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Abstract

As 5G networks continue to expand into critical sectors such as healthcare, energy, and
transportation, the need for robust security measures is becoming crucial. At the same
time, the volume of reported vulnerabilities has grown rapidly in the last few years, in-
creasing from around 25,000 in 2022 to projections of up to 50,000 new CVEs (Common
Vulnerabilities and Exposures) in 2025. In this evolving landscape, it is essential to rapidly
identify the vulnerabilities that affect the 5G infrastructure. However, traditional methods
such as keyword filtering and manual review are slow and error prone, making it increas-
ingly difficult to cope with the continuous influx of newly reported vulnerabilities.

To address this problem, the study proposes a methodology to automate the classifi-
cation of CVEs affecting the 5G infrastructure, making it capable of keeping up with the
growing volume of vulnerabilities while preserving reliability.

Experiments are conducted on a manually annotated dataset to evaluate the perfor-
mances of both state-of-the-art open-source LLMs, including Qwen, Gemma, and Llama,
and transformer-based models combined with traditional machine learning classifiers such
as logistic regression, SVM, and XGBoost.

Preliminary evidence shows that SVM achieves strong accuracy while being highly
efficient in terms of computational costs. However, the findings suggest that LLM-based
approaches generalize better to previously unseen CVEs and also provide explicit reasoning
that supports the manual validation process. In particular, lightweight local LLMs (around
4 billion parameters) reach accuracy levels comparable to much larger models, and can
be further improved with prompt engineering and fine-tuning, surpassing more resource-
intensive models.

Notably, the fine-tuned LLMs emerge as the most effective configuration, allowing local
execution of the pipeline on limited-resource machines while preserving data privacy, main-
taining high accuracy, and offering detailed reasoning that supports manual validation.

The proposed approach is directly applicable to real-world security operations, where
timely and reliable vulnerability assessment is crucial. Over time, the process could be
refined to reduce the need for human validation, and can be easily extended to other
critical sectors, broadening its impact beyond the 5G-specific use case.
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Chapter 1

Introduction

The fifth generation of cellular network technology, known as 5G, represents a corner-
stone of modern telecommunications, enabling unprecedented levels of connectivity, high
bandwidth, and ultra-low latency. This technological leap not only enhances consumer
communication but also supports mission-critical applications such as autonomous vehi-
cles, remote healthcare, and large-scale Internet of Things (IoT) deployments. In this sense,
5G should not be regarded as a mere incremental evolution of previous generations, but
rather as a disruptive technology that drives the digital transformation of entire sectors.

However, the expansion of its application domains also results in a considerably larger
attack surface. 5G networks rely extensively on software-defined networking (SDN), virtu-
alization, and cloud-native components, which, while providing flexibility and scalability,
also introduce new avenues for cyberattacks. As 5G becomes deeply embedded in critical
services and infrastructures, ensuring its security is no longer optional but an essential
requirement to guarantee safe, reliable, and trustworthy operations.

To properly address these security challenges, it is essential to identify and analyze the
vulnerabilities that may affect 5G infrastructures. In the cybersecurity domain, vulner-
abilities are typically documented and tracked through the Common Vulnerabilities and
Exposures (CVE) system, which provides a standardized and publicly accessible catalog
of known security flaws. Each CVE entry describes a specific weakness, along with identi-
fiers and references that allow researchers, vendors, and practitioners to assess its potential
impact.

The National Institute of Standards and Technology (NIST) plays a central role in this
process through the National Vulnerability Database (NVD), which enriches CVE entries
with additional metadata, such as severity scores, affected products, and links to mitigation
strategies. This structured and authoritative information makes the CVE/NVD ecosystem
a fundamental reference for vulnerability management in both academia and industry.

In the context of 5G, leveraging CVE data is particularly relevant: it enables the iden-
tification of weaknesses that directly or indirectly threaten the components, protocols, and
software-defined architectures on which next-generation networks rely. Consequently, CVE
descriptions constitute a valuable source of knowledge for understanding and classifying
the risks associated with 5G infrastructures.

Nevertheless, the practical use of CVE data in the 5G domain presents significant chal-
lenges. In 2024 alone, more than 40,000 new CVEs were published, representing a volume
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1.1 — Thesis Structure

that far exceeds the capacity of manual analysis. While some vulnerabilities explicitly
affect 5G-related products—such as the open-source core implementation Openb5GS—the
majority concern technologies, protocols, or software components whose connection to 5G
is indirect and often difficult to determine. This heterogeneity underscores the need for
advanced methodologies that can automatically distinguish which vulnerabilities are rele-
vant to 5G, thereby facilitating the adoption of large language models (LLMs) to support
the classification process.

