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Abstract

The advent of high-performance computing on aircraft computer platforms introduces
several design challenges. In particular, digital fly-by-wire Flight Control Computers rely
on sophisticated actuation control loop algorithms, which demand significant hardware
resources for efficient execution.

To address these challenges, the AMD Xilinx Versal ACAP (Adaptive Compute Ac-
celeration Platform) provides a cutting-edge and promising architecture. This FPGA is
the industry’s first compute platform that integrates dedicated acceleration engines (Al
Engines) for scalar and vector processing, tightly coupled with programmable logic and
configurable on-chip connectivity. Such a heterogeneous architecture enables the design
of customized, high-performance hardware solutions.

This thesis, carried out in collaboration with Leonardo Electronics, investigates the
development of digital microarchitectures for airborne electronic modules on the Ver-
sal platform, and evaluates their hardware implementation both in standard DSP logic
blocks and in Al Engines according to the required operation schedules. In particular,
using Vitis Model Composer—a high-level development environment—an actuator con-
trol loop has been analyzed and mapped across Al Engines and Programmable Logic,
interconnected through the AXI4 protocol. C++ code for Al Engines has been devel-
oped, while Programmable Logic VHDL code has been generated via graphical block
design. Subsequently, the VCK190 Evaluation Board has been programmed accordingly,
and performance has been assessed.

The results confirm the feasibility of the proposed implementation and highlight the
potential to further generalize the algorithms in order to fully exploit the computational
capabilities of the hardware.
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Chapter 1

Introduction and thesis
organization

In modern aircraft, traditional direct connections between pilots’ input and mechanical
actuators are replaced by a Fly-by-wire system. This means that, before reaching the
actuators in the real world, the input commands have to be processed by a Digital Flight
Control Computer (DFCC). This process is capable of integrating autopilot and stabiliza-
tion functions, and is usually performed by a CPU, which has naturally large overheads
and is very inefficient for this kind of specialized computations.

An FCC realized with custom hardware is the best solution, especially given the grow-
ing complexity of control algorithms, and the performances can increase even by two
orders of magnitude [21].

This electronic system is, however, Safety-critical: this means that a malfunction may
cause important injuries to people, the environment, or important damage to property.
For this reason, the custom hardware has to pass very severe certification processes, such
as DO-254, which is the assurance guidance specific for airborne electronic hardware.

The safety-critical applications, such as FCCs, apply for the highest assurance level
(Level A). For this reason, at the moment, the most popular choice for hardware imple-
mentation is the FPGA, which can provide both control and determinism.

This thesis, conducted in collaboration with Leonardo Electronics, focuses on the anal-
ysis of the choice of a recent Versal System on Chip (SoC) - Versal ACAP - in order
to realize an actuator control loop, which can become a starting point to be taken into
consideration for FCCs design in years to come.

1.1 Organization

The work begins with a description of the Versal ACAPs and their main characteristics,
with a particular focus on the Al Engines. These engines represent one of AMD’s most
recent architectural innovations, capable of delivering high throughput through algorithm
parallelization, especially in the context of DFCCs (Chapter 2).

In Chapter 3, following a brief overview of the design flow and a powerful tool that
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Introduction and thesis organization

significantly accelerates development—AMD Vitis Model Composer, which is based on
Simulink and supports both simulation and code generation [9]—an analysis of the AXI4-
Stream handshake protocol is provided. This analysis demonstrates how the protocol can
facilitate the mapping of complex data flow graphs (DFGs) between various parts of the
chip. The chapter concludes with a short introduction to the evaluation board used for
testing the designs.

Chapter 4 details the steps taken to implement an example of Actuator Control Elec-
tronic (ACE) on the VCK190 evaluation board, using the aforementioned tool. This
chapter also includes a simpler exercise implemented on the same board, whose results
and performance are compared with those of the complete design.

Finally, Chapter 5 summarizes the results obtained and offers reflections on the poten-
tial future applications of the device in the avionics domain.

12



Chapter 2

Preliminary background

2.1 Versal ACAP

The computational demand in Al applications, real-time processing, Wireless 5G appli-
cations, modern Radars, and many other fields is continuously growing. One possibility
to satisfy the need for performance are Versal adaptive System on Chips (SoCs). They
are Heterogeneous devices in 7 nm FinFET technology that allow the user to exploit the
advantages of both scalar and parallel computation, with a slice of the device reserved
for programmable logic (PL) to provide greater flexibility.

Scalar Engines Adaptable Engines Intelligent Engines
Arm .
Dual-Core Al Engines
Cortex-A72
| —
DSP Engines
k.—-i;
— Network-on-Chip -
| we || 11z60s |
PCla DDA Mo 100G 600G Direct
cCiX HEM wooR || vos | [ secbis || Eiomer || Cores RE
|aaverio | [ se6bs |

1

WPEDS_04_081820

Figure 2.1. ACAP scheme [1].
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Preliminary background

Versal ACAPs (Adaptive Compute Acceleration Platform) contains (as shown in Fig-
ure 2.1) scalar processors (Arm Cortex-A72 and Arm Cortex-R5F), useful for complex
algorithms; programmable logic ("Adaptable Engines" in the figure), which can be used
also to obtain a custom hierarchical memory; and "Intelligent Engines": a portion of the
silicon is occupied by DSP Engines, which usually are DSP58, optimized for 27 x 24 bits
accumulation [2]), and Al Engines, where Al stands for "Adaptive Intelligent', and are
basically computational tiles with both a scalar and a vector processor units (their details
are better explained in the Section 2.1.1). All three parts are interconnected by a high-
bandwidth Versal Network on Chip (NoC, Section 2.1.2), which also provides connections
with the external world by means of a series of I/O elements and interfaces.

It is clear that this kind of device, properly programmed, is capable of solving basically
any kind of computational problem. Furthermore, the user can approach them at any
level, from a low-level HDL description to a higher level description by means of C/C++
codes or with the help of tools like Vitis Model Composer, providing graphical solutions
(this tool will be better described in Section 3.2).

2.1.1 The AI Engines

The Al Engines are VLIW (Very Long Instruction Word) SIMD (Single Instruction Mul-
tiple Data) computational units. All the information related to Al Engines structure and
features in this Section refers to [3].

The array

They are usually organized in a 2-dimensional array (Figure 2.2), in which the first row is
composed of interface tiles, which allow communication from/to the NoC, communication
from/to the Programmable Logic (PL), and a single configuration tile. An AI Engine
array can contain 30-400 tiles.

14
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Al Engine Tile
( Streaming Interconnect ]
Al Engine Al Engine /J;I Engine Array, 6 x 4 Al Engine Tiles and corresponding \\
9 Memary Al Engine-PL/NoC Interface Tiles

AlEngine || AlEngine || AlEngine || AlEngine || AlEngine || AlEngine

Tile Tile Tile Tile Tile Tile
Al Engine AlEngine || AlEngine || AlEngine || AlEngine || AlEngine || AlEngine
PL Module Tile Tile Tile Tile Tile Tile

AlEngine || AlEngine || AlEngine || AlEngine || AlEngine || AlEngine

, Tile Tile Tile Tile Tile Tile
NOC Interface Tile
Al Engine Al E”%'”e AlEngine || AlEngine || AlEngine || AlEngine || AlEngine || AlEngine
PL Module o Tile Tile Tile Tile Tile Tile
Module
Configuration MoC MoC

Interface Interface Interface
Al Engine Configuation Tile Tile Tile
Interface Tile \ /J

X208718-000819

Figure 2.2. AI Engines array scheme [3].

The array interface
There are two kinds of array interface tiles:

o The NoC interface tiles are basically AXI4-Stream switches plus level shifters in
AIE-NoC interface tiles (the NoC components are in different power domains).

e The PL interface tiles possess 8 AXI Stream ports in upstream and 6 in downstream,
which offer a privileged path for PL-ATE communication (see Figure 2.3).

15
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Al Engine Tile Al Engine Tile
A A A A
T =] =]
o™ o™
m m
= =
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=" AX4 Switch [ 1 axi4 switch [ o
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2,
a Y . Y
b
ﬁ +— AXl4-Stream i 4x32b AX]4-Stream -
= D Switch 4x32b » Switch -
=1
(1]
a ﬁlb a a ﬂib A A
o o o o ™
o £ S E3 o
2] =) ) | o
Y Y = Y A4
Al Engine Clock PL Interface NoC PL
"""""""""""""""""""" [ Interf DMA T Interf
PL Clock nterface nterface
PL Interface Tile [y NoC Interface Tile ['} [
= £
[==] o
o o™
=] =] - -
3 3 HNoC 4 v ¥-
= 4
@ w
NSU NSU NMU
Y Y
PL
X21569-040519

Figure 2.3. Interface tiles [3].

As concerns the configuration tile, it contains the PLL for the Al Engine’s clock, the
POR (Power On Reset) unit, and registers for global features. It also contains the
interrupt generation unit (interrupts can be generated from events, useful for debug or
performance simulations).

The AI Engine tile
Each tile (Figure 2.4) contains:

o an AXI4 interconnect block
e a memory module
o the Al engine

16



2.1 — Versal ACAP

AX14 Interconnect
Back-pressure handling

Cascade Stream - Up to 200+ GB/s bandwidth per tile
Tile Memory Access -
AX4 Interconnects ——= i
Interconnect I 3 -
I3 i
Al Engine

{including ISA-based

Memnry Vector Processor)

Module
Local Memary |

ISA-based
. . . Application Specific Vector Processor
Multi-bank implementation Vector Extensions Software
Shared among = =*——— & I = Programmable
neighbaoring Al Engines For Example: ML and ’
DMA

(e.q., C/C++)
5G Wireless N

[

Y ¥

Cascade Interface DMA
Partial results to next Al Engine Mon-neighbor data communication
Integrated synchronization primitives

Ens02-093

Figure 2.4. Al Engines tile scheme [3].

The interconnections

The mapping through AXI4 protocol provides the possibility to read/write the tile reg-
isters or their memory from an external master through the NoC. Also, an AXI4-Stream
switch, which can be configured both for circuit-switched or packet-switched streams
and is basically a programmable FIFO (4-deep FIFO with 2 cycles latency) with 6 pro-
grammable arbiters for the packet-switched stream mode.

The packet-switched streaming data transfer’s latency is not deterministic, since re-
sources can be contested, while circuit-switched streaming guarantees deterministic la-
tency but not the best overall performance.

A cascade streaming interface allows a tile to write the results directly in the "next'
tile’s accumulator (a particular type of 384-bit register). Starting from the bottom-left
tile, the "next" one is the one that follows a "snake" which moves in the right direction
until the end of the row, then moves up of a tile and continues to the left until the end
of the row, and so on...
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Data Memary Interface

oo e
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Data Memory Interface

EHE AT

Figure 2.5. Al Engines tile interconnections [3].

The memory modules

The memory module can contain 32 kB of data. They are divided into 8 memory banks,
in which the first two have 7-bit ECC for each 32-bit word, while the last two have a
parity bit for each 32-bit word.

An additional 16 kB of program memory is present, with 7-bit ECC for each 128-bit
instruction (it actually contains in fact 1024 x 128-bit instructions). The program memory
can be accessed both from the memory-mapped AXI4 and from the AIE interface.

Despite the other ways, the main method for a couple of neighboring AIE tiles to
communicate is the shared memory: each tile can access its 32 kB memory, but also the
South tile’s one, the North tile’s ones and the Right or the Left tiles’ one (depending on
the position in the array), for a total of 128 kB of accessible memory.

To communicate with non-neighboring tiles, 2 x STMM (Stream to Memory Module)
DMAs and 2 x MMTS (Memory Module to Streaming) DMAs are present. 16 buffer
descriptors (buffers that contain the information regarding a DMA transfer) can be ac-
cessed, and a hardware synchronization (Locks) module behaves as an arbiter between
simultaneous requests.

The engine

The AI Engine architecture and features are what make Versal ACAPs unique. The
scheme of the computational unit is reported in Figure 2.6.

18
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Memaory Interface
Scalar | Scalar AL | Fixed-Point Vector Unit

Reqgister Files

Mon-linear
Functions Floating-Point Vector Unit

Scalar Unit Vector Unit

AGU AGU Instruction Fetch
& Decode Unit
Load Unit & Load Unit B

XIDEZI-081818

Figure 2.6. Al Engines scheme [3].

Up to 7 instructions can be issued simultaneously: 2 loads, 1 store, 1 vector operation,
1 scalar operation, 2 move operations. Who writes the kernel, which has to be in ¢/c++,
must take this into account, and can take advantage of the Al Engine API [7], which is
a set of functions and pragmas to program the engines.

In order to use these functions in an efficient way to reach the best performances
possible, a good understanding of the architecture is required.

The AI Engine contains both a scalar and a vector unit.

Scalar unit

It can perform standard scalar operations such as sum, subtraction, multiplication, com-
parisons, bit-wise operations, but also more complex non-linear functions such as sin/cos,
absolute value, count leading zeros, square root, inverse and inverse square root, or con-
version float2fix and fix2float.

All these operations are performed with a throughput of 1 cycle, but the latency de-
pends on the function; for example, multiplication is performed in 3 cycles, while non-
linear functions require up to 4 cycles.

The scalar unit DOES NOT contain a floating point (FP) unit: FP operations are
performed through emulation. Furthermore, the floating point arithmetic used in the
AlEs is not fully compliant with the IEEE one, for 2 reasons:

e in case of saturation, 0 is returned instead of max/min values;
o if float2fix returns —273!, which is still a value within the valid range, the OVFL
exception is raised.

Vector unit

The vector unit contains three different data paths:

o Multiply Accumulator (MAC) Path
o Upshift Path
o Shift-round Saturate (SRS) Path
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The last one is needed since the accumulator registers are 48-bit or 80-bit, so this oper-
ation is needed in order to store the results in normal registers, which contain locations
with power of two number of bits.

The engine contains scalar registers, special registers, and vector registers. These last
in particular are 16 x 128-bit wide registers, which can be combined to create 256-bit,
512-bit, or 1024-bit vector registers.

The number of MACs depends on the data type and is strictly linked to the vector
dimension: for what concerns fixed-point data, 128 8-bit multipliers can be post-added
and combined into 16 or 8 accumulator lanes of 48 bits: the 384-bit accumulator register
can be seen as 8 lanes of 48 bits. So it can perform up to 128 x 8-bit MAC, but also, for
example, 8 x 32-real MACs or 2 x 32-complex MACs with a single instruction.

As concerns FP arithmetic, 8 lanes of SPFP MACs are provided, with a 3-cycle latency
and 1-cycle Initialization Interval.

The vector operations allowed include comparisons, min/max (element-wise), and fix2float
conversions (for float2fix, the scalar unit is used instead).

The AI Engines do not support Half Precision Floating Point (HPFP) numbers or other
custom formats of floating point numbers.

Furthermore, 8 exception bits can be converted into events and raise interrupts.

Boot sequence

Here are reported the main steps of the boot sequence, which involves the PMC (Platform
Management Controller), which is independent from the PS (Processing System), and is
responsible for the boot and configuration of the device.

1. Power-on and power-on-reset

2. The PMC provides the AIE array configuration using the NPI interface (data comes
from a flash device)

3. PLL is enabled

Reset is released

5. Programming of the AIE array over the memory-mapped AXI4 (from the NoC)

e~

2.1.2 The NoC

Even if the distances across various parts of the chip are reducing, the delays are in-
creasing due to scaling. This leads to the need to design a proper way to manage data
transfer, capable of sustaining large bandwidths and programmable. The information in
this Section can be found in [22].

Versal Network on Chip (NoC) globally interconnects all the blocks through a single
memory mapping: the master connects to an entry point, called Network Master Unit
(NMU), and the slave connects to an exit point called Network Slave Unit (NSU). Routes
are programmable and re-programmable, and the data width is (32-512 bits).
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Figure 2.7. Scheme of the NoC [11]: NPI = Network Peripheral Interconnect, NMU =
Network Master Unit, NSU = Network Slave Unit, NPS = Network Packet Switch.

The basic elements (NoC Switch) have 4 inputs and 4 outputs, with a minimum latency
of 2 cycles, and are arranged into horizontal (HNoC) and vertical (VNoC) sub-blocks.

The network employs Wormhole Routing [19]: a packed switched technique in which
the packet is divided into flits. The first one is the header, and the last one is the tail.
The header contains information about the path that is to be followed, all the next ones
follow it like a "worm", and the channel is set free when the tail is passed.

There is no need to wait for the entire packet to arrive in a node to start the next
movement; on the contrary, this form of routing is like a simple FIFO.

Thanks to the routing scheme, the maximum number of input ports is 4096 and the
latency can be deterministic.

In order to satisfy the bandwidth request and the determinism, no link has to be
oversubscribed, and the routing graph has to be acyclic, such that deadlocks never occur.
In Versal NoC, this is obtained by means of virtual channels and constrained routing (for
example, allocating the horizontal portion of the flow always before the vertical).

Furthermore, the traffic from the starting node to the destination can easily be divided
into different flows to satisfy the request more easily.

A compiler receives all the user information and constraints about data movements
across the chip, and provides a report with the performance of the solution found, making
this as user-friendly as efficient.
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2.1.3 AIE-ML

The AIE-ML is a different and optimized version of the initial AIE. It almost doubles
the computational capability, improves connectivity between different tiles, and in the
array organization itself. Furthermore, the memory contained in each tile is doubled,
some types of data are not supported anymore, while some others are introduced, and
enhanced DMAs are introduced. For any details about them, [5] can be referred.

Since the AIE features have already been described, the remaining part of this Section
will be focused on the main differences between the two versions of the engines.

New features with respect to AIE

IN AIE-ML, there is no native INT32 support: INT32 multiplications are obtained
through decomposition into 16 x 16-bit simpler multiplications. Also, FP32 is supported
through emulation of bfloat16 operations.

Bfloat16 and INT4 types of data are supported by this version of the engine.

The spatial disposition of the matrix is different, as shown in Figure 2.8.

AIE-ML v2 Tile (AIE—ML v2 Array, 6 x 4 AIE-ML v2 Tiles and corresponding Interface \’
( Streaming Interconnect ] Tiles
AIE-ML w2
AlE-ML v2 Memory AEMLV2 || AIEMLv2 || AIEMLv2 || AIE-MLVZ || AIE-MLv2 || AIE-ML v2
Tile Tile Tile Tile Tile Tile

AIEML V2 || AIE-MLVZ || AIE-MLVZ || AIE-MLVZ (| AIE-MLWZ | AIE-MLv2Z

Tile Tile Tile Tile Tile Tile
Memory Tile
[ Streaming Interconnect ]
Memory Tile AEMLY2 || AIEEMLVZ || AIE-MLY2 || AIE-MLvZ || AIE-MLv2 || AIE-MLv2
Memary Tile Tile Tile Tile Tile Tile

AIE-ML V2 || AIE-MLVZ || AIE-MLv2 || AIE-ML V2 || AIE-MLW2 || AIE-MLv2

’/' ] \ Tile Tile Tile Tile Tile Tile
Interface Tile
AIE-ML v2 AlE-ML v2
PL Module NaC Memary Memary Memaory Memory Memoary Memory
Madule Tile Tile Tile Tile Tile Tile

Cantrol Interface Interface Interface Interface Interface Interface
Module Tile Tile Tile Tile Tile Tile

- J o\

/

XFEFAE1015E

Figure 2.8. AIE-ML array scheme [5].

Each column is equipped with an interface tile, which communicates with both PL and
Noc. Furthermore, additional memory tiles are added, which are capable of storing 512
kB of data with ECC and contain 12 DMAs, and support up to 30 GB/s read and write
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in parallel.
Also, the data memory inside a normal tile is doubled, passing from 32 kB to 64 kB.
This new array structure supports an improved cascade mechanism: 512-bit cascade
from left to right and 384-bit cascade from top to bottom (there is no more the "snake'
configuration).

The operations’ parallelism is doubled: it passes from 128 8b x 8b operations to 256, and
introducing the INT4 data type, 512 4b x 8b MAC are supported in parallel. For floating
point, the MAC parallelism is 128 bfloat16 x bfloat16 with FP32 accumulation. FP32
ops/tile grows from 16 to 42 !, but are obtained through emulation of FP16 operations:
this means that the user can choose whether to have FP32 standard accuracy or to be
content with less precision in favor of faster calculation.

Sparsity support is added, while some other features are removed, such as scalar non-
linear functions and not aligned memory accesses.
Table 2.1 summarizes the main differences between AIE and AIE-ML.

‘ ‘ AIE ‘ AIE-ML ‘
Array structure Checkerboard All lines identical
Cascade interface 384-bits wide Horizontal direction p12-bits Wlde HorleHtal

and vertical directions
Tile stream interface 2 x 32-bit in and 2 x 32-bit out | 1 x 32-bit in and 1 x 32-bit out
Memory load/store per cycle 512/256 bits 512/256 bits
Advanced DSP functionality Yes No
INT4 operations/tile 256 1024
INT8 operations/tile 256 512
INT16 operations/tile 64 128
INT32 operations/tile 16 32
Bfloat16 operations/tile - 256
FP32 operations/tile 16 42
Data memory/tile 32 kB 64 kB
Program memory /tile 16 kB 16 kB
Memory tiles - 512 kB

Programmable logic (PL)

to AIE array bandwidth X X

3D addressing mode,
S2MM finish on TLAST,
out of order packets,
compression/decompression
Local memory locks Boolean Semaphore

Tile local memory DMA -

Table 2.1.  Summary of main differences between AIE and AIE-ML.

2.1.4 Single Event Latch-up (SEL) and Single Event Upset (SEU)

In radiation-prone environments, such as aerospace or high-altitude avionics, electronic
components are subject to Single Event Effects (SEE), which occur when a high-energy
particle strikes a sensitive region of the device. Among these effects, Single Event Upset

'Recall that 1 MAC = 2 operations
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(SEU) and Single Event Latch-up (SEL) are two of the most critical phenomena to
consider during system design and verification.

An SEU is a non-destructive event in which a charged particle alters the logical state
of a memory cell, flip-flop, or register, typically causing a bit-flip (i.e., from ‘0’ to ‘1’ or
vice versa). The underlying hardware remains physically intact, but the corrupted data
may propagate and affect system behavior or software execution.

An SEL, by contrast, is a potentially destructive condition resulting from the triggering
of a parasitic structure within the silicon substrate. This creates a low-impedance path
between the power supply and ground, leading to an abnormally high current draw. If not
promptly interrupted by power cycling, the overcurrent condition can cause permanent
damage to the device.

Trying to test SEL and SEU countermeasure proposed by Versal, a study [17] reports:
"No SEL events were observed in Xilinx 7 nm XCVC1902 at VCCmax and Tj up to
120°C' in for both neutron & 64 MeV proton testing for an equivalent of > 10 million
years of neutron irradiation at NYC sea level for a total fluence of 2x1012 protons/cm?
and 1x1012 neutrons/cm?'. And "7 nm SEU innovations combined with 7 nm process
lead to approximately 10X reduction in CRAM SEU cross Section relative to Xilinx 16nm
Kintex UltraScale+™ CRAM SEU cross section. In addition, zero uncorrectable events
were observed in 7nm UltraScale CRAM and URAM at sea level with built-in interleaving
scheme. And 0.2% of events are uncorrectable in BRAM".

