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Summary

Artificial intelligence and machine learning are transforming industries by en-
abling systems to learn from data, make predictions, and automate complex
tasks. Their importance lies in their ability to enhance efficiency, improve
decision-making, and drive innovation across various sectors, from healthcare
to finance and beyond. The demand for hardware and software to perform
this algorithm is rapidly increasing, driving the need for more efficient and
optimized solutions. Depending on the complexity and the specific require-
ments for each particular application, there are many possible hardware so-
lutions to execute this kind of algorithms, i.e. CPUs or GPUs, FPGAs and
ASICs.

Nowadays this kind of operation is typically executed with GPUs, which
have several downsides, like high power consumption and limited efficiency
for certain specialized tasks. While GPUs excel at parallel processing, they
are not always optimized for the specific computational patterns of advanced
machine learning algorithms, leading to suboptimal performance and energy
inefficiencies. Additionally, the general-purpose architecture of GPUs can
be less efficient compared to customized hardware like ASICs, which are de-
signed specifically for the requirements of machine learning workloads. This
leads to a more optimized HW solution, that could have smaller size, less
power consumption, and high computational power.

The goal of this thesis is to automate a tool-chain that produces an ASIC
integrated circuit(IC), starting from an algorithm written in C-like language,
whose behavior is different based on several variables, that influence the be-
havior of the algorithm and the cad tool behavior. The set of values is gener-
ated by a tool called Spearmint, which performs a multi-object optimization,
to find Pareto solutions.

With the setup, a tool has been developed that is capable of performing



a complete integrated circuit design, starting from C-style code, and gen-
erating performance reports. This tool has been further extended into an
optimization framework, which together enables automated design-space ex-
ploration.

With all the experimental part it is possible to design more efficient in
specific properties accellerators. With the experimental results it is also
possible to define set of knobs, which are more influent and set of parameters
which defines that eccells in specific fields.

There are several directions in which the project could be further improved.
One possible extension would be the development of more sophisticated sim-
ulation scenarios, making use of richer and more realistic input data in order
to better approximate real-world conditions. Another important aspect con-
cerns the refinement of the tool itself: improving its usability through a more
intuitive interface, as well as strengthening its error detection and manage-
ment mechanisms, would make the framework more robust and accessible to
a wider range of users.
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Chapter 1

INTRODUCTION

The exponential growth of Artificial Intelligence (AI) has brought with it a
corresponding rise in the computational requirements of modern algorithms.
As models grow in depth, complexity, and deployment frequency particu-
larly in edge devices and real-time environments, the limitations of general-
purpose hardware such as CPUs and GPUs become increasingly apparent.
These platforms, though instrumental in the early stages of Al development,
struggle to meet modern demands for low latency, high throughput, and
energy-efficient execution.

To address these challenges, the industry is turning toward specialized
hardware accelerators that are purpose-built to execute AI workloads
more efficiently. Among these, Application-Specific Integrated Circuits
(ASICs) stand out for their ability to deliver exceptional performance tai-
lored to specific computational patterns. By optimizing logic, memory hierar-
chy, and data flow at the silicon level, ASICs can outperform general-purpose
devices in terms of speed, power consumption, and physical area—key met-
rics in large-scale or resource-constrained applications.

Alongside ASICs, Field-Programmable Gate Arrays (FPGA) repre-
sent another valuable class of accelerators. These devices provide a flexible,
reconfigurable platform that can be adapted to execute a wide range of Al
models. FPGA and ASICs both offer significant benefits over traditional
architectures, but they serve different design and deployment needs. FPGA
prioritize versatility and rapid prototyping, whereas ASICs focus on maxi-
mum efficiency and scalability.

Furthermore, with the increasing use of TinyML—a subfield of ma-
chine learning focused on deploying models on ultra-low-power and resource-
constrained devices such as microcontrollers and edge sensors—ASICs are
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INTRODUCTION

becoming the default solution for on-device intelligence. TinyML enables
real-time Al inference directly at the edge, eliminating the need for constant
cloud connectivity and drastically reducing latency and energy consumption.
In such scenarios, the extreme efficiency and compact footprint of ASICs
make them ideal candidates for always-on, battery-operated applications.
Given the long design and fabrication times of ASIC chips, there is a press-
ing need to improve productivity. One promising solution is the adoption of
frameworks such as Spearmint [4], which leverages Bayesian optimization
for hardware design. These frameworks represent a significant step forward in
bridging the gap between algorithm development and physical deployment.
In particular, Bayesian optimization enables the efficient identification
of high-performing solutions without the need for exhaustive grid search,
thereby significantly reducing exploration time and computational overhead.

ASICs and FPGAs: Complementary Trade-Offs

Alongside ASICs, FPGAs represent another class of devices, offering a flex-
ible and reconfigurable architecture that supports rapid prototyping and
hardware-level customization which is ideal for Al accelerators. FPGAs are
especially well-suited for applications where adaptability and moderate pro-
duction volumes are prioritized, such as embedded systems or industrial au-
tomation.

While FPGAs excel in terms of development agility, ASICs become in-
creasingly advantageous as deployment scales up. By development agility,
we refer to the ability of FPGAs to support rapid design iterations, testing,
and reconfiguration throughout the development lifecycle. Unlike ASICs,
which require lengthy and costly fabrication processes for each design revi-
sion, FPGAs provide a flexible and programmable hardware platform that
can be updated or modified in a matter of hours or days. This capability
enables engineers to quickly prototype, validate, and optimize their designs
without the need for new silicon fabrication, significantly shortening the time-
to-market for new Al models and algorithms.

Despite their non-reconfigurable nature and significantly longer fabrication
cycles—often spanning several months—ASICs offer considerably lower per-
unit costs at high volumes. Moreover, ASICs can be finely optimized at
the gate level, allowing designers to eliminate redundancies, streamline data
paths, and tailor memory hierarchies specifically for the target workload.
This level of hardware specialization results in superior performance, reduced
power consumption, and a smaller physical footprint compared to FPGAs.
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INTRODUCTION

Application Domains for Optimized ASICs

Custom AI ASICs are particularly compelling in application domains with
strict constraints on power, latency, or throughput. Key areas include:

» Latency-sensitive systems: autonomous vehicles, robotics, and drones

e« Power-constrained environments: mobile devices, wearables, and
embedded IoT systems

e High-throughput workloads: large-scale data centers performing bil-
lions of inferences per second

e Real-time edge AI: augmented reality, video analytics, and smart
sensing

In these scenarios, ASICs often outperform both GPUs and FPGAs, as
they typically ensure lower energy consumption per inference while occu-
pying only a minimal silicon area. At the same time, they provide high
performance-per-watt and benefit from dedicated datapaths.

TinyML and the Rise of Edge Intelligence

The growing field of TinyML—machine learning on ultra-low-power, resource-
constrained devices—further highlights the importance of ASIC-based solu-
tions. By enabling inference directly on microcontrollers and edge sensors,
TinyML eliminates the dependency on cloud connectivity, thereby reducing
latency and power draw. Given their compact footprint and energy-efficient
operation, ASICs are becoming the de facto hardware solution for always-on,
battery-powered intelligence at the edge.

Design Optimization Tools

Designing ASICs is a complex task that involves balancing trade-offs among
area, power, performance. Given the vastness of the design space, exhaustive
evaluation of all possible solutions is infeasible. To address this challenge,
Bayesian optimization techniques have emerged as a powerful approach, en-
abling efficient convergence toward optimal solutions without the need for
exhaustive simulations. Several optimization frameworks have been devel-
oped such as Spearmint [4], useful when trying to minimmize the cost
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INTRODUCTION

function of a black-box function. In this application is not a black-box func-
tion, but a sperimental function expensive to evaluate. These frameworks
employ Bayesian optimization (BO) and multi-object-bayesian-optimization
(MOBO). in the single or multi-objective version to systematically and effi-
ciently navigate the design space, identifying high-performing solutions with
minimal manual intervention. Such methodologies represent a significant
advancement in bridging the gap between algorithm development and phys-
ical silicon deployment, particularly enabling rapid prototyping and energy-
efficient hardware design. BO engine leverages the Gaussian Process (GP)
regression to build surrogate models of the objective functions, which are ex-
pensive to evaluate directly due to the time-consuming nature. By learning
from prior evaluations, the BO engine predicts the performance of unseen
design candidates and selects the next configurations to evaluate using an
acquisition function, such as Expected Improvement (EI). This strategy al-
lows the engine to efficiently balance exploration of new regions in the design
space and exploitation of known promising areas.

1.1 Related Works

The following works are presented as examples of how Bayesian Optimiza-
tion (BO) has been employed to explore large design spaces in the context
of hardware accelerators. While many of these studies also focus on joint
optimization of both neural network architectures and their corresponding
hardware implementations, this thesis primarily addresses the application of
BO as a tool for efficient design space exploration on a fixed structure. The
aspect of joint software-hardware co-design is not directly tackled here, but
it represents a promising direction for future research.

Multi-objective Framework for Training and Hardware
Co-optimization in FPGAs

A related study by Mansoori [2] presents a framework for the simulta-
neous optimization of CNN hyperparameters and FPGA hard-
ware configurations using a multi-objective Bayesian optimization
strategy. Unlike earlier methods that optimized network or hardware sepa-
rately, or collapsed multiple objectives into a single one, this work maintains
separate goals—prediction accuracy, hardware latency, and through-
put—while satisfying constraints on FPGA resources. The framework is
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1.1 — Related Works

built on High-Level Synthesis (HLS) and uses the Spearmint library
for Bayesian optimization.
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Figure 1.1: Framework proposed by Mansoori for CNN and FPGA co-optimization.

The study falls within the broader field of Hardware-aware Neural Ar-
chitecture Search (Hw-NAS), which focuses on optimizing neural net-
works for deployment on constrained hardware. Hw-NAS approaches are
typically classified into:

e Fixed-Hardware NAS, which tunes the neural architecture for a pre-
defined hardware target.

o Hardware-aware NAS (Multi-Hardware NAS in [2]), which jointly
explores both the neural network and hardware design space.

In terms of optimization techniques, the literature includes:

« Reinforcement Learning (RL) and Evolutionary Algorithms (EAs)
effective but computationally heavy.

o Gradient-based methods, mostly limited to fixed hardware and re-
quiring pre-trained super-networks.

« Bayesian Optimization (BO), less explored for FPGAs, yet well-
suited for black-box problems with multiple conflicting objectives.

While previous BO-based work primarily focused on Fixed-Hardware NAS,
the innovation of Mansoori’s work is in Hardware-aware NAS, i.e., jointly
optimizing both the network and hardware configurations, making
it more applicable to real-world edge Al deployments.
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INTRODUCTION

The authors of [2] use a method called Multi-Objective Bayesian Opti-
mization with Constraints (MOBOC), which uses Gaussian surrogate mod-
els and an acquisition function—PESMOC (Predictive Entropy Search
for Multi-objective Optimization with Constraints)—to iteratively
improve candidate solutions and explore the Pareto front. The search space
includes both neural parameters (e.g., number of filters, neurons, kernel
sizes) and hardware synthesis parameters (e.g., loop unrolling, memory
types, pipelining, quantization, clock frequency).

At each iteration, performance is evaluated based on:

« Network accuracy, assessed post-synthesis to account for quantiza-
tion.

« Hardware metrics, such as latency and throughput from simulation.

The objectives are jointly optimized under resource constraints (BRAM,
DSP, LUT, FF) and a maximum allowable prediction error of 10%.

The experimental validation was conducted on a Xilinx Zyng-7000 SoC
(XC77020), using a modified LeNet-5 CNN. The search space contains ap-
proximately 106 combinations, making brute-force search infeasible. The
authors compared three strategies: random search, separate optimization of
network then hardware, and the joint MOBOC method.

After 100 optimization steps, the joint method outperformed the others,
identifying configurations with better trade-offs between accuracy and perfor-
mance. Specifically, it achieved up to 1.7x speedup over random search
and 1.4x over the separate optimization approach. The integration of
an exponential error term in the acquisition function accelerated convergence
to low-error regions, producing a Pareto front concentrated below the 10%
error threshold and satisfying all hardware constraints.

This work demonstrates the effectiveness of co-optimization strategies
in achieving hardware-aware neural network deployment, especially
for resource-constrained environments like FPGAs in embedded and
edge AL

The aim of this thesis is to implement a solution similar to the one de-
scribed, but with a reconfigurable ASIC accelerator instead of an FPGA
with an embedded neural network. Both approaches share a common chal-
lenge: identifying the best-performing parameters to provide as input to the
configurable solution and subsequently extracting the results. To address
this, Spearmint, a promising optimization software, has been adopted and
integrated into the workflow.
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Tree-Structured Design Space Exploration for HLS

In the work by Kuang and Wang (7], the authors address the complexity of
high-level synthesis (HLS) by proposing an efficient design-space exploration
(DSE) methodology tailored for multi-objective optimization. Traditional
DSE methods for HLS suffer from scalability issues due to the exponentially
growing number of parameter combinations, many of which result in invalid
or redundant configurations.

To overcome this, the authors introduce a tree-structured design space
model, which captures hierarchical dependencies between parameters. In
this tree, child parameters are only activated if their parent nodes are set to
specific values. This approach effectively prunes the search space by auto-
matically excluding invalid configurations, thus improving the efficiency of
the exploration process.

To search this reduced space, they adopt a surrogate-based method called
the Multi-Objective Tree-structured Parzen Estimator (MOTPE),
an extension of the TPE algorithm that supports both tree-structured search
spaces and multi-objective criteria. MOTPE efficiently models the nonlinear
relationships between design parameters (e.g., instruction-level choices) and
objectives such as performance, area, or power.

Moreover, the authors propose a float encoding strategy to uniformly rep-
resent discrete and categorical parameters in a continuous domain. These
float-encoded parameters are later scaled and rounded to generate valid HLS
instruction configurations, allowing for easier integration with the optimiza-
tion algorithm and reducing implementation overhead.

Experimental results demonstrate that their method significantly outper-
forms baseline grid and random search techniques. Specifically, the proposed
approach achieves a 66.30% improvement in Latency-Performance Design
Area (LPDA) over Simulated Annealing (SA) and a 41.25% improvement
over NSGA-II. Additionally, the learned Pareto front is closer to the ref-
erence Pareto front, with an average improvement in Average Distance to
Reference Set (ADRS) of 94.72% compared to SA and 69.58% compared to
NSGA-II. These findings underscore the potential of the proposed method-
ology in enhancing HLS compiler toolchains and automating energy-efficient
hardware design.
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This paper suggests that applying a combination of Bayesian Optimiza-
tion algorithms to High-Level Synthesis is effective in identifying the best-
performing solutions with fewer iterations and in less time compared to tradi-
tional methods such as Simulated Annealing (SA) and Non-dominated Sort-
ing Genetic Algorithm II (NSGA-II). This further supports the validity of
the methodology applied in this thesis.

Co-exploration of Neural Architectures and ASIC De-
signs

The work by Yang et al. [6] introduces a novel framework for the co-exploration
of deep neural network (DNN) architectures and heterogeneous ASIC accel-
erator designs, tailored for multi-task deployment scenarios. Traditionally,
neural architecture search (NAS) and hardware design optimization have
been approached separately, often leading to suboptimal solutions when the
model and the hardware are not jointly optimized. This work addresses that
gap by enabling a unified exploration of both the algorithmic and hardware
design spaces.

The proposed framework operates by jointly optimizing two coupled spaces:
(i) the architectural parameters of DNNs (e.g., number of layers, filter sizes,
and kernel types) and (ii) the design parameters of heterogeneous ASIC ac-
celerators (e.g., compute unit types, memory hierarchies, and interconnect
bandwidths). The goal is to identify optimal model-hardware pairs that
strike the best trade-off among multiple objectives such as accuracy, latency,
and energy consumption across a diverse set of Al tasks.

A key feature of the framework is the support for heterogeneous accel-
erators. Rather than limiting the search to a single homogeneous ASIC
configuration, the framework allows for combinations of specialized compute
units optimized for different neural operators. This heterogeneity enables
finer-grained hardware-model matching, which is particularly beneficial in
multi-task scenarios where diverse models may require different computa-
tional patterns (e.g., convolution vs. attention).

Experimental results presented in the paper demonstrate that the co-
exploration approach yields significant improvements in both model accuracy
and hardware efficiency compared to baseline strategies that optimize DNNs
and accelerators in isolation. For instance, across various image classification
tasks, the co-explored solutions achieve better accuracy—latency trade-offs
than fixed-architecture baselines when deployed on custom accelerators.

Overall, the framework represents an important step toward holistic Al
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system design, where algorithm and hardware are co-optimized under realis-
tic constraints. By reducing the need for manual tuning and enabling efficient
design space navigation through Bayesian techniques, it addresses the pro-
ductivity bottlenecks in deploying specialized Al accelerators at scale.

Co-design and Co-search of Algorithms and Accelera-
tors for Edge Al

The work by Zhang et al. [8] introduces a unified co-design and co-search
framework aimed at jointly optimizing both neural network architectures
and hardware accelerators for edge Al applications. Given the stringent
constraints of edge devices—such as limited power, area, and compute ca-
pacity—traditional design pipelines that sequentially optimize models and
hardware fall short in delivering optimal performance.

To address this, the authors propose a methodology where the neural
network architecture and its corresponding accelerator configuration are co-
optimized within a single search loop. This approach enables synergistic
tuning of both the algorithmic structure (e.g., layer depth, convolutional
parameters) and hardware-level features (e.g., compute array size, memory
hierarchy), aligning performance, latency, and power targets simultaneously.

A central component of the framework is the use of SkyNet, a population-
based optimization engine built upon the Particle Swarm Optimization (PSO)
algorithm. PSO is inspired by the collective behavior of birds or fish swarms
and is employed to explore a high-dimensional design space. Each parti-
cle in the swarm represents a candidate solution—comprising both network
and hardware configurations—and is evaluated based on a multi-objective
fitness function that includes metrics such as accuracy, latency, and energy
efficiency. Specifically, SkyNet searches over architectural decisions like con-
volutional channel expansion, pooling locations, and layer ordering, while
simultaneously tuning hardware parameters. The integration of these di-
mensions within a single optimization process ensures that selected designs
are well-balanced and feasible for real-world edge deployment.

The proposed framework demonstrates superior performance compared to
decoupled design approaches, delivering co-optimized models that meet strict
resource budgets without compromising accuracy. This work highlights the
effectiveness of population-based heuristics like PSO in tackling complex co-
design problems in hardware-aware neural architecture search (HW-NAS).
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Multi-Objective Hardware-Aware NAS with Cost Di-
versity

In their recent work, Sinha et al. [9] propose MO-HDNAS (Multi-Objective
Hardware-Diverse Neural Architecture Search), a framework that performs
neural architecture search (NAS) while explicitly incorporating hardware-
awareness through multi-objective optimization. The framework is designed
to address the growing need for deployable Al models that are not only
accurate but also efficient across diverse hardware platforms.

MO-HDNAS leverages a population-based evolutionary algorithm specif-
ically the well-established NSGA-IT (Non-dominated Sorting Genetic Al-
gorithm II)—to simultaneously optimize three objectives: (i) mazimizing
representation similarity, (i) minimizing hardware cost, and (iii) mazimizing
hardware cost diversity. The first objective ensures that searched architec-
tures maintain strong representational capacity, preserving the learning capa-
bilities of deep networks. The second objective promotes energy-efficient and
latency-aware model designs. The third objective, which is the novel contri-
bution of this work, introduces a diversity-aware constraint that encourages
the population of architectures to span a wide range of hardware cost char-
acteristics. This additional objective serves to enhance the exploration of
the design space, preventing premature convergence and increasing the like-
lihood of discovering high-performing architectures that would otherwise be
overlooked in more narrowly focused search strategies.