The objective of this Thesis is to define and implement a methodology that lever-
ages large language models (LLMs) to classify and filter CVE descriptions from the NIST
database, with the specific aim of identifying those vulnerabilities that are relevant to 5G
technologies. The proposed approach is designed to address both the scale of the problem,
given the continuously growing number of published CVEs, and the ambiguity in determin-
ing their connection to 5G infrastructures. By developing, implementing, and validating
this methodology, the Thesis seeks to provide a tool that not only facilitates more efficient
vulnerability assessment in the 5G domain but also contributes to the broader effort of
improving the resilience and security of next-generation communication networks.

To achieve this goal, a local pipeline has been developed to evaluate the performance of
LLMs with respect to traditional embedding classifiers. Two manually annotated datasets,
balanced to contain the same amount of 5G-related and non-5G CVEs, were employed to
evaluate both families of models under reproducible conditions. The experiments revealed
that, while traditional classifiers provide strong accuracy and computational efficiency,
LLM-based approaches demonstrate superior generalization capabilities and also offer in-
terpretable reasoning that supports later manual validation. Moreover, the study evaluates
various optimization strategies, including prompt engineering and fine-tuning, which en-
able lightweight local LLMs to achieve performance comparable to much larger models. A
proof-of-concept prototype was also implemented to demonstrate the applicability of the
proposed methodology in real-world security operations.

1.1 Thesis Structure

The remainder of the document is organized as follows:

o Background 2: introduces the key concepts relevant to this research, including an
overview of the 5G architecture and its stakeholders, the Common Vulnerabilities and
Exposures (CVE) framework, and the role of the National Vulnerability Database
(NVD). It also outlines the fundamental notions of Natural Language Processing
(NLP).

o Related Works 3: reviews the existing research on automated vulnerability classifi-
cation, with particular attention to studies that apply NLP and machine learning
techniques to CVE analysis. It also identifies the research gap that this Thesis aims
to address within the 5G security domain.

o Methodology 4: details the experimental methodology used to evaluate both LLM-
based and embedding-based classification strategies. This chapter also describes the
datasets and the evaluation metrics used to assess the performance of the models in
the context of 5G vulnerability classification.

9



Introduction

o Fxperimental Results 5: presents and discusses the experimental results obtained
throughout this study. It first establishes the baseline performance of the evaluated
models and then compares it with the proposed optimization mechanisms, assessing
their effectiveness in a realistic operational context.

o Conclusions and Future Work 6: summarizes the key findings of the research, dis-
cusses the limitations of the proposed methodology, and outlines possible directions
for future work.

10



Chapter 2

Background

This chapter provides the theoretical background necessary to understand the problem of
automated classification of 5G vulnerabilities. It is articulated in three main sections:

o FEvolution of Mobile Networks 2.1: outlines the 5G story, the architecture, and how
difficult it is to monitor such a broad infrastructure.

o Common Vulnerability and Exposures (CVE) and The National Vulnerability Database
(NVD) 2.2: present the CVE/NVD ecosystem, data fields, and trends that motivate
systematic, scalable analysis.

o Foundations of Machine Learning 2.3: reviews core ML /NLP concepts, such as em-
beddings, attention, Transformers, and LLMs, forming the basis of the classification
methodology adopted in this work.

2.1 Evolution of Mobile Networks

During the last decades, with the spread and rapid progress of mobile devices, cellular
networks have evolved through several stages. Each new generation brought about im-
provements in technology, speed, and the offered services. The first generation (1G) only
supported analogue voice communication. The second generation (2G), launched at the
end of the 1980s, introduced digital transmission and the short message service (SMS),
which extended the possible use of mobile phones. With 3G, higher data rates made access
to the internet possible through mobile devices, opening the road for web browsing and
multimedia content. The arrival of 4G pushed this evolution further with the introduction
of IP-based communication, aligning mobile networks with Internet protocols and provid-
ing broadband-like performance. This development created the basis for today’s mobile
ecosystem, including real-time navigation, social media content, and video streaming [26].