Xilinx also provides a pre-verified Single Event Mitigation firmware (XilSEM). XilSEM
on Versal™ ACAP performs CRAM error detection and correction (via integrated support
for ECC and CRC). Single-bit errors are correctable thanks to ECCs, while multi-bit ones
are only detectable. During another experiment, using NYC sea level neutron flux of 12.9
neutron/cm?/hr, "no uncorrectable CRAM multiple-bit upset (MBU) events (i.e., within
the same word) were observed and reported by the XilSEM tool. This result confirms
that the built-in interleaving solution is more than adequate for this generation" [14].
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2.2 Fly by wire control system

In fly-by-wire control systems, the input signal is transmitted to the actuator electroni-
cally rather than mechanically. These kinds of systems overcame traditional mechanical
ones for several improvements concerning their weight, reliability, and maintenance (since
there are fewer moving parts), precision of the response, safety, and, above all, reduction
of pilot workload.

As explained in [20], the pilot has basically 3 functions:

e sensing
o regulation
e decision making.

The first two functions can be defined to be "high bandwidth", because there is little to
think about, while decision making is "low bandwidth" since it requires more concentra-
tion.

FCC can allow moving the high bandwidth functions to the autopilot, since they are
just like reflexes, in such a way that humans’ jobs become easier. Of course, computers
are not intelligent and do not possess emotions, but, reducing their domain to just some
algorithmic functionality, they can achieve operative equivalence.

Basically, in this kind of system, the electronic signal is transmitted to an actuator, for
example, a Direct Drive Valve (DDV), controlling the fluid flux and allowing to move the
RAM (the aerodynamic surface).

In order to monitor the position of the aerodynamic surfaces across the aircraft, several
sensors are placed, for example, LVDT (Linear Variable Differential Transformer) sensors
23], depicted in Figure 2.9.
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Figure 2.9. LVDT sensor: "the primary winding is illustrated in the center of the LVDT.
Two secondary coils are wound symmetrically on each side of the primary coil as shown
for “short stroke” LVDTs or on top of the primary coil for “long stroke” LVDTs. The
two secondary windings are typically connected in “series opposing” (Differential)", [23]

The primary winding is excited by a sinusoidal signal. The secondary coils provide a
differential output, whose value depends on the position of the core (which strongly affect
the coupling), allowing a very high precision of position detection.

In particular, for the FCC considered in the following sections, these sensors provides a
ratiometric feedback?, necessary to stabilize the control loop. For each actuator, LVDT
sensors are used to monitor both DDV and RAM position, and the DDV valve is controlled
through an H-bridge, that allows the current to flow in both directions through the
actuator coil.

The flight control computer is divided in a series of electronic boards with different
purposes. In the next paragraphs the various components of the FCC are quickly de-
scribed, and a schematic drawing is also reported in Figure 2.10 in order to provide a
better understanding.

2Ratiometric feedback means ViV
1— Vo

V =
LA VAN VA
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Figure 2.10. Scheme of FCC’s role in airplane flight. Actuator control electronic (red
rectangle) is located in the FPGA Section of the interface board.

2.2.1 The FCC

The FCC receives an external command every 10 ms, but reads the sensors and updates
the PWM value to control an hydraulic valve every 100 pus.

This kind of safety-critical apparatus are usually redundant: that means that the same
FCC’s hardware has 3, 4 or more copies that operates receiving input from the same
number of copies of sensors. If some fault is detected from the software, the failed one
can be turned off, giving more weight to the other ones. In the actuator, more than one
coupled coil is present, one for each copy of the FCC, and their contributes are summed.

2.2.2 The actuator control electronic (ACE)

The case study algorithm taken as example is reported in Figure 2.11.

The ACE can be divided into 3 main steps: the first one that receives the SETPOINT
command and, given the difference between the desired RAM position and the actual one
(feedback), performs a filtering through the first Proportional Integral Derivative (PID)
module (that will be called "controller block" later on).

The filtered output is the translation in DDV domain of the needed RAM movement,
and so this time is the difference between that signal and the DDV feedback to be filtered
and to proceed into the third section of the graph.

The last step is in the current domain, and after another difference with the ACTUATOR
CURRENT signal, the execution proceeds through the last PID module, in order to be ready
for the PWM generator.
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—

Figure 2.11. DFG of the algorithm (Simulink model). Each small square (TFx) is an
IIR filter of second order. In yellow are represented inputs, in red outputs, while blue
labels correspond to tunable parameters.

This system has 7 main inputs:
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SETPOINT, which is the position toward which the RAM has to move. This command
is generated by the human input and is elaborated by the software domain;
FLUTTER EXCITATION;

RAM RATIO, which contains information about the RAM position;

RAM SUM, that corresponds to E14+E2, and should be constant. If it is not constant,
probably something is malfunctioning;

DDV RATIO;

DDV SUM;

ACTUATOR CURRENT, which is the measured current value inside the DDV actuator.

Furthermore, many other control parameters can be used in order to activate/deactivate
some functionality or to add some biases. Given this explanation, here is a list of the
tunable parameters (they can be tuned by the software domain):

SLEWER ENABLE: the slewer is a block that operates directly on the input, since its
sample frequency is 100 times smaller and its variation may be seen from the system
as a step, the slewer can help to mitigate this effect;

SNUBBER ENABLE;

FLUTTER ENABLE;

GAIN FAIL: the sum of the gain fails in the various copies of the FCCs is usually 1,
and is equally distributed between the working ones;

RAM LVDT BIAS, that can be helpful to neutralize bias differences between the copies
of the same sensor;

DDV LVDT BIAS;

RAM CONTROLLER INTEGRATOR RESET, to reset the RAM integrator loop (see Figure
2.11);

DDV CONTROLLER INTEGRATOR RESET;

CURRENT CONTROLLER INTEGRATOR RESET;

INNER LOOP CMD;

CURRENT EQUALIZATION.

As concerns the outputs, they are:

DESIRED RAM COMMAND, which is basically the setpoint passed through the slewer
block and filtered;

RAM POSITION FEEDBACK SUM, which should be 0 and goes to the SW domain;

RAM POSITION FEEDBACK, which gives the SW info about RAM position;

DDV POSITION FEEDBACK SUM, which should be 0 and goes to the SW domain;

DDV POSITION FEEDBACK, which gives the SW info about DDV position;

CURRENT FEEDBACK AMP, which gives the SW info about H-bridge current in Ampére;
TO PWM, which is the digital signal that controls the PWM duty cycle.

2.2.3 Parallelization for AI Engines

As previously described, Al Engines are basically vector processors, and the maximum
arithmetic intensity (OP/Byte) is obtained through massive parallelization. The most
efficient examples suitable for these architectures are vector (or matrix) multiplications,
and this is the reason why they are so widely used in machine learning (e.g., CNNs
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(Convolutional Neural Networks)).

In the case of an algorithm such as the one described in Section 2.2.2, there is no
possibility of parallelization on the input data (for example, providing multiple input
samples and elaborating all of them together), since the whole DFG has to be traversed
before reading the next input set.

Furthermore, there is a long series of IIR-order 2 filters (13 filters), over which applying
some sort of pipeline is not possible since many feedback inputs are present, and it is not
possible to apply a pipeline to feedback loops.

Considering this factor, this specific may not be the best kind of algorithm to run on
these devices. Anyway, the focus of the thesis is to evaluate its feasibility and, given the
astonishing performance of the hardware, suggest some modifications that can lead to an
increase in performance or flexibility.
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Chapter 3

Design and toolchain overview

3.1 The design flow

In UG1504 [10], AMD advises following a method in order to help streamline the design
on Versal ACAPs.

3.1.1 Application Mapping

The prerequisite is having a good understanding of the requirements of the system, and it
can be achieved with a functional behavioral model of the algorithm. The most relevant
pieces of information needed about the algorithm are:

e Sampling rates

o Data types

» Storage requirements

o Compute requirements

Graph form (branches or no, pipeline, feedback,..)

All of them have to be decided on the basis of throughput and latency requirements,
maximum bandwidth, power requirements, and precision of the output (this concerns
mainly the data type, but more complex data types may lead to more computational
time, especially with Al Engines).

After that, the next thing to do is the so-called Application Mapping: it is necessary to
associate each part of the algorithm to some part of the SoC.

Usually, the more compute-intensive parts are mapped to the accelerators (Al Engines,
DSP Engines,...), having in mind what kind of operations they allow, and the data flows
and manipulations are left to the programmable logic (PL).

For example, since Al Engines are SIMD vector processors, mapping a kernel on them
is efficient only if the algorithm is parallelizable in some way. If it is not the case, the
overhead in terms of clock cycles due to the data movements may neatly overcome the
resource saving.
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Data movement

Also, the data movement across the chip has to be properly planned: the AI Engines,
for example, have a direct connection with the external DDR memory, but for large
bandwidth it is more efficient to pass through the PL.

Furthermore, the PL contains Ultra RAM and Block RAM, which can be employed to
build a custom memory hierarchy (that is especially effective in large matrix multiplica-
tion, for example, in Convolutional Neural Networks applying tiling techniques[16]).

Data re-usage is the key to bandwidth savings, especially considering the shared mem-
ory mechanism of the Al Engines array. Also, the cascade streaming can be exploited to
save multiple reading/writing operations, if the data flow consents.

3.1.2 Performance Modeling and Simulation

In order to monitor the traffic flow performances, it is very useful to perform simulations
of the NoC dataflow (for example, with AMD generator IP). In this way, the designer can
understand if the throughput and latency requirements of the systems are met. Some
tutorials are accessible on GitHub from the User Guide.

3.1.3 HW only vs embedded systems

This phase is different depending on the basis of the system type.

For hardware-only systems, embedded or external processors are not used, but only the
PMC (Platform Management Controller) is used to program and control the design.

As concerns embedded systems, the starting focus should be the type of accelerators
that are to be used (PL or AIEs). Generally speaking, both PS, PL, and AIEs can work
together, according to the application mapping, which has to be performed manually.

Both AIEs and PL will be controlled by the software stack. The PMC boots the
device, and different boot modes are supported. The Arm Cortex-R5F works in a low
power domain (LPD), is also ASIL-C safety compliant, and is a good choice if looking for
determinism and real-time applications. For more complex applications, the Linux OS
can be the best solution, but it requires the full-power domain (FPD).

3.1.4 Power and Thermal Planning

Since restarting from zero is very time and money consuming, inserting power and thermal
considerations in the board planning phase is generally a good idea.

AMD provides the Versal adaptive SoC Power Design Manager (PDM) tool, in order
to run simulations and obtain power reports, which may help to understand if some
constraints are not met.

Thermal simulations allow to get 6,4, and in addition to the maximum ambient tem-
perature, that information allows to evaluate the worst-case power consumption.
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3.2 Tools: Vitis Model Composer

"AMD Vitis™ Model Composer offers a high-level graphical entry environment based on
Simulink® from MathWorks for simulation and code generation of designs that include Al
Engine, HLS, and RTL components. For more information, see the Vitis Model Composer
User Guide (UG1483 [9])" (UG1076 [6]).

This tool takes on another level of abstraction the development of a complex system. It
is still needed to write by hand the kernel C++ code for the Al Engine, but it is capable
to generate automatically the graph description, mapping the kernels on the array and
organizing the data movement between them.

As concerns the Programmable Logic (PL), a whole library of basic blocks is already
included in the tool; however, it is possible to insert custom HDL components (even if
they should be a single entity) or generate HDL code starting from MATLAB functions.

It also supports HLS, so if the user wants to further raise the abstraction level, it is
possible to include custom HLS blocks.

3.2.1 HDL - AIE connections

To exploit both AIEs and PL in the same project, some considerations have to be made:

o all the PL blocks have to be inserted in a subsystem, which has to contain only
blocks of the specific HDL library;

o all the AIE kernels have to be grouped in another subsystem, containing only blocks
of the AIE library;

o the link between the two subsystems has to be managed passing through "AIE to
HDL" or "HDL to AIE" blocks, which are capable of managing AXI4 interconnections
by means of a handshake protocol.

These are summarized in Figure 3.1

tdata tdata
el AIE to HDL otd . B HDL to AIE el
ready tready

Figure 3.1. Interconnection between AIE and HDL blocks, [9]

All the simulations are bit-accurate, which means that the results obtained are not
approximated but are exactly the ones generated by the hardware. The only problem
is that AIE kernel simulations are not cycle accurate: the latency of the kernels and of
data transfer between AIE and PL is not considered by the simulator. This does not
allow the user to estimate easily latency performances, and some measurements have to
be performed on real HW.
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3.2.2 Features of the tool

Model Composer does not stop at a simple behavioral simulation, but is capable of also
performing a series of steps that normally have to be performed by hand, guiding the
user all the way through the flow up to the bitstream generation.

The tool contains a constraints editor, in which it is possible to control which tiles have
to be employed to run kernels, FIFO depths in blocks at AIE or PL input, and kernel
Runtime Ratios (fraction of available execution cycles that are used by the kernel during
operation).

DMAs

To test the system on hardware with real samples, an input and a golden output files
are added to the bitstream, with HLS DMAs responsible for the data movement from
DDR memory to input ports and for checking the real output against the Simulink golden
reference (it should not happen, but it is possible that on real HW the actual behavior
does not correspond to simulations). These two DMAs should be found in the Vivado
project’s block diagram (as in Figure 4.36).

HLS codes for the DMAs are located in the datamover/src/ directory, and the system
behavior is controlled by PS.

By default, in automatically generated PS code (host.cpp), DMAs are programmed
and only then the AIE graph is initialized and started (an example is reported in appendix
B.1), but to measure latencies (maybe modifying the block diagram on Vivado), the user
can customize the C+4 code as please. However, in this case, it is necessary to repeat
the .elf creation with makefile commands (not relying on automatic code generation
offered by the tool, since the host.cpp will be overwritten).

Table 3.1 summarizes how the tool helps.

| | User (by hand) | Model Composer

Kernels (.cpp and .h) X

Block diagram (PL & AIE) X

HDL description & IP creation (PL)

AT subsystem graph (.cpp and .h)

libdaf.a

connectivity file (.cfg)

input.txt / reference_output.txt (from Simulink)

datamovers (s2mm and mm2s) for in/out

platform (.cpp and .h)

host.cpp

Iscript.ld

R AR R A R R E B Rl el e

sd_ card.img / BOOT.bin

Table 3.1. Table summarizing main activities from design to bitstream genera-
tion. After the first generation, every source can be customized (but output files
have to be generated via bash).
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3.3 The AXI4-Stream handshake

The communication between the AIE and the PL, in both directions, uses the AXI4-

Stream protocol. For each 32-bit data transfer, the TVALID and TREADY signals are
used to manage the handshake between the transmitter and the receiver.

UG1483 [9] reports the following:

"The TREADY /TVALID handshake is a fundamental concept in AXI to control how
data is exchanged between the master and slave allowing for bidirectional flow control.
TDATA, and all the other AXI4-Stream signals (TSTRB, TUSER, TLAST, TID, and
TDEST) are all qualified by the TREADY/TVALID handshake. The master indicates
a valid beat of data by the assertion of TVALID and must hold the data beat until
TREADY is asserted. TVALID once asserted cannot be de-asserted until TREADY is
asserted in response (this behavior is referred to as a “sticky” TVALID). AXI also adds
the rule that TREADY can depend on TVALID, but the assertion of TVALID cannot
depend on TREADY. This rule prevents circular timing loops."

The timing diagram in Figure 3.2 provides an example of the TREADY/TVALID
handshake.

ACLK | |||||_||_||_||—|L

TDATA xxx| DO oo o1 D2 ) D3 ) xxx

TVALD | \ \
TREADY / S A N A

Figure 3.2. Handshake mechanism example [9)].

3.3.1 AXI4 connections in complex DFG

Usually, data coming from a PL kernel is processed by a single Al Engine (AIE) kernel.
In such cases, the simple sequential nature of the dataflow can be implemented using
straightforward AXI4-Stream interfaces.

However, when the graph becomes more complex—for example, when the output of
multiple AIE kernels must be combined in the PL—it is necessary to ensure that all input
data remain valid until all required data are available. To achieve this, the TREADY
signal generated in the PL should be the logical AND of all TREADY signals from the
PL output interfaces, as well as all TVALID signals from the input interfaces of that
Section of the algorithm.

Some hints on how to manage this kind of MISO handshake protocols can be found
in [13], where the same concepts have been applied in the context of latency-insensitive
protocols (even if in the context of this thesis, the complexity of the suggested adaptive
protocols is completely exaggerated given the requirements of the application).
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Design and toolchain overview

In Figure 3.3 is reported a simple example is reported, in which two input vectors are
sent to PLL with an AXI handshake protocol just to be summed together.

[ e

CEy———>fwais In

3 (o

in1_tready aa
out wald

Gr——>uaa agy (Y

outready

(& y————>{vaid In

e by

in2_ready

D_OuT 7k KX
V_ouT / \
R_OUT

Figure 3.3. Simple PL subsystem with two AXI inputs and one output and its
waveforms. Each color represents a group of data processed in the same temporal
window or computational epoch.

A first important thing that needs to be underlined concerning complex DFGs is the
TVALID pipeline: TVALID latency should last exactly as the main data pipeline (in
Figure 3.3 it’s 3 cycles).

Then, here is a list of logic functions explained to produce output TVALID, input
TREADY, and the ENABLE of the logic blocks:

o Since the pipeline has to be propagated only if all the necessary inputs are valid,
TVALID,, =1}, TVALID;
o Asstated in [9], it is just the TVALID that cannot be generated from the TREADY,

but not vice versa, so as TREADY is used
TREADY; = (1T, TVALID;) - TREADY 4

In this way, data are sampled when the output is ready to receive them.
e The problem arises when the output is no longer ready to receive data: since in the
pipeline there are already three valid samples that need to be stopped to not lose
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3.3 — The AXI4-Stream handshake

information, all the registers need an ENABLE, which should be
ENABLE = TREADY,,;

The waveforms registered on the VCK190 evaluation board with ILA are reported and
explained in Section 4.3.2.

Unfortunately, on Model Composer, external IPs inclusion in the design is not so easy,
anyway on Vivado there are some Xilinx IPs that may help to fork or combine more AXI4
Streams, for example the AXI4-Stream Broadcaster and the AXI4-Stream Combiner
(this one reproduces the same mechanism explained in the previous paragraphs)[4], while
the broadcaster is extremely useful when transmitting the same AXI Stream to more
destinations.

3.3.2 AXI4 connections in very complex DFG

What happens if the mapping of the algorithm leads to an even more complex form of
AXI-based PL subsystem?

An example representative of the algorithm analyzed in this thesis work, even if much
simpler, is reported in Figure 3.4. Here, data entering the PL are both sent to an AIE
kernel and kept inside the PL, and the TVALID should be kept high at least until the
output of the AIE is ready, to maintain data coherency.

PLOUT | ——» AIE —» | PLIN

PLIN > —:- PL OUT

Figure 3.4. FExample of complex AXI handshake protocol.

Sampling the input when both TVALID and TREADY are high is no longer sufficient,
as the execution dependency on the upper branch must also be considered.

The canonical and most correct approach to this problem involves the use of Vivado
IPs: in such a case, a broadcaster distributes the input to both branches, while a combiner
merges the output of the upper and lower branches.

However, this solution comes with increased complexity in both the Vivado design and
the overall system architecture, and it cannot be simulated within Model Composer.

A simpler and original alternative, designed to stay entirely within Model Composer,
can be applied to the specific case in which the complete graph—possibly much more
complex—must process one input sample at a time.
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Design and toolchain overview

Since the case study algorithm is structured to start processing the next sample only
after the previous one has fully propagated through the entire graph, the chosen strat-
egy is to generate a single TREADY signal. This signal is asserted only when the full
computation has completed.

As a result, an edge detector block (Figure 3.5) is required, because the TVALID signal
remains high throughout the entire graph execution, while the data must be sampled
only once.

RS ALL_READY

RET
TVALID, b Q \
b g ak LTIl
RST \
ALL_READY [\ f\
TVALID
out /A /0 [

Figure 3.5. Edge detector block: it becomes high only when the input (TVALID) has
a rising edge. The ALL_READY signal resets the flip-flop, allowing it to detect also
situations in which the TVALID does not fall (the new data has already arrived).
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3.4 The board

The chosen board in order to experiment with the adaptive engine’s effectiveness on the
FCC algorithm is the VCK190 Evaluation Board [8] developed by AMD, which mounts
a VC1902 device.

3.4.1 The Versal Device
In particular, the complete part number of the chip is XCVC1902-2MSEVSVA2197, where:

e XC is the commercial Xilinx prefix;

« VC identifies the family (Versal Core);

« 1902 identifies the devices (dimension, resources,...);

o 2 is the speed grade (medium);

o M identifies the voltage, which is medium;

« S identifies the static screen (standard);

o E identifies the temperature grade (0 to 110°);

» VSVA2197 identifies the package: Ball Grid Array (BGA) with 2197 balls;

The device contains 400 x AIE engines. That is precious information to be taken
into account in order to properly think about how to efficiently exploit them. They are
arranged as a 50x8 tile matrix, with 39 PL interface tiles [3]. With a simple calculation,
the total bandwidth for PI-AIE communication is

BW = fu -39 -n-8 Bytes/s (3.1)

where f. is 0.5 GHz (maximum PL frequency), and n is the number of streaming ports
(8 for input, 6 for output).

So the actual AIE-PL bandwidth for this specific device is 1.560 TB/s for input stream-
ing and 1.170 TB/s for output streaming.

The device contains 34 Mb of Block RAM, 130 Mb of Ultra RAM, 4xDDR Memory
Controller (DDRMC) with a DDR Bus Width of 256 bits. The overall DDR4 bandwidth
is 102.4 GB/s, and the overall SRAM Bandwidth is 188 TB/s.

In table 3.2 are summarized other important features of the Versal device.

AT Engines 400

DSP Engines 1968

System Logic Cells (k) 1968
LUTs 899840

Application Processing Unit | Dual-Core Arm® Cortex®-AT72
Real-Time Processing Unit Dual-Core Arm® Cortex®-R5HF

Maximum I/O Pins 770
Programmable NoC Ports 28
Integrated Memory Controllers 4

Table 3.2. Most important features of the VC1902.
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3.4.2 The board
In Figure 3.6, the board is reported.

Ethernet FMC Ethernet
(SysCont) (2x) (2x)

HDMI

Micro SD
(SysCont)

System Controller
XCZU4EG

Micro SD

(Versal) pm

R o —

B e

s

SFP28 -
-

|8

QSFP28

(20

HSDP / JTAG / UART
(USB Type-C)

LPDDR4 Component  PCle Gen4 x8 Versal VC1902 DDR4 DIMM
(8GB) XCVC1902-2MSEVSVA2197 (8GB)

Figure 3.6. VCK190 Evaluation Board.

As concerns the configuration of the Versal device, both JTAG, QSPI32, and SD1_ 3.0
modes are supported, and DIP switch SW1 is responsible for the choice of the boot
configuration (as shown in [8]). In particular, to boot from an SD card, it is sufficient to:

 copy a valid SD image in the Versal SD (see Figure 3.6). This can be done with the
following command (on a terminal inside the folder containing the sd_ card.img:

sudo dd if=sd_card.img of=/dev/sdc bs=4M

where "sdc" is the name of the SD. It is strongly suggested to check the right name
of the SD card with the command

1sblk

« Set SW1 to SD1_ 3.0 configuration (Mode Pins [3:0] = 1110).
» Power the board (SW2) or press the POR pushbutton.