The optimization proceeds by evolving a population of candidate archi-
tectures using genetic operations such as crossover and mutation. Hardware
cost estimations are integrated directly into the fitness function, allowing the
search process to remain sensitive to deployment constraints such as inference
latency, energy consumption, and memory footprint.

Through extensive experimentation, MO-HDNAS is shown to outperform
traditional NAS methods in discovering architectures that achieve superior
trade-offs between accuracy and hardware efficiency. This makes it par-
ticularly relevant for edge and embedded Al applications where hardware
constraints are paramount.

1.2 Thesis Contribution

This thesis merges two lines of research carried out in the group of Prof. Casu
at Politecnico di Torino. In particular, it continues the work of Urbinati
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and Casu [1], who developed novel hardware accelerators for mixed-precision
quantized deep neural networks.

Mixed-Precision Quantization (MPQ) optimizes inference efficiency by
varying the bitwidths across DNN layers, requiring hardware innovations
like Precision-Scalable (PS) multipliers.

Their key contributions include novel multiplier designs called Sum-Together
(ST). These ST multipliers enable dynamic reconfiguration between high-
and low-precision modes by combining multiple low-precision multiplica-
tions and summations in a single unit, allowing highly parallel Multiply-
and-Accumulate (MAC) operations.

The work also presents enhanced ST-based accelerators tailored for:

e 2D convolution,
e Depth-wise convolution,
o Fully connected layers,

with added support for Uniform Integer Quantization (UIQ). These
accelerators support quantized inference using integer-only arithmetic and
include fused operations (e.g., quantized ReL.U).

A comprehensive High-Level Synthesis (HLS)-based Design Space
Exploration (DSE) was conducted, varying:

o ST multiplier type,
o Parallelism and loop unrolling,
« Quantization configuration (bitwidths per layer/channel).

Evaluation on MLPerf Tiny benchmarks shows that SoCs embedding
these ST-based accelerators achieve:

o ~0.9% area overhead with 1.46x speedup (low-area target),
o ~2.5% power overhead with 1.33x speedup (low-power target),
o ~8.0% latency overhead with 1.29x speedup (low-latency target).

ST-based accelerators consistently provide energy savings compared to
standard 16-bit fixed-precision multipliers.

While the work of Urbinati and Casu provides an effective foundation, its
design space exploration methodology is low-size. The original DSE is based
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on a grid search over a relatively narrow configuration range and a limited
number of tunable parameters (knobs). As a result, the generated Pareto
fronts (e.g., area vs. latency or power vs. latency) revealed gaps, indicating
unexplored but potentially promising regions in the design space. For a faster
and wider design-space exploration MOBO is implemented via spearmint.
This approach lead to a more defined pareto fronts, without evaluating the
whole desing-space.

This thesis addresses these limitations by introducing an automated
DSE framework based on BO, implemented via the Spearmint library.
This approach replaces static, brute-force exploration with an intelligent,
feedback-driven optimizer that adapts based on prior synthesis results. The
improved pipeline enables:

o It supports a significantly broader search space than [1], including ex-
tended parameter ranges and a larger number of tunable knobs (e.g.,
pipelining, loop unrolling factors, memory banking),

o It replaces exhaustive grid search with a feedback-driven optimizer that
iteratively queries synthesis results (area, latency, power) to guide ex-
ploration,

« It avoids infeasible or suboptimal solutions by leveraging prior results to
inform future evaluations,

o It achieves faster convergence towards Pareto-optimal configurations,
requiring fewer synthesis runs despite the full design space.

This automation makes the exploration process scalable, computationally
efficient, and adaptive, which is crucial for navigating complex and hetero-
geneous design spaces in modern hardware design.

Furthermore, the complete tool-chain, including the automated DSE scripts
and synthesis infrastructure, is made publicly available in a GitHub reposi-
tory to encourage reproducibility and further research contributions [12].

1.3 Bayesian Optimization theory

In this section, the effectiveness and the advantages of the BO method are
discussed. The information of this chapter have been taken mainly from
Frazier’s paper [3].

Bayesian Optimization (BO) is a technique for optimizing expensive, black-
box functions that lack closed-form expressions and gradients. Such functions
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1.3 — Bayesian Optimization theory

frequently occur in machine learning hyperparameter tuning, engineering
simulations, and physical experiments. BO is designed for global optimiza-
tion problems where each function evaluation may take minutes or hours,
and thus must be used efficiently.

This tutorial introduces the core principles of BO, particularly the use
of Gaussian Process (GP) regression to model the objective function, and
acquisition functions to select where to evaluate next. The framework also
extends to complex settings involving noise, constraints, multiple fidelities,
and parallel evaluations.

Problem Formulation

The central objective is to solve:

max f(z),

where f : RY — R is continuous but unknown and expensive to evaluate. z'

is the input vector. The domain A is typically a compact, simple set like a
hyperrectangle. The function f is assumed to be:

e Expensive, limiting the total number of evaluations.
e Black-box and derivative-free.
e Possibly noisy.

e Non-convex, with multiple local optima.

Basic Concepts of Gaussian Processes

A Gaussian Process is a collection of random variables, any finite number
of which have a joint Gaussian distribution. It generalizes the notion of a
multivariate Gaussian distribution to infinite-dimensional function spaces.

In the context of Gaussian Process Regression, z € R? represents an input vector —
for example, a configuration of parameters or hyperparameters. It is one point in the
input space over which the unknown function f(z) is defined. Another input z’ refers to a
different point in the same space, used to compare or model the relationship between f(x)
and f(z’). The similarity between such points, often measured through a kernel function
k(x,z"), reflects assumptions about the smoothness and correlation structure of f.
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Formally, a function f(x) is said to follow a Gaussian Process if:

f(@) ~ §P(u(x), k(z, 2")),
where:

o u(x) = E[f(z)] is the mean function, usually assumed to be zero or
constant.

o k(x,2") = Cov(f(x), f(x')) is the kernel or covariance function, which
encodes assumptions about the function’s smoothness and structure.

This means that for any finite set of input points z1,...,x,, the vector
[f(x1),..., f(x,)] is multivariate normally distributed:

[f(il?l), T f(xn)] ~ N(M7K)7
where p = [p(z1), ..., p(z,)] and Kij = k(x;, xj).

Gaussian Process Regression

Given a set of noisy observations D,, = {(x;, y;)}'_q, where y; = f(x;) + ¢
and ¢; ~ N(0,0?%), GP regression computes the posterior distribution over f
at a new input x.

The posterior predictive mean and variance are:

() = Kz, X)[K + 017y,
o2(x) = k(z,2) — k(z, X)[K + o*I] k(X z),
where:
o k(x,X) is the covariance vector between x and training points.
o K is the kernel matrix between all training points.

e y is the vector of observed outputs.

The GP provides both an estimate p,(z) and an uncertainty measure
on(z), essential for balancing exploration and exploitation.
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The Role of the Kernel Function

The kernel defines how similar two inputs x and 2’ are. A common form is:

d
k(z,z") = apexp (— > gz — :U;)Q) ,
i=1

where:
e z,2' € R? are input vectors.
e q; are inverse length-scale parameters.

If z and 2’ are close, the kernel value is high, implying strong correlation
between f(z) and f(z'). This spatial correlation enables smooth function
modeling.

Acquisition Functions: Expected Improvement

An acquisition function guides where to evaluate next. The Expected Im-
provement (EI) is:

ElL,(x) = E, [[f(z) — £}]"] |

where f = max;—1__, f(z;). Using the GP posterior:

.....

Bl (2) = (pn(x) = f)®(2) + on(2)9(2),

with 2z = %2;)1‘:;’ and ®, ¢ the CDF and PDF of the standard normal
distribution.

Alternative Acquisition Functions

The Knowledge Gradient (KG) selects the point that maximizes the
expected increase in the mean of the best value:

KG,(z) = By, [max piny1(2") — max i, (2)| .

Entropy Search (ES) and Predictive Entropy Search (PES) aim
to reduce uncertainty about the location of the global maximum:

PES,(x) = H(f(x)) — Eqo- [H(f () | 27)],
where H(-) denotes entropy.
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Bayesian Optimization Algorithm

The BO algorithm proceeds as follows:
1. Initialize with a small number of evaluations.
2. Fit a GP to the data.
3. Maximize the acquisition function to select the next input.
4. Evaluate f(z) and update the dataset.

5. Repeat until evaluation budget is exhausted.

Extensions and Applications
BO can handle:
e Noise: Incorporated into the GP model.
o Parallelism: Batched evaluations via generalized acquisition functions.
o Constraints: Modeled using additional GPs.
o Multi-fidelity: Combine approximate and accurate evaluations.

« Random environments: Optimize expected performance over stochas-
tic conditions.

Common applications include hyperparameter tuning, engineering opti-
mization, and experimental design.

In conclusion Bayesian Optimization is a sample-efficient strategy for op-
timizing expensive black-box functions. It combines probabilistic modeling
with decision-theoretic selection of evaluation points, achieving excellent per-
formance with minimal evaluations. The Gaussian Process prior, coupled
with acquisition functions like EI and KG, makes BO a powerful and flexible
tool in modern optimization.

1.4 Multi objective BO extension

In this thesis, the optimization task involves more than a single objective.
Traditional BO methods have addressed single-objective and constraint-free
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optimization problems. However, real-world applications often require opti-
mizing multiple conflicting objectives under a set of constraints. The paper
“Predictive Entropy Search for Multi-objective Bayesian Optimization with
Constraints” [4] introduces PESMOC-—a novel BO framework capable of
addressing such complex problems.

PESMOC extends information-theoretic approaches in BO to the multi-
objective, constrained domain. Specifically, it uses a predictive entropy
search to identify evaluation points that maximize the information gain about
the Pareto set, thereby efficiently discovering optimal trade-offs under feasi-
bility conditions.

Problem Setting

The paper considers the following optimization problem:
E“éa? (fi(x), fa(x), ..., fr(x)) s.t. ci(r) >0, j=1,...,C,

where fi(z) are objective functions and ¢;j(x) are constraints, all modeled as
black-boxes. Evaluations are noisy and costly, and no gradients are available.

A feasible solution is one that satisfies all constraints. Due to the con-
flicting nature of the objectives, the goal is to approximate the Pareto set X*
in the feasible space &, which contains all non-dominated feasible solutions.
These solutions represent trade-offs such that improving one objective would
deteriorate at least one other.

PESMOC Framework

PESMOC is an acquisition function based on predictive entropy search,
designed to maximize the expected information gain about the Pareto set.
Given a Gaussian process (GP) prior for each objective and constraint, PES-
MOC selects the next evaluation point x to maximize the mutual information:

a(z) = H(X*|D) — E,[HX"[D U (z,y))],

where H(-) denotes entropy and D is the set of observations. This criterion
favors points whose evaluation would reduce uncertainty about X* the most.

To simplify the intractable direct computation of the entropy over sets,
the acquisition function is reformulated as:

Oé(x) = H(y|Dv I) — Eqx- [H<y|®7 Z, :XJ*)]

This transformation simplifies implementation by swapping the complexity
of entropy over sets with the tractable entropy of GP predictions.
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Modeling with Gaussian Processes

Each black-box function is modeled with a GP, which provides a predictive
distribution for new input points. This probabilistic modeling enables cal-
culation of uncertainty and information gain. Hyperparameters of GPs are
inferred using slice sampling, which integrates over their posterior to improve
robustness.

GPs offer not only mean predictions but also a measure of uncertainty,
which is essential for entropy-based acquisition. The covariance structure is
typically defined using the Mat’ern kernel or similar smooth kernels, encoding
assumptions about function regularity.

Entropy Approximation via EP

Expectation Propagation (EP) is used to approximate the conditional pre-
dictive distribution p(y|D, z, X*). EP approximates non-Gaussian factors in
the integrals with Gaussian ones, allowing efficient analytical computation of
the posterior entropy.

The EP updates are critical to accurately reflecting the effect of condition-
ing on the Pareto set and involve moment-matching steps. The EP approxi-
mation permits real-time evaluation of the acquisition function in practice.

Decoupled Evaluations

One of PESMOC’s distinctive strengths is its ability to support decoupled
evaluations. This means that the individual objective and constraint func-
tions can be queried separately, rather than requiring all evaluations at the
same input location. Such flexibility is highly beneficial in scenarios where
the cost or feasibility of evaluating different functions varies.

In mathematical terms, PESMOC’s acquisition function is additively de-
composable as follows:

K
Oé(SC) _ Z aobjk(x) + Z] — 1C'CY§onst($)7
k=1

where azbj (x) corresponds to the expected entropy reduction attributed to
the k-th objective, and a°™*(x) to that of the j-th constraint.

This decomposition allows PESMOC to not only choose the most informa-
tive input location x but also to determine which specific function (objective
or constraint) should be evaluated at that location. In practice, this leads to
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more efficient exploration strategies, particularly in domains where evalua-
tions are bottlenecked by experimental constraints, such as physical testing
or human assessments.

Experimental Evaluation

Experiments conducted on synthetic, benchmark, and real-world tasks (e.g.,
tuning neural networks and optimizing control parameters for robots) [4]
demonstrate the effectiveness of PESMOC in handling constrained multi-
objective optimization problems. The implementation of PESMOC used in

the experiments is publicly available at https://github.com/EduardoGarrido90/
spearmint_ppesmoc, allowing for reproducibility and further experimenta-

tion.

The results highlight several advantages of PESMOC:

o It outperforms state-of-the-art methods such as BMOO, particularly un-
der tight feasibility constraints.

 Its ability to perform decoupled evaluations leads to better performance
when evaluation costs differ across objectives and constraints.

o It is robust in the presence of noise and scales well with increasing prob-
lem complexity (number of objectives or constraints).

e In high-dimensional scenarios, it shows more stable convergence toward
feasible and optimal Pareto solutions.

Performance was evaluated using standard metrics such as the hypervolume
indicator, convergence to the true Pareto front, and computational overhead.

To better contextualize PESMOC, Table 1.1 compares it to other repre-
sentative Bayesian optimization methods. PESC focuses on single-objective
constrained problems, while PESMO extends to multiple objectives but
lacks constraint handling. BMOO supports both multiple objectives and
constraints but relies on scalarization and extended domination rules, which
limit its scalability in high-dimensional or tightly constrained settings. In
contrast, PESMOC uniquely supports all three capabilities—multi-objective
optimization, constraint handling, and decoupled evaluations—making it a
flexible and efficient solution for real-world applications.
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INTRODUCTION

Method MO Con Dec-Eval Notes

PESC X v X Designed for single-objective problems
with constraints.

PESMO v X X Supports multiple objectives but no
constraint handling.

BMOO v v X Uses extended domination rules; lim-
ited in highly constrained or high-
dimensional settings.

PESMOC Vv v v Handles multiple objectives and con-

straints, supports decoupled evalua-
tions, and flexible acquisition strate-
gies.

Table 1.1: Comparison of Bayesian Optimization methods related to PESMOC
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Chapter 2

CAD WORKFLOW

2.1 Introduction

One of the core objectives of this thesis project was the development of
an end-to-end automation framework capable of executing the complete se-
quence of steps required for digital microchip generation. This process spans
from High-Level Synthesis (HLS), converting C++ to RTL, through logic
synthesis (RTL to gate-level netlist), and finally to physical implementation
via Cadence Innovus (place-and-route: gate-level to physical layout).

Figure 2.1 provides a pyramidal overview of the framework, illustrating
the hierarchical levels of abstraction and their dependencies. Each layer of
the pyramid corresponds to a stage in the automation flow, which is discussed
in detail in the respective dedicated chapters.

Figure 2.4 shows the complete diagram, highlighting the tools used (rounded
parallelograms), input and output files (circles), and the results obtained (di-
amonds).

As the theoretical background and operating principles of each tool have
already been discussed in previous chapters, the present section focuses ex-
clusively on the implementation and structure of the automation framework.

Given the requirements for flexibility and modularity in such scripting
tasks, Python was selected as the primary development language. Python of-
fers a balanced combination of simplicity, flexibility, and readability—qualities
particularly suited for orchestrating heterogeneous design flows. Compared
to C-style languages, Python facilitates faster development cycles and dy-
namic data handling; and relative to Bash scripting, it offers significantly
improved structure and maintainability. While Python does suffer from lim-
itations such as lower execution speed and limited hardware-level control,
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/ spearmint \
/ sync-server.py \
/ tool-chain \

Design
compiler

catapult innovus

Figure 2.1: Summary of the thesis structure: each layer represents a level of
abstraction dependent on the layers below.

these disadvantages are negligible in this context, where the script’s primary
function is to trigger shell commands and parse log files upon event-driven
triggers.

2.2 High-level-synthesis with Catapult

Catapult is a High-Level Synthesis (HLS) tool developed by Synopsys, de-
signed to translate behavioral hardware descriptions—typically written in
high-level programming languages such as C or C++4—into synthesizable
Register Transfer Level (RTL) models. This approach significantly acceler-
ates the hardware development process by reducing both design and func-
tional verification time, when compared to traditional RTL-centric method-
ologies. Catapult is particularly well-suited for the design of hardware accel-
erators, as it enables automatic exploration of architectural configurations,
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including pipeline depth, degree of parallelism, and loop unrolling strategies.
The generated RTL output is compatible with standard downstream tools
used in digital design flows, such as logic synthesis, and simulation, mak-
ing Catapult a critical component in modern ASIC and FPGA development
pipelines.

Core Steps in High-Level Synthesis

High-Level Synthesis (HLS) translates a high-level behavioral specification
into a Register Transfer Level (RTL) implementation through a structured
sequence of transformations. Each stage of the flow can be invoked using
a corresponding go <stage> command, which controls the progression of
synthesis tasks. In fig. 2.2 are showed all steps of a complete sinthesis.

1. Front-End Parsing and Compilation (go compile)
The source-level design specification is parsed and semantically ana-
lyzed. The top-level function is identified, and a high-level behavioral
model is constructed. Initial dataflow and control-flow representations
are elaborated.

2. Library Binding (go libraries)
Technology-specific components, such as arithmetic operators and mem-
ory macros, are linked to the design. This enables resource-aware syn-
thesis and accurate estimation of area, delay, and power.

3. Infrastructure Setup (go setup)
Hardware-level constraints and environment settings are defined. These
include clock specifications, reset behavior, and 1/0O interface protocols
(e.g., AXI, handshake). Design constraints such as latency, initiation
interval (II), and throughput are also specified.

4. Micro-Architecture Synthesis (go extract)
The untimed behavioral model is refined into a cycle-accurate micro-
architecture. High-level synthesis directives (e.g., loop pipelining, un-
rolling) are applied. Key transformations include operation scheduling
and finite state machine (FSM) generation.

5. Resource Allocation (go allocate)
Hardware resources (e.g., ALUs, multipliers, memory banks) are allo-
cated and mapped to the actual library component. Resource sharing
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and duplication strategies are applied to balance area, timing, and per-
formance.

6. RTL Generation (go generate)
A synthesizable RTL design is generated in Verilog or VHDL. The out-
put includes datapaths, control logic, module hierarchies, and interface
wrappers. Design reports summarize key metrics such as resource uti-
lization, latency, and throughput.

7. Optional Power Estimation (go power)
If enabled, a power estimation step leverages switching activity annota-
tions and technology parameters to estimate both dynamic and static
power consumption.

Post-Synthesis

o Functional Verification
Although not part of the go stages, functional verification is essen-
tial. The cycle-accurate RTL output is validated against the original
C/C++/SystemC behavioral model using co-simulation tools such as
SCVerify. This ensures functional correctness and behavioral equiva-
lence.

e Logic Synthesis
The RTL output generated by Catapult is passed to a downstream logic
synthesis tool (e.g., Synopsys Design Compiler, Cadence Genus, or Xil-
inx Vivado). This stage includes technology mapping, optimization for
area, power, and timing, and results in a gate-level netlist suitable for
physical implementation.