The introduction of 5G can be considered a paradigm shift in mobile networks. In
fact, with ultra-low latency, the possibility of connecting a high number of devices, and
gigabit-level data rates, 5G expands the scope of mobile networks from consumer services to
critical infrastructures such as healthcare, transport, manufacturing, and energy suppliers,
increasing concerns over its security, since any vulnerability could have cascading effects
on essential services and public safety.
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2.1.1 5G Stakeholders and Architecture

The 5G ecosystem is wide and complex, not only because of the technologies underpinning
it, but also because of the many actors that participate in its development, deployment,
and maintenance. The broader scope of this mobile network consequently increases the
number and type of stakeholders involved compared to older mobile generations. Each of
these stakeholders has a different role and responsibility, especially when it comes to the
security and reliability of the system.

According to a report from the European Union Agency for Cybersecurity (ENISA) on
5G security [23], the main stakeholders of the network are: service customers, who rely on
5G for both consumer and industrial applications, service providers, who offer connectivity
and value-added services, mobile network operators (MNQOs), managing the core infras-
tructures, virtualization infrastructure providers enabling the deployment of virtualized
network functions, and data center providers ensuring storage and computational capacity.

In addition, other important actors are network infrastructure vendors, who design
and supply the hardware and software components, national requlators that are respon-
sible for policy implementation and spectrum allocations, cybersecurity agencies tasked
with monitoring and responding to threats, and certification authorities that guarantee
compliance with security standards. At the European level, institutions as ENISA itself,
BEREC (Body of European Regulators for Electronic Communications), or the European
Commission have a coordinating role.

Over time, the role of these stakeholders can change. Nowadays, international stan-
dardization bodies, such as the 3rd Generation Partnership Project (3GPP), are
responsible for defining open and traceable 5G standards. At the same time, accredita-
tion organizations ensure the quality of test labs and auditors. There are also professional
associations creating guidelines for secure deployment, research centers contributing to in-
novation by filling gaps in standards, and open source communities providing tools and
frameworks for implementing 5G functions. Each of them contributes differently to the
trust and resilience of the ecosystem [23].

From the technical point of view, 5G architecture can be seen as the result of this multi-
stakeholder environment, separated into two main "planes": Control and User Plane. This
separation takes the name of Control and User Plane Separation (CUPS). The first
focuses mainly on managing the signal and resource allocation by using routing protocols
and algorithms. The second is the part of the network dedicated to forwarding the actual
data to the end-user. This separation gives more flexibility because the two parts can be
scaled or moved independently and managed by software instead of fixed hardware, which
is harder to maintain and replace [1].

The structure of the network can be observed in Figure 2.1. Starting from the user’s
device, called User Equipment (UE), the communication first reaches the Radio Access
Network (RAN), which represents the entry point to the mobile infrastructure. The
connection of a huge number of nearby UEs is possible through the deployment of small
cells and Multiple Input Multiple Output (MIMO) antennas, which handle multiple
signal paths simultaneously, to increase the network coverage. The communication is then
transmitted to the transport network and directed to the Core network, where the main
operations, such as routing and service management, take place.

In the Core Network, most functions are no longer tied to dedicated hardware but are
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Figure 2.1. General architecture of a 5G cellular network [1].

instead virtualized and executed in software. This paradigm shift is enabled by Network
Function Virtualization (NFV), which decouples network functions from the under-
lying physical infrastructure, and by Software Defined Networking (SDN), which
introduces centralized and programmable control over data flows, as depicted in Figure
[1]. Together, these technologies allow higher flexibility: operators can dynamically start,
migrate, or scale network processes according to real-time demand, optimizing resource
allocation and ensuring continuity of service even under fluctuating workloads. As a re-
sult, the core network evolves into a software-driven cloud platform capable of supporting
applications requiring low latency.

Another important feature introduced with 5G is Network Slicing, which allows the
creation of multiple logical and independent connections over the same physical channel.
Each slice can be configured with different levels of latency or throughput, enabling the
coexistence of heterogeneous services within a unified architecture [1]. For instance, one
slice may be dedicated to high-bandwidth applications such as video streaming. In contrast,
another slice can be deployed to support low-latency communications, such as those needed
for autonomous driving, remote surgery, or industrial automation.

2.1.2 Security of the 5G Network

It is evident that with such a large number of diverse components, technologies, protocols,
and stakeholders, the potential surface for failures, whether triggered by a malicious actor
or by accidental causes, becomes extremely vast. The strong reliance on software, cloud
infrastructures, and virtualization technologies significantly broadens the attack surface
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of modern mobile networks, making elements such as hypervisors, orchestration frame-
works, and supply chains particularly exposed to vulnerabilities. Even misconfigurations
or delayed security updates can lead to cascading effects and potentially compromise entire
network functions running within the core network [23].