Then, if the serial output has to be displayed on a terminal, it is sufficient to install
Screen (Linux environment) and type the command

sudo screen /dev/ttyUSB1 115200
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3.4 — The board

In order to connect the board to the PC through JTAG, it can be used the USB-C
input port. It is just necessary to tune the SW1 in JTAG configuration (Mode Pins [3:0]
= 0000). This is very useful, especially because, with a JTAG connection, it is possible
to debug the device with the ILA (Integrated Logic Analyzer).
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Chapter 4

Implementation

4.1 Al Engines employment for the ACE

The first step in implementing the algorithm on this SoC is mapping: it is important to
identify which parts of the graph are suitable for execution on the Al Engines.

Based on the considerations discussed in sub Section 2.2.3, and intending to explore
the technology as well as evaluate latency for this class of algorithms, the approach is
to focus on repetitive patterns within the algorithm. These patterns are typically the
computationally intensive parts of the graph, preferably those that can be parallelized.

The first obvious choice, looking at Figure 2.11, is the IIR filter order 2, which appears
to be repeated 32 times in the computational graph. An alternative could be a group, for
example, 8 IIR filters together in a single kernel: in this way, the parallelism would have
been much better exploited. The only problem with this idea is that the longest chain
of filters in sequence is 13 filters, so it is not possible to group 8 filters at a time because
data dependencies would not be respected.

A first attempt was therefore made with a single second-order IIR filter.

4.1.1 Al Engine kernel - IIR order 2 filter, stream

In Figure 4.1, the Simulink model of the filter is represented, which has been described
in C++ using the proper APIs.

As shown in the Figure, the already implemented model adopts a signed fixed-point data
type format. This format ensures no precision loss during intermediate computations,
while the output is finally floored to a 32-bit word with the binary point positioned after
16 bits.
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Figure 4.1. IIR filter order 2 - Simulink model.

Floating point data format for AIE

With AIE, a variable-length fixed-point representation is not possible. For this reason,
Single Precision Floating Point (SPFP) or FP32 has been adopted. SPFP, according to
IEEE 754, has

e 1 x sign bit
« 8 x exponent bits (biased form)
« 23 x mantissa bits (implicit 1)

Let’s evaluate the pros and cons of this choice:

o For what concerns the quantization error, with floating point numbers it is not
constant in absolute value, but considering that the first bit of the mantissa is
always 1, the relative error is always 2723, which is worse than the fixed point one
(32-bit) only if the whole dynamic is exploited efficiently in the whole algorithm.

o Numbers dynamics increase a lot in terms of orders of magnitude.

e To work in PL, it is more efficient to use fixed-point numerical formats, so a cast
operation is required.

o [EEE standards impose an unbiased rounding, so no bias is integrated along the
algorithm graph (as it would be, for example, if the rounding technique adopted was
biased).

The kernel

On the web, several IIR filter parallelizations are available to be used on AIEs [25]. How-
ever, none of them can be used in this case, since the examples suppose that parallelism
can be exploited by operating on an already given input sequence. As concerns the ACE,
only one sample can be elaborated at a time.

The code has been developed from zero, and is reported in the appendix section. Some
different versions of it have been studied in order to analyze performances.

Also, the assembly code generated has been compared to understand what could be
the best implementation of the single filter.
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4.1 — Al Engines employment for the ACE

The experiments on this first simple example enlighten a couple of key points to be

taken into account concerning kernel development and feeding of AIE:

« simple scalar mathematical operations on floating point numbers are translated into
a call of the FP32 specific function (FPADD or FPMUL), causing large overheads
(50-70 cycles). If the same operation is transformed into a vectorial one, even if
just the first position of the vector contains meaningful data, the jump to the FP
function is avoided, and the performances increase (let’s recall that no scalar floating
point unit is present in Al Engines).

« if buffer data type is chosen, the AXI4 handshake protocol has to be handled man-
ually. For this reason, it has been chosen to save coefficients as constants inside the
internal AIE’s memory, and partial products as a static variable (initialized to 0).
In this way, just one input and one output are present, and it is possible to adopt
streaming data transport (with handshake protocol automatically managed). Both
implementations have been analyzed, but only the stream has a future.

To exploit internal parallelism, the IIR filter has been re-conducted as a simple vectorial

operation:

Yn =

by
bs
—a
(Tn-1 Ton-2 Yn-1 Ya—2 Tn 0 0 0) b13 = Ty 1Dyt T 9-b3—Yn_1-G2—Yn_2-a3+T,-by
0
0
0

(4.1)

With subsequent update of the row vector .

A

ssembly code generation and simulation

In order to proceed with code generation, the hardware selection inside the Model Com-
poser Hub block is fundamental. If the target is just a simple AIE compilation, it is
important to know at least if the chosen hardware contains AIE or AIE-ML, especially

if

working with floating-point data types.

The reason is that the architectures differ so much that the assembly code can be

completely different. For example, AIE-ML does not support FP32 data operations
naturally, and those have to be decomposed into FP16 operations 'emulating" FP32.
There are different kinds of emulation accuracy:

o safe: this is the highest level of accuracy, and the result of the emulated operation
perfectly matches the normal one. To emulate an FP32 operations in this way 9
cycles of MACs of bfloat16 are needed;

o fast (default one): slightly worse accuracy, but 6 cycles of MACs required;

o low: worst accuracy (however, it’s better than bfloat16), but only 3 cycles of MACs.

'the value z,, is the input value multiplied by g. In this way, when the row value is updated, x,,_; is

already the one multiplied by g.
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The floating-point accuracy mode can be set through the following pre-processor direc-
tives:

-DAIE2 FP32 EMULATION ACCURACY FAST
~DAIE2 FP32 EMULATION ACCURACY SAFE
-DAIE2 FP32 EMULATION ACCURACY LOW

and has to be set on a single kernel basis.
The AIE code verification is composed of three phases:

1. Compiling the Al Engine graph design.

2. Running simulation using the Al Engine simulator.

3. Verifying the simulation results by comparing the output with the golden reference
output (generated by Simulink).

If the directive is not properly set, the third phase of the code verification compares AIE
results obtained with the default fast accuracy, with normal FP32 Simulink’s result, and
this leads to a result mismatch (even if probably in proximity of mantissa’s LSBs) 2.

The difference between a fast accuracy mode IIR filter order 2 and the same filter
generated for a standard AIE tile can be 155 instructions vs only 80. In order to work
with SPFP numbers, given the obtained result, it would probably be more efficient to
use normal ATE.

Test and comparison

The code has been simulated with Simulink, and SPFP results compared with the ones
obtained by the original model. The testbench prepared is reported in Figure 4.2.

2This behavior was not well documented. After opening a ticket with Xilinx support, their response
was: "We are also discussing with the development team to document this behavior for cases where
simulation mismatches occur on ATE-ML devices, so that users can be aware and apply the pre-processor
flag themselves."
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Figure 4.2. Simulink model for the testbench of the single kernel.

As a device, initially the ve2302 was selected, containing a 17x2 matrix of AIE-ML 3.

The filter TF09 of the Actuator Control Loop has been selected as a subject for the
test. The same input has been fed to both the AIE kernel, the MATLAB standard filter
block, and the original fixed-point filter. Then, absolute and relative error between AIE
and original solutions has been evaluated.

The MATLAB block and the AIE kernel did not present any differences, while, given
the dynamics of the input, no noticeable absolute error was detected between SPFP and
fixed point models, as shown in Figure 4.3.

3Initial tests were performed supposing to use the Trenz TE0950 evaluation board [24]; however,
due to bureaucratic issues, the hardware that eventually arrived for testing was the VCK190 evaluation
board. As a result, the necessary kernels were also generated for the standard AIE architecture (see
Table 4.1).
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Figure 4.3. Simulink testbench results.

Analysis
Thanks to Model Composer, it is possible to have a look at the generated assembly code.

The obtained latency for the final kernel (code in C.3) is 155 cycles (which means 155
ns). The main problem of this kernel, looking at the assembly code, is that, even if some
parts are quite dense (let’s recall that the AIE are VLIW processors, able to issue up
to 7 instructions per clock cycle), when it comes to sum together the 5 components of
the vector data dependencies has to be respected. For this reason, several NOPs are
allocated since the processor architecture is pipelined, and at least 4 cycles are needed
until the results can be re-utilized for another calculation. The portion of the assembly
code dedicated to that operation (Figure 4.4) is extremely inefficient.

Figure 4.4. Assembly code for AIE-ML architecture. Left: dense snippet,
right: sparse snippet.
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It is also possible to look at the kernel location inside the array (which can be modified
with constraints), as shown in Figure 4.5. Moving the cursor on the green lines, the
latency from the interface tile to the destination appears: in the picture is 12 ns.

Figure 4.5. AIE-ML array. The device considered has a 17x2 AIE matrix (the
lower one is the interface row).

With the trace analyzer (Figure 4.6), it is possible to have a look inside the AIE array,
and to know in each clock cycle what is happening in every tile.

HEHHHHHH
HHHHHHH
HHHH
HHHH

Figure 4.6. Trace results of the IIR order 2 custom function on an AI-ML tile.

After a first stall due to missing input, from the second call on, the latency is periodic.
The blue segment in the first row is the main function, called every time before the ITR2
function, that has a latency of 155 cycles.

4.1.2 Enlarging the kernels

Since moving continuously from the AIE array to PL and vice versa may not be optimal
and causes a non-negligible overhead, it is useful to think about how to enlarge the
kernel in some way. Furthermore, if the kernel is bigger but the added operations can be
executed in parallel, the overall latency may not increase linearly but in a slower way.
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Enlarging the kernel merging filters

According to appendix A.1, two consecutive IIR filters can be considered as a single IIR
filter, whose degree is the sum of the initial two. This idea can be used both to increase
the flexibility of the system, for example, enlarging the degree of each filter, or maybe
to reduce their number, since every time two (or more) of them are connected in series,
they can be merged into a larger one.

This has been investigated: starting from 2 IIR filters of order 2, a larger IIR filter of
order 4 has been created and, adopting a similar strategy as before, 169 cycles latency has
been obtained. This value is very similar to the order 2 one, making this new approach
very promising.

Enlarging the kernel in parallel

Since in the DFG a group of three filters to be executed in parallel appears many times,
the next trial has been to create a kernel enlarged in that direction. In particular, since a
sub-block of the graph is repeated three times, it seemed a good idea to try to fit inside
an AIE as a kernel the whole block, from now on named "controller block" (Figure 4.7).

Figure 4.7. Kernel computational structure of the "controller block".

Here, after a first filter executed normally, 3 filters are computed in parallel, with a
similar scheme as the one already described. Before summing all the results together,
in the second lane, an integrator with a limiter is added in the code. Since the limiter
implies an if...else statement (and so the possibility of taking jumps in the code),
determinism has been momentarily put aside to investigate possible performances of this
block, which resulted in 567 cycles of Initialization Interval.

Since if statements are not ideal when aiming for deterministic execution time, an
optimal version of this kernel should be modified to always last the same, but anyway,
the first version is reported in the appendix (code in C.5).

Feedback input

Another repeated block can be found in the group of 4 filters and a sum concerning the
elaboration of the input, the "input block" (Figure 4.8).
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Kernel computational structure of the "input block".

‘ ‘ Average latency (# assembly instructions), AIE-ML ‘ Average latency (# assembly instructions) AIE ‘

IIR filter order 2 - buffer input 210 NN*
IIR filter order 2 —'st‘rcaI‘nlng input 290 NN*
(no code optimizations)

IIR filter order 2 - streaming input 155 74

IIR filter order 4 169 NN*
Controller block 567 254
Input block 350 197

Table 4.1. Average latency of implemented custom functions. NN*: Not

Needed; for the normal AIE, only the useful kernels for the Actuator Control
Electronic have been tested.
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4.2 The whole ACE on AIE + PL

Now that the key kernels have been identified, here is a first approach to recreate the
whole system. It contains 13 computational kernels:

e 3 x controller blocks,
e 3 x input blocks,
¢ 7 x second-order IIR filter blocks.

Data enters PL, then moves towards AIEs and comes back to PL. All the passages
between PL and AIE have been arranged employing AXI4 handshakes, with the help of
the custom block "edge detector" described in sub Section 3.3.1.

Figure 4.9 represents a map of the algorithm that shows how the graph is distributed
across the AIE array and PL.
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Figure 4.9. ACE functional map. Legend: purple = input; green = output; blue block
= input of the PL; orange block = input of an AIE kernel.

This system is translated into two subsystems: the AIE subsystem, where the 13 kernels

are instantiated, and the PL subsystem, which contains everything not implemented
within the AIE.

4.2.1 AIE and PL interconnection

The overall system’s block diagram is depicted in Figure 4.10.
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Figure 4.10. Simulink block diagram of the ACE, top level. Yellow ovals are the
inputs, while red ones are the outputs. All the interconnections between AIE and

PL subsystems are managed through "AIE to HDL" and "HDL to AIE" blocks, which
represent AXI4-Stream handshakes.

Since on the AIE array 13 kernels are instantiated, 26 AXI-Stream interconnections are
used to connect the AIE array and the PL. The problem is that in this system, only one
sample will be sent to AIE for elaboration at a time, but as shown in Figure 2.3, ATE-PL
streaming communication interfaces are 64-bit wide. If just one 32-bit sample is sent,
the interface waits for the second one to arrive, and so the whole graph is paused. To
overcome this problem, the AIE kernels have been modified in order to work on 64-bit
input words, of which just the lowest 32 are the real input. The first thing performed
in the kernel is an unmasking of the input, while the last is the composition of a 64-bit
output word, of which just the lowest 32 are valid.

This may seem a large number of interconnections, but considering that in the xcvc1902’s
AIE array there are 39 PL interface tiles, with a total of 234 32-bit AXI4-Stream input
and 312 32-bit output, it is less than 6% of the overall resources.

4.2.2 AIE subsystem

The AIE subsystem is pretty simple: the graph is composed of just 13 kernels in parallel,
each of which contains the C++ code reported in the appendix (properly modified in
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order to host the correct filter(s)).

Each kernel input and output pass through a PLIO block, in which it
the interface frequency.

A picture of the AIE subsystem is reported in Figure 4.11, which in
translated into the representation in Figure 4.12.
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Figure 4.11. Simulink block diagram of the AIE subsystem.
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Figure 4.12. AIE graph allocation on the array. Red rectangles are the used portions
of the memory, while green arrows represent the data transfer.

As shown in Figure 4.12, the graph is mainly allocated in the central columns of the
first row of the array, and data transfer from/to the interface tiles lasts 8 ns for what
concerns the first row kernels and 12 ns for the ones located in the second row.

An AIE simulation has been performed, and the trace analyzer results are reported in
Figure 4.13. However, since this simulation does not take into account the PL latencies
but feeds the array as if all the inputs are furnished in a stream way (Figure 4.14), this
is not what happens during the real execution, where only one sample is elaborated at a
time.
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Figure 4.13. Trace analyzer results for the AIE array.
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Figure 4.14. Feeding of array tile 23.

As concerns kernel latencies, they are the ones reported in table 4.1 (the table ones do
not consider the initial setup). The small "main" calls (blue) between kernel executions
are given by data transfers.

4.2.3 PL subsystem

The most challenging part of the design, once all the kernels were functioning as expected,
has been the PL subsystem — particularly the complex mechanism chosen for managing
handshakes.

The subsystem, which is reported in Figure 4.15, contains 20 AXI-Stream inputs (7
from the external world and 13 from AIEs).
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Figure 4.15.

Simulink block diagram of the PL subsystem. Blue rectangles con-

tain the logic instantiation, yellow rectangles contain the input logic, and red
rectangles contain the output logic.
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Data arrives from the external world and AIEs as floating point, but since it is more
efficient to work with fixed point data types inside the PL, it has been chosen to cast all
the input into signed fixed point of 32 bits (16 bits of decimal part). Then, data width is
managed in order not to lose any information until the final re-conversion to the floating
world.

TVALID-TREADY management

In order to speed up the clock frequency, a pipeline approach has been introduced. This
approach complicated a lot the TVALID management in handshakes: since at each PL
output port TVALID should be raised for just 1 cycle, the scheme for its generation should
be the one reported in Figure 4.16: a logical AND between all the input from which the
output depends, delayed by the same number of cycles as the longest combinatorial path,
to be fed to an edge detector block.

TDATA z1 Q z*
PL
TVALID
INPUT
TREADY ALL READY
TDATA TDATA
PL 1 \ EDGE PL
TVALID 5} ———— TVALID
INPUT |z / DETECTOR OUTPUT
TREADY ALL READY TREADY
TDATA z1
PL
TVALID
INPUT
TREADY ALL READY

Figure 4.16. Block diagram example for TVALID management in PL: in this
case, the output TVALID is generated starting from an AND between all the
inputs, delayed as the longest path.

Figure 4.17 shows the TREADY generation: since it is a TREADY whose assertion
allows the new set of input to enter the graph, it is generated as a logical AND of all the
TREADY (all outputs must be accepted) and all the TVALID (all the graph must have
finished execution).
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Figure 4.17. TREADY generation for all the external world input blocks of
the PL subsystem.

This TREADY signal is used just for the 7 input interfaces coming from the external
world, while for the 13 outputs of AIE, it is fixed to a logical ’1’, since if just one sample
is elaborated at a time, the PL is always ready to accept a new value. Since the input
TVALID should stay high at least until the data is no longer necessary, the AL, READY
signal is used to reset a register for TVALID coming from each AIE output, as shown in
Figure 4.18.
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TDATA reg

D internal | [ | TDATA —
__AIE output___ EnN  TDATA
TDATA TVALID —
TVALID
TVALID reg TREADY —ALL READY
TREADY D

internal
TVALID

—RST

Figure 4.18. Block used to store the output of AIE inside the PL. It introduces 1 extra
cycle of latency. For the 7 external inputs, these registers are not necessary.

In Figure 4.19 is reported a simple example waveform of TVALID/TREADY manage-
ment.

EXTERNAL_INPUT_TDATA 7222777 I/ 17st ¥ [ 2'nd 3rd
EXTERNAL_INPUT_TVALID 27777 Ji Ji
EXTERNAL_INPUT_TREADY I [\ ik /A
TO_AIE_1_TDATA 2 N " A 2 a7
TO_AIE_1_TVALID [ [
TO_AIE_1_TREADY Ji Ji
FROM_AIE_1_TDATA 7770007 7 A s\ 7 e nd
FROM_AIE_1_TVALID ﬂf f\ I\
FROM_AIE_1_TREADY J/
FROM_AIE_1_TDATA_INTERNAL // Vst g @nd
FROM_AIE_1_TVALID_INTERNAL
OUTPUT_1_TDATA 7777777 ) s 7 77 e nd 77
OUTPUT_1_TVALID I I\ i [\
OUTPUT_1_TREADY Ji i
ALL_READY i [\ ik /A

Figure 4.19. Waveform for TVALID-TREADY internal management. It is supposed
that external inputs are always valid, while inputs coming from AIE need the TREADY
always high, so to keep the validity high, two internal signals are required (as shown in
Figure 4.18). ALL_READY signal allows the reset of these registers and a new set of
input data to enter the graph.

It is supposed that in the real application, a new set of input arrives every 100 us,
but for simulation purposes, the new elaboration will start just as the previous one has
finished, and so the sampling time is given by a logical AND of the validity of the 7
inputs.

4.2.4 Testbench & Simulink simulation

As a first approach to debug the system, a Simulink testbench has been created, which
contains both the original model and the Model Composer one. Both the models receive
the same setpoint, but each one has its own actuator model to generate the feedback
signals (Figure 4.20).
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Figure 4.20. Testbench of the ACE.

The first simulation run connected the feedback generated by the original model to
the input of both models, such that all 7 inputs were the same, and the result of this
simulation is shown in Figure 4.21.
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Figure 4.21. Results of the testbench where both models receive the same input. x-axis
is in ps. In the legend of each graph, the first signal is the one coming from the PL
subsystem, the second one comes from the reference model.

It is quite evident that the results are quite divergent, so some debug probes have been
inserted in the PL design in order to understand this behavior (Figure 4.22).
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A little error, introduced by the slewer logic, is integrated in db4; then, after a subtrac-
tion, the relative amplitude of the error increases in db5, and is translated to TO__PWM
output, which can be considered as the ultimate output of the ACE since, to generate it,
the entire graph must have been traversed.

The original cause of the divergence is the slewer, but why? The slewer is a block
needed in order to mitigate step-like behavior given by the fact that the setpoint changes
once every 100 executions of the graph. In Figure 4.23 are reported the block diagrams
of the slewer model and implementation on the PL.
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Figure 4.23. Slewer block diagram. Above: original model, below: PL one.

The difference between the two systems is the data type: in the original model, all
the operations are performed on sfixdt(1,32,16), and even after multiplication, the
output is floored to the nearest representable value (only 16 bits of decimal part). The
represented behavior is not correct, since values are typically small numbers, which means
that always keeping 16 bits of decimal part may cause significant relative errors. Since the
result is rounded towards zero, when the value is positive, the rounding error is always
negative, while when the output is negative, the rounding error is positive. This also
explains why the gap between the two curves gets narrower when the input becomes
negative.

This behavior is not acceptable because such different values for the PWM will cause
the system to behave unpredictably.

Things change when the feedback of the Model Composer system is connected to the
one generated by its actuator. Such a simulation produces the output shown in Figure
4.24. As shown there, the bias error has disappeared because of the negative feedback
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effect, and now the numerical behavior is the same.
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Figure 4.24. Results of the testbench where each model receives its own feedback. x-axis
is in ps. In the legend of each graph, the first signal is the one coming from the PL
subsystem, the second one comes from the reference model.

At this point, since the behavior of the system is correct, the only remaining thing is
to generate a BOOT.BIN to be loaded into the device and check whether the behavior is
the same also on the real hardware, and then check its performance against the normal
FPGA design.
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4.3 Tests on the board - simple example

Since Model Composer’s simulations are only bit-accurate concerning the AI Engines
(AIEs), some tests were performed on the VCK190 board to estimate actual latencies
and verify result correctness.

Manually managing correct AXI-Stream handshakes is not trivial, but it allows for
greater control over the synthesized circuit. As the initial hardware results did not match
those from the Simulink simulations, a simpler system was chosen to ease the debugging
process.

This simplified system integrates both the Programmable Logic (PL) and the Al En-
gine (AIE), effectively serving as a scaled-down representation of the complete project
architecture. It enables early validation of core functionalities and design choices.

4.3.1 Procedure

Model Composer automatically generates software for the Processing System and creates
two HLS DMAs in order to move input from DDR toward the IP under test and to
compare them with the golden output.

The problem is that with this procedure, it can be established only the correctness of
the output, but not the latency of the computation. Furthermore, in case the system
does not work correctly, debugging is extremely difficult.

For this reason, it is useful to open the Vivado project generated by Model Composer
and integrate an ILA (Integrated Logic Analyzer) in order to take a look at the real
waveforms. If simulation results are different from hardware simulation, probably the
error lies in the AIE-to-PL interfaces, since Simulink does not take into account the
AXIS interface’s latency or AIE’s latency.

Here is reported just an example of serial test results generated according to Model
Composer’s PS software:

sk ok sk ok ok ok ok ok ok ok ok ok ok sk ok kokok ok okok ok kok ok kokkskkkk Test ReSULts  kokokokskokok sk ok ok ok sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok %k

Mismatch found for output signal gateway_out_axis in sample 3.Hardware output:
— 3d60e000,Model Composer output:3c610000

Mismatch found for output signal gateway_out_axis in sample 5.Hardware output:
— 3dfcd000,Model Composer output:3d60e000

Mismatch found for output signal gateway_out_axis in sample 6.Hardware output:
— 3e608000,Model Composer output:3dfcd000

Mismatch found for output signal gateway_out_axis in sample 7.Hardware output:
— 3e608000,Model Composer output:3dfcd000

Mismatch found for output signal gateway_out_axis in sample 8.Hardware output:
— 3eaf3800,Model Composer output:3e608000

Mismatch found for output signal gateway_out_axis in sample 9.Hardware output:
— 3efc1000,Model Composer output:3e608000

Mismatch found for output signal gateway_out_axis in sample 10.Hardware

— output: 3efc1000,Model Composer output:3eaf3800
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Mismatch found for output signal gateway_out_axis in sample 11.Hardware
— output: 3f2b6000,Model Composer output:3eaf3800
Mismatch found for output signal gateway_out_axis in sample 12.Hardware
— output: 3f5£9a00,Model Composer output:3efcl1000
Mismatch found for output signal gateway_out_axis in sample 13.Hardware
— output: 3f5£9a00,Model Composer output:3efc1000
Mismatch found for output signal gateway_out_axis in sample 14.Hardware
— output: 3f8d5b00,Model Composer output:3f2b6000

As shown there, it seems like some hardware result is repeated, but in order to understand
what is happening, ILA is necessary.

Here are the steps to be followed to introduce the ILA block inside the design:

1. Open the Vivado project generated by model composer (the project is located in

code/platform/work/_x/link/vivado/vpl/prj/prj.xpr

).

Add the ILA IP from the catalog inside the block diagram.

3. Double-click the ILA and set it as necessary. To monitor PL interfaces, it should be
set as "interface monitor" for axis RTL.

N

Connect the clock, the reset, and the input signals.

Generate a new device image (this may take a while).

Copy the just-created vitis_design_wrapper.pdi file in the /code/hw folder.
Create a copy of boot_img.bif and rename it (for example boot_img_custom.bif).

X NSO

Inside the boot_img custom.bif, change the .bin file name, substituting 7 with
"7 also removing the path. Then, locate it and copy it inside the /code/hw folder.
9. Repeat the procedure for the .pdi file, but in this case it has to be substituted with
the just created vitis_design_wrapper.pdi.
10. Run the Petalinux settings.sh script, to use it from the shell.
11. Launch

bootgen -arch versal -image <path to /code/hw>/boot_image_custom.bif
— -0 <path to /code/hw>/BO0T.BIN -w on

Following these steps, thanks to the ILA, the system can be easily debugged to find
problems.

Trigger at startup

If the whole execution of the system is very short, and the system is just prepared to run
once, the ILA has to be triggered at startup.

To do so, as shown in UG908 [12], the following passages have to be added, to be
performed on the TCL console in Vivado and the VCK190 programmed via JTAG with
the previously produced BOOT .bin:

1. open the ILA dashboard and set the trigger condition
2. export the register map of the ILA core with

run_hw_ila -file ila_trig 1.tas [get_hw_ilas hw_ila_1] -force
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3. open the implemented design and apply the trigger design settings with
apply_hw_ila_trigger ila_trig_1.tas

4. save the modified constraints file
5. write the device image from the TCL console with

write_device_image vitis_design wrapper.pdi -force

6. re-perform the steps 6-11 of the previous section.

4.3.2 Debug of AXI handshake in PL

This procedure has been applied to a simple not-working example of Model Composer
project, reported in Figure 4.25.

Figure 4.25. Block diagram of the simple system.

Two identical FP32 inputs are provided to two identical AIE kernels. Those kernels are
second-order IIR filters, whose outputs are sent to PL. Here, they are summed together
after a conversion to fixed-point numbers. The result is again converted into SPFP and
then sent to an AXI4 interface. The adder is implemented with 1 cycle of latency, to
break the critical path, and as clock frequency 100 MHz was chosen. The PL subsystem
is reported in Figure 4.26.
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Figure 4.26. Initial block diagram of the PL region of the simple system.

ILA tests in this case helped to discover a problem in TREADY /TVALID management:
every two inputs, three outputs were produced instead of two (as shown in Figure 4.27).
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The solution to this problem is to sample the output TVALID as a logic AND of the input
block’s TVALID and TREADY. In this example, 1 cycle latency has been introduced,

which is, of course, wrong, but it is also a good example for showing the testbench reaction
to errors and ILA debugging of wrong waveforms.

ILA Status: Idle

0503500 70622020 ‘

ai_engine_0_MO
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Figure 4.27. ABOVE: wrong initial ILA results. SLOTs 0 and 1 are the input, SLOT
2 is the output. BELOW: theoretical right ones. Each color represents a group of data
processed in the same temporal window or computational epoch.

To eliminate timing violations problems (and to find the highest frequency at which
the PL can work) from possible errors, a timing analysis has been performed.

Performing a timing analysis with a 3.2 ns PL period results in a timing violation, even
introducing other registers in the cast blocks to further break the critical path (now there
is a 3-cycle latency), but with 6.4 ns, all timing requirements are met, as shown in Figure
4.28.

The last modification was the introduction of an enable block for the internal PL logic.
Without it, if TREADY was de-asserted, the three samples in the pipeline would have
continued propagating to the output, which would not have been ready to accept them.
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Violation type : (setup v |

slack (ns) Delay (ns) Logic Delay (ns) Routing Delay (ns) | Levels of Logic Source Destination source Clock Destination Clock | Path Constraints.

1 22720 5.1450 21350 30100 23[ base_kemel finale/AIE_PL/PLIAddSub base_kernel_finale/AIE_PL/PL/Convert2 clk ck create_clock -name clk -period 3.2 [get_ports clk]
2 13440 15190 07390 0.7800| 8|base_kemel_finale/AlE_PLPL/ConvertL | base_kernel_finale/AIE_PLIPLIAddSUb clk clk create_clock -name clk -period 3.2 [get_ports ck]
3 2.2150 06170 03870 02300 0| base_kemel_finale/AIE_PLPL/Logical | base_kerel_finalel/AIE_PLIPL/Logical ak ak create_clock -name ck -period 3.2 [get_ports ck]
4 23700 05200 01410 03790 1|base_kemel_finale/AlE_PLIPL/Logicall | base_kernel_finale/AIE_PLIPL/Logical ok ok create_clock -name clk -period 3.2 [get_ports ck]
s 25110 03620 00900 02720 0| base_kemel_finale/AIE_PLIPL/AGdSUD | base_kemel_finale/AIE_PLIPL/Converi2 ak ak create_clock -name ck -period 3.2 [get_ports ck]
Violation type : [setup ¥ |

Slack (ns) Delay (ns) Logic Delay (ns) Routing Delay (ns) Levels of Logic  |Source Destination Source Clock | Destination Clo...  |Path Constraints

1 0.9280 5.1450 2.1350 3.0100 23|base_kemel_finale/AlE_PL/PL/AddSub |base_kernel finale/AIE_PL/PLIConvert2 |clk clk create_clock -name clk -period 6.4 [get_ports clk]

2 45440 15190 0.7390 0.7800 8| base_kemel_finale/AIE_PLIPL/Convert] |base_kernel_finale/AIE_PLIPLIAdSub  |ck clk create_clock -name clk -period 6.4 [get_ports clk]

3 5.4150 0.6170 0.3870 02300 0|base_kemel_finale/AIE_PLPL/Logical | base_kernel finale/AIE_PLIPL/Logical  |ck ok create_clock -name clk -period 6.4 [get_ports clk]
4 5.5700 0.5200 01410 0.3790 1|base_kemel finale/AIE_PL/PLiLogicall |base kernel finale/AIE_PL/PLiLogical [ck clk create_clock -name clk -period 6.4 [get_ports clk]

s 57110 0.3620 0.0900 02720 0|base_kemel_finale/AIE_PLIPL/AddSub | base_kernel_finale/AIE_PLIPLIConvert2 |ck clk create_clock -name clk -period 6.4 [get_ports clk]

Figure 4.28. Timing analysis results of the simple subsystem. Above the requirements
are not met (7.; = 3.2 ns), bottom the requirements are met (7, = 6.4 ns).

With these couple of modifications, with the PL subsystem reported in Figure 4.29,
the serial test result of the VCK190 reports:

sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok kokok ok okok sk kok ok kokkskokkk Tegst ReSUlts  kokokokskokok sk ok ok ok sk ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok sk ok ok %k

**kx*xkx Model Composer and Hardware output match for all 47 samples for output

—

**x*x*xx TEST PASSED

sxxxxx VMC_TEST_DONE

signal gateway_out_axis

Reinterpretl

Convert

reinieipret %5
en

O—»um wara Reinterpre(2 L Convert.
(FE———»lvaid In walid ‘

O e L ready [

in1_tready .

|

data wata ‘ —
(Fy———>wais In walid

T dbacy veady

inz_tready

Figure 4.29.
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Correct block diagram of the PL region of the simple system.

As concerns the ILA in this working experiment, in Figure 4.30 is reported the correct
AXIS handshake waveform.
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Waveform - hw_ila_1
Q + e > » BB @l ¥ o K I T - %

ILA Status: Idie

00000000 > : 00000000

00000000 300306 : : : 00000000

00000000 ScI00000 00000000

Channel
TvALD
TRE)
Tou

Figure 4.30. Correct behavior registered with ILA. Above: zoom on a single transition,
below: subsequent transmissions.

A couple of observations deserve to be pointed out about these waveforms:

 the latency now is 3 cycles, since two more stages have been introduced;

o stream beats are composed of 2 samples. This is because the AIE-PL streaming
interface is 64-bit wide, so 2 is the minimum number of 32-bit words that can be
packed together;

« after the first four beats, in idle condition, the bus is not empty anymore, but hosts
an old value: it is as if the compiler used 8 different paths to stream the data
cyclically, and so when it is time for the ninth data, before the actual transmissions,
the bus still contains the first data;

o trying to measure throughput, the 2-sample beat is received every 21 or 22 clock
cycles. This may be due to the different frequencies: the AIE interface is working
at 312.5 MHz, while PL is at 156.25 MHz. The sampling may happen sometimes
before and sometimes after the arrival time from the different clock domains.

Throughput and latency

In order to estimate the throughput of the system, it is known that f.. = 156,25 M Hz, so
T = 6.4ns. Two outputs are ready in around 21.5 cycles, this means that the Iteration
Interval I1 = 6'4”5% = 68.8 ns. This should also be the latency of AIE computational
kernels, since for a new execution to start, the previous must end.

Looking at the assembly code of an IIR filter order 2, the number of assembly instruc-
tions is 80, the clock frequency is f. = 1.250 GH z, and so the esteemed execution time
inside the AIE is 64 ns, and since that should be the main contribution of the II, things
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make sense.

Now, it is interesting to take a look at the overall latency from input to output intro-
duced by the whole system. The components of the latency are:

e Memory to AIE data transfer (NoC).
o Intra-AIE NoC’s latency.

o AIE kernel computational latency.

o Intra-AIE NoC’s latency.

o AIE to PL data transfer latency.

o PL latency.

As concerns intra-AIE NoC latency, its contribution can be found thanks to Vitis
Analyzer, and is 8 x 0.8 ns = 6.4 ns, while PL latency is 3 cycles (19.2 ns). The NoC and
the AIE to PL data latency cannot be measured, but their value is probably negligible
with respect to the rest.

4.3.3 Direct measure

A direct measure of latency given by the AIE array (2 x Intra-AIE streaming + kernel
execution) can be obtained by inserting two ILAs: one at the input of AIE and one at
the output. The first one can be used to trigger the second one.

The problem is that the trigger should be the same for both the ILAs to measure how
many cycles of intercourse occur between the input and output of the AIE array.
To do so, the ILAs should be configured as shown in Figure 4.31.

72



4.3 — Tests on the board - simple example

Trigger Mode Settings Trigger Mode Settings

Trigger mode:

TRIG_OUT mode: | TRIGGER_ONLY v

Trigger mode: | TRIG_IN_ONLY v

Capture Mode Settings
Capture Mode Settings

Capture mode:
Capture mode:

Number of windows: 1 1-131072
Number of windows: 1 1-131072
Window data depth: 16384 v | [1-131072]
Window data depth: 256 v | [1-131072]
Trigger position in window: |0 0 - 255] Trigger posttion in window: |0 TR
General Settings General Settings
Refresh rate: 500 ms Refresh rate: 500 ms
axis_ila_0
i axis_ila_1 |+ sLor o aus
34 SLOT_1_AXIS
b+ 5LOT_0_ANIS + ==
W sl 1 A 44 SLOT 2 Axs
T e 1
b TRIG_OUT ||| JIlH TRiG_N
clk
T resetn
ILA (Iftegrated Logic Analyzer with AXIS | ntarfaf - - :
L = that Sl IUH n':ﬁ Hrated Logic Analyzer with AXIS Interfac

Figure 4.31. Settings of ILAs in order to measure with the same trigger. On the left,
the first one, on the right, the second one, below the block diagram (axis_ila_1 is the
first, while axis_ila_ 0 is the second).

The trigger condition can be set as TDATA! = 0. Then, the same procedure applied
for the trigger at startup has to be repeated, doubling each command to configure the
registers of both ILAs, and the constraints file is automatically updated, configuring the
ILAs to arm the trigger at startup.

Measuring the input of the array with the ILA, the waveform in Figure 4.32 is measured.
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Waveform - hw_ila 2
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Figure 4.32. Waveforms of the AIE array’s input.

The data transfer registered here is between the DDR and the AIE array, performed
with the Model Composer’s automatically generated HLS DMA mm2s. Probably the
compiler of the NoC retained the most efficient start with a 16-sample beat (that probably
is filling an input buffer of the AIE array), to wait a little and start again with smaller
beats later.

The second ILA was set up to trigger at the same time as the first one, but looking at
the waveforms, it is clear that the AIE elaboration’s start is not registered (no rising edge
of TVALID detected at the output of the AIE, at least in the 0.85 ms after the trigger
condition).

Looking at the code host.cpp running on the PS (generated by Model Composer),
the reason for that is clear: Model Composer automatically programs the DMAs before
initializing and starting the graph, as shown here:

<+

Xil_Out32(mm2s_base
Xil_Out32(mm2s_base
Xil_Out32(mm2s_base

M_INO_OFFSET, (uint32_ t) mem_ inOAddr);
M_INO_OFFSET + 4, 0);
M_INO_SIZE_OFFSET, inputO_size);

+ +

Xil_Out32(mm2s_base
Xil_Out32(mm2s_base
Xil_Out32(mm2s_base

+

M_IN1_OFFSET, (uint32_t) mem_inlAddr);
M_IN1_OFFSET + 4, 0);
M_IN1_SIZE_OFFSET, inputl_size);

+ +

Xil_Out32(s2mm_base
Xil_Out32(s2mm_base
Xil_Out32(s2mm_base

+

S_OUTO_OFFSET, (uint32_t) mem_outOAddr) ;
S_OUTO_OFFSET + 4, 0);
S_0OUTO_SIZE_OFFSET, outputO_size);

+ +

Xil_Out32(mm2s_base
Xil_Out32(mm2s_base
Xil_Out32(s2mm_base

+

M_PULSE_OFFSET, 2);
M_CTRL_OFFSET, 1);
S_CTRL_OFFSET, 1);

+ +

printf("AI Engine graph init\n");
mygraph.init();
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printf ("AI Engine graph run\n");
mygraph.run() ;

and the delay given by graph initialization is greater than the maximum ILA window at
156.25 MHz.

Before measuring the result, another modification was made: instead of inserting two
ILAs with a cascade trigger, just one ILA was inserted with a clock conversion and AXI
broadcasters, to visualize all the waves on the same window.

In Figure 4.36, the block diagram set up for this measurement is reported, while in
Figure 4.33, Figure 4.34, and Figure 4.35 they are displayed the waveforms of the final
modified system.

SLOT 3 SLOT 0
INL—— IR —— PL_IN SLOT 2

SLOT 4 SLOT 1 | b ouT¥.OUT
IN2 —— IR —pL_IN —

Figure 4.33. ILA slot positions in the system. SLOT 0-1: PL input; SLOT 2: PL
output; SLOT 3-4: AIE input.

Waveform - hw_ila_1
Q + e > » BB aa X ¥ |« K +T of T L)

ILA Status: Idle

00000000 00060000 0 7 E E ; | searaort

00000000 00060000

60000000 60000000 60000000 G0600000 00000000 Sdofe000 Se07bo00

Figure 4.34. Expanded waveforms of the system. Trigger condition: TDATA (slot 3) != 0.
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Waveform - hw_ila_1

Q + e > » BB @ a M o¥ oo I A T - ®
ILA Status: Idle 1, 025]

Figure 4.35. Measurement of the latency on the waveforms of the system. Trigger
condition: TDATA (slot 3) != 0.
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Figure 4.36. Block diagram to conFigure 1 ILA with AXI signal from different clock
domains (zoom on Vitis region).

The latency between the input of the PL and the input of AIE is 27 cycles at 156.25
MHz, which corresponds to 172.8 ns, and in this period, the first two outputs are provided.
These 172.8 ns are probably given by 59.2 ns for the first kernels’ execution, 59.2 ns for
the second, and the remaining 54.4 ns for the data transport.

Given this measure, the latency of AIE-PL transport can be estimated to be in the (35
+ 50) ns range, since two data are transferred, but the 54.4 ns include both AIE-PL data
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4.3 — Tests on the board - simple example

transfer of the two samples and intra-AIE data transfer, and also considering that the
sampling frequency is not the same frequency of the AIE array interface.

It is important to remember that ILA data are registered in PL, so also the delay
due to their movement to PL has to be considered; however, these values are precious
estimations for what concerns the graph mapping on the SoC.

4.3.4 Other considerations

On Vivado it is possible to take a look at many interesting report, such as the chip
planner (Figure 4.37), that shows which portion of the chip are used, a NoC utilization
scheme (Figure 4.38) and power reports (Figure 4.39). These power consumptions will
be compared with the ACE implementation’s one in subsection 4.4.2.

T e e

Figure 4.37. Chip plan for the simple example. The AIE region corresponds
to the Y5 row of the chip, but on Vivado, even if the tiles are used, just the
interface tiles are highlighted.
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Figure 4.38. NoC utilization for the simple example.
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Figure 4.39. Power consumption for the simple example.

Figure 4.40 shows the resource utilization of this simple project.
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4.3.5 Estimation of complete system behavior

Based on measurements of this simple example, a possible latency estimation of the whole
ACE can be made.

5.2 ns
IN 1 IR —480s - p
19.2 ns
1 ouT
IN 2 IR — pp ——

Figure 4.41. Latency measured on the simple example.

In Figure 4.41 are reported the latency measurements performed on the simple system.
The kernel latency can be evaluated as #assembly instructions - 0.8ns, and their values
can be found in table 4.1.

As concerns the PL latency, it is known to be exactly T, - #pipeline stages.

For intra-AIE 4+ AIE-PL data transfer, it is reasonable to assume 45 ns as an estimation,
since probably around 10 ns are spent for intra-AIE transport and (35 + 50) for data
streaming from AIE to PL or vice-versa (for simplicity, also the latency from the AIE
array interface tile to the kernel tile is included in the 45 ns).

The graphical calculation of the overall latency is reported in Figure 4.42.
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Figure 4.42.
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Latency estimation for the whole ACE. Blue number identifies the number

of clock cycles to reach the destination (considering the input that generates it, as in
Figure 4.16), while the green dotted line identifies the longest path.

Even if this algorithm is not much parallelizable, its implementation on Versal Adaptive
SoC makes easily possible to obtain a minimum latency of the whole ACE of less than
2418, which is less than 2% of the requirement.
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4.4 Code generation and test of the ACE

In order to proceed with a test of the ACE model described in Section 4.2, some modifica-
tion to the Simulink testbench has to be performed: on Model Composer 2025.1, even if
not directly synthesized, testbench block such as buses or discrete time integrator breaks
the timing analysis and so the whole code generation itself.

Since neither the PL nor the AIE subsystem is a problem itself, once the numerical
behavior of the system has been approved, they have been transferred into a new blank
project, and the input has been generated randomly, just to produce the golden reference
data to populate the testbench for the simulation.

The new Simulink system is reported in Figure 4.43.

M E ) .
| ] wmf T T (2]
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i
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) P B B g =3
o m] w1 ] =

Figure 4.43. Simulink system to generate the .bin file.

The complete serial output generated by the host code (appendix B.1) is:

[0 . O12] sskkskoskokokok sk sk sk sk ko sk ok ok ok ok sk ok ok ok ok o ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok
[0.045]Xilinx Versal Platform Loader and Manager
[0.080]Release 2025.1 Jul 25 2025 - 09:27:57
[0.116]Platform Version: v2.0 PMC: v2.0, PS: v2.0
[0.158]BOOTMODE: 0x0O, MULTIBOOT: 0xO

[0 . 188] sk sk sk skoskoksksk sk sk sk sk k sk sk ok ok ok sk ok sk ok ok o ok ok ok ok ok ok sk ok ok ok o ok ok ok ok
[0.407]Non Secure Boot

[3.638]PLM Initialization Time
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[3.667]x*x*kx**k**kxBoot PDI Load: Startedskkkskkkskkkskk
[3.725]Loading PDI from SBI

[3.751]Monolithic/Master Device

[4.009]10.299 ms: PDI initialization time

[4.045]+++Loading Image#: Ox1l, Name: 1lpd, Id: 0x04210002
[4.091]---Loading Partition#: Ox1, Id: 0xC

[68.415] 54.280 ms for Partition#: Oxl, Size: 10544 Bytes
[63.423]---Loading Partition#: 0x2, Id: 0xB

[104.556] 37.257 ms for Partition#: 0x2, Size: 63008 Bytes
[107.065] +++Loading Image#: 0x2, Name: pl_cfi, Id: 0x18700000
[112.295]---Loading Partition#: 0x3, Id: 0x3

[2114.
[2116.
[3040.
[3043.
[3048.
[3052.
[3057.
[3063.
[3070.
[3072.
[3078.
[3084.
[3087.
[3093.
[3099.
[3102.
[3108.
[3160.
[3163.
[3169.
[4433.
[4435.

011] 1997.753 ms for Partition#: 0x3, Size: 3189232 Bytes
767]---Loading Partition#: Ox4, Id: 0x5

845] 920.029 ms for Partition#: Ox4, Size: 1438112 Bytes
527]+++Loading Image#: 0x3, Name: cpm, Id: 0x04218007
760]---Loading Partition#: 0x5, Id: 0x6

994] 0.190 ms for Partition#: 0x5, Size: 2224 Bytes
886]+++Loading Image#: Ox4, Name: aie_subsys, Id: 0x0421C005
718]---Loading Partition#: 0x6, Id: 0x7

677] 2.912 ms for Partition#: 0x6, Size: 1936 Bytes

930] +++Loading Image#: Ox5, Name: fpd, Id: 0x0420C003
160]---Loading Partition#: 0x7, Id: 0x8

568] 2.362 ms for Partition#: 0x7, Size: 4544 Bytes
286]+++Loading Image#: 0x6, Name: aie_dev_part, Id: 0x18800000
291]---Loading Partition#: 0x8, Id: 0xO0

165] 1.826 ms for Partition#: 0x8, Size: 7712 Bytes
421]+++Loading Image#: 0x7, Name: aie_image, Id: 0x18800000
167]---Loading Partition#: 0x9, Id: 0x0

557] 48.344 ms for Partition#: 0x9, Size: 82400 Bytes
264]+++Loading Image#: 0x8, Name: default_subsys, Id: 0x1C000000
161]---Loading Partition#: OxA, Id: 0xO

118] 1259.907 ms for Partition#: OxA, Size: 2011344 Bytes
931] ®***x*x*x***Boot PDI LInitializing AIE driver...

Initializing ADF API...

XATEFAL: INFO: RePLMrce group Avail is created.
XAIEFAL: INFO: Resource group Static is created.
XATEFAL: INFO: Resource group Gemeric is created.
Beginning test

in0=188748

in1=188648

in2=1ec790

in3=1ecb90

in4=188e48

inb=1leca90

in6=188d48

out0=244720

out1=244830

out2=244940

out3=244a50

out4=244b60

outb5=244c70

out6=244d80

Starting test w/ cu
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AT Engine graph init

Initializing graph mygraph...

AI Engine graph run

Calling adf::graph::run() without specifying number of iterations ... It will
— either run AIE cores indefinitely, or run AIE cores for t.

Enabling core(s) of graph mygraph

50 out of 64 samples have been processed for new_desired_ram_cmd...

64 out of 64 samples have been processed for new_ram_sum_out...

64 out of 64 samples have been processed for new_ram_pos_fb...

64 out of 64 samples have been processed for new_ddv_sum_out...

64 out of 64 samples have been processed for new_ddv_position_feedback...
64 out of 64 samples have been processed for new_currentfeedback_amp. ..
64 out of 64 samples have been processed for new_to_pwm...

ok koK oK KKK KKK KKK KK KKKk kR kokkkk TEST RESULTS  okokokokoksksksk sk sk ok ok ok ok ok sk 3k ok ok ok ok ok ok ok K Kk

**xxx*x*k Model Composer and Hardware outputs match for all 64 samples for output
— signal new_desired_ram_cmd

**xxx*x*k Model Composer and Hardware outputs match for all 64 samples for output
— signal new_ram_sum_out

*fk*x*xkx Model Composer and Hardware outputs match for all 64 samples for output
— signal new_ram_pos_£fb

*fk*x*xkx Model Composer and Hardware outputs match for all 64 samples for output
— signal new_ddv_sum_out

*%k*x*xkx Model Composer and Hardware outputs match for all 64 samples for output
— signal new_ddv_position_feedback

*%**x*xkx Model Composer and Hardware outputs match for all 64 samples for output
— signal new_currentfeedback_amp

*%x%x*xkx Model Composer and Hardware outputs match for all 64 samples for output
— signal new_to_pwm

*kkkkk TEST PASSED

**xxx* VMC_TEST_DONE

4.4.1 Results & performances

In order to measure the real latencies on the board, the generated Vivado project has
been modified, adding an ILA triggered at startup as shown in Section 4.3.

The new Vivado block diagram is reported in Figure 4.44.
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Figure 4.44. ACE project’s block diagram.

The base blocks are the same as the simple example one, but the PL subsystem (central
block in the orange square) is much more complex.

Latency measurement

The ILA is connected to PL-relevant input/output, and therefore, differently from Section
4.3, there is no extra latency due to measurements made outside the PL.
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+ e > » B E Q@ Q N ¥ « 1 RN -3

Figure 4.45. Measurement of the latency with the ILA. The scale is in terms of clock
cycles (1 cycle = 10 ns). The white checkpoint corresponds to the start of the elaboration,
while the yellow line corresponds to the end of the elaboration.

In Figure 4.45, the latency measurement is reported. This is a list of the ILA slots
(the ones on the longest path of Figure 4.42) and their latencies from the setpoint ingress
inside the PL in terms of PL clock cycles (the frequency is 100 MHz):

e« SLOT _0: SETPOINT input -> 0 cycles;

o SLOT 1: IIR_1 input -> 15 cycles;

o« SLOT_ 2: IIR 1 output -> 30 cycles;

e« SLOT_3: CONTR_ 1 input -> 35 cycles;

e SLOT _ 4: CONTR__ 1 output -> 59 cycles;
e« SLOT_5: CONTR_ 2 input -> 68 cycles;

e« SLOT_6: CONTR_ 2 output -> 93 cycles;
e SLOT _7: CONTR_ 3 input -> 102 cycles;
e« SLOT_8&: CONTR_ 3 output -> 125 cycles;
o« SLOT 9: IIR_ 18 input -> 129 cycles;

o« SLOT_10: ITR_ 18 output -> 144 cycles;

« SLOT_11: TO_PWM output -> 148 cycles.

All the latencies are cyclically repeated until all the testbench input data are elaborated,
as shown in Figure 4.46.

Waveform - hw_ila_1

Q + > > » BB @ a X ¥ « K T o T =

Figure 4.46. Periodicity of the system registered with the ILA.
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The ALL_READY signal rises before the validity of the output (this event corresponds
to the ingress of a new series of input, and in Figure 4.45 corresponds to the yellow line
with 146 clock cycles of latency), because all is still needed is for the last branch to flush,
and the system is ready to read other inputs.

Since the Initialization Interval is not exactly 100 s, both for simplicity and to reduce
occupation of the ILA waveforms, the set of 7 outputs is sent outside the PL once every
time a new input is received (a logical AND of the 7 inputs TVALID is used as a tempo-
rization signal, in absence of an external one).

In Figure 4.47, the synchronicity of the output validity is shown.

Waveform - hw_ila_1

Q + = 2 > » BB @ X ¥ o M = [« - X =

Figure 4.47. Synchronicity of the output validity registered with the ILA. Se-
lected slots correspond to 3 of the 7 outputs (just because it is not possible to
register more than 16 signals with ILA).

The overall latency to traverse all the graph is therefore 1.48 pus, which is very similar
to the estimation made in Section 4.3.5.

4.4.2 Other reports

In Figure 4.48 the chip plan is reported, in Figure 4.49 the NoC utilization, and in Figure
4.50 the power report.
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Figure 4.48. Chip plan of the final implementation. The AIE region corresponds
to the Y5 row of the chip, but on Vivado, even if the tiles are used, just the
interface ones are highlighted.
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Figure 4.49. NoC utilization of the final implementation. The 14 middle blue squares
correspond to PL input/output of the system, while AIE-PL communication does not
employ the NoC, and so is not present in the diagram.
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Power analysis from Implemented netlist. Activity On-Chip Power
derived from constraints files, simulation files or
vectorless analysis. s W Hard P 0.074W (=1%)
Total On-Chip Power: B cPm: 0.039W (53%)
Design Power Budget: Not Specified . B <PIPE: 0.034W (47%)
Process: typical
Power Budget Margin: N/A Dynamic: 14,181 W (51%)
Junction Temperature: 51% %
Thermal Margin: | 4% | Clocks: 0,491 W  (3%)
Ambient Temperature: 25.0 °C % Signals: 0.564 W (4%)
Effective §)A: 2.7°CIw Logic: 0.324'W (2%)
Power supplied to off-chip devices: 0w B BRAM: 0.081W  (1%)
Confidence level: Low 289, DSP: 0.074W  (1%)
Launch Power Constraint Advisor to find and fix B xPLL 0.738 W
invalid switching activity B MMCM: 0.057 W
110 3.920W
e W Gy 0.263 W
M 2 Engine: 2.370 W
B NOC_DDRMC: 3.982W )
M rs: 1.317W  (8%)

Device Static: 13.580W (48%)

Figure 4.50. Power consumption estimation of the final implementation.

It is interesting to compare the result of the complete ACE implementation with the
simple example one (subsection 4.3.4): the chip plan is much more colored, and in the
NoC, much more data is traveling (from external DDR to PL input).

As concerns power utilization, the most relevant increases are DSP power (6.2x), logic
power (3.3x), AIE (2.8x), BRAM (2.8x), clock (2x), NoC DDRMC (2x), and signals
power (17x2). All other contributions remain more or less the same, and for this reason,
the overall power consumption switching from the simple design to the complete ACE is
just 1.2x.

The power consumption is much greater than the one obtained by implementing the
ACE on a traditional FPGA (around 4 W), but by increasing the complexity of the al-
gorithm, Versal ACAPs can achieve far better power consumptions, especially if a higher
level of parallelism allows a better exploitation of the AI Engines. The same conclusions
have been reached by [15].

However, due to the highly concentrated computation on a single chip, its power con-
sumption may also reach 100 W. Such a delivery, with currents that may exceed 100 A,
can be challenging to minimize voltage drop, losses, and temperature rises, as explained

in [18].
The overall resource utilization is reported in Figure 4.51.
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Figure 4.51.
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4.4 — Code generation and test of the ACE

It is interesting to look at the 13 PL Master and PL Slave, which are the interfaces
between AIE and PL, and at the BRAM tiles, in which the ILA data is stored.

From the low % values, it is clear that the chip is largely unused, and even if it may
seem that the NoC master ports are almost fully employed, many of them have a low
bandwidth occupation.
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Chapter 5

Conclusions

5.1 Considerations on technology and tools

It is important to highlight that the toolchain used to program this technology is still
relatively immature and not yet fully refined.

During the development of this thesis, several issues and errors were encountered—many
of which have already been discussed in the previous chapters. The following are some
of the most significant problems that led to major delays in the development process:

o '"HDDMProto::readMessage failed: bad length' — This error occurred when
pressing the "Analyze' button to launch an AIE simulation in Model Composer.
It was resolved by uninstalling and reinstalling the tool.

o Limited documentation on ATE-ML floating-point accuracy — This caused several
days of delay and required the opening of a support ticket with AMD. The issue was
clarified once a more detailed version of the manual was provided.

e Timing analysis in Model Composer — This was not possible due to the presence
of blocks external to the AMD subsystem. According to available information, the
issue may be resolved in version 2025.2 of the tool.

o Simulation freeze — Even on a correctly configured machine (correct tool versions,
valid licenses, and all required libraries), simulations sometimes froze indefinitely
without displaying error messages. Although they appeared to be running, no actual
CPU usage was observed. This issue remains unresolved.

o Hardware emulation in Vivado — This failed with the error: '"Neither AIE_WORK_DIR
(AIE work directory) is set nor AIESIM_CONFIG. AIE simulation won’t run
without setting any one of these. Exiting simulation'. No useful docu-
mentation was found, and a support ticket was opened.

While these issues highlight the current limitations of the toolchain, it is reasonable
to expect that programming SoCs with these tools will become increasingly streamlined
soon, as the ecosystem matures and documentation improves. However, at present, the
development process can still be quite challenging and, at times, frustrating.
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5.2 Summary and Conclusions

This research aimed to explore the capabilities of a new and versatile technology: the
ACAP (Adaptive Compute Acceleration Platform).

These devices integrate, on a single chip, two scalar processors, programmable logic
(PL), which can be used for data management, specific computations, or as a custom hi-
erarchical memory, and Al Engines—VLIW (Very Long Instruction Word) SIMD (Single
Instruction Multiple Data) computational units.

These Al Engines are arranged in a two-dimensional array, where each unit corresponds
to one tile, located in a dedicated region of the device. Each tile operates at 1 GHz and,
depending on data precision, can simultaneously perform from 8 single-precision floating-
point (SPFP) MACs to 128 INT8 MAC:s.

The number of tiles can range from 30 to 300, and data transfer among them is managed
through AXI4 protocols, a dedicated cascade mechanism, or shared memory—allowing
direct communication between tiles without occupying the NoC (Network-on-Chip) band-
width unnecessarily.

The NoC interconnects all chip components, enabling flexible partitioning of computa-
tion. In addition, a dedicated connection between the Al Engines and the PL is available.

The design process for exploiting this technology involves several steps, greatly sim-
plified by AMD Vitis Model Composer, a high-level graphical development environment
based on Simulink:

» Mapping the algorithm across the chip components (preferably using AI Engines for
highly parallelizable computations);

o Programming Al Engine kernels in C/C++;

o Describing the PL hardware (Model Composer offers a library of common building
blocks);

o Connecting the PL and ATE subsystems via AXI interfaces (again, simplified through
dedicated Model Composer blocks);

o Synthesizing and analyzing the design to meet performance and resource constraints.

The selected case study was the Actuator Control Electronics (ACE): the actuator con-
trol loop of an FCC, composed of 34 second-order IIR filters connected through a complex
data flow graph (DFG).

Unfortunately, due to data dependencies and the need for single-sample processing, this
application is not ideal for a massively parallel architecture like the AIE array, which is
capable of delivering several TFLOPs.

Nonetheless, its implementation is feasible—albeit underutilized—especially consider-
ing the flexibility of selectively activating only the required tiles, thus conserving power
and resources.

Initial experiments also revealed that the number and order of filters processed in
parallel had minimal impact on performance when using AI Engines as the primary
computational units.

Moreover, multiple kernels can be deployed within a single tile, and switching from
fixed-point to floating-point arithmetic may offer significant benefits in terms of dynamic
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5.2 — Summary and Conclusions

range and precision—without incurring a noticeable latency penalty.

From a performance standpoint, as shown in Chapter 4, the entire ACE can be traversed
in less than 2 : us, which is more than 50 times faster than the original requirement.

Regarding reliability, studies in [17] and [14] highlight the effectiveness of built-in miti-
gation techniques and the XilSEM firmware in preventing uncorrectable errors, ensuring
high dependability in safety-critical applications such as avionics and automotive.

For these reasons, this technology presents a compelling option for enhancing hardware
flexibility—e.g., increasing filter order or count. However, it must be noted that other
applications with much higher intrinsic parallelism—such as radar signal processing or
convolutional neural networks (CNNs)—stand to benefit far more from the computational
acceleration offered by Al Engines.

Future research in such domains is certainly recommended.
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Appendix A

Math demonstrations

A.1 Two IIR order 2 filter compressed in a
single IIR order 4

Supposing to have two IIR filters of order 2 in series, the overall transfer function is given
by the product of the standalone transfer functions of each filter.

Given
Bl—f—BQ'Zil—f-Bg,'ZiQ
F, = Al
1(2) 1+ Ay 27t 4+ Ag- 272 (A1)
and
01+02'271—|—03'272
12 — A2
2(2) 14+ Dy 27t + Dy 272 (4.2)
so the overall H(z) will be:
H(z) = Fi(2) - Fa(z) = (A.3)
_Bl+BQ'Z_1+B3'Z_2 C1+CQ'Z_1+O3'Z_2: (A4)

o 1+A2'271+A3'272 . 1+D2'271+D3'272
. B{Cq + (3102 + Bgcl) sz + (31C3 + B3Cq + BQCQ) cz72 + (BQCg + B3Cg) .78 + B3Cj5 - 74
1 —+ (A2 —+ DQ) . 2’71 =+ (Ag —+ D3 + A2D2) . 272 —+ (A2D3 + Ang) . 273 =+ A3D3 . 274
(A.5)

that can be considered as an IIR filter of order 4.
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Appendix B

Model composer generated
code

Codes in this Section are relative to the ACE project.

B.1 ACE host.cpp

1 #include <stdio.h>
2 #include <stdlib .h>
3 #include <stdint .h>
1 #include <unistd .h>
5 #Finclude
6 #Finclude
7 #include
s #include
9 #include

10 #Hinclude

11 #include

12 #include

13 #include

14 #include

15 #include

16 #include

17 #include

1s #include

19 #include

20 #Hinclude

21 #Hinclude

22 #Hinclude

23 #Finclude

24 #include

26

27 [ 3k ok kK KRR R oK oK oK oK ok ok oK oK K SR SR K R K K K K K KKK KKK KKK K oK oK oK oK ok ok Sk SR SR R K K R K K K KKK KK KKK oK oK oK ok ok ok ok ok ok ok

f
s void InitData(uint32_t** out, int size)

{

30 int i 3

[CEN)

99



Model composer generated code

31 xout = (uint32_t*)malloc(sizeof(uint32_t) * size);

33 if (xout = NULL) {
34 printf(

38 }

39

10 for(i = 0; i < size; i++) {
1 (xout)[i] = 0xABCDEF(0;

15 />|<>|<>|<>s>|<>|<*>l<>|<>|<>f<>|<>(<>l<>|<>|<>k*>|<>(<>l<>|<>|<>.<>|<>|<>i<>l<>|<>|<>1<>|<>|<*****************************************

*/

17 int RunTest(uint64__t mm2s_base,

48 uint64_t s2mm_ base,

19 uint32_tx in0, int inputO_size,
50 uint32_tx inl, int inputl_size,
51 uint32_tx in2, int input2_size,
52 uint32_tx ind, int input3_size,
53 uint32_t* in4, int input4_ size,
54 uint32_tx ind5, int inputd_ size,
55 uint32_tx in6, int input6_size,
56 uint32_tx goldenO ,

57 uint32_ t*x goldenl ,

58 uint32_t* golden2 ,

59 uint32_tx golden3 ,

60 uint32_tx golden4 ,

61 uint32_tx goldenb ,

62 uint32_t* golden6 ,

63 uint32_t* out0, int outputO_size,
64 uint32_tx outl, int outputl_ size,
65 uint32_t* out2, int output2_size,
66 uint32_tx out3d, int output3_size,
67 uint32_tx out4d, int outputd_size,
68 uint32_t* outb, int outputb_size,
69 uint32_ t*x out6, int output6_size)

71 int i;

72 int errCount = 0;

73 int totalErrCount = 0;
)

75 printf( , r)

76 uint64_t mem_ inlAddr = (uint64_t)

77 printf , mem_inlAddr)

78 uint64_t mem_in2Addr = (uint64_t)

79 printf( , mem_ in2Addr) ;

80 uint64_t mem_in3Addr = (uint64_t)in3;
81 printf( , mem_in3Addr)
82 uint64_t mem in4Addr = (uint64_t)
83 printf( , mem_indAddr)
84 uint64_t mem_in5Addr = (uint64_t)
85 printf( , mem_ in5Addr)
86 uint64_t mem_ in6Addr = (uint64_t)
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B.1 — ACE host.cpp

printf(
uint64 _t
printf(
uint64_t
printf
uint64 t
printf
uint64 t
printf(
uint64_t
printf(
uint64 t
printf(
uint64_t
printf(

printf(

Xil_Out32 (mm2s_ base
Xil_Out32 (mm2s_ base
Xil_Out32 (mm2s_ base

Xil_Out32 (mm?2s_base
Xil_Out32 (mm?2s_base
Xil_Out32 (mm2s_ base

Xil_Out32 (mm2s_base
Xil_Out32 (mm?2s_base
Xil_Out32 (mm?2s_base

Xil_Out32 (mm2s_base
Xil_Out32 (mm2s_ base
Xil_Out32 (mm2s_base

Xil_Out32 (mm?2s_base
Xil_Out32 (mm2s_ base
Xil_Out32 (mm2s_base

Xil_Out32 (mm?2s_base
Xil_Out32 (mm?2s_base
Xil_Out32 (mm2s_base

Xil_Out32 (mm2s_base
Xil_Out32 (mm?2s_base
Xil_Out32 (mm?2s_base

Xil_Out32 (s2mm_ base
Xil_Out32 (s2mm_ base
Xil_Out32 (s2mm_ base

Xil_Out32 (s2mm_ base
Xil_Out32 (s2mm_ base
Xil_Out32(s2mm_ base

Xil_Out32 (s2mm_ base
Xil_Out32 (s2mm_ base
Xil_Out32 (s2mm_ base

memioutlAdd;
memiout2Add;"
memioutSAdd;
mem_out4Add;
memiout5Add;"

mem_out6Addr

)

+
+
+
+
+
+
+
+
+
+
+
+
_l’_
+
+
+
+
+

+

+

+
+

+

, mem_ in6Addr) ;
mem_outOAddr

= (uint64_t)out0;
mem__outOAddr) ;
= (uint64_t)outl;
mem_ outlAddr) ;
= (uint64_t)out2;
mem_ out2Addr) ;
= (uint64_t)out3;
mem__out3Addr) ;
= (uint64_t)out4;
mem_ out4Addr) ;
= (uint64_t)outh;
mem__outbAddr) ;
= (uint64_t)out6;
mem_ out6Addr) ;

);

M_INO_OFFSET, (uint32_t) mem_in0Addr) ;
M _INO OFFSET + 4, 0);
M_INO_SIZE OFFSET, inputO_size);

M_IN1_OFFSET, (uint32_t) mem_inlAddr);
M _IN1_OFFSET + 4, 0);
M _IN1_SIZE OFFSET, inputl_size);

M _IN2 OFFSET, (uint32_t) mem in2Addr);
M_IN2_OFFSET + 4, 0);
M_IN2 SIZE OFFSET, input2 size);

M _IN3 OFFSET, (uint32_t) mem in3Addr);
M _IN3 OFFSET + 4, 0);
M _IN3_SIZE OFFSET, input3_size);

M _IN4 OFFSET, (uint32_t) mem_ in4Addr);
M IN4 OFFSET + 4, 0);
M IN4 SIZE OFFSET, input4_size);

M_IN5_OFFSET, (uint32_t) mem_in5Addr);
M_IN5_OFFSET + 4, 0);
M_IN5_SIZE OFFSET, input5_size):

M _IN6_OFFSET, (uint32 t) mem in6Addr);
M_ING_OFFSET + 4, 0);
M_IN6_SIZE _OFFSET, input6_size);

S OUTO0 _OFFSET, (uint32_t) mem outOAddr);
S OUT0_OFFSET + 4, 0);
S OUTO0_SIZE OFFSET, output0_size);

S_OUT1_OFFSET, (uint32_t) mem_outlAddr);
S OUTL OFFSET + 4, 0);
S OUT1 SIZE OFFSET, outputl_size);

S_OUT2 _OFFSET, (uint32_t) mem_out2Addr);

S OUT2 OFFSET + 4, 0);
S OUT2 SIZE OFFSET, output2_size):;
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Model composer generated code

145 Xil_Out32(s2mm_base + S_OUT3_OFFSET, (uint32_t) mem_out3Addr) ;
146 Xil_Out32(s2mm_base + S_OUT3_OFFSET + 4, 0);

147 Xil_Out32(s2mm_base + S _OUT3_SIZE OFFSET, output3_size);

148

149 Xil_Out32(s2mm_base + S OUT4 OFFSET, (uint32_t) mem_out4Addr);

150 Xil_Out32(s2mm_base + S_OUT4 OFFSET + 4, 0);

151 Xil_Out32(s2mm_base + S_OUT4 _SIZE OFFSET, output4d_size);

152

153 Xil_Out32(s2mm_base + S OUT5 OFFSET, (uint32_t) mem_out5Addr);
154 Xil _Out32(s2mm_base + S OUT5 OFFSET + 4, 0);

155 Xil_Out32(s2mm_base + S_OUT5_SIZE OFFSET, outputb_size);

156

157 Xil_Out32(s2mm_base + S_OUT6_OFFSET, (uint32_t) mem_out6Addr) ;
158 Xil_Out32(s2mm_base + S OUT6_OFFSET + 4, 0);

159 Xil_Out32(s2mm_base + S_OUT6_SIZE OFFSET, output6_size);

161 Xil_Out32(mm?2s_base + M_PULSE OFFSET, 2);
162 Xil_Out32(mm2s_base + M_CTRL_OFFSET, 1);
163 Xil_Out32(s2mm_base + S_CTRL_OFFSET, 1);
164

165 printf( );

166 mygraph. init () ;

167

168 printf( )

169 mygraph.run () ;

170

171 int iteration = 0;

172 int num_ out0_samples = 0;

173 int num_outl samples = 0;

174 int num_ out2 samples = 0;

175 int num_out3_samples = 0;

176 int num_ out4d_samples = 0;

177 int num_ outhb_samples = 0;

178 int num_ out6_samples = 0;

179 while (1) {

180 uint32_t v =

181 Xil In32(s2mm_base + S _CTRL OFFSET) ;

182 if (iteration % 1000 = 0) {

183

184 if (out0[0] != OxABCDEF00) {

185 while ((num_ out0_samples < output0_size) &&

186 (out0 [num_out0_samples] != 0xABCDEF00)) {

187 int incr = (output0_size < (num_out0_ samples + 50)) 7 1
50;

188 num_ out0_samples += incr;

189 }

190 printf(

, num_ out0_samples, output0_size);

191 }

192

193 if (outl[0] != OxABCDEF00) {

194 while ((num_ outl samples < outputl_size) &&

195 (outl[num_outl samples] != 0xABCDEF00)) {

196 int incr = (outputl size < (num_outl samples + 50)) 7 1
50;

197 num_ outl_ samples += incr;

198 }

102



199

NONN N NN
7 o 7 7 ™
S ©

NN NN
[SCR

W N NN
© ™

NONN NN N

PO

B.1 — ACE host.cpp

50;

50;

50;

50;

50;

}

i

}

i

}

i

}

i

}

i

}

printf(
, num_outl_samples, outputl_size);

f(out2[0] != OxABCDEF00) {
while ((num_out2 samples < output2 size) &&
(out2 [num_out2_samples] != 0xABCDEF00)) {
int incr = (output2_size < (num_out2_samples + 50)) 7 1

num_out2_ samples += incr;

}
printf(
, num_out2_samples, output2_size);

f(out3 [0] != OxABCDEF00) {
while ((num_ out3_samples < output3_size) &&
(out3 [num_out3_samples] != 0xABCDEF00)) {
int incr = (output3d_size < (num_out3_samples + 50)) ? 1

num_ out3_samples += incr;

}
printf(
, num_out3_samples, output3_size);

f(outd [0] != OxABCDEF00) {
while ((num_ out4_samples < outputd_size) &&
(out4 [num_ out4_samples] != 0xABCDEF00)) {
int incr = (output4_size < (num_outd samples + 50)) ? 1

num_ out4d_samples += incr;

}
printf(
, num_outd_samples, outputd_size);

f(out5[0] != OxABCDEF00) {
while ((num_out5 samples < outputb size) &&
(outh [num_ out5_samples] != 0xABCDEF00)) {
int incr = (outputb_ size < (num_out5 samples + 50)) ? 1

num_ outb_samples += incr;

}
printf(
, num_ out5_samples, outputh5_size);

f(out6[0] != OxABCDEF00) {
while ((num_out6_samples < output6 size) &&
(out6 [num_out6_samples] != 0xABCDEF00)) {
int incr = (output6_size < (num_out6_samples + 50)) ? 1

num_ out6__samples += incr;

printf(
, num_ out6_samples, output6_size);
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Model composer generated code

246 }

247 ++iteration ;
248 if(v & 6) {
249 break;

250 }

252

253

254

255 Printf (" \mskokoskosorsok ook skokokoskoskoskokokok ok kR kokokokokkokk - Test Results
sk sk sk stk Kok ok Kk sk ok ok sk sk sk sk ok ok kR Rk sk skokskkkok \ A\ TL" )

256

257 errCount = 0;

258 for (i = 0;i < outputO_size; ++i) {

259 if(out0[i] != goldenO[i]) {

260 printf("Mismatch found for output signal new_ desired ram cmd in
sample %d."

261 "Hardware output: %x,"

262 "Model Composer output:%x\n",

263 i, outO[i], goldenO[i]);

264 ++errCount ;

265 }
266 }

267 if (errCount =— 0) {

268 printf ("ssxxxx Model Composer and Hardware outputs match for all %d
samples "

269 "for output signal new desired ram cmd\n", output0_size);

270 } else {

271 printf ("ssxxxx Mismatch(es) found between Model Composer and Hardware
outputs "

272 "for output signal new desired ram cmd\n");

273

274 totalErrCount += errCount;

275

276 errCount = 0;

277 for (i = 0;i < outputl_size; ++i) {

278 if(outl[i] != goldenl[i]) {

279 printf("Mismatch found for output signal new ram_ sum_out in sample
%d . "

280 "Hardware output: %x,"

281 "Model Composer output:%x\n",

282 i, outl[i], goldenl[i]);

283 4++errCount ;

284 }

285

286 if (errCount = 0) {

287 printf ("s+xx+xx Model Composer and Hardware outputs match for all %d
samples "

288 "for output signal new_ ram_ sum_out\n", outputl_size);

289 } else {

290 printf ("ssxx%xx Mismatch(es) found between Model Composer and Hardware
outputs "

291 "for output signal new ram sum out\n');

292 }

293 totalErrCount += errCount ;

294

295 errCount = 0;

206 for(i = 0;i < output2_ size; ++i) {
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if(out2[i] != golden2[i]) {
printf ("Mismatch found for output signal new_ram_pos_fb in sample
%d . "
"Hardware output: %x,"
"Model Composer output:%x\n",
i, out2[i], golden2[i]);
++errCount ;

}

if (errCount = 0) {
printf ("sxx*+xx Model Composer and Hardware outputs match for all %d
samples "
"for output signal new_ram_pos_fb\n", output2_size);
} else {
printf ("s+x+x+x+x Mismatch(es) found between Model Composer and Hardware
outputs "

}

totalErrCount 4= errCount;

"for output signal new_ram_pos_fb\n");

errCount = 0;
for (i = 0;i < output3_ size; ++i) {
if (out3[i] != golden3[i]) {
printf ("Mismatch found for output signal new_ddv_sum_out in sample
d "
"Hardware output: %x,"
"Model Composer output:%x\n",
i, outd3[i], golden3[i]);
++errCount ;
}
}
if (errCount =— 0) {
printf ("sx*x%x Model Composer and Hardware outputs match for all %d
samples "
"for output signal new_ddv_sum_ out\n", output3_size);
} else {
printf ("s*x++x+x Mismatch(es) found between Model Composer and Hardware
outputs "
"for output signal new_ddv_sum_ out\n");

totalErrCount 4= errCount;

errCount = 0;
for (i = 0;i < output4d size; ++i) {
if(outd[i] != goldend[i]) {
printf ("Mismatch found for output signal new__ddv_ position_feedback
in sample %d."
"Hardware output: %x,
"Model Composer output:%x\n",
i, outd[i], golden4d[i]);
++errCount ;

}
}
if (errCount =— 0) {
printf("sxxxxx Model Composer and Hardware outputs match for all %d

samples "
"for output signal new__ddv_position feedback\n", outputd_size)
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346 } else {

347 printf ("ssxxxx Mismatch(es) found between Model Composer and Hardware
outputs "

348 "for output signal new ddv_position feedback\n");

349 }

350 totalErrCount += errCount;

351

352 errCount = 0;

353 for (i = 0;i < outputb_size; ++i) {

354 if(outb[i] != goldenb[i]) {

355 printf("Mismatch found for output signal new_ currrentfeedback amp
in sample %d."

356 "Hardware output: %x,"

357 "Model Composer output:%x\n",

358 i, outb[i], goldenb[i]);

359 ++errCount ;

360 }
361 }
362 if (errCount =— 0) {

363 printf ("s+xx+xx Model Composer and Hardware outputs match for all %d
samples "

364 "for output signal new_ currrentfeedback amp\n", outputb_size);

365 } else {

366 printf ("ssxxxx Mismatch(es) found between Model Composer and Hardware
outputs "

367 "for output signal new_currrentfeedback amp\n');

368

369 totalErrCount += errCount ;

370

371 errCount = 0;

372 for(i = 0;i < output6_ size; ++i) {

373 if (out6[i] != golden6[i]) {

374 printf("Mismatch found for output signal new to pwm in sample %d."

375 "Hardware output: %x,"

376 "Model Composer output:%x\n",

377 i, out6[i], golden6[i]);

378 ++errCount ;

379 }
380 }
381 if (errCount =— 0) {

382 printf ("sxxx%xx Model Composer and Hardware outputs match for all %d
samples "

383 "for output signal new to pwm\n", output6_size);

384 } else {

385 printf ("ssxxxx Mismatch(es) found between Model Composer and Hardware
outputs "

386 "for output signal new to pwm\n");

387 }

388 totalErrCount += errCount;

389

390 return totalErrCount ;

391 }

392

393 />I<****>I<>I<>I<****>I<>I<>I<****>I<>I<>|<***>(<>I<>I<****>I<>I<>I<****>I<>I<>|<****>I<>I<>|<*************************

*/

304 int main()

395 {

396 uint32_t* PL_ Subsystem_new_ desired_ram_ cmd;
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uint32_t* PL_Subsystem_ new_ram_sum_ out;

uint32_tx PL_Subsystem new_ram_pos_fb;

uint32__t* PL_ Subsystem_new_ddv_sum_ out;

uint32_tx PL_ Subsystem_ new_ddv_ position_feedback;
uint32_tx PL_ Subsystem_ new_ currrentfeedback amp;
uint32_tx PL_Subsystem_ new_to pwm;

int totalErrCount ;

Xil_DCacheDisable () ;

init_platform () ;
sleep (1) ;
printf( )5

InitData(&PL_ Subsystem new_ desired_ram_cmd, OUTPUT 0_SIZE) ;
InitData(&PL_Subsystem new_ram_sum_out, OUTPUT 1 SIZE);
InitData(&PL_Subsystem_new_ram_pos_fb, OUTPUT_ 2 SIZE) ;
InitData(&PL_Subsystem_new_ddv_sum_out, OUTPUT 3 SIZE) ;
InitData(&PL_ Subsystem_new_ ddv_ position_feedback , OUTPUT 4 SIZE) ;
InitData(&PL_ Subsystem_ new_ currrentfeedback amp, OUTPUT 5 SIZE) ;
InitData(&PL_Subsystem_ new_to pwm, OUTPUT 6_SIZE) ;

totalErrCount = RunTest (MM2S_BASE, S2MM_BASE,
PL_Subsystem_ new_ currentfb_indata, INPUT_0_SIZE,
PL_ Subsystem_new_ ddv_ ratio_indata, INPUT 1 SIZE,
PL_ Subsystem_new_ddv_sum_ indata, INPUT 2 SIZE,
PL_Subsystem new_ flutter_exc_indata, INPUT 3 SIZE,
PL_Subsystem_new_ram_ratio_indata, INPUT 4 SIZE,
PL_ Subsystem_new_ram_sum__indata, INPUT 5 SIZE,
PL_Subsystem_ new_ setpoint_indata, INPUT_6_SIZE,
PL_ Subsystem_ new_desired ram_cmd goldendata,
PL_ Subsystem_new_ram_sum_ out_ goldendata,
PL_Subsystem_ new_ram_pos_fb_goldendata
PL_ Subsystem_new_ddv_sum_ out_ goldendata,
PL_Subsystem_new_ddv_ position_feedback_goldendata ,
PL_Subsystem_new_ currrentfeedback amp_ goldendata ,
PL_ Subsystem_ new_to_ pwm_ goldendata ,
PL_ Subsystem_new_ desired _ram_cmd, OUTPUT_0_SIZE,
PL_ Subsystem_new_ram_sum_out, OUTPUT 1 SIZE,
PL_ Subsystem_ new_ram_ pos_ fb, OUTPUT_ 2 SIZE,
PL_ Subsystem_new_ddv_sum_out, OUTPUT 3 SIZE,
PL_Subsystem_new_ ddv_ position_ feedback , OUTPUT 4 SIZE

PL_ Subsystem_new_ currrentfeedback_amp, OUTPUT 5 SIZE,
PL_ Subsystem_new_to_pwm, OUTPUT_6_SIZE) ;

if (totalErrCount — 0) {
printf( ) ;
} else {
printf( )
totalErrCount ) ;
}
printf( ) ;

cleanup_ platform () ;

return totalErrCount ;
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154 }

This code runs on the processing system. The main function calls the RunTest function,
which initializes and starts the DMAs and then initializes and starts the AIE graph. If
a mismatch in the hardware output is detected, an error message is printed on the serial

terminal; if not, a TEST PASSED message is displayed.

B.2 ACE AIE_ subsystem.h

1 #ifndef  XMC AIE SUBSYSTEM H
2 ##define  XMC_ AIE SUBSYSTEM H

t #include <adf.h>

5 #Finclude
6 #Finclude
7 #Finclude
s #include
9 #include
10 #include
11 #include
12 #include
13 #include
14 #include
15 #include
16 #include
17 #include

19 class AIE_ Subsystem_ base

20 public:

21 adf ::
22 adf ::
2 adf ::
24 adf ::
25 adf ::
26 adf ::
27 adf ::
28 adf ::
29 adf ::
30 adf ::
31 adf ::
32 adf ::
33 adf ::

35 public:

36 adf::input_port TF1 in,
controller_1_in, TF25_ in,
TF30_in, input_block 3 in,

kernel
kernel
kernel
kernel
kernel
kernel
kernel
kernel
kernel
kernel
kernel
kernel
kernel

IIR 30 0;
ITIR_2 0;
IR 1 0;

ITR__input_ block_1_0;
ITR_input_ block_ 2 0;
IIR_input_ block_3_0;

public adf::graph {

ITR__controller_1;
ITR__controller_ 2;
IIR_ controller_3;

IR 25 0;
IIR_20_0;
IIR_19 0;
IIR_18 0;

TF2 in,

TF19 in,

input__block_ 2 in,
controller 3

TF20 in,

in;

controller 2

input_ block_1_in,

37 adf::output_port TF1 out, TF2 out, TF19 out, TF_ 20 out,

input_ block 1 out,
controller_2_ out, TF18 out, TF30_out,

controller 3 out;

39 ATE_ Subsystem_ base () {

10 // create kernel IIR_30_ 0
a1 ITIR_30_ 0 = adf:: kernel:: create (IIR_30);
12 adf::source(IIR_30_0) =

controller 1 _out, TF 25 out,
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44 // create kermel TIR_2 0

45 ITIR_2_ 0 = adf::kernel::create(IIR_2);

46 adf::source(IIR_2 0) = "kernels/IIR 2.cpp";

a7

48 // create kernel IIR 1 0

49 ITR_1_0 = adf::kernel::create(IIR_1);

50 adf::source(IIR_1_0) = "kernels/IIR _1.cpp";

51

52 // create kernel IIR input block 1 0

53 IIR_input_block_1_ 0 = adf:: kernel:: create (IIR_input_block 1);

54 adf::source (ITR_input_block_1 0) = "kernels/IIR input block 1.cpp";
56 // create kermel IIR_input_block 2 0

57 IIR_input_block_2 0 = adf:: kernel:: create (IIR_input_block 2);

58 adf::source (IIR_input_block_ 2 0) = "kernels/IIR input block 2.cpp";
59

60 // create kernel ITR_input_block 3_0

61 ITR_ input_block_3_0 = adf:: kernel :: create (IIR_input_block_ 3);

62 adf::source (IIR_input_block_3_0) = "kernels/IIR input block 3.cpp";
63

64 // create kernel IIR_controller 1

65 ITR_controller_1 = adf:: kernel:: create (IR_CONTROLLER,_1) ;

66 adf::source(IIR_controller_1) = "kernels /IR, CONTROLLER, 1.cpp";
67

68 // create kernel IIR controller 2

69 IIR_controller 2 = adf::kernel:: create (IIR_ CONTROLLER, 2);

70 adf::source (IIR_ controller 2) = "kernels/TR_ CONTROLLER,_2.cpp";
71

72 // create kernel IIR_ controller 3

73 IIR_controller 3 = adf::kernel:: create (IR_ CONTROLLER, 3);

74 adf::source (IIR_controller_3) = "kernels/IIR. CONTROLLER 3.cpp";
76 // create kernel IIR_25_0

77 ITIR_25_0 = adf::kernel:: create (IIR_25);

78 adf::source (IIR_25_0) = "kernels/IIR_25.cpp";

79

80 // create kernel IIR_20 0

81 ITR_20_0 = adf:: kernel:: create (ITR_20);

82 adf::source (IIR_20_0) = "kernels/IIR_20.cpp";

83

84 // create kernel IIR_19 0

85 ITIR_19 0 = adf::kernel::create (IIR_19);

86 adf::source (IIR_19_0) = "kernels /IR _19.cpp"';

88 // create kernel IIR_18 0

89 ITIR_18 0 = adf::kernel::create (ITR_18);

90 adf::source(IIR_18 0) = "kernels/IIR_18.cpp";

91

92 // create kernel constraints ITR_30_0

03 adf:: runtime<ratio >(ITR_30_0) = 0.9;

94

95 // create kernel constraints IIR 2 0

96 adf::runtime<ratio >(IIR_2 0) = 0.9;

97

98 // create kernel constraints IIR_1_0

99 adf:: runtime<ratio>(IIR_1 0) = 0.9;

100
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133
134
135

136

138

139

140

141
142

143

145
146
147

148

149

Model composer generated code

// create kernel constraints IIR_ input_block 1 0
adf :: runtime<ratio >(IIR_input_block_1_0) = 0.9;

// create kernel constraints IIR_ input_ block 2 0
adf::runtime<ratio >(IIR_input_block_ 2 0) = 0.9;

// create kernel constraints ITR_input_block_3_0
adf::runtime<ratio >(IIR_input_block 3 0) = 0.9;

// create kernel constraints IIR controller 1
adf::runtime<ratio >(IIR_controller 1) = 0.9;

// create kernel constraints IIR_controller 2
adf::runtime<ratio >(IIR_ controller_2) = 0.9;

// create kernel constraints IIR controller 3
adf::runtime<ratio >(IIR_controller 3) = 0.9;

// create kernel constraints IIR_25_0
adf::runtime<ratio >(IIR_25_0) = 0.9;

// create kernel constraints IIR_20_0
adf :: runtime<ratio >(ITR_20_0) = 0.9;

// create kermel constraints IIR_19_ 0
adf::runtime<ratio >(IIR_19_0) = 0.9;

// create kernel constraints IIR_18 0
adf :: runtime<ratio >(ITIR_18_0) = 0.9;

// create nets to specify connections

adf:: connect< adf::stream > net0 (TF1 in, IIR_1 0.in[0]);
adf:: connect< adf::stream > netl (TF2_in, IIR_2 0.in[0]);
adf:: connect< adf::stream > net2 (TF19_in, IIR_19_0.in[0]);
adf:: connect< adf::stream > net3 (TF20_in, IIR_20_0.in[0]);
adf:: connect< adf::stream > net4 (input_block 1 in,

ITR_input_block 1 _0.in[0]) ;

adf::connect< adf::stream > net5 (controller 1 in, IIR_controller 1.
in [0]) ;

adf:: connect< adf::stream net6 (TF25_in, IIR_25_0.in[0]) ;

adf:: connect< adf::stream > net7 (input_block 2 in,
ITR__input_block_2_0.in [0]) ;

adf:: connect< adf::stream > net8 (controller 2 in, IIR_controller 2.
in[0]);

adf:: connect< adf::stream > net9 (TF18 in, IIR_18 0.in[0])

adf:: connect< adf::stream netl0 (TF30_in, ITR_30_0.in [0]

adf:: connect< adf::stream netll (input_block 3 in,
ITR__input_block_3_0.in [0]) ;

adf:: connect< adf::stream > netl2 (controller 3 in, IIR_ controller 3.
in [0]) ;

V

0
[

1)
0]);

vV VvV

adf:: connect< adf::stream > netl3 (IIR_30_0.out[0], TF30_out);
adf:: connect< adf::stream > netld (IIR_2 0.out[0], TF2_ out);
adf:: connect< adf::stream > netl5 (IIR_1 0.out[0], TF1 out);
adf:: connect< adf::stream > netl6 (IIR_input_block_1_0.out[0],

input__block_1_out);
adf:: connect< adf::stream > netl7 (IIR_input_block_2_0.out[0],
input__block 2 out);
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166

B.2 - ACE AIE_ subsystem.h

adf :: connect<

adf ::

input__block_3_out);

adf:: connect<
controller _1_out)
adf:: connect<
controller 2 out)
adf :: connect<
controller 3 out)
adf:: connect<
adf :: connect<
adf:: connect<
adf:: connect<

}
iE

class AIE_ Subsystem
public:

adf ::

)

adf ::

)

adf ::

)

adf ::
adf ::
adf ::
adf ::

stream

stream

stream

stream

stream

stream

stream
stream

> netl§
> netl9
> net20
> net21
net22
net23

net24
net25

V V V V

public adf:: graph

AIE_ Subsystem__base mygraph;

public:

(IIR_input_block_3_0.out [0],
(ITR__controller__1.out[0],
(IIR__controller_2.out[0],

(ITR__controller_3.out [0],

(ITR_25_0.o0ut [0], TF_25 out);
(ITR_20_0.out[0], TF 20 out);
(IIR_19 _0.out[0], TF19_ out);
(ITR_18_0.out[0], TF18 out);

adf::input_plio TF1 in, TF2 in, TF19 in, TF20_in, input_block_ 1 in,

controller 1 in ,

TF25_ in,
TF30_in, input_block_ 3_in,

input__block_2_ in, controller_2_ in, TFI18 in,
controller_3_in;

adf:: output_plio TF1 _out, TF2 out, TF19 out, TF_ 20 out,
, controller _1_out, TF_ 25 out, input_block_ 2 out,
TF18_ out,

input_ block_1_out
controller 2 out,
controller 3 out;

ATE_ Subsystem () {

TF30_out,

TF1_in = adf::input_plio:: create (
adf:: plio_ 64 bits,

) ;

TF2_in = adf::input_plio:: create (
adf:: plio_ 64 bits,

K

TF19_in = adf::input_plio:: create(
adf:: plio_64_ bits,

)5

TF20_in = adf::input_plio:: create(
adf:: plio_ 64 bits,

) ;

input_ block_3_ out,

input_block_1_in = adf::input_plio:: create ( ,
adf:: plio_ 64 bits,

) ;

controller_1_in = adf::input_plio:: create( ,
adf:: plio_ 64 bits,

TF25_in = adf::input_plio:: create(
adf:: plio_ 64 bits,

input_block_ 2 in

);

s

adf::input_plio:: create( ,
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199 adf:: plio_64_bits,

200 "./data/input/input_block_2_ in.txt");

201

202 controller_ 2 in = adf::input_plio::create('controller 2 in";
203 adf::plio_64_ bits

204 "./data/input/controller 2 in.txt");

205

206 TF18 in = adf::input_plio::create( ' TFI8 in",

207 adf:: plio_64_bits,

208 "./data/input/TF18 in.txt");

209

210 TF30_in = adf::input_plio:: create("TFE30 in",

211 adf:: plio_ 64 _bits,

212 "./data/input /TF30_in.txt");

213

214 input_block_3_in = adf::input_plio::create("input block 3 in",
215 adf:: plio_64_bits,

216 "./data/input/input_block_3_in.txt");

217

218 controller_3_in = adf::input_plio::create('controller 3 in";
219 adf::plio_64_ bits

220 "./data/input/controller 3 in.txt");

221

222 TF1_out = adf::output_plio::create( ' TFl out",

223 adf:: plio_ 64_bits,

224 "TF1_out.txt");

226 TF2_out = adf::output_plio:: create("TF2 out',

227 adf:: plio_64_ bits,

228 "TF2 out.txt");

229

230 TF19_out = adf::output_plio::create('TFI9 out',

231 adf:: plio_64_bits,

232 "TF19_out. txt");

233

234 TF_20_out = adf::output_plio:: create('TEF 20 out',

235 adf::plio_64_ bits

236 "TF_20_ out.txt");

237

238 input_block_1_ out = adf::output_plio::create("input block 1 out",
239 adf:: plio_64_bits ,

240 "input_block 1 out.txt");

241

242 controller_1_out = adf::output_plio::create("controller [ out',
243 adf:: plio_64_ bits,

244 "controller 1 out.txt");

245

246 TF_25 out = adf::output_plio:: create('TEF 25 out',

247 adf:: plio_64_bits,

248 "TF_25 out.txt");

249

250 input_block_2 out = adf::output_plio:: create("input block 2 out',
251 adf::plio_64_ bits

252 "input_block 2 out.txt");

253

254 controller_2_ out = adf::output_plio::create("controller 2 out',
255 adf:: plio_ 64 bits,

256 "controller 2 out.txt");
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N

o

TF18_out = adf::output_plio:: create (
adf:: plio_ 64_bits,
)

o’

Sl

TF30_out = adf::output_plio:: create( ,
adf:: plio_64_bits,
i

I O U C Rt

input_block_3_ out = adf::output_plio:: create ( ,
adf:: plio_64_bits,
)

controller_3_ out = adf::output_plio:: create(
adf:: plio_64_bits,
)

1 9 9 9 o O O
N = © © ® I &

1

TF1_in.out |

adf:: connect< 0
TF2_in.out [0
[
[

adf:: connect<
adf:: connect<
adf:: connect<
adf:: connect<
adf :: connect<
adf:: connect<
adf:: connect<
adf:: connect<
adf:: connect<
adf:: connect<
adf:: connect<

1

], mygraph.TF1_in);

], mygraph.TF2_in);

0], mygraph.TF19_ in);

0], mygraph.TF20_in);
input_block_1_in.out[0], mygraph.input_block_1_in);
controller_1_in.out[0], mygraph.controller_1_in);
TF25_in.out [0] , mygraph.TF25_in);

input__block_ 2 in.out[0], mygraph.input_block 2 in);
controller_2_ in.out[0], mygraph.controller_2_ in);
TF18 in.out [0], mygraph.TF18 in);

TF30_in.out [0] , mygraph.TF30_in) ;
input__block_3_in.out[0], mygraph.input_block_3_in);

1

o

TF19 in.out

|
1

TF20_in.out

® 0 0 W 00 1~
AW N R O © o

(] (] () [\ [\ (] (] [\v] [\ () (] (&) [\v) [\v) () (] (&) &) (V) no () [\v] [v] [\v] [\v) () Do [v] [\v] [\v) () ()
® 0 0 ® 3 - SN N TN BN T ~ o C ol C

86 adf :: connect< controller_3_in.out[0], mygraph.controller_3_in);
87 adf:: connect<

88 adf:: connect< mygraph.TF2_out, TF2 out.in [0]) ;

289 adf :: connect< mygraph.TF19_out, TF19 out.in [0]) ;

290 adf:: connect< mygraph.TF_20_out, TF_20_out.in [0]) ;

291 adf:: connect<
292 adf:: connect<
293 adf :: connect<
294 adf:: connect<
295 adf:: connect<

mygraph.input_block_1_out, input_block_1_ out.in[0]) ;
mygraph. controller_1_out, controller_1_ out.in[0]) ;
mygraph.TF_25 out, TF 25 out.in [0]) ;
mygraph.input_block_2_ out, input_block_ 2 out.in[0]) ;
mygraph. controller_2_out, controller_2_ out.in[0]) ;

296 adf:: connect< mygraph.TF18 out, TF18 out.in [0]) ;
207 adf:: connect< mygraph . TF30 out, TF30 out.in[0]) ;
2908 adf:: connect< mygraph . input_block 3_out, input_block_ 3 _out.in [0]) ;

(
(
(
(
(
(
(
(
(
(
(
E
(mygraph.TF1 _out, TF1 out.in [0]) ;
(
(
(
(
(
(
(
(
(
(
(
(

VVVVVVVVVVVVVVVVVVVVVYVVYVVYV

299 adf :: connect<

300 }
301 } )
302

505 #endif // _ XMC_ AIE SUBSYSTEM H

mygraph. controller__3_out, controller_3_out.in[0]) ;

This source code contains the definition and application of constraints of the AIE
graph. All the inputs and outputs of the graph are also connected to the specific .txt
file containing input data and golden output, so this can be used to simulate the AIE
array.

B.3 ACE AIE_subsystem.cpp

1 #include
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s // instantiate ADF graph

1+ AIE_ Subsystem mygraph;

¢ // initialize and run the dataflow graph

7 #if defined (_ AIESIM ) || defined( X86SIM )
s int main(void) {

9 mygraph. init () ;

10 mygraph . run ()
11 mygraph.end () ;
12 return 0;

13}

14 #endif

This code initializes, runs and ends the AIE graph execution.

B.4 ACE s2mm.cpp

1 #include <hls_ stream.h>

2 #include <ap_int.h>

3 #include <ap_ axi_sdata.h>
1+ #include <stdint .h>

6

7

8 template <int BITWIDTH>
9 void Push(hls::stream<ap_axiu<BITWIDTH, 0, 0, 0> >& s, uint32_tx* target,
int size){

10 constexpr int dwidth = ((BITWIDTH/32) + (((BITWIDTH%32)==0) ? 0 : 1))
*32;

11 for(int i = 0; i < size; i+=dwidth/32) {

12 #pragma HLS PIPELINE II=1

13 ap_ axiu<BITWIDTH, 0, 0, 0> v = s.read();

1

1

5 target [1i] = uint32_t(v.data);

16 if constexpr (BITWIDTH — 64)

17 target [i+1] = uint32_t(v.data >> 32);
18 else if constexpr (BITWIDTH — 128) {
19 target [i+1] = uint32_t(v.data >> 32);
0 target [1+2] = uint32_t(v.data >> 64);
target [i+3] = uint32_ t(v.data >> 96);

2 } else if constexpr (BITWIDTH > 32) {
for (int shift = 32,j=1; shift < BITWIDTH; shift+=32,j++) {
target [i+j] = uint32_t(v.data >> shift);
; }
6 }

~

00

}
}

31 void PushAll(
32 hls ::stream<ap_axiu<32, 0, 0, 0> >& in0O, uint32_t*x out0, uint32_t sizel

W ON NN N NN NN NN
© 0 C = w J

)

hls ::stream<ap_axiu<32, 0, 0, 0> >& inl, uint32_t*x outl, uint32_t sizel

)
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uint32 t
uint32 t
uint32_t
uint32 t

uint32 t

size?2

size3

sized

sizeb

sizeb

34 hls ::stream<ap_axiu<32, 0, 0, 0> >& in2, uint32_t*x out2,

35 hls ::stream<ap_axiu<32, 0, 0, 0> >& in3, uint32_tx out3,

36 hls ::stream<ap_axiu<32, 0, 0, 0> >& ind4, uint32_tx out4,

37 hls ::stream<ap_axiu<32, 0, 0, 0> >& in5, uint32_t*x outh,

38 hls ::stream<ap_axiu<32, 0, 0, 0> >& in6, uint32_tx out6 ,
) A

30 #pragma HLS DATAFLOW

10 Push<32>(in0, out0, size0);

1 Push<32>(inl, outl, sizel);

42 Push<32>(in2, out2, size2);

43 Push<32>(in3, out3, size3);

14 Push<32>(in4, outd, sized);

15 Push<32>(in5, outh, sized);

16 Push<32>(in6, out6, size6);

47 }

48

19 extern {

50  void s2mm(

51 hls ::stream<ap_axiu<32, 0, 0, 0> >& in0,

52 uint32_tx outO0, uint32_t sizel ,

53 hls ::stream<ap_axiu<32, 0, 0, 0> >& inl ,

54 uint32_tx outl, uint32_t sizel ,

55 hls ::stream<ap_axiu<32, 0, 0, 0> >& in2,

56 uint32_tx out2, uint32_t size2 ,

57 hls ::stream<ap_axiu<32, 0, 0, 0> >& in3,

58 uint32_t* outd, uint32_t sized,

59 hls ::stream<ap_axiu<32, 0, 0, 0> >& in4,

60 uint32_tx out4d, uint32_t size4d ,

61 hls ::stream<ap_axiu<32, 0, 0, 0> >& inb ,

62 uint32_tx outd, uint32_t sized ,

63 hls ::stream<ap_axiu<32, 0, 0, 0> >& in6 ,

64 uint32_t* out6, uint32_t size6) {

o5 #pragma HLS INTERFACE ap_ ctrl_hs port=return bundle=control

o6 #pragma HLS INTERFACE s _axilite port=return bundle=control

67 #pragma HLS INTERFACE axis port=in0

os #pragma HLS INTERFACE m_ axi port=out0 bundle=gmem0 max_widen_ bitwidth=4

oo #pragma HLS INTERFACE s_ axilite port=out0 bundle=control

70 #pragma HLS INTERFACE s_ axilite port=size0 bundle=control

71 #pragma HLS INTERFACE axis port=inl

72 #pragma HLS INTERFACE m_axi port=outl bundle=gmeml max_widen_bitwidth=4

73 #pragma HLS INTERFACE s_ axilite port=outl bundle=control

72 #pragma HLS INTERFACE s_ axilite port=sizel bundle=control

75 #pragma HLS INTERFACE axis port=in2

76 #pragma HLS INTERFACE m_ axi port=out2 bundle=gmem2 max_widen_ bitwidth=4

77 #pragma HLS INTERFACE s_ axilite port=out2 bundle=control

7s #pragma HLS INTERFACE s_ axilite port=size2 bundle=control

70 #pragma HLS INTERFACE axis port=in3

so #pragma HLS INTERFACE m_ axi port=out3 bundle=gmem3 max_ widen_ bitwidth=4

s1 #pragma HLS INTERFACE s_ axilite port=out3 bundle=control

s2 #pragma HLS INTERFACE s_ axilite port=size3 bundle=control

s3 #pragma HLS INTERFACE axis port=in4

s1 #pragma HLS INTERFACE m_ axi port=out4 bundle=gmem4 max_widen_ bitwidth=4

s5 #pragma HLS INTERFACE s_ axilite port=out4 bundle=control

so #pragma HLS INTERFACE s_ axilite port=size4 bundle=control
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Model composer generated code

s7 #pragma HLS INTERFACE axis port=inb

ss #pragma HLS INTERFACE m_axi port=outb bundle=gmem5 max_widen_ bitwidth=4
so #pragma HLS INTERFACE s_ axilite port=outb5 bundle=control

oo #pragma HLS INTERFACE s_ axilite port=size5 bundle=control

o1 #pragma HLS INTERFACE axis port=in6

o2 #pragma HLS INTERFACE m axi port=out6 bundle=gmem6 max widen bitwidth=4
93 #pragma HLS INTERFACE s_axilite port=out6 bundle=control

o1 #pragma HLS INTERFACE s_ axilite port=size6 bundle=control

95

96 PushAll(
97 in0, outO, sizeO ,
98 inl, outl, sizel ,

99 in2, out2, size2,
100 in3d, outd, sized,
101 ind , outd4d, size4d ,
102 inb, outb, sized ,
103 in6, out6, sizeb6);
104 }

105

06 [}

This code contains an HLS description of a stream-to-memory mapped DMA. The
s2mm kernel starts when triggered via AXI-Lite (ap_start). It reads data from AXI-
Stream inputs (in0 to in6) and writes to memory via AXI-MM. Each stream is processed

in parallel using HLS DATAFLOW, storing sizeX words to outX. DMA-like behavior is
implemented in hardware; activation depends on the host writing control registers.

B.5 ACE mm2s.cpp

I #include <hls_stream .h>

2 #include <ap_int.h>

3 #include <ap_axi_sdata.h>
. #include <stdint .h>

s template <int BITWIDTH>
9 void Push(uint32_tx data, hls::stream<ap_ axiu<BITWIDTH, 0, 0, 0> >&
target , uint32_ t size, int pulse){

10 constexpr int dwidth = ((BITWIDTH/32) + (((BITWIDTH%32)==0) ? 0 : 1))
*32;

i for(int i = 0; i < size % pulse; i+=dwidth/32) {

> #pragma HLS PIPELINE II=1

3 int index = i % size;

| ap_axiu<BITWIDTH, 0, 0, 0> v;

5 v.last = 0;

6 v.keep = OxFFFF';

7 v.data = data[index];

18 if constexpr (BITWIDTH =— 64)

19 v.data += (uint64_t(data[index+1])<<32);

else if constexpr (BITWIDTH = 128)
v.data += (ap_int<128>(data [index+1])<<32)+

(ap_int<128>(data [index +2])<<64)+
(ap_int<128>(data [index +3])<<96);

else if constexpr (BITWIDTH > 32) {

for (int shift = 32,j=1; shift < BITWIDTH; shift+=32,j++) {
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B.5 - ACE mm2s.cpp

v.data += (ap_int<BITWIDTH>(data [index+j])<<shift);

}
}

target . wri

void PushAll(

)

)

)

)

)

)

)

uint32_tx in0 ,
uint32_tx inl,
uint32_tx in2,
uint32_tx ind,
uint32_tx in4 ,
uint32_tx inb ,
uint32_ t* in6 ,

int pulse) {

te(v)

)

hls ::

hls ::

hls ::

hls :

hls ::

hls ::

hls ::

13 #pragma HLS DATAFLOW

15

16

17

48

19

68

69

}

Push<32>(in0 ,
Push<32>(inl ,
Push<32>(in2 ,
Push<32>(in3
Push<32>(in4 ,
Push<32>(in5 ,
Push<32>(in6 ,

3 extern {

void mm2s(

uint32_tx* in0 ,

outO ,
outl ,
out2 ,
outd ,
out4 ,
outh ,
outo6 ,

stream<ap_axiu<32,
stream<ap_ axiu<32,

stream<ap_ axiu <32,

stream<ap_ axiu<32,
stream<ap_axiu<32,

stream<ap_ axiu<32,

sizel ,
sizel |,
size2 ,
sized ,
sized |
sizeb ,
sizeb ,

hls ::stream<ap_axiu<32, 0,

uint32_ tx* inl ,

hls ::stream<ap_axiu<32, 0,

uint32_tx in2,

hls ::stream<ap_axiu<32, 0,

uint32_ t* in3,

hls ::stream<ap_axiu<32, 0,

uint32_tx in4,

hls ::stream<ap_axiu<32, 0,

uint32_tx inb ,

hls ::stream<ap_axiu<32, 0,

uint32_ t* in6 ,

hls ::stream<ap_axiu<32, 0,

int pulse) {

0>

0>

0>

0>

0>

0>

0>

:stream<ap_ axiu <32,

>&

>&

>&

>&

>&

>&

>&

outO ,
outl ,
out? ,
outd ,
out4 ,
outs ,

out6 ,

0, 0> >&
0, 0> >&
0, 0> >&
0, 0> >&
0, 0> >&
0, 0> >&

0, 0> >&

uint32_t
uint32 t
uint32_t
uint32 t
uint32 t
uint32_t

uint32 t

out0 ,
outl ,
out?2 ,
outd ,
out4 ,
outs

outb6 ,

size(
sizel
size2
sized
sized
sizeb

sizeb

70 #pragma HLS INTERFACE ap_ ctrl__hs port=return bundle=control
71 #pragma HLS INTERFACE s_ axilite port=return bundle=control

72 #pragma HLS INTERFACE m_ axi port=in0 bundle=gmem0 max_ widen_ bitwidth=4
73 #pragma HLS INTERFACE s axilite port=in0 bundle=control

71 #pragma HLS INTERFACE axis port=out0
75 #pragma HLS INTERFACE s_ axilite port=size0 bundle=control

76 #pragma HLS INTERFACE m_ axi port=inl bundle=gmeml max_ widen_ bitwidth=4

117

)

)

)

)

)

)

)

uint32_t
uint32 t
uint32 t
uint32_t
uint32 t
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sizel
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size2

sized

size4

sizeb
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Model composer generated code

77 #pragma HLS INTERFACE s_axilite port=inl bundle=control

7s #pragma HLS INTERFACE axis port=outl

70 #pragma HLS INTERFACE s_ axilite port=sizel bundle=control

so #pragma HLS INTERFACE m_ axi port=in2 bundle=gmem2 max_ widen_ bitwidth=4
s1 #pragma HLS INTERFACE s_ axilite port=in2 bundle=control

s2 #pragma HLS INTERFACE axis port=out2

s3 #pragma HLS INTERFACE s_axilite port=size2 bundle=control

s1 #pragma HLS INTERFACE m_ axi port=in3 bundle=gmem3 max_ widen_ bitwidth=4
s5 #pragma HLS INTERFACE s_ axilite port=in3 bundle=control

s6 #pragma HLS INTERFACE axis port=out3

s7 #pragma HLS INTERFACE s_ axilite port=size3 bundle=control

ss #pragma HLS INTERFACE m_axi port=in4 bundle=gmem4 max_widen_bitwidth=4
so #pragma HLS INTERFACE s_axilite port=in4 bundle=control

oo #pragma HLS INTERFACE axis port=out4

o1 #pragma HLS INTERFACE s_ axilite port=size4 bundle=control

92 #pragma HLS INTERFACE m_ axi port=in5 bundle=gmemb max_ widen_ bitwidth=4
o3 #pragma HLS INTERFACE s_axilite port=in5 bundle=control

o1 #pragma HLS INTERFACE axis port=outh

o5 #pragma HLS INTERFACE s_ axilite port=size5 bundle=control

o6 #pragma HLS INTERFACE m_ axi port=in6 bundle=gmem6 max_ widen_ bitwidth=4
or #pragma HLS INTERFACE s_ axilite port=in6 bundle=control

os #pragma HLS INTERFACE axis port=out6

90 #pragma HLS INTERFACE s_axilite port=size6 bundle=control

100 #pragma HLS INTERFACE s_ axilite port=pulse bundle=control

101

102 PushAll(

103 in0, outO, sizeO ,

104 inl, outl, sizel ,

105 in2, out2, size2,

106 in3 , outd, sized,

107 ind , outd4d, size4d ,

108 inb, outb, sized ,

109 in6, out6, sizeb6 ,

110 pulse);

111 }

112

113 }

The mm2s kernel reads data from memory (inX) and writes it to AXI streams (outX)
across 7 channels, repeating the transfer pulse times. Each Push sends data as ap axiu
packets on the HLS stream. If target.write() blocks, it means the receiver (e.g., DMA) is
not reading fast enough: the FIFO is full and the kernel waits. This indicates that the
next sample cannot be sent until the previous one is consumed.
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Appendix C

Kernel codes

The kernel codes reported in this Section are the custom C++ functions run on AIE (or

AIE-ML) used in the ACE development.

C.1 Single IIR filter order 2 - buffer

:input_ buffer<float ,adf:: extents<4>>& _ _ restrict x, // input sample
:input_ buffer<float ,adf:: extents<8>& _ _restrict c¢, // coefficients

:output_buffer<float ,adf:: extents<4>>& _ restrict p_out, // partial

1 #include <adf.h>
2 #include <aie_api/aie.hpp>
s #include <aie_api/aie_adf.hpp>
i #include <aie_api/utils.hpp>
6 /%
7x = [x, 0, 0, 0]
s p = [x(n=1). x(n—2), y(n—1), y(n—2)]
9 ¢ = [b2, b3, a2, a3, bl g, 0, O]
wy = [y, 0, 0, 0]
11 p_out = p updated for next iteration
12 %/
13
12 void IIR 2 custom
15 (
16 adf :
17 adf :
18 adf::input_buffer<float ,adf:: extents<4>>& __restrict p, // partial
results
19 adf:
results , output
0 adf::output_buffer<float ,adf:: extents<d>>& _  restrict y // output
) o

[

WO NONN NN NN NN
S © 0w 9 o o ks W >

// iterators for in/out buffers

auto
auto
auto
auto
auto

x_int_I=aie :: begin_vector <4>(x);
v_coeff I=aie::begin_vector <8>(c);
p_int_I=aie :: begin_vector <4>(p);
p_out_I=aie :: begin_vector <4>(p_out);
y_I=aie:: begin_vector <4>(y);

// iterator —> vector

auto
auto

x_int = xx_int_ I++;
p_int = xp_int_I+-+;
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Kernel codes

auto v_ coeff = xv_ coeff I+4++;
x_int [0] = x_int[0]*v_coeff[5]; // *g multiplication just on input
sample

// v_sample should have [x(t—1), x(t—2), y(t—1), y(t—2), x, 0, 0, O]
aie :: vector<float , 8> v_sample = aie::concat(p_int, x_int);

// operations for output

auto v_mul = aie::mul(v_sample,v_coeff);// multiplication

float y_int = aie::reduce_add(v_mul.to_vector<float>(0));// sum of
v_mul

aie ::vector<float , 4> v_result = aie::zeros<float ,4>();
v_result.push(y_int);// out must be a vector

xy__H+4=v_ result;

// partial results update

aie ::vector<float , 4> p_out_v;
p_out_v[l] = p_int[0];
p_out_v[0] = x_int [0];
p_out_v[3] = p_int[2];
p_out_v[2] = v_result[0];
*p_out_ H+=p_ out_v;

This code describes with AIE APIs an IIR filter of order 2, as explained in Section 4.1.1.
This kernel, with buffer inputs, would also need a manual handshake of the AXI protocol.
For this reason, in the next versions, coefficients and partial products are stored in AIE
memory, while the input type stream will allow automatic AXI4 handshake management.

C.2 Single IIR filter order 2 - stream (not

optimal)

1 #include <adf.h>

2 #include <aie_api/aie.hpp>

s #include <aie_api/aie_adf.hpp>
1 #include <aie_api/utils . hpp>

5

6

8

9

10

11

/%

p =

(&
y

*/

n—1). x(n—2), y(n—1), y(n—2)]
b3, —a2, —a3, bl g, 0, 0]

RGP AgAN

X
X
b
Yy

void IIR_2 custom

(

input_ stream<float >+« x, // input sample
output_stream<float>x y // output

static aie::vector<float, 4> p = aie::zeros<float, 4>(); // clear
partial results

const aie::vector<float, 8> coeff(0.6868f, 0.f, 0.9973f, 0.f, 0.6868f,
1.f, 0.f, 0.f);

// input reading
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C.3 — Single IIR filter order 2 - stream

}

float x_int = readincr(x);

// to vector

x_int = x_intxcoeff [5]; // *g multiplication just on input sample
aie ::vector<float , 4> x_int_v = aie::zeros<float ,4>();
x_int_v.push(x_int);// out must be a vector

// v_sample should have [x(t—1), x(t—2), y(t—1), y(t—2), x, 0, 0, 0]
aie ::vector<float , 8> v_sample = aie::concat(p, x_int_ v);

// operations for output

auto v_mul = aie::mul(v_sample, coeff);// multiplication

float y_int = aie::reduce_add(v_mul.to_vector<float>(0));// sum of
v_mul

writeincr (y, y_int);

// partial results update

p[l] = p[0];
p[0] = x_int;
p[3] = p[2];
p[2] = y_int;

This is a streaming version of the single IR filter of order 2, but calling scalar multiplica-

tion and sum functions as

" and '+’ would result in the call of an appropriate function

that would waste too many clock cycles (AIE does not contain a scalar FP unit). This
operation is transformed into a vectorial one in the next versions of the code.

C.3 Single IIR filter order 2 - stream

1 #include <adf.h>

2 #include <aie_api/aie.hpp>

s #include <aie_api/aie_adf.hpp>
1 #include <aie_api/utils.hpp>

C

yi

*

(

) |

/%

p =

]

(n—1). x(n—2), y(n—1), y(n—2)]
b2, b3, —a2, —a3, bl g, 0, O]

]

3 void IIR_2 custom

input_ stream<float > x, // input sample
output_stream<float>x y // output

static aie::vector<float, 4> p = aie::zeros<float, 4>(); // clear
partial results

const aie::vector<float, 8> coeff(0.6868f, 0.f, 0.9973f, 0.f, 0.6868f,
1.f, 0.f, 0.f);

// input reading
float x_int = readincr(x);

)
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Kernel codes

24 // —> vector

25 aie :: vector<float , 4> x_int_v(x_int, 0.0f, 0.0f, 0.0f);

26 x_int_v = aie::mul(x_int_v,coeff[5]).to_vector<float >(0);

27

28 // v_sample should have [x(t—1), x(t—2), y(t—1), y(t—2), x, 0, 0, 0]

29 aie ::vector<float , 8> v_sample = aie::concat(p, x_int_ v);

30

31 // operations for output

32 auto v_mul = aie::mul(v_sample, coeff);// multiplication

33 float y_int = aie::reduce_add(v_mul.to_vector<float>(0));// sum of
v_mul

34 writeincr (y, y_int);

35

36 // partial results update

57 p[l] = p[0];

38 p[0] = x_int;

39 p[3] = p[2];
p[2] = y_int;

64 bit version

1 #include <adf.h>

2 #include <aie_api/aie.hpp>

s #include <aie_api/aie_adf.hpp>
1+ #include <aie_api/utils.hpp>

6 /%
X

7x = [x]

e p = [x(n-1). x(n=2), y(n-1), y(n-2)]
9o ¢c = [b2, b3, —a2, —a3, bl g, 0, 0]
oy = bl

13 void IIR 1

14 (

15 input_ stream<uint64>% x, // input sample

16 output_stream<uint64>% y // output

7 ) 1

18 static aie::vector<float, 4> p = aie::zeros<float, 4>(); // clear
partial results

19 const aie::vector<float, 8> coeff(0.0f, 0.f, 0.0f, 0.f, 1.f, 1.f, 0.f,

0.f);
20
21
22 // input reading
23 uint64 x_real = readincr(x);
24 floatx floats = (floatx)&x_real;
25 float x_int = floats [0];
26
27 // —> vector
28 aie ::vector<float , 4> x_int_v(x_int, 0.0f, 0.0f, 0.0f);
29 x_int_v = aie::mul(x_int_v,coeff[5]).to_vector<float >(0);
30
31 // v_sample should have [x(t—1), x(t—2), y(t—1), y(t—2), x, 0, 0, 0]
32 aie :: vector<float , 8> v_sample = aie::concat(p, x_int_v);
33
34 // operations for output
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C.4 — Single IIR filter order 4 - stream (improved)

auto v_mul = aie::mul(v_sample, coeff);// multiplication

float y_int = aie::reduce_add(v_mul.to_vector<float >(0));// sum of
v__mul

float raw[2] = {y_int, y_int};

uint64 y_real = x((uint64_t*)raw);

writeincr (y, y_real);

// partial results update

p[l] = p[0];
p[0] = x_int_v[0];
p[3] = p[2];
p[2] = y_int;

This is the final version of the IIR filter of order 2. Input and output are 64-bit in order
to allow a single sample streaming (min is 64-bit from PL to AIE and vice versa).

C.4 Single IIR filter order 4 - stream (im-

proved)

1 #include <adf.h>

> #include <aie_api/aie.hpp>

s #include <aie_api/aie_adf.hpp>
1 #include <aie_api/utils.hpp>

5

N
= o

0N

NN NN NN
[STR N v

W N NN
R o3

/%

P =
CcC =
y =

*/

(

) |

n—1), y(n—1), x(n—2), y(n—2), x(n-3), y(n—3), x(n—4), y(n—4)]

J

]
(
2, —a2, b3, —a3, b4, —ad, b5,—a5, bl, g, 0, 0, 0, 0, 0, O]
]

X
X
b

}7

; void IIR_4 custom

input_ stream<float > x, // input sample
output_stream<float >+ y // output

static aie::vector<float, 8> p = aie::zeros<float, 8>(); // clear
partial results

const aie::vector<float, 16> coeff(0.0567984f, 1.6190948f, 0.0820072f,
—1.1351098f, 0.0567984f, 0.3802160f, 0.0157913f, —0.0547274f, 0.0157913f
, 1.0f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f);

// iterators for in/out buffers
float x_int = readincr(x);

// input reading

aie ::vector<float , 8 x_int_v(x_int, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f
, 0.0f);

x_int_v = aie::mul(x_int_v,coeff[5]).to_vector<float >(0);

// v_sample should have [x(t—1), x(t—2), y(t—1), y(t—2), x, 0, 0, 0]
aie ::vector<float , 16> v_sample = aie::concat(p, x_int_v);
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Kernel codes

// operations for output
auto v_mul = aie::mul(v_sample, coeff);// multiplication
y_int = aie::reduce_add(v_mul.to_vector<float >(0));// sum of

float
v_mul

writeincr (y, y_int);

// partial results update

p.push(y_int);
p.push(x_int);

This is an order-4 version of the previous code.

C.5 Controller

#include <adf.h>
#include <aie_api/aie.hpp>
#include <aie_api/aie_adf.hpp>

#include <aie_api/utils.hpp>

n—1), y(n—1),

/%

x = [x]

p = [x( \
c = [b2, —a2,
y = [v]

*/

3 // constants
static const
static const
static const
static const
static const

x(n—2),

b3, —a3, bl, g,

section

0.0f, 0.0f);//13

static const aie

, 0.0f, 0.0f);//14

static const aie

, 0.0f, 0.0f);//15
static const aie::vector<float ,
0.0f, 0.0f);//16

static const aie

0.0f, 0.0f);//17

void IR, CONTROLLER

y(n—=2)]

0,

:: vector<float ,

:: vector<float ,

:: vector<float ,

(
input_ stream<float>x x, //
output_stream<float>x y //
) A
// partial results
static aie::vector<float, 4>
static aie::vector<float K6 4>
static aie::vector<float k6 4>
static aie::vector<float , 4>
static aie::vector<float, 4>

0]

8> ¢_B(0.0f,
8> ¢ C(0.0f,
8> ¢ D(0.0f,

8> ¢ E(0.0f,

input sample

bool LIMITER ENABLE = true;
float LIMITER_LOWER_LIMIT = —30.0f;
float LIMITER_UPPER,_LIMIT = 30.0f;
bool INTEGRATOR, RST = false;
aie :: vector<float , 8 ¢ A(0.0f,

output

P
S

P
to

P
Q

o
)

T
@

(e
®» ©® ©
e e e
@ @ O

0.0f, 0.0f,
0.0f, 0.0f,
0.0f, 0.0f,
0.0f, 0.0f,
0.0f, 0.0f,

:: zeros<float
:: zeros<float
: zeros<float
:: zeros<float
.. zeros<float

)

)

)

)

)

0.0f,
0.0f,
0.0f,
0.0f,

0.0f,

1.0f,

1.0f,

350.0f, 1.0f

1.701f, 1.0f

1.0f,

0.0f,

1.0f,

0.0f,
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C.5 — Controller

// iterators for in/out buffers
float x_int = readincr(x);

;////////////////////////////////////////////////// FILTER A

—> vector
aie :: vector<float , 4> x_int_vA(x_int, 0.0f, 0.0f, 0.0f);
x_int_ vA = aie::mul(x_int_vA ,c A[5]).to_vector<float >(0);

// v_sample should be [x(t—1), y(t—1), x(t—2), y(t—2), x, 0, 0, O]
aie ::vector<float , 8> v_sample A = aie::concat(p A, x_ int vA);

// operations for output

auto v_mul = aie::mul(v_sample_ A ,c_A);// multiplication

float y_ A = aie::reduce_add(v_mul.to_vector<float >(0).extract <4>(0));//
sum of v_mul

aie ::vector<float, 4> y A v(y A, 0.0f, 0.0f, 0.0f);

y A = aie::add(y A v, v.mul.to_ vector<float >(0).extract <4>(1))[0];

// partial results update
p_A.push(y_A);
p_A.push(x_int_ vA[0]) ;

[T 77177717/77 FILTERS B,C,E

// gain multiplication

aie ::vector<float , 4> x_step2(y A, y A, y A, 0.0f);

aie :: vector<float , 4> g vector(c_B[5], ¢ C[5], ¢ E[5], 0.0f);
x_step2 = aie::mul(x_step2, g vector).to_vector<float >(0);

// product

aie :: vector<float , 16> v_sample BCE = aie :: concat(p_B, p C, p_E,
x_step2);

aie :: vector<float , 16> v_coeff BCE = aie::concat(c_B.extract <4>(0), ¢ _C
.extract <4>(0), ¢ E.extract <4>(0), aie::vector<float, 4>(c B[4], ¢ C[4],
c_E[4], 0.0f));

auto v.mul BCE = aie ::mul(v_sample BCE,v_coeff BCE);// multiplication

// reduction for the different filters

aie:: vector<float , 4> y B(aie::reduce add(v_mul BCE. extract <4>(0).
to_vector<float >(0)), 0.0f, 0.0f, 0.0f);

y._ B = aie::add(y_B, v_mul BCE to _vector<float >(0).extract <4>(3));

aie ::vector<float , 4> y _C(0.0f, aie::reduce_add(v_mul BCE.extract <4>(1)
.to_vector<float >(0)), 0.0f, 0.0f);

y C = aie::add(y _C, v_mul BCE.to_ vector<float >(0).extract <4>(3));

aie ::vector<float, 4> y E(0.0f, 0.0f, aie::reduce_add(v_mul BCE.extract
<4>(2).to_vector<float >(0)), 0.0f);

y_E = aie::add(y_E, v_mul BCE.to_vector<float >(0).extract <4>(3));

// partial results update

p_B.push(y B[0]);
p_B.push(x_ stepZ[O]);
p_C.push(y_C[1]);

p C.push(x step2[1]);
p_E~push( E[2]);
p_E.push(x step2[2]) ;

[T 1777777777 OUT PART

// partial sum
auto y BE = aie::add(y_B, aie::shuffle down(y E,2));
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Kernel codes

88 float y_ mux;
89

90 // multiplexer

91 if (INTEGRATOR, RST){
92 y_mux = OOf,
93 }else{

94 y_mux = p_D[1];

95 }

96 aie ::vector<float , 4> y mux v(y_mux, 0.0f, 0.0f, 0.0f);

08 //final sum

99 auto y_fin = aie::add(y_BE, y_mux v);

100 writeincr (y, y_fin[0]);

101

102

o /111111111111111111717/]]] TIMITER

104 aie ::vector<float , 4> y_lim_in(aie::add(y_mux_ v, aie::shuffle_down (y_C
,1))[0],0.0f,0.0f,0.0f);

105 auto y_lim_out = y_lim_in;

106 if (LIMITER ENABLE){

107 if (aie::gt(y_lim in, LIMITER_UPPER LIMIT) . test (0)) {
108 y_lim_out [0] = LIMITER_ UPPER, LIMIT;

109 } else if (aie::1t(y_lim_in, LIMITER_LOWER_LIMIT) . test (0)) {
110 y_lim_ out [0] = LIMITER LOWER, LIMIT;

111 }

112 }

113

114

w /111111111111111171717/]/] FILTER D

116 auto x D = aie::mul(y_lim_out,c_D[5]).to_vector<float >(0);
117 aie :: vector<float , 8> v_sample D = aie::concat(p D, x D);
118 v_mul = aie::mul(v_sample D,c D);// multiplication

119 float y D = aie::reduce_add(v_mul.to_vector<float >(0).extract <4>(0));//
sum of v_mul

120 aie ::vector<float , 4> y_D v(y_D, 0.0f, 0.0f, 0.0f);
121 y. D = aie::add(y_D_v, v_mul.to_vector<float >(0).extract <4>(1)) [0];
122 p_D.push(y D);

123 p_D.push(x D[0]) ;
124 }

64 bit version

1 #include <adf.h>

2 #include <aie_api/aie.hpp>

s #include <aie_api/aie_adf.hpp>
1 #include <aie_api/utils . hpp>

5

6 /% -

s p = [x(n=1), y(n—1), x(n—2), y(n—2)]
9 ¢ = [b2, —a2, b3, —a3, bl, g, 0, 0]
wy = [y]

11 %/

13 // constants' section

11 static const bool LIMITER ENABLE = false
15 static const float LIMITER LOWER LIMIT = 0.0f;
16 static const float LIMITER_UPPER_LIMIT = 0.0f;
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C.5 — Controller

17 static const bool INTEGRATOR RST = false;

15 static const aie::vector<float, 8> ¢ _A(0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f,
0.0f, 0.0f);//3

19 static const aie::vector<float, 8 ¢ B(0.0f, 0.0f, 0.0f, 0.0f, 0.16f, 1.0f,
0.0f, 0.0f);//4

20 static const aie::vector<float, 8 ¢ C(0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f);//5

21 static const aie::vector<float, 8> ¢ D(0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f);//6

22 static const aie::vector<float, 8 ¢ E(0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f);//7

23

24 void IIR,_ CONTROLLER, 1

25 (

26 input_stream<uint64>x x, // input sample

27 output_stream<uint64>% y // output

2 ) {

29

30 // partial results

31 static aie::vector<float, 4> p A = aie::zeros<float, 4>();

32 static aie::vector<float, 4> p B = aie::zeros<float, 4>();

33 static aie::vector<float, 4> p C = aie::zeros<float, 4>();

34 static aie::vector<float, 4> p_D = aie::zeros<float, 4>();

35 static aie::vector<float, 4> p_E = aie ::zeros<float, 4>();

36

37 // input section

38 uint64 x_ real = readincr(x);

39 floatx floats = (floatx)&x_real;

10 float x_int = floats [0];

41

e I 1101101171111117111171711]] FILTER A

43 // —> vector

14 aie :: vector<float , 4> x_int_vA(x_int, 0.0f, 0.0f, 0.0f);

15 x_int vA = aie::mul(x int vA,c A[5]).to_vector<float >(0);

46

a7 // v_sample should be [x(t—1), y(t—1), x(t—2), y(t—2), x, 0, 0, O]

48 aie ::vector<float , 8> v_sample A = aie::concat(p A, x_ int vA);

49

50 // operations for output

51 auto v_mul = aie::mul(v_sample_ A ,c_A);// multiplication

63

66

67

float y A = aie::reduce_add(v_mul.to_ vector<float >(0).extract <4>(0));//

sum of v _mul
aie ::vector<float, 4> y A v(y A, 0.0f, 0.0f, 0.0f);
y_A = aie::add(y_A v, v_mul.to_vector<float >(0).extract <4>(1)) [0];

// partial results update
p_A.push(y_A);
p_A.push(x_int_vA[0]);

;////////////////////////////////////////////// FILTERS B,C,E

gain multiplication
aie ::vector<float , 4> x_step2(y A, y A, y A, 0.0f);
aie :: vector<float , 4> g vector(c_B[5], ¢ C[5], ¢ E[5], 0.0f);
x_step2 = aie::mul(x_step2, g_vector).to_vector<float >(0);

// product

aie :: vector<float , 16> v_sample BCE = aie ::concat(p B, p C, p_E,
x_step2);
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68

69

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

108

109
110
111
112
113
114
115
116
117
118

119

Kernel codes

aie :: vector<float , 16> v_coeff BCE = aie::concat(c_B.extract <4>(0), ¢ _C
.extract <4>(0), ¢ E.extract <4>(0), aie::vector<float, 4>(c B[4], ¢ C[4],
c_E[4], 0.0f));

auto v.mul BCE = aie::mul(v_sample BCE,v_coeff BCE);// multiplication

// reduction for the different filters

aie :: vector<float , 4> y_B(aie ::reduce_add(v_mul BCE. extract <4>(0).
to_vector<float >(0)), 0.0f, 0.0f, 0.0f);

y_B = aie::add(y_B, v_mul BCE.to_vector<float >(0).extract <4>(3));

aie ::vector<float, 4> y C(0.0f, aie::reduce_add(v_mul BCE.extract <4>(1)
.to_vector<float >(0)), 0.0f, 0.0f);

y_C = aie::add(y_C, v_mul BCE.to_vector<float >(0).extract <4>(3));

aie ::vector<float , 4> y _E(0.0f, 0.0f, aie::reduce_add(v_mul BCE.extract
<4>(2).to_vector<float >(0)), 0.0f);

y_E = aie::add(y_E, v_mul BCE.to_vector<float >(0).extract <4>(3));

// partial results update

p_B.push(y_B[0]);
p_B.push(x_ Step2[0]);
p_C.push(y_C[1]);
p_C.push(x_ step2[1]);
p E.push(y_E[2]);
p_E.push(x_step2[2]);

;;///////{///////////////// OUT PART

partial sum

aut(I) y_BE = aie::add(y_B, aie::shuffle down(y_E,2));
float y_mux;

// multiplexer
i f (INTEGRATOR_RST) {
y_mux = 0.0f;
telse{
y_mux = p_D[1];
}

aie ::vector<float , 4> y mux v(y_mux, 0.0f, 0.0f, 0.0f);

//final sum

auto y_fin = aie::add(y_BE, y_mux v);
float raw|[2] = {y_fin[0], y_fin[0]};
uint64 y_real = x((uint64_tx*)raw) ;
writeincr (y, y_real);

J/1111171711111111117/7/]// LIMITER
aie ::vector<float , 4> y_lim_in(aie::add(y_mux v, aie::shuffle down(y C
,1))[0],0.0£,0.0£,0.0¢);
auto y_lim_out = y_lim_in;
if (LIMITER ENABLE){
if (aie::gt(y_lim_in, LIMITER_UPPER_LIMIT) . test (0)) {
y_lim_out[0] = LIMITER UPPER_LIMIT;
} else if (aie::1t(y_lim_in, LIMITER_ LOWER LIMIT) . test (0)) {
y_lim_out[0] = LIMITER LOWER_LIMIT;
}

[T )] FILTER D
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C.6 — Input block

auto x D = aie::mul(y lim out,c D[5]).to_vector<float >(0);
aie :: vector<float , 8> v_sample_ D = aie::concat(p_D, x D);

v_mul = aie::mul(v_sample D,c D);// multiplication

float y D = aie::reduce_add(v_mul.to_vector<float >(0).extract <4>(0));//
sum of v _mul

aie ::vector<float , 4> y D v(y_D, 0.0f, 0.0f, 0.0f);

y.D = aie::add(y_D_v, v_mul.to_vector<float >(0).extract <4>(1)) [0];
p.D.push(y D);

p_D.push(x D[0]) ;

This is the 64-bit version of the controller block, whose behavior is described in 4.1.1.

C.

6 Input block

1 #include <adf.h>

2 #include <aie_api/aie.hpp>

s #include <aie_ api/aie_adf.hpp>
1 #include <aie_api/utils.hpp>

o3

=

O N NN
w N

W oW W W W W NN NN NN
g ok W N R O © 0 N O U A u

/%

p:
CcC =

y
*/

3 // constants

]

(n—1), y(n—1), x(n—2), y(n—2)]
b2, —a2, b3, —a3, bl, g, 0, 0]

]

" section

static const float BIAS = 0.0f;
static const aie::vector<float, 8> c_rl1(0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f,

0.0f, 0.0f);//22

static const aie::vector<float, 8> c¢_r2(0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f,

0.0f, 0.0f);//21

static const aie::vector<float, 8> c_s1(0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f,

0.0f, 0.0f);//24

static const aie::vector<float, 8> c_s2(1.0f,

0.980093260759718254426786643307423219085f, 0.0f, 0.0f, 1.0f,
0.009953369620140867582436250415867107222f, 0.0f, 0.0f);//23

void IIR_input_block_ 1

(

) A

input_stream<uint64>% x, // ratio, sum
output_stream<uint64>x y // ratio, sum

// partial results

static aie::vector<float, 4> p_rl = aie::zeros<float, 4>(

static aie::vector<float, 4> p_r2 aie ::zeros<float , 4>(
(
(

static aie::vector<float, 4> p_sl aie ::zeros<float , 4>
static aie::vector<float, 4> p_ s2 = aie::zeros<float, 4>

// input reading

uint64 x_real = readincr(x);

floatx floats = (floatx)&x_real;

aie ::vector<float , 4> x_int_vl(floats[0], floats[1l], 0.0f, 0.0f);
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50

64

66

Kernel codes

11700 Dr il rr /77 FILTER 1, sl
aie ::vector<float , 4> g int_ vl(c_rl[5], c_s1[5], 0.0f, 0.0f);
x_int_vl = aie::mul(x_int_vl,g int_vl).to_vector<float >(0);

// v_sample should be [x(t—1), y(t—1), x(t—2), vy
aie ::vector<float , 16> v_sample 1 = aie ::concat (
aie ::zeros<float , 4>());

aie ::vector<float , 16> v_coeff 1 = aie::concat(c_rl.extract <4>( ),
.extract <4>(0), aie::vector<float, 4>(c_rl[4], c_sl[4], 0.0f, 0.0f), aie
;i zeros<float , 4>());

2), x, 0, 0, 0]

(t—
p.rl, p sl, x int vl

// operations for output

auto v_mul = aie::mul(v_sample 1,v_coeff 1);// multiplication

float y_rl = aie::reduce_add(v_mul.to_vector<float >(0).extract <4>(0));
// sum of v_mul

float y sl = aie::reduce add(v_mul.to vector<float >(0).extract <4>(1));
// sum of v_mul

aie ::vector<float, 4> y 1 v(y_rl, y_sl, 0.0f, 0.0f);

y_ 1 v = aie::add(y_1 v, v_mul.to_vector<float >(0).extract <4>(2));

// partial results update
p_rl.push(y_1_v[0]);

p_rl.push(x_int_v1[0]);
p_sl.push(y_1 v[1]);
p_sl.push(x_int_v1[1]);

DT 7771777777 FILTERS r2 ,s2

// —> vector
aie ::vector<float , 4> g int_ v2(c_r2[5], c_s2[5], 0.0f, 0.0f);
y_ 1 v =aie::mul(y_1 v,g int v2).to_vector<float >(0);

// v_sample should be [x(t—1), y(t—1), x(t—2), vy
aie ::vector<float , 16> v_sample 2 = aie ::concat (
::zeros<float , 4>());

aie ::vector<float , 16> v_coeff 2 = aie::concat(c_r2.extract <4>( ),
.extract <4>(0), aie::vector<float, 4>(c_r2[4], c_s2[4], 0.0f, 0.0f), aie
;i zeros<float , 4>());

2), x, 0, 0, 0]

(t—
p.r2, p_s2, y 1 v, aie

// operations for output

v_mul = aie::mul(v_sample 2,v_coeff 2);// multiplication

float y r2 = aie::reduce_add(v_mul.to vector<float >(0).extract <4>(0));
// sum of v_mul

float y_s2 = aie::reduce_add(v_mul.to_vector<float >(0).extract <4>(1));
// sum of v_mul

aie ::vector<float, 4> y 2 v(y_r2, y s2, 0.0f, 0.0f);

y_2 v = aie::add(y_2 v, v_mul.to_vector<float >(0).extract <4>(2));

// partial results update
p_r2.push(y_2 v[0])
p_r2.push(y_1 v[0])
p_s2.push(y__ 2 v[1]);
p_s2.push(y_1 _v[1])
// BIAS sum

aie :: vector<float , 4> bias_v(BIAS, 0.0f, 0.0f, 0.0f);
y_2 v = aie::add(y_2 v, bias_v);
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85
86
87
88
89
90

91

C.6 — Input block

// output

float raw[2] = {y_2 v[0], y_ 2 v][1
uint64 y_real = x((uint64_tx*)raw)
writeincr (y, y_real);

]_};

}

This is the input block, whose behavior is described in 4.1.1.
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