HLS Recipe

To enable the high-level synthesis (HLS) process, several key components
must be prepared:

e C++ Source Files: The hardware accelerator must be described using
a combination of .cpp and .h files that define its untimed functional
behavior.
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Synthesis States
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Figure 2.2: Catapult synthesis steps

o Technology Library: A library file describing the target technology
characteristics (e.g., 28nm SOI) is required. This file must be compiled
using Catapult’s integrated Library Builder to enable accurate resource

mapping, area, and timing estimations.

e Tcl Script: A .tcl script is used to automate the synthesis flow. Since
Catapult requires multiple invocation stages (go compile, go extract,
etc.), scripting ensures reproducibility and enables a fully autonomous

execution pipeline.
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Catapult Tcl Key Features

The Catapult Tcl scripting interface provides powerful capabilities for au-
tomating and customizing the HLS process. Key features include:

© 00 N O U W N =

e e e e
TR W N = O

Parameterization via Global Variables:

By defining key variables at the beginning of the script, it becomes easier
to create a fully parametric and reusable flow. This approach improves
readability and simplifies design-space exploration.

Timeout and Error Management:
The script can be extended to handle execution timeouts and unexpected
failures, ensuring robustness during batch runs or long simulations.

Source Code Tuning:
While the .cpp and .h files are not inherently parametric, the script
leverages awk within Bash to programmatically patch source files prior
to synthesis. In future implementations, they can be entirely rewritten
via the echo command.

Pipeline and Parallelism Configuration:

Through symbolic variables (e.g., loop initiation intervals and unrolling
factors), the script allows dynamic configuration of parallelism at loop
level. Listing 5.4 shows an extract of the .tcl script, which configures,
for each loop defined in a variable, its level of pipelining or unrolling.

Listing 2.1: Pipeline directives in Tcl

dict for {key value} $loop_dict {
set z $value
if { $z == 4 } {
directive set /$CXX_NAME/core/$key -PIPELINE_INIT_INTERVAL O
} elseif { $z == 3 } {
directive set /$CXX_NAME/core/$key -PIPELINE_INIT_INTERVAL 2
} elseif { $z == 2 } {
directive set /$CXX_NAME/core/$key -PIPELINE_INIT_INTERVAL 1
} elseif { $z == 1} {
set zz [ expr $MAX_OUTPUT_CHANNELS / 2 ]
directive set /$CXX_NAME/core/$key -UNROLL $zz
} elseif { $z == 0 } {
directive set /$CXX_NAME/core/$key -UNROLL yes
}
}

Memory Interleaving Strategy:
Interleaving factors for memory access are set dynamically based on
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runtime values such as loop parameters or buffer sizes. This tuning
enables bandwidth-aware memory mapping.

e« PowerPro Integration:
When enabled, power optimization features are configured and executed
conditionally. Power estimates are collected using switching activity
annotations. Listing 2.2 shows the main power optimization commands.

Listing 2.2: Example of Power Pro commands implementation

11 if { $power_pro == 1 } {

2 directive set -/USE_MODES/base/PWR_OPT_WEIGHT 1.0

3| directive set -/USE_MODES/base/PWR_ACTIVITY_TIME {{} {} {} {}}
4 directive set -/USE_MODES/base/PWR_CLOCK_MODE {clk default}

5 go power

6 flow run /PowerAnalysis/report_post_pwropt_VHDL

7|}

o Configurable RTL Synthesis with Design Compiler:
Conditional logic allows for synthesis under multiple configurations (with
or without power optimization). This flow integrates downstream RTL
tools for gate-level netlist generation. In listing 2.3 and example of
implementation is shown.

Listing 2.3: Design compiler integration command implementation example

1/ if { ($dc_int_rtl == 1) || ($dc_int_rtl == 3) } {

2 flow run /DesignCompiler/dc_shell ./concat_rtl.vhdl.dc vhdl

3 file rename ... base_gate.dc.vhdl.v

41}

50if { (($dc_int_rtl == 2) || ($dc_int_rtl == 3)) && ($power_pro == 1) } {
6 flow run /DesignCompiler/dc_shell ./concat_power.vhdl.dc vhdl

7 file rename ... power_gate.dc.vhdl.v

8|}

e Cycle-Accurate Verification with SCVerify:
Verification is performed by toggling a testbench flag in the source header
file and running co-simulation for both configurations. This setup is
useful for estimating execution time differences between untimed and
RTL implementations.

Listing 2.4: Testbench quantization configuration and simulation

set EN_QUANTIZATION_TB O

exec awk -v var=$EN_QUANTIZATION_TB ... > defs_synthesis_modl.h
exec cp defs_synthesis_modl.h defs_synthesis.h

flow run /SCVerify/launch_make ... SIMTOOL=msim sim

set EN_QUANTIZATION_TB 1
exec awk -v var=$EN_QUANTIZATION_TB ... > defs_synthesis_modl.h
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8| exec cp defs_synthesis_modl.h defs_synthesis.h
9| flow run /SCVerify/launch_make ... SIMTOOL=msim sim

HLS - Result

After the high-level synthesis (HLS) process is completed, several valuable
outputs are generated:

« RTL Netlist:
Catapult produces a synthesizable RTL netlist in Verilog or VHDL, rep-
resenting the hardware implementation of the original high-level model.
This can include both power-optimized and non-optimized versions, de-
pending on whether PowerPro was enabled during synthesis.

o Timing Constraints File (.sdc):
A Synopsys Design Constraints (SDC) file is generated, containing all
relevant timing constraints, including clock definitions, reset conditions,
and interface timing requirements. This file is crucial for downstream
logic synthesis and physical implementation.

o Synthesis Reports:
Detailed reports are available summarizing:

— Resource utilization (e.g., number of registers, multipliers, memory

blocks)

— Latency (measured in clock cycles)

— Initiation Interval (II)

— Estimated dynamic and static power (if PowerPro is enabled)

e Limitations of the HLS Model:

Although the output provides accurate estimates and functional RTL,
it does not reflect all the physical characteristics of a finalized silicon
implementation. Key aspects that are not yet accounted for include:

— Clock tree synthesis and its associated skew and insertion delay

— Interconnect effects, such as wire delay and parasitics

— Additional buffering or logic inserted during placement and routing

These effects are typically addressed in later stages of the ASIC/FPGA
flow, particularly during place-and-route and post-layout simulations.
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Therefore, while HLS results provide valuable early insights into perfor-
mance and resource usage, final validation and optimization must rely on full
backend synthesis and implementation tools.

Pseudo-codes

Here are some pseudo-code implementations of the 2D-convolutional layer
(CONYV) and fully connected (FC) accellerators. Taken from Urbinati’s
work [?] and used in the experimental results of this thesis, with a detailed
explanation of the functionality available in the original paper.

2.3 Logic Synthesis with Design Compiler

Logic synthesis proceeds through a series of steps, each of which can be con-
trolled via specific commands. These steps include elaboration, optimization,
technology mapping, and timing-driven restructuring, in order to produce
more precise power, area estimations.

The logic synthesis flow is orchestrated through a highly parameterized
TCL script targeting Synopsys Design Compiler. This script automates the
translation of RTL-level VHDL descriptions—generated by Catapult—into
optimized gate-level netlists, ready for the downstream of place-and-route
and power analysis tools.

The script begins by initializing key design variables, such as the top-
level module name, the target operating frequency, the selected multiplier
architecture, and many other configuration parameters. It then sets paths
to required RTL sources, technology libraries, while also configuring the tool
for either low-leakage or high-power standard cell libraries depending on the
specified logic type.

A complete flow is implemented, including RTL analysis and elaboration,
clock definition and timing constraints setup, power domain definitions, and
the application of design constraints via SDC. A standard practice is to apply
a delay equal to 10% of the clock period on input and output ports, repre-
senting typical timing margins without any custom optimization. If switching
activity files (SAIF) are enabled, they are imported to allow more accurate
dynamic power estimation; otherwise, static toggle rates are assigned.

The script proceeds to perform logic synthesis using the compile ultra
command, enabling automatic advanced optimizations such as register re-
timing and clock gating across hierarchies. Reports on timing, area, power,
and clock gating efficiency are generated and stored in dedicated folders. The
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Listing 2.6: ST-based FC.

1 #include <ac_int.h>

Listing 2.5: ST-based 2D-Conv.

1#include <ac_int.h> 2
2 3 #pragma map_to_operator "X"
3 #pragma map_to_operator "X" 4int32 st_multiplier_function(uint3 CONFIG, int16 A, B){...}

4 int32 st_multiplier_function(uint3 CONFIG, int16 A, B){...}

o

5 6 void fc(int4 IBUF1_A[IS/2], IBUF2_A[IS/2],
6 void conv2d( 7 int4 IBUF1_B[IS/2], IBUF2_B[IS/2],
7 int4 IBUF_A[IS], IBUF_B[IS], IBUF_C[IS], IBUF_D[IS], 8 int4 IBUF1_C[IS/2], IBUF2_c[IS/2],
8 int4 WBUF_A[WS], WBUF_B[WS], WBUF_C[WS], WBUF_D[WS], 9 int4 IBUF1_D[IS/2], IBUF2_D[IS/2],
9 ac_int <28, true> OBUF[0S], 10 int4 WBUF1_A[WS/2], WBUF2_A[wWS/2],
10 uint3 CONFIG, uintl RESET) { 11 int4 WBUF1_B[WS/2], WBUF2_B[WS/2],
11 int dc_lim; 12 int4 WBUF1_C[WS/2], WBUF2_C[Ws/2],
12 if (CONFIG==(8x8 || 8x4)) { ic_lim = IC/2-1; } 13 int4 WBUF1_D[WS/2], WBUF2_D[WS/21,
13 else if (CONFIG==4x4) { ic_lim = IC/4-1; } 14 ac_int<28, true> OBUF[0S],
i‘; else { ic_lim = IC-1; } 15 uint3 CONFIG, uinti RESET) {
16 int ia_lim;
16 #pragma pipeline_init_interval 1 17 if (CONFIG==(8x8 || 8x4)) { ia_lim = IA/4-1; }
17 for (int oh=0; oh<OH; oh++) { 18 else if (CONFIG==4x4) { ia_lim = IA/8-1; }
18 #pragma pipeline_init_interval 1 19 else { ia_lim = IA/2-1; }
19 for (int ow=0; ow<0W; ow++) { 20
20 #pragma pipeline_init_interval 1 21 #pragma pipeline_init_interval 1
21 for (int oc=0; 0c<0C; oc++) { 22 for (int oa=0; oa<0A; oa++) {
22 if (RESET==1) { OBUF[0C*(OHxoh+ow)+oc] = 0; } 23 if (RESET==1) { OBUF[oa] = 0; }
23 } 24 3}
24 #pragn.la p_iPEIiné-injt—j_nterval t 25 #pragma pipeline_init_interval 1
25 for (imt ic=0; ic<IC; dc++) { 26 for (int ia=0; ia<IA/2; ia++) {
%6 #pragn.'na pipeline_init_interval 1 27 // Memory addressing and concatenating logics for Al, A2
27 for (int kl?=0;.kh<}fH% k}}++) { 28 int a_idx = ia;
Zg :prag“,“" P;Pflf“li*z;“f-;““e;""{‘l ! 29  int4 A1_HH = IBUF1_A[a_idx], A2_HH = IBUF2_A[a_idx];
30 ;; ;::Zryw;g(’ire‘s’siﬁé az;+concatenating logics for A 30 intd4 ALHL = IBUFL_Bla_ idx], A2_HL = IBUF2_Bla_idxl;
31 int Aidr = IC*(IW(oh+kh)+(owtku))tics 31 int4 A1_LH = IBUF1_Cl[a_idx], A2_LH = IBUF2_Cl[a_idx];
32 intd A_HH = IBUF ALA idx]; 32  int4 A1_LL = IBUF1_D[a_idx], A2_LL = IBUF2_D[a_idx];
R e e A (umcazionion | (@ 0m0m00) |
- . - << X

34 int4 A_LH = IBUF_C[A_idx]; - -

= ; o T : #0x000F) ;
g; EE?GAXLE <<S:;22§25§g§]péoo) | ((A_HL<<8)&0x0F00) | 35 int16 A2 = ((A2_HH<<12)£0xFO00) | ((A2_HL<<8)&0x0F00) |
37 ((A_LH<< 4)%0x00F0) | ( A_LL 36 ((A2_LH<< 4)&0x00F0) | ( A2_LL

#£0%000F) ; 47 E‘°:°°°F); 11 o
E pragma unro
B e el 0 e ¢ O S N
40 // Memory addressing and concatenating logics for B 39 // Memory addressing and concatenating logics for B1l, B2
41 int B_idx = 0C*(IC*(KH*kh+kw)+ic)+oc; 40 int b_idx = OAxia+oa;
42 int4 B_HH = WBUF_A[B_idx]; 41 int4 B1_HH = WBUF1_A[b_idx], B2_HH = WBUF2_A[b_idx];
43 int4 B_HL = WBUF_B[B_idx]; 42 int4 B1_HL = WBUF1_B[b_idx], B2_HL = WBUF2_B[b_idx];
44 int4 B_LH = WBUF_C[B_idx]; 43 int4 B1_LH = WBUF1_C[b_idx], B2_LH = WBUF2_C[b_idx];
15 int4 B_LL = WBUF_DI[B_idx]; 44 int4 B1_LL = WBUF1_D[b_idx], B2_LL = WBUF2_D[b_idx];
46 int16 B = ((B_HH<<12)&0xF000) | ((B_HL<<8)&0xOF00) | 45 int16 B1 = ((B1_HH<<12)&0xF000) | ((B1_HL<<8)&0x0F00) |
47 ((B_LH<< 4)%0x00F0) | ( B_LL 46 ((B1_LH<< 4)&0x00F0) | ( B1_LL

#0x000F) ; &0x000F) ;
48 // Reconfigurable ST-based PSMAC array 47 int16 B2 = ((B2_HH<<12)%&0xF000) | ((B2_HL<<8)&0x0F00) |
49 int28 P = st_multiplier_function (CONFIG,A,B); 48 ((B2_LH<< 4)%&0x00F0) | ( B2_LL
50 OBUF [0C* (OH*oh+ow)+oc] += P; &0x000F) ;
51 } //oc 49 // Reconfigurable ST-based PSMAC array
52 Y //kw 50 int28 P1 = st_multiplier_function(CONFIG,A1,B1);
53 } //kh 51 int28 P2 = st_multiplier_function(CONFIG,A2,B2);
54 if (ic==ic_lim) { break; } 52 int28 P1_plus_P2 = P1+P2;
55 } //ic 53 0BUF [0oa] += P1_plus_P2;
56 #pragma pipeline_init_interval 1 54} //oa
57 for (int oc=0; 0c<0C; oc++) { 55 if (ia==ia_lim) { break; }
58 // Quantization logic (Eq. 14) and ReLU (when needed) 56 } //ia
59 57 #pragma pipeline_init_interval 1
60 ¥ 58 for (int oa=0; oa<0A; oa++) {
61 } //ow 59 // Quantization logic (Eq. 6) and ReLU (when needed)
62 } //oh 60
63} 61 }

62}

Figure 2.3: 2D-Conv and FC accelerators (pseudo-code).

synthesized netlist is exported in both Verilog and DDC formats, along with
the final SDC constraints for backend integration.

Finally, the design is flattened and recompiled to allow more aggressive
optimizations, preparing the result for physical synthesis or signoff-level sim-
ulations.
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2.4 Place and route

Starting from the synthesized output of Design Compiler, Innovus performs
a series of backend operations including floorplanning, placement, clock tree
synthesis (CTS), routing, and parasitic extraction. These steps are executed
in a timing- and power-aware manner to ensure that the final layout meets
stringent performance and manufacturability requirements.

By leveraging advanced optimization engines and parallelism, Innovus sup-
ports rapid design convergence across multiple objectives—such as timing
closure, signal integrity, and power delivery network robustness. The tool
integrates seamlessly into the broader ASIC design ecosystem and generates
all necessary signoff data, including standard delay format (SDF), parasitic
extraction files (SPEF), and power/timing reports. Its scripting flexibility
and automation capabilities make it a key enabler for tapeout-quality digital
IC implementation.

The physical implementation flow is driven by a comprehensive TCL script
executed within Cadence Innovus, responsible for transforming a synthesized
netlist into a placed-and-routed layout, complete with parasitic extraction
and signoff-quality reports. The script automates floorplanning, power plan-
ning, placement, clock tree synthesis, routing, and timing optimization, fol-
lowing a standard digital backend methodology.

The design under implementation is specified through variables such as the
module name, operating frequency. The netlist and associated constraints
generated by Design Compiler are imported, along with a collection of tech-
nology and standard cell . LEF files required for layout generation.

The flow begins with initial floorplanning, where the core area is defined
using a density-driven strategy. Power rings and stripes are added using
addRing and addStripe, ensuring robust power distribution. Global nets for
power and ground (vdd, gnd) are then connected across the entire design.

Placement is executed using timing-driven and congestion-aware strate-
gies, enabling optimal cell positioning. This is followed by pre-clock-tree
optimization (preCTS) to refine timing paths, and then clock tree synthesis
(CTS) using ccopt__design, which inserts and balances the clock distribution
network.

Post-CTS optimization and detailed routing are carried out sequentially,
each step followed by timing analysis using timeDesign, ensuring that setup
and hold constraints are satisfied. After final routing, the script performs
parasitic extraction (extractRC) and generates output files including .SDF
(for back-annotated simulation), .SPEF (for signoff parasitics), and the final
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netlist.
A comprehensive set of reports can be produced, including;:

o Power analysis, either

— under default toggle rate assumptions, or

— based on simulation data for more realistic results
o Area utilization

« Gate count

<design>.cpp
+
<design>.h

<simulation>.cpp <stimuli=.py

design

T |udc=ai| T
nvocation

CATAPULT compiler powerpr
internal

Design compiler

netlist.vhdl (or
Power(dyn V)

2ca +static) +.sdc

innovus

Fower(dy!
+static)

Figure 2.4: Full CAD sequence
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Chapter 3

TOOL-CHAIN

3.1 FSM main tool-chain module

The main toolchain script, implemented in Python, functions as the cen-
tral orchestration layer for the entire execution workflow. It coordinates all
stages—from data acquisition and parsing, through tool invocation and in-
termediate data collection, to the generation and return of final results.

Conceptually, the script follows a finite-state-machine (FSM) paradigm.
Each iteration in the toolchain pipeline is decomposed into a series of well-
defined stages, each corresponding to the execution of a specific CAD tool.
Within each stage, the process can transition through sub-states such as
ready, busy, or end, enabling fine-grained control and precise monitoring of
execution progress.

The execution can be logically divided into two primary phases:

3.1.1 Setup Stage

In this phase, all relevant database files containing parameter sets that can
be hand-passed are loaded into memory and stored in structured variables.
A preliminary report is also generated, providing an up-to-date view of the
current progress without requiring a full sequential execution of all pipeline
steps. Databases from the Spearmint module, which contain parameter sets
requested directly by Spearmint’s research, are also loaded at this stage,
ensuring that the environment is fully synchronized with prior experiment
configurations.
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3.1.2 Loop Stage

The main processing loop manages the dynamic execution of CAD tool
stages. If enabled, the loop terminates once all iterations' of the complete
end-to-end digital design flow have been completed. During this stage, new
CAD tool executions may be triggered, provided that sufficient tool licenses
are available.

Before launching a new execution, the system checks the caching subsys-
tem to determine whether valid results already exist, thus avoiding redundant
runs. For example, if a Catapult synthesis has already been performed, the
tool reloads the results before directly invoking Design Compiler. Periodic
statistics are computed and printed, and a dedicated evaluation function is
invoked to inspect each iteration for tool-specific termination conditions or
error states. Once all CAD stages for a given iteration have been executed,
the system generates a new cache entry and produces a consolidated report
file, which can optionally be transmitted to a remote server for storage or
further analysis.

Parameterization: Knobs and Values

To support repeated execution with varying configurations, a robust param-
eterization mechanism is essential. The adopted approach relies on storing
configuration data in nested Python dictionaries, which are easily serialized
using the JSON format. These nested dictionaries are then aggregated into
lists, each representing a specific iteration.

This tree-like configuration model reflects the hierarchical nature of design
parameters—e.g., database — connection — timeout. The approach offers
high flexibility, extensibility, and ease of use, especially for dynamic access
and environment-specific overrides. It also integrates well with industry-
standard formats like JSON or YAML. Compared to global variables or flat
configuration files, this structure is more scalable, maintainable, and seman-
tically clear for complex applications.

This architecture enables the toolchain to operate in a resource-aware,
fault-tolerant, and incrementally evaluable manner, ensuring that partially

lan iteration refers to a complete execution of the end-to-end digital design flow, from

high-level synthesis through HLS, logic synthesis and place-and-route, producing a set of
results for a given parameter sets.
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completed iteration are leveraged efficiently and that the execution state
remains transparent at all times.

3.2 Thread Module

The thread module provides the core mechanisms for managing the tool
execution within the automated design flow. It encapsulates both initializa-
tion routines and the orchestration of tool-specific CAD launch, while also
implementing timeout supervision and cleanup procedures. This modular
organization allows for clear separation of concerns and facilitates future ex-
tensibility.

generic_thread(tool, index)

The generic_thread() function provides an abstraction layer for launching
the tool processes based on the specified tool name and task index. Prior to
invocation, it consults the read timeout () utility to determine whether the
tool has exceeded its allocated execution time window. If a timeout condition
is detected and global timeout enforcement is enabled, the task is flagged as
timed_out and execution is halted. Otherwise, the function delegates con-
trol to the appropriate tool-specific thread function—catapult_thread(),
DC_ext_thread(), or innovus_thread()—according to the task configura-
tion.

Execution CAD Tools: [tool] thread(index)

This function is implemented for all three CAD tools and is responsible
for preparing the working environment, generating the corresponding TCL
scripts, and executing the tool through the terminal {tool} function. Dur-
ing execution, a timestamp is recorded and the task status is updated to busy
to facilitate monitoring, all this information are saved inside the main dic-
tionary.

Additional steps are performed in the case of Innovus. Before execu-
tion, the thread verifies that a valid netlist has been provided; if the in-
put is invalid, the task is marked as faulty and the status is reverted to
catapult_ready. Furthermore, a patch is applied to the .sdc file.
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thread_terminal_kill (index)

The thread terminal kill() routine terminates the tmux session associ-

ated with a given task and removes its index from the corresponding running tasks
list. This centralized cleanup procedure ensures consistency between in-
memory state and process-level execution, while preventing resource leakage

(also licenses).

Timeout Management and Error Recovery

Timeout supervision is implemented through the out _of time() function,
which iterates over all active tasks to compute elapsed execution times based
on their recorded start timestamps. If the duration exceeds the predefined
tool-specific limit, the task is forcibly terminated, its status is updated to
tool timeout, and a marker file is created on disk to document the event.
This mechanism prevents stalled processes from indefinitely blocking the ex-
ecution pipeline, thereby maintaining the responsiveness and reliability of
the overall workflow.

3.3 Tool Terminal Module

This module provides runtime control and terminal session management for
the execution of individual toolchain stages. It leverages the tmux terminal
multiplexer to isolate and supervise each synthesis tool invocation (Cata-
pult, Design Compiler, and Innovus), allowing asynchronous, parallel, and
restartable runs in a shared server environment.

Session Initialization and Environment Setup. Upon import, the
module sources the required EDA tools using tool folder.source_eda_tools(),
ensuring that all terminal sessions are correctly initialized with the appro-
priate environment variables.

Tool Execution via Tmux. All tools are launched through dedicated
functions following the pattern [tool] terminal (), which:

e create a new tmux session named after the tool and the run index,
e set up the working environment and the execution script,
 run the tool in batch/no_gui mode,
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o capture logs (via tee or redirection) for later debugging and post-processing.

In addition, Catapult (terminal cata()) performs a preparatory step:
it automatically generates input stimuli using a helper Python script, pa-
rameterized by the accelerator type (e.g., conv2d, fcmei, dwconv), before
executing the high-level synthesis flow.

The choice of tmux over direct subprocess execution provides several ad-
vantages: it enables session persistence after disconnection, decouples the
execution from the Python process, and facilitates real-time inspection or
manual intervention when needed. The module also avoids tight coupling to
the execution logic of individual tools by isolating them into named tmux
sessions, following a reproducible and traceable naming scheme.

This modular approach supports horizontal scaling and fault recovery, and
it integrates seamlessly with the tool dispatch scheduler via the candidate
index, ensuring deterministic session tracking and reproducibility of log out-
puts.

tool-folder: Functional Overview

This module provides essential utilities for setting up, managing, and clean-
ing up the directory structure and configuration environment of Electronic
Design Automation (EDA) workflows. It facilitates deterministic path gen-
eration, tool-specific data management, and preprocessing operations critical
to the seamless orchestration of multi-stage toolchains such as Catapult, De-
sign compiler (DC__ext), and Innovus.

Beyond the initial role of environmental preparation, the tool-folder
module encapsulates logic for deterministic folder generation and runtime file
management tailored to each tool stage. Folder organization is guided by the
conversion of configuration dictionaries into hashable string representations
via the dictionary_to_string() and hash md5() utilities. These functions
ensure the creation of unique and reproducible directory names based solely
on input parameters, thereby facilitating both traceability and cache reuse.
Folder paths are constructed recursively through generic_tool_dir (), which
encodes tool-specific hierarchies and supports toggling between folder- and
file-level resolution.

To support downstream tool execution and integration, the module auto-
mates the generation of tool-specific export paths. For instance, script_path()
and script_name () yield deterministic .tcl script filenames and their respec-
tive locations for execution within tool-specific flows. The catapult_export ()
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routine consolidates synthesized files such as .VHDL, .V, timing reports, and
constraint files from Catapult-generated directories, packaging them into a
standardized output format suitable for use by later tools in the flow.

Cleaning routines are provided to prevent filesystem clutter and guarantee
a clean execution state. The catapult_cleaner() function removes stale
intermediate directories and large waveform files.

Timing constraint patching is handled through sdc_pathcer (), which
programmatically adjusts clock specifications in SDC files to reflect updated
frequency settings, ensuring consistent timing assumptions across tools. Fi-
nally, the innovus_preparator () function orchestrates the export and for-
matting of all files required for Innovus placement and routing, including
netlists, .SDC, and .Tcl scripts.

Tool Chain Cleaner

This module implements an automated sanitation utility for tool-chain project
directories. Its primary objective is to enforce workspace hygiene by pro-
grammatically removing obsolete or unauthorized files and optionally prun-
ing empty subdirectories. The cleanup process operates recursively over the
standard tool output directories: ./catapult, ./DC_ext, and ./innovus.

Tool Constants Module

This module acts as a centralized repository of constants shared across all
components of the toolchain. Its purpose is to maintain consistency and con-
figurability, while avoiding hard-coded parameters throughout the codebase.

Tool Database module

This module operates as the central registry and synchronization layer
between tool execution states and external optimization engines, such as
Spearmint. Its core responsibility revolves around the ingestion, enumera-
tion, and export of a dynamically evolving database encoded in JSON format.
Real-time statistics regarding toolchain status are collected via
statistics_status(), which tallies entries by execution state and iden-
tifies active Spearmint-driven evaluations. This status-tracking enables con-
ditional scheduling and progress reporting. The resulting dictionaries can be
used to visualize bottlenecks or to prioritize the dispatch of new requests.
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The system supports import of entire databases through
import_new_dbs(), which merges compatible entries from a specified
folder into the active JSON database, ensuring proper deduplication and
reindexing. Externally generated request objects, such as those produced by
Spearmint, are integrated via import_spearmint (), with hash-based caching
and request naming to prevent redundant reprocessing. Valid responses are
exported using export_spearmint() and export_spearmint_unique(),
completing the feedback loop between optimization and synthesis.

The generate_tcl_script() function constructs tool-ready Tcl scripts
from JSON entries, appending reusable pre-written logic. This ensures pa-
rameterized reproducibility of tool flows while abstracting configuration prop-
agation.

To avoid resource waste, the catapult_flush_higher freq by_index()
function discards design candidates that match a given configuration but
exceed its frequency target. This pruning mechanism prevents reevaluation
of higher-frequency versions of the same design point when a lower-frequency
variant has already been marked as infeasible.

tool cache

This module implements a robust backend engine for reading, validating,
and processing toolchain requests based on JSON data files. It also provides
fault-tolerant caching to support reproducibility, traceability.

Request and Cache Management

Incoming requests are detected and processed using process_requests(),
which scans the designated input folder for JSON files prefixed with Req_.
Each request is either matched against the cache or staged for evaluation,
depending on system state and flags.

For each request, a hash is computed based on a reduced dictionary of
base parameters. This hash is used as a unique identifier to check for cached
results. If a cached response is found, it is reused to populate the output
directory. Otherwise, the request is copied to the queue for deferred evalua-
tion.

The extract_base_dict() function strips extraneous data (e.g., tool-
specific reports) to isolate core parameters for consistent hashing. This en-
sures cache coherence and prevents redundant recomputation.
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Data Validation and Structural Checks

Validation is performed using two complementary functions. The is_good_
element () function provides a high-level check for the presence of required
subreports, ensuring that all critical stages (e.g., Catapult, DC, Innovus) are
represented.

The more detailed is_data_ok() function performs nested validation of
critical fields. It ensures that numeric performance metrics (e.g., area, power,
latency) are present and properly typed. Invalid records are flagged with
detailed error logs, and faulty cache entries are pruned accordingly.

To keep the cache clean, remove_faulty_cache() iterates through exist-
ing cache files, validating their contents. Files that do not meet the expected
structure are removed to avoid corrupt downstream behavior.

tool check

check_by_code(tool_name, dictionary, code, delete=False)

This function verifies the existence of a marker or flag file (code) within the

directory structure associated with a specific tool. The directory path is

dynamically constructed using metadata provided in the dictionary argu-

ment. If the marker is detected, the file may optionally be deleted based on

the delete parameter. This functionality is commonly employed to confirm

tool execution completion or to detect success indicators post-run.
search_line(tool_name, dictionary, file_name,

target_string)

This function performs a search operation within a given text file (typically a

log file) to locate a specified target_string. It returns one of the following

status codes:

o 0 if the target string is found;
o 1 if the target string is not found;
o 2 if the file does not exist.

This logic underpins automated failure detection, warning identification, and

conditional workflows driven by tool-generated logs.
generic_tool_report(tool, dictionary, clean=False)

A dispatch function abstracting the tool-specific reporting process. Based

on the input tool name (e.g., "catapult", "DC_ext", or "innovus"), this
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function determines the correct working directory and calls the corresponding
report generator from the tool_rpt module. For tools such as Catapult, an
optional cleaning routine can be triggered before report extraction. This
abstraction offers a uniform interface across heterogeneous tools.

Tool Report

Overview and Functionality

This module provides a comprehensive framework for parsing and consoli-
dating key results indicators extracted from a variety of CAD tool reports.
The framework is designed to handle heterogeneous sources of data, enabling
the systematic aggregation of performance, timing, area, and power metrics
into a unified dictionary. By abstracting the details of each tool’s reporting
format, it facilitates downstream analysis and comparison of design outcomes
across different synthesis and implementation flows.

Catapult Report Extraction

For reports generated by the Catapult high-level synthesis tool, the module
offers specialized routines for extracting essential design metrics. Specif-
ically, the extract slack() function retrieves timing slack information,
extract_area() quantifies hardware area utilization, and extract_latency
_throughput () derives latency and throughput values from simulation out-
puts.

Design Compiler Report Extraction

The framework also includes dedicated functions for parsing reports pro-
duced by Synopsys Design Compiler. The dc_extract_total cell area()
function determines the total synthesized cell area, dc_extract_power ()
estimates the power consumption, and dc_extract_slack() obtains
the reported timing slack. To facilitate a holistic analysis, the
DC_int_full report() routine integrates these results, combining outputs
from both standard and power-optimized synthesis flows.

Innovus Report Extraction

For the physical implementation stage, the module supports the parsing of
reports generated by Cadence Innovus. The innovus_report_summary()
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function extracts timing-related metrics such as Worst Negative Slack
(WNS), Total Negative Slack (TNS), and placement density.  The
innovus_report_area() function reports the total physical layout area,
while innovus_report_power () evaluates post-routing power consumption,
thus enabling a post-layout assessment of the design’s physical and power
characteristics.

Report Aggregators

At a higher abstraction level, the module provides unified aggregator func-
tions that compile all relevant metrics from each CAD environment into
structured dictionaries. These include catapult full report(), DC_ext_
full report(), and innovus_full report().
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Chapter 4

SPEARMINT STAGE

4.1 Introduction

This section outlines the configuration steps required to perform MOBO of
an unknown objective function using Spearmint. The goal is to create an
application whose behavior is compatible with the objectives of this thesis
project.

The initial phase consisted in analyzing the internal workflow of
Spearmint. By examining one of the provided example configurations, it
is possible to understand how the search space is defined, how candidate
configurations are evaluated, and how the corresponding results are stored
and utilized in subsequent iterations of the optimization process.

Once the framework has been understood, a custom search space was
constructed for the case study. This required identifying the most relevant
design parameters (knobs) and assigning suitable value ranges to each. The
selection of variables was based on their expected impact on key performance
metrics.

With this understanding, we then apply it to the current case study, iden-
tifying how to provide the necessary configuration and how to customize it
to address potential issues—such as offloading computations to a different
server.

o1



SPEARMINT STAGE

4.2 Spearmint Framework

Spearmint is a Python-based framework for Bayesian Optimization, avail-
able on GitHub. In this work, the fork developed by Eduardo Garrido!® is
used, as it integrates extensions for multi-objective optimization and has
been adopted in previous academic projects.

The framework is structured around a modular architecture. The core op-
timization process is launched by executing the main.py script, which serves
as the entry point. Before execution, a configuration file named config. json
must be prepared and placed in the working directory. This file defines the
search space, the type of optimization (e.g., single- or multi-objective), the
number of iterations, and other relevant settings.

When main.py is launched, it parses the config. json file and initializes
the internal optimization pipeline accordingly. One of the key elements spec-
ified in the configuration is the evaluation script, typically named bo.py.
This script must implement an evaluate() function, which takes as input
a set of parameter values sampled by the optimizer and returns one or more
objective values (e.g., area, latency, power).

In summary:

e config.json defines the problem setup, search space, and objectives
e main.py and reads the configuration, and implements the MOBO

e bo.py executes the user-defined evaluation for each sampled configura-
tion.

This structure enables a clear separation between the optimization engine
and the problem-specific evaluation logic, making it easy to adapt Spearmint
to different design tasks.

4.3 Constrained example (from github)

This section summarizes how the "constrained example" available on GitHub?
is constructed and how to make use of its features. In this example, a function
is analyzed in order to identify its minimum points—a task that could also be

"https://github.com/EduardoGarrido90/spearmint_ppesmoc
’https://github.com/HIPS/Spearmint/tree/master/examples/constrained
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4.3 — Constrained example (from github)

accomplished using basic mathematical tools such as derivatives. However,
since the example involves Multi-Objective Bayesian Optimization (MOBO),
the function has multiple input variables and, most importantly, is unknown
to Spearmint. As a result, Spearmint must identify the local minima of the
unknown objective function without relying on grid search methods. Instead,
it leverages probabilistic models and gradient-based optimization techniques
to efficiently explore the search space and converge to optimal solutions.

obj = <y — @32) 2+ (i) T — 6>2+ 10 <1 — ;ﬁ) cos(x) +10  (4.1)

20 T T T T T

15 - -

10 - -

‘_-IO 1 1 1 1 1

Figure 4.1: Example function with constraints

The objective of the provided example is to find the minimum of a com-
plex function (see Eq.4.1 and Fig.4.1), subject to the constraints y > =
and y < 10. The use of the constraint fields is particularly useful when
designing complex accelerators, as constraints can represent specific design
requirements—such as enforcing minimum latency or limiting power and area
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utilization. Later in the optimization process, constraints will also help man-
age infeasible solutions, enabling Spearmint to effectively learn how to filter
them out.

4.3.1 BO.py

BO.py is the file invoked by Spearmint’s main script main.py during the
evaluation process. It receives the suggested parameters and returns the
corresponding results. In this example 4.1, the file is written in Python, but
it can also be implemented in other languages such as MATLAB, Bash, and
other languages.

import math
import numpy as np

def evaluate(job_id, params):

x = params[ ]
y = params[ 1
print ho(x, ¥

if x < 0 or x > 5.0 or y > 5.0:
return np.nan
# Feasible region: x in [0,5] and y in [0,5]

obj = float(np.square(y - (5.1/(4*np.square(math.pi)))*np.square(x) + (5/
math.pi)*x- 6) + 10*(1-(1./(8*math.pi)))*np.cos(x) + 10)

conl = float(y-x) #y >= x

con?2 float (10.0-y) # y <= 10
return {

obj,

conl,

con?2

}
# True minimum is at 2.945, 2.945, with a value of 0.8447

def main(job_id, params):
try:
return evaluate(job_id, params)
except Exception as ex:
print ex
print
return np.nan

Listing 4.1: BO_example.py

The key components of the script are:
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e main function: Called by Spearmint, receives two arguments: job_id
and params.

— job_id: A numeric identifier representing the current iteration.
— params: A dictionary containing the parameters suggested by Spear-
mint based on the configuration.

o A try-except block: Used for graceful error handling during evaluation.

o A return statement: Returns a dictionary containing the evaluation
results.

— objective(s): output value that has to be minimized (leading to
Z€r0).

— constraint(s): a numeric value that has to be positive defined

4.3.2 config.json

This configuration file 4.2 defines the essential elements for Spearmint op-
timization. It is present inside the spearmint working folder. It is read by
the main spearmint script in order to identify the properties of the research.
It has many elements inside it which are explained below. The information
was obtained by analyzing many source codes inside the Spearmint GitHub
folder?.

{

3Useful links :
link to github file managing search space and tasks via config.json
https://github.com/HIPS/Spearmint/tree/master/spearmint/tasks/base_task.py
Link useful to look at other spearmint examples
https://github.com/HIPS/Spearmint/tree/master/examples
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}’
0
3
},
3
i
3 o
}
Yo

Listing 4.2: conf_bo_example. json

» language and main-file: Specify the BO.py .
« variables X and Y: Define the search space.

— type: specifies the type of variable, it can be float, int or enum.
— min: the minimum value, that can be generated
— max: the maximum value, that can be generated

— size: specifies the amount of values inserted in a vector. If it is '1’,
it generates a single value.

— options: used only in enum case, it specifies the values, that can be
used.

o tasks: OBJECTIVE: The metric that Spearmint attempts to mini-
mize.

« tasks: CONSTRAINT: Conditions that must be satisfied (i.e., be
> 0) for a solution to be considered valid.

These settings clarify the role of conl and con2 in the BO script, enforc-
ing Y > X and Y < 10, respectively. From visual inspection, the global
minimum is found around X = 2.945, Y = 2.945, with obj ~ 0.8447, which

matches the Spearmint output.
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4.4 Spearmint implementation file: CONV

This section discusses how BO.py and config.json were written for the con-
volution accelerator.

4.4.1 BO.py

import math

import numpy as np

import json

import os

import time

import random

import correction as crr

from datetime import datetime
import dbcache as db

timeout = 60*%x60%x24x%5 #60sec for 60 min for 24h for 5 days
base_dict =
req_location =
resp_location
flag_location
flag_full_path =

db_bck =
debug = False
infinit = 1el0

def set_flag():
def create_empty_file_if_not_exists(file_name):
if not os.path.exists(file_name):
with open(file_name, ) as file:
pass
create_empty_file_if_not_exists( flag_full_path )

def read_json(file_path):
json_data = []
with open(file_path, ) as json_file:
json_data = json.load(json_file)
return json_data

def save_json(json_data, file_name):

if debug
print ( )
return

with open(file_name, ) as json_file:

json.dump(json_data, json_file)

def wait_and_read_json(file_path, timeout_):

if debug:
print( )
time.sleep (5)
debug_response = read_json(base_dict)
return debug_response

start_time = time.time ()
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49 while not os.path.exists(file_path):

50 if time.time() - start_time > timeout_:
51 return -1

52 time.sleep(1l) # Wait for 1 second before checking again
53 with open(file_path, ’r’) as f:

54 json_data = json.load(f)

55 return json_data

56

57| def evaluate (job_id, params, iteration):

58 global Response

59

60 job_id_ = job_id

61 Response = {}

62 print "generating new query"

63 # unpacking

64 print params

65 # generating from input vector
66 Freq = int(params[’FREQ’]) * 200

67 Outch = int(params[’0UTCH’]) * 4

68 Inch = 32

66

70 # packing

7 print base_dict

72 Request = read_json(base_dict)

73 print Request

74

75 Request ["main"] ["FREQ"] = Freq

76 Request["catapult"]["CatapultFreq"] = Freq

77 Request ["main"]["INCH"] = Inch

78 Request ["main"] ["OUTCH"] = Outch

7

80 def adj( value ):

81 if value >= 2:

82 return value+1l

83 else:

84 return value

85

86 Request ["catapult"]["1lp_init"] = int(adj(params[’lp_init’]))

87 Request["catapult"]["1lp_ci"] = int(params[’1lp_ci’])

88 Request["catapult"]["1lp_k_handw"] = int(params[’lp_k_handw’])

89 Request["catapult"]["1p_co"] = int(adj(params[’1p_co’]1))

90 Request["catapult"]["1p wb"] = int(adj(params[’1lp wb’]))

91 Request ["catapult"]["1p g"] = int(adj(params[’1p _g’]1))

92

93 Request ["tool_chain"]["status"] = "catapult_ready"

94 Request["tool_chain"] ["spearmint_id"] = job_id_

95 Request["tool_chain"] ["spearmint_id_number"] = iteration

96

97 Request["tool_chain"]["status"] = "catapult_ready"

98 print "final request"

99 print Request

100

101 save_json (Request, "{0}Req_{1}.json".format(req_location, job_id_))

102 print "evaluating {0}".format (params)

103 Response = wait_and_read_json("{0O}response Req {1}.json".format (
resp_location, job_id_), timeout)

104

105 err_code=2
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def

status = Response["tool_chain"]["status"]
print Response
info = Response.get("tool_chain", {}).get("notes", "good")
if ’error design’ in info:
print ("error_tool_chain")
err_code=-1

return { "Area": O, "Power": 0O, "Latency": 0, "error": err_code }

print("reading data from response")

area_innovus = Response.get("innovus _report", {}).get("Area", 0)
area = crr.area_correction_sram( Outch, area_innovus * (10**-6) )
print( "base area : ",area_innovus, " adj area : ", area )

power = Response.get("innovus_report", {}).get("power", {}).get("total",
0)
print ( "adj power

, power )

lat0O= int (Response.get("catapult_report", {}).get("main", {}).get ("
latency", {}).get("en_quant_tb_0", 0))

latl= int (Response.get("catapult report", {}).get("main", {}).get ("
latency", {}).get("en_quant_tb_1", 0))

latency = crr.latency_correction( Inch, Outch, latO, latl)

print("lat0, latl : ", latO, latl, "\n","adj latency [ns] : ", latency

results_={}
results_["iteration"]=iteration
results_["resp_dict"]=Response

results_["Area"] = area

results_["Power"] = power

results_["Latency"] = latency

results_["error"] = err_code

json_location_ = "{}/{}.json".format (db_bck, job_id_)
save_json( results_, json_location_ )

set_flag()

for el in [ area, power, latencyl]:
if el==None:
raise ValueError ("None found watch log to find issue")

return { "Area": area, "Power": power, "Latency": latency, "error":
err_code }

main(job_id, params):
print( "\n----job_id----\n",job_id,"\n---params---\n", params, "\n")
if job_id == 1:
working_directory = os.getcwd()
current_time = datetime.now().strftime (" V-%m-d-%H-%M-%S")
data = {
"working_directory": working_directory,
"start_time'": current_time
}
save_json( data, "data.json")
start_time = current_time
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else
ttt = 0.3 * int( job_id )
if job_id > 10

ttt = 1
time.sleep( ttt )
env_data = read_json(
start_time = env_datal[ ]
try:
job_id_name = .format (start_time, job_id)
evaluated = evaluate(job_id_name, params, job_id)

print (evaluated)

return evaluated
except Exception as ex:

print ex

print

#return np.nan

def test():

job_id_ =
params_ = { 1.1, 4, 4,
4, 4, 4, 4,
4, 4 }
try:
return evaluate(job_id_, params_)

except Exception as ex:
print ex
print

if __name ==

test ()

Listing 4.3: conf.json

As previously stated, the purpose of this script is to process the argu-
ments passed through the params dictionary, which is generated by the main
Spearmint script, and to construct a corresponding request dictionary to be
saved in JSON format. BO.py waits for a response json-formatted, which is
generated by another script (sync_server.py discusses in chapter 5).

Since the latency and area values do not account for additional hardware
overhead beyond the accelerator itself, these values must be adjusted using
a correction function. After that, the value of Area, power, latency can be
returned.

BO.py: Key Steps

By analyzing the execution flow of the script, it is possible to identify its
key features. The main function serves as the entry point. During the
first iteration, it stores the current date (inside a JSON file) to differentiate
new requests from previous ones. In subsequent iterations, this date is read
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BO.py
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Figure 4.2: BO key steps

from the file, rather than using the system’s current time. This approach
ensures consistency, since only the first iteration executes the full Bayesian
Optimization (BO) pipeline when multiple instances (often called jobs inside
documentation) are launched simultaneously. To support this behavior, a
slight delay is introduced to enforce sequential request file generation and
prevent potential race conditions.

An important feature of the script is its internal error management, which
is crucial to prevent crashes in the main Spearmint process. This is achieved
by wrapping the call to the evaluation function in a try-except block within
the main function. The evaluation function may occasionally fail, due to
missing files or other unforeseen errors. Within the evaluation function, a
base dictionary in JSON format is read. This dictionary contains a default
set of parameters and is especially useful when the search space is altered or
reduced due to further toolchain developments. These base parameters are
then adjusted to match the constraints of the toolchain, which not support
direct remapping. Direct mapping is infeasible because Spearmint internally
works with abstract numerical representations (e.g., integers or floats), rather
than with specific tool-compatible values. Although this may seem like a
limitation, it can be advantageous. For instance, if frequency values are
sorted with a positive trend, the tool can better leverage this ordering in the
optimization process.

Once the refined request dictionary is ready, it is saved as a JSON file in
the designated request directory. The script then waits for the corresponding
response, using a dedicated timeout function that can terminate the itera-
tion if the response is not received within a reasonable time window. This
mechanism is particularly useful when the toolchain is required to explore
complex or resource-intensive configurations.
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The script includes an error-handling mechanism to manage Spearmint’s
limited set of expected return types: (1) success, (2) constraint violation,
and (3) failure. The "constraint violation" return type is especially useful
for signaling infeasible configurations (e.g., failures at the HLS level), thus
helping the tool identifying possible bad configuration properties.

After receiving and reading the response, a correction function is invoked
to adjust the latency and area values, which initially omit extra-hardware
components outside the accelerator. If all steps are completed successfully,
a combined JSON file containing the response and Spearmint-compatible
return values is saved in a dedicated folder. This design choice allows
for independent storage and analysis, bypassing the need to interface with
Spearmint’s default MongoDB backend, which adds unnecessary complexity
and uses an undocumented data structure.

Finally, BO is invoked in a way that prints in a log file, rather than print-
ing it directly to the terminal. This log file is placed in a folder named
with the current date, located in the working directory, together with the
config.json. Debugging this log can be challenging—especially when an
iteration fails and enters in a loop of failing iterations. For effective trou-
bleshooting, it is recommended to run the BO script in standalone mode. For
this purpose, a test function is included and can be invoked when the script is
executed independently. This is particularly useful given the latency between
the main Spearmint invocation and the actual start of the BO process.

Frequent print statements have also been included throughout the code
to monitor the execution flow, which can be particularly helpful during de-
bugging. Also when an iteration is completed, a placeholder file is generated
to notify other scripts that an iteration is completed and a new one will be
launched soon.

4.4.2 CONFIG.JSON

The following JSON configuration is used to set up and control a multi-
objective optimization experiment in Spearmint. The file defines the opti-
mization algorithm. The variables search space will be discussed in experi-
mental Chapter 7.1. The objectives choices are Area, Power, Latency, error,
like already discussed.

1 {

: 10000,
: 10000,
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"max_concurrent": 7,

"experiment -name": "branin_constraint_mulitobjective",
"moo_use_grid_only_to_solve_problem": true,
"moo_grid_size_to_solve_problem": 1000,
"pesm_use_grid_only_to_solve_problem": true,
"likelihood": "GAUSSIAN",

"acquisition":
"pesm_pareto_set_size":

"database":

"address":

}’

"pesm_not_constrain_predictions":

"variables": {

"FREQ": {
"type": "INT"
"size": 1,
"min": 1,
"max": 8

}’

"QUTCH": {
l|type|l: HINTH .
"size": 1,
"min": 1,
"max": 8

}’

"lp_init": {
l|type|l: ||INTI|
"size": 1,
"min": 0,
"max": 3

Yo

"lp_ci": {
l|type|l: HINTH
"size": 1,
"min": 2,
"max": 4

Yo

"lp_k_handw": {
l|type|l: HINTH ,
"size": 1,
"min": 2,
"max": 4

Fo

"lp_co": {
l|type|l: HINTH .
"size": 1,
"min": O,
"max": 3

},

"lp_wb": {
"type": "INT"
"size": 1,
"min": O,
"max": 3

}!

"lp_q": {
"type": "INT" s
"size": 1,

{

"PESMC",

"127.0.0.1:27012"

false,
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Listing 4.4: conf. json

Used parameters

language: Specifies the language of the evaluation script, here set to
PYTHON.

main__file: Entry point for evaluations, when spearmint is executed.
max__concurrent: Maximum number of parallel evaluations.

variables: The design space is defined through a set of integer variables,
which will be described in experimental Chapter 7:

— FREQ, OUTCH, lp_init, 1lp_ci, 1lp_k_handw, 1lp_co, 1lp_wb, 1lp_q.
Bach with defined min and max values.

tasks: Defines the optimization targets:

— Area, Latency, Power: These are treated as objectives to minimize.

— error: A hard constraint that must be satisfied for a design to be
valid.

Tricks used

Scaling: Since variables such as Freq and OutCh have linearly spaced
values, they are initially mapped to integer values ranging from 1 to IV,
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where N is the total number of distinct values in the search space. These
integer representations are passed to BO.py, where they are subsequently
scaled by a factor 200 for Freq, and 4 for OutCh. This scaling choice will
be further discussed in the dedicated 7.1.

Pointers: Since Spearmint performs better with numerical inputs, loop
configurations are encoded by associating them with corresponding nu-
meric values.

Monotonic mapping: In order to make the design parameters com-
patible with Spearmint, a numerical mapping is defined between integer
values and specific loop configurations (e.g., loop unrolling factors). This
enables Spearmint to operate within a numerical search space while still
evaluating meaningful architectural alternatives. Although Spearmint
treats all input values purely as numeric and does not infer any semantic
relationship, the mapping is constructed with a monotonic trend—such
that increasing numerical values correspond to progressively more com-
pact loop configurations. This structure may facilitate the optimizer’s
exploration by introducing a degree of smoothness in the search space,
although such behavior is not formally guaranteed.

Adjustment functions: Since certain loop configurations may be miss-
ing or undefined, a dedicated function is used to remap and complete
these cases.

Parallel jobs: Due to the high execution time of each evaluation and
the fact that hardware resources are not fully utilized by a single it-
eration, multiple evaluations are executed in parallel. This parallelism
does not imply that all evaluations are launched simultaneously—except
possibly at the beginning—but rather that new iterations are triggered
dynamically as previous ones complete. On average, Spearmint is able
to generate a new configuration approximately every 20 minutes (as ex-
perienced during testing). If the number of concurrent evaluations has
not yet reached the predefined maximum, a new iteration is launched
as soon as one finishes. Otherwise, the system waits until at least one
job has completed before proceeding. Each new suggestion is generated
based on the results of all previously completed iterations, ensuring that
the optimization process remains consistent and informed.
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4.5 Spearmint implementation: FC

The same workflow has been applied to the FC (fully connected) case, with a
few adjustments compared to the CONV configuration. These modifications
do not affect the overall structure or logic of the Bayesian Optimization
script, which remains unchanged in its core components.

4.5.1 config.json

{
1,
: 1000,
: 9000,
: 10,
: true,
: 1000,
: true,
: 5000,
3 o
})
: false,
3«
3
g i,
1:
8
}J
3 ok
g i,
1:
8
},
3
g i,
O)
3
},
i
g g,
2)
4
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}
}

Listing 4.5: conf. json

A slight modification must be applied to the config.json file in order to
make it compatible with the FC case. The updated configuration, shown
in Listing 4.5, reflects the structure of the search space defined for FC in
Section 6.1. These changes are necessary to ensure proper alignment between
the configuration file and the specific parameters used in the FC scenario.
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Chapter 5
SYNC SERVER

tool-chain
client - app

Figure 5.1: Servers configuration

At this stage of the project, with a developed framework for computer-
aided design (CAD) automation and a Spearmint setup capable of generating
requests and retrieving results from database files. However, another issue
remains: Spearmint is running inside a virtual machine (VM) on the Gandalf
server, while the CAD tools are running on the VLSI server.

Managing multiple applications distributed on several servers presents
challenges in maintaining reliable communication between the different
servers. In the context of this application, a central server is required to
coordinate and exchange data with the other components in the system. Af-
ter evaluating the available options, gandalf was selected as the main server,
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primarily because it already exposes a public URL and open web ports. Al-
though this may seem like a minor detail, it enables external devices to
initiate a connection over the internet, which is a fundamental requirement
for server reachability.

5.1 server script

To allow gandalf to exchange data with the VLSI or other servers, a dedi-
cated application was developed using Python and Flask. This Flask-based
server exposes a set of RESTful endpoints! (routes) designed to facilitate
interaction, resolve communication issues, and manage data transmission.

Flask is a micro web framework written in Python, designed for simplicity
and modularity. It provides essential features such as URL routing, HTTP
request handling, and JSON serialization. Its lightweight nature makes it
particularly well-suited for building REST APIs and applications where fine-
grained control over behavior is required.

One particular communication challenge involves exchanging JSON-
formatted requests and responses with the VLSI server. In a standard
client-server architecture, the client is responsible for initiating the connec-
tion. Therefore, while gandalf functions as a server, it cannot autonomously
push data to other servers. To address this, the main script running on the
VLSI server is configured to periodically poll the Flask server every few
seconds. This inversion of control ensures that data flows correctly despite
architectural constraints.

Since a Flask server is already running on the gandalf machine, a custom
route has been added to expose a downloadable data package containing
the results of all completed Spearmint iterations. This package is used by
external tools to generate plots and perform data analysis. The ability to
access this data remotely is particularly useful when visualizations or reports
need to be generated on machines that are not part of the same local network.
In the future, this server could be extended with additional endpoints to
start or stop optimization jobs remotely, further enhancing the usability and
flexibility of the overall system.

LA RESTful API (Representational State Transfer) adheres to a stateless, client-server
communication model where resources are accessed via standard HTTP methods such as
GET, POST, PUT, and DELETE. RESTful design emphasizes scalability, simplicity, and
the use of uniform resource identifiers (URISs) to interact with structured data.
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5.2 Server-side Implementation with Flask

The Python script reported in listing 5.1, implements a simple RESTful API
using the Flask framework. It facilitates communication between a client and
a server through the exchange of JSON files placed in specific directories. The
core functionalities exposed by the server are summarized below:

/1list_requests: Returns a list of all request files found in the
REQUEST_DIR directory. Only files prefixed with Req_ are considered.

/list_pending_request: Lists all request files that do not yet
have a corresponding response file (prefixed with response_) in the
RESPONSE_DIR.

/get_request: Given the name of a request file (via the req_name pa-
rameter), it retrieves the content and validates whether the file contains

valid JSON.

/push_response: Accepts a JSON response and writes it to disk in the
RESPONSE_DIR using the specified name (resp_name).

/get_all_data: Invokes the main slave function from the
data_merger module, processes the data, and returns the resulting file
to the client. basically, given the accelerator name, it return the merge
of all responses on a JSON.

The script also includes two utility functions:

e is_valid_json: Validates whether a file contains properly formatted

JSON, retrying up to three times in case of read or parse errors.

o write_json: Writes a Python dictionary to a file in JSON format with

indentation. Returns a boolean indicating success.

Logging is used extensively to track server activity and potential issues.
Depending on the debug flag, the server can run either in production mode
(with absolute paths) or in debug mode (with local paths). The application
listens for HT'TP requests on port 8001, because default is already in use.

I| from flask import Flask, request, jsonify, send_file
2| import os
3| import time

L] import json

5| import logging

6
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7| import data_merger as dm

HARBBARBBURRRRHRRBRRHRAHR YRS
## DECLARING CONSTANTS##
HHARBUARBHARRRRRRRARRHRRA
debug = False

if not debug:

REQUEST_DIR = "/home/ilacqua/tool_chain/request"
RESPONSE_DIR = "/home/ilacqua/tool_chain/response"
SYNC_DIR = "/home/ilacqua/tool_chain/sync"
DONE_SYNC_DIR = "/home/ilacqua/tool_chain/done_sync"
PORT = 8001

else:
REQUEST_DIR = "request"
RESPONSE_DIR = "response"
SYNC_DIR = "sync'
DONE_SYNC_DIR = "done_sync"

PORT = 8001

27| STR_FILTER_RESPONSE = "response_"
STR_FILTER_REQUEST = "Req "

dir_list= [ REQUEST_DIR, RESPONSE_DIR]
for directory in dir_list:
if not os.path.isdir(directory):
os.mkdir (directory)

# Setup logging
logging.basicConfig(level=logging.DEBUG if debug else logging.INFO,
format=’Y(asctime)s - %(levelname)s - %(message)s’)

39 # init flask
40| app = Flask(__name__)

42| @app.route(’/list_requests’, methods=[’P0ST’])
43| def receive_data():

44 try:

45 list_files = os.listdir (REQUEST_DIR)

16 list_req = [item for item in list_files if item.startswith(STR_FILTER_REQUEST)]
47 response_data = {'request_list": list_reql}

48 logging.info(f"List of requests successfully retrieved. Found : {len(list_req)}")
19 return jsonify(response_data), 200

50 except Exception as e:

51 logging.error (f"Error retrieving list of requests: {e}")

52 return jsonify({"error": "Internal server error"}), 500

53

54| @app.route(’/list_pending_request’, methods=[’P0ST’])

55| def list_pending_request_():

56 try:

57 list_files = os.listdir (REQUEST_DIR)

58 list_pending = []

59 for item in list_files:

60 if item.startswith (STR_FILTER_REQUEST):

61 resp_name = STR_FILTER_RESPONSE + item

62 if not os.path.exists(os.path.join(RESPONSE_DIR, resp_name)):

63 list_pending.append (item)

64 response_data = {"list_pending": list_pendingl}

65 logging.info(f"List of pending requests successfully retrieved. Pending:{list_pendingl}")
66 return jsonify(response_data), 200

67 except Exception as e:

68 logging.error (f"Error retrieving list of pending requests: {e}")

69 return jsonify({"error": "Internal server error"}), 500

Qapp.route(’/get _request’, methods=[’POST’])

-~ =1 =1~

1

2| def get_request ():

3 try:

74 data = request.json

75 req = data.get("req name")

76 if not req:

7 logging.warning("Missing ’req_name’ in request.")
78 return jsonify({"error": "Missing required parameter ’req_name’"}), 400
79

80 req_path = os.path.join(REQUEST_DIR, req)

81 valid, content = is_valid_json(req_path)

82

83 response = {"valid": valid, "data": content}
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logging.info (f"Request ’{req}’ successfully retrieved with valid JSON: {validl}.")
return jsonify(response), 200

except Exception as e:
logging.error (f"Error retrieving request ’{data.get(’req_name’, ’unknown’)}’: {el}")
return jsonify({"error": "Internal server error"}), 500

Qapp.route(’/push_response’, methods=[’P0OST’])
def push_response():

try:
data = request.json
resp_name = data.get('resp name')
resp_data = data.get('resp_data')
if not resp_name or resp_data is None:
logging.warning("Missing ’resp_name’ or ’resp_data’ in push_response request.")
return jsonify({"error": "Missing required parameters ’resp_name’ or ’resp_data’"}), 400
resp_path = os.path.join(RESPONSE_DIR, resp_name)
result = write_json(resp_data, resp_path)
if result:
logging.info(f"Response ’{resp_name}’ successfully written.")
return jsonify({"result": "success"}), 200
else:
logging.error (f"Failed to write response ’{resp_namel}’.")
return jsonify({"error": "Failed to write JSON data"l}), 500
except Exception as e:
logging.error (f"Error pushing response ’{data.get(’resp_name’, ’unknown’)}’: {el}")
return jsonify({"error": "Internal server error"}), 500

Qapp.route(’/get_all_data’, methods=[’P0OST’])
def get_all_data():
try:
data = request.json
#here
result= "ok"
logging.info(result)
file_path = dm.main_slave(force=data.get("'force", None), acc_name=data.get("acc_name',
)
return send_file(file_path, as_attachment=True)
except Exception as e:
logging.error (f"Error: {el}")
return jsonify({"error": "Internal server error"}), 500

def is_valid_json(file_path, retries=3, delay=1):
"""Check if the file content is a valid JSON, with up to 3 retries.
Returns a tuple: (is_valid, content)."""
attempt = 0
while attempt < retries:
try:
with open(file_path, ’r’) as f:
content = json.load(f)
logging.debug (f"Valid JSON found in file ’{file_path}’ on attempt {attempt + 1}.")
return True, content
except (ValueError, json.JSONDecodeError) as e:
logging.warning (f"Attempt {attempt + 1}: Invalid JSON in file ’{file_path}’: {el}")
attempt += 1
time.sleep (delay)
logging.error (f"File ’{file_path}’ is not a valid JSON after {retries} attempts.")
return False, None

def write_json(data, filename):

try:

with open(filename, ’'w’) as file:
json.dump (data, file, indent=4)

logging.debug(f"Data successfully written to ’{filenamel}’.")
return True

except (IOError, TypeError) as e:
logging.error (f"An error occurred while writing to the file ’{filenamel}’: {e}")
return False

if __name__ == ’_ main__’:

logging.info(f"Starting Flask server on port {PORT}.")
app.run(host="0.0.0.0", port=PORT)

"any")

Listing 5.1: sync_ server.py
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Future works:

e Security has not been a major concern in the current implementation,
as the application is not publicly advertised, and neither the address nor
the port used is shared beyond the internal development environment. In
addition,on, the service is not publicly accessible or indexed. Although
this provides basic obscurity, in a production setup, it would be necessary
to introduce stronger mechanisms such as authentication tokens, HTTPS
encryption, and possibly IP whitelisting.

e Scalabilty: Currently, the system communicates with only one client
node. However, the architecture allows for easy extension: multiple
client could be introduced in the future with appropriate request logic.
This would allow better load distribution across available clients and
improve parallelism during large-scale experiments.

o Asynchronous model: The current implementation relies on an asyn-
chronous polling mechanism in which the client periodically checks for
new tasks. Although simple and robust, this approach can introduce
unnecessary latency and load. Future improvements could involve keep-
ing the connection open using techniques like long polling or server-sent
events. This would enable the server to notify the client when new data
become available, significantly reducing polling overhead and response
time. However, such a solution would require a direct, NAT-free con-
nection between the communicating machines.?

e Logging and monitoring: Due to the simplicity of the project in
its current stage, extensive logging has not been implemented. Only
basic logs are collected to trace major events and errors. For future
debugging and troubleshooting purposes, a more detailed and structured
logging system could be introduced. This might include request tracking,
event timestamps, and separate debug levels to support performance
monitoring and diagnostics.

« web interface and Automation: A web interface could be added in

2A NAT-free connection implies that both client and server can communicate directly,
without passing through Network Address Translation (NAT). NAT, commonly used in
routers (also ISPs), prevents devices without a public IP address from easily receiving
inbound connections
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the future to further simplify user interaction and enable visual monitor-
ing of the system status. In particular, such a Ul could help automate
and manage Spearmint-based experiments from a graphical dashboard.

5.3 Launch and automation

This section summarizes, how the whole tool-chain is invoked and correctly
executed:

1 - tool-chain: in vlsi server

The sequence of commands outlined above performs a systematic reset and
execution of the primary Python script within a controlled environment.
Initially, the working directory is set to the project folder, ensuring that
all subsequent operations are conducted within the correct context. Any
pre-existing tmux sessions are terminated, eliminating potential conflicts or
residual processes from previous runs.

Next, the procedure clears all relevant data structures by overwriting the
JSON database files associated with requests and responses, effectively ini-
tializing them to empty states. The corresponding directories storing tem-
porary request and response files are also purged, thereby preventing the
contamination of new runs with residual files.

Following this cleanup, the main Python script, tool_fsm_2.py, is
launched within a dedicated tmux session. This setup allows the script’s
output to be logged in real time while simultaneously being saved to a file
for post-execution review. Finally, the user attaches to the session, enabling
direct monitoring and interaction with the script’s execution.

# inside vlsi_wall
cd /home/thesis/francesco.ilacqua/2_table_man/

3l tmux kill-server

echo > ./scripts/tables/database. json

rm -r scripts/tables/request/*
rm -r scripts/tables/response/x*

echo > /home/thesis/francesco.ilacqua/2_table_man/
scripts/tables/uploaded_response_list.json

tmux new-session -d -s tool_chain
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13l tmux attach -t tool_chain

[

Listing 5.2: tool chain launch commands

2 - sync server: in gangalf

For the sync_server script, the procedure is straightforward. The script
itself encapsulates all necessary management and execution logic, so the user
only needs to invoke an aliased command to launch the server.

# run flask server in gandalf server
alias run_my_sync=

alias start_my_sync=
echo

Listing 5.3: sync server launch commands

3 - spearmint: runtime

The workflow on the spearmint-server side is slightly more complex due to
the dependency on a running MongoDB server for Spearmint. To streamline
operations, several aliases have been introduced to manage the database life-
cycle, including starting, removing, and terminating the MongoDB instance.

A dedicated function is provided to execute a clean Spearmint session (e.g.,
for the conv example). This function prompts the user for confirmation via
are_u_sure to ensure that they are aware that all previous progress will
be lost. Upon confirmation, the current MongoDB instance is cleaned, all
temporary folders are removed, and a fresh run of the Spearmint main script
is executed.

Additionally, another function is available to resume an interrupted execu-
tion, which may occur due to unexpected errors or system interruptions. This
design ensures that both full and partial runs of Spearmint can be managed
in a controlled and reproducible manner.

alias stc_mongo_remove= # remove files
alias stc_mongo_start= # starts mongo
alias stc_mongo_terminate= # terminates mongo

are_u_sure (){ read -p -r response && [[ $response

=~ ~[yyl$ 11; %

stc_retry_run_conv () {
echo
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5.3 — Launch and automation

are_u_sure Il { echo
return 1; }

cd ~/spearmint
python cleanup.py examples/conv/

rm -rv ~/tool_chain/{request/*conv*,response/*conv*}
rm -rv ~/spearmint/examples/conv/output_x

python main.py ./examples/conv

stc_start_conv () {
cd ~/spearmint
pwd
tmux new-session -d -s backup-tmux
python main.py ./examples/conv

Listing 5.4: spearmint launch commands

7
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Chapter 6

FC: EXPERIMENTAL
RESULTS

Figure 6.1: FC 3D cloud of points
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6.1 Spearmint search space: FC

At this stage is necessary to define a search space in order to properly tune
Spearmint. With this data is possible to define a search space of well behaving
accelerators and which can surely work.

For the frequency (Freq) parameter, a maximum value of 1600 MHz is
selected, since higher frequencies become unfeasible, while values below 200
MHz do not provide sufficient throughput. The step size between consecutive
values is set to 200 MHz, in line with the discrete nature of the other parame-
ters. However, because even small frequency variations can trigger significant
changes at the RTL level, it remains interesting to observe how the optimiza-
tion process explores this parameter and whether it identifies local minima
where additional hardware is introduced to improve timing performance.

The number of output neurons OUTNEU is searched from 4 to 32 with
steps of 4. These steps were taken to follow the same approach as Urbinati’s
paper, ensuring alignment and the generation of comparable data.

When considering possible loop configurations, the approach remains
fixed: both unrolling and pipelining are applied, as previously discussed in
Chapter 4.4.2. The search space of loops within F'C' is broad, comprising
seven loops, some of which are nested (see Pseudocode 2.2). For external
loops, full and half unrolling (FU and HU) are avoided, since unrolling inner
loops is generally more beneficial, while unrolling external loops would sig-
nificantly complicate the internal structure of the accelerator. Instead, these
external loops are assigned a pipelining interleave of 2 (II-2), which improves
throughput without adding excessive hardware complexity. Table 6.1 sum-
marizes the configuration of these loops, including the labels used both in
the configuration file and in the external framework for troubleshooting. For
example, the [p_ init loop appears with two entries in the table: one referring
to the configuration file and another to the tool-chain framework, with the
translation handled by the BO script.

6.2 FC: Search advancement

During the search for Pareto points, various scripts were developed to perform
data analysis and plotting operations. The main processing step involved
excluding duplicate points, as Spearmint unexpectedly chose the same input
knobs within the same search leading to the same outputs and causing it
to get stuck in local minima. These issues can distort the search space
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Table 6.1: Numerical Encoding of Loop Optimization Levels for FC
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and negatively affect the quality of the results. As future work, Spearmint
could be modified to include a limited number of random searches during the
optimization process, in order to escape local minima and reduce the amount
of duplicated points.

The research in the case of the FC has been stopped at around 1700
iteration, due the time taken to perform the research, about one month, and
due the fact, that the Pareto curve was well populated.

6.2.1 FC: pareto found

The three objectives of the search are: silicon area, power consumption, and
execution latency. According to the definition of a Pareto point, the goal is to
identify the best-performing solutions in at least one of the three objectives.
In fact, there is no single Pareto solution that outperforms all others. Instead,
multiple solutions may dominate in more than one objective.

With the progression of Bayesian Optimization iterations, the lack of suf-
ficient output log from Spearmint made it impossible to directly track the
MOBO’s advancement. To overcome this, the progression of MOBO is ex-
trapolated from the data collected during these iterations, resulting in the
Pareto Found graph for FC in Fig.6.2.
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Pareto points for 1712 iterations

100% 4 —— pareto APL % (58)

—— pareto LP % (16) '
—— pareto LA % (17) /ﬁ
pareto PA % (9)

80% A F J’_
|
60% _r

40% A

Percentage of pareto points found

20% A

il
0% A H

0 250 500 750 1000 1250 1500 1750
Iteration

Figure 6.2: FC, Pareto search advancement over iterations

The Pareto Found graph 6.2 is one of the most essential visualization
tools showing the percentage of Pareto points discovered at each iteration.
This graph helps identify the iterations where most Pareto points are found
and where a plateau occurs, indicating that no new Pareto points are dis-
covered in that interval. If the graph shows a plateaus towards the end, the
search can potentially be stopped, as most Pareto points have already been
identified. However, this remains speculative unless a prior grid search has
been conducted. In fact, it is uncertain whether additional Pareto-optimal
points are still undiscovered among the remaining candidates, however the
maximum allowed search time is another important constraint to consider for
stopping the MOBO search. The graph in Fig. 6.2 displays four distinct lines
LP, LA, AP, APL, representing the percentage of pareto point discovered
in the Latency-Power (LP), Latency-Area (LA), Power-Area (AP) planes,
and the union of these sets, respectively. The legend also indicates the total
number of points found for each category in bracket, while the title specifies
the total number of iterations completed by the MOBO algorithm.

Several observations can be made from this graph:

o By approximately the 300-th iteration, one-third of the total Pareto
points have already been discovered.
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e Two plateaus are visible in the ranges of 500-900 and 1100-1300 itera-
tions.

o In the final 200 iterations, the trend continues to rise, suggesting that
further iterations could yield additional Pareto points.

e The number of Pareto AP points is significantly lower than the others.

6.3 FC: 2D projections

6.3.1 FC: The LA projection

The 2D Projection graph in Fig. 6.3 projects the 3D Pareto points on the
2D latency vs area space. This type of visualization helps analyze the Pareto
points easily on a 2D plane rather than on the original 3D space. Moreover,
thanks to the iterations on the color bar, it tracks with a color gradient
the order in which Pareto points were discovered and how the Pareto front
evolves over time, from purple (initial iterations) to red (last iterations).

Pareto APL points are marked with circles, while points on the 2D Pareto
front are marked with crosses. Since each 2D Pareto point is a subset of a
Pareto APL point, all crosses are included in circles. Finally, the crossed
points are connected with a black line to better illustrate the Pareto front,
which defines the space of LA Pareto solutions.

Fig. 6.3 has two subplots: the right one displays all data points, while the
left one provides a zoomed-in view of the Pareto front. The latter curve is
particularly useful for choosing an FC accelerator solution with a specific
latency requirement, allowing a designer to determine the minimum area
needed to achieve it, and vice versa.

For the FC case in Figure 6.3 is possible to take some conclusions:

e Hyperbolic trend, that identifies the inverse correlation between latency
and area.

e The iteration-color distribution is not concentrated in clusters, which
indicates that the research does not work by small steps, but in perceived
probability. This comes from the nature of the BO (see Chapter 1.3).

o Latency has a more "discrete" distribution steps. This is due to the
choice of the search space which is composed of knobs with a discrete
set of values.
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Figure 6.3: FC, Pareto 2D projection on Latency-Area (right is zoom on front)

FC: LA Pareto front points

Table 6.2: FC pareto LA plane sorted by latency

Iteration | Lp C Lp K Lp Init Lp Q Lp WB | OutCh InCh ‘ Freq | Latency([s] | Power[mW] | Area[pm?
1645 | 1I-2 FU 11-2 11-2 11-2 32 1024 1600 | 8.094e — 05 23.950 | 9.545¢ + 04
1075 | 1I-2 11-0 FU 11-0 HU 24 1024 1600 | 8.393e — 05 20.360 | 7.353e + 04

384 | 1I-2 HU 11-2 11-2 11-2 4 1024 1600 | 8.425e — 05 14.030 | 2.344e + 04
942 | II-2 HU 11-2 11-0 HU 4 1024 1600 | 8.700e — 05 9.430 | 2.128e + 04
92 | 1II-2 HU HU 11-0 HU 4 1024 1200 | 1.145e — 04 10.300 | 2.071e + 04
220 | 1I-2 11-0 HU 11-0 HU 4 1024 1200 | 1.145e — 04 10.300 | 2.071e + 04
137 | 1I-2 HU 11-2 11-0 11-2 4 1024 1000 | 1.367e — 04 6.679 | 1.990e + 04
21 | II-2 11-0 1I-2 11-0 HU 4 1024 800 | 1.698e — 04 5.892 | 1.972¢ + 04
90 | II-2 HU 11-2 11-0 HU 4 1024 800 | 1.698e — 04 5.892 | 1.972e 4 04
1064 | 1I-2 11-0 11-2 11-0 HU 4 1024 600 | 2.262e — 04 2.751 | 1.947e + 04
954 | 1I-2 11-0 FU 11-2 HU 4 1024 400 | 3.323¢ — 04 3.157 | 1.946e + 04
106 | 1I-2 HU 11-2 11-0 11-2 4 1024 400 | 3.360e — 04 3.055 | 1.912¢ + 04
1154 | 1I-0 11-0 11-2 11-0 FU 4 1024 1000 | 4.890e — 04 4.372 | 1.907¢e + 04
1405 | 1I-1 11-0 11-2 II-0 HU 4 1024 400 | 6.555e — 04 2.556 | 1.895¢ + 04
1637 | 1I-1 FU 11-2 11-0 HU 4 1024 400 | 6.555e¢ — 04 2.556 | 1.895e + 04
1475 | 1I-0 HU FU 11-0 HU 4 1024 200 | 1.791e — 03 1.610 | 1.871e + 04

In Tab. 6.2 high area solutions are at the top and low area ones are at the
bottom. The situation with the Latency is opposite.

Frequency: at first glance, the frequency exhibits a clear downward trend.
Higher frequency results in lower latency, but also requires more area, possibly
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due to stronger gates and a higher use of buffer cells in the digital design. On
the other hand, at lower frequency, as expected, latency increases while the
area decreases. The frequency range is fully utilized, but a finer granularity
could lead to more optimal solutions. For instance, 1400 MHz solutions are
missing from the table, likely due to suboptimal results.

OutNeu is almost always fixed at 4, with a few exceptions at high fre-
quency and low area. Obviously, a higher number of output neurons pro-
duced by the accelerator leads to a lower latency, but in this case, saturation
to 4 occurs very quickly. From Table 6.2, it is evident that this parameter
significantly influences the search process, and its entire range is utilized.
Since the values 32 and 2/ appear only once, while intermediate values do
not appear at all, / emerges as the most favorable value. The brief occur-
rences of these high values are associated with lower latency, but comes at
the cost of increased area (and power consumption, which is not considered
in this analysis). The benefits of higher OutNeu values appear to result
in only marginal improvements, suggesting its use only for extremly-low la-
tency designs. Thus, setting a low-latency constrain might force the research
to look for higher QutNeu.

Here is a brief commentary on the effect of high-level synthesis directives
on loops for the latency-area 2D space.

e loop init:

The impact of this parameter appears to be minimal, suggesting
that other design choices play a more significant role in determining
performance. Since the II-2 value frequently appears in LA Pareto-
optimal solutions, it may indicate a reasonable trade-off between
performance and resource utilization.

« loop c:

The II-2 setting is dominant in Pareto-optimal points, highlighting
its effectiveness in balancing latency and area. II-2 is associated to
low-latency.

The inverse relationship between initiation interval (IT) and area
consumption follows a predictable monotonic trend.

e loop K:
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This loop’s influence appears limited, as no significant variation is
seen across different Pareto-optimal points. The presence of FU
and HU in the optimal configurations suggests that unrolling has a
moderate impact on resource usage but does not strongly influence
latency in this particular case.

» loop q:

The values of II-0 and II-2 dominate, confirming that these settings
provide the best area efficiency. II-0 is the most frequently observed
setting, likely due to its ability to minimize area while maintaining
reasonable latency. The fact that no full unrolling (FU) appears
indicates that excessive unrolling is not beneficial in this loop for
latency-area trade-offs.

e loop whb:

Half Unrolling (HU) is the most frequently occurring value, indicat-
ing that provides a strong trade-off between reducing latency and
limiting area growth. FU, while appearing occasionally, consumes
significantly more area without proportional gains in latency reduc-
tion, making it less favorable in most Pareto-optimal points.
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6.3.2 FC: LP projection

e Points (1099) d
x  pareto_Latency_Power (16)
O Pareto (58)

—— Interpolated pareto_Latency_Power

e Points (1099)
x  pareto_Latency_Power (16)
O Pareto (58)
—— Interpolated pareto_Latency_Power

108 (3 Q ®°
3-®° Om" “mc "—&(J‘Q's‘ °
L]
’ - L] L]

g g O* 0 NS WB AGe o
= =
o o
9 107 o O s@eeqaeg .
‘@ o o
= = 2 000w, o b WLAB W (0 .o
> >
o o
c c
s g
5 oi% Pecte . o 3

106

(o) = « 0
&2‘4 38 e 0 of
% 'y L)
®ce ’on'."‘;‘f
. . 10° o
L]
L]
10° .
L] L]
100 10! 102 103 100 10t
Power [mW] log:True Power [mW] log:True

200 400 600 800 1000 1200 1400 1600
Iteration

Figure 6.4: FC, Pareto 2D projection on Latency-Power (right is zoom on front)

A similar graph is made for Latency-Power subset in Fig.6.4 This kind of
solution looks at a trade-off between power consumption and latency. This
graph can be used to designs high-performance or low-power FC accelerator
design. Other conclusions can be derived:

e Here iteration-colors does not have a pattern, so the research is not
linear.

e LP points still has an inverse correlation between latency and power.

FC : LP Pareto front points

In this table, high area and power solutions are at the top and low area are
at the bottom.

Frequency As expected, solutions that require more area and are more
power-hungry are found at high frequency. The distribution is quite uni-
form, and the same conclusions can be drawn as in the latency-area case.
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Table 6.3: FC pareto LP plane sorted by latency

Iteration | Lp C Lp K Lp Init Lp Q Lp WB | OutCh InCh ‘ Freq | Latency[s] | Power[mW] | Area[pm?
1645 | 1I-2 FU 11-2 11-2 11-2 32 1024 1600 | 8.094e — 05 23.950 | 9.545e + 04
1075 | 1I-2 11-0 FU 11-0 HU 24 1024 1600 | 8.393e — 05 20.360 | 7.353e + 04

384 | II-2 HU 11-2 11-2 11-2 4 1024 1600 | 8.425e — 05 14.030 | 2.344e + 04
1142 | 1I-2 11-0 FU 11-0 FU 8 1024 1600 | 8.637e — 05 11.520 | 3.076e + 04
942 | 1I-2 HU 11-2 11-0 HU 4 1024 1600 | 8.700e — 05 9.430 | 2.128e + 04
108 | II-2 HU HU 11-2 FU 4 1024 1200 | 1.128e — 04 7.275 | 2.142e 4 04
137 | 1I-2 HU 11-2 11-0 11-2 4 1024 1000 | 1.367e — 04 6.679 | 1.990e + 04
399 | II-2 HU FU 11-2 HU 8 1024 800 | 1.644e — 04 4.130 | 3.004e + 04
446 | 1I-2 HU FU 11-2 FU 8 1024 600 | 2.206e — 04 2.731 | 2.987e + 04
386 | II-2 HU 11-2 11-0 HU 8 1024 600 | 2.237e — 04 2.584 | 2.913e + 04
1602 | 1I-2 11-0 HU 11-0 HU 4 1024 600 | 2.270e — 04 2.120 | 1.969¢ + 04
1582 | II-1 11-0 11-0 11-0 11-0 4 1024 600 | 4.408e — 04 1.888 | 1.987e + 04
59 | II-2 FU FU HU 11-0 8 1024 200 | 6.572e — 04 1.269 | 3.086e + 04
985 | II-2 FU FU 11-0 HU 8 1024 200 | 6.647e — 04 1.121 | 2.878e + 04

OutNeu In high-frequency versions, OutNeu exhibits a downward trend,
decreasing from 32 to 4. However, this trend is not globally consistent across
all configurations, even within fixed-frequency clusters. OutNeu is gener-
ally set to either 4 or 8, as these values provide the best trade-off in LP
Pareto-optimal solutions. This parameter proves to be highly effective in op-
timization, but at lower values, the impact of other parameters becomes more
significant. In future, restricting the search space by focusing on the most
effective OutNeu values could enhance the efficiency of the optimization
process.

Analysis of Latency and Power Consumption in Pareto-optimal
Points Below is an analysis of how various design knobs influence latency
and power consumption.

e loop init:

The loop initialization parameter has a relatively subtle impact on
both latency and power consumption. The value II-2 tends to
appear more frequent in Pareto-optimal points, suggesting that it
strikes a balance between performance and resource utilization. The
initialization value impacts the speed of execution without signifi-
cantly affecting power, meaning that its main role is to optimize the
trade-off between latency and area.

e loop c:

I1-2 is the most common choice in Pareto-optimal solutions, as it
consistently yields a favorable balance between power and latency.
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Similar conclusions can be taken as for LA.
e loop K:

The impact of loop K on latency and power consumption appears
minimal. The presence of FU and HU in the Pareto-optimal con-
figurations indicates that the unrolling factor has a modest effect
on both latency and power consumption. However, the variation
in power is not drastic across different points, implying that this
parameter is not a dominant factor for optimization in the current
design space.

» loop q:

The II-0 and II-2 values dominate the Pareto-optimal solutions,
and this reinforces the idea that these settings offer a good balance
between power efficiency and latency reduction. II-0 is particularly
effective in minimizing power consumption, making it a common
choice. The absence of FU in the Pareto-optimal points suggests
that aggressive unrolling leads to a non-optimal increase in power
consumption.

e loop wh:

HU stands out as the most frequent value for loop wb, showing
that half-unrolling provides an efficient trade-off between reducing
latency and keeping power consumption lower than in configura-
tions that use full unrolling. FU appears infrequently and tends to
consume more power without offering substantial latency benefits,
which explains why it is less favored in the Pareto-optimal points.
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6.3.3 FC: AP projection

FC : AP pareto
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Figure 6.5: FC, Pareto 2D projection on Area-Power (right is zoom on front)

In the same way, Fig. 6.5 shows the Area-Power subset of Pareto points. This
graph is quite different from the previous one, since area and power have a
linear correlation. Due to this, the pareto points are the lowest amount in
the projection. A design that minimize both power and area by neglecting
latency is quite useless. This graph starts to make sense if only the points
with some latency target are filtered. Few Pareto solutions are identified in
this projection.

FC : AP Pareto front points
In this table, high-area solutions are at the top, while low-area solutions are

at the bottom. Power exhibits the opposite behavior.

Frequency In this case there is a different behavior, since latency is
neglected. There is no need to increase the frequency to produce faster data.
The frequencies utilized is 200 MHz in most cases, but with one overshoot
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6.3 — FC: 2D projections

Table 6.4: FC pareto PA sorted Power

Iteration

985
67
1330
939
1296
497
1475

LpC LpK LpInit Lp Q Lp WB | OutCh InCh | Freq | Latency|s] | Power[mW] | Area[pm?]
1I-2 FU FU 11-0 HU 8 1024 200 | 6.647e — 04 1.121 | 2.878¢ + 04
II-1 11-0 11-2 11-0 HU 8 1024 200 | 1.305e — 03 1.216 | 2.853e + 04
II-1 HU 11-2 11-0 HU 8 1024 200 | 1.305e — 03 1.216 | 2.853e + 04
I1-0 HU 11-2 11-0 HU 4 1024 400 | 8.955e — 04 1.219 | 1.939% + 04
11-0 HU HU 11-0 HU 4 1024 200 | 1.793e — 03 1.461 | 1.879¢ + 04
11-0 HU 11-2 11-0 HU 4 1024 200 | 1.791e — 03 1.578 | 1.878e + 04
11-0 HU FU 11-0 HU 4 1024 200 | 1.791e — 03 1.610 | 1.871e + 04

at 400 MHz. If the aim is to find this kind of Pareto set, the frequency knob
can be fixed to reduce the search space.

OutNeu exhibits a similar behavior as before, but in this case, there is a
linear trend. Low-power and high-area configurations are associated with 8
OutNeu, while high-power and low-area ones are linked to 4 OutNeu.

Based on the analysis of the data across various loop parameters, and
considering the low amount of pareto points to have a strong static to analyze
the following conclusions can be drawn about power and area:

e loop init:

The impact of loop init on power and area is relatively minimal.
The most frequent value, II-2, suggests that it is favored for power
efficiency while maintaining a reasonable area size.

e loop c:

The II-0 configuration is the most dominant in Pareto-optimal solu-
tions, offering a solid benefits in both power and area. This suggests
that II-0 is a more efficient choice for minimizing area and power,
while unrolling (e.g., FU) is beneficial for reducing latency but in-
creases both power and area significantly.

e loop K:

For this knob unrolling techniques, in particular HU, represents the
best performing values in AP constraints.

« loop q:

The II-0 is the only appearing, this indicates the strong effect of
this value-knob, to the overall contribution of area and power.
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FC: EXPERIMENTAL RESULTS

e loop whb:

The most frequent value for loop wb is HU, which appears to offer
a good balance between reducing both latency and power consump-
tion, while keeping area relatively low. FU, is not present in some
points, tends to increase both power consumption and area signifi-
cantly. This suggests that while full unrolling can reduce latency, it
is not always the best choice for optimizing power and area in the
Pareto-optimal solutions.

6.4 FC: search validation graphs

6.4.1 FC: duplicates

100 1" —— Normalized Duplicates 539

80 1

60 1

40

Normalized Duplicates (%)

20

0 250 500 750 1000 1250 1500 1750
Iteration

Figure 6.6: FC, Pareto duplicated designs.

A plot that illustrates the search progression is presented in Fig.6.6. It
shows the Duplicates, i.e., the frequency of re-utilization of the same input
parameters during the search. This behavior indicates that the algorithm is
not exploring new solutions effectively, instead it is reconsidering previously
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6.4 — FC: search validation graphs

evaluated ones. A sharp increase toward the end of the graph may suggest
that the algorithm has converged to a local minimum.

From Fig. 6.6 it can be seen that the overall duplicates for FC are 539 over
1712 iterations. Some conclusions can be extracted:

e A trend can be observed in the first 1000 iterations of the MOBO pro-
cess, where approximately 50% of the total duplicates are found — this
corresponds to approximately 250 duplicates. This implies an average
of one duplicate every four iterations during the first half of the search.

o In the second half of the search, the remaining 50% of duplicates are
distributed over the final 712 iterations, resulting in a denser trend of
approximately one duplicate every three iterations.

e In the early iterations, the growth of duplicates follows a sub-linear ex-
ponential trend, meaning that the tool starts revisiting previously eval-
uated points as it approaches the end of the MOBO process.

In such cases, the search process can either be terminated or continued
by injecting additional random points to promote further exploration. It is
possible to believe that this behavior may be due to a bug in the implementa-
tion of the MOBO algorithm within Spearmint. Nevertheless, the tool could
be modified to automatically introduce new exploration points whenever a
certain number of previously evaluated configurations are selected again.

6.4.2 FC: max-min-distance

The Max-Min Distance graph is the last that we propose to study the
quality of the MOBO search. During the research, it is difficult to determine
from the 2D projections in Figs. 7.3-7.4 whether a new cluster of Pareto
points has been discovered. This graph tries to solve this problem by eval-
uating the Euclidean distance between previously found Pareto points and
newly discovered ones. Ideally, this distance should approach zero over time,
indicating that the Pareto curve is well populated.

By analyzing the plot, one can observe three distinct tracks, each rep-
resenting the distance between the Pareto-optimal points across the three
different Pareto projections. The number of points in each curve varies, as
each projection has a different number of Pareto-optimal solutions. It is ev-
ident that the distances remain relatively small, given that the Euclidean
distance is computed using normalized values across all three dimensions.
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FC: EXPERIMENTAL RESULTS

Overall, the curves exhibit a tendency to converge towards zero, indicating
that newly discovered Pareto points are increasingly located near previously
identified ones. The only point against tendency occurs in LA set, where a
new cluster/point is discovered around 1500-th iteration.

Pareto points minimum distance over iterations

—e— pareto_Power_Area <
pareto_Latency_Power
101~ —e— pareto_Latency_Area

minimum distance

0- ——

0 200 400 600 800 1000 1200 1400 1600
iterations

Figure 6.7: Qualitative Euclidean distance between found points.

6.4.3 FC: Reported Errors

Error graph keeps track of the failed iteration of Spearmint. Often they are
linked to the attempt to design a RTL inside Catapult with unfeasible mem-
ory design. This information, which is tracked inside the Spearmint search
advancement, helps to distinguish which knob combinations are not feasible
in order to reduce failed attempts. The faster the error curve approaches
zero, the quicker Spearmint learns to avoid invalid configurations. As stated
before, errors don’t appear in FC accelerators.

For the FC case, no faulty iterations were observed: none of the explored
solutions resulted in a design failure at any level.
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Chapter 7

CONYV:
EXPERIMENTAL
RESULTS

7.1 Spearmint search space : CONV

The search space for the CONV design is defined analogously to that of the
FC. For CONYV, the number of output channels (OUTCH) is varied lin-
early from 4 to 32 in steps of 4, while the number of input channels (INCH)
is fixed at 32, as this setting provides the highest throughput. The same
strategy adopted for the FC design is applied to loop transformations in
CONYV: the more complex loops can either be pipelined with an initiation
interval of 2 or 1, or left sequential, whereas simpler loops can be either
partially or fully unrolled.

7.2 CONYV: Search advancement

7.2.1 CONYV: pareto found

In Fig. 7.2, the Pareto Found graph is reported. A total of 1074 iterations
were executed, with the majority of Pareto points identified within the first
600 iterations. Excluding the LP points, more than 80% of the Pareto APL
points were discovered by the 400-th iteration. The search was interrupted
at this stage due to an error in the spearmint script, which caused the
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e non-pareto
pareto

Jamod

0.06 Area

Figure 7.1: CONYV 3D cloud of points

Table 7.1: Numerical Encoding of Loop Optimization Levels

Loop I1-0 | I1I-2 | I1I-1 | HU | FU
Catapult Level 4 3 2 1 0
Ip_ init_ config 3 2 1 0
Ip__init_ BO 4 2 1 0
ci_ for__config 4 3 2

ci for BO 4 3 2
k_h_for_config 4 3 2

k h for BO 4 3 2
k_w_for_config| 4 3 2

k w for BO 4 3 2

co_ for_ config 3 2 1 0
co_for BO 4 2 1 0
wb__for__config 3 2 1 0
wb__for BO 4 2 1 0
q_for_ config 3 2 1 0
q_for_BO 4 2 1 0
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7.3 — CONV: 2D projections

Pareto points for 1074 iterations
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Figure 7.2: CONYV Pareto APL search progression

process to stall around a local minimum. Notably, LP required more itera-
tions to converge and reveal its full set of Pareto points. When aggregating
the Pareto points obtained from LA, LP, and AP, their total exceeds that
of APL, indicating that some Pareto points are shared across sub-groups.
As previously discussed, owing to the linearity of the Pareto projection AP
(6.3.3), only a limited number of Pareto points fall within this category. In
other words, the low-area—low-power solutions occupy the lower-left region
of the plot, dominating the others.

7.3 CONYV: 2D projections

7.3.1 CONYV: LA projection
CONYV : LA pareto

As in the case of FC, the Pareto 2D curves for the LA, LP, and AP spaces
are plotted in Figs.7.3-7.5, respectively. In LA (Fig.7.3), the inverse pro-
portionality is confirmed, and the discovered points appear to be randomly
distributed. Latency points, however, tend to align horizontally. The total

97



CONV: EXPERIMENTAL RESULTS
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Figure 7.3: CONYV Pareto projection on Latency-Area

number of identified Pareto points exceeds 50, although the plot displays
slightly fewer. Several points lie in close proximity, making them difficult to
distinguish in the figure; nevertheless, upon closer inspection (e.g., through
zooming), their separation becomes evident.

7.3.2 CONYV: LP projection
CONYV : LP pareto

As in the FC case, the Pareto front for the LP scenario is visualized in 2D
for CONV (Fig.7.4). Since the main characteristics have already been dis-
cussed for the fully connected design, no further in-depth analysis is provided
here. An additional zoomed view is included to highlight finer details. The
inverse relationship between latency and area is once again evident, although
the distribution of Pareto-optimal points appears scattered. Latency values,
however, exhibit a more structured alignment, suggesting an underlying pat-
tern. In total, 20 Pareto points were identified, a number that can be readily
verified from the zoomed portion of the plot.

98



7.3 — CONV: 2D projections

Table 7.2: CONYV pareto LA sorted Latency

Iteration
398
526

6
52
602
36
54
609
555
428
299
51
302
37
47
e
63
211
509
43
35
168
72
109
111
177
87
174
226
7
105
233
73
113
100
74
95
195

141
175
351

116
121
119

93
124
123
122

53
146

76

LpCI LpCO Lp W&H LP Init Lp Q Lp WB

1I-1
11-2
11-2
11-2
11-2
11-2
11-2
11-2
11-2
I1-2
11-2
11-0
11-2
11-2
11-2
1I-1
11-2
1I-2
11-2
I1-2
11-2
1I-1
II-1
II-1
II-1
II-1
1I-1
II-1
11-1
1I-1
II-1
1I-1
II-1
II-1
1I-1
II-1
II-1
1I-1
II-1
II-1
11-2
1I-1
1I-1
II-1
1I-1
II-1
II-1
1I-1
II-1
1I-1
II-1
II-1
1I-1

FU

11-0
11-2
11-2
II-1
11-0
11-2
II-1
11-0
11-0
11-0
11-0
11-2
11-0
11-0
II-1
11-0
II-1
11-2
11-0
I1-2
II-1
11-2
11-0
11-2
11-0
11-2
1I-1
II-1

HU

II-1

11-0
11-0
1I-1
HU
11-0
11-0
11-0
11-0
11-0
1I-0
11-0
11-0
11-0
11-0
11-0
11-0
11-0
1I-0
11-0
11-0
1I-1
1I-1
11-0
1I-0
11-0
1I-0
11-0
11-0
11-0
11-0
1I-0
11-0
11-0
11-0
11-0
11-0
11-0
1I-0
1I-0
11-0
11-0
11-0
11-0
1I-0
11-0
11-0
11-0
11-0
11-0
11-0
11-0
1I-0
11-0

II-1

OutCh InCh
16 32
16 32
16 32

w w
[V} no

NN
w9 w
[N SO )

Freq ‘ Latency(s]

1000
800
400
800

1000

1000
600

1000

1000

1000

1000

1000
800
600
600
800
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
200
200
200
200
200
200
200
200
200
200
200
200
200

0.021
0.026
0.050
0.051
0.078
0.078
0.131
0.154
0.154
0.154
0.154
0.175
0.192
0.256
0.257
0.381
0.383
0.383
0.383
0.383
0.384
0.759
0.760
0.760
0.760
0.760
0.760
0.760
0.761
0.761
0.761
0.761
0.761
0.761
0.761
0.761
0.761
0.761
0.761
0.761
0.766
1.521
1.521
1.521
1.521
1.521
1.521
1.523
1.523
1.523
1.523
1.523
1.523

Power[mW]
13.260
7.685
5.032
6.512
5.779
5.779
4.026
5.457
5.480
5.221
5.221
5.384
3.498
3.200
3.161
3.116
2.147
2.147
2.147
2.367
2.666
1.858
2.071
2.071
2.071
2.071
2.071
2.071
2.245
2.245
2.245
2.245
2.245
2.245
2.287
2.287
2.287
2.287
2.287
2.287
1.210
0.911
0.911
0.911
0.911
0.911
0.911
0.982
0.982
0.982
0.982
0.982
0.982

Area[pm?]
8.360e + 04
7.400e + 04
7.305e + 04
3.330e + 04
2.623e + 04
2.623e + 04
2.580e + 04
2.502¢ + 04
2.495e + 04
2.486e + 04
2.486e + 04
2.483¢ + 04
2.470e + 04
2.460e + 04
2.458¢ + 04
2.454e + 04
2.414e + 04
2.414e + 04
2.414e + 04
2.402e + 04
2.399e + 04
2.395¢e + 04
2.390e + 04
2.390e + 04
2.390e + 04
2.390e + 04
2.390e + 04
2.390e + 04
2.385e + 04
2.385¢ + 04
2.385e + 04
2.385¢ + 04
2.385e + 04
2.385e + 04
2.382e + 04
2.382¢ + 04
2.382e + 04
2.382¢ + 04
2.382e + 04
2.382e + 04
2.376e + 04
2.364e + 04
2.364e + 04
2.364e + 04
2.364e + 04
2.364e + 04
2.364e + 04
2.364e + 04
2.364e + 04
2.364e + 04
2.364e + 04
2.364e + 04
2.364e + 04

7.3.3

CONYV: AP projection

CONYV : PA pareto

In this case, the AP curve appears somewhat atypical, as it seems to consist
of only three distinct points. A more detailed analysis is therefore required.
By examining the tables generated from the same dataset (as shown later
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Table 7.3: CONYV pareto LA occurrences

‘ Lp CI Lp CO Lp W&H Lp init Lp Q Lp WB [ OutCh | InCh [ Freq
- Value % | Value % | Value % | Value % | Value % | Value % Value % Value % Value %
-1 6226 | II-1 5094 | II-0 39.62 | II-1 5849 | II-0 9245| HU 54.72 4.0 9434 32.0 100.0 400 47.17

II-2  35.85| II-0 3585 | II-2 32.08] HU 26.42| II-1 5.66 | 1I-1 434 16.0 5.66 200 24.53
11-0 1.89 | HU 9.43 | II-1 283 | 1I-0 9.43 | HU 1.89 | 1I-0 1.89 1000  15.09
FU 3.77 FU 5.66 800 7.55
600 5.66
e Points (343) @°® e Points (343)
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Figure 7.4: CONYV Pareto projection on Latency-Power

in Table 7.6), the individual points on the Pareto front can be identified.
In fact, the set includes more than ten points. However, since all of them
share the same operating frequency of 200 MHz and four output channels,
the only variation arises from the initiation interval applied to most loops.
This suggests that, at low operating frequencies, the initiation interval has
little impact on either area or power.

7.4 CONYV: search validation graphs

7.4.1 CONYV: errors

Fig. 7.6 reports the CONYV errors, defined as unfeasible design generated
by CADs when processing the CONV design selected at each iteration. The
vertical axis is normalized with respect to the total number of errors observed
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Table 7.4: CONYV pareto LP sorted Latency

Tteration | Lp CI Lp CO Lp W&H LP Init Lp Q Lp WB | OutCh InCh | Freq ‘ Latency([s| | Power[mW] | Area[pm?]
398 1I-1 FU 11-0 HU 11-0 11-1 16 32| 1000 0.021 13.260 | 8.360¢ + 04
526 | II-2 HU 11-2 -1 11-0 HU 16 32| 800 0.026 7.685 | 7.400e 4 04

6 11-2 HU 11-2 FU 11-1 HU 16 32 400 0.050 5.032 | 7.305e 4+ 04
437 11-2 HU 11-2 11-0 11-0 HU 8 32 600 0.067 3.920 | 4.185e + 04
46 | 112 HU 11-2 11-1 -1 FU 4 32| 800 0.097 3.664 | 2.639¢ + 04
448 11-2 HU 11-2 FU 1I-1 I1-1 8 32 400 0.099 3.019 | 4.050e + 04
24 11-0 HU 11-2 11-0 11-0 FU 4 32 600 0.157 2.650 | 2.626e + 04
56 | II-1 FU 11-2 11-1 11-0 FU 4 32| 400 0.193 2.576 | 2.727e + 04
49 11-2 HU II-1 HU 11-0 HU 4 32 400 0.194 2.461 | 2.516¢e + 04
41 11-2 FU 11-0 II-1 11-0 HU 4 32 200 0.201 1.711 | 2.724e + 04
65 11-2 HU 1I-1 HU 11-1 HU 4 32 200 0.389 1.652 | 2.558e + 04
455 | II-2 HU 11-2 HU 11-0 11-1 4 321 200 0.390 1.572 | 2.495e + 04
296 II-1 II-1 11-2 HU II-1 HU 4 32 400 0.760 1.331 | 2.439e + 04
58 II-1 II-1 11-0 HU 1I-1 HU 4 32 400 0.760 1.331 | 2.439¢ + 04
59 11-2 11-0 11-0 11-0 11-0 FU 4 32 200 0.765 1.312 | 2.404e + 04
175 | 112 1I-1 11-0 HU 11-0 HU 4 32| 200 0.766 1.210 | 2.376e + 04
355 11-0 HU 11-0 HU 1I-1 1I-1 4 32 200 1.417 1.102 | 2.490e + 04
22 1I-1 11-0 II-1 FU II-1 HU 8 32 200 1.517 0.902 | 3.791e + 04
69 1I-1 1I-1 11-0 11-0 11-0 HU 4 32 200 1.521 0.787 | 2.367¢ + 04
917 II-1 II-1 11-2 11-0 11-0 HU 4 32 200 1.521 0.787 | 2.367e + 04
Table 7.5: CONYV pareto LP occurrences
Lp CI ‘ Lp CO Lp W&H Lp init Lp Q Lp WB OutCh InCh Freq

Value % Value % | Value % |Value % |Value % |Value % |Value % | Value % | Value %

II-2  55.0 HU 50.0| II-2 50.0| HU 40.0| II-0 60.0 HU 60.0| 4.0 70.0| 32.0 100.0| 200 45.0

-1 350 II-1 250 II-0 35.0| II-0 250 II-1 40.0 FU 20.0 | 16.0 15.0 400 30.0

I1I-0 10.0 FU 15.0| II-1 15.0| II-1  20.0 II-1  20.0 8.0 15.0 600  10.0

11-0 10.0 FU 15.0 800 10.0

1000 5.0

Table 7.6: CONYV pareto PA sorted Power
Iteration [Lp CI Lp CO Lp W&H LP Init Lp Q Lp WB | OutCh InCh | Freq | Latency[s] | Power[mW] [ Area[pm?]
69 II-1 II-1 11-0 11-0 11-0 HU 4 32 200 1.521 0.787 | 2.367e 4 04
917 II-1 1I-1 11-2 11-0 11-0 HU 4 32 200 1.521 0.787 | 2.367e 4 04
70 II-1 II-1 II-1 II-1 11-0 HU 4 32 200 1.521 0.911 | 2.364e + 04
93 II-1 11-0 11-2 II-1 11-0 HU 4 32 200 1.521 0.911 | 2.364e + 04
116 1I-1 1I-1 11-0 1I-1 11-0 HU 4 32 200 1.521 0.911 | 2.364e + 04
119 II-1 11-0 II-1 II-1 11-0 HU 4 32 200 1.521 0.911 | 2.364e + 04
121 1I-1 11-0 11-0 1I-1 11-0 HU 4 32 200 1.521 0.911 | 2.364e 4 04
351 II-1 II-1 11-2 II-1 11-0 HU 4 32 200 1.521 0.911 | 2.364e + 04
53 II-1 11-0 11-0 II-1 I1-0 II-1 4 32 200 1.523 0.982 | 2.364e 4 04
76 II-1 II-1 II-1 II-1 11-0 I1-1 4 32 200 1.523 0.982 | 2.364e + 04
122 1I-1 11-0 II-1 II-1 11-0 II-1 4 32 200 1.523 0.982 | 2.364e 4 04
123 | 1I-1 1I-1 11-2 11-1 11-0 11-1 4 32| 200 1.523 0.982 | 2.364e + 04
124 II-1 II-1 11-0 II-1 11-0 1I-1 4 32 200 1.523 0.982 | 2.364e + 04
146 1I-1 11-0 11-2 II-1 11-0 II-1 4 32 200 1.523 0.982 | 2.364e + 04
Table 7.7: CONYV pareto PA occurrences
‘ Lp CI Lp CO Lp W&H Lp init Lp Q Lp WB ‘ OutCh ‘ InCh ‘ Freq
Value % | Value % | Value % | Value % | Value % | Value % Value % Value % Value %
i 100.0 | II-1 57.14 | II-0 35.71 1I-1 85.71 I1I-0  100.0 HU 57.14 4.0 100.0  32.0 100.0 200 100.0
10 4286 | II-2 35.71 1I-0  14.29 I1-1 42.86
-1 2857

over 1074 MOBO iterations. Each red star denotes a faulty design, i.e., a
design that failed in one of the three EDA steps: high-level synthesis, logic
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Figure 7.5: CONYV Pareto projection on Area-Power

synthesis, or place and route. The most frequent cause is unfeasible memory
generation, a Catapult-related issue associated with nested-loop unrolling.
Most errors occur in the 0-50 and 300-450 iteration ranges, while after the
800th iteration Spearmint correctly identifies only feasible designs. In total,
25 errors were recorded, corresponding to a very small fraction of the overall
iterations (2.3%).

7.4.2 CONYV: duplicates

Figure 7.7 illustrates the duplicated solutions obtained for CONV. Approx-
imately 50% of the duplicates occur before the 700th iteration, resulting in a
total of 702 repeated iterations. This implies that more than half of the iter-
ations correspond to duplicated solutions. Moreover, most of the iterations
beyond the 700th iteration are also duplicates.

7.4.3 CONYV: max-min-distance

This graph is generated using the same methodology adopted for the FC.
It can be observed that, during the early stage (before the 100th iteration),
the tool explores more distant points. After this phase, with few exceptions
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Figure 7.6: CONYV Errors alongside spearmint search

in the latency—power projection, the search predominantly identifies points
located close to the already discovered clusters.
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Figure 7.7: CONYV Duplicate designs
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Chapter 8

CONCLUSION

Purpose of the Study

Given the long design and fabrication times of ASIC chips, there is a pressing
need to improve productivity. One promising solution is the adoption of
frameworks such as Spearmint [4], which leverage Bayesian optimization to
efficiently identify high-performing hardware configurations without the need
for exhaustive grid search. These frameworks represent a significant step
forward in bridging the gap between algorithm development and physical
deployment.

Designing ASICs is a complex task that involves balancing trade-offs
among area, power, and performance. The design space is vast, highly
non-linear, and characterized by complex interactions between parameters,
making exhaustive evaluation of all possible solutions infeasible. Several op-
timization frameworks have been developed to address this challenge, among
which Spearmint [4] stands out as a widely used tool for minimizing the cost
of black-box functions. Bayesian optimization techniques enable efficient
convergence toward optimal solutions without the need for exhaustive simu-
lations, making them particularly suitable for complex ASIC design spaces.

The design of integrated circuits through high-level synthesis (HLS) in-
volves a large number of possible design parameters, or input knobs, such as
frequency, number of input/output channels, and loop configurations. Ex-
ploring this space manually is time-consuming, costly, and prone to subop-
timal outcomes, as the impact of individual choices is difficult to predict
without extensive trial and error. Moreover, while EDA frameworks provide
detailed synthesis and implementation reports, leveraging this information
effectively in an iterative optimization loop remains non-trivial.
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The purpose of this work is to address these challenges by automating the
EDA flow from C code to synthesized hardware. The proposed framework in-
tegrates design-space exploration with Bayesian optimization via Spearmint,
systematically analyzing synthesis reports and feeding them back into the
optimization process. This approach converges toward efficient hardware im-
plementations while reducing exploration time and computational resources
compared to traditional grid-search methods, enabling more effective iden-
tification of Pareto-optimal solutions and relieving designers from manual
parameter tuning.

Contributions

The proposed framework provides several key contributions to the process of
hardware generation from high-level descriptions.

First, it automates the complete flow from high-level synthesis (HLS) to
RTL and ultimately to ASIC implementation, minimizing manual interven-
tion and simplifying the design process.

Second, the framework significantly reduces the time required for design-
space exploration compared to exhaustive or random search strategies. By
leveraging guided optimization techniques, it efficiently navigates the vast
configuration space and converges toward promising solutions with fewer it-
erations.

Third, the methodology facilitates the automatic identification of optimal
trade-offs among latency, area, and power consumption. Instead of rely-
ing on heuristic or ad hoc decisions, the optimization process systematically
balances competing objectives, yielding hardware implementations that are
both efficient and well-adapted to application requirements.

Fourth, the approach is inherently portable and applicable to a wide range
of input C codes, making it suitable for diverse accelerators, including ma-
chine learning kernels, digital signal processing modules, and other compute-
intensive tasks.

Fifth, the framework enables data-driven decision making by incorporating
EDA reports directly into the optimization loop. The tool collects, processes,
and exploits this feedback to refine parameter selection, closing the loop
between design exploration and synthesis.
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Additional Context

While many related studies focus on the joint optimization of neural network
architectures and their corresponding hardware implementations, this thesis
primarily addresses the application of Bayesian Optimization (BO) as a tool
for efficient design-space exploration on a fixed hardware structure. The aim
is to implement a solution similar to these approaches, but using a reconfig-
urable ASIC accelerator instead of an FPGA with an embedded neural
network. Both approaches share the common challenge of identifying the
best-performing parameters for the configurable solution and subsequently
extracting the results. To address this, Spearmint, a state-of-the-art opti-
mization software, has been adopted and integrated into the workflow.

This thesis merges two lines of research conducted in the group of Prof.
Casu at Politecnico di Torino. In particular, it continues the work of Urbinati
and Casu [1], who developed novel hardware accelerators for mixed-precision
quantized deep neural networks (MPQ). MPQ optimizes inference efficiency
by varying bitwidths across DNN layers, requiring hardware innovations such
as Precision-Scalable (PS) multipliers.

While the work of Urbinati and Casu provides an effective foundation, its
original design-space exploration (DSE) methodology was limited in scope,
relying on a grid search over a narrow configuration range with a restricted set
of tunable parameters. This led to gaps in the generated Pareto fronts (e.g.,
area vs. latency or power vs. latency), leaving unexplored but potentially
promising regions in the design space.

To overcome these limitations, this thesis introduces an automated DSE
framework based on BO and implemented via Spearmint. This approach
replaces static, brute-force exploration with a feedback-driven optimizer that
iteratively adapts based on prior synthesis results. The improved pipeline
enables:

o Exploration of a broader search space, including extended parameter
ranges and a larger number of tunable knobs (e.g., pipelining, loop un-
rolling factors, memory banking);

o Guided selection of configurations using synthesis feedback to avoid in-
feasible or suboptimal solutions;

o Faster convergence towards Pareto-optimal configurations, requiring
fewer synthesis runs;
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e Scalability, computational efficiency, and adaptability for complex, het-
erogeneous design spaces.

Finally, the complete toolchain, including automated DSE scripts and
synthesis infrastructure, is made publicly available to support reproducibility
and further research contributions.

Results

The results obtained from the proposed framework demonstrate its effective-
ness along several dimensions. The validity of the data was confirmed by
cross-checking synthesis reports generated by the EDA tools with the pre-
dicted outcomes of the optimizer. The consistency between these sources
indicates that the feedback loop is reliable and robust, ensuring that subse-
quent optimization steps are grounded in accurate performance and resource
measurements.

The framework also showed a clear ability to identify near-optimal con-
figurations within the design space. By leveraging multi-objective Bayesian
optimization, the system converged towards Pareto-efficient solutions, cap-
turing trade-offs between area, latency, and power consumption. The tool
consistently discovered configurations that would otherwise be difficult to
obtain through intuition or ad hoc exploration.

Additionally, the approach resulted in a substantial reduction of explo-
ration time compared to exhaustive search. The optimizer required signif-
icantly fewer synthesis iterations to reach competitive solutions, effectively
cutting down the computational cost of design-space exploration.

Analysis of the optimizer’s choices confirmed the relevance of specific pa-
rameters. By examining which input knobs were most frequently selected in
high-performing configurations, the tool provided insights into the parame-
ters with the strongest impact on design quality.

Finally, the overall validation of the methodology was limited by practical
constraints. A complete assessment would require an exhaustive grid search
to evaluate the absolute quality of discovered points and determine the num-
ber of iterations needed to reach them. Nevertheless, the results indicate
that the tool is capable of identifying high-quality configurations efficiently,
demonstrating its potential as a reliable optimization framework and a useful
design aid for hardware engineers.
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Limitations and Observations

While the proposed framework demonstrates significant potential in automat-
ing design-space exploration for HLS-generated hardware, several limitations
should be considered. Complete validation would ideally require an exhaus-
tive grid search, which is impractical due to the combinatorial explosion of
possible parameter configurations. Therefore, it is not possible to definitively
quantify the absolute optimality of the solutions or the exact convergence rate
of the optimizer.

The methodology relies on Bayesian optimization through Spearmint,
which assumes that the objective function is smooth and can be effectively
modeled by a Gaussian process. In highly irregular or discontinuous design
spaces, these assumptions may limit the optimizer’s ability to explore ef-
ficiently, potentially leaving some high-quality configurations undiscovered.
Although the framework reduces the number of synthesis iterations compared
to brute-force exploration, each HLS synthesis remains computationally ex-
pensive, which can limit scalability for very large designs or high-dimensional
parameter spaces.

While the framework is domain-agnostic, its effectiveness may vary de-
pending on the characteristics of the input C code and the complexity of the
synthesized hardware. Some irregular or application-specific designs may re-
quire additional tuning of optimizer settings or occasional manual interven-
tion. Analysis of the optimizer’s behavior reveals that certain input knobs
consistently have a stronger influence on performance and resource trade-
offs, suggesting that a more targeted exploration of these parameters could
further improve efficiency.

Despite these limitations, the framework offers clear advantages over man-
ual exploration by providing a data-driven, automated approach to identify-
ing efficient hardware configurations. The observations gathered throughout
the study provide guidance for refining future iterations of the tool and im-
proving design-space exploration strategies.

Future Work and Prospects

Several directions can be envisaged to extend and improve the proposed
framework. One natural progression is the integration of additional opti-
mization techniques beyond Bayesian optimization, such as evolutionary al-
gorithms or reinforcement learning, to enhance exploration of highly irregular
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or high-dimensional design spaces. Additionally, testing the framework with
more widely documented and parametrizable tools, such as Optuna|[10] or
BoTorch|[11], could provide greater flexibility and potentially improved per-
formance. These tools allow a stepwise approach, enabling early-stage eval-
uation by stopping the design flow at intermediate stages, such as high-level
synthesis (HLS) or logic synthesis. This allows designers to obtain prelimi-
nary estimates of area, latency, or other design metrics without completing
the full synthesis at every iteration, thereby reducing computational cost.
Moreover, this stepwise approach supports partial optimization: individual
metrics can be targeted sequentially—for instance, area and timing can be
optimized first, while power, which is evaluated at the final stage, can be
optimized last. Combining multiple strategies in this manner increases ro-
bustness and can reveal configurations that might be overlooked when using
a single-step approach. Overall, this methodology leverages the staged exe-
cution of different steps and the characterization of individual objectives to
efficiently guide the optimization process.

From a usability perspective, future work could focus on enhancing the
interface and visualization of results, providing designers with interactive
tools to examine parameter sensitivities, understand trade-offs, and directly
compare candidate configurations. Moreover, the exploration chain could be
expanded by integrating additional EDA and analysis tools to allow more
comprehensive evaluation of hardware metrics.

Another important direction is the improvement of power estimation and
modeling. Incorporating specialized tools for accurate power analysis would
enable the generation of realistic input parameters and more reliable predic-
tions of energy consumption, further enhancing optimization outcomes.

Finally, the methodology could be applied to a broader range of applica-
tions beyond traditional ML or DSP kernels, including cryptography, signal
processing, and heterogeneous computing, validating its generality and re-
vealing additional opportunities for optimization.

In summary, these prospective developments aim not only to improve the
efficiency, accuracy, and flexibility of the optimization process but also to
enhance the practical utility of the framework as a comprehensive tool for
automated hardware design.
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