Although the strong dependency on software already opens the door to numerous at-
tack vectors, Network slicing brings additional risks. If the mechanisms ensuring isolation
between slices fail, or if Application Public Interfaces (APIs) are inadequately protected,
attackers may exploit these weaknesses to move laterally across different slices, compromis-
ing multiple services at once. At the radio access level, the massive deployment of small
cells and the use of millimeter-wave frequencies increase the susceptibility of equipment to
threats such as jamming, spoofing, or physical tampering.

Beyond the purely technical dimension, it is also important to secure processes and
supply chains. In its analysis of standardization requirements, ENISA [22] highlights
a major gap: the lack of standardized security requirements covering the full life cycle
of 5G-specific cloud-native and edge deployments. This includes aspects such as central-
ized certificate management, interoperable automation and orchestration, and support for
serverless environments. This gap underlines the urgency of adopting a fast and systematic
way to analyze and classify vulnerabilities. In this regard, standards such as Common Vul-
nerabilities and Exposures (CVE) play a fundamental role, as they provide a standardized
language to report security vulnerabilities, creating the backbone of vulnerability manage-
ment practices in complex environments, such as the 5G ecosystem.

2.2 Common Vulnerability and Exposures (CVE) and
The National Vulnerability Database (NVD)

The CVE program, maintained by MITRE Corporation, has over the years become the de
facto standard for cataloging publicly known cybersecurity vulnerabilities. According to
MITRE [41], the basic format of a CVE record includes, at least, the following elements:

o CVE-ID: a unique identifier composed of the prefix "CVE', the year, and an arbi-
trary digit. It is important to note that the year refers not to the discovery of the
vulnerability, but to the year in which it was publicly disclosed (or, in some cases,
privately).

e Summary: a concise description of the vulnerability.

« Common Product Enumeration (CPE): the standardized label identifying the
affected product(s) and version(s).

o References: one or more URLs linking to external resources that provide further
details about the vulnerability.

The National Vulnerability Database (NVD) [44] is the official U.S. government
repository for vulnerability information. It not only publishes CVE entries but also enriches
them with additional metadata, such as the Common Vulnerability Scoring System
(CVSS), which provides a way to assess the severity and exploitability of vulnerabilities,

14
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and the Common Weakness Enumeration (CWE), which classifies vulnerabilities
according to the underlying software/hardware weaknesses.

This enrichment, maintained by NIST, transforms the NVD from a simple catalog of
vulnerabilities into a structured knowledge base. It supports organizations in performing
risk assessments, developing effective mitigation strategies, and raising the overall level of
security in their products and services.

As an illustrative example, consider CVE-2023-43239:

o« CVE-ID: CVE-2023-43239.

o Summary: D-Link DIR-816 A2 v1.10CNBO05 was discovered to contain a stack over-
flow via parameter flag 5G in showMACfilterMAC.

« Common Platform Enumeration (CPE): cpe:2.3:h:dlink:dir-816_a2.
« References: contains two external URLs.
« CVSS v3.1, Base Score 9.8 (Critical).

Each field of the CVE records provides intuitive information. The identifier contains the
year of its public disclosure (2023). The summary specifies the affected product D-Link
DIR 816 A2, and the vulnerability type in this case is a stack overflow. The CPE indicates
with the segment h that the vulnerability affects a hardware device. Additionally, NIST
enriched the vulnerability with the CVSS score, which allows one to instantly understand
that the record is about a Critical vulnerability.

2.2.1 Main Challenges in 5G security

The number of published vulnerabilities has been steadily increasing over the past years,
and projections indicate that this trend will continue in the near future. According to
the latest vulnerability forecast [68] by Leverett, a Cambridge researcher, the expected
number of newly assigned CVE identifiers in 2025 varies between 41,000 and 50,000. As
illustrated in 2.2, this represents a dramatic rise compared to the approximately 20,000
CVEs published in 2020, and forecasts suggest that the number could even triple by 2026.

While the rapid growth in the number of published vulnerabilities already represents a
challenge to cybersecurity operations, the difficulty of correctly identifying which of these
vulnerabilities affect 5G infrastructures introduces an additional and more critical layer of
risk.

From a technical perspective, the automated classification of 5G-related CVEs is hin-
dered by two main factors. First, the ambiguity in textual descriptions of CVE records,
which is typically short and omits contextual details. As a result, truly relevant vul-
nerabilities may never mention 5G-related components or protocols. Second, cross-layer
dependencies: 5G networks rely on a complex software stack that integrates cloud-native
components, orchestration layers, and specific interfaces, as illustrated in Figure 2.1. A
weakness in a seemingly generic component may become critical to the infrastructure if this
component is deployed in the implementation of the core network. Third, the ecosystem
heterogeneity: vendors and open-source projects adopt different naming conventions for
functions, APIs, and interfaces, making purely keyword-based unreliable and error-prone.
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An example of this phenomenon was analyzed by Trend Micro in their study on ASN.1
vulnerabilities in 5G cores [53]. The authors demonstrated that several vulnerabilities,
already catalogued in the NVD, were initially regarded as minor implementation issues in
generic ASN.1, a standard notation for describing data structures in various programming
languages. These vulnerabilities could be exploited directly from the User Equipment,
potentially crashing the User Plane Function. This means that by using a mobile phone
and a few lines of Python code, a malicious actor can cause major issues in a core component
of the network.

In this context, the efficiency of current vulnerability scanning tools is decreasing
rapidly. They rely mainly on keyword matching and fixed taxonomies, which prevent
them from capturing the semantic and contextual nuances of 5G complex infrastructure
[12]. As a consequence, analysts must still perform extensive manual validation to inter-
pret ambiguous cases and verify correlations between software components and 5G-specific
functions. However, this approach is not feasible due to the continuous growth in the
volume of CVEs published every year.

Overcoming these limitations requires the adoption of intelligent automated methods
capable of learning patterns and reasoning over unstructured data.

2.3 Foundations of Machine Learning
To address the challenges introduced in SubSection 2.2.1, machine learning techniques,

capable of processing unstructured text at scale, can play a pivotal role. Hence, this
section aims to provide the theoretical background for the models used in this study.
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2.3.1 History of Al

Artificial intelligence can be broadly defined as the abilities of a computational system
that are typically associated with human intelligence, such as learning, reasoning, problem-
solving, perception, and decision making [58].

The history of artificial intelligence is closely interlaced with the evolution of neural
networks and, more recently, deep learning. Some of the fundamental concepts that made
modern Al possible were developed centuries ago. For instance, backpropagation, the
standard algorithm for training neural networks today, relies on the chain rule of calculus,
introduced by Leibniz in the seventeenth century [51].

Over the following centuries, new mathematical and computational tools laid further
foundations. In 1805, Gauss introduced the method of least squares, which became essential
for optimization. Much later, in 1958, Rosenblatt proposed the perceptron, the first neural
network model for pattern recognition. In 1965, Ivakhenko and Lapa developed algorithms
for training multi-layer networks, marking one of the first practical steps toward neural
networks. This was followed by the publication of the backpropagation algorithm during
the 70s, which remains the core of modern neural architectures [51].

The subsequent decades brought additional innovations, such as convolutional neural
networks (CNNs) and Long Short-Term Memory (LSTM) networks, which enabled models
to capture spatial patterns and long-term temporal dependencies, respectively. Many of
these breakthroughs were ahead of their time, only becoming widely adopted decades later
when computational resources became more powerful.

Since the 2000s, the availability of faster GPUs combined with more efficient train-
ing methods has enabled deep networks to advance significantly in fields such as speech
recognition, computer vision, and natural language processing (NLP) [51].

Since the problem of CVE classification belongs to the NLP domain, it is crucial to
understand the building blocks of these models: how text can be converted into numerical
representations, how classifiers can use these representations, and how modern neural ar-
chitectures, such as large language models (LLMs), extend this semantic understanding to
perform advanced tasks.

2.3.2 Language Models

A language model estimates the probability of a sequence of words. For example, given
the phrase "The most famous city in the US is...", the model would assign a high probability
to "New York" or "Los Angeles', and a very low probability to unrelated words, such as
"paper" or "telephone'. Early approaches to language modeling relied on storing word
sequences in the form of n-gram tables [37], whereas modern language models are based
on neural networks, which are capable of capturing long-range dependencies and richer
semantic relationships.

However, language models cannot directly operate on raw text since neural networks
process numerical inputs. Therefore, text must first be transformed into a numerical rep-
resentation that preserves its semantic properties. This operation is performed by embed-
ding models.
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2.3.3 Embedding Vectors

The concept of Embedding refers to the representation of complex data, such as text,
images, or audio, into numerical vectors that can be later processed by machine learning
models [10]. For the specific task of CVE classification, the focus is on text embeddings, par-
ticularly on sentence transformers, which can encode the meaning of a whole vulnerability
description in a compact vector form.

Embeddings can be intuitively understood as a coordinate system. Just as nearby
latitude and longitude values correspond to nearby physical locations, words, sentences,
or documents are mapped into a low-dimensional vector space where semantic similