} -library ariane_lib
43

44 set_verification_top
45

46 uniquify
47

60

4.2 – Observation points insertion at RTL level and SBST based fault sim

48 #Insert the buffer in the points designated by spyglass
49 source buffer_insertion.tcl
50

51 link
52

53 create_clock [get_ports $clk_port] -name $clk_name -period $clk_period
54

55 set_dont_touch to keep sram as black boxes
56 set_dont_touch gen_cache_wt.i_cache_subsystem/i_wt_dcache/i_wt_dcache_me ⌋

m/gen_tag_srams[*].i_tag_sramñ→

57 set_dont_touch gen_cache_wt.i_cache_subsystem/i_wt_dcache/i_wt_dcache_me ⌋
m/gen_data_banks[*].i_data_sramñ→

58 set_dont_touch
gen_cache_wt.i_cache_subsystem/i_cva6_icache/gen_sram[*].data_sramñ→

59 set_dont_touch
gen_cache_wt.i_cache_subsystem/i_cva6_icache/gen_sram[*].tag_sramñ→

60

61 write -hierarchy -format ddc -output
${DCRM_ELABORATED_DESIGN_DDC_OUTPUT_FILE}ñ→

62

63 write -f verilog -hierarchy -output ./netlist/cva6_netlist.v
64

65 change_name -rule verilog -hier
66

67 # Prevent assignment statements in the Verilog netlist.
68 set_fix_multiple_port_nets -all -buffer_constants
69 #constraint the timing to and from the sram black boxes
70 set_input_delay -clock main_clk -max $input_delay

gen_cache_wt_i_cache_subsystem/i_wt_dcache/i_wt_dcache_mem/gen_tag_s ⌋
rams_*__i_tag_sram/gen_cut_*__i_tc_sram_wrapper/rdata_o[*]

ñ→

ñ→

71 set_input_delay -clock main_clk -max $input_delay
gen_cache_wt_i_cache_subsystem/i_wt_dcache/i_wt_dcache_mem/gen_data_ ⌋
banks_*__i_data_sram/gen_cut_*__i_tc_sram_wrapper/rdata_o[*]

ñ→

ñ→

72 set_input_delay -clock main_clk -max $input_delay
gen_cache_wt_i_cache_subsystem/i_cva6_icache/gen_sram_*__data_sram/g ⌋
en_cut_*__i_tc_sram_wrapper/rdata_o[*]

ñ→

ñ→

73 set_input_delay -clock main_clk -max $input_delay
gen_cache_wt_i_cache_subsystem/i_cva6_icache/gen_sram_*__tag_sram/ge ⌋
n_cut_*__i_tc_sram_wrapper/rdata_o[*]

ñ→

ñ→

74

75 set_output_delay $output_delay -max -clock main_clk
gen_cache_wt_i_cache_subsystem/i_wt_dcache/i_wt_dcache_mem/gen_tag_s ⌋
rams_*__i_tag_sram/gen_cut_*__i_tc_sram_wrapper/addr_i[*]

ñ→

ñ→

76 set_output_delay $output_delay -max -clock main_clk
gen_cache_wt_i_cache_subsystem/i_wt_dcache/i_wt_dcache_mem/gen_data_ ⌋
banks_*__i_data_sram/gen_cut_*__i_tc_sram_wrapper/addr_i[*]

ñ→

ñ→

61

Implementation

77 set_output_delay $output_delay -max -clock main_clk
gen_cache_wt_i_cache_subsystem/i_cva6_icache/gen_sram_*__data_sram/g ⌋
en_cut_*__i_tc_sram_wrapper/addr_i[*]

ñ→

ñ→

78 set_output_delay $output_delay -max -clock main_clk
gen_cache_wt_i_cache_subsystem/i_cva6_icache/gen_sram_*__tag_sram/ge ⌋
n_cut_*__i_tc_sram_wrapper/addr_i[*]

ñ→

ñ→

79

80 # Check the current design for consistency
81 check_design -summary > ${DCRM_CHECK_DESIGN_REPORT}
82

83 #==
84 # COMPILE THE GATE LEVEL DESIGN
85 #==
86 compile_ultra -no_boundary_optimization
87

88 change_names -rules verilog -hierarchy
89

90 #==
91 # WRITE REPORTS
92 #==
93

94 #Extract strobe points from the output nets of the inserted buffers
95 source strobe_list.tcl
96

97 write -format verilog -hierarchy -output
${DCRM_FINAL_VERILOG_OUTPUT_FILE}ñ→

98 write -format verilog -hierarchy -output ${DESIGN_NAME}_synth.v
99 write -format ddc -hierarchy -output ${DCRM_FINAL_DDC_OUTPUT_FILE}

100

101 report_timing -nworst 10 > ${DCRM_FINAL_TIMING_REPORT}
102 #report_timing -through gen_cache_wt_i_cache_subsystem/i_wt_dcache/i_wt_ ⌋

dcache_mem/gen_tag_srams_*__i_tag_sram/#gen_cut_*__i_ram/rdata_o[*]
>> ${DCRM_FINAL_TIMING_REPORT}

ñ→

ñ→

103 #report_timing -through gen_cache_wt_i_cache_subsystem/i_wt_dcache/i_wt_ ⌋
dcache_mem/#gen_data_banks_*__i_data_sram/gen_cut_*__i_ram/rdata_o[*]
>> ${DCRM_FINAL_TIMING_REPORT}

ñ→

ñ→

104 #report_timing -through gen_cache_wt_i_cache_subsystem/i_cva6_icache/gen ⌋
sram*__data_sram/gen_cut_*__i_ram/#rdata_o[*] >>
${DCRM_FINAL_TIMING_REPORT}

ñ→

ñ→

105 #report_timing -through gen_cache_wt_i_cache_subsystem/i_cva6_icache/gen ⌋
sram*__tag_sram/gen_cut_*__i_ram/#rdata_o[*] >>
${DCRM_FINAL_TIMING_REPORT}

ñ→

ñ→

106 #report_timing -through gen_cache_wt_i_cache_subsystem/i_wt_dcache/i_wt_ ⌋
dcache_mem/gen_tag_srams_*__i_tag_sram/#addr_i[*] >>
${DCRM_FINAL_TIMING_REPORT}

ñ→

ñ→

107 #report_timing -through gen_cache_wt_i_cache_subsystem/i_wt_dcache/i_wt_ ⌋
dcache_mem/#gen_data_banks_*__i_data_sram/addr_i[*] >>
${DCRM_FINAL_TIMING_REPORT}

ñ→

ñ→

62

4.2 – Observation points insertion at RTL level and SBST based fault sim

108 #report_timing -through gen_cache_wt_i_cache_subsystem/i_cva6_icache/gen ⌋
sram*__data_sram/addr_i[*] >> #{DCRM_FINAL_TIMING_REPORT}ñ→

109 #report_timing -through gen_cache_wt_i_cache_subsystem/i_cva6_icache/gen ⌋
sram*__tag_sram/addr_i[*] >> $#{DCRM_FINAL_TIMING_REPORT}ñ→

110

111 #report_area -hier -nosplit > ${DCRM_FINAL_AREA_REPORT}
112 #write_parasitics -output ${DCRM_FINAL_SPEF_OUTPUT_FILE}
113 write_sdc ${DCRM_FINAL_SDC_OUTPUT_FILE}
114 write_sdf ${DESIGN_NAME}_synth.v.sdf
115

116 exit

In the script, the four main synthesis steps have been highlighted by proper comments.
Starting from the “analysis step”, analyze reads the design HDL files and stores the result-
ing templates into the specified library. With the -vcs "-sverilog -f Flist.cva6_synth"
is specified the format of the files to be analyzed: in this case, they are SystemVerilog files
collected inside a filelist.
Next in the “elaboration step”, elaborate ${DESIGN_NAME} -library ariane_lib elab-
orates the design, uniquify creates a unique design for each duplicated cell instance and
buffer_insertion.tcl is invoked to perform the buffer insertion at RTL level in the
design. The process continues launching compile_ultra to gate-level compile the design
and change_names names the netlist elements (ports, cells, and nets) by following Verilog
syntax. Finally, in the “write report” section, by invoking strobe_list.tcl, the output
file containing the list of inserted buffers generated by buffer_insertion.tcl is parsed,
and syntactically corrected accordingly to Verilog rules; this is needed to have a list of
test points that the fault simulator can later retrieve by looking at the synthesized netlist.

Buffer insertion script (buffer_insertion.tcl)

This script is used in the synthesis flow to insert placeholder buffers at the RTL. It reads
the SpyGlass test points report dft_unified_testpoints.rpt and adds a simple buffer
at each indicated location. Because some points may reference to unconnected nets, the
script first checks connectivity and skips any unused nets, as they do not help in fault
detection. It produces two outputs: a list of all inserted buffers with their hierarchical
paths (Inserted_buffers.txt), and a report summarizing the connection count for the
nets used (connected_nets.txt).

1 ##
2 # Mauro Lubrini
3 #
4 # Description: This TCL script is used to insert buffers in the positions
5 # defined by SpyGlass. A BUF_X1 buffer is appended to the net’s path.
6 # The notation used to name the buffer is "add_buf<x>" where x is the
7 # index of that buffer. Two .txt files are generated:
8 # (1.) connected_nets.txt: lists all the nets that at least one

connectionñ→

63

Implementation

9 # (2.) Inserted_buffers.txt: a list of all inserted buffer and the
10 # path in the hierarchy
11 ##
12

13 #Variables--
14 set buf_type "BUF_X1"
15 set bufname ""
16 set connected_nets ""
17 set buffer_inserted ""
18 set i 1
19 #To be changed accordingly
20 set preamble "ex_stage_i/"
21

22 #Path files--
23 set in_file_path "../../spyglass/spyglass-1/ex_stage/dft/dft_dsm_random_ ⌋

resistance/spyglass_reports/dft/dft_unified_testpoints.rpt"ñ→

24 set out_file_path "./connected_nets.txt"
25 set out_file_path1 "./Inserted_buffers.txt"
26

27 set file_i_id [open $in_file_path r]
28

29

30 #Run throuh all lines of the test point report from Spyglass
31 while {[gets $file_i_id line] != -1} {
32

33 #Select only the lines containing the tp list (they start with a
number)ñ→

34 if {[regexp {^[0-9]} $line]} {
35

36 #Exteract only the net path
37 set net "$preamble[lindex [split $line] 6]"
38 #Check the number of connection of that path
39 set number_of_conn [sizeof_collection [all_connected

$net]]ñ→

40 #Select only the nets which have >=1 connections to them
41 if {$number_of_conn > 0} {
42

43 #Buffer insertion
44 set bufname [format "add_buf%d" "$i"]
45 insert_buffer $net $buf_type -new_cell_name

"$bufname"ñ→

46

47 #Set don't touch
48 set net_path [join [lrange [split $net "/"] 0

end-1] "/"]ñ→

49 set_dont_touch [get_cells $net_path/$bufname]
50

51 # Inser in the reports

64

4.2 – Observation points insertion at RTL level and SBST based fault sim

52 append connected_nets [format "%d - $net -
#%d#\n" "$i" "$number_of_conn"]ñ→

53 append buffer_inserted [format "%d\)$bufname =>
$net_path/$bufname\n" "$i"]ñ→

54 # debug
55 puts "=>$bufname inserted."
56

57 # To give to each net a sequential increasing
indexñ→

58 incr i
59 }
60 #To give to each net the same index in the Syglass list
61 #incr i
62 }
63 }
64

65 #Print output files
66 set file_o_id [open $out_file_path w]
67 puts $file_o_id $connected_nets
68 set file_o_id1 [open $out_file_path1 w]
69 puts $file_o_id1 $buffer_inserted
70

71 #Close files
72 close $file_i_id
73 close $file_o_id
74 close $file_o_id1

The script starts by defining the variables, with buf_type, which sets the type of buffer
(one should select those present in the used library), and preamble, which is used to fill
the gap between the top-level module of the CVA6 (cva6/) and the module analyzed by
SpyGlass. This is done because in the SpyGlass report, the nets’ paths are referenced,
not starting from the absolute top hierarchy, but from the first level of the top module
analyzed.3 Next, a while loop which scans all the SpyGlass test point report and parses
each line retrieving each net’s hierarchical path. Once the path has been isolated in $net,
with the command $insert_buffer a buffer is placed in the location indicated. Next,
with the command set_dont_touch [get_cells ...] Design Compiler is asked to keep
the declared cell untouched during the other synthesis steps. Finally, it updates the two
output reports: one listing every inserted buffer (with its hierarchical path) and another
reporting the connectivity of the processed nets.

3For example, if the design hierarchy is: cva6/ex_stage/alu/... and SpyGlass analyzes the
execution stage, the nets listed in the report would start with the first level under the execution stage,
so: alu/....

65

Implementation

Strobe selection script (strobe_list.tcl)

This script is run post-compilation during the synthesis flow. It is responsible for creating
a list of strobe points (strobe_list.txt) to be inserted in the VC-Z01X configuration
.sff file by the script strobe.py during the fault simulation process.

1 ##
2 # File: strobe_list.tcl
3 # Author: Mauro Lubrini
4 # Date: 23/05/2025
5 # Description: This TCL script is used to retrieve the output net name
6 # of the inserted buffers to be inserted in the .sff configuration file
7 # of VC-Z01X. The net names are written in strobe_list.txt, which is
8 # later parsed by a strobe.py during the fault simulation flow.
9 ##

10

11

12 #Variables-- ⌋
--ñ→

13 set strobing_list ""
14

15 #Path
files--ñ→

16 set in_file_path "./Inserted_buffers.txt"
17 set out_file_path "./strobe_list.txt"
18

19 set file_i_id [open $in_file_path r]
20

21 #Run throuh all lines of the test point report from Spyglass
22 append strobing_list [format "<< Spyglass selected test points >>\n"]
23

24 while {[gets $file_i_id line] != -1} {
25

26 if {"$line" ne ""} {
27 #Exteract only the net path
28 set buf_path_raw [lindex [split $line] 2]
29

30 #use the post elaborate format
31 set path [string map {[_] _ . _} [string tolower

$buf_path_raw]]ñ→

32 set strobe_path [string map {/ .} [join [list "uvmt_cva ⌋
6_tb.cva6_dut_wrap.cva6_tb_wrapper_i.i_cva6" $path
"Z"] "."]]

ñ→

ñ→

33

34 puts "DEBUG_2-----------------------------"
35 puts "$buf_path_raw"
36 puts "$path"
37 puts "$strobe_path"
38

66

4.2 – Observation points insertion at RTL level and SBST based fault sim

39 if {"$strobe_path" ne ""} {
40 append strobing_list [format "$strobe_path, "]
41 } else {
42 puts "ERROR, NO OUTPUT NET FOUND FOR

$strobe_path!\n"ñ→

43 }
44 }
45 }
46

47 #Print output files
48 set file_o_id [open $out_file_path w]
49 puts $file_o_id $strobing_list
50

51 #Close files
52 close $file_i_id
53 close $file_o_id
54

The script is composed of a while loop, which runs through all the elements in the
Inserted_buffers.txt file and, for each of them, it reads the hierarchical path and
modifies it following the SystemVerilog syntax. This is necessary to have a list of paths that
can be used to redirect to points inside the synthesized list. In particular, in the variable
path is saved the path read from strobe_list.txt changing the squared brackets ([,])
with underscores (_), and the slashes (/) substituted with dots (.). Then, in the variable
strobe_path, the preamble "uvmt_cva6_tb.cva6_dut_wrap.cva6_tb_wrapper_i.
i_cva6" is inserted before the content of path, and the character “.Z” is appended at the
end of it; this is because we want to connect each strobe point to the output pins of the
inserted buffers. Finally, the output file strobe_list.txt is written.

4.2.2 Fault simulation run

To run the fault simulation, a specific bash script (run_fsim.sh), already present in the
CVA6 environment, must be executed. This script launches an automated process that
recalls other scripts to set up the simulation environment. For this initial approach, the
same type of SBST simulation performed in the previous thesis work was used, employing
an assembly program to exercise the architecture4. The tools used for the fault simulation
are VCS combined with VC-Z01X: the first is used to gate-compile the design and build
the executable model, while the second performs the actual fault simulation, running the
compiled assembly program.

4The whole simulation environment has been developed and set up by the CVA6 community avail-
able on the GitHub repository: https://github.com/openhwgroup/cva6.

67

Implementation

Preparaton to the fault simulation

To launch the fault simulation with VC-Z01X, some configuration files have to be modified.
In particular is needed to define which module of the architecture should be fault-injected,
simulated, and which are the strobe points that VC-Z01X uses to read the fault propaga-
tion.

Step 1: Change the .sff file by selecting the correct module in which to inject the faults.

strobe.sv

1 FaultGenerate
2 {
3 #NA [0,1] { PORT

"uvmt_cva6_tb.cva6_dut_wrap.cva6_tb_wrapper_i.i_cva6.**" }ñ→

4 NA [0,1] { PORT "uvmt_cva6_tb.cva6_dut_wrap.cva6_tb_wrapper_i.i_cva6 ⌋
.ex_stage_i.**" }ñ→

5 #NA [0,1] { PORT "uvmt_cva6_tb.cva6_dut_wrap.cva6_tb_wrapper_i.i_cva ⌋
6.ex_stage_i.alu_i.**" }ñ→

6 }

The faults.sff defines in which specific module of the design (and all its related
sub-modules) VC-Z01X will inject the faults. This should be selected accordingly to the
desired top module on which the fault simulation will be performed. A specific line has to
be inserted, starting with the type of fault (in this case NA [0,1] means to inject stuck-
at-0 and stuck-at-1 faults) and then with the module design path. Multiple modules can
be declared simultaneously, but for our purposes, only one module at a time is simulated
(all the others are commented).

Step 2: Change the DUT in the Makefile5, which we want to simulate: Inside this Make-
file, there is a line that specifies which is the top module to use as DUT for the fault
simulation. This should match the same module previously defined in the .sff file.

./verif/sim/Makefile

164 ##
165 # UVM specific commands, variables
166 ##
167 ALL_VCS_FLAGS = $(if $(VERDI) || $(FSIM), -kdb -debug_access+all -lca,)

-sverilog -full64 -timescale=1ps/1ps $(if $(FSIM),
$(CVA6_FSIM_SRC_PATH)/strobe.sv -fsim -fsim=dut:uvmt_cva6_tb.cva6_d ⌋
ut_wrap.cva6_tb_wrapper_i.i_cva6.ex_stage_i -fsim=portfaults
+vcs+fsdbon ,) $(if $(SAFE), +nospecify,)

ñ→

ñ→

ñ→

ñ→

5The cited Makefile is located in the project directory: ./verif/sim/Makefile.

68

4.2 – Observation points insertion at RTL level and SBST based fault sim

168 export VCS_WORK_DIR =
$(CVA6_REPO_DIR)/verif/sim/vcs_results/default/vcs.dñ→

169 SIMV = $(VCS_WORK_DIR)/simv

The option to look for inside the Makefile code is in the “UVM specific commands,
variables” section, and the line to change is this one:

-fsim=dut:uvmt_cva6_tb.cva6_dut_wrap.cva6_tb_wrapper_i.i_cva6.<...>

Step 3: Declare the strobe points for VC-Z01X in the configuration strobe file strobe.sv6

This file defines the points at which VC-Z01X reads the system response and the faults
propagation from a fault simulation. By default, VC-Z01X uses the primary output of
the declared TOPLEVEL to read fault propagation, but additional strobe points can
be inserted. To ease the strobe insertion, a python script (strobe.py) is invoked in
run_fsim.sh before launching the fault simulation, and is used to read the elected ob-
servation point listed inside the strobe_list.txt and automatically insert them in the
strobe.sv file.

1 `timescale 1ps / 1ps
2

3 `ifndef TOPLEVEL
4 `define TOPLEVEL uvmt_cva6_tb.cva6_dut_wrap.cva6_tb_wrapper_i.i_ ⌋

cva6.ex_stage_iñ→

5 //TODO: INSERT HERE THE STROBE LIST OF SIGNALS
6 `endif
7

8 module strobe;
9

10 integer cmp;
11

12 initial begin
13 #10;
14 @(posedge `TOPLEVEL.rst_ni);
15 $fs_inject();
16 end
17

18 always @(negedge `TOPLEVEL.clk_i) begin
19 cmp = $fs_compare(`TOPLEVEL);
20 if (1 == cmp) begin
21 $fs_drop_status("ON", `TOPLEVEL);
22 end else if (2 == cmp) begin
23 $fs_drop_status("PN", `TOPLEVEL);
24 end
25 end
26

6The cited file is located in the project directory: ./fmeda/fsim/src/strobe.sv.

69

Implementation

27 always @(negedge `TOPLEVEL.clk_i) begin
28 cmp = $fs_compare(`STROBELIST);
29 if (1 == cmp) begin
30 $fs_drop_status("ON", `STROBELIST);
31 end else if (2 == cmp) begin
32 $fs_drop_status("PN", `STROBELIST);
33 end
34 end
35

36 endmodule
37

This configuration file begins by defining the list of signals to observe. This can be done
in two ways: either by defining a module (VC-Z01X will implicitly consider its primary
outputs) or by listing each net’s hierarchical path explicitly. With ifndef TOPLEVEL ...
it’s defined the top module under test whose primary outputs are read by VC-Z01X. To
implement additional observation points, a new list of signals containing the paths to the
internal design nets to strobe should be inserted; for this purpose, a TODO comment is
used as a placeholder for strobe.sv to place `define STROBELIST...(list_of_paths).
Next, it defines the clock, which synchronizes sampling of the outputs. On each nega-
tive clock edge, with the command cmp = $fs_compare(), VC-Z01X compares the Good
Machine (GM) against the Faulty Machine (FM) values of the listed signals.

• If cmp=0 it means that the GM and the FM values are identical, so no fault is
detected;

• if cmp=1 it means that there is a discrepancy between the GM and FM values (GM=0
or 1 while FM is the opposite), so a fault is detected, and in this case is labeled as
an “observed not diagnosed” (ON);

• if cmp=2 it means that GM have know values (either 0 or 1) while the FM have a
value in an unknown state (either X or Z) and in this case the fault is labeled as
“Potentially Observed Not Diagnosed” (PN). [13]

strobe.py

This Python script is used to read the list of additional points to observe in the design
(strobe_list.txt) and automatically insert them into the configuration file strobe.sv.
This process is not done directly on top of strobe.sv, but a second SystemVerilog file
(template.sv) is used as a template, so that each time a new set of observation points
needs to be implemented, a clean file is available to be modified. Summing up, this
program takes template.sv and writes in the designated location the list of observation
points paths, and then saves it as strobe.sv.

1 """
2 File: strobe.py
3 Author: Mauro Lubrini

70

4.2 – Observation points insertion at RTL level and SBST based fault sim

4 Date: 27/05/2025
5 Description: This script is used to read the list of strobepoints
6 generated during the syhtesis process from the file strobe_list.txt
7 and update the strobe list of the strobe.sv. "teamplate.txt" is
8 used as reference model forthe actual file strobe.sv
9 """

10

11 FILE_PATH = "../../../pd/synth/strobe_list.txt"
12 new_file = []
13

14 # open the file containing the strobepoints
15 strobe_list = open(FILE_PATH, "r")
16 strobes = strobe_list.readlines()
17

18 # open the teamplate file
19 teamplate = open("template.sv", "r")
20 lines = teamplate.readlines()
21

22 for i, line in enumerate(lines):
23 new_file.append(lines[i])
24 if '//TODO: INSERT HERE THE STROBE LIST OF SIGNALS' in line:
25 new_file. append(" `define STROBELIST ")
26 for j, signal in enumerate(strobes):
27 if (j != 0):
28 new_file.append(strobes[j])
29

30 new_file.append("\n")
31

32 # Creating the strobe.sv file
33 with open("strobe.sv", "w") as outfile:
34 outfile.writelines(new_file)
35

36 teamplate.close()
37 strobe_list.close()

The script starts by defining the directory containing the strobe list to read (strobe_
list.txt) and initializing a new list (new_file=[]) that stores the content of the new file
to be created. Then the template file is opened and a for loop reads all its lines, looking
for the comment “//TODO: INSERT ...”, which pinpoints the exact location in which to
insert the hierarchical path of the additional observation points. Once this line is found,
the content of strobe_list.txt is inserted, and the loop continues running through the
lines of the template file, appending each one of them to the new_file list, which finally
is printed as a file under the name of strobe.sv

71

Implementation

run_fsim.sh

As already mentioned above, the CVA6 environment is equipped with a quite intricate
simulation environment that, depending on the options set, can perform different activ-
ities. In our case, the environment is set to run a fault simulation using Synopsys VCS
and VC-Z01X. The process starts by executing run_fsim.sh.

1 #!/bin/bash
2

3 # Define the script to be run
4 SCRIPT="run_fsim_sbst_nogui.sh"
5 SCRIPT2="strobe.py"
6

7 # File to extract the coverage percentage from
8 REPORT_FILE="./verif/sim/fsim_v.rpt"
9

10 # Log file to store the iteration and coverage information
11 LOG_FILE="fsim.log"
12

13 # Path to the sbst.S file
14 SBST_FILE="./verif/tests/custom/sbst/sbst.S"
15

16 # Path to the backup file
17 BACKUP_FILE="./verif/tests/custom/sbst/sbst_backup.S"
18

19 # Clear the log file if it exists
20 > "$LOG_FILE"
21

22 # Initialize maximum, mean and sum coverage to zero
23 OBS_COVERAGE=0
24

25 # Main
26 echo "--"
27 echo "Running fsim on the ALU with observation points insertion" | tee

-a "$LOG_FILE"ñ→

28 echo "--"
29

30 #update the strobe.sv file with the strobes found with Spyglass
31 cd fmeda/fsim/src
32 python3 "$SCRIPT2"
33 cd ../../../
34

35 # Start the fault simulation
36 ./$SCRIPT
37 if [$? -ne 0]; then
38 echo "Script encountered an error during iteration $i" | tee -a

"$LOG_FILE"ñ→

39 exit 1
40 fi

72

4.2 – Observation points insertion at RTL level and SBST based fault sim

41

42 if [-f "$REPORT_FILE"]; then
43 # Extract numerical coverage value
44 OBS_COVERAGE=$(tac "$REPORT_FILE" | grep -m 1 "Observational Coverage"

| grep -oE '[0-9]+\.[0-9]+')ñ→

45 echo "Observational Coverage: $OBS_COVERAGE%" | tee -a "$LOG_FILE"
46 else
47 echo "Report file $REPORT_FILE not found." | tee -a "$LOG_FILE"
48 exit 1
49 fi
50

51 echo "Script has been run successfully!" | tee -a "$LOG_FILE"

The script starts by defining the scripts to be run, the path for the coverage re-
port, and the simulation log file. Then strobe.py7 is run to insert the strobe points
in the fault sim configuration file of VC-Z01X. Next, the actual simulation is run by
run_fsim_sbst_nogui.sh, which sets up the simulation environment and options. The
remaining lines of code are used only to extract and display the numerical coverage value
from the simulation results.

run_fsim_sbst_nogui.sh

1 #!/bin/bash
2

3 if [-z ${VCS_HOME}]; then
4 echo "\$VCS_HOME variable not set! Exiting..."
5 exit 1
6 fi
7

8 ### ENVIRONMENT SETUP ###
9 source set_env.sh

10

11 ### SELECT GATE LEVEL SIMULATION ###
12

13 export DV_SIMULATORS=vcs-gate
14

15 ### SELECT TARGET CVA6 CONFIGURATION ###
16

17 export TARGET_CFG="cv64a6_imafdc_sv39"
18

19 ### ENABLE FAULT SIMULATION WITH VC-Z01X ###
20

21 export FSIM=1
22

7In case of random strobe, the script randomize_strobe_selection.py is run right before strobe.py.

73

Implementation

23 ### DISABLE GUI ###
24

25 export TRACE_COMPACT=1 && unset VERDI
26

27 ### RUN SBST WITH DEFINED CONFIGURATION
28 source ./verif/regress/sbst.sh
29

30 exit 0

run_fsim_sbst_nogui.sh is used to configure the simulations options, starting with
checking if the VCS_HOME and the simulation environment is all set up. Then, with
export DV_SIMULATORS=vcs-gate is selected the VCS gate-level simulation option, and
with export TARGET_CFG=cv64a6_imafdc_sv39 the specific CVA6 configuration. Next
FSIM=1 enables the fault simulation branch, and with export TRACE_COMPACT=1 && unset VERDI
the GUI is disabled. Finally, the sbst driver sbst.sh is launched.

sbst.sh

This script acts as a driver for the execution of the assembly program sbst.S. It installs
the necessary tools, cleans the build directories, and selects the directed assembly program
to run. Then it invokes cva6.py and defines its options.

1 # where are the tools
2 if ! [-n "$RISCV"]; then
3 echo "Error: RISCV variable undefined"
4 return
5 fi
6

7 # install the required tools
8 source verif/regress/install-cva6.sh
9 source verif/regress/install-riscv-dv.sh

10 source verif/regress/install-riscv-compliance.sh
11 source verif/regress/install-riscv-tests.sh
12

13 if ! [-n "$DV_SIMULATORS"]; then
14 DV_SIMULATORS=vcs-gate
15 fi
16

17 make clean
18 make -C verif/sim clean_all
19

20 cd verif/sim
21

22 # src0=../tests/custom/sbst/sbst_main.c
23 src0=../tests/custom/sbst/sbst.S
24 srcA=(
25 ../tests/custom/common/syscalls.c

74

4.2 – Observation points insertion at RTL level and SBST based fault sim

26 # ../tests/custom/sbst/sbst.S
27 ../tests/custom/common/crt.S
28)
29 cflags=(
30 -fno-tree-loop-distribute-patterns
31 -static
32 -mcmodel=medany
33 -fvisibility=hidden
34 -nostdlib
35 -nostartfiles
36 -lgcc
37 -O3 --no-inline
38 -I../tests/custom/env
39 -I../tests/custom/common
40 -I../tests/custom/sbst/
41 -DNOPRINT
42)
43

44 set -x
45 python3 cva6.py \
46 --target hwconfig \
47 --hwconfig_opts="--default_config=cv64a6_imafdc_sv39

--isa=rv64imafdc --NrLoadPipeRegs=0" \ñ→

48 --iss="$DV_SIMULATORS" \
49 --iss_yaml=cva6.yaml \
50 --asm_tests "$src0" \
51 --gcc_opts "${srcA[*]} ${cflags[*]}" \
52 --linker ../tests/custom/common/test.ld
53

cva6.py

The cva6.py is a very intricate Python script that acts as an “orchestrator” for the
fault simulator; it reads a YAML file, which routes the top-level Makefile in verif/sim
carrying the VCS/VC-Z01X simulation. The process compiles the assembly sbst.s file
into an Executable and Linkable Format (ELF) which can be executed later by VC-Z01X.
It then uses VCS to build and compile the DUT merging the UVM testbench with the
FSIM instrumentation, creating an executable gate-level snapshot of the design. Then,
having set FSIM=1 the fault simulation branch is taken, VC-Z01X is launched running the
golden and fault-injected campaigns on that VCS-built snapshot using the same SBST
compiled ELF, performing in this way the fault simulation. Finally the coverage report
is then written into the file verif/sim/fsim_v.rpt.

4.2.3 Random buffer insertion
As already said in previous sections, the aim of this work is to compare the proposed
methodology with the case of a random choice of test points. So, a list of all the nets

75

Implementation

inside the module under test is needed to draw a random set of strobe points. The
idea was to exploit the fault list generated during the previous fault simulation, which
contains a list of faults and their relative locations in the design. For this purpose,
randomize_strobe_selection.py is launched while running the fault simulation flow.
This python script is invoked in run_fsim.sh right before starting the fault simulation,
and it selects from the fault list a set of random points inside the netlist substituting their
path to the ones contained in the strobe_list.txt file. So the next time the strobe list
of VC-Z01X is created, instead of drawing the SpyGlass suggested list, a set of randomly
selected points is used.

strobe.py sbst.S

fault list

source
randomize_strobe_

selection.py
strobe_list.txt

DC synthesis

cva6_synth.tcl

vcs
build

VC-Z01X

fsim

run_fsim.sh
Fsim report

Design files
(.v, .lib)

Figure 4.3: workflow diagram

run_fsim.sh

Similar to the SpyGlass-driven case, the fault simulation is run by invoking run_sbst.sh,
but this time, randomize_strobe_selection.py is run before launching the strobe in-
sertion (strobe.py) and fault simulation (run_fsim_sbst_nogui.sh). The rest of the
procedure remains unchanged with respect to the one previously described.

1 #!/bin/bash
2

3 # Define the script to be run
4 SCRIPT="run_fsim_sbst_nogui.sh"
5 SCRIPT2="strobe.py"
6 SCRIPT3="randomize_strobe_selection.py"
7 TP_REPORT="./verif/sim/fsim_v.rpt"
8 TOT_REPORT="./verif/sim/Report_backup/sim_collection.txt"
9

76

4.2 – Observation points insertion at RTL level and SBST based fault sim

10 # File to extract the coverage percentage from
11 REPORT_FILE="./verif/sim/fsim_v.rpt"
12

13 # Log file to store the iteration and coverage information
14 LOG_FILE="fsim.log"
15

16 # Path to the sbst.S file
17 SBST_FILE="./verif/tests/custom/sbst/sbst.S"
18

19 # Path to the backup file
20 BACKUP_FILE="./verif/tests/custom/sbst/sbst_backup.S"
21

22 # Clear the log file if it exists
23 > "$LOG_FILE"
24

25 # Initialize maximum, mean and sum coverage to zero
26 OBS_COVERAGE=0
27

28 echo "--"
29 echo "Running fsim with random observation points: iteration $i" | tee

-a "$LOG_FILE"ñ→

30 echo "--"
31

32 # Insert a new random set of tp
33 cd pd/synth
34 python3 "$SCRIPT3"
35 cd ../../
36

37 #update the strobe.sv file
38 cd fmeda/fsim/src
39 python3 "$SCRIPT2"
40 cd ../../../
41

42 # Start the fault simulation
43 ./$SCRIPT
44 if [$? -ne 0]; then
45 echo "Script encountered an error during iteration $i" | tee -a

"$LOG_FILE"ñ→

46 exit 1
47 fi
48

49 if [-f "$REPORT_FILE"]; then
50 # Extract numerical coverage value
51 OBS_COVERAGE=$(tac "$REPORT_FILE" | grep -m 1 "Observational Coverage"

| grep -oE '[0-9]+\.[0-9]+')ñ→

52 echo "Observational Coverage: $OBS_COVERAGE%" | tee -a "$LOG_FILE"
53 else
54 echo "Report file $REPORT_FILE not found." | tee -a "$LOG_FILE"

77

Implementation

55 exit 1
56 fi
57

58 echo "Script has been run successfully!" | tee -a "$LOG_FILE"

Random buffer selection script (randomize_strobe_selection.py)

1 """
2 File: strobe.py
3 Author: Mauro Lubrini
4 Date: 27/05/2025
5 Description: This script is used to read the fault list generated during
6 the first fault-sim and then select randomly N-strobing points from that
7 list (N=STROBE_NUMBER)
8 """
9

10 import random
11

12 # Variables and constants
13 INFILE_PATH = "../../verif/sim/fsim_v.rpt"
14 OUTFILE_PATH = "./strobe_list.txt"
15 STROBE_NUMBER = 100
16

17 csn_lines = 0
18 fault_list = []
19 selected_index = []
20 strobe_list = []
21

22

23 infile = open(INFILE_PATH, "r")
24 lines = infile.readlines()
25

26 # Extrapolate all the fault injection points from the fault list
27 for i, line in enumerate(lines):
28 if ('PORT' in line):
29 elements = line.split()
30 if (len(elements)==4):
31 fault_list.append(elements[3].rstrip("\"}").lstrip("\"") + ",

")ñ→

32 elif (len(elements)==6):
33 fault_list.append(elements[5].rstrip("\"}").lstrip("\"") + ",

")ñ→

34

35 list_length=(len(fault_list))
36

37 # Create the strobe list
38 if (list_length>=STROBE_NUMBER):

78

4.3 – Post-synthesis observation points insertion and ATPG based fault simulation

39 strobe_list.append("<< Random selected test points>>\n")
40 for j in range(STROBE_NUMBER):
41 rand_index = random.randrange(0, list_length-1, 1)
42 if rand_index not in selected_index:
43 selected_index.append(rand_index)
44 strobe_list.append(fault_list[rand_index])
45 j += 1
46 print(rand_index)
47 else:
48 print("ERROR: the faultlist is smaller than the number of strobe we

want to insert")ñ→

49 print(" please select a value for STROBE_NUMBER lower than",
list_length)ñ→

50

51 # Create the list of random strobing points
52 with open(OUTFILE_PATH, "w") as outfile:
53 outfile.writelines(strobe_list)
54

55 infile.close

The randomize_strobe_selection.py script is used to read the fault list generated
during the first fault-sim and then select randomly N-strobe points from that list. The
script begins by importing the Python’s standard library module import random. Next,
it defines INFILE_PATH which is the input fault list path, OUTFILE_PATH which is the
output file path, and finally STROBE_NUMBER which is the variable that sets the number
of random locations to be selected from the fault list; note that this value should be set
equal to the number of observation point extracted by SpyGlass8. A first loop parses
the fault list, extrapolating for each fault injection location its corresponding hierarchical
path, and saving it in a temporary list (fault_list). Finally, a second loop is used to
select random entries from fault_list, which are later written in the output text file.

4.3 Post-synthesis observation points insertion and
ATPG based fault simulation

In this new approach, following the workflow described in Section 3.2, the architecture
has been exercised through ATPG and then fault simulated using Synopsys TestMAX
ATPG. As before, SpyGlass has been run on the synthesized netlist following the same
synthesis and analysis procedure described in the previous section. Regarding the test
procedure, the flow is now quite streamlined. Figure 4.4 depicts the main steps: after the
design synthesis and SpyGlass analysis on the netlist, the ATPG fault simulation is run by
launching run_ATPG.sh, which calls TMAX running the TCL script Full_seq_ATPG.tcl,
which automatically performs an ATPG fault simulation, also integrating the candidate

8This is important to keep simulations under comparable conditions between random and SpyGlass
selected test points.

79

Implementation

test points found by the previous SpyGlass analysis. Performing new ATPG runs each
time a new fault simulation is performed could lead to non-equal and non-identical scenar-
ios, which means that the comparisons between the random test point insertion and the
SpyGlass selected one could show some discrepancies due to differences in the set of input
vectors, so in the way the design is exercised for the two fault simulations. This observa-
tion could lead to the thinking that the previous work of comparing different simulations
being run on different sets of test patterns is corrupted and meaningless, but actually, a
test like that allows us to appreciate how the implementation of test points inserted in
different locations could help and ease TMAX ATPG algorithms in generating effective
test vectors.

ATPG fsim

Tmax ATPG

DC synthesis Spyglass analysis

dft_unified_
testpoints.rpt

Full_seq_ATPG.tcl

patterns.stil fault list

Fsim report

Design files
(.v, .lib)

Figure 4.4: ATPG fault sim flow diagram

4.3.1 TestMAX ATPG working principle
TestMax ATPG is a software from Synopsys that delivers high-coverage test patterns with
high efficiency in utilizing hardware resources. The typical TMAX workflow Figure 4.5 is
composed of four main blocks:

BUILD-T: in this section, the design libraries and gate-level netlist are read, and the
design model is built. An in-memory design image is created for the ATPG algorithm
to run the simulations. Here, some Design Rule Check (DRC) rules are checked for any
violations in the netlist (N rules) or in the built model (B rules). In this step, eventual
black boxes can be defined.

DRC-T: in this step, the clock and the scan-chains information are verified. In these
steps, some information, such as how many scan chain pins, how the scan mode is enabled
in the design, what are the initialization sequences for the design, what are the clocks

80

4.3 – Post-synthesis observation points insertion and ATPG based fault simulation

and resets, and many more, is provided through a STIL file, which can be either provided
from the external or it can be created directly by TMAX. Here are some rules checked:

• S rules check for scan chain or shift violations;

• C rules check for clocks or capture violations;

• Z rules check for internal tristate buses and bidirectional paths;

• R rules check for scan compression violations;

• X rules for combinational feedback loops;

• V rules for vector statements in the SPF;

Only if the DRC is passed, the TEST mode is entered to proceed with the ATPG
procedures. In cases of severe violations, the error is reported, and the DRC run is
aborted at the point of the error.

TEST-T: in this section, first the ATPG run should be prepared, so the fault list and
the fault model are selected. After that, the ATPG procedure is launched. The goal of
the ATPG is to create a set of test patterns that can be used by an ATE to distinguish
the good machine from the faulty machine behavior. When launching the ATPG run,
TMAX will cycle through all the ATPG engines enabled; different choices of engines can
be chosen:

• Basic scan: it gives a very fast way to perform ATPG, giving fast results on a
full scan design with minimum non-scan cells. Basic-scan patterns are generated by
combinational ATPG, and they contain a scan load, a force of all primary inputs, a
measure of all primary outputs, a clock pulse, and a scan unload.

• Fast-Sequential: this is good for design with some non-scan logic or some shadow
logic around memories, guaranteeing better results. In this case, it allows up to 10
capture clock pulses during the capture phase to exercise deep sequential logic. In
this case, at each cycle, it contains a scan load, a force of all primary inputs, a clock
pulse, and at the end, the last clock cycle contains a single measure of the primary
outputs and a single scan unload.

• Full-sequential: this is the engine used during this thesis work and is recommended
to test full sequential logic; this mode supports multiple capture cycles between scan
load and unload (no limit imposed), increasing the test coverage in sequential design.
In this case, the patterns are generated in full sequence through a non-threaded
ATPG.

Then, post ATPG, the coverage results can be analyzed, and additional measures can
be implemented to increase the test coverage by trying to move faults from the ND class

81

Implementation

to the DS one9. The generated patterns can also be exported in different formats (binary,
STIL, WGL) for later usage.

VERIFICATION: Finally, the generated patterns can be tested through a Verilog simu-
lator, which is created automatically by TMAX through the command write_testbench
upon the patterns saved in the STIL file previously created. This testbench applies the
test stimulus to the DUT and checks the responses against the expected ones. It can be
used in combination with Xcelium to print the waveform responses of the device being
tested. [11]

Read Library Modules

Read Netlist

Build ATPG Model

Check DFT Rules

Prepare ATPG

Run ATPG

Review Coverage

Verify Patterns

Incremental ATPG
(if needed)

Save Patterns

Test
Patterns

Test ModeBuild Mode

DRC Mode

BUILD-T>

DRC-T>

TEST-T>

Verilog sim
Library

Gate-level
netlist

STIL test
protocol

Figure 4.5: TMAX ATPG design flow

4.3.2 ATPG Fault simulation
The ATPG approach abandons the previous convoluted simulation environment for a
simpler approach, which uses only one software. For this purpose, Synopsys TestMax has
been adopted to both perform the ATPG and the fault simulation based upon that set of
patterns. To start the fault simulation run_ATPG.sh must be run on the command shell
and automatically starts TMAX in batch mode, running the Full_seq_ATPG.tcl script.
At the end of the simulation, a report called atpg_logfile shows the faults and coverage
metrics.

9Consult Section 2.3.4 for mode detail

82

4.3 – Post-synthesis observation points insertion and ATPG based fault simulation

run_ATPG.sh

1 #!/bin/bash
2

3 SCRTIPT="Full_seq_ATPG.tcl"
4

5 tmax2 "$SCRTIPT" -shell

Full_seq_ATPG.tcl

1 ###
2 # Mauro Lubrini
3 # Date: 5/06/25
4 # Description: Tcl script to perform full_sequential_ATPG on the defined
5 # DESIGN_TOP module. SpyGlass test points are inserted as additional PO
6 ###
7 set NETLIST "../pd/synth/cva6_synth.v"
8 set TECHLIB1 "../pd/synth/tech/NangateOpenCellLibrary.v"
9 set TECHLIB2 "../pd/synth/tech/NangateOpenCellLibrary_fixed.v"

10 set DESIGN_TOP "ex_stage_16_864949"
11 #set DESIGN_TOP "alu__864949"
12

13 set in_file_path "../spyglass/spyglass-1/$DESIGN_TOP/dft/dft_dsm_random_ ⌋
resistance/spyglass_reports/dft/dft_unified_testpoints.rpt"ñ→

14 set out_file_path "./connected_nets.txt"
15 set connected_nets ""
16

17

18 # -- Basic ATPG command sequence
19 set_messages -log atpg_logfile -replace
20

21 # -- Read design and libraries
22 read_netlist $NETLIST
23

24 read_netlist $TECHLIB1 -library
25 read_netlist $TECHLIB2 -library
26

27 ###
28 # -- tp insertion and connection to PO
29 set file_i_id [open $in_file_path r]
30

31 while {[gets $file_i_id line] != -1} {
32

33 #Select only the lines containing the tp list (they start with a
number)ñ→

34 if {[regexp {^[0-9]} $line]} {
35 if {"$line" ne ""} {
36

83

Implementation

37 #Exteract only the net path
38 set net "[lindex [split $line] 6]"
39 puts "Debug-----------------------------"
40 puts "$net"
41 append connected_nets "$net\n"
42

43 # connect tp points to po
44 add_net_connections po "$net"
45 }
46 }
47 }
48

49 #Print output files (for debug purpuses)
50 set file_o_id [open $out_file_path w]
51 puts $file_o_id $connected_nets
52

53 #Close files
54 close $file_i_id
55 close $file_o_id
56

57 ###
58

59 # -- Build design model
60 set_build -nodelete_unused_gates
61 run_build_model $DESIGN_TOP
62 #to check the number of connections to PO
63 report_net_connections > report_connections.txt
64

65

66 # -- Define clocks and pin constraints
67 add_clocks 0 clk_i
68 add_clocks 1 rst_ni
69

70 # -- perform DRC checks
71 run_drc
72 report_rules -fail
73

74 # -- set the number of threads
75 set_atpg -num_threads 0
76 set_simulation -num_threads 0
77

78 # -- set simulation options
79 set_faults -model stuck
80 add_faults -all
81 set_patterns -internal
82 set_atpg -full_seq_atpg -patterns 1000
83 run_atpg -auto_compression full_sequential_only

ñ→

84

84

4.3 – Post-synthesis observation points insertion and ATPG based fault simulation

85 # -- save fault list and patterns
86 write_pattern patterns.stil -format STIL -replace
87 write_patterns patterns.bin -replace
88 set_faults -fault_coverage
89 report_summaries sequential_depth
90 report_faults -all -verbose

This script performs the full sequential ATPG on the module under test designated
as DESIGN_TOP. It begins with defining the design netlist, technology libraries, and the
hierarchical top module. It then defines the path to the SpyGlass designated test point
report (dft_unified_testpoints.rpt) and an output file (connected_nets.txt) which
lists the inserted strobe points connected to primary outputs to verify correct implemen-
tation in the design. Then, after reading the design files, the script continues with the
test point insertion section: a loop reads and parses the entire SpyGlass test points list,
looking at each cycle for a new observation point and its hierarchy path, saving it in
the $net variable. It then updates the connected_nets list and, with the command
add_net_connections po, creates a new primary output connected directly to the point
indicated by the $net path. Next, once the new test points have been inserted, the design
is built and the model is run. With the command report_net_connections > report_
connections.txt, a new file reporting the added primary output connection is cre-
ated and is used as a secondary check. The script continues with defining the clock
and reset constraints, setting add_clocks 0 clk_i and add_clocks 1 rst_ni to spec-
ify the off state of the two signals. Then, after performing the DRC, the simulation
options are set, starting with the number of threads, which in this case are set to 0
(single thread), as full sequential ATPG requires single-threaded execution. Next other
simulation option are set: set_faults -model stuck: select the stuck-at fault model;
add_faults -all: adds faults at all potential fault sites in the design to the fault
list; set_patterns -internal: specifies that the pattern source is internally generated;
set_atpg -full_seq_atpg -patterns 5000 it enables the full-sequential ATPG algo-
rithm and sets the maximum number of patterns generated during ATPG, then it termi-
nates the simulation; run_atpg -auto_compression full_sequential_only: it forces
the full-sequential pattern generation. Then the final part of the script sets the simulation
reports and writes the STIL file containing the test patterns generated during the ATPG;
this file can be useful for independent fault simulation using an external set of input test
patterns.

4.3.3 ATPG with random test point insertion
Figure 4.6 depict the procedure for running ATPG with randomly selected strobe points
which is very similar to the previous one, with only minor adjustments. Since the random
strobe selection requires a fault list, if one is not already available, this step can only
be performed after completing a fault simulation using the SpyGlass generated strobe
points. As before, the simulation is started by launching run_ATPG.sh. The script
randomize_strobe_selection.py is first invoked to parse the fault list and selects a
number of random points. Then, TMAX is launched running the Full_seq_ATPG.tcl

85

Implementation

script. This time, instead of using the SpyGlass selected points, the script reads the
Python generated strobe list and adds these as additional primary outputs during the
fault simulation.

fault list

randomize_strobe_
selection.py

DC synthesis

Full_seq_ATPG.tcl

ATPG fsim

Tmax ATPG
Fsim report

Design files
(.v, .lib)

Figure 4.6: ATPG fault sim flow diagram

run_ATPG.sh

Starting point to execute the fault simulation process. Before launching TestMAX, the
random test point selector script is run to prepare a list of random test point to be later
be adopted.

1 #!/bin/bash
2

3 SCRTIPT="Full_seq_ATPG.tcl"
4

5 python3 randomize_strobe_selection.py
6 tmax2 "$SCRTIPT" -shell

randomize_strobe_selection.py

The randomize_strobe_selection.py script is used to read the fault list generated dur-
ing the first fault-sim and then select randomly N-strobe points from that list.

86

4.3 – Post-synthesis observation points insertion and ATPG based fault simulation

1 """
2 File: strobe.py
3 Author: Mauro Lubrini
4 Date: 27/05/2025
5 Description: This script is used to read the fault list generated during
6 the first fault-sim and then select randomly N-strobing points from that
7 list (N=STROBE_NUMBER)
8 """
9

10 import random
11

12 # Variables and constants
13 INFILE_PATH = "./fault_list.txt"
14 OUTFILE_PATH = "./random_strobe_list.txt"
15 STROBE_NUMBER = 200
16

17 fault_list = []
18 strobe_list = []
19 repeated_cells = []
20 j=0
21

22 infile = open(INFILE_PATH, "r")
23 lines = infile.readlines()
24

25 # Extrapolate only the port pins from the fault list
26 for i, line in enumerate(lines):
27 elements = line.split()
28 fault_list.append(elements[2] + "\n")
29

30 list_length=(len(fault_list))
31

32 # Randomize the selection of the ports pins to be used as strobe points
33 if (list_length>=STROBE_NUMBER):
34 print("Random Indexes selected:---------------------------")
35

36 while j < STROBE_NUMBER:
37 rand_index = random.randrange(0, list_length-1, 1)
38 if (("/".join((fault_list[rand_index].split("/"))[:-1])) not in

repeated_cells):ñ→

39 strobe_list.append(fault_list[rand_index])
40 repeated_cells.append("/".join((fault_list[rand_index].split ⌋

("/"))[:-1]))ñ→

41 j += 1
42 print("/".join(fault_list[rand_index].split("/")[:-1]))
43 print(rand_index)
44 else:
45 print("ERROR: the faultlist is smaller than the number of strobe we

want to insert")ñ→

87

Implementation

46 print(" please select a value for STROBE_NUMBER lower than",
list_length)ñ→

47

48 # Create the list of random strobing points
49 with open(OUTFILE_PATH, "w") as outfile:
50 outfile.writelines(strobe_list)
51

52 infile.close

The script begins by importing the Python’s standard library module import random.
Next, it defines INFILE_PATH which is the input fault list path, OUTFILE_PATH which
is the output file path, and finally STROBE_NUMBER which is the variable that sets the
number of random locations to be selected from the fault list. A first loop parses the fault
list, extrapolating each fault injection location its corresponding design path, and saving
it in a temporary list (fault_list). Finally, a second loop is used to select random
entries from strobe_list, which are later written in the output text file. Since the
fault list reports the faults injected at the pins (input or output ports) of cells, in case the
random selection picks two locations of the same cell (for example, it selects both an input
and the output port of the same cell), the fault simulation stops due to an error. The
workaround to this problem is to create at the beginning an empty list (repeated_cells)
and at each location randomly picked, the name of the visited cells is appended inside
the list, so that the next time a different port of the same cell is selected, this choice is
discarded and a new random selection is performed. In conclusion, the script writes a text
file, random_strobe_list.txt, listing a random subset of nets in the top-level module’s
design hierarchy. This file is later read by Full_seq_ATPG.tcl to insert those nets as
additional test points for the fault simulation.

Full_seq_ATPG.tcl

1 ###
2 # Mauro Lubrini
3 # Date: 5/06/25
4 # Description: Tcl script to perform full_sequential_ATPG on the defined
5 # DESIGN_TOP module. Random test points are inserted as additional PO
6 ###
7

8 set NETLIST "../../pd/synth/cva6_synth.v"
9 set TECHLIB1 "../../pd/synth/tech/NangateOpenCellLibrary.v"

10 set TECHLIB2 "../../pd/synth/tech/NangateOpenCellLibrary_fixed.v"
11 set DESIGN_TOP "ex_stage_16_864949"
12 #set DESIGN_TOP "alu__864949"
13 #set DESIGN_TOP "ex_stage_16_864949"
14

15 set in_file_path "./random_strobe_list.txt"
16 set connected_nets ""
17

88

4.3 – Post-synthesis observation points insertion and ATPG based fault simulation

18

19 # -- Basic ATPG command sequence
20 set_messages -log atpg_logfile -replace
21

22 # -- Read design and libraries
23 read_netlist $NETLIST
24

25 read_netlist $TECHLIB1 -library
26 read_netlist $TECHLIB2 -library
27

28 ###
29 # -- tp insertion and connection to PO
30 set file_i_id [open $in_file_path r]
31

32 while {[gets $file_i_id line] != -1} {
33

34 if {"$line" ne ""} {
35

36 #Exteract only the net path
37 puts "Debug-----------------------------"
38 puts "$line"
39 append connected_nets "$line\n"
40

41 # connect tp points to po
42 add_net_connections po "$line"
43 }
44

45 }
46

47 #Close files
48 close $file_i_id
49

50 ###
51

52 # -- Build design model
53 set_build -nodelete_unused_gates
54 run_build_model ex_stage_16_864949
55 #to check the number of connections to PO
56 report_net_connections > report_connections.txt
57

58

59 # -- Define clocks and pin constraints
60 add_clocks 0 clk_i
61 add_clocks 1 rst_ni
62

63 # -- perform DRC checks
64 run_drc
65 report_rules -fail
66

89

Implementation

67 # -- set the number of threads
68 set_atpg -num_threads 0
69 set_simulation -num_threads 0
70

71 # -- set simulation options
72 set_faults -model stuck
73 add_faults -all
74 set_patterns -internal
75 set_atpg -full_seq_atpg -patterns 5000
76 run_atpg -auto_compression full_sequential_only

ñ→

77

78 # -- save fault list and patterns
79 write_pattern patterns.stil -format STIL -replace
80 write_patterns patterns.bin -replace
81 set_faults -fault_coverage
82 report_summaries sequential_depth
83 report_faults -all > fault_list.txt

This script is the same as the one for the SpyGlass selected test points. The only
differences are in the test point insertion section, where this time, instead of the SpyGlass
test point report, the random_strobe_list.txt is parsed.

4.3.4 Hierarchy flattening

From an analysis of the suggested test points returned by SpyGlass analysis (Appendix
B.1.1), it is evident that, inside the Execution Stage, the tools target mainly the ALU
module. As already exposed in the introduction to the CVA6 architecture in Section 2.2.4,
the ALU module is a purely combinational circuit, while the execution stage, having mul-
tiple submodules equipped with an FSM machine, is a sequential circuit. This difference is
likely affecting SpyGlass capability to identify optimal locations for observing the internal
state of the system. Indeed, examining the SpyGlass test point report on the execution
stage module reveals that most of the selected test points are still related to the ALU
rather than other modules. This leads to the hypothesis that SpyGlass algorithms are
more effective on combinational circuitry. To validate this idea, a new approach has been
followed: all the execution stage design has been flattened and then separated by grouping
the combinational part from the sequential one. So, as the final result, depicted in Figure
4.7, there will be only two new modules inside the execution stage: one composed only by
combinational circuitry (like buffer, logic gates, multiplexers) and another one sequential,
containing only memory elements (like registers, flip flops, lathces).

90

4.3 – Post-synthesis observation points insertion and ATPG based fault simulation

ALU CSR buffer

Mult/div Branch
Unit

FSM
LSU

EX STAGE

CVA6

Frontend ID CommitIS

D-FF

EX STAGE

CVA6

Frontend ID CommitIS
Combinational logic

Flattening

Figure 4.7: Flattening of the execution stage

By doing so, it is possible to make SpyGlass analyze the whole execution stage logic
as it is a single big combinational block. Therefore, the optimal test point analysis will
be executed only on the combinational block, while fault simulation through ATPG is
performed throughout the entire execution stage, including the sequential block as well.

Synthesis flattening

The flattening process is performed during synthesis using Design Compiler with a few
additional line inserted in the compilation step. In the following is represented a piece of
code from cva6_synth.tcl showing the additional lines of commands added.

80 #==
81 # COMPILE THE GATE LEVEL DESIGN
82 #==
83 compile_ultra -no_boundary_optimization
84

85 change_names -rules verilog -hierarchy
86

87

88 #Perform flattening
89 current_instance ex_stage_i

91

Implementation

90 ungroup -all -flatten -prefix C_ -simple_names
91 group -logic -design_name comb_block

After launching compile_ultra, the flattening of the execution stage takes place.
With current_instance the ex_stage_i module is selected, and with the command
ungroup all the modules inside the ex_stage_i instance are flattened out. In particular,
to recognize more easily the components being flattened, they have all been assigned with
“C_” as a prefix. Next, with the command group -logic all, the combinational logic is
grouped together under the name of comb_block.

4.4 Post-synthesis observation points insertion and
fixed functional test patterns fault sim

To have a more equal and coherent comparison between simulations, the use of a univocal
set of test patterns is preferred. Holding the test patterns fixed in each scenario, while
running the three simulations, it shows which one of the two strobing methods works
best under the same simulation conditions, performing a comparison uninfluenced by any
possible asymmetry in the simulation run. The main workflow remains the same as the
ATPG one previously described, with the only difference that now fault simulations are
performed on the same set of test patterns formerly generated from an ATPG campaign
and exported as a STIL file (Figure 4.8). This pattern database is imported directly into
TMAX during the fault simulation flow and used without eliminating the need to run
a new ATPG campaign. The fault-simulation procedure itself remains unchanged: test
points are inserted (or, in the no-test-points case, a masking procedure is applied), and
the simulation is then executed without any prior ATPG run.

fsim

Tmax ATPG

DC synthesis Spyglass analysis

dft_unified_
testpoints.rpt

Full_seq_ATPG.tcl
patterns.bin

Fsim report

Design files
(.v, .lib)

Figure 4.8: Fault simulation flow

92

4.4 – Post-synthesis observation points insertion and fixed functional test patterns fault sim

The same procedure is also followed for the randomly selected test point fault simula-
tion. The workflow (Figure 4.9) is identical to that of the ATPG process, with the only
difference being that now the fault simulation uses the same test patterns across all three
fault simulations10.

fault list

randomize_strobe_
selection.py

DC synthesis

Full_seq_ATPG.tclpatterns.bin

Fsim

Tmax ATPG
Fsim report

Design files
(.v, .lib)

Figure 4.9: Fault simulation flow

Full_seq_ATPG.tcl

This code is used to run a sequential fault simulation using an external set of input test
pattern

1 ##
2 # Mauro Lubrini
3 # Date: 5/06/25
4 # Description: Tcl script to perform the fault simulation given a set of

input patternsñ→

5 ##
6 set NETLIST "../pd/synth/cva6_synth.v"
7 set TECHLIB1 "../pd/synth/tech/NangateOpenCellLibrary.v"

10For “three simulations” is intended the fault simulation on the raw design, the fault simulation on
the design with SpyGlass selected test points and the fault simulation executed with a random set of
test points.

93

Implementation

8 set TECHLIB2 "../pd/synth/tech/NangateOpenCellLibrary_fixed.v"
9 #DESIGN_TOP: is the top module on which I want to perform my ATPG

10 #DUT is the module on which I run spyglass on, so the one in which I want
to insert the tpñ→

11 set DESIGN_TOP "ex_stage_16_864949"
12 set DUT "ex_stage_16_864949"
13 #set DESIGN_TOP "alu__864949"
14

15 set in_file_path "../spyglass/spyglass-1/$DUT/dft/dft_dsm_random_resista ⌋
nce/spyglass_reports/dft/dft_unified_testpoints.rpt"ñ→

16 set out_file_path "./connected_nets.txt"
17 set connected_nets ""
18

19

20 # -- Basic ATPG command sequence
21 set_messages -log atpg_logfile -replace
22

23 # -- Read design and libraries
24 read_netlist $NETLIST
25

26 read_netlist $TECHLIB1 -library
27 read_netlist $TECHLIB2 -library
28

29 ##
30 # -- tp insertion and connection to PO
31 set file_i_id [open $in_file_path r]
32

33 while {[gets $file_i_id line] != -1} {
34

35 #Select only the lines containing the tp list (they start with a
number)ñ→

36 if {[regexp {^[0-9]} $line]} {
37 if {"$line" ne ""} {
38

39 #Exteract only the net path
40 set net "[lindex [split $line] 6]"
41 append connected_nets "$net\n"
42

43 # connect tp points to po
44 add_net_connections po "$net"
45 }
46 }
47 }
48

49 #Print output files (for debug purpuses)
50 set file_o_id [open $out_file_path w]
51 puts $file_o_id $connected_nets
52

94

4.4 – Post-synthesis observation points insertion and fixed functional test patterns fault sim

53 #Close files
54 close $file_i_id
55 close $file_o_id
56

57 ##
58

59 # -- Build design model
60 set_build -nodelete_unused_gates
61 run_build_model $DESIGN_TOP
62 #to check the number of connections to PO
63 report_net_connections > report_connections.txt
64

65 # -- Define clocks and pin constraints
66 add_clocks 0 clk_i
67 add_clocks 1 rst_ni
68

69 # -- define scan chains & STIL procedures, perform DRC checks
70 run_drc
71 report_rules -fail
72

73 # -- perform the fault simulation using external patterns
74 set_faults -model stuck
75 add_faults -all
76 set_patterns -ext patterns.bin
77 run_fault_sim -sequential
78

79 # -- reports
80 set_faults -fault_coverage
81 report_patterns -profile
82 report_faults -summary
83 report_summaries
84 #report_faults -all -verbose

The script is very similar to the one previously described in the past section, it has a
central loop which reads an external file containing the list of strobe points to insert and it
connects those points to additional primary outputs. What changes is the commands used
to perform the fault simulation: starting with set_faults -model stuck the stuck-at
fault model is selected, then with add_faults -all faults are added at all potential fault
sites in the design to the fault list. Next, with set_patterns -ext patterns.bin the
binary version of the STIL file is imported, and finally with run_fault_sim -sequential
the fault simulation is started specifying the use of a simulation algorithm in sequential
mode. The patterns generated during ATPG have a trend of application which appears
to be an alternating sequence between primary output and primary input; sometimes
between the two toggles with V { "clk_i"=P; }11 and more rarely the reset signal with
V { "rst_ni"=P; }. The fact that the clock signal doesn’t switch at each input pattern

11P is defined in the WaveformTable as: {P{ ’0ns’ D; ’50ns’ U; ’80ns’ D; }}.

95

Implementation

application leads to believe that the ATPG algorithms with those patterns try to target
mainly the combinational logic.

Masking.tcl

Since the patterns generated during ATPG have a length that depends on the number
of primary outputs of the design under test, the STIL file generated from the ATPG
with test points (so with additional PO) and the one without test points have different
pattern lengths, leading to an incompatibility that, if the same patterns are adopted,
generates an error during the fault simulation. So, the workaround to this problem was
to always consider the design with the additional PO and its set of patterns, then to fault
simulate the design without test points, a masking of the supplementary PO is performed;
masking.tcl does exactly this, it retrieves the added PO from report_connections.txt
and masks them with the command add_po_mask. In this way, even if the STIL files
account for an extended set of PO, only the standard outputs of the DUT are used to
compute the fault analysis.

1 ##
2 # Mauro Lubrini
3 # Date: 5/06/25
4 # Description: Tcl script to perform the masking of the added PO
5 ##
6

7 set in_file_path "report_connections.txt"
8 set file_i_id [open $in_file_path r]
9

10 while {[gets $file_i_id line] != -1} {
11

12 if {"$line" ne ""} {
13 #Exteract only the net path
14 set port "[lindex [split $line] 5]"
15 puts "Debug-----------------------------"
16 puts "$port"
17

18 # connect tp points to po
19 add_po_mask "$port"
20 }
21

22 }
23

24 #Close files
25 close $file_i_id

96

Chapter 5

Results

In this Chapter, the focus is on analyzing the results obtained from the fault simulations
executed during the different workflows described in Chapter 3.

Is worth to remember that the main goal of this thesis is to assess the effectiveness of
static circuit analysis tool, like SpyGlass, in identify optimal locations to insert test points
for the sake of improving test coverage metric. So to validate this and confirm the effec-
tiveness of the proposed methodology, in each different study cases, the SpyGlass approach
should outperform the random one, otherwise the methodology cannot be considered a
valid solution for the test point insertion problem. To validate the proposed methodology,
the SpyGlass-guided approach must outperform the random insertion method Failure to
demonstrate superior performance would invalidate the method as a viable solution for
the test point insertion problem.

For each proposed study cases, three tests are performed: one for SpyGlass suggested
test points, one for the case with no test points, and one for the randomly selected ones;
so in most of the graphs, three curves, representing the three different test cases, are
showed, with each curve having a specific color code: the dark blue curve represents
the results obtained with the insertion of the SpyGlass test points, the light blue curve,
instead, represents the results obtained without any additional test points, while the pink
one is related to the randomly selected test points case. For the random case, to obtain
statistically fair and representative data, allowing for meaningful analysis of variability and
significance, ten different simulations, each one with new randomly selected test points,
were performed and then merged by computing the mean value. In addition to that, to
have a better statistical representation of the random case, the standard deviation between
the ten simulation run has been computed. This statistical spread is then depicted on the
graph using conventional visualization methods, such as error bars or a shadowed band
around the mean. The formula used to compute the standard deviation is:

S =

öõõô 1
N − 1

NØ
i=1

|Ai − µ|2 (5.1)

Where N is the number of element in the dataset, Ai is the i-t element of the data set
and µ is the mean value defined as:

97

Results

µ = 1
N

NØ
i=1

Ai (5.2)

In this case, where the standard deviation is plotted, the dataset is composed by the
test coverage computed in that point by the N simulation run.

5.1 SBST with observation point inserted at RTL
level

In this set of simulations, SpyGlass analysis has been performed at the RTL level to look
for the optimal location to insert the observation points (more details in Section 4.2) and
the DUT has been exercised by running an SBST simulation where a sequence of random
assembly instructions, selected from the CVA6 ISA (rv64imafdc1), has been executed.
Finally using the system response obtained from the SBST procedure, a fault simulation
has been performed through a tool from Synopsys called VC-Z01X.

5.1.1 Observation points on ALU

For this run of simulations, the test points were allowed to be inserted only in the ALU
module, which is contained inside the Execution Stage. Graph 5.1 shows the two curves
that plots the coverage obtained with the test points inserted with SpyGlass (blue curve),
and the coverage obtained by randomly selecting the same number of test points (pink
curve); on the y-axis it is represented the test coverage, while on the x-axis the number
of supplementary test points. In this case, five different simulations with 0, 50, 100, and
169 test points have been computed. By analyzing the RTL files directly, SpyGlass was
unable to detect more then 169 optimal test locations. The graph features error bars
for the random curve, showing the standard deviation computed on the 10 test coverage
results computed with Equation 5.1. In Table 5.1, the numerical results of the latter fault
simulations with the difference (delta ∆) between the two are shown.

Graph 5.1, shows a clear separation between the SpyGlass and the random one, with
the latter having a higher observation coverage. Indeed, standard deviation of the random
case never overlap the SpyGlass curve, statistically confirming the separation between the
two curves. This seems to affirm the effectiveness of the method as it reached 47.08%
of maximum test coverage, using 169 test points, with an improvement over the random
approach of 6.58%.

1rv64 means that the ISA instructions supports 64-bit address space, while the following letters
indicate the ISA extension instruction types: “i” stands for integer, “m” for integer multiplication and
division, “a” for atomic instructions, “f” for single-precision floating-point, “d” for double-precision
floating-point and “c” for 16-bit compressed instructions

98

5.1 – SBST with observation point inserted at RTL level

Inserted test points 0 10 50 100 169
SG tp cov [%] 36.84 43.73 44.21 45.13 47.08

Random tp cov [%] 36.84 38.20 38.63 38.15 40.50
∆ [%] 0 5.53 5.58 6.98 6.58

Table 5.1: Table representing the coverage results of Fig.5.1

Patterns
0 20 40 60 80 100 120 140 160 180

C
ov
er
ag

e
[%

]

34

36

38

40

42

44

46

48

ALU fault simulation coverage comparison
Coverage as a function of the number of test points

36.84

43.73

44.21

45.13

47.08

36.84

38.2

38.63

38.15

40.5

SG tp
Random tp

Figure 5.1: Coverage comparison between SG and random test points insertion in the
ALU

5.1.2 Observation points on Execution Stage
For this run of simulations, the test points were allowed to be inserted in whole Execution
Stage module. Graph 5.2 shows the two curves that plot the test coverage obtained
with SpyGlass suggested test points (blue curve), and the coverage obtained by randomly
selecting the same number of test points (pink curve). On the y-axis it is represented
the test coverage, while on the x-axis the number of supplementary test points has been
inserted. In this case, five different simulations with 0, 50, 100, and 250 test points have
been computed. In this case, by analyzing the RTL files directly, SpyGlass was unable
to detect more then 250 optimal test locations. The graph features error bars showing
the standard deviation of each data set computed as in Equation 5.1. In Table 5.2, the
numerical results of the latter fault simulations with the difference (delta ∆) between the
two are shown.

By reading Graph 5.2, the following consideration can be made: the first being that
the SpyGlass curve largely overlap within the standard deviation band of the random test

99

Results

point insertion case, meaning that it is not possible to declare one method better than
the other; the second is that the maximum coverage reached during fault simulation is
extremely low for both simulations. The coverage value obtained in these simulations
is not sufficiently high to consider these results significant and reliable. Most likely, a
problem lies in either the effectiveness of the stimulus applied to the DUT, which hides
the differences between the two different simulations or in the effectiveness of the test
point placement.

Patterns
0 50 100 150 200 250

C
ov
er
ag

e
[%

]

9

9.5

10

10.5

11

11.5

EX-Stage fault simulation coverage comparison
Coverage as a function of the number of test points

9.72

10.23

10.14

10.29

10.47

9.72

9.89 9.9

10.55

10.85

SG tp
Random tp

Figure 5.2: Coverage comparison between SG and random test points insertion in the ES

Inserted test points 0 10 50 100 250
SG tp cov [%] 9.72 10.23 10.14 10.29 10.47

Random tp cov [%] 9.72 9.89 9.90 10.55 10.85
∆ [%] 0 0.34 0.24 −0.26 −0,38

Table 5.2: Table representing the coverage results of Fig.5.2

5.2 ATPG with observation points inserted at netlist
level

In this set of simulations, a new approach has been explored, running an ATPG campaign
to compute the input patterns to test the DUT. So the option devised was to rely on
the capability of TestMax to generate, using full sequential algorithms, a sufficiently good

100

5.2 – ATPG with observation points inserted at netlist level

set of test patterns capable of raising to higher values the test coverage obtained during
fault simulations. In the following sections, three case studies were assessed: the first
one is a fault simulation executed with the test points allowed to be inserted only within
the ALU, the second one with the test points inserted within the whole Execution Stage
module, and lastly, after a separation of the combinational and sequential logic, a fault
simulation was performed on the entire Execution Stage but with the test points restricted
only within the combinational circuit. In each different scenarios a total of 200 test points
have been implemented while the target number of ATPG generated test pattern has been
set to 5000; however, depending on the location of the inserted test points, many ATPG
campaigns stalled much earlier. The random test point insertion curve was calculated
by averaging the test coverage from ten separate fault simulations, each using a new,
randomly selected set of test points. For all the following study case, the test patterns
has been applied directly to the Execution Stage PI and the system response read at its
PO.

Regarding the ALU, since it is a simple and purely combinational block, regardless the
usage of additional test points, was able to reach nearly 100% in test coverage so, for this
reason, no further investigation has been carried out on the ALU module itself since it
would be impossible to distinguish any discrepancies between the different approaches.

5.2.1 Observation points on Execution Stage

During these simulations, the additional test points were allowed to be inserted in all the
Execution Stage module. Graph 5.3 represents on y-axis the test coverage, while on x-axis,
the number of test patterns generated during ATPG campaigns. It worth remembering
that in this study case, the ATPG runs were executed on each individual netlist relative
to that specific approach with the eventual test point already been implemented. The
target value for the generated patterns was set to 5000, but accordingly to the different
configuration of the DUT, some ATPG campaign stalled before reaching that value; in
this case, the limiting simulation was the random test point insertion which stopped
at around 4500 patterns2. Contrary to expectation, Graph 5.3 demonstrates that test
points selected by SpyGlass provided negligible improvement in test coverage, essentially
overlapping with the base case, while surprisingly, the random selection of test points
yielded a slightly higher coverage with a gap to the SpyGlass curve of 4.63% after 4500
test patterns.

2To avoid misunderstanding, it’s important to clarify that “random simulation” refers to the mean
value computed across ten different sets of simulations. This means the maximum number of patterns
reached by the random simulation is limited by the shortest simulation among those ten.

101

Results

SG tp [%] Random tp [%] No tp [%]
Maximum coverage 67.53 72.16 67.68
∆ from max NO tp −0.15 4.48 -
∆ from max RD tp −4.63 - -

Table 5.3: Table representing the coverage results of Fig.5.3

Test pattern
0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
ov

er
ag

e
[%

]

0

10

20

30

40

50

60

70

80

ATPG based fault simulation test coverage comparison
SG analysis on EX-stage, FSIM on EX-stage, 200tp

SG tp
No tp
Random tp

Figure 5.3: ATPG based fault simulation of the EX-Stage, with TP inserted in the EX-
Stage

5.2.2 Observation points on ALU
In this simulation campaign, the test points insertion has been allowed only in the ALU to
assess its weight and relevance in the test coverage computation of the Execution Stage.
Given that SpyGlass primarily targets locations within the ALU, while ignoring others, it
is worth investigating whether this placement strategy is justified by the ALU containing
the majority of hard-to-observe faults. This confirmation would validate the high concen-
tration of test points in that specific module. Proving this would validate the effectiveness
of adding supplementary test points only confined inside the ALU and their contribution
in the overall Execution Stage coverage computation. Graph 5.4 shows on the y-axis the
test coverage, while on the x-axis the number of test patterns generated during the ATPG
campaign. The pattern target value was set to 5000, but the comparison has been lim-
ited by the SpyGlass run, which stopped at 4728 patterns. The results demonstrate that
the ALU itself does not add any relevant benefits in the test coverage computation as

102

5.2 – ATPG with observation points inserted at netlist level

all three curves are overlap. This results demonstrate that test point insertion restricted
exclusively within the ALU yields to no improvement in the test coverage metric; this
holds true for both the SpyGlass and random insertion methods.

Figure 5.4: ATPG based fault simulation of the EX-Stage, with TP inserted in the ALU

SG tp [%] Random tp [%] No tp [%]
Maximum coverage 69.02 67.98 67.88
∆ from max NO tp 1.14 0.1 -
∆ from max RD tp 1.04 - -

Table 5.4: Table representing the coverage results of Fig.5.4

5.2.3 Observation points on flattened Execution Stage
The final evaluation of this ATPG approach was conducted on a flattened design (for
more information see Section 4.3.4). The primary objective was to validate SpyGlass’s
effectiveness on combinational logic. With the Execution Stage fully flattened, SpyGlass
is able to analyze the entire module’s combinational logic rather than being limited to the
ALU one, allowing for a better placement of the test points enhancing the test coverage
evaluation. Graph 5.5 shows on the y-axis the test coverage, while on the x-axis the
number of test patterns generated during the ATPG campaign. The target value for the
generated patterns was set to 5000, but the comparison has been limited by the SpyGlass
at 4482 patterns. The results show an interesting crossover behavior: up to 3000 test
patterns, the trend mirrors previous findings with the random approach being superior

103

Results

with respect to the SpyGlass one; but beyond 3000 patterns, ATPG algorithms seem to
exploit the SpyGlass test points better, adding a significant contribution in increasing the
fault coverage, making it surpass the random curve. So, beyond a critical pattern count,
the optimal SpyGlass test points seem to show a slight but clear improvement over the
random ones. While this gap is not impressive, the curve seems to have an upward trend,
hopefully leading to a more significant divergence.

Test pattern
0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
ov

er
ag

e
[%

]

0

10

20

30

40

50

60

70

80

ATPG based fault simulation test coverage comparison
SG analysisis on EX-stage combinational logic, FSIM on EX-stage, 200tp

SG tp
No tp
Random tp

Figure 5.5: ATPG based fault simulation of the EX-Stage, with TP inserted in the EX-
Stage combinational logic

SG tp [%] Random tp [%] No tp [%]
Maximum coverage 75.27 71.59 66.56
∆ from max NO tp 8.71 5.03 -
∆ from max RD tp 3.68 - -

Table 5.5: Table representing the coverage results of Fig.5.5

5.3 Fault simulation with ATPG test pattern, obser-
vation point at netlist level

This campaign test is very similar to the one executed before in Section 5.2.2, with the
only difference being in the input stimuli adopted. The input patterns are kept fixed

104

5.3 – Fault simulation with ATPG test pattern, observation point at netlist level

for each of the three fault simulations within the same test scenario. This is achieved
by exporting the generated patterns obtained from the previous ATPG campaigns and
load them as external functional test patterns while launching the fault simulation. By
holding the pattern set fixed, we can isolate the intrinsic effectiveness of the inserted test
points, avoiding confounding from pattern-specific effects that might underuse them. The
test patter chosen to run the fault simulation in each one of the following study cases,
are taken from an ATPG campaign executed on a modified netlist containing a random
set of test points. The reason behind this choice is to avoid having a set od test pattern
polarized towards a specific test point configuration. Indeed, since at every new fault
simulation run, a new set of test point is inserted, the specific test vectors adopted would
not be created in any of the simulated configurations, being in this way a more neutral
and general set of test patterns. These test patterns has been applied directly to the
Execution Stage PI, while the system response has been read at its PO.

5.3.1 Observation points on ALU

Graph 5.6 shows on the y-axis the test coverage, while on the x-axis, the number of test
cycles executed during the fault simulation. The simulations in this scenario confirm the
results found previously in Section 5.2.2, where the additional test points inserted only in
the ALU, whether SpyGlass or random test points insertion is used, brings no benefits in
the improvement of the Execution Stage observation coverage. Zooming on the curves, it
is possible to observe that for the whole length of the curves, the randomly selected test
points have higher coverage with respect to the SpyGlass one, but the difference between
the two curves is so minimal that it is impossible to state that one is better than the other.
Moreover, comparing the latter two curves with the case without added test points, we
can see how, for the purpose of incrementing the Execution Stage coverage, the test points
inserted only in the ALU are quite ineffective.

SG tp [%] Random tp [%] No tp [%]
Maximum coverage 67.5 67.18 66.83
∆ from max NO tp 0.67 0.35 -
∆ from max RD tp 0.32 - -

Table 5.6: Table representing the coverage results of Fig.5.6

105

Results

Test cycle
0 50 100 150 200 250 300 350 400 450

C
ov
er
ag
e
[%
]

0

10

20

30

40

50

60

70

Common test pattern set fault simulation
SG analysis on ALU, FSIM on EX-stage, 200tp

SG tp
No tp
Random tp

Figure 5.6: Fault simulation of the EX-Stage run on common test patterns with TP
inserted in the ALU

5.3.2 Observation points on Execution Stage

Graph 5.7 shows on the y-axis the test coverage, while on the x-axis, the number of
test cycles executed during the fault simulation. The data clearly demonstrates that the
random test point insertion is superior, providing a 11.62% increment in test coverage
relative to the coverage achieved using the SpyGlass approach. This aligns with the trend
observed from the former simulation campaign of Section 5.2. Analyzing the SpyGlass-
selected optimal test point list (Appendix B.1.1) is possible to observe that most of them
are related to the ALU module and only a few of them are picked from other locations
in the Execution Stage. So it is no surprise that, similarly to Graph 5.6, the SpyGlass
test coverage is basically overlapped with the standard test coverage with no additional
observation points inserted.

SG tp [%] Random tp [%] No tp [%]
Maximum coverage 41.39 53.01 41.22
∆ from max NO tp 0.17 11.79 -
∆ from max RD tp −11.62 - -

Table 5.7: Table representing the coverage results of Fig.5.7

106

5.3 – Fault simulation with ATPG test pattern, observation point at netlist level

Test cycle
0 50 100 150 200 250 300 350 400 450

C
ov
er
ag
e
[%

]

0

10

20

30

40

50

60

70

Common test pattern set fault simulation
SG analysis on EX-Stage, FSIM on EX-stage, 200tp

SG tp
No tp
Random tp

Figure 5.7: Fault simulation of the EX-Stage run on common test patterns with TP
inserted in the EX-Stage

5.3.3 Observation points on flatten Execution Stage

Similar to before, a fault simulation has been performed on the flattened Execution Stage,
with the combinational and sequential logic separated. Graph 5.8 shows on the y-axis the
test coverage, while on the x-axis the number of test cycles executed during the fault
simulation, and for this test case, the results seem promising. With respect to the random
insertion method, the use of SpyGlass-selected test points resulted in an evident increase
in test coverage, reaching an improvement of 6.41% over the random mean value curve,
suggesting that SpyGlass successfully identified critical, difficult-to-observe nodes where
testability measures have the greatest impact. If a deeper analysis is performed, it is
possible to see that the standard band deviation of the random methodology is actually
pretty close, if not even overlapped, with the SpyGlass curve, suggesting a not clear
separation between the two methodologies.

SG tp [%] Random tp [%] No tp [%]
Maximum coverage 58.71 52.30 42.45
∆ from max NO tp 16.26 9.85 -
∆ from max RD tp 6.41 - -

Table 5.8: Table representing the coverage results of Fig.5.8

107

Results

Test cycle
0 50 100 150 200 250 300 350 400 450

C
ov
er
ag
e
[%
]

0

10

20

30

40

50

60

Common test pattern set FSIM
FSIM on .atten EX-stage, 200tp

SG tp
No tp
Random tp

Figure 5.8: Fault simulation of the EX-Stage run on common test patterns with TP
inserted in the EX-Stage combinational logic

108

Chapter 6

Conclusion

This chapter presents the final conclusion and discussion of the obtained results, including
a potential justification for the findings. The Synopsys team provided crucial support in
justifying some results, which was essential for the final analysis and commentary on
SpyGlass performance.

6.1 Results analysis and conclusion
To summarize, in this thesis work, a study on evaluating the effectiveness of a static
circuit analysis tool for strategically inserting test points has been pursued. The goal
was to determine if this methodology could provide a better solution compared to the
simple random selection of points in the test point placement strategy. Different workflows
have been arranged, trying to investigate the effectiveness of the proposed methodology.
Starting from the first results coming from the RTL approach Section 5.1, Graph 5.1
showed promising results where the use of SpyGlass to analyze the ALU module allowed
for obtaining notably higher test coverage with respect to the random insertion of test
points. The two curves are clearly separated, so the results seem to validate the efficacy
of the proposed methodology. Moving to a much more complex design like the Execution
Stage, simulations did not show such promising results. Indeed, from Graph 5.2 is possible
to observe the two curves being basically overlapped with no notable distinction between
the two; moreover, the absolute test coverage value reached in both cases is extremely
low, being in the order of 10%. Very likely, a not sufficiently accurate SBST test program
affects the fault detection, providing an overall low test coverage as the architecture cannot
be sufficiently tested leading to many faults uncovered ultimately hiding the differences
between the two different approaches. The insufficient stimulation of the Execution Stage
by the test program used to perform the SBST fault simulation could be solved by creating
an ad-hoc list of assembly instructions targeting specific modules of the Execution Stage;
even if this may seem straightforward, is a trivial job, since the Execution Stage (described
in section 2.2.4), other than computing numerical calculation, it is also responsible for
managing branches and memory accesses. So, in order to exercise the Execution Stage
properly, it would require to write a code capable of generating every possible data and

109

Conclusion

control hazards. The coverage being so low also means that probably, many components
of the DUT are not even reached, and if test points are inserted in those locations, they
are clearly useless to detect faults, so it is not possible to evaluate the effectiveness of the
inserted test points since with this approach is not clear if these are actually being used
during fault simulation or not.

To better test the Execution Stage, instead of an SBST simulation, a new methodology
has been pursued by performing an ATPG campaign capable of exercising the architecture
much more extensively (Section 5.2); indeed, from the result obtained, a higher overall
test coverage of the Execution Stage could be reached. This approach allowed for better
testing of the architecture, giving the opportunity to appreciate the differences between the
different methodologies. After inserting test points throughout the Execution Stage and
performing a fault simulation on it, Graph 5.3 clearly shows that the random approach,
even if slightly, yielded to better results with respect to the more sophisticated SpyGlass
method. SpyGlass results, in fact, were similar to the no-test-points baseline and this
suggests that, in this case, SpyGlass was not capable of effectively selecting a set of
locations capable to enhance the detection of faults. This result can be justified by
examining the SpyGlass test points list (Appendix B.1.1), where compared to a random
selection of test points (Appendix B.1.2), it is evident that most of the selected locations
are restricted solely to the ALU, being only 12 out of 200 outside the module. This
can lead to two possible hypotheses: the first being that the ALU is a critical module
inside the Execution Stage for the test coverage computation, but this is very unlikely,
since the result shows exactly the opposite; while the second being that SpyGlass is very
good at analyzing combinational logic rather than sequential one, so all its efforts are
targeted mainly towards the ALU. Under this last hypothesis, it is clear why the random
approach is the best one, as it allows for selecting points all over the Execution Stage
rather than being limited only to the ALU (An example in: Appendix B.1.2). This,
of course, brings an improvement in the observation coverage because a higher variety
of points are used and more places of the Execution Stage are strobed. To confute the
relevance of the ALU module in the computation of the Execution Stage test coverage,
an additional experiment has been performed: in Graph 5.3, the simulations have been
executed by restricting the locations chosen as additional test points only within the ALU
module. Whether they are selected by SpyGlass or randomly chosen, the use of additional
test points showed no additional benefit in test coverage improvement. So, now it is clear
why SpyGlass suggests the optimal test points mainly on the ALU module rather than
in other parts of the design: the ALU being a purely combinational block is intrinsically
more suited to be analyzed from SpyGlass’s algorithms, which end up suggesting only
locations relative to that module. Indeed SpyGlass assumes to have full accessibility to
the I/O of the sequential circuits (something typical and true in a scan-based approach),
but in functional testing, this assumption is not true anymore. For this reason, a third test
has been pursued, dividing the internal Execution Stage logic between the sequential and
combinational parts and making SpyGlass analyze only the latter. In this way, the tool is
used in its best possible working condition; indeed, Graph 5.5 shows a potential benefit
in using SpyGlass over a random approach: for the first sets of patterns, up to 3000, the
test coverage was still dominated by the randomly selected test points, then, from that
point forward, the ATPG algorithms were capable to exploit the SpyGlass selected test

110

6.2 – Final conclusions

points and improve strongly the test coverage, creating a step which overcomes the random
case. Still, Spyglass methodology cannot provide extraordinary benefits compared to the
random one, as they only differ by 3.69%. To better evaluate the benefits of using specific
tools to analyze and aid the test point selection, a final test is made by performing a fault
simulation using a fixed set of ATPG-generated patterns for all the three fault simulation
cases performed in each scenarios. In the case of the test points restricted to the ALU
module (Graph 5.6), the behavior aligns with the expectations: being the ALU just a
small piece in the whole Execution Stage architecture, the additional implementation
of test points with any given methodology, cannot actually provide an improvement in
the test coverage results, so all the three curves are overlapped. Concerning the case
where the test points are allowed to be spread all across the Execution Stage (Graph
5.7), the behavior of the curves reflects the comments stated before, where the adoption
of the random test points approach leads to better results since the selected locations,
contrary to SpyGlass analysis, are not localized to only one location. Indeed, the random
method shows a better localization of the observation points, leading to a test coverage
improvement over the SpyGlass method of 11.79%. The tool, as expected, does not
provide any additional aid in fault detection, and it yields to results quite identical to
those in the case with no additional test points. Finally, a last test has been performed
by computing the fault simulation on the flattened Execution Stage with separation of
the combinational and sequential logic. This case could, for the first time, validate the
benefits of using SpyGlass as a tool to detect possible optimal observation points, as their
test points could provide a higher coverage. Indeed, Graph 5.8 shows that the test coverage
reached with the SpyGlass elected test points performs better than the random one by
6.41%. However, looking at the standard deviation band of the random methodology, a
deeper analysis shows that the SpyGlass curve often runs very close, and even overlaps,
the upper band limit. This suggests that, while the random methodology provides lower
test coverage on average, the probability that a random set of test points could achieve a
coverage level comparable to the systematic SpyGlass approach is not a remote possibility.
So the adoption of a tool like SpyGlass could theoretically help in the test point insertion
when performing a functional testing, but its improvements, for what observed from the
results, are not quite significant with respect to a more simple random insertion strategy.

6.2 Final conclusions

It is clear that a static analysis tool like SpyGlass can be effective only in certain con-
ditions, specifically when working on purely combinational circuits. In fact, as already
stated, SpyGlass’s DfT functionality is to analyze the circuit for scan chain insertion,
which implies that the tool performs its analysis under the assumption that each flip flop
is fully controllable and observable (typical assumptions of a scan-based approach). There-
fore, unlike combinational circuits, running functional simulations on sequential circuits
reveals that the tool’s foundational assumption no longer holds true, limiting SpyGlass’s
effectiveness in those contexts.

In conclusion, this thesis proved that the use of tools like SpyGlass could potentially

111

Conclusion

help to improve the test coverage, but only under specific conditions and use cases. Spy-
Glass performs its analysis under the assumption that each flip-flop in the design has
maximum statistical probability to be controlled or observed, but this supposition does
not hold in a functional approach, where is not certain that result coming from a cone
of logic, controlled by a given functional pattern, is actually sampled by a downstream
flip-flop. To obtain better and more reliable results, this proposed procedure should be
supported with additional techniques that can perform deeper and more detailed statisti-
cal analysis on the controllability and observability of each flip flop of the design, maybe
by adopting reinforcement learning methodologies or similar algorithms.

6.3 Future works
Future work should pursuit a few key areas to enhance the effectiveness of this static anal-
ysis. First, investigate the statistical aspects of SpyGlass tool by attempting to retrieve
significant data from the CUT’s internal statistics. This information could then be used
to guide the SpyGlass analysis in complex sequential modules, where the current static
assumptions are inadequate. Another work that could be assessed is the controllability
study of the circuit: as this work focused only on the observation aspect of fault anal-
ysis, a similar, dedicated case study could be performed for the controllability aspect.
Analyzing controllability in detail could lead to better insights and methods, ultimately
helping to achieve higher test coverage results. Finally, once the statistical and controlla-
bility procedures are fully validated, they could be integrated into existing RTL monitor
insertion workflows. This work will require assessing the significant challenge of manag-
ing SystemVerilog iterative module generation and post-synthesis algebraic functions logic
instantiation.

112

Appendix A

Matlab scripts

A.1 Graph plots
Coverage_plot.m

1 % Initialization and configuration -------------------
2 clear all
3 clc
4 close all
5

6 stmdarkBlue = '#03234B';
7 stmlightBlue = '#3CB4E6';
8 stmpink = '#E6007E';
9 stmyellow = '#FFD200';

10 linewidth = 1.2;
11 linewidth_contour = 0.25;
12 stmpink_rgb = [0.9764705882352941, 0.7490196078431373,

0.8784313725490196];ñ→

13

14 % Variables --
15 fontsize = 15;
16 fontsize_title = 20;
17

18 % 1) DEFINE THE FILE PATH ======================================
19 % File path--
20

21 %Fault on EX, ATPG on EX_STAGE 200tp, 5000 pattern
22 path13 = ".\7_ATPG_ex_200tp\ATPG_5k_ex_sb_clean.txt";
23 path14 = ".\7_ATPG_ex_200tp\ATPG_5k_ex_nsb_clean.txt";
24 filelist5kex = [".\7_ATPG_ex_200tp\5k_1_clean.txt", ...
25 ".\7_ATPG_ex_200tp\5k_2_clean.txt",

".\7_ATPG_ex_200tp\5k_3_clean.txt", ...ñ→

26 ".\7_ATPG_ex_200tp\5k_4_clean.txt",
".\7_ATPG_ex_200tp\5k_5_clean.txt", ...ñ→

113

Matlab scripts

27 ".\7_ATPG_ex_200tp\5k_6_clean.txt",
".\7_ATPG_ex_200tp\5k_7_clean.txt", ...ñ→

28 ".\7_ATPG_ex_200tp\5k_8_clean.txt",
".\7_ATPG_ex_200tp\5k_9_clean.txt", ...ñ→

29 ".\7_ATPG_ex_200tp\5k_10_clean.txt"];
30

31 %Fault on ALU, ATPG on EX_STAGE 200tp, 5000 pattern
32 path15 = ".\4_ATPG_alu_200tp\ATPG_5k_alu_sb_clean.txt";
33 filelist5kalu = [".\4_ATPG_alu_200tp\5k_1_clean.txt", ...
34 ".\4_ATPG_alu_200tp\5k_2_clean.txt",

".\4_ATPG_alu_200tp\5k_3_clean.txt",...ñ→

35 ".\4_ATPG_alu_200tp\5k_4_clean.txt",
".\4_ATPG_alu_200tp\5k_5_clean.txt",...ñ→

36 ".\4_ATPG_alu_200tp\5k_6_clean.txt",
".\4_ATPG_alu_200tp\5k_7_clean.txt",...ñ→

37 ".\4_ATPG_alu_200tp\5k_8_clean.txt",
".\4_ATPG_alu_200tp\5k_9_clean.txt", ...ñ→

38 ".\4_ATPG_alu_200tp\5k_10_clean.txt"];
39

40 %ATPG on flattened architecture, 200tp
41 path16 = ".\6_ATPG_flattened_arch\ATPG_flatt_5k_sb_clean.txt";
42 path17 = ".\6_ATPG_flattened_arch\ATPG_flatt_5k_nsb_clean.txt";
43 filelist5kflat = [".\6_ATPG_flattened_arch\5k_1_clean.txt", ...
44 ".\6_ATPG_flattened_arch\5k_2_clean.txt",

".\6_ATPG_flattened_arch\5k_3_clean.txt", ...ñ→

45 ".\6_ATPG_flattened_arch\5k_4_clean.txt",
".\6_ATPG_flattened_arch\5k_5_clean.txt", ...ñ→

46 ".\6_ATPG_flattened_arch\5k_6_clean.txt",
".\6_ATPG_flattened_arch\5k_7_clean.txt", ...ñ→

47 ".\6_ATPG_flattened_arch\5k_8_clean.txt",
".\6_ATPG_flattened_arch\5k_9_clean.txt", ...ñ→

48 ".\6_ATPG_flattened_arch\5k_10_clean.txt"];
49

50 %fsim EX with ATPG pattern, 200tp
51 path18 = ".\8_fsim_ex\fsim_ex_sb_clean.txt";
52 path19 = ".\8_fsim_ex\fsim_ex_nsb_clean.txt";
53 filelist_ex_fsim = [".\8_fsim_ex\5k_1_clean.txt", ...
54 ".\8_fsim_ex\5k_2_clean.txt", ".\8_fsim_ex\5k_3_clean.txt", ...
55 ".\8_fsim_ex\5k_4_clean.txt", ".\8_fsim_ex\5k_5_clean.txt", ...
56 ".\8_fsim_ex\5k_6_clean.txt", ".\8_fsim_ex\5k_7_clean.txt", ...
57 ".\8_fsim_ex\5k_8_clean.txt", ".\8_fsim_ex\5k_9_clean.txt", ...
58 ".\8_fsim_ex\5k_10_clean.txt"];
59

60 %fsim ALU with ATPG pattern, 200tp
61 path20 = ".\9_fsim_alu\fsim_alu_sb_clean.txt";
62 path21 = ".\9_fsim_alu\fsim_alu_nsb_clean.txt";
63 filelist_alu_fsim = [".\9_fsim_alu\5k_1_clean.txt", ...
64 ".\9_fsim_alu\5k_2_clean.txt", ".\9_fsim_alu\5k_3_clean.txt", ...

114

A.1 – Graph plots

65 ".\9_fsim_alu\5k_4_clean.txt", ".\9_fsim_alu\5k_5_clean.txt", ...
66 ".\9_fsim_alu\5k_6_clean.txt", ".\9_fsim_alu\5k_7_clean.txt", ...
67 ".\9_fsim_alu\5k_8_clean.txt", ".\9_fsim_alu\5k_9_clean.txt", ...
68 ".\9_fsim_alu\5k_10_clean.txt"];
69

70 %fsim ex flatt with ATPG pattern, 200tp
71 path22 = ".\10_fsim_flatt\fsim_ex_flatt_sb_clean.txt";
72 path23 = ".\10_fsim_flatt\fsim_ex_flatt_nsb_clean.txt";
73 filelist_ex_flatt_fsim = [".\10_fsim_flatt\5k_2_clean.txt", ...
74 ".\10_fsim_flatt\5k_3_clean.txt", ".\10_fsim_flatt\5k_5_clean.txt", ...
75 ".\10_fsim_flatt\5k_6_clean.txt", ".\10_fsim_flatt\5k_7_clean.txt", ...
76 ".\10_fsim_flatt\5k_8_clean.txt", ".\10_fsim_flatt\5k_9_clean.txt", ...
77 ".\10_fsim_flatt\5k_10_clean.txt"];
78

79

80 % 2) EXTRACT DATA FROM THE DEFINED FILES =========================
81 % data extraction
82

83 %ATPG ex
84 ex_200tp_sb = funct_data_extractor(path13, [1, Inf]);
85 ex_200tp_nsb = funct_data_extractor(path14, [1, Inf]); %valid also for

aluñ→

86 rand_ex_200tp = mean_calculator_ATPG(10, 4500, filelist5kex);
87

88 %ATPG alu
89 alu_200tp_sb= funct_data_extractor(path15, [1, Inf]);
90 rand_alu_200tp = mean_calculator_ATPG(10, 4728, filelist5kalu);
91

92 %ATPG flatt
93 flatt_5k_sb = funct_data_extractor(path16, [1, Inf]);
94 flatt_5k_nsb = funct_data_extractor(path17, [1, Inf]);
95 rand_flatt_200tp = mean_calculator_ATPG(10, 5000, filelist5kflat);
96

97 %fsim ex
98 fsim_ex_sb = fsim_data_extractor(path18, [1, Inf]);
99 fsim_ex_nsb = fsim_data_extractor(path19, [1, Inf]);

100

101 %fsim alu
102 fsim_alu_sb = fsim_data_extractor(path20, [1, Inf]);
103 fsim_alu_nsb = fsim_data_extractor(path21, [1, Inf]);
104

105 %fsim flatt
106 fsim_ex_flatt_sb = fsim_data_extractor(path22, [1, Inf]);
107 fsim_ex_flatt_nsb = fsim_data_extractor(path23, [1, Inf]);
108

109 %fsim rand
110 fsim_ex_rand = mean_calculator_fsim(10, 433, filelist_ex_fsim);
111 fsim_alu_rand = mean_calculator_fsim(10, 429, filelist_alu_fsim);

115

Matlab scripts

112 fsim_ex_flatt_rand = mean_calculator_fsim(8, 431,
filelist_ex_flatt_fsim);ñ→

113

114

115 % 3) GRAPHS ===
116 %%PLOT CON STDEV===
117

118

119 %--
120 %--
121 % ATPG ex
122

123 x = (1:1:4500);
124 m = rand_ex_200tp(x);
125 std1 = (m-std_dev_ATPG_ex(x));
126 std2 = (m+std_dev_ATPG_ex(x));
127

128 Figure20=figure(20);
129 set(Figure20, 'defaulttextinterpreter', 'latex');
130 hold on;
131 c0=plot(x, [std1(x);std2(x)], ':', 'Color', stmpink, 'LineWidth',

linewidth_contour);ñ→

132 c1=fill([(x), fliplr(x)], [std1, fliplr(std2)], stmpink_rgb,
EdgeColor='none', FaceAlpha='0.4');ñ→

133 c2=plot(x, ex_200tp_sb.coverage(x), 'Color', stmdarkBlue, 'LineWidth',
linewidth);ñ→

134 c3=plot(x, ex_200tp_nsb.coverage(x), 'Color', stmlightBlue,
'LineWidth', linewidth);ñ→

135 c4=plot(x, rand_ex_200tp(x), 'Color', stmpink, 'LineWidth', linewidth);
136 title("Different ATPG runs fault simulations","Fontsize",

fontsize_title);ñ→

137 subtitle("Spyglass on EX-stage, FSIM on EX-stage, 200tp", "Fontsize",
fontsize);ñ→

138 xlabel("Test pattern", "Fontsize", fontsize);
139 ylabel("Coverage [\%]", "Fontsize", fontsize);
140 legend([c2 c3 c4], "SG tp", "No tp", "Random tp", ...
141 'Location', 'southeast','Interpreter', 'latex');
142 grid on;
143

144

145 %---
146 %ATPG alu
147

148 x = (1:1:4728);
149 m = rand_alu_200tp(x);
150 std1 = (m-std_dev_ATPG_alu(x));
151 std2 = (m+std_dev_ATPG_alu(x));
152

116

A.1 – Graph plots

153 Figure21=figure(21);
154 set(Figure21, 'defaulttextinterpreter', 'latex');
155 hold on;
156 c0=plot(x, [std1(x);std2(x)], ':', 'Color', stmpink, 'LineWidth',

linewidth_contour);ñ→

157 c1=fill([(x), fliplr(x)], [std1, fliplr(std2)], stmpink_rgb,
EdgeColor='none', FaceAlpha='0.4');ñ→

158 c2=plot(x, alu_200tp_sb.coverage(x), 'Color', stmdarkBlue,
'LineWidth', linewidth);ñ→

159 c3=plot(x, ex_200tp_nsb.coverage(x), 'Color', stmlightBlue,
'LineWidth', linewidth);ñ→

160 c4=plot(x, rand_alu_200tp(x), 'Color', stmpink, 'LineWidth', linewidth);
161 title("Different ATPG runs fault simulations","Fontsize",

fontsize_title);ñ→

162 subtitle("Spyglass on ALU, FSIM on EX-stage, 200tp", "Fontsize",
fontsize);ñ→

163 xlabel("Test pattern", "Fontsize", fontsize);
164 ylabel("Coverage [\%]", "Fontsize", fontsize);
165 legend([c2 c3 c4], "SG tp", "No tp", "Random tp", ...
166 'Location', 'southeast','Interpreter', 'latex');
167 grid on;
168

169 %---
170 %ATPG Flatt
171

172 x = (1:1:4482);
173 m = rand_flatt_200tp(x);
174 std1 = (m-std_dev_ATPG_alu(x));
175 std2 = (m+std_dev_ATPG_alu(x));
176

177 Figure22=figure(22);
178 set(Figure22, 'defaulttextinterpreter', 'latex');
179 hold on;
180 c0=plot(x, [std1(x);std2(x)], ':', 'Color', stmpink, 'LineWidth',

linewidth_contour);ñ→

181 c1=fill([(x), fliplr(x)], [std1, fliplr(std2)], stmpink_rgb,
EdgeColor='none', FaceAlpha='0.4');ñ→

182 c2=plot(x, flatt_5k_sb.coverage(x), 'Color', stmdarkBlue, 'LineWidth',
linewidth);ñ→

183 c3=plot(x, flatt_5k_nsb.coverage(x), 'Color', stmlightBlue,
'LineWidth', linewidth);ñ→

184 c4=plot(x, rand_flatt_200tp(x), 'Color', stmpink, 'LineWidth',
linewidth);ñ→

185 title("Different ATPG runs fault simulations","Fontsize",
fontsize_title);ñ→

186 subtitle("Spyglass on flattened EX-stage comb logic, FSIM on EX-stage,
200tp", "Fontsize", fontsize);ñ→

187 xlabel("Test pattern", "Fontsize", fontsize);

117

Matlab scripts

188 ylabel("Coverage [\%]", "Fontsize", fontsize);
189 legend([c2 c3 c4], "SG tp", "No tp", "Random tp", ...
190 'Location', 'southeast','Interpreter', 'latex');
191 grid on;
192

193

194 %--
195 %EX FSIM
196

197 x = (1:1:419);
198 m = fsim_ex_rand(x);
199 std1 = (m-std_dev_fsim_ex(x));
200 std2 = (m+std_dev_fsim_ex(x));
201

202 Figure23=figure(23);
203 set(Figure23, 'defaulttextinterpreter', 'latex');
204 hold on;
205 c0=plot(x, [std1(x);std2(x)], ':', 'Color', stmpink, 'LineWidth',

linewidth_contour);ñ→

206 c1=fill([(x), fliplr(x)], [std1, fliplr(std2)], stmpink_rgb,
EdgeColor='none', FaceAlpha='0.4');ñ→

207 c2=plot((x), fsim_ex_sb.coverage(x), 'Color', stmdarkBlue,
'LineWidth', linewidth);ñ→

208 c3=plot((x), fsim_ex_nsb.coverage(x), 'Color', stmlightBlue,
'LineWidth', linewidth);ñ→

209 c4=plot((x), fsim_ex_rand(x), 'Color', stmpink, 'LineWidth', linewidth);
210 title("Fixed test pattern set FSIM","Fontsize", fontsize_title);
211 subtitle("FSIM on EX-stage, 200tp in EX-stage", "Fontsize", fontsize);
212 xlabel("Test cycle", "Fontsize", fontsize);
213 ylabel("Coverage [\%]", "Fontsize", fontsize);
214 legend([c2 c3 c4], "SG tp", "No tp", "Random tp", ...
215 'Location', 'southeast','Interpreter', 'latex');
216 grid on;
217

218

219 %---
220 %ALU FSIM
221

222 x = (1:1:429);
223 m = fsim_alu_rand(x);
224 std1 = (m-std_dev_fsim_alu(x));
225 std2 = (m+std_dev_fsim_alu(x));
226

227 Figure24=figure(24);
228 set(Figure24, 'defaulttextinterpreter', 'latex');
229 hold on;
230 c0=plot(x, [std1(x);std2(x)], ':', 'Color', stmpink, 'LineWidth',

linewidth_contour);ñ→

118

A.1 – Graph plots

231 c1=fill([(x), fliplr(x)], [std1, fliplr(std2)], stmpink_rgb,
EdgeColor='none', FaceAlpha='0.4');ñ→

232 c2=plot((x), fsim_alu_sb.coverage(x), 'Color', stmdarkBlue,
'LineWidth', linewidth);ñ→

233 c3=plot((x), fsim_alu_nsb.coverage(x), 'Color', stmlightBlue,
'LineWidth', linewidth);ñ→

234 c4=plot((x), fsim_alu_rand(x), 'Color', stmpink, 'LineWidth',
linewidth);ñ→

235 title("Fixed test pattern set FSIM","Fontsize", fontsize_title);
236 subtitle("FSIM on EX-stage, 200tp in ALU", "Fontsize", fontsize);
237 xlabel("Test cycle", "Fontsize", fontsize);
238 ylabel("Coverage [\%]", "Fontsize", fontsize);
239 legend([c2 c3 c4], "SG tp", "No tp", "Random tp", ...
240 'Location', 'southeast','Interpreter', 'latex');
241 grid on;
242

243

244 %---
245 %EX FLATT FSIM
246

247 x = (1:1:416);
248 m = fsim_ex_flatt_rand(x);
249 std1 = (m-std_dev_fsim_flatt(x));
250 std2 = (m+std_dev_fsim_flatt(x));
251

252 Figure25=figure(25);
253 set(Figure25, 'defaulttextinterpreter', 'latex');
254 hold on;
255 c0=plot(x, [std1(x);std2(x)], ':', 'Color', stmpink, 'LineWidth',

linewidth_contour);ñ→

256 c1=fill([(x), fliplr(x)], [std1, fliplr(std2)], stmpink_rgb,
EdgeColor='none', FaceAlpha='0.4');ñ→

257 c2=plot(x, fsim_ex_flatt_rand(x), 'Color', stmpink, 'LineWidth',
linewidth);ñ→

258 c3=plot(x, fsim_ex_flatt_sb.coverage(x), 'Color', stmdarkBlue,
'LineWidth', linewidth);ñ→

259 c4=plot(x, fsim_ex_flatt_nsb.coverage(x), 'Color', stmlightBlue,
'LineWidth', linewidth);ñ→

260 legend([c2 c3 c4],"SG tp", "No tp", "Random tp", ...
261 'Location', 'southeast','Interpreter', 'latex');
262 title("Fixed test pattern set FSIM","Fontsize", fontsize_title);
263 subtitle("FSIM on flatten EX-stage, 200tp", "Fontsize", fontsize);
264 xlabel("Test cycle", "Fontsize", fontsize);
265 ylabel("Coverage [\%]", "Fontsize", fontsize);
266 grid on;

119

Matlab scripts

RTL_data_extractor.m

1 % Initialization and configuration -------------------
2 clear all
3 clc
4 close all
5

6 stmdarkBlue = '#03234B';
7 stmlightBlue = '#3CB4E6';
8 stmpink = '#E6007E';
9 stmyellow = '#FFD200';

10 linewidth = 1.2;
11 linewidth_contour = 0.25;
12 stmpink_rgb = [0.9764705882352941, 0.7490196078431373,

0.8784313725490196];ñ→

13

14

15 % Variables --
16 fontsize = 15;
17 fontsize_title = 20;
18

19 tp_number_alu=[0, 10, 50, 100, 169];
20 tp_number_ex=[0, 10, 50, 100, 250];
21 alu_coverage_sg=[36.84, 43.73, 44.21, 45.13, 47.08];
22 alu_coverage_rd=[36.84, 38.20, 38.63, 38.15, 40.50];
23 ex_coverage_sg=[9.72, 10.23, 10.14, 10.29, 10.47];
24 ex_coverage_rd=[9.72, 9.89, 9.90, 10.55, 10.85];
25

26 err_alu_rd = std(alu_coverage_rd) * ones(size(alu_coverage_rd));
27 err_ex_sg = std(ex_coverage_sg) * ones(size(ex_coverage_sg));
28 err_ex_rd = std(ex_coverage_rd) * ones(size(ex_coverage_rd));
29

30 %alu
31 Figure1=figure(1);
32 set(Figure1, 'defaulttextinterpreter', 'latex');
33 hold on;
34 plot(tp_number_alu, alu_coverage_sg, '-o', 'Color', stmdarkBlue,

'LineWidth', linewidth);ñ→

35 errorbar(tp_number_alu, alu_coverage_rd, err_alu_rd, '-o', 'Color',
stmpink, 'LineWidth', linewidth);ñ→

36 title("ALU fault simulation coverage comparison","Fontsize",
fontsize_title);ñ→

37 subtitle("coverage as a function of the number of test points",
"Fontsize", fontsize);ñ→

38 xlabel("Patterns", "Fontsize", fontsize);
39 ylabel("Coverage [\%]", "Fontsize", fontsize);
40 legend("SG tp", "Random tp", ...
41 'Location', 'southeast','Interpreter', 'latex');
42 grid on;

120

A.1 – Graph plots

43 % Annotate each point with its value
44 for i = 1:length(tp_number_alu)
45 text(tp_number_alu(i), alu_coverage_sg(i),

num2str(alu_coverage_sg(i)), 'VerticalAlignment', 'bottom',
'HorizontalAlignment', 'right');

ñ→

ñ→

46 end
47

48 % Annotate each point with its value
49 for i = 1:length(tp_number_alu)
50 text(tp_number_alu(i), alu_coverage_rd(i),

num2str(alu_coverage_rd(i)), 'VerticalAlignment', 'bottom',
'HorizontalAlignment', 'right');

ñ→

ñ→

51 end
52

53

54 %ex
55 Figure2=figure(2);
56 set(Figure2, 'defaulttextinterpreter', 'latex');
57 hold on;
58 plot(tp_number_ex, ex_coverage_sg, '-o', 'Color', stmdarkBlue,

'LineWidth', linewidth);ñ→

59 errorbar(tp_number_ex, ex_coverage_rd, err_ex_rd, '-o', 'Color',
stmpink, 'LineWidth', linewidth);ñ→

60 title("ALU fault simulation coverage comparison","Fontsize",
fontsize_title);ñ→

61 subtitle("coverage as a function of the number of test points",
"Fontsize", fontsize);ñ→

62 xlabel("Patterns", "Fontsize", fontsize);
63 ylabel("Coverage [\%]", "Fontsize", fontsize);
64 legend("SG tp", "Random tp", ...
65 'Location', 'southeast','Interpreter', 'latex');
66 grid on;
67 xlim([0 270]);
68

69 for i = 1:length(tp_number_ex)
70 text(tp_number_ex(i), ex_coverage_sg(i),

num2str(ex_coverage_sg(i)), 'VerticalAlignment', 'bottom',
'HorizontalAlignment', 'right');

ñ→

ñ→

71 end
72

73 % Annotate each point with its value
74 for i = 1:length(tp_number_ex)
75 text(tp_number_ex(i), ex_coverage_rd(i),

num2str(ex_coverage_rd(i)), 'VerticalAlignment', 'bottom',
'HorizontalAlignment', 'right');

ñ→

ñ→

76 end

121

Matlab scripts

A.2 Data extrapolating functions
funct_data_extractor.m

1 function atpg_gate_masked_clean = funct_data_extractor(filename,
dataLines)ñ→

2 %IMPORTFILE Import data from a text file
3 % ATPG_GATE_MASKED_CLEAN = IMPORTFILE(FILENAME) reads data from text
4 % file FILENAME for the default selection. Returns the data as a

table.ñ→

5 %
6 % ATPG_GATE_MASKED_CLEAN = IMPORTFILE(FILE, DATALINES) reads data for
7 % the specified row interval(s) of text file FILENAME. Specify
8 % DATALINES as a positive scalar integer or a N-by-2 array of positive
9 % scalar integers for dis-contiguous row intervals.

10 %
11 % Example:
12 % atpg_gate_masked_clean = funct_data_extractor("C:\Users\mauro\Docum ⌋

ents\AAA_Universita\Tesi\Test\atpg_gate_masked_clean.txt", [2,
Inf]);

ñ→

ñ→

13 %
14 % See also READTABLE.
15 %
16 % Auto-generated by MATLAB on 18-Jun-2025 23:06:45
17

18 %% Input handling
19

20 % If dataLines is not specified, define defaults
21 if nargin < 1
22 dataLines = [1, Inf];
23 end
24

25 %% Set up the Import Options and import the data
26 opts = delimitedTextImportOptions("NumVariables", 10);
27

28 % Specify range and delimiter
29 opts.DataLines = dataLines;
30 opts.Delimiter = " ";
31

32 % Specify column names and types
33 opts.VariableNames = ["num_pattern", "x11608", "x801578", "x0_0_0",

"coverage", "time_s", "Var7", "Var8", "Var9", "Var10"];ñ→

34 opts.SelectedVariableNames = ["num_pattern", "coverage", "time_s"];
35 opts.VariableTypes = ["double", "string", "string", "string",

"double", "double", "string", "string", "string", "string"];ñ→

36

37 % Specify file level properties
38 opts.ExtraColumnsRule = "ignore";
39 opts.EmptyLineRule = "read";

122

A.2 – Data extrapolating functions

40 opts.ConsecutiveDelimitersRule = "join";
41 opts.LeadingDelimitersRule = "ignore";
42

43 % Specify variable properties
44 opts = setvaropts(opts, ["x11608", "x801578", "x0_0_0", "Var7",

"Var8", "Var9", "Var10"], "WhitespaceRule", "preserve");ñ→

45 opts = setvaropts(opts, ["x11608", "x801578", "x0_0_0", "Var7",
"Var8", "Var9", "Var10"], "EmptyFieldRule", "auto");ñ→

46 opts = setvaropts(opts, ["num_pattern", "coverage", "time_s"],
"TrimNonNumeric", true);ñ→

47 opts = setvaropts(opts, ["num_pattern", "coverage", "time_s"],
"ThousandsSeparator", ",");ñ→

48

49 % Import the data
50 atpg_gate_masked_clean = readtable(filename, opts);
51

52 end

fsim_data_extractor.m

1 function fsim_po_clean = fsim_data_extractor(filename, dataLines)
2 %IMPORTFILE Import data from a text file
3 % FSIM_PO_CLEAN = IMPORTFILE(FILENAME) reads data from text file
4 % FILENAME for the default selection. Returns the data as a table.
5 %
6 % FSIM_PO_CLEAN = IMPORTFILE(FILE, DATALINES) reads data for the
7 % specified row interval(s) of text file FILENAME. Specify DATALINES as
8 % a positive scalar integer or a N-by-2 array of positive scalar
9 % integers for dis-contiguous row intervals.

10 %
11 % Example:
12 % fsim_po_clean = fsim_data_extractor("C:\Users\mauro\Documents\AAA_U ⌋

niversita\Tesi\Test\fsim_po_clean.txt", [2, Inf]);ñ→

13 %
14 % See also READTABLE.
15 %
16 % Auto-generated by MATLAB on 18-Jun-2025 23:39:00
17

18 %% Input handling
19

20 % If dataLines is not specified, define defaults
21 if nargin < 1
22 dataLines = [1, Inf];
23 end
24

25 %% Set up the Import Options and import the data
26 opts = delimitedTextImportOptions("NumVariables", 8);

123

Matlab scripts

27

28 % Specify range and delimiter
29 opts.DataLines = dataLines;
30 opts.Delimiter = ["\t", " "];
31

32 % Specify column names and types
33 opts.VariableNames = ["Var1", "faults", "x1577", "x1", "x2",

"x811609", "coverage", "time_s"];ñ→

34 opts.SelectedVariableNames = ["faults", "coverage", "time_s"];
35 opts.VariableTypes = ["string", "double", "string", "string",

"string", "string", "double", "double"];ñ→

36

37 % Specify file level properties
38 opts.ExtraColumnsRule = "ignore";
39 opts.EmptyLineRule = "read";
40 opts.ConsecutiveDelimitersRule = "join";
41

42 % Specify variable properties
43 opts = setvaropts(opts, ["Var1", "x1577", "x1", "x2", "x811609"],

"WhitespaceRule", "preserve");ñ→

44 opts = setvaropts(opts, ["Var1", "x1577", "x1", "x2", "x811609"],
"EmptyFieldRule", "auto");ñ→

45 opts = setvaropts(opts, "coverage", "TrimNonNumeric", true);
46 opts = setvaropts(opts, "coverage", "ThousandsSeparator", ",");
47

48 % Import the data
49 fsim_po_clean = readtable(filename, opts);
50

51 end

mean_calculator_ATPG.m

1 function [mean_vector, std_dev] = mean_calculator_ATPG(number_sets,
num_data, path_list)ñ→

2 %MEAN_CALCULATOR Summary of this function goes here
3 % Detailed explanation goes here
4 sum = 0;
5 mean_vector = [];
6 data = [];
7 raw_data = zeros(num_data, 0);
8

9 for i = 1:number_sets
10 data = funct_data_extractor(path_list(i),[1, inf]).coverage;
11 raw_data(:,i) = data(1:num_data);
12 end
13

14 for j = 1:num_data

124

A.2 – Data extrapolating functions

15 for k = 1:number_sets
16 sum = sum + raw_data(j, k);
17 end
18 mean_vector(j) = sum/number_sets;
19 sum = 0;
20 end
21

22 std_dev = std(raw_data, 0, 2)';
23

24 end

mean_calculator_fsim.m

1 function [mean_vector, std_dev] = mean_calculator_fsim(number_sets,
num_data, path_list)ñ→

2 %MEAN_CALCULATOR Summary of this function goes here
3 % Detailed explanation goes here
4 sum = 0;
5 mean_vector = [];
6 data = [];
7 raw_data = zeros(num_data, 0);
8

9 for i = 1:number_sets
10 data = fsim_data_extractor(path_list(i),[1, inf]).coverage;
11 raw_data(:,i) = data(1:num_data);
12 end
13

14 for j = 1:num_data
15 for k = 1:number_sets
16 sum = sum + raw_data(j, k);
17 end
18 mean_vector(j) = sum/number_sets;
19 sum = 0;
20 end
21

22 std_dev = std(raw_data, 0, 2)';
23

24 end

125

126

Appendix B

General scripts

B.1 Reports

B.1.1 SpyGlass optimal observation points on Execution Stage

dft_unified_testpoints.rpt

1 #+--------------SPYGLASS DFT UNIFIED TEST POINTS REPORT---------------+#
2 # date : 2025-08-23
3 # TestMAX Advisor : T-2022.06-SP2-01
4

5 # test points for target "random_resistant"
6 # start time : 11:43:31
7 # Requested Test Points : 200
8 # Threads requested : 8
9 # Threads created : 7 (excluding main thread)

10

11 # Design : "ex_stage_16_864949"
12 # Initial Random Pattern Test Coverage : 6.84
13 # Stuck At Test Coverage : 14.87
14 # Target Random Pattern Test Coverage : 99.99
15 # Requested Test Points : 200
16 # Random Pattern Count : 64000
17 # Effort Level : high
18 1 observe alu_i/n4155 #Gain : 0.00796 Cov : 6.85071 S@TC : 14.9
19 2 observe alu_i/n7590 #Gain : 0.00904 Cov : 6.85975 S@TC : 14.9
20 3 observe alu_i/n6863 #Gain : 0.01076 Cov : 6.87051 S@TC : 14.9
21 4 observe alu_i/n7425 #Gain : 0.00930 Cov : 6.87981 S@TC : 14.9
22 5 observe alu_i/n3573 #Gain : 0.00927 Cov : 6.88908 S@TC : 14.9
23 6 observe alu_i/n7639 #Gain : 0.01124 Cov : 6.90032 S@TC : 14.9
24 7 observe alu_i/n7137 #Gain : 0.01075 Cov : 6.91107 S@TC : 14.9
25 8 observe alu_i/n4109 #Gain : 0.01124 Cov : 6.92230 S@TC : 14.9
26 9 observe alu_i/n4193 #Gain : 0.01013 Cov : 6.93244 S@TC : 14.9

127

General scripts

27 10 observe alu_i/lz_tz_wcount[0] #Gain : 0.01162 Cov : 6.94406
S@TC : 14.9ñ→

28 11 observe alu_i/n3290 #Gain : 0.00728 Cov : 6.95134 S@TC : 14.9
29 12 observe alu_i/n1473 #Gain : 0.01055 Cov : 6.96189 S@TC : 14.9
30 13 observe alu_i/n3881 #Gain : 0.00754 Cov : 6.96943 S@TC : 14.9
31 14 observe alu_i/n4194 #Gain : 0.00834 Cov : 6.97777 S@TC : 14.9
32 15 observe alu_i/n1410 #Gain : 0.01230 Cov : 6.99007 S@TC : 14.9
33 16 observe alu_i/n7887 #Gain : 0.01230 Cov : 7.00237 S@TC : 14.9
34 17 observe alu_i/gen_bitmanip_i_clz_64b/n57 #Gain : 0.00955 Cov :

7.01192 S@TC : 14.9ñ→

35 18 observe alu_i/gen_bitmanip_i_clz_64b/n30 #Gain : 0.00825 Cov :
7.02017 S@TC : 14.9ñ→

36 19 observe alu_i/n7385 #Gain : 0.00712 Cov : 7.02729 S@TC : 14.9
37 20 observe alu_i/n1347 #Gain : 0.00703 Cov : 7.03432 S@TC : 14.9
38 21 observe alu_i/n3739 #Gain : 0.00710 Cov : 7.04143 S@TC : 14.9
39 22 observe alu_i/n5977 #Gain : 0.00732 Cov : 7.04874 S@TC : 14.9
40 23 observe alu_i/n4426 #Gain : 0.00782 Cov : 7.05657 S@TC : 14.9
41 24 observe alu_i/n6942 #Gain : 0.00623 Cov : 7.06280 S@TC : 14.9
42 25 observe alu_i/n4146 #Gain : 0.00678 Cov : 7.06957 S@TC : 14.9
43 26 observe alu_i/n3593 #Gain : 0.00675 Cov : 7.07632 S@TC : 14.9
44 27 observe alu_i/n3022 #Gain : 0.00842 Cov : 7.08474 S@TC : 14.9
45 28 observe alu_i/n4196 #Gain : 0.00660 Cov : 7.09135 S@TC : 14.9
46 29 observe alu_i/n1374 #Gain : 0.00849 Cov : 7.09983 S@TC : 14.9
47 30 observe alu_i/n7293 #Gain : 0.00652 Cov : 7.10636 S@TC : 14.9
48 31 observe alu_i/n7584 #Gain : 0.00637 Cov : 7.11273 S@TC : 14.9
49 32 observe alu_i/n1469 #Gain : 0.00688 Cov : 7.11961 S@TC : 14.9
50 33 observe alu_i/n5081 #Gain : 0.00574 Cov : 7.12535 S@TC : 14.9
51 34 observe alu_i/n3846 #Gain : 0.00630 Cov : 7.13165 S@TC : 14.9
52 35 observe alu_i/n7262 #Gain : 0.00673 Cov : 7.13839 S@TC : 14.9
53 36 observe alu_i/n3620 #Gain : 0.00624 Cov : 7.14462 S@TC : 14.9
54 37 observe alu_i/n7200 #Gain : 0.00609 Cov : 7.15071 S@TC : 14.9
55 38 observe alu_i/n3737 #Gain : 0.00564 Cov : 7.15635 S@TC : 14.9
56 39 observe alu_i/n5800 #Gain : 0.00643 Cov : 7.16278 S@TC : 14.9
57 40 observe alu_i/n1471 #Gain : 0.00742 Cov : 7.17020 S@TC : 14.9
58 41 observe alu_i/n1375 #Gain : 0.00849 Cov : 7.17869 S@TC : 14.9
59 42 observe alu_i/n5075 #Gain : 0.00536 Cov : 7.18405 S@TC : 14.9
60 43 observe alu_i/n1718 #Gain : 0.00606 Cov : 7.19011 S@TC : 14.9
61 44 observe alu_i/gen_bitmanip_i_clz_64b/n14 #Gain : 0.01153 Cov :

7.20165 S@TC : 14.9ñ→

62 45 observe alu_i/n6218 #Gain : 0.00655 Cov : 7.20820 S@TC : 14.9
63 46 observe alu_i/n6194 #Gain : 0.00598 Cov : 7.21417 S@TC : 14.9
64 47 observe alu_i/n3173 #Gain : 0.00611 Cov : 7.22028 S@TC : 14.9
65 48 observe alu_i/n1394 #Gain : 0.01188 Cov : 7.23216 S@TC : 14.9
66 49 observe alu_i/n7430 #Gain : 0.00564 Cov : 7.23780 S@TC : 14.9
67 50 observe alu_i/n2473 #Gain : 0.00604 Cov : 7.24384 S@TC : 14.9
68 51 observe alu_i/n7757 #Gain : 0.00990 Cov : 7.25375 S@TC : 14.9
69 52 observe alu_i/n1692 #Gain : 0.01006 Cov : 7.26380 S@TC : 14.9
70 53 observe alu_i/n7649 #Gain : 0.00518 Cov : 7.26898 S@TC : 14.9

128

B.1 – Reports

71 54 observe alu_i/n7701 #Gain : 0.00599 Cov : 7.27498 S@TC : 14.9
72 55 observe alu_i/n5976 #Gain : 0.00687 Cov : 7.28185 S@TC : 14.9
73 56 observe alu_i/n6139 #Gain : 0.00520 Cov : 7.28705 S@TC : 14.9
74 57 observe alu_i/n6870 #Gain : 0.00586 Cov : 7.29291 S@TC : 14.9
75 58 observe alu_i/gen_bitmanip_i_clz_64b/n71 #Gain : 0.00681 Cov :

7.29971 S@TC : 14.9ñ→

76 59 observe alu_i/n2664 #Gain : 0.00512 Cov : 7.30483 S@TC : 14.9
77 60 observe alu_i/n7426 #Gain : 0.00580 Cov : 7.31064 S@TC : 14.9
78 61 observe branch_unit_i/n249 #Gain : 0.00509 Cov : 7.31573 S@TC :

14.9ñ→

79 62 observe alu_i/gen_bitmanip_genblk1_i_clz_32b/n47 #Gain :
0.01056 Cov : 7.32629 S@TC : 14.9ñ→

80 63 observe branch_unit_i/n497 #Gain : 0.00510 Cov : 7.33139 S@TC :
14.9ñ→

81 64 observe branch_unit_i/n623 #Gain : 0.00509 Cov : 7.33648 S@TC :
14.9ñ→

82 65 observe branch_unit_i/n755 #Gain : 0.01036 Cov : 7.34684 S@TC :
14.9ñ→

83 66 observe branch_unit_i/n756 #Gain : 0.01064 Cov : 7.35748 S@TC :
14.9ñ→

84 67 observe alu_i/n2230 #Gain : 0.00449 Cov : 7.36197 S@TC : 14.9
85 68 observe alu_i/n4487 #Gain : 0.00498 Cov : 7.36694 S@TC : 14.9
86 69 observe alu_i/n7682 #Gain : 0.00487 Cov : 7.37181 S@TC : 14.9
87 70 observe alu_i/n1370 #Gain : 0.00533 Cov : 7.37714 S@TC : 14.9
88 71 observe branch_unit_i/n248 #Gain : 0.00509 Cov : 7.38224 S@TC :

14.9ñ→

89 72 observe alu_i/n5697 #Gain : 0.00469 Cov : 7.38692 S@TC : 14.9
90 73 observe alu_i/lz_tz_count[1] #Gain : 0.00516 Cov : 7.39208

S@TC : 14.9ñ→

91 74 observe alu_i/gen_bitmanip_i_clz_64b/n45 #Gain : 0.00704 Cov :
7.39912 S@TC : 14.9ñ→

92 75 observe alu_i/n6244 #Gain : 0.00439 Cov : 7.40351 S@TC : 14.9
93 76 observe alu_i/n7075 #Gain : 0.00533 Cov : 7.40885 S@TC : 14.9
94 77 observe alu_i/n7370 #Gain : 0.00428 Cov : 7.41313 S@TC : 14.9
95 78 observe alu_i/n4108 #Gain : 0.00556 Cov : 7.41869 S@TC : 14.9
96 79 observe alu_i/n1719 #Gain : 0.00606 Cov : 7.42476 S@TC : 14.9
97 80 observe alu_i/n1720 #Gain : 0.00606 Cov : 7.43082 S@TC : 14.9
98 81 observe alu_i/n6740 #Gain : 0.00414 Cov : 7.43496 S@TC : 14.9
99 82 observe alu_i/n5460 #Gain : 0.00449 Cov : 7.43944 S@TC : 14.9

100 83 observe branch_unit_i/n250 #Gain : 0.00509 Cov : 7.44454 S@TC :
14.9ñ→

101 84 observe branch_unit_i/n750 #Gain : 0.00509 Cov : 7.44963 S@TC :
14.9ñ→

102 85 observe branch_unit_i/n754 #Gain : 0.01064 Cov : 7.46027 S@TC :
14.9ñ→

103 86 observe alu_i/n5654 #Gain : 0.00451 Cov : 7.46479 S@TC : 14.9
104 87 observe alu_i/n6951 #Gain : 0.00496 Cov : 7.46975 S@TC : 14.9
105 88 observe alu_i/n6149 #Gain : 0.00425 Cov : 7.47400 S@TC : 14.9

129

General scripts

106 89 observe alu_i/n4996 #Gain : 0.00428 Cov : 7.47828 S@TC : 14.9
107 90 observe alu_i/n6388 #Gain : 0.00417 Cov : 7.48245 S@TC : 14.9
108 91 observe alu_i/n4354 #Gain : 0.00437 Cov : 7.48681 S@TC : 14.9
109 92 observe alu_i/n4530 #Gain : 0.00421 Cov : 7.49103 S@TC : 14.9
110 93 observe alu_i/gen_bitmanip_i_clz_64b/n55 #Gain : 0.00485 Cov :

7.49588 S@TC : 14.9ñ→

111 94 observe alu_i/n7600 #Gain : 0.00450 Cov : 7.50038 S@TC : 14.9
112 95 observe alu_i/n1717 #Gain : 0.00436 Cov : 7.50475 S@TC : 14.9
113 96 observe alu_i/n7517 #Gain : 0.00447 Cov : 7.50922 S@TC : 14.9
114 97 observe alu_i/n6083 #Gain : 0.00431 Cov : 7.51352 S@TC : 14.9
115 98 observe alu_i/n6144 #Gain : 0.00434 Cov : 7.51786 S@TC : 14.9
116 99 observe alu_i/n3818 #Gain : 0.00413 Cov : 7.52199 S@TC : 14.9
117 100 observe alu_i/n4366 #Gain : 0.00537 Cov : 7.52736 S@TC : 14.9
118 101 observe alu_i/n4554 #Gain : 0.00436 Cov : 7.53173 S@TC : 14.9
119 102 observe alu_i/n6503 #Gain : 0.00464 Cov : 7.53637 S@TC : 14.9
120 103 observe alu_i/n7926 #Gain : 0.00382 Cov : 7.54019 S@TC : 14.9
121 104 observe alu_i/n5803 #Gain : 0.00512 Cov : 7.54531 S@TC : 14.9
122 105 observe alu_i/n2448 #Gain : 0.00449 Cov : 7.54980 S@TC : 14.9
123 106 observe alu_i/n6046 #Gain : 0.00608 Cov : 7.55587 S@TC : 14.9
124 107 observe alu_i/n4781 #Gain : 0.00439 Cov : 7.56026 S@TC : 14.9
125 108 observe alu_i/n5903 #Gain : 0.00415 Cov : 7.56441 S@TC : 14.9
126 109 observe alu_i/n5514 #Gain : 0.00409 Cov : 7.56850 S@TC : 14.9
127 110 observe alu_i/n7187 #Gain : 0.00406 Cov : 7.57256 S@TC : 14.9
128 111 observe alu_i/n7647 #Gain : 0.00415 Cov : 7.57671 S@TC : 14.9
129 112 observe alu_i/n7265 #Gain : 0.00408 Cov : 7.58078 S@TC : 14.9
130 113 observe alu_i/n7696 #Gain : 0.00395 Cov : 7.58474 S@TC : 14.9
131 114 observe alu_i/n5458 #Gain : 0.00373 Cov : 7.58847 S@TC : 14.9
132 115 observe alu_i/n5253 #Gain : 0.00420 Cov : 7.59267 S@TC : 14.9
133 116 observe alu_i/n4741 #Gain : 0.00400 Cov : 7.59666 S@TC : 14.9
134 117 observe alu_i/n7510 #Gain : 0.00399 Cov : 7.60065 S@TC : 14.9
135 118 observe alu_i/n3257 #Gain : 0.00414 Cov : 7.60479 S@TC : 14.9
136 119 observe alu_i/n4882 #Gain : 0.00399 Cov : 7.60878 S@TC : 14.9
137 120 observe alu_i/n5277 #Gain : 0.00382 Cov : 7.61261 S@TC : 14.9
138 121 observe alu_i/n7048 #Gain : 0.00359 Cov : 7.61619 S@TC : 14.9
139 122 observe alu_i/n4223 #Gain : 0.00400 Cov : 7.62019 S@TC : 14.9
140 123 observe alu_i/n7239 #Gain : 0.00363 Cov : 7.62382 S@TC : 14.9
141 124 observe alu_i/n3726 #Gain : 0.00346 Cov : 7.62729 S@TC : 14.9
142 125 observe alu_i/n5553 #Gain : 0.00380 Cov : 7.63108 S@TC : 14.9
143 126 observe alu_i/n7784 #Gain : 0.00385 Cov : 7.63494 S@TC : 14.9
144 127 observe alu_i/n1413 #Gain : 0.00406 Cov : 7.63900 S@TC : 14.9
145 128 observe alu_i/n3995 #Gain : 0.00383 Cov : 7.64282 S@TC : 14.9
146 129 observe alu_i/n7824 #Gain : 0.00359 Cov : 7.64641 S@TC : 14.9
147 130 observe alu_i/n7058 #Gain : 0.00380 Cov : 7.65021 S@TC : 14.9
148 131 observe alu_i/n6561 #Gain : 0.00355 Cov : 7.65377 S@TC : 14.9
149 132 observe alu_i/n7113 #Gain : 0.00406 Cov : 7.65783 S@TC : 14.9
150 133 observe alu_i/n3445 #Gain : 0.00383 Cov : 7.66167 S@TC : 14.9
151 134 observe alu_i/n2475 #Gain : 0.00351 Cov : 7.66518 S@TC : 14.9
152 135 observe alu_i/n4396 #Gain : 0.00389 Cov : 7.66907 S@TC : 14.9
153 136 observe alu_i/n3813 #Gain : 0.00321 Cov : 7.67228 S@TC : 14.9

130

B.1 – Reports

154 137 observe alu_i/n5097 #Gain : 0.00357 Cov : 7.67585 S@TC : 14.9
155 138 observe alu_i/n6780 #Gain : 0.00382 Cov : 7.67967 S@TC : 14.9
156 139 observe alu_i/n7174 #Gain : 0.00419 Cov : 7.68386 S@TC : 14.9
157 140 observe alu_i/n3324 #Gain : 0.00334 Cov : 7.68721 S@TC : 14.9
158 141 observe alu_i/n7328 #Gain : 0.00352 Cov : 7.69072 S@TC : 14.9
159 142 observe branch_unit_i/n251 #Gain : 0.00509 Cov : 7.69582 S@TC

: 14.9ñ→

160 143 observe n582 #Gain : 0.00341 Cov : 7.69923 S@TC : 14.9
161 144 observe alu_result[28] #Gain : 0.00344 Cov : 7.70266 S@TC :

14.9ñ→

162 145 observe alu_i/n7028 #Gain : 0.00350 Cov : 7.70617 S@TC : 14.9
163 146 observe alu_i/n4860 #Gain : 0.00365 Cov : 7.70982 S@TC : 14.9
164 147 observe alu_i/n7111 #Gain : 0.00361 Cov : 7.71343 S@TC : 14.9
165 148 observe alu_i/n5802 #Gain : 0.00330 Cov : 7.71674 S@TC : 14.9
166 149 observe alu_i/n7938 #Gain : 0.00342 Cov : 7.72015 S@TC : 14.9
167 150 observe alu_i/n7378 #Gain : 0.00361 Cov : 7.72376 S@TC : 14.9
168 151 observe alu_i/n7512 #Gain : 0.00347 Cov : 7.72724 S@TC : 14.9
169 152 observe alu_i/n7770 #Gain : 0.00377 Cov : 7.73100 S@TC : 14.9
170 153 observe alu_i/n3567 #Gain : 0.00346 Cov : 7.73446 S@TC : 14.9
171 154 observe alu_i/n3143 #Gain : 0.00341 Cov : 7.73788 S@TC : 14.9
172 155 observe alu_i/n6240 #Gain : 0.00333 Cov : 7.74121 S@TC : 14.9
173 156 observe alu_i/n7821 #Gain : 0.00339 Cov : 7.74460 S@TC : 14.9
174 157 observe alu_i/n7059 #Gain : 0.00332 Cov : 7.74792 S@TC : 14.9
175 158 observe alu_i/n5023 #Gain : 0.00332 Cov : 7.75124 S@TC : 14.9
176 159 observe alu_i/n7779 #Gain : 0.00366 Cov : 7.75490 S@TC : 14.9
177 160 observe alu_i/n2678 #Gain : 0.00340 Cov : 7.75830 S@TC : 14.9
178 161 observe alu_i/n3797 #Gain : 0.00360 Cov : 7.76190 S@TC : 14.9
179 162 observe alu_i/n6994 #Gain : 0.00316 Cov : 7.76506 S@TC : 14.9
180 163 observe alu_i/n7110 #Gain : 0.00327 Cov : 7.76833 S@TC : 14.9
181 164 observe alu_i/n3482 #Gain : 0.00355 Cov : 7.77187 S@TC : 14.9
182 165 observe alu_i/n4361 #Gain : 0.00340 Cov : 7.77527 S@TC : 14.9
183 166 observe alu_i/n6883 #Gain : 0.00310 Cov : 7.77837 S@TC : 14.9
184 167 observe alu_i/n7324 #Gain : 0.00336 Cov : 7.78174 S@TC : 14.9
185 168 observe alu_i/n3869 #Gain : 0.00321 Cov : 7.78495 S@TC : 14.9
186 169 observe alu_i/n1042 #Gain : 0.00320 Cov : 7.78815 S@TC : 14.9
187 170 observe alu_i/n5571 #Gain : 0.00330 Cov : 7.79145 S@TC : 14.9
188 171 observe alu_i/n6022 #Gain : 0.00290 Cov : 7.79435 S@TC : 14.9
189 172 observe alu_i/n6352 #Gain : 0.00304 Cov : 7.79739 S@TC : 14.9
190 173 observe alu_i/n3166 #Gain : 0.00286 Cov : 7.80025 S@TC : 14.9
191 174 observe alu_i/n5080 #Gain : 0.00330 Cov : 7.80355 S@TC : 14.9
192 175 observe alu_i/n6248 #Gain : 0.00344 Cov : 7.80699 S@TC : 14.9
193 176 observe alu_i/n5454 #Gain : 0.00292 Cov : 7.80991 S@TC : 14.9
194 177 observe alu_i/n3568 #Gain : 0.00311 Cov : 7.81302 S@TC : 14.9
195 178 observe alu_i/n5184 #Gain : 0.00305 Cov : 7.81607 S@TC : 14.9
196 179 observe alu_i/gen_bitmanip_i_clz_64b/n91 #Gain : 0.00476 Cov :

7.82083 S@TC : 14.9ñ→

197 180 observe alu_i/n5372 #Gain : 0.00302 Cov : 7.82385 S@TC : 14.9
198 181 observe alu_i/n5971 #Gain : 0.00346 Cov : 7.82731 S@TC : 14.9

131

General scripts

199 182 observe alu_i/n7297 #Gain : 0.00323 Cov : 7.83054 S@TC : 14.9
200 183 observe alu_i/n6353 #Gain : 0.00306 Cov : 7.83360 S@TC : 14.9
201 184 observe alu_i/n7106 #Gain : 0.00324 Cov : 7.83685 S@TC : 14.9
202 185 observe alu_i/n4516 #Gain : 0.00334 Cov : 7.84018 S@TC : 14.9
203 186 observe alu_i/n4224 #Gain : 0.00329 Cov : 7.84348 S@TC : 14.9
204 187 observe alu_i/n6899 #Gain : 0.00316 Cov : 7.84664 S@TC : 14.9
205 188 observe alu_i/n4269 #Gain : 0.00291 Cov : 7.84956 S@TC : 14.9
206 189 observe alu_i/n3909 #Gain : 0.00335 Cov : 7.85291 S@TC : 14.9
207 190 observe alu_i/n4754 #Gain : 0.00290 Cov : 7.85581 S@TC : 14.9
208 191 observe alu_i/n5296 #Gain : 0.00294 Cov : 7.85876 S@TC : 14.9
209 192 observe alu_i/n3452 #Gain : 0.00312 Cov : 7.86188 S@TC : 14.9
210 193 observe alu_i/n7417 #Gain : 0.00341 Cov : 7.86528 S@TC : 14.9
211 194 observe alu_i/n7894 #Gain : 0.00308 Cov : 7.86836 S@TC : 14.9
212 195 observe alu_i/n1675 #Gain : 0.00271 Cov : 7.87108 S@TC : 14.9
213 196 observe alu_i/n3910 #Gain : 0.00309 Cov : 7.87416 S@TC : 14.9
214 197 observe alu_i/n3174 #Gain : 0.00300 Cov : 7.87716 S@TC : 14.9
215 198 observe alu_i/n5904 #Gain : 0.00300 Cov : 7.88016 S@TC : 14.9
216 199 observe alu_i/n6508 #Gain : 0.00289 Cov : 7.88305 S@TC : 14.9
217 200 observe alu_i/n5171 #Gain : 0.00308 Cov : 7.88613 S@TC : 14.9
218 # Current random pattern test coverage is approximately 7.89% with 200

test points.ñ→

219 # Test point search completed : 200 (requested count : 200) test points
identified.ñ→

220 # runtime : 19.1165
221 # end time : 11:43:51
222

223 #+-------------------- TARGET-WISE TEST POINT SUMMARY ----------------+#
224 # target : random_resistant
225 # requested test point count : 200
226 # reported test point count : 200
227 # runtime : 19.1165
228 # test points for shadow_wrapper
229 # reported test point count : 0
230 # runtime : 0.0000
231 #+--+#
232

233 #+------------------- UNIFIED TEST POINT SUMMARY ---------------------+#
234 # total test points : 200
235 # total runtime : 19.1165
236 #+--+#

132

B.1 – Reports

B.1.2 Random selection of test points in the netlist

random_strobe_list.txt

1 lsu_i/i_store_unit/store_buffer_i/u1393/B2
2 lsu_i/i_store_unit/store_buffer_i/speculative_queue_q_reg_3__address__ ⌋

18_/CKñ→

3 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_pmp_if/gen_pmp_genblk1_2__i_pmp_entry/ ⌋
u481/A2ñ→

4 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_itlb/content_q_reg_14__ppn__39_/RN
5 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋

lock/gen_parallel_slices_0__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u2290/ZN

ñ→

ñ→

6 alu_i/u8016/B1
7 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋

lock/gen_parallel_slices_1__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u7625/B

ñ→

ñ→

8 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_itlb/content_q_reg_4__reserved__8_/Q
9 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_pmp_if/gen_pmp_genblk1_2__i_pmp_entry/ ⌋

u26/ZNñ→

10 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋
lock/gen_parallel_slices_0__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u1570/A1

ñ→

ñ→

11 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_pmp_data/gen_pmp_genblk1_1__i_pmp_entr ⌋
y/u679/B1ñ→

12 lsu_i/i_pipe_reg_load/d_o_reg_175_/QN
13 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_2__i_opgroup_b ⌋

lock/gen_parallel_slices_1__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_noncomp/u337/A1

ñ→

ñ→

14 i_mult/i_multiplier/u7465/B
15 i_mult/i_multiplier/u486/A1
16 alu_i/u3721/B1
17 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_pmp_data/gen_pmp_genblk1_3__i_pmp_entr ⌋

y/i_lzc/u171/ZNñ→

18 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_dtlb/tags_q_reg_0__vpn0__6_/RN
19 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_1__i_opgroup_b ⌋

lock/gen_merged_slice_i_multifmt_slice/gen_num_lanes_0__active_lan ⌋
e_lane_instance_i_fpnew_divsqrt_multi/i_divsqrt_lei/nrbd_nrsc_u0/c ⌋
ontrol_u0/genblk4_1__iteration_div_sqrt/u188/A1

ñ→

ñ→

ñ→

20 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_dtlb/content_q_reg_11__ppn__6_/D
21 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_2__i_opgroup_b ⌋

lock/gen_parallel_slices_1__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_noncomp/u249/A3

ñ→

ñ→

22 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_pmp_data/gen_pmp_genblk1_0__i_pmp_entr ⌋
y/i_lzc/u170/A2ñ→

23 alu_i/u6103/A2
24 alu_i/u7071/A1
25 lsu_i/gen_mmu_sv39_i_cva6_mmu/u69/A1

133

General scripts

26 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_ptw/i_pmp_ptw/gen_pmp_genblk1_5__i_pmp ⌋
_entry/u196/Añ→

27 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋
lock/gen_parallel_slices_1__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u6985/CI

ñ→

ñ→

28 i_mult/i_multiplier/u2708/A
29 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_itlb/u4726/B1
30 alu_i/u1606/A1
31 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_itlb/tags_q_reg_7__vpn2__2_/RN
32 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_1__i_opgroup_b ⌋

lock/gen_merged_slice_i_multifmt_slice/gen_num_lanes_0__active_lan ⌋
e_lane_instance_i_fpnew_divsqrt_multi/i_divsqrt_lei/preprocess_u0/ ⌋
u387/A1

ñ→

ñ→

ñ→

33 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_pmp_if/gen_pmp_genblk1_7__i_pmp_entry/ ⌋
u258/ZNñ→

34 i_mult/i_multiplier/u2118/B1
35 lsu_i/lsu_bypass_i/mem_q_reg_1__vaddr__61_/Q
36 branch_unit_i/u1139/A2
37 i_mult/i_multiplier/u6076/B2
38 i_mult/i_multiplier/u8272/A
39 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_ptw/u226/A1
40 lsu_i/i_store_unit/store_buffer_i/u1026/A2
41 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_3__i_opgroup_b ⌋

lock/gen_merged_slice_i_multifmt_slice/gen_num_lanes_0__active_lan ⌋
e_lane_instance_i_fpnew_cast_multi/u2068/ZN

ñ→

ñ→

42 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_pmp_data/gen_pmp_genblk1_0__i_pmp_entr ⌋
y/u78/Zñ→

43 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋
lock/gen_parallel_slices_0__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u5887/A1

ñ→

ñ→

44 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋
lock/gen_parallel_slices_0__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u5806/A1

ñ→

ñ→

45 i_mult/i_multiplier/u6712/B
46 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_pmp_data/gen_pmp_genblk1_6__i_pmp_entr ⌋

y/u180/ZNñ→

47 lsu_i/u677/A2
48 i_mult/i_multiplier/u2523/B
49 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_pmp_if/gen_pmp_genblk1_6__i_pmp_entry/ ⌋

u35/A1ñ→

50 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_dtlb/u3953/ZN
51 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋

lock/gen_parallel_slices_1__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u4937/A

ñ→

ñ→

52 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_dtlb/u3935/B1

134

B.1 – Reports

53 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_1__i_opgroup_b ⌋
lock/gen_merged_slice_i_multifmt_slice/gen_num_lanes_0__active_lan ⌋
e_lane_instance_i_fpnew_divsqrt_multi/i_divsqrt_lei/nrbd_nrsc_u0/c ⌋
ontrol_u0/genblk4_0__iteration_div_sqrt/u565/A

ñ→

ñ→

ñ→

54 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_1__i_opgroup_b ⌋
lock/gen_merged_slice_i_multifmt_slice/gen_num_lanes_0__active_lan ⌋
e_lane_instance_i_fpnew_divsqrt_multi/i_divsqrt_lei/nrbd_nrsc_u0/c ⌋
ontrol_u0/u1746/B

ñ→

ñ→

ñ→

55 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_dtlb/u1277/B1
56 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_3__i_opgroup_b ⌋

lock/gen_merged_slice_i_multifmt_slice/gen_num_lanes_0__active_lan ⌋
e_lane_instance_i_fpnew_cast_multi/u2219/A2

ñ→

ñ→

57 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_pmp_if/gen_pmp_genblk1_4__i_pmp_entry/ ⌋
u225/Añ→

58 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋
lock/gen_parallel_slices_1__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/i_fpnew_rounding/u85/A2

ñ→

ñ→

59 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_ptw/i_pmp_ptw/gen_pmp_genblk1_7__i_pmp ⌋
_entry/u276/Añ→

60 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_pmp_if/gen_pmp_genblk1_1__i_pmp_entry/ ⌋
u416/ZNñ→

61 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋
lock/gen_parallel_slices_1__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u9112/S

ñ→

ñ→

62 i_mult/i_multiplier/u7180/A2
63 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋

lock/gen_parallel_slices_1__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/inp_pipe_op_q_reg_1__1_/Q

ñ→

ñ→

64 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋
lock/gen_parallel_slices_0__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u3751/B

ñ→

ñ→

65 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_3__i_opgroup_b ⌋
lock/gen_merged_slice_i_multifmt_slice/gen_num_lanes_0__active_lan ⌋
e_lane_instance_i_fpnew_cast_multi/u236/A1

ñ→

ñ→

66 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_pmp_if/gen_pmp_genblk1_3__i_pmp_entry/ ⌋
u274/Zñ→

67 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/i_arbiter/u188/A1
68 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_1__i_opgroup_b ⌋

lock/gen_merged_slice_i_multifmt_slice/gen_num_lanes_0__active_lan ⌋
e_lane_instance_i_fpnew_divsqrt_multi/i_divsqrt_lei/preprocess_u0/ ⌋
u72/A

ñ→

ñ→

ñ→

69 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_pmp_data/gen_pmp_genblk1_0__i_pmp_entr ⌋
y/u368/B1ñ→

70 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋
lock/gen_parallel_slices_0__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u4969/S

ñ→

ñ→

71 alu_i/u1324/ZN

135

General scripts

72 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋
lock/gen_parallel_slices_1__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u14741/ZN

ñ→

ñ→

73 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_pmp_if/gen_pmp_genblk1_3__i_pmp_entry/ ⌋
u263/ZNñ→

74 lsu_i/lsu_bypass_i/u1368/B2
75 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋

lock/gen_parallel_slices_0__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u3674/A2

ñ→

ñ→

76 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_pmp_data/gen_pmp_genblk1_5__i_pmp_entr ⌋
y/u112/A2ñ→

77 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_dtlb/content_q_reg_2__ppn__11_/D
78 alu_i/u1572/B1
79 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/u40/A1
80 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_dtlb/u1169/ZN
81 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋

lock/gen_parallel_slices_0__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u930/A2

ñ→

ñ→

82 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_itlb/u1342/B1
83 lsu_i/u798/A2
84 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_dtlb/u675/B2
85 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_itlb/u2591/A
86 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_3__i_opgroup_b ⌋

lock/gen_merged_slice_i_multifmt_slice/gen_num_lanes_0__active_lan ⌋
e_lane_instance_i_fpnew_cast_multi/u3133/A1

ñ→

ñ→

87 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋
lock/gen_parallel_slices_1__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u7592/ZN

ñ→

ñ→

88 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_1__i_opgroup_b ⌋
lock/gen_merged_slice_i_multifmt_slice/gen_num_lanes_0__active_lan ⌋
e_lane_instance_i_fpnew_divsqrt_multi/i_divsqrt_lei/nrbd_nrsc_u0/c ⌋
ontrol_u0/genblk4_2__iteration_div_sqrt/u527/ZN

ñ→

ñ→

ñ→

89 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋
lock/gen_parallel_slices_0__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u2800/ZN

ñ→

ñ→

90 i_mult/i_multiplier/u11354/B
91 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋

lock/gen_parallel_slices_0__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u2536/ZN

ñ→

ñ→

92 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_1__i_opgroup_b ⌋
lock/gen_merged_slice_i_multifmt_slice/gen_num_lanes_0__active_lan ⌋
e_lane_instance_i_fpnew_divsqrt_multi/i_divsqrt_lei/preprocess_u0/ ⌋
u299/ZN

ñ→

ñ→

ñ→

93 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_pmp_if/gen_pmp_genblk1_2__i_pmp_entry/ ⌋
u156/Añ→

94 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋
lock/gen_parallel_slices_1__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u12830/ZN

ñ→

ñ→

136

B.1 – Reports

95 lsu_i/lsu_bypass_i/u478/A
96 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_1__i_opgroup_b ⌋

lock/gen_merged_slice_i_multifmt_slice/gen_num_lanes_0__active_lan ⌋
e_lane_instance_i_fpnew_divsqrt_multi/i_divsqrt_lei/fpu_norm_u0/u8 ⌋
02/ZN

ñ→

ñ→

ñ→

97 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋
lock/gen_parallel_slices_1__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u11366/A

ñ→

ñ→

98 i_mult/i_multiplier/u8243/ZN
99 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_pmp_data/gen_pmp_genblk1_7__i_pmp_entr ⌋

y/u97/ZNñ→

100 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_dtlb/tags_q_reg_13__vpn2__4_/D
101 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋

lock/gen_parallel_slices_0__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/inp_pipe_operands_q_reg_1__0_ ⌋
13/D

ñ→

ñ→

ñ→

102 i_mult/i_multiplier/u12176/B
103 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_dtlb/u2550/ZN
104 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_itlb/tags_q_reg_14__vpn2__6_/CK
105 lsu_i/lsu_bypass_i/mem_q_reg_0__vaddr__12_/CK
106 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_itlb/u2638/ZN
107 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_dtlb/content_q_reg_1__a_/D
108 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋

lock/gen_parallel_slices_0__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/inp_pipe_operands_q_reg_1__0_ ⌋
18/Q

ñ→

ñ→

ñ→

109 alu_i/c373/A1
110 alu_i/u1464/A2
111 alu_i/u7508/B1
112 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_dtlb/u5221/B1
113 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋

lock/gen_parallel_slices_0__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u5324/Z

ñ→

ñ→

114 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋
lock/gen_parallel_slices_0__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u3302/C1

ñ→

ñ→

115 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_pmp_if/gen_pmp_genblk1_6__i_pmp_entry/ ⌋
u644/A2ñ→

116 i_mult/i_multiplier/u8561/ZN
117 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋

lock/gen_parallel_slices_1__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u8559/A

ñ→

ñ→

118 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_pmp_if/gen_pmp_genblk1_5__i_pmp_entry/ ⌋
u546/B1ñ→

119 lsu_i/i_load_unit/u188/ZN
120 alu_i/u443/A
121 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_itlb/u5037/A

137

General scripts

122 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋
lock/gen_parallel_slices_0__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u831/A2

ñ→

ñ→

123 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋
lock/gen_parallel_slices_1__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u4354/ZN

ñ→

ñ→

124 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_dtlb/u3934/ZN
125 alu_i/u2860/ZN
126 lsu_i/i_store_unit/store_buffer_i/speculative_queue_q_reg_2__address__ ⌋

26_/Dñ→

127 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_3__i_opgroup_b ⌋
lock/gen_merged_slice_i_multifmt_slice/gen_num_lanes_0__active_lan ⌋
e_lane_instance_i_fpnew_cast_multi/u3771/A1

ñ→

ñ→

128 gen_cvxif_cvxif_fu_i/u270/A2
129 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋

lock/gen_parallel_slices_1__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u2128/A1

ñ→

ñ→

130 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_ptw/i_pmp_ptw/gen_pmp_genblk1_6__i_pmp ⌋
_entry/u129/C1ñ→

131 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋
lock/gen_parallel_slices_1__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u2211/A

ñ→

ñ→

132 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_dtlb/tags_q_reg_13__asid__13_/CK
133 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋

lock/gen_parallel_slices_0__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u632/ZN

ñ→

ñ→

134 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋
lock/gen_parallel_slices_1__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u12333/A1

ñ→

ñ→

135 lsu_i/lsu_bypass_i/u93/A1
136 i_mult/i_multiplier/u12719/ZN
137 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_pmp_data/gen_pmp_genblk1_4__i_pmp_entr ⌋

y/u23/A2ñ→

138 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_dtlb/tags_q_reg_15__asid__5_/RN
139 i_mult/u205/A1
140 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_dtlb/u5504/A1
141 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_pmp_data/gen_pmp_genblk1_3__i_pmp_entr ⌋

y/u531/Añ→

142 lsu_i/gen_mmu_sv39_i_cva6_mmu/misaligned_ex_q_reg_cause__0_/RN
143 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_3__i_opgroup_b ⌋

lock/gen_merged_slice_i_multifmt_slice/gen_num_lanes_0__active_lan ⌋
e_lane_instance_i_fpnew_cast_multi/u148/A

ñ→

ñ→

144 i_mult/i_multiplier/u7550/B
145 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_dtlb/u882/B2
146 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_pmp_if/gen_pmp_genblk1_3__i_pmp_entry/ ⌋

u222/A2ñ→

138

B.1 – Reports

147 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_1__i_opgroup_b ⌋
lock/gen_merged_slice_i_multifmt_slice/gen_num_lanes_0__active_lan ⌋
e_lane_instance_i_fpnew_divsqrt_multi/i_divsqrt_lei/fpu_norm_u0/u3 ⌋
38/B1

ñ→

ñ→

ñ→

148 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋
lock/gen_parallel_slices_1__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u10431/ZN

ñ→

ñ→

149 lsu_i/u338/A2
150 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_itlb/u2422/B
151 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_2__i_opgroup_b ⌋

lock/gen_parallel_slices_1__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_noncomp/i_class_a/u29/ZN

ñ→

ñ→

152 alu_i/u6586/A2
153 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_itlb/u4087/B
154 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_dtlb/tags_q_reg_4__vpn0__1_/Q
155 lsu_i/i_store_unit/store_buffer_i/u2767/A2
156 i_mult/i_multiplier/u8421/B2
157 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋

lock/gen_parallel_slices_0__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u5825/ZN

ñ→

ñ→

158 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_itlb/u2721/A2
159 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋

lock/gen_parallel_slices_1__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u15609/ZN

ñ→

ñ→

160 lsu_i/i_pipe_reg_store/u40/A
161 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_1__i_opgroup_b ⌋

lock/gen_merged_slice_i_multifmt_slice/gen_num_lanes_0__active_lan ⌋
e_lane_instance_i_fpnew_divsqrt_multi/i_divsqrt_lei/nrbd_nrsc_u0/c ⌋
ontrol_u0/u1904/A2

ñ→

ñ→

ñ→

162 alu_i/u4729/A2
163 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋

lock/gen_parallel_slices_1__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u14130/A

ñ→

ñ→

164 alu_i/u7720/A
165 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋

lock/gen_parallel_slices_1__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u13725/A2

ñ→

ñ→

166 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_dtlb/u2921/A4
167 u73/ZN
168 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_ptw/i_pmp_ptw/gen_pmp_genblk1_6__i_pmp ⌋

_entry/u562/ZNñ→

169 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋
lock/gen_parallel_slices_0__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u5315/B1

ñ→

ñ→

170 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_2__i_opgroup_b ⌋
lock/gen_parallel_slices_1__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_noncomp/u7/Z

ñ→

ñ→

171 i_mult/i_multiplier/u11702/B

139

General scripts

172 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_pmp_data/gen_pmp_genblk1_2__i_pmp_entr ⌋
y/u40/ZNñ→

173 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_ptw/i_pmp_ptw/gen_pmp_genblk1_6__i_pmp ⌋
_entry/u371/B2ñ→

174 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_pmp_data/gen_pmp_genblk1_1__i_pmp_entr ⌋
y/i_lzc/u28/Zñ→

175 lsu_i/lsu_bypass_i/u423/A1
176 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_pmp_if/gen_pmp_genblk1_7__i_pmp_entry/ ⌋

u227/ZNñ→

177 fpu_gen_fpu_i/u278/A2
178 alu_i/u4390/B1
179 alu_i/u7854/A1
180 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋

lock/gen_parallel_slices_0__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/mid_pipe_spec_res_q_reg_1__si ⌋
gn_/CK

ñ→

ñ→

ñ→

181 alu_i/c43/A1
182 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_itlb/u370/A2
183 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_ptw/i_pmp_ptw/gen_pmp_genblk1_6__i_pmp ⌋

_entry/u373/ZNñ→

184 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_itlb/u4442/S
185 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_pmp_data/gen_pmp_genblk1_6__i_pmp_entr ⌋

y/u164/ZNñ→

186 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_3__i_opgroup_b ⌋
lock/gen_merged_slice_i_multifmt_slice/gen_num_lanes_0__active_lan ⌋
e_lane_instance_i_fpnew_cast_multi/u2232/A1

ñ→

ñ→

187 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_1__i_opgroup_b ⌋
lock/gen_merged_slice_i_multifmt_slice/gen_num_lanes_0__active_lan ⌋
e_lane_instance_i_fpnew_divsqrt_multi/i_divsqrt_lei/fpu_norm_u0/u5 ⌋
39/A2

ñ→

ñ→

ñ→

188 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_1__i_opgroup_b ⌋
lock/gen_merged_slice_i_multifmt_slice/gen_num_lanes_0__active_lan ⌋
e_lane_instance_i_fpnew_divsqrt_multi/i_divsqrt_lei/nrbd_nrsc_u0/c ⌋
ontrol_u0/genblk4_0__iteration_div_sqrt/u64/A2

ñ→

ñ→

ñ→

189 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋
lock/gen_parallel_slices_1__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u7716/A

ñ→

ñ→

190 alu_i/u4403/ZN
191 lsu_i/i_store_unit/store_buffer_i/u2664/ZN
192 lsu_i/i_load_unit/u621/A2
193 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_itlb/content_q_reg_2__ppn__14_/Q
194 lsu_i/gen_mmu_sv39_i_cva6_mmu/i_ptw/i_pmp_ptw/gen_pmp_genblk1_6__i_pmp ⌋

_entry/u561/A2ñ→

195 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋
lock/gen_parallel_slices_0__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u210/A1

ñ→

ñ→

140

B.1 – Reports

196 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_3__i_opgroup_b ⌋
lock/gen_merged_slice_i_multifmt_slice/gen_num_lanes_0__active_lan ⌋
e_lane_instance_i_fpnew_cast_multi/u384/A1

ñ→

ñ→

197 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_1__i_opgroup_b ⌋
lock/gen_merged_slice_i_multifmt_slice/gen_num_lanes_0__active_lan ⌋
e_lane_instance_i_fpnew_divsqrt_multi/i_divsqrt_lei/preprocess_u0/ ⌋
u1327/ZN

ñ→

ñ→

ñ→

198 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_1__i_opgroup_b ⌋
lock/gen_merged_slice_i_multifmt_slice/gen_num_lanes_0__active_lan ⌋
e_lane_instance_i_fpnew_divsqrt_multi/i_divsqrt_lei/preprocess_u0/ ⌋
u684/A

ñ→

ñ→

ñ→

199 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋
lock/gen_parallel_slices_1__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u9960/B2

ñ→

ñ→

200 fpu_gen_fpu_i/fpu_gen_i_fpnew_bulk/gen_operation_groups_0__i_opgroup_b ⌋
lock/gen_parallel_slices_1__active_format_i_fmt_slice/gen_num_lane ⌋
s_0__active_lane_lane_instance_i_fma/u7947/ZN

ñ→

ñ→

141

142

Bibliography

[1] Mihalis Psarakis, Dimitris Gizopoulos, Ernesto Sanchez, and Matteo Sonza Re-
orda. Microprocessor software-based self-testing. IEEE Design & Test of Computers,
27(3):4–19, 2010.

[2] Wikipedia contributors. Risc-v — wikipedia, the free encyclopedia. https://en.w
ikipedia.org/w/index.php?title=RISC-V&oldid=1304464205, 2025. [Online;
accessed 17-August-2025].

[3] Jean-Roch COULON Thales. Cv32a60x design document — openhw group, thales
dis france sas. https://docs.openhwgroup.org/projects/cva6-user-manual/07
_cv32a60x/design/design.html, 2025. [Online; accessed 24-August-2025].

[4] ETH Zurich and University of Bologna. Cva6: An application class risc-v cpu core
— openhw group. https://docs.openhwgroup.org/projects/cva6-user-manua
l/index.html, 2025. [Online; accessed 18-August-2025].

[5] Florian Zaruba and Luca Benini. The cost of application-class processing: Energy
and performance analysis of a linux-ready 1.7-ghz 64-bit risc-v core in 22-nm fdsoi
technology, july 2019.

[6] Ultraembedded. Risc-v core architecture. https://deepwiki.com/ultraembedded
/riscv/2-risc-v-core-architecture, 2025. [Online; accessed 24-August-2025].

[7] Wikipedia contributors. Design for testing — wikipedia, the free encyclopedia. http
s://en.wikipedia.org/w/index.php?title=Design_for_testing&oldid=127726
2927, 2025. [Online; accessed 26-August-2025].

[8] Fulvio Corno Maurizio Rebaudengo and Matteo Sonza Reorda. Testing and fault
tolerance.

[9] Michelangelo Grosso. Digital testing basics, 25/09/2023.

[10] IEEE Standard Test Interface Language (STIL) for Digital Test Vector Data.

[11] TestMAX ATPG and TestMAX Diagnosis User Guide.

[12] SpyGlass DFTMethodology GuideWare2.0 UserGuide.

[13] VC Z01X User Guide.

143

