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Abstract

Agriculture is one of the oldest human activities, dating back over 11,000
years, and has always evolved alongside technological progress. Innovations in
tools and machinery have historically aimed to reduce the physical and mental
fatigue of farmers. Nevertheless, many operations, such as pruning and fruit
harvesting, are still predominantly carried out manually, either because they
require high precision or because existing solutions are far from being effective.
Current research increasingly focuses on robotic and automated solutions, whose
effectiveness, however, depends strongly on the ability of machines to perceive and
interpret complex natural environments. In the case of fruit harvesting, the focus
of this thesis, state-of-the-art perception technologies typically focus on detecting
fruits while neglecting the surrounding structures that are equally crucial for robotic
navigation and manipulation.

This work addresses this gap by investigating panoptic segmentation, a computer
vision approach that unifies instance and semantic segmentation, to enhance
perception in agricultural environments, with particular focus on apple orchards.
To overcome the lack of suitable public datasets, two dedicated resources have
been created: SPARTA (Synthetic Panoptic Apple oRchard Tree Annotations), a
synthetic dataset designed for controlled variability and scalability, and ATHENS
(Apple Tree Harvesting Environment with Natural Scenes), a real-world dataset
capturing the complexity and heterogeneity of natural orchard conditions. The
latter was acquired during two outdoor campaigns in Saluzzo (Cuneo, Italy) using
multiple stero cameras.

On the methodological side, the thesis studies, compares, and extends state-
of-the-art panoptic segmentation architectures, including Panoptic-DeepLab and
ESANet, introducing modifications tailored to the task. The goal is to assess the
effectiveness of synthetic datasets supporting in real-world scenarios, analyzing how
resolution, dataset size, and variability affect final segmentation performance.

Experimental results show that a more variegated synthetic dataset tends to
reduce performance on the synthetic benchmark itself but improves generalization
to unseen real data. Moreover, incorporating depth information brings a slight gain
in segmentation performance, although it comes at the cost of roughly doubling
computational requirements during training and inference. Overall, this work
provides contributions ranging from the creation of new datasets to methodologi-
cal insights on segmentation architectures and synthetic-to-real transfer, thereby
supporting future advances in robotic perception for agriculture.
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Chapter 1
Introduction

Agriculture, and in particular fruit production, relies on highly labor-intensive
and physically demanding operations such as pruning and harvesting, which are
still predominantly performed manually. Despite these challenges, fruit production
remains a key pillar of the global agricultural economy: in 2022, fruit harvesting
in the European Union was valued at €27.3 billion, with Spain, Italy, and Poland
as the leading producers, while the United States recorded fruit sales worth $34.2
billion in the same year [1]. However, the sector is increasingly struggling to secure
sufficient labor. In 2020, only 6.5% of EU farm managers were under the age
of 35 [2], and labor costs have risen significantly due to various economic and
demographic factors.

In response to these needs, and driven by technological advancements, the
development of automatic and robotic machines has emerged as a promising
solution. To facilitate the mobility and effectiveness of such systems, farmers have
progressively reorganized canopies into wall or trellis structures. Robotic solutions
are inherently multidisciplinary, combining expertise in mechanical design, control
and automation. Central to their operation is the ability to perceive and interpret
the environment through cameras and sensors. The raw data collected must be
processed and analyzed to identify targets and navigate complex environments
effectively.

This thesis is positioned within this context, focusing on the application of
panoptic segmentation to enhance robotic perception of the external environment,
with the aim of supporting more accurate and efficient automation in fruit harvesting.
The research was conducted at PIC4SeR (PoliTO Interdepartmental Centre for
Service Robotics), a research center active in a wide range of fields, including
precision agriculture, smart cities, search and rescue, wellbeing-oriented service
robotics, cultural heritage as well as underwater and space applications. In addition
to research, PIC4SeR actively supports education at PoliTO by organizing seminars,
lectures, student team projects and master’s theses. Indeed, the present work has
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Introduction

been developed within the framework of the open thesis positions for the 2024/25
academic year.

The objective of this work is to study, compare, and implement different panoptic
segmentation approaches for the identification of apple fruits and their surrounding
objects, with the broader aim of supporting robotic perception in agricultural
environments. Since no public dataset is specifically tailored to this task, a
fundamental contribution of the thesis lies in the creation of two dedicated datasets.
The first, named SPARTA (Synthetic Panoptic Apple oRchard Tree Annotations),
is a synthetic dataset designed to provide controlled variability and scalability,
while the second, ATHENS (Apple Tree Harvesting Environment w/ Natural
Scenes), is a real-world dataset that captures the complexity and heterogeneity of
natural orchard conditions.

On the methodological side, the work explores and evaluates several state-of-
the-art architectures for panoptic segmentation, including PanopticDeepLab
and ESANet, together with a set of modifications and extensions proposed and
implemented as part of this thesis. These models are trained and validated on the
newly developed datasets, allowing for a systematic comparison of their performance
in both synthetic and real scenarios.

This thesis aligns with the United Nations Sustainable Development Goals
(SDGs), a framework of 17 goals set in 2015 by all UN members that aim to tackle
the most urgent global challenges. In particular, this thesis contributes to SGD 2:
Zero hunger by providing solutions able to improve agricultural productivity and
sustainability. Better robotic perception means increasing harvesting efficiency and
reducing fruit damage, therefore reducing food loss. For the same reason, a big role
is played in SGD 12: Responsible consumption and production by reducing
waste along the supply chain. This work also relates to SDG 8: Decent work
and economic growth, helping in reducing undesirable and injury-prone work.

ZERO 1 RESPONSIBLE DECENT WORK AND
HUNGER CONSUMPTION ECONOMIC GROWTH

W | A
i

Figure 1.1: Sustainable Development Goals addressed in this thesis.



Introduction

The remainder of this thesis is organized as follows. Chapter 2 presents an
introduction to computer vision and its evolution from simple algorithms to deep
learning, with an in-depth focus on panoptic segmentation. Chapter 3 presents the
state of the art solutions in fruit harvesting, including an analysis of pubblicly avail-
able apple tree datasets. Chapter 4 introduces the datasets developed in this work,
namely SPARTA and ATHENS, describing their design, structure and annotation
process. Chapter 5 outlines the methodology, detailing the architectures under
study: Panoptic-DeepLab, ESANet and their proposed modifications. Chapter 6
reports the experimental setup and results obtained from training and evaluating
the models on the proposed datasets. Finally, Chapter 7 summarizes the main
findings and discusses possible directions for future research.






Chapter 2

Computer vision

2.1 A general overview

Computer vision (CV) is the branch of artificial intelligence concerned with process-
ing and interpreting visual inputs such as images and videos. Its primary goal is to
extract meaningful information that enables machines to perform specific tasks.
The outputs of CV models have a wide range of applications, effectively substituting
or augmenting human vision in fields where visual information is essential, such as
autonomous driving, robotics or industrial automation. Over the last decades, the
field has undergone a remarkable evolution, which will be outlined in the following
sections, with particular attention to the most common tasks.

2.1.1 Pre-Deep Learning Era

Despite the recent success of deep learning techniques, computer vision lies its
roots in algorithms and techniques that date back to the last century. The father
of computer vision is considered to be Larry Roberts, who published in 1963 his
Ph.D. thesis «Machine perception of three-dimensional solids» [3] on the topic of
computer vision, specifically on the reconstruction of 3D models from 2D images.
Another milestone in this field was represented by «Representation and recognition
of the spatial organization of three-dimensional shapesy» [4] of David Marr, who
introduced a bottom-up paradigm for scene understanding that influenced the field
for decades. In the following years, CV techniques focused on solving specific tasks
such as line detection, performed through the Canny Edge Detector [5] or the
Hough Transform [6] algorithms which are still widely used today.

Fast forward, the introduction of machine learning techniques opened the door
to more complex models that could learn from data. Machine learning techniques
can be grouped into three main categories:
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e Supervised learning, which involves labeled training data that the model
uses to learn the relationship between inputs and outputs. Popular algorithms
are Support Vector Machines (SVM), KNN (K-Nearest Neighbors), decision
trees, logistic regression and random forests.

e Unsupervised learning that, on the other hand, is based on unlabeled
training data. Clustering algorithms such as K-Means and DBSCAN fall into
this category.

e Semi-supervised learning is a combination of the two previous approaches,
having a small amount of labeled data and a large amount of unlabeled data.

In image processing, unsupervised ML techniques were used to extract features
from images while supervised ML techniques were used for detection and recognition
tasks. [7] [8] [9]

2.1.2 Deep Learning Era

The main limitation of traditional machine learning techniques was the lack of
ability to process raw data and therefore the need for human intervention to design
suitable feature extractors. A clear example is represented by images, that are
basically stored as arrays of pixels, with no immediate meaning or direct relationship
with the final task. Deep learning models, instead, are composed of multiple layers
of neurons that can learn hierarchical representations of the data, automatically
extracting features from raw inputs. It is important to note that these layers are
not human-engineered, but learned from data.

The key mechanism that enables this automatic learning process is the back-
propagation algorithm. In practice, the layers of a deep learning model are
initialized with random weights and then progressively refined by training on a
dataset. The objective of training is to minimize a loss function, which quantifies
the discrepancy between the model’s predictions and the ground truth labels. To
achieve this, the gradient of the loss function with respect to the model’s weights is
computed and used to adjust the same weights. Backpropagation can therefore be
seen as the systematic application of the chain rule of derivatives in reverse order,
starting from the output layer and propagating backwards through the network.

The breakthrough in deep learning for computer vision was represented by the
introduction of Convolutional Neural Networks (CNNs), which, thanks to the
nature of the convolution operation, are able to better understand structured data
such as images. CNNs are mainly composed of two types of layers: convolutional
layers and pooling layers. Convolutional layers apply a set of learnable filters
(kernels) to the input, producing feature maps that capture local patterns in the

6



2.1 — A general overview

data. Pooling layers, instead, reduce the spatial dimensions of the feature maps,
retaining only the most important information and reducing the computational
complexity of the model. Figures 2.1 and 2.2 provide a visual representation of
these operations. Despite being used since the early 2000s in different computer
vision tasks, CNNs were marginal and not widely adopted until the introduction
of AlexNet [10] in 2012, when it won the ILSVRC [11] (a yearly competition for
object detection and image classification on the ImageNet dataset). The success of
AlexNet is to be attributed to a better utilization of GPUs, the introduction of the
ReLU activation function and the introduction of the dropout technique (explained
in Figure 2.3).

Input Image

Kernel Output
1 2 3

0 1 6 8
4 5 6 | >k >

1 0 12 14
7 8 9

Figure 2.1: Illustration of the convolution operation: a 2 x 2 kernel slides over
a 3 x 3 input image, producing a 2 x 2 output. Each output value is the sum
of element-wise multiplications between the kernel and the corresponding input
region.

Input Feature Map

Output 1 3 2 4 Output
3.75 |15:25 5 6 7 8 6 8
2.25 | 2.25 ‘ 2 1 0 3 , 4 )
Avg Pooling 4 2 5 1 Max Pooling

Figure 2.2: Illustration of the pooling operation: a 2 x 2 pooling window slides
over a 4 X 4 input feature map, producing a 2 x 2 output feature map. Each output
value is the maximum (right) or average (left) of the values in the corresponding
input region.
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(a) Normal neural network. (b) Neural network with dropout.
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00000
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Figure 2.3: Comparison between a standard neural network (a) and a network
with dropout (b). During training, dropout randomly deactivates a subset of
neurons at each iteration, reducing reliance on specific neurons and helping the
model generalize better. At inference time, all neurons are active.

So, after 2012, CNNs became the standard for all computer vision tasks, inspiring
many other architectures that gradually introduced new techniques and concepts.

One of the most influential architectures in deep learning is ResNet [12], which
introduced the concept of residual connections. As He et al. demonstrated,
training very deep networks is challenging because gradients tend to vanish or
explode, preventing effective learning. Residual connections address this limitation
by adding the input of a layer directly to its output, thereby facilitating gradient
flow and enabling the network to also learn identity mappings. Figure 2.4 illustrates
the two main types of residual blocks employed in ResNet. The introduction of
this mechanism allowed to train and engineer much deeper architectures.

Last but not least, one of the most recent and impactful trends in computer
vision is the introduction of Vision Transformers (ViTs) [13], which adapt
the transformer architecture, originally developed with great success in Natural
Language Processing, to the visual domain. This paradigm shift brings both
strengths and limitations: on the one hand, transformers offer greater flexibility
and scalability compared to convolutional models; on the other hand, they demand

larger amounts of data for effective training and are computationally more expensive
than traditional CNNs [14].
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1 1 ReLU
Con@ Con@

LReLU | ReLU
Conv3x3 Convlxl

(a) Residual block without bottleneck. (b) Residual block with bottleneck.

Figure 2.4: Illustration of ResNet residual blocks: (a) basic block (two 3 x
3 convolutions), (b) bottleneck block (1x1, 3x3, 1x1 convolutions). The skip
connection adds the input to the output of the block. Bottleneck blocks are
used because they reduce the number of parameters and computational cost while
maintaining performance.

2.1.3 Computer Vision Tasks

Computer vision encompasses several tasks, but some of them are more popular
than others and are therefore grouped into three main categories, depending on the
final goal and desiderata outputs: classification, detection and segmentation. These
tasks can be solved using deep learning techniques, which have revolutionized the
field in the last decade.

Image Classification, one of the simplest tasks, consists in assigning a category
label to an image based on its content. It’s important to note that this task
provides a single label for the entire image, without any spatial information about
the objects present in it. As an example, a model trained to classify images of
animals like the one in Figure 2.5 would output a series of probabilities for each
class, choosing the class with the highest probability as the final prediction.

Like any other classification task, Image Classification uses accuracy (Equation
2.1) as the main evaluation metric, alongside the strictly related metrics such as
precision (Equation 2.3), recall (Equation 2.2) and F1 score (Equation 2.4).
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Cat: 90%
— Dog: 8%
Rabbit: 2%

Image credits: Pixabay

Figure 2.5: Image classification example on a picture of a cat.

Number of correct predictions  True Positives + True Negatives

Accuracy = =
Y Total number of predictions Total number of predictions

(2.1)

Recall — True Positives (2.2)

True Positives + False Negatives

Precisio True Positives (2.3)
recision = .
True Positives + False Positives

Precision - Recall
F1 =2. 2.4
PEOTe Precision + Recall (2:4)

Object Detection is instead a more complex task that provides a label for each
identified object in the image coupled with a bounding box that delimits the area
occupied by the object and a confidence score that indicates the model’s certainty
about the prediction, as shown in Figure 2.6.

One of the most common evaluation metrics for object detection is Intersection
over Union (IoU, also known as Jaccard Index), which measures the overlap
between the predicted bounding box and the ground truth bounding box. Equation
2.5 and Figure 2.7 illustrate the concept of IoU.

Area of Intersection  |AN B
Area of Union  |AU B]

Intersection over Union (IoU) = (2.5)

Precision, recall and F1 score can also be used to evaluate object detection
models and follow the previous definitions (Equations 2.3, 2.2 and 2.4). However,
in this context, a way to identify true positives, false positives and false negatives
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Clat:2: 98%

Image credits: Francesco Ungaro

Figure 2.6: Object detection example on an image with two cats.

Prediction Prediction
Ground Truth Ground Truth
[ntersection Union

Figure 2.7: Illustration of Intersection and Union between two bounding boxes.

must be defined. That’s where IoU comes into play: two bounding boxes are
considered matching if their IoU is above a certain threshold (e.g. 0.5).

Two other interesting metrics are Average Precision (AP) and Mean Aver-
age Precision (mAP). Average Precision evaluates the precision-recall trade-off
by computing these two metrics at different confidence thresholds, plotting the
precision-recall curve and calculating the area under the curve (AUC) (see Figure
2.8). The Mean Average Precision, instead, extends the concept of Average Pre-
cision by averaging AP across all classes. In some benchmark datasets, such as
COCO, the mAP is computed at different loU thresholds (e.g. 0.25, 0.5, 0.75, and
then averaged across all thresholds) to provide a more comprehensive evaluation of
the model’s performance. [15]

Finally, segmentation is a family of pixel-level tasks that provide a prediction
for each pixel in the image. The main differences between the segmentation tasks
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Figure 2.8: Example of a precision-recall curve and the area under the curve
(AUC) representing the Average Precision (AP).

lie in how they treat stuff and things (better defined in Section 2.2), whether they
take into account the instance of the objects and how they encode the output.

« Semantic segmentation assigns, for each pixel in the image, just a single
label that indicates the class of the pixel, without distinguishing between
different instances of the same class.

» Instance segmentation predicts the boundaries and shape of each object
(so each thing instance) in the image, assigning a unique label to each instance.
It does not provide any information about stuff regions.

« Panoptic segmentation combines the two previous tasks, providing a label
for each pixel in the image, distinguishing between stuff and things, and assign-
ing a unique label to each instance of the things. This type of segmentation is
the core of this thesis and will be discussed in detail in the following sections.

To better understand the differences between these tasks, Figure 2.9 shows an
example of each type of segmentation applied to the same image, highlighting the
different outputs.

In segmentation tasks, several metrics [16] can be used to evaluate the perfor-
mance of the model. These metrics, just like in object detection, must encompass
both the concepts of classification and localization. Unlike object detection, how-
ever, segmentation needs a pixel-level definition of these metrics. For semantic
segmentation, the most common metrics are:

12
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(b) semantic segmentation

(c) instance segmentation (d) panoptic segmentation

Image credits: Pixabay

Figure 2.9: Comparison of different segmentation tasks on the same image.

« Pixel Accuracy (Equation 2.6): the ratio of correctly classified pixels to the
total number of pixels in the image.

o
PA = Zf;—lnt“ (2.6)
j=11j

where n;; is the number of pixels correctly classified as class j (T'P) and t; is
the total number of pixels in class j.

o Mean Pixel Accuracy (Equation 2.7): the average pixel accuracy across all

classes.
1. Eny;
mPA =~ %" % (2.7)
k j=1 tj
« Intersection over Union (Equation 2.8): the ratio of the intersection of the
pixel-wise classification results with the ground truth, to their union.

k
L Ms
IoU = =10 . i (2.8)
S5 (nig + s+ nyj)
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where n;; is the number of pixels classified as class j but belonging to class
i (FP) and nj; is the number of pixels belonging to class j but classified as
class i (F'N).

» Mean Intersection over Union (Equation 2.9): the average IoU across all

classes. .

mloU = ;Z e i (2.9)

)
j=1 Mg + My + 1y

For instance segmentation, instead, the metrics are based on the Precision-Recall
curve. At pixel level, Precision (Equation 2.10) and Recall (Equation 2.11) for a
given class j are defined as follows:

Njj

Precision; = T i (2.10)
g T Mg
Recall; = L, i#J (2.11)
njj + Nji

while F1 score follows the same definition as in object detection (Equation 2.4).
The main standard metric for instance segmentation is Average Precision (AP),
which is computed by averaging the precision at different recall levels, as in object
detection. The Mean Average Precision (mAP) is then computed by averaging
the AP across all classes.

2.2 Panoptic segmentation

Given its central role in this thesis, it is worth dedicating a section to a more
detailed discussion of the panoptic segmentation task. The section begins by
clarifying the distinction between things and stuff, which forms the basis of the
task formulation. It then presents the formal definition of panoptic segmentation,
introduces the most commonly used evaluation metrics, reviews benchmark datasets,
and concludes with an overview of the main architectural approaches proposed in
the literature.

The first step to understand panoptic segmentation is to introduce the concepts
of things and stuff. Stuff refers to amorphous regions without clear boundaries,
such as sky, grass, or water, while things denote objects that can be easily separated
from the background, such as cars, people, or animals (see Figure 2.10).

2.2.1 Task definition

Panoptic segmentation task was firstly formalized by Kirillov et al. in 2019 [17]
as follows:

14



2.2 — Panoptic segmentation

Sky (stuff) Person 2 (thing)
Person 1(thing)

Dog (thing)

Grass (stuff)

Figure 2.10: Illustration of “stuff” (amorphous regions like sky and grass) and
“things” (countable objects like dog and person) in an image.

Definition 1 Given a predetermined set of L semantic classes encoded by L :=
{0, ..., L — 1} the task requires a panoptic segmentation algorithm to map each pizel
i of an image to a pair (I;,z;) € L x N where l; represents the semantic class of
pizel i and z; represents its instance id. The z;’s group pizels of the same class into
distinct segments. Ground truth annotations are encoded identically. Ambiguous or
out-of-class pixels can be assigned a special void label.

The semantic label set £ consist of subsets £ (stuff labels) and £*" (thing
labels) with the following properties:

o L =L5ULTh: all labels belong to either one of the two subsets
o LN LT = P: no overlaps are allowed

Like semantic segmentation, but unlike instance segmentation, panoptic segmen-
tation does not require confidence scores associated with each segment.

2.2.2 Evaluation metrics

Along with the definition of the task, Kirillov et al. [17] also defined an official
evaluation metric for panoptic segmentation, called Panoptic Quality (PQ).

Panoptic Quality was designed in order to be complete (i.e. treat stuff and thing
segments uniformly), interpretable and simple (so that it can be easily computed
and reimplemented).

PQ — Z(p,g)ETP IOU(Z?, g)
[TP|+ 3|FP| + 5|FN|
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Let’s analyze the components of the PQ formula in Equation 2.12: it simply
computes the average IoU between the predicted segments p and the ground truth
segments ¢ that are considered matching (i.e. true positives, T'P) and divides it by
a normalization factor that accounts for false positives (FP) and false negatives
(F'N) in order to penalize segments that are not correctly predicted or missed. It
is important to note that Panoptic Quality is calculated for each class separately
and then averaged over all classes, making it insensitive to class imbalance.

However, equation 2.12 does not explain how to compute the sets T'P, F'P and
F'N. By leveraging Theorem 1, two segments p and g are considered matching if
their intersection over union (IoU) is strictly greater than 0.5, allowing to define
the three sets.

Theorem 1 Given a predicted and ground truth panoptic segmentation of an image,
each ground truth segment can have at most one corresponding predicted segment
with loU strictly greater than 0.5 and vice verse.

Interestingly, by multiplying and dividing the numerator and denominator of
Equation 2.12 by |T'P|, the formula can be rewritten as follows:

Z(p,g)ETP IOU(p7 g) x ‘TP’
|TP| ITP|+ |FP|+ i|FN|

segmentation quality (SQ) recognition quality (RQ)

PQ = (2.13)

where the first term is called segmentation quality (SQ) and the second
term is called recognition quality (RQ) and corresponds to the well-known FI
score. This decomposition is useful to better interpret the results of a panoptic
segmentation model, but it should not be considered as a combination of semantic
and instance segmentation metrics, as it is not possible to compute the two terms
separately. In fact, semantic metrics (e.g. pixel accuracy, mean IoU) are not
suitable for panoptic segmentation because they do not take into account the
instance id, while instance metrics (e.g. AP, mAP) require the model to output
confidence scores for each segment, which is not the case for panoptic segmentation.

2.2.3 Datasets

There are several datasets designed for panoptic segmentation, with a few becoming
particularly popular and widely adopted as benchmarks. Since panoptic annotations
combine semantic and instance information, these datasets can also be employed
for the related tasks of semantic segmentation and instance segmentation, making
them highly versatile resources for research.

16



2.2 — Panoptic segmentation

COCO Panoptic [18] contains 80 thing categories and 91 stuff categories.
COCO, short for Common Objects in Context, was specifically designed to capture
everyday scenes, depicting common objects situated in realistic environments rather
than isolated. Its diversity and scale have made it one of the most influential datasets

across a wide range of computer vision tasks, including detection, segmentation
and now panoptic segmentation.

Image credits: https://cocodataset.org/

Figure 2.11: Example of COCO Panoptic annotations.

Cityscapes Panoptic Parts [19] focuses on high-resolution urban street scenes,
collected from 50 German cities under varying weather and lighting conditions.
For the panoptic task, it provides annotations for 8 thing categories and 11 stuff
categories. Its emphasis on road scenes makes it especially valuable for research
in autonomous driving, where accurate pixel-level understanding of both dynamic
objects (cars, pedestrians) and static elements (road, buildings) is essential.

Image credits: https://www.cityscapes-dataset.com/

Figure 2.12: Example of Cityscapes Panoptic annotations.
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Mapillary Vistas [20] is a large-scale street-level dataset with global coverage.
It provides annotations for 70 thing categories and 46 stuff categories, capturing a
wide range of environments, from dense urban areas to rural roads, across diverse
continents, climates, and weather conditions. This level of variability makes it
particularly challenging and useful for evaluating the generalization capabilities of
panoptic segmentation models.

2.2.4 Common architectures

Instance [ Instance [
Backbone Backbone
Semantic Semantic
(a) Sharing Backbone (b) Explicit Connections
Instance
Backbone = - . 7 B.bone (| Semantic || Instance [
Semantic

(c) One-shot Model (d) Cascade Model

Figure 2.13: Different model designs for combining semantic and instance seg-
mentation.

Panoptic segmentation can be seen as a combination of semantic and instance
segmentation, and this is reflected in the design of the models that can be used to
solve the task. Figure 2.13 shows some of the most common designs for panoptic
segmentation models. Some of them start with a shared backbone, which extracts
features from the input image, that are then fed to two separate branches, one for
instance segmentation and one for semantic segmentation. These two branches can
be either completely independent (2.13a), or they can share explicit connections
used to exchange information between them (2.13b). There are also models that
combine the two branches into a single one, which directly predict the final panoptic
segmentation (2.13c), or models that use a cascade approach, where the instance
segmentation branch is built on top of the semantic segmentation one (2.13d).

RGB images represent the primary data source in which most of the panoptic
segmentation algorithms have been applied, but not the only one. Medical images,
such as X-rays, and LiDAR data have also been used to tackle the task. [21]
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Chapter 3

State of the art

This chapter reviews the state of the art in the application of computer vision
techniques to the field of fruit harvesting, with a particular focus on apple production.
The discussion begins with an overview of available datasets, followed by an analysis
of existing solutions proposed in the literature. Since apples represent the specific
case study of this thesis, both the datasets and the methods considered are mostly
related to apple harvesting.

3.1 Apple tree datasets

Several datasets containing images of generic fruit trees and more specifically apple
trees are publicly available. However, none of them are perfectly tailored for the
task of this thesis.

PFuji-Size dataset [22] is composed of 3D point clouds of Fuji apple trees, the
raw data to generate them, segmented point clouds for all apples, their centroids
and their ground truth diameters. Data was generated from 6 trees containing a
total of 615 apples, captured at separate temporal moments, resulting in different
maturity stages. In addition, 25 apples were captured under laboratory conditions.
The primary goal of this dataset was helping research in apple size estimation.

PApple-RGB-D-Size dataset [23] is generated by extracting a subset of RGB
and depth images from [22] and annotating them with instance segmentation masks,
apple diameter ground truth and 2D projection of each 3D spherical mask. The
dataset constains a total of 3925 images.

Fuji-SfM dataset [24] contains a set of 288 RGB images and their corresponding
apple segmentation masks, as well as a set of 582 images defining a motion sequence
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Figure 3.2: Sample from PApple-RGB-D-Size dataset with (a) original image, (b)
instance segmentation annotation and (c) projected spherical mask.

fo SfM (structure-from-motion) and the 3D point cloud of the scanned scene. All
images are taken from a orchard of 11 Fuji apple trees.

KFuji RGB-DS database [25] is composed of 967 images of Fuji apples in 3
modalities: color (RGB), depth (D) and range corrected IR intensity (S). 12839
apple bounding boxes are annotated.

MinneApple dataset [26] is a dataset designed for fruit detection, segmentation
and counting in orchard environments composed of 1000 images and over 410000
annotated objects.
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Figure 3.3: Illustration from Fuji-SfM dataset. (a) Image cropping borders, (b)
Example of two sub-images, (¢) Ground truth segmentation masks

3.2 Existing solutions

Among the numerous solutions proposed for the detection and localization of
fruits on trees, several stand out for their originality, performance, or relevance to
real-world harvesting scenarios. This subsection reviews the most representative
approaches, highlighting the strategies they adopt to handle common challenges
such as occlusions, varying illumination and complex orchard environments.

«Panoptic mapping with fruit completion and pose estimation for hor-
ticultural robots» [27] proposes a multi-resolution panoptic mapping system
in order to estimate 3D shapes of fruit and and their pose. Figure 3.6 shows the
whole process followed in this study. A stream of RGB-D images is given as input
to a Mask R-CNN [28] network to perform instance segmentation, resulting in
per-fruit instance masks that are then used to assign temporal consistent submap
IDs to panoptic entities. Once a fruit is not observed for G frames consecutively, it
is marked as frozen and used for joint shape completion and pose estimation using
a pretrained DeepSDF [29] model and an occlusion-aware differentiable rendering
technique. Experiments are carried out on sweet peppers and strawberry crops.

«Instance Segmentation and Localization of Strawberries in Farm Condi-
tions for Automatic Fruit Harvesting» [30] implements a standard instance
segmentation to localize strawberries and identify their ripeness level, with a partic-
ular attention to occluded fruits. These corner-case fruits have a smaller bounding
box, that can can cause problems to the gripper that has to pick them up. The
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Figure 3.4: Sample of 3 multi-modal images from KFuji RGB-DS database. Each
column corresponds respectively to RGB, S and D. Ground truth bounding box
are also shown in the first column.

WHR (width-height ratio) is used to detect occlusion, followed by a box-refinement
algorithm that recovers real bounding boxes by dividing the instance mask into two
parts along the x direction and identifying the non-occluded one (usually convex).

«3D Hierarchical Panoptic Segmentation in Real Orchard Environments
Across Different Sensors» [31] simultaneously provide semantic segmentation,
instance segmentation of trunks and fruits, and instance segmentation of trees.
The architecture (Figure 3.8) is based on a MinkUNet [32] that takes a coloured
point cloud as input in which the decoder is replicated three times, one for each
task. The outputs of instance segmentation decoders are offset vectors, that need
to be clustered with HDBSCAN [33] to obtain the final result.
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(a) Detection

B Ay

(d) Sample images

Figure 3.5: Samples from MinneApple dataset

T
' y
o
FramelJ
g Erame 11 2
Inputs: . . . o 5 : .
RGB-D images + Fruit instance Tracked Multi-resolution panoptic Joint fruit shape completion
segmentation submap ID volumetric mapping and pose estimation
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Figure 3.6: Overview pipeline of the mapping system proposed by Pan et al.
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(c-1) >- (c-4)

Figure 3.7: Refinement method workflow of Ge et al.: (a) to (d) are the input
images, visualized detection results, detected masks and visualized refined results,
respectively; (c-1)-(c-4) are the original bounding boxes on the masks, visualized
two sides splitting, refinement process and refined bounding boxes on the masks,

respectively.
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Figure 3.8: Overview of the architecture proposed by Sodano et al.
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Chapter 4

Datasets

As described in Section 3.1, the publicly available datasets related to fruit harvesting
are not specifically tailored to the panoptic segmentation task addressed in this
thesis. For this reason, two new dataset families have been developed, namely
SPARTA and ATHENS, both designed with the explicit goal of supporting
panoptic segmentation in apple orchards. SPARTA is a synthetic dataset, generated
through controlled simulation to provide large amounts of annotated data under
diverse and customizable conditions. This allows the creation of balanced scenarios
with precise ground truth annotations, which are particularly valuable for training
deep learning models. In contrast, ATHENS consists exclusively of real-world images
collected in apple orchards, providing a more realistic but also more challenging
benchmark due to natural variability in lighting, occlusions, and background
complexity. Together, these two datasets form a complementary pair: one offering
scalability and precision through synthetic data, the other providing realism and
ecological validity through field imagery.

4.1 Synthetic Datasets for Computer Vision

Datasets in computer vision are typically created by collecting real-world data and
enriching it with annotations that serve as ground truth (GT). These annotations
are essential, as they provide the supervisory signal that enables models to learn.
However, the annotation process is often expensive and time-consuming, particularly
in tasks such as segmentation, where pixel-level precision is required. The effort
needed to produce high-quality GT can quickly become a bottleneck, limiting the
scale and diversity of available datasets. [34]

A common strategy to alleviate this issue is the use of synthetic datasets.
The idea of employing synthetic data in computer vision is not new: early examples
date back to 1988 with the work of Pomerleau [35]. Nonetheless, it is only in the
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past decade that the approach has gained widespread attention, largely due to
advances in computer graphics, simulation engines, and generative techniques.

The primary advantage of synthetic datasets lies in the ability to generate vast
amounts of data along with perfectly accurate annotations at virtually no additional
cost. However, other benefits make them even more compelling. Synthetic pipelines
can produce balanced and diverse data distributions, including rare or edge-case
scenarios that may be underrepresented in real datasets. They are also valuable
when data collection is impractical, dangerous, or constrained by ethical and legal
considerations such as privacy regulations. Furthermore, the reduced time and cost
associated with synthetic data generation make it an efficient alternative to manual
annotation.

Evidence of the potential of synthetic data has been reported across different
domains. For instance, Patki et al. [36], in their study on the effectiveness of
synthetic data, observed that in 70% of cases, results obtained with real data could
be replicated using synthetic data. Although this study was conducted outside the
computer vision domain, it highlights the strong potential of synthetic approaches,
which has only recently begun to be realized in vision-related tasks.

According to Tripathi et al. [37], the effectiveness of synthetic data in computer
vision depends on three key properties: it must be efficient, in the sense of being cost-
effective and scalable; task-aware, meaning generated samples should be tailored to
the specific requirements of the target task; and realistic, ensuring that synthetic
images remain visually close to real-world data to minimize the domain gap. These
principles guide the design of synthetic datasets and determine their success in
practical applications.

Among the most popular synthetic datasets for computer vision, the following
are the most popular:

« GTAS5 [38] is a dataset of 24966 images collected from the popular video game
Grand Theft Auto V' (GTA5) annotated for semantic segmentation with 19
classes that are compatible with those of real-world datasets like Cityscapes.

o SYNTHIA [39] consists of photo-realistic synthetic images from a virtual
city, with 13 classes for semantic segmentation. This virtual city is built using
the Unity game engine and allows simulating different weather conditions,
times of day, and seasons, but also adding new objects and classes effortlessly.

o Virtual KITTI [40], similarly to SYNTHIA, contains 50 high-resolution
monocular videos (21260 frames) from five different virtual scenes, in urban
context and varying weather conditions.
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(a) synthetic image (b) ground truth

Figure 4.1: Example of synthetic image and ground truth from the GTA5 dataset.

-/
4.2 SPARTA Dataset

Following the principles outlined in Section 4.1, a new synthetic dataset specifically
designed for the task of panoptic segmentation in apple orchards is introduced in
this thesis. The dataset is named SPARTA (Synthetic Panoptic Apple oRchard
Tree Annotations) and represents a large-scale resource tailored to the unique
challenges of orchard environments. By leveraging synthetic generation, SPARTA
provides pixel-accurate annotations at no additional cost, enabling the training
and evaluation of deep learning models under diverse and customizable conditions.

SPARTA images are annotated with 6 panoptic classes, chosen to represent the
most relevant elements in an apple orchard scenario:

« Apple (thing): the apple fruit, which constitutes the primary object of interest
in this dataset.

o Branches (stuff): the structural components of the apple tree, excluding
leaves and fruit.

« Leaves (stuff): the foliage of the apple tree, which often causes significant
occlusions and thus represents a major challenge in fruit detection.

« Supports & Wires (stuff): the artificial structures used in orchards to sustain
the branches and guide tree growth, which may interfere with detection and
segmentation.

« Soil (stuff): the ground surface on which the tree is planted, included to
provide contextual information and complete scene understanding.

« Background (stuff): any image region not belonging to the aforementioned
classes, capturing surrounding scenery or distant objects, mainly corresponding
to sky.
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4.2.1 Virtual Apple Orchard

The images in SPARTA are generated from a virtual apple orchard. The orchard
was created by PIC4SeR team following a process similar to the one described in
their previous work «Enhancing visual autonomous navigation in row-based crops
with effective synthetic data generation» [41].

First step consists in modeling 3D representation of the scene elements, including
branches, leaves, trunks, apples and supporting structures. This was achieved using
Blender, a free and open-source 3D computer graphics software. The models were
developed using real plant textures and standard dimensions as reference, ensuring
that the resulting orchard is both visually realistic and structurally consistent
with actual apple trees. Additional components, such as a realistic sky model and
an irregular terrain, were incorporated to enhance the authenticity of the virtual
environment. Once modeled, the individual objects were assembled into rows of
trees, replicating the layout of real orchards.

Certain design choices made during this modeling phase directly influenced the
structure of the resulting panoptic dataset. For instance, foliage was modeled at
the leaf level but integrated into the orchard as a single element. This imposed the
need to treat leaves as a stuff class, since no instance-level annotation could be
provided. Similarly, supports and wires were fused together in a single 3D model,
which consequently resulted in their inclusion as a single dataset class.

Blender’s Python scripting interface was then employed to automatically generate
the data, enabling the extraction of RGB images, depth maps and segmentation
masks with minimal manual intervention. For each rendered image, the pipeline
outputs a dedicated folder containing the following four files:

e camera_pos.txt, a text file storing the spatial and rotational parameters of
the virtual camera (X, Y, Z, roll, pitch, yaw).

e Depth0001.exr, a depth map providing per-pixel distance information ex-
pressed in meters.

e Image0001.png, the rendered RGB image of the scene.

o SegmentationBWO001.exr, a segmentation map where each pixel is assigned
a class identifier. These identifiers are not directly compatible with the final
dataset format but follow a rule-of-thumb convention (Soil: 1, Supports &
Wires: 2, Leaves: 3, Branches: 4, Apples: >10).

Finally, a custom post-processing script was developed to convert the raw
outputs into the standardized annotation format described in Section 4.4. This
script ensures that class identifiers are correctly assigned and that the resulting
dataset is ready for use in training and evaluating panoptic segmentation models.
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(d) SPARTA-S val set (e) SPARTA-L val set (f) SPARTAv2 val set

Figure 4.2: Pixel distribution of the classes in the SPARTA dataset (training sets
in the first row, validation sets in the second row).

4.2.2 Dataset Splits

The SPARTA dataset has been released in three versions, each tailored to different
goals. All releases include depth information directly extracted from the 3D model.

The first release, SPARTA-S, is a small collection of 1000 low-resolution images
(640 x 480 px), split into 800 for training and 200 for validation. The second release,
SPARTA-L, expands the dataset to 4000 high-resolution images (1280 x 720 px),
with 3500 for training and 500 for validation. While these versions were useful
for initial experimentation, it soon became evident that the images were often
too similar to one another, resulting in limited diversity and reduced potential for
generalization when training vision models.

To overcome these issues, a third release was created with a focus on diversity
and robustness. SPARTAv2 contains 10000 images at 640 x 480 px resolution,
each paired with detailed annotations. Unlike the first versions, these images were
explicitly generated to cover a broader range of conditions: they are organized
into five sets that differ in texture and lighting, thereby introducing significant
variability in the visual characteristics of the scenes. For training and evaluation,
each of the five sets is split 80%/20% into SPARTAv2-train and SPARTAv2-val,
ensuring a balanced distribution of conditions. This design makes SPARTAv2 more
suitable for developing and benchmarking models intended to perform well under
heterogeneous scenarios.
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(c) SPARTAv2: Set 1 (d) SPARTAv2: Set 2

(e) SPARTAv2: Set 3 (f) SPARTAv2: Set 4 (g) SPARTAv2: Set 5

Figure 4.3: Samples form SPARTA-S, SPARTA-L, and each of the five sets
composing SPARTAv2.

\ V4
4.3 ATHENS Dataset

ATHENS (Apple Tree Harvesting Environment w/ Natural Scenes) is the real-
world counterpart of the synthetic SPARTA dataset. It provides panoptic anno-
tations of apple orchards, following the class definitions introduced in Section 4.2
and the annotation structure described in Section 4.4.

The dataset was created from images acquired in Saluzzo (Cuneo, Italy) during
October 2023 in orchards belonging to the Agrion foundation. Data was collected
from 9 distinct ROS [42] bags, each corresponding to a row of apple trees charac-
terized by differences in cultivar, lighting conditions, background clutter, and plant
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structure (see Figure 4.4). Acquisition was performed using two depth cameras: an
Intel® RealSense Depth Camera D435 (bags 1-5, 7) and an Intel® RealSense
Depth Camera D455 (bags 6, 8, 9).

Since each image is manually annotated, labeling every single pixel would have
been nearly impossible and prohibitively time-consuming. To address this, a
greedy annotation strategy was adopted. The process began by annotating all
apples, followed by the most visible branches, supports, and wires. When feasible,
large regions of background and soil were also annotated. The most challenging
class, leaves, was left for the final stage: only those in the foreground or in close
proximity to other annotated classes were labeled. Ensuring that adjacent pixels
were annotated was crucial, as this increases the penalty for mispredictions during
training. Figure 4.5 illustrates the number of annotated pixels per bag and per
class.

Due to some errors in the archiving of the ROS bags, depth was not available
for the ATHENS dataset. To make up for this lack, a second, small, version of
the dataset was collected in September 2025. This new version, ATHENSv2, is
created from two bags collected with an Intel® RealSense Depth Camera D435.

4.3.1 Dataset splits

ATHENS dataset consists of 164 high-resolution images (1280 x 720px), divided
into training and validation subsets designed to preserve balance across the bags.
Specifically, 80% of the images from each bag were allocated to the training set,
while the remaining 20% were reserved for validation. This strategy ensures that
the validation set provides a representative sample of each bag, avoiding bias toward
a specific vineyard section.

o ATHENS-train: 134 images, divided as follows

bagl bag2 bag3 bag4 bag5 bag6 bag7 bag8 bag9
12 12 12 12 12 12 12 24 24

« ATHENS-val: 32 images, divided as follows

bagl bag2 bag3 bag4 bag5 bag6 bag7 bag8 bag9
3 3 3 3 3 5 6

This split not only maximizes the amount of data available for training but also
guarantees that the validation set contains examples from all vineyard sections. In
this way, the model is evaluated on conditions comparable to those seen during
training, while still testing its ability to generalize across different bags.
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(j) Bag 10 (k) Bag 11

Figure 4.4: Samples from ATHENS and ATHENSv2. Each sample belongs to a
different bag.

ATHENSvV2 is composed of 37 high-resolution images (1280 x 720px), split
according to the same policy used for the main dataset. Specifically, ATHENSv2-
train contains 31 images (15 from bag 10 and 16 from bag 11) and ATHENSv2-val
contains 6 images (3 from each bag).

4.3.2 Manual annotation with SALT

The images were manually annotated using SALT (Segment Anything Labeling
Tool), an open-source annotation tool built on top of the Segment Anything
Model (SAM) by Meta Al, available at https://github.com/anuragxel/salt.
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BN Soil MMM Supports & wires WM Leaves Branches EEEl Apple Background

bagl bag2 bag3 bag4 bag5 bag6 bag7 bag8 bag9 bagl0 bagll

(a) train set

N Soil MMM Supports & wires WM Leaves Branches EEE Apple Background

I
— . — —
—— — —
bagl bag2 bag3 bag4 bag5 bag6 bag7 bag8 bag9 bagl0

bagll

(b) validation set

Figure 4.5: Number of annotated pixels per bag. Notice that not all pixels are
annotated and that bag8 and bag9 contain an higher number of images.

Although providing high-quality segmentation, the default SALT interface slowed
down the annotation process for panoptic segmentation. To improve efficiency,
several modifications were implemented.

Bounding box toggle Bounding boxes are useful for instance detection, but in
dense scenes with overlapping objects they clutter the interface. To address this, a
new key binding (B) was introduced to toggle bounding boxes on and off.
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Solid coloring of selected segments Instead of blending selected segments
with the background (which often made them barely visible), they are now displayed
using a solid color to improve visibility.

File name display The file name of the image currently being annotated is now
shown in the interface, simplifying dataset organization.

SALT outputs annotations in COCO-style JSON format, where each segment
is assigned a unique incremental ID. After annotation, a custom script was used
to merge all segments belonging to stuff classes and assign them the correct IDs,
while ensuring that thing instances were consistently mapped.

Hilil

(a) original (b) modified

Figure 4.6: Segment Anything Labeling Tool GUI. Notice the solid colors: the
segments on the sky are barely visible in (a). No bounding boxes and file name on
top-right corner in (b).

4.4 Annotations Format

This section provides a detailed description of the annotation format used in
SPARTA and ATHENS, by outlining the different files and directories that compose
the datasets.

Each version of the dataset is organized into a hierarchical directory structure,
which includes separate folders for the training and validation sets. Within each
of these, dedicated subdirectories are provided for storing the images and their
corresponding annotations. Figure 4.7 illustrates the standard organization of the
dataset, which is consistent across all datasets.
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SPARTA-S/
L train/
= depth/

— images/
— panoptic/
— semantic/

+— 5 instance. json

+— £ panoptic. json

— val/
— 0 depth/
H— images/

— panoptic/
— semantic/

+— [§ instance. json

+— £ panoptic.json

Figure 4.7: Folder structure of SPARTA-S dataset

panoptic.json

The panoptic.json file follows the COCO panoptic format and contains the
following fields:

« info: metadata about the dataset, such as year, version, description, contrib-
utor, URL and date of creation.

o images: a list of the images in the dataset, each entry containing an id,
file_name, height, and width.

o licenses: a list of dataset licenses, which in SPARTA and ATHENSremains
empty.

35



Datasets

o categories: a list of the categories, each defined by its id, supercategory,
name and an isthing flag.

o annotations: a list of all the annotations for every image in the dataset.
Each annotation contains three fields: the id of the image it belongs to,
the file name corresponding to the segmentation image name and the
segments_info field, which contains a list of segments for that image.

Each segment in segments_info has its own category_id, id (unique within
the image and calculated as the category_id multiplied by 1000 to which an
incremental instance ID is added), area, bbox(bounding box) and iscrowd
flag.

The iscrowd flag indicates whether the segment is a crowd of objects or not:
it is used when there are multiple instances of objects that are too close to each
other and manually annotating them would be too difficult or time-consuming,
like a crowd of people at a concert. In the two proposed datasets, this flag is
always set to 0, as there are no crowds of objects in the dataset.

instance.json

The instance. json file follows the same overall structure as panoptic. json, with
the main differences lying in the annotations field.

Each annotation in annotations has an unique id (in this work, it was generated
by multiplying the corresponding image ID by 1,000,000 and adding the segment ID),
the corresponding image_id, category_id, bbox, area, and iscrowd fields, but it
does not contain the segments_info field, which is replaced by the segmentation
field, containing the spacial information of the location of the segment in the image.
The other important difference is that this file only contains annotations for the
thing classes, i.e. the Apple class for the SPARTA amd ATHENS datasets.

This segmentation field can contain information in two different formats:

o RLE: run-length encoding, which is a compact representation of the segmenta-
tion mask that allow to store the mask as a list of counts of consecutive pixels,
alternating between background and foreground pixels. To better understand
how it works, see Figure 4.8.

o polygon: a list of polygons that represent the segmentation mask. The
polygons are represented as a list of points, each with its own pair of coordinates
as shown in Figure 4.9.
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Binary mask

0

1

2

3 RLE encoding

% — [10, 3, 6, 3, 6, 6, 3, 6,
6 3, 6, 3, 3, 12, 2, 7, 21
7

8

012345678

Figure 4.8: Illustration of Run-Length Encoding (RLE) for a binary segmentation
mask. The mask is flattened into a 1D array and encoded as alternating runs
of background (0) and foreground pixels (1). [10, 3, 6, 3, 6, 6, 3, 6, ...]
means (left to right, top to bottom): 10 background pixels, 3 foreground pixels, 6
background pixels, etc.

Binary mask

1 Polygon encoding

[
H [ ],

[737, 7583 8,85 8)7]

ONOHTTHB=WNH—O

B ]

012345678

Figure 4.9: Illustration of polygon encoding for a segmentation mask. The mask
is represented as a list of polygon vertices, where each polygon is defined by a list
of coordinates flattened into a 1D array.

panoptic/

The panoptic/ directory contains . png files representing the panoptic segmentation
masks for each image in the dataset. These masks are RGB images, where each
pixel color encodes the segment_id of the region it belongs to. The encoding is
defined as follows:

e Red channel: segment_id mod 256
o Green channel: (segment_id -+ 256) mod 256
o Blue channel: (segment_id + 65536) mod 256

Symmetrically, the segment_id can be retrieved from the pixel color calculating
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segment_id = red + green * 256 + blue * 256 * 256. These identifiers are
unique within the image, and correspond to the ones in the segments_info field
of the panoptic. json file.

semantic/

Similarly to the panoptic/ directory, the semantic/ directory contains .png files
with the semantic segmentation masks for each image in the dataset. The only
difference is that different instances of the same class are not distinguished, and all
pixels belonging to the same class have the same color.

images/

The images/ directory contains the original images of the dataset, in . jpg format.

depth/

Finally, the depth/ directory contains a .npy file for each image representing for
each pixel its depth expressed in meters.
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Chapter 5

Methodology

To address the task of panoptic segmentation, this work explores and implements
a range of deep learning techniques and architectures. The study begins with
PanopticDeepLab, which operates on RGB images, and subsequently investigates
the integration of depth information to enhance performance. In this context,
architectures such as ESANet are employed to effectively leverage both RGB and
depth modalities.

5.1 PanopticDeepLab

PanopticDeepLab [43] is the first bottom-up single-shot panoptic segmentation
model able to achieve state-of-the-art results on common benchmarks. The design,
shown in Figure 5.3, is really simple and requires only three losses to be trained.

This model leverages the Atrous Spatial Pyramid Pooling (ASPP) module, that
was firstly introduced in the original DeepLab paper [44], to extract multi-scale
features from the input image. It makes use of the so-called atrous convolution: a
convolution that uses filters like the ones shown in Figure 5.1. These filters, despite
having different sizes share the same number of parameters and operations per
position, since only the non-zero filled values must be taken into account. They
allow enlarging the field-of-view at any layer by just increasing the rate value, with
zero consequences on the model performance.

ASPP is inspired by R-CNN spatial pyramid pooling [45] idea of extracting
features at different scales. Multiple atrous convolutions with different sampling
rates are used to extract features that are then fused to generate the final result.

The network is structured into two branches, one dedicated to semantic seg-
mentation and the other to instance segmentation. These two branches share the
same backbone, which is adapted from an ImageNet pre-trained neural network.
Empirical evidence shows that the two branches require different contextual and
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normal conv atrous conv atrous conv
3x3 3x3 3x3
rate=1 rate=2 rate=3

Figure 5.1: Example of atrous convolution filters. The rate determines the factor
by which the filter is dilated. Empty values are filled with zeros.
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Figure 5.2: Atrous Spatial Pyramid Pooling (ASPP). To classify the center
pixel, ASPP exploits multi-scale features by employing multiple parallel filters with
different rates. The effective Field-Of-Views are shown in different colors.

decoding information; therefore, the authors propose to use two different ASPP
modules, one for each branch. The outputs of these two modules are then fed
separately to two different decoders (based on the DeepLabv3+ decoder [46] with
a few modifications). Finally, two heads are attached to the decoders, concurring
to the final panoptic prediction.

o Semantic head. The semantic head is attached to the semantic decoder and
predicts both things and stuff, using a softmax activation function to output
the class probabilities for each pixel. This head is trained using a weighted
cross-entropy loss.

« Class-agnostic instance head. Each object instance is represented by a
center of mass. So, this head predicts a center heatmap, which is a probability
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Image credits: PanopticDeepLab

Figure 5.3: Network architecture of PanopticDeepLab

map that indicates the likelihood of each pixel being the center of an object
instance, and an offset map, which indicates for each pixel the offset to the
center of the object instance. The center heatmap is trained using a MSE loss,
while the offset map is trained using a L1 loss.

Now, to obtain the final panoptic segmentation, these three outputs (semantic,
center heatmap and offset map) must be combined. Recalling Definition 1, the
final panoptic segmentation is a pair (I; ;, z; ;) for each pixel of coordinates (3, j),
where [; ; is the semantic class and z; ; is the instance id. The semantic class [; ; is
simply obtained from the semantic head output, while a post-processing step is
required to obtain the instance id z; ; from the center heatmap and offset map. In
particular, a pixel of coordinates i, j is assigned to the closest center of mass C,
after applying the corresponding offset O(i, 7), following the equation:

b1 = angmin [|C. — () + O, )| (1)

5.2 ESANet

ESANet (Efficient Scene Analysis Network) is an architecture proposed by Seichter
et al. [47] in order to leverage depth information in addition to standard RGB
inputs to perform semantic segmentation. ESANet is designed to grant faster
inference time compared to other RGB-D segmentation methods.

The architecture of this network, shown in Figure 5.4, is inspired by SwiftNet
[48] approach of using a shallow encoder with pretrained ResNet18 backbone and
large downsampling, followed by a context module and a shallow decoder. SwiftNet
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is designed for RGB images, therefore it has a single encoder, while ESANet
introduces a second one.

Encoders. ESANet uses two encoders based on ResNet-34. However, unlike
DeepLabv3 [49], strided convolutions are not replaced by atrous convolutions.
Instead of the basic ResNet block, ESANet employs the Non-Bottleneck-1D Block
(NBt1D), in which the 3 x 3 convolution is replaced by a 3x 1 and a 1 x 3 convolution
with a ReLU in between, as shown in Figure 5.4 (violet).

RGB-D Fusion. Unlike many other RGB-D segmentation approaches that fuse
the feature representations later in the network, ESANet fuses depth features into
the RGB encoder at each of the five resolution stages of the encoders. Features
are reweighted using a Squeeze and Excitation (SE) module [50] and summed
element-wisely, as depicted in 5.4 (light green).

Context Module. To give more context information, a Pyramid Pooling Module
is used to aggregate features at different scales, Figure 5.4 (orange).

Decoder. The decoder is comprised of three modules, each composed of a 3 x 3
convolution, three NBt1D blocks and an upscaling module. Neither transposed
convolution nor bilinear interpolation are used for upsampling, but a new learned
module is used instead: a nearest neighbor upsampling followed by a 3 x 3 depthwise
convolution. The resulting upscaled feature maps are then enriched with information
coming directly from the encoders through skip connection. Loss is calculated not
only at the end but also at the exit of each decoder module.

5.3 Improving ESANet

As described in Section 5.2, ESANet just performs semantic segmentation but can
be easily adapted to provide panoptic outputs. That’s what Sodano et al. [51] does,
alongside providing a new fusion method called ResidualFzcite.

Panoptic segmentation adaption. To adapt ESANet to panoptic segmentation
two more decoders are added, one that predicts the location of object centers and
the other that predicts an embedding vector for each pixel of the image. More in
detail:

« Semantic decoder produces Iy, € RE*F*XW outputs, where C is the number

of semantic classes. It is trained on a cross-entropy loss Leem -

42



5.3 — Improving ESANet
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Figure 5.4: Overview of ESANet (top) and specific network parts (bottom).

« Center prediction decoder produces I, € R>?*W outputs. A sigmoid
activation function predicts pixelwise probabilities of being a center. It is
trained with a binary focal loss:

—a(1—§) log(y if =1
Lo = a(l—7) og(?) ity =1, (5.2)

—(1—a) g™ log(1l —19) , otherwise,

« Embedding prediction decoder produces a D.p,-dimensional embedding
vector Ioyp, € RPemb*HXW Tt g trained with a composed Hinge loss:

£emb = 61 »Catt + 62 »Crep + ﬁ3 ['reg (53)

where L,y attracts embeddings of the same instance, L,e, repels embeddings
of different instances and L,c; acts as a regularization term.

ResidualExcite. The second and main contribution of Sodano et al. [51] is the
introduction of a novel feature fusion strategy. Unlike the Squeeze-and-Excitation
module [50], which first generates a descriptor for each channel (squeeze) and then
applies channel-specific weights to the feature map (excitation), ResidualExcite
computes a single global modulation weight. This is achieved by removing the
squeezing operation and incorporating a residual connection, as illustrated in
Equation 5.4 and Figure 5.5.
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Xrgb = Xrgb +A (E<Xrgb) Xrgb + E(Xdepth) Xdepth) (54)

Where A is a weight hyperparameter and F(X;) is the excitation module,
composed of a sequence of 1 x 1 convolutions followed by a sigmoid activation.

/7 RESIDUALEXCITE
( !
FRGB Residual Connection FRGB

\jb I \
\Tr—’ =
\\\7 /,

Fp E Fp

Figure 5.5: ResidualExcite module used to fuse RGB and depth features

5.4 PanopticDeepLab with Double Encoder

This variant of PanopticDeepLab integrates the double-encoder approach of ESANet
into the original PanopticDeepLab architecture, which is based on a single ResNet
encoder.

The first major difference lies in the stem. ESANet adopts the standard ResNet
stem, consisting of a single 7 x 7 convolution with stride 2, followed by batch
normalization, activation, and max pooling. This configuration rapidly reduces
the spatial resolution of the input while expanding the feature channels to the
desired output dimension. In contrast, PanopticDeepLab employs a customized
stem composed of three consecutive 3 x 3 convolutions. The first convolution
downscales the input with stride 2 while producing half of the final output channels.
The second convolution preserves both the spatial dimensions and the number of
channels, refining the intermediate features. The third convolution then restores
the channel dimension to the full output size, preparing the representation for the
subsequent stages of the network. This sequential design enables PanopticDeepLab
to capture more detailed and progressively refined features compared to the single-
step reduction in ESANet.

As discussed in Section 5.2, ESANet builds upon the Non-Bottleneck-1D block,
whereas this PanopticDeepLab adaptation relies on the standard Bottleneck block
from ResNet-50. The remainder of the backbone follows the same alternation of
fusion operations and ResNet stages introduced by ESANet, as summarized in
Figure 5.6.
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Importantly, only the backbone of PanopticDeepLab is modified; all other
components remain unchanged. Thus, the overall structure is identical to that
described in Section 5.1, including the two separate ASPP modules, decoders, and
heads, as well as the three independent loss functions.

Stem

ResNet,
Stage

Figure 5.6: Backbone feature fusion in the double encoder version of Panop-
ticDeepLab

45



46



Chapter 6
Experiments

This chapter presents the experiments conducted and their corresponding results.
After a brief introduction to the experimental environment and the tools employed,
each experiment is described and analyzed in detail, with comparisons among
related groups and both qualitative and quantitative results reported. Additional
details and results of the experiments can be found in Appendix B.

6.1 Environment and Framework

Environment All experiments were conducted on a workstation named Bonnie,
located at the PIC4SeR laboratories in Turin. It runs Ubuntu 22.04.1 and features
two NVIDIA® GeForce " RTX 2080 GPUs (8 GB each), an Intel® Core™ i7-9700K
CPU at 3.60 GHz, and 65 GiB of RAM. The system is connected to a Network
Attached Storage (NAS) unit with a total capacity of 17.3 TB.

As the workstation is shared among multiple users, the experiments were
executed on a single GPU rather than utilizing the system’s full capacity. Access
to Bonnie was established via SSH, using Visual Studio Code’s integrated SSH
functionality for coding tasks and the Microsoft Remote Desktop (RDP) client for
GUI-based operations.

Framework All experiments presented in this thesis were conducted using the
Detectron2 framework [52], developed by Facebook AI Research (FAIR) as the
successor to Detectron, the original Caffe2-based implementation. The framework
is widely adopted in both academia and industry due to its ease of use, high
performance, and scalability to large datasets and multi-GPU environments. Detec-
tron2 provides an extensive model zoo containing more than 70 pretrained models,
implemented in a memory- and compute-efficient manner, allowing users to rapidly
experiment with high-performing architectures.
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Integrating a custom dataset into Detectron?2 is straightforward, particularly
when the dataset follows the COCO-style annotation format. For the SPARTA
and ATHENS datasets used in this work, dataset registration was performed using
the register_coco_panoptic function, after which the datasets were immediately
available for training and evaluation. Each dataset can be associated with cus-
tomizable metadata, such as thing classes, stuff_classes, and ignore_label,
enabling precise control over label semantics and evaluation protocols.

A standardized trainer abstraction simplifies and accelerates the training pro-
cess by providing default configurations for key components such as the opti-
mizer, learning rate schedule, logging, evaluation, and checkpointing. Detectron2
also streamlines the computation of performance metrics through a set of pre-
defined evaluators that implement standard dataset-specific APIs, such as the
COCOPanopticEvaluator for panoptic segmentation. Compared to running evalu-
ations manually, these evaluators can be combined using the DatasetEvaluators
wrapper, allowing multiple metrics to be computed in a single forward pass over
the dataset.

The framework employs a flexible key—value configuration system based on
YAML and yacs®, which enables centralized and reproducible management of
experimental settings. In addition, it provides standardized visualization utilities
for qualitative inspection of model predictions, facilitating debugging and result
interpretation.

6.2 Experiments with RGB-only inputs

The architecture used for the following experiments is PanopticDeepLab, de-
scribed in Section 5.1. Unless otherwise stated, the input images are resized to
640 x 640 pixels before training and inference. The model is initialized from
COCO pre-trained weights and fine-tuned on each dataset without freezing any
layers. Three data augmentations are applied: random horizontal flipping, random
cropping with resizing of the shortest edge, and color jitter.

For evaluation, Panoptic Quality (PQ), Segmentation Quality (SQ), and Recog-
nition Quality (RQ) are used. Qualitative results are also reported to complement
the quantitative analysis. A warmup polynomial learning rate schedule is used,
with a learning rate that is increased up to 0.0025 over the first 50 epochs and
then decayed by a factor of 0.9 until reaching 0.00001 at the end of training. On
the hardware side, inference on GPU achieves an average of 41.3 ms per image (=~
24.23 FPS). On CPU, performance drops to 660.7 ms per image (=~ 1.51 FPS).

'https://github.com/rbgirshick/yacs
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6.2 — Experiments with RGB-only inputs

6.2.1 Experiments on SPARTA

This set of experiments serves as a benchmark to assess the potential of Panop-
ticDeepLab when trained exclusively on the synthetic SPARTA datasets. Having
three versions of the dataset will allow to compare their relative performance and
the effects of dataset size, resolution and variability on the final results.

SPARTA-S

In the first experiment PanopticDeepLab is trained and evaluated on the SPARTA-S
dataset. Results are shown in Table 6.1, while Figure 6.1 provides qualitative
samples. Performance is limited by the relatively small dataset size and low
resolution. Errors often appear at object boundaries or in small objects that are
too far. Nevertheless, the model is able to capture the main structural components
of the images.

PQ SQ RQ

All 61.035 &81.595 74.395
Things 42.940 81.740 52.532
Stuft 64.654 81.566 78.767

Table 6.1: Quantitative results (PQ, SQ, RQ) of PanopticDeepLab trained and
evaluated on the SPARTA-S dataset.

(a) ground truth (b) prediction

Figure 6.1: Qualitative panoptic results of PanopticDeepLab trained and evaluated
on the SPARTA-S dataset.
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SPARTA-L

This experiment follows the same training protocol but using the larger and higher-
resolution SPARTA-L dataset. As reported in Table 6.2, performance significantly
improves compared to SPARTA-S. This gain can be attributed both to the greater
number of training images and to the increased spatial detail. Qualitative results
(Figure 6.2) show more precise segmentation of fine structures and better class
separation.

PQ SQ RQ

All 72.250 84.367 85.624
Things 50.222 82.975 60.526
Stuft 76.656 84.646 90.643

Table 6.2: Quantitative results (PQ, SQ, RQ) of PanopticDeepLab trained and
evaluated on the SPARTA-L dataset.

(a) ground truth (b) prediction

Figure 6.2: Qualitative panoptic results of PanopticDeepLab trained and evaluated
on the SPARTA-L dataset.

SPARTAv2

The third experiment employs the new SPARTAv2 dataset, designed with higher
variability in textures, lighting, and object arrangements. Unsurprisingly, as shown
in Table 6.3, performance metrics drop compared to SPARTA-L and SPARTA-S.
However, qualitative results (Figure 6.3) reveal that the model still learns robust
features, despite the more challenging dataset.
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PQ SQ RQ

All 55.001 77.214 70.811
Things 29.522 79.489 37.139
Stuft 60.097 76.759 77.545

Table 6.3: Quantitative results (PQ, SQ, RQ) of PanopticDeepLab trained and
evaluated on the SPARTAv2 dataset.

(a) ground truth (b) prediction

Figure 6.3: Qualitative panoptic results of PanopticDeepLab trained and evaluated
on the SPARTAv2 dataset.

Summary and discussion

The following table (6.4) sums up the performance of PanopticDeepLab on the dif-
ferent versions of the SPARTA dataset. SPARTA-L completely outscores the other
two datasets in all metrics, even though those numbers are not fully comparable
since they are evaluated on different splits. It is worth noting that, although all
three experiments show a drop in the things performance, the decrease is particu-
larly pronounced for SPARTAv2. This can be explained by the more challenging
apple representation in this dataset, which includes a wider variety of textures and
lighting conditions. While this variability makes the task harder, it also provides
a more realistic benchmark, highlighting the importance of robustness to visual
diversity in real-world applications.
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All Things Stuff
Train dataset Val dataset  PQ SQ RQ PQ SQ RQ PQ SQ RQ

SPARTA-S SPARTA-S 61.035 81.595 74.395 | 42.940 81.740 52.532 | 64.654 81.566 78.767
SPARTA-L SPARTA-L 72250 84.367 85.624 | 50.222 82.975 60.526 | 76.656 84.646 90.643
SPARTAv2 SPARTAv2 55.001 77.214 70.811 | 29.522 79.489 37.139 | 60.097 76.759 77.545

Table 6.4: Comparison of PQ, SQ, RQ metrics at best PQ step for each experiment
on PanopticDeepLab trained on SPARTA dataset.

6.2.2 Cross-Dataset Generalization (SPARTA — ATHENS)

The main objective of the following experiments is to evaluate the degree to which
models trained on synthetic datasets (SPARTA-S, SPARTA-L, and SPARTAv?2)
are able to generalize to real-world imagery, represented by the ATHENS dataset.
This setup provides insights into the robustness of the learned representations
and highlights the challenges of domain shift between synthetic and real data.
Differences across SPARTA variants will allow to assess the impact of dataset size,
resolution, and variability on generalization performance.

SPARTA-S to ATHENS

As a first test, the model trained on SPARTA-S is directly evaluated on the ATHENS
dataset. The results in Table 6.5 indicate limited generalization, with the model
struggling to adapt to the novel textures and scene layouts. Qualitative examples
in Figure 6.4 reveal frequent misclassifications and fragmented segmentations,
particularly among classes with similar appearance. Nevertheless, some categories,
such as apples, are detected with reasonable accuracy.

PQ SQ RQ

All 25.373 56.920 35.871
Things 20.270 65.541 30.928
Stuff 26.394 55.196 36.859

Table 6.5: Quantitative results (PQ, SQ, RQ) of PanopticDeepLab trained on
the SPARTA-S dataset and evaluated on the ATHENS dataset.
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(a) ground truth (b) prediction

Figure 6.4: Qualitative panoptic results of PanopticDeepLab trained on the
SPARTA-S dataset and evaluated on the ATHENS dataset.

SPARTA-L to ATHENS

Evaluating the SPARTA-L trained model on ATHENS yields higher quantitative
scores, as reported in Table 6.6. Despite the qualitative examples in Figure 6.5
appear less convincing than those from the previous experiment, it is worth to note
that the chosen image does not represent the whole validation set.

PQ SQ RQ

All 27.799 69.374 39.454
Things 28.170 66.051 42.648
Stuft 27.725 70.039 38.815

Table 6.6: Quantitative results (PQ, SQ, RQ) of PanopticDeepLab trained on
the SPARTA-L dataset and evaluated on the ATHENS dataset.

(a) ground truth (b) prediction

Figure 6.5: Qualitative panoptic results of PanopticDeepLab trained on the
SPARTA-L dataset and evaluated on the ATHENS dataset.
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SPARTAv2 to ATHENS

Finally, the model trained on SPARTAv2 is evaluated on ATHENS. Thanks to
the greater diversity of SPARTAv2, the model generalizes better than the other
two datasets, as shown in Table 6.7. Figure 6.6 illustrates qualitatively improved
predictions, with more stable segmentations, fewer class confusions and more
precise class borders. This demonstrates the effectiveness of dataset variability in
improving robustness across domains.

PQ SQ RQ

All 28.154 56.819 40.603
Things 22.995 64.252 35.789
Stuft 29.186 55.332 41.565

Table 6.7: Quantitative results (PQ, SQ, RQ) of PanopticDeepLab trained on
the SPARTAv2 dataset and evaluated on the ATHENS dataset.

(a) ground truth (b) prediction

Figure 6.6: Qualitative panoptic results of PanopticDeeplLab trained on the
SPARTAv2 dataset and evaluated on the ATHENS dataset.

Summary and discussion

Looking more in detail at the obtained results, summed up in Table 6.8, it is
evident that SPARTA-S lags behind in all metrics, confirming its limited capability
to generalize. SPARTA-L achieves the highest segmentation quality (SQ), which
can be attributed to the larger image resolution available in this dataset, leading
to more precise mask boundaries. On the other hand, SPARTAv2 reaches the best
overall panoptic quality (PQ) and recognition quality (RQ), particularly in the
stuff classes. This outcome is consistent with its more diverse and variegated image
set, which favors better generalization across heterogeneous scenes.
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All Things Stuff
Train dataset Val dataset PQ SQ RQ PQ SQ RQ PQ SQ RQ

SPARTA-S ATHENS 25373  56.920 35.871 | 20.270 65.541 30.928 | 26.394 55.196  36.859
SPARTA-L ATHENS  27.799 69.374 39.454 | 28.170 66.051 42.648 | 27.725 70.039 38.815
SPARTAv2 ATHENS 28.154 56.819 40.603 | 22.995 64.252 35.789 | 29.186 55.332 41.565

Table 6.8: Comparison of PQ, SQ, RQ metrics at best PQ step for each experiment
about cross-dataset generalization.

6.2.3 Experiments on ATHENS

The following set of experiments aims to determine the most effective way to
integrate ATHENS into the training process, whether by using only the real
dataset, fine-tuning a model trained on SPARTA, or combining both datasets.

Direct Training on ATHENS

As a baseline, the model is trained directly on the ATHENS dataset, initialized
from COCO-pretrained weights. This experiment establishes a reference point for
subsequent fine-tuning approaches. The quantitative and qualitative results in
Table 6.9 and Figure 6.7 already demonstrate strong performance, leaving limited
room for further improvements beyond fine-grained refinements.

PQ SQ RQ

All 66.684 83.649 79.901
Things 46.780 67.365 69.442
Stuft 70.665 86.906 81.993

Table 6.9: Quantitative results (PQ, SQ, RQ) of PanopticDeepLab trained and
evaluated on the ATHENS dataset.

5 | 7 Vol

(a) ground truth (b) prediction

Figure 6.7: Qualitative panoptic results of PanopticDeepLab trained and evaluated
on the ATHENS dataset.
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Fine-tuning from SPARTA-S

As a first test, the model initialized with SPARTA-S pretraining is fine-tuned
on the ATHENS dataset. As shown in Table 6.10 and Figure 6.8, the metrics
significantly improve over the SPARTA-S — ATHENS direct evaluation, confirming
the benefits of adaptation. However, when compared to the baseline trained directly
on ATHENS, the gains remain limited.

PQ SQ RQ

All 68.818 84.066 82.048
Things 48.429 67.021 72.259
Stuft 72.895 87.475 84.006

Table 6.10: Quantitative results (PQ, SQ, RQ) of PanopticDeepLab trained on
the SPARTA-S dataset, fine tuned on the ATHENS and then evaluated on the
ATHENS dataset.

(a) ground truth (b) prediction

Figure 6.8: Qualitative panoptic results of PanopticDeeplLab trained on the
SPARTA-S dataset, fine tuned on the ATHENS and then evaluated on the ATHENS
dataset.

Fine-tuning from SPARTA-L

The second experiment, fine-tuning the SPARTA-L pretrained model on ATHENS,
follows the same trend observed with SPARTA-S. As shown in Table 6.11 and
Figure 6.9, performance improves considerably compared to the direct SPARTA-L
— ATHENS evaluation, yet only slightly surpasses the baseline trained directly
on ATHENS. Interestingly, the final scores are even marginally lower than those
obtained with SPARTA-S pretraining, suggesting that a larger synthetic dataset
does not necessarily guarantee better transferability to the target domain.
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PQ SQ RQ

All 66.826 83.523 80.157
Things 47.456 66.886 70.952
Stuft 70.700 86.851 81.998

Table 6.11: Quantitative results (PQ, SQ, RQ) of PanopticDeepLab trained on
the SPARTA-L dataset, fine tuned on the ATHENS and then evaluated on the
ATHENS dataset.

< |

(a) ground truth (b) prediction

Figure 6.9: Qualitative panoptic results of PanopticDeepLab trained on the
SPARTA-L dataset, fine tuned on the ATHENS and then evaluated on the ATHENS
dataset.

Fine-tuning from SPARTAv2

Finally, this experiment leverages SPARTAv2 pretrained weights for fine-tuning on
ATHENS. As in the previous cases, the general trend remains the same: fine-tuning
yields a clear improvement over direct cross-dataset evaluation, while only slightly
surpassing the baseline trained from scratch on ATHENS. However, this setup
achieves the best overall results (Table 6.12 and Figure 6.10), indicating that the
increased variability of SPARTAv2 provides the most effective pretraining prior
among the three versions.

PQ SQ RQ

All 69.084 85.071 81.288
Things 48.402 67.133 72.099
Stuft 73.220 88.658 83.125

Table 6.12: Quantitative results (PQ, SQ, RQ) of PanopticDeepLab trained on
the SPARTAv2 dataset, fine tuned on the ATHENS and then evaluated on the
ATHENS dataset.
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(a) ground truth (b) prediction

Figure 6.10: Qualitative panoptic results of PanopticDeepLab trained on the
SPARTAv2 dataset, fine tuned on the ATHENS and then evaluated on the ATHENS
dataset.

Mixing ATHENS & SPARTAv2

As an alternative to sequential training, first on the synthetic dataset and then
fine-tuning on the real one, another approach is to jointly train on both datasets.
However, the experimental results (Table 6.13 and Figure 6.11) indicate that this
strategy does not achieve the same level of accuracy as fine-tuning.

PQ SQ RQ

All 39.453 72.784 52.557
Things 37.375 66.168 56.485
Stuft 39.869 74.107 51.772

Table 6.13: Quantitative results (PQ, SQ, RQ) of PanopticDeepLab trained
on the SPARTAv2 and ATHENS datasets jointly and evaluated on the ATHENS
dataset.

(a) ground truth (b) prediction

Figure 6.11: Qualitative panoptic results of PanopticDeepLab trained on the
SPARTAv2 and ATHENS datasets jointly and evaluated on the ATHENS dataset.
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6.3 — Experiments with RBG+Depth inputs

Summary and discussion

To sum up, Table 6.14 reports all the results of this set of experiments in which
ATHENS is integrated in the training. Overall, fine-tuning SPARTA-trained
models on ATHENS generally improves performance compared to using ATHENS
alone. The SPARTAv2 training followed by ATHENS fine-tuning achieves the
highest PQ and SQ values overall, benefiting from the diverse representations of
SPARTAvV2 while leveraging the real-world images of ATHENS. In contrast, direct
training on both SPARTAv2 and ATHENS without careful alignment leads to
a dramatic performance drop, highlighting that naive mixing of datasets with
different distributions can harm generalization.

All Things Stuff
Train dataset Val dataset PQ SQ RQ PQ SQ RQ PQ SQ RQ
ATHENS ATHENS 66.684 83.649 79.901 | 46.780 67.365 69.442 | 70.665 86.906  81.993

SPARTA-S + ATHENS ATHENS  68.818 84.066 82.048 | 48.429 67.021 72.259 | 72.895 87.475 84.006
SPARTA-L + ATHENS ATHENS  66.826 83.523 80.157 | 47.456 66.886  70.952 | 70.700  86.851  81.998
SPARTAv2 + ATHENS ATHENS 69.084 85.071 81.288 | 48.402 67.133 72.099 | 73.220 88.658 83.125
SPARTAv2 & ATHENS ATHENS  39.453 72.784  52.557 | 37.375 66.168 56.485 | 39.869 74.107 51.772

Table 6.14: Comparison of PQ, SQ, RQ metrics at best PQ step for each
experiment on PanopticDeepLab trained or partially trained on ATHENS.

6.3 Experiments with RBG-+Depth inputs

In this set of experiments, the dataloader is configured to load both RGB images
and corresponding depth maps. Since the depth data are stored as images with
the same spatial resolution as the RGB inputs, the overall memory consumption is
approximately doubled compared to the PanopticDeepLab experiments. As a result,
the batch size must be reduced by half to maintain feasible training conditions.
The experiments are conducted using two architectures: ESANet and a modified
version of PanopticDeepLab designed to process both modalities.

6.3.1 Baselines
SPARTAv2 baseline

For a fair comparison, the baseline is defined as PanopticDeepLab trained on
SPARTAv2 with a batch size of 2. The results, reported in Table 6.12 and
Figure 6.12, show a decrease in performance. However, this reduction is not
critical, as the purpose of this baseline is solely to provide a consistent reference
for evaluating the impact of incorporating depth information with ESANet.
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PQ SQ RQ

All 46.920 73.323 63.496
Things 26.896 79.017 34.039
Stuft 50.925 72.184 69.388

Table 6.15: Quantitative results (PQ, SQ, RQ) of PanopticDeepLab trained and
evaluated on the SPARTAv2 dataset with a batch size of 2.

(a) ground truth (b) prediction

Figure 6.12: Qualitative panoptic results of PanopticDeepLab trained and evalu-
ated on the SPARTAv2 dataset with a batch size of 2.

ATHENSvV2 baseline

As already discussed in Section 4.3, the first version of ATHENS did not provide
any depth information due to some errors in the archiving of the ROS bags. So,
the real-life baseline is represented by the following results (Table 6.16, Figure 6.13)
obtained on the ATHENSv2 dataset using a PanopticDeepLab architecture, still
with a batch size of 2.

PQ  5Q  RQ

All 598.218 77.565 76.740
Things 54.455 65.715 82.866
Stuft 58.971 79.935 75.515

Table 6.16: Quantitative results (PQ, SQ, RQ) of PanopticDeepLab trained and
evaluated on the ATHENSv2 dataset with a batch size of 2.
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(a) ground truth (b) prediction

Figure 6.13: Qualitative panoptic results of PanopticDeepLab trained and evalu-
ated on the ATHENSv2 dataset with a batch size of 2.

6.3.2 ESANet

The following experiments employ the ESANet architecture described in Sec-
tion 5.2, with the panoptic adaptation and the ResidualFEzcite module proposed
by Sodano et al. [51] described in Section 5.3. The main objective is to investi-
gate whether incorporating depth information, readily available from the virtual
environment, can improve the final results.

The original implementation by Sodano et al. [51], available at https://github.
com/PRBonn/PS-res-excite, relies on a standard Python training loop. As a
result, training requires several minutes per epoch, making hyperparameter op-
timization prohibitively time-consuming. To address this limitation, the entire
architecture was re-implemented within the Detectron2 framework, achieving a
speedup of several orders of magnitude, with each epoch taking only about 0.317
seconds. Moreover, Detectron2 provides a unified evaluation pipeline, ensuring
consistent metrics across all experiments.

Unless otherwise stated, all experiments resize input images to 640 x 640 pixels
before training and inference. Image-Net pretrained weights are used and training
lasts 1000 epochs. The same three augmentations are applied: random horizontal
flipping, random cropping with resizing of the shortest edge, and color jitter. For
evaluation, Panoptic Quality (PQ), Segmentation Quality (SQ), and Recognition
Quality (RQ) are used. Qualitative results are also reported to complement the
quantitative analysis.

A one-cycle learning rate schedule is used, where the learning rate is first
increased from an initial value of 1le—4 up to a maximum of 0.0025 during the first
10% of the training steps, and then gradually decreased following a cosine annealing
strategy to a minimum of le—8 by the end of training. Depth inputs are pre-
processed by applying a threshold, defined as a hyperparameter, to remove extreme
values. Specifically, all depth values larger than the threshold are replaced with
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the maximum valid value below it. After thresholding, the inputs are normalized
using the mean and standard deviation of the depth values.

depth_inputs = [
torch.where (
x < self.depth_threshold,
e
torch.max(x[x < self.depth_threshold])
)
for x in depth_inputs

Inference on GPU achieves an average of 76.4 ms per image (=~ 13.09 FPS),
while on CPU performance decreases to 760.6 ms per image (=~ 1.31 FPS). In both
cases, the model is slower than PanopticDeepLab, as it needs to process both depth
and RGB information.

Experiment on SPARTAv2

In this experiment, the modified ESANet model was trained on the SPARTAv2
dataset with a batch size of 2. After some tuning, a threshold of 15 meters is chosen.
The results, reported in Table 6.17 and Figure 6.14, indicate an overall improvement
compared to the baseline. However, a closer analysis reveals a substantial drop
in Panoptic Quality for the thing classes (in this case, apples), which is clearly
visible in the qualitative results. While the model successfully segments all objects,
it struggles to assign correct instance labels, leading to a significant reduction in
instance-level performance.

PQ SQ RQ

All 47794 74957 61.905
Things 9.650 74.913 12.881
Stuft 55.423 74.966 71.709

Table 6.17: Quantitative results (PQ, SQ, RQ) of ESANet trained and evaluated
on the SPARTAv2 dataset.
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6.3 — Experiments with RBG+Depth inputs

(a) ground truth (b) prediction

Figure 6.14: Qualitative panoptic results of ESANet trained and evaluated on
the SPARTAv2 dataset.

Experiment on ATHENSv2

This second experiment performed using ATHENSv2 dataset and a threshold of 10
meters, shows a similar behavior to the previous ESANet experiment. The model is
quite consistent in segmenting classes but struggles in identifying instances, leading
to a lower Panoptic Quality for the thing class. However, unlike the previous
experiment, the performance can not keep up with the baseline. The reason must
be identified in the quality of depth data and the difference between the synthetic
and real ones (see Figure 6.18).

PQ  5Q  RQ

All 48.196 76.061 63.167
Things 11.651 61.320 19.000
Stuft 55.505  79.009 72.000

Table 6.18: Quantitative results (PQ, SQ, RQ) of ESANet trained and evaluated
on the ATHENSv2 dataset.
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(a) ground truth (b) prediction

Figure 6.15: Qualitative panoptic results of ESANet trained and evaluated on
the ATHENSv2 dataset.

6.3.3 PanopticDeepLab with Double Encoder

The previous experiments revealed complementary strengths and weaknesses of
PanopticDeepLab and ESANet. To exploit the advantages of both, a double-
encoder variant of PanopticDeepLab is introduced in Section 5.4. The experiments
presented here evaluate the effectiveness of this combined architecture.

For consistency, the baselines defined in Section 6.3.1 are retained, since halving
the batch size remains necessary. Depth inputs are pre-processed using the same
thresholding strategy described in Section 6.3.2, while the other training parameters
are the same described for the simple PanopticDeepLab implementation described
in Section 6.2.

Inference speed is almost on par with ESANet, with an average of 76.3 ms per
image (=~ 13.11 FPS) on GPU and 995.4 ms per image (=~ 1.00 FPS) on CPU.

Experiment on SPARTAv2

In this experiment, the modified PanopticDeepLab is trained on SPARTAv2 dataset,
using a batch size of 2 and a threshold of 20 meters. The improvement with respect
to the baseline and the ESANet experiment is clear both from the quantitative
(Table 6.19) and qualitative results (Figure 6.16). However, the overall performance
gain remains limited, suggesting that while the inclusion of depth features provides
marginal benefits, it does not lead to a substantial enhancement in panoptic quality.

64



6.3 — Experiments with RBG+Depth inputs

PQ SQ RQ

All 48.614 74.425 63.220
Things 23.102 76.657 30.137
Stuft 53.717  73.979 69.837

Table 6.19: Quantitative results (PQ, SQ, RQ) of PanopticDeepLab with double
encoder trained and evaluated on the SPARTAv2 dataset.

(a) ground truth (b) prediction

Figure 6.16: Qualitative panoptic results of PanopticDeepLab with double encoder
trained and evaluated on the SPARTAv2 dataset.

Experiment on ATHENSv2

In this final experiment, the modified PanopticDeepLab was trained on the
ATHENSv2 dataset, with a threshold of 20 meters identified as the best-performing
setting. This experiment shows solid performance across all types of classes, as
reported in Table 6.20 and illustrated in Figure 6.17. Although the model achieves
higher Panoptic Quality values compared to the ESANet experiment, the baseline
still outperforms it, largely due to the persistent issue of low-quality depth data.
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PQ SQ RQ

All 51.462 72361 73.064
Things 51.095 65.186 78.383
Stuft 51.535 73.795 72.000

Table 6.20: Quantitative results (PQ, SQ, RQ) of PanopticDeepLab with double
encoder trained and evaluated on the ATHENSv2 dataset.

(a) ground truth (b) prediction

Figure 6.17: Qualitative panoptic results of PanopticDeepLab with double encoder
trained and evaluated on the ATHENSv2 dataset.

6.3.4 Summary and discussion

Two main findings emerge from this set of experiments. First, collecting reliable
depth information in agricultural scenarios is particularly challenging. Depth
cameras such as the Intel® RealSense D435 suffer from limited precision and
sensitivity to outdoor conditions, leading to noisy or incomplete measurements.
Figure 6.18 shows the discrepancy between real and synthetic depth data.

Second, incorporating depth information nearly doubles the computational and
memory requirements, while providing only marginal performance improvements.
This trade-off also reduces inference speed, limiting the model’s applicability in
real-time settings.

A closer examination of Table 6.21, focusing on the synthetic dataset, shows
that the modified PanopticDeepLab does not consistently outperform the other
architectures in specific categories, but achieves slightly better results overall.
ESANet excels on the stuff classes, while the baseline PanopticDeepLab achieves
higher performance on the thing classes.
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(b) ATHENSv2

Figure 6.18: Comparison of depth data from the synthetic and real datasets.

All Things Stuff

Architecture Train & Val dataset PQ SQ RQ PQ SQ RQ PQ SQ RQ

PanopticDeepLab (Baseline) 46.920 73.323 63.496 | 26.896 79.017 34.039 | 50.925 72.184 69.388
ESANet SPARTAv2 47.794  74.957 61.905 9.650 74913 12.881 | 55.423 74.966 71.709
PanopticDeepLab (Double) 48.614 74.425 63.220 | 23.102 76.657 30.137 | 53.717 73.979  69.837
PanopticDeepLab (Baseline) 58.218 77.565 76.740 | 54.455 65.715 82.866 | 58.971 79.935 75.515
ESANet ATHENSv2 48.196  76.061  63.167 | 11.651 61.320 19.000 | 55.505  79.009  72.000
PanopticDeepLab (Double) 51.462 72.361 73.064 | 51.095 65.186 78.383 | 51.535 73.795  72.000

Table 6.21: Comparison of PQ, SQ, RQ metrics at best PQ step for each
experiment with RGB+Depth inputs (Except for the baseline). All results refer to
a training with batch size = 2.
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Chapter 7
Conclusions

The main objective of this thesis was to address the lack of perception technologies
in agricultural robotics that are able to understand the full scene context rather
than focusing only on isolated elements. A review of the state-of-the-art approaches
and publicly available datasets, in fact, confirmed that existing solutions tend to
just identify limited portions of the images, typically where the objects of interest,
such as the fruits, are located. Consequently, most computer vision methods
for agricultural robotics revolve around the tasks of object detection or instance
segmentation.

Given these limitations, the focus of this work was directed towards performing
panoptic segmentation on fruit trees, more specifically on apple trees. To achieve
this, two main contributions were introduced: the creation of two families of datasets,
SPARTA and ATHENS, and the review and usage of two neural architectures,
PanopticDeepLab and ESANet, on the aforementioned datasets.

SPARTA (Synthetic Panoptic Apple oRchard Tree Annotations) proved to be a
highly valuable resource. Although it requires the initial effort of 3D modeling the
virtual environment, it offers virtually unlimited potential: by simply adjusting
simulation parameters, it is possible to generate a large variety of training data
at minimal additional cost. ATHENS (Apple Tree Harvesting Environment with
Natural Scenes) also demonstrated its usefulness. Despite its relatively small size,
it provides high-quality panoptic ground truths for real-world images, making it a
crucial complement to the synthetic dataset.

The experiments conducted on the two architectures, PanopticDeepLab and
ESANet, have produced interesting results. First, the usage of RGB data alone
for training and inference proved to achieve a solid performance. Employing pre-
training on the synthetic SPARTA dataset as a starting point to further fine-tune
on the real-word ATHENS dataset stood out as the most effective strategy. On
the other hand, the integration of depth information brings a slight performance
gain which also introduces significant drawbacks. Specifically, it comes at the cost
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of almost doubling the computational power required, not to mention the effort to
collect reliable depth data which can be difficult to obtain in real-world agricultural
scenarios.

Overall, the obtained results can be useful for a wide range of applications
that can diverge from the original goal of supporting fruit-harvesting robots.
Understanding the whole context of a rural scene means having the opportunity
to extract features like fruit size, leaf density or branches structure, which can be
used to estimate the state of health or the productivity of the plant. For instance,
monitoring fruit size over time can be helpful for regulating nutrients supply or
guiding fertilization strategies. Similarly, the ratio between the quantity of fruits
and leaves can be an indicator of plant productivity, allowing comparison between
different cultivation practices or management techniques.

Several future works can build upon this thesis. The analyzed techniques can be
easily extended to different crops, particularly those organized in rows such as vines
or tomatoes. The collected datasets can be both expanded to increase variability
and therefore, the ability of the models to generalize to unseen conditions. In
addition to RGB and depth, other sensing modalities (thermal, multi-spectral
cameras) can be tested to see if they bring performance improvements. The natural
follow-up of this research is the design and implementation of a working robotic
system, which can be tested on-field to evaluate both its effectiveness and efficiency.
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Appendix A

Datasets examples and
statistics

This appendix complements Chapter 4 by presenting examples of the dataset files
and statistics.

A.1 Datasets statistics

The goal of this section is to provide a quick and compact overview of the statistics
and differences between the introduced datasets through the following summary
tables.

Dataset Split | Resolution # images #pacr;nlmi):;{cc 1s # apples iraiiﬂzsc
SPARTA-S T\rgiln 640 x 480 288 gg;}ggfg 26665525 gg;?
sPARTAL | | msoxao ) el e e
sARTAV2 | G| SO0 g e nme sl
R T 1953
arHENSv2 | s gy 500

Table A.1: Overview of dataset statistics and annotations for each split.
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Datasets examples and statistics

. RGB Depth
Dataset Split Mean Std Mean Std
SPARTA-S Train [66.93, 75.88, 39.96] [43.18, 48.69 ,45.85] | 2.30m 2.05m
Val [67.50, 76.96, 40.28] [43.90, 48.86, 46.49] | 2.30m 2.11m
SPARTA-L Train [41.14, 55.24, 32.05] [50.11, 47.65, 53.38] | 2.68m 2.11m
Val [40.59, 54.42, 31.31] [49.55, 47.15, 52.53] | 2.72m 2.11m
Train [62.63, 68.90, 46.38] [42.75, 45.20, 46.14] | 3.07Tm 2.40m
SPARTA-V2 Val [63.08, 69.51, 47.12] [43.34, 45.91, 47.18] | 3.0bm 2.40m
Train | [111.03, 106.09, 99.28] [58.30, 58.70, 64.48] - -
ATHENS Val [109.81, 104.80, 97.91] [57.64, 58.13, 62.98] - -
Train | [105.80, 102.87, 98.45] [54.04, 55.14, 61.84] | 1.84m 2.48m
ATHENSv2 Val [103.22, 99.47, 89.66] [68.00, 59.82, 68.95] | 2.70m 5.47m

Table A.2: RGB and depth statistics over each dataset split. RGB values are in
the range 0 — 255, depth values are expressed in meters.

. . Supports ) ]

Dataset Split Apple Soil & Wires Leaves Branches  Background
SPARTA.S Train 1.89% 13.72% 4.39% 63.90% 6.00% 10.11%
Val 2.03% 12.35% 4.47% 65.08% 5.62% 10.46%
SPARTAL Train 2.07% 14.97% 3.57T% 64.24% 4.80% 10.35%
' Val 2.12% 15.57% 3.74% 64.01% 4.77% 9.79%
Train 2.02% 10.33% 4.30% 70.93% 5.36% 7.06%
SPARTAv2 Val 2.01% 9.96% 4.23% 70.90% 5.34% 7.55%
ATHENS Train 14.69% 14.92% 4.82% 31.84% 5.66% 28.07%
Val 17.30% 13.38% 3.66% 33.46% 7.19% 25.01%
Train 15.62% 18.56% 6.86% 16.97% 2.29% 39.70%
ATHENSv2 Val 13.52% 17.34% 9.16% 10.94% 2.40% 46.64%

Table A.3: Class distribution of annotated pixels for each dataset split.
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A.2 Dataset Samples

To provide a clearer overview of the datasets, this section presents sample files and
illustrations from SPARTA and ATHENS.

(a) Original image (b) Panoptic image (c) Semantic image

Figure A.1: Example from the SPARTA-S dataset showing the original image
and its corresponding raw panoptic and semantic segmentation files.

(a) image

(c) instance segmentation (d) panoptic segmentation

Figure A.2: Comparison of different segmentation tasks on an image of the
SPARTA-S dataset (Image58. jpg).
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Datasets examples and statistics

"info": {
"year": 2025,
"version": "1.0",
"description": "SPARTA-S: Synthetic Panoptic
Apple oRchard Tree Annotations",
"contributor": "PIC4SeR & VincenzoAvantaggiato",
"url": "",
"date created": "2025/06/13 10:08:19"
r,
"images": [
{
"id": 152,
"file_name": "Imagelb52.jpg",

"height": 480,
"width": 640

},
1,
"licenses": [],
"annotations": [
{
"image_id": 152,
"file_name": "Imagelb2.png",
"segments_info": [
{
"id": 6000,
"category_id": 6,
"area": 11534.0,
"bbox": [0, 0, 629, 439],
"iscrowd": O
},
1,
},
]
"categories": [
{
"id": 1,
"name": "Soil",
”supercategory"% "None",
"isthing": O 4
},
]

Listing A.1: Example structure of panoptic. json
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A.2 — Datasets Samples

"info": {
"year": 2025,
"version": "1.0",
"description": "SPARTA-S: Synthetic Panoptic
Apple oRchard Tree Annotations",
"contributor": "PIC4SeR & VincenzoAvantaggiato",
"yrl": """,
"date created": "2025/06/13 10:08:19"
I
"images": [
{
"id": 152,
"file_name": "Imagelb52.jpg",
"height": 480,
"width": 640
+s
1,
"licenses": [],
"annotations": [
{
"id": 152005002,
"image_id": 152,
"category_id": 5,
"segmentation": [[17,266, 16,267, 15,267,
14,267, 13,267, 12,268,
13,268, 14,268, 15,269,
16,269, 17,268, 17,267]]
"bbox": [12, 266, 6, 4],
"area": 7.0,
"iscrowd": O,
1,
T,
]
"categories": [
{
"id": b,
"name": "Apple",
"supercategory": "None",
n 3 3 n .
, isthing": 1 5
]

Listing A.2: Example structure of instance. json



Datasets examples and statistics

(c) SPARTAv2: Set 1 (d) SPARTAv2: Set 2

(e) SPARTAv2: Set 3 (f) SPARTAv2: Set 4 (g) SPARTAv2: Set 5

Figure A.3: Samples form SPARTA-S, SPARTA-L, and each of the five sets
composing SPARTAv2.
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(k) Bag 11

Figure A.4: Samples from ATHENS and ATHENSv2. Each sample belongs to a
different bag.

7
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Appendix B

Experimental results

This appendix complements Chapter 6 by summarizing the experimental results
in tables and figures. While the main chapter provides a detailed discussion of
individual experiments, the material presented here is intended to offer a concise
overview, making it easier to compare models, evaluate performance across settings,
and identify general trends.

GPU CPU
Architecture Time [ms] FPS | Time [ms] FPS
PanopticDeepLab 41.3 24.23 660.7 1.51
ESANet 76.4 13.09 760.6 1.31
PanopticDeepLab + Double Encoder 76.3 13.11 995.4 1.00

Table B.1: Average inference time and throughput on GPU and CPU.

All Things Stuff

Train dataset Val dataset PQ SQ RQ PQ SQ RQ PQ SQ RQ

SPARTA-S SPARTA-S 61.035 81.595 74.395 | 42.940 81.740 52.532 | 64.654 81.566 78.767
SPARTA-L SPARTA-L  72.250 84.367 85.624 | 50.222 82.975 60.526 | 76.656 84.646  90.643
SPARTAv2 SPARTAv2 55.001 77.214 70.811 | 29.522 79.489 37.139 | 60.097 76.759  77.545
SPARTA-S ATHENS 25373  56.920 35.871 | 20.270 65.541 30.928 | 26.394 55.196  36.859
SPARTA-L ATHENS  27.799 69.374 39.454 | 28.170 66.051 42.648 | 27.725 70.039 38.815
SPARTAv2 ATHENS 28.154 56.819 40.603 | 22.995 64.252 35.789 | 29.186 55.332 41.565
ATHENS ATHENS  66.684 83.649 79.901 | 46.780 67.365 69.442 | 70.665 86.906 81.993
SPARTA-S + ATHENS ATHENS  68.818 84.066 82.048 | 48.429 67.021 72.259 | 72.895 87.475 84.006
SPARTA-L + ATHENS ATHENS 66.826  83.523  80.157 | 47.456  66.886 70.952 | 70.700 86.851  81.998
SPARTAv2 + ATHENS ATHENS 69.084 85.071 81.288 | 48.402 67.133 72.099 | 73.220 88.658 83.125
SPARTAv2 & ATHENS  ATHENS  39.453 72.784  52.557 | 37.375 66.168 56.485 | 39.869  74.107 51.772

Table B.2: Comparison of PQ, SQ, RQ metrics at best PQ step for each experiment
on PanopticDeepLab with RGB input.
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Experimental results

All Things Stuff

Architecture Train & Val dataset PQ SQ RQ PQ SQ RQ PQ SQ RQ

PanopticDeepLab (Baseline) 46.920 73.323 63.496 | 26.896 79.017 34.039 | 50.925 72.184 69.388
ESANet SPARTAv2 47.794  74.957 61.905 | 9.650 74.913 12.881 | 55.423 74.966 71.709
PanopticDeepLab (Double) 48.614 74.425 63.220 | 23.102 76.657  30.137 | 53.717  73.979  69.837
PanopticDeepLab (Baseline) 58.218 77.565 76.740 | 54.455 65.715 82.866 | 58.971 79.935 75.515
ESANet ATHENSv2 48.196  76.061  63.167 | 11.651 61.320 19.000 | 55.505  79.009  72.000
PanopticDeepLab (Double) 51.462  72.361  73.064 | 51.095 65.186  78.383 | 51.535 73.795  72.000

Table B.3: Comparison of PQ, SQ, RQ metrics at best PQ step for each experiment
with RGB+Depth inputs (Except for the baseline). All results refer to a training
with batch size = 2.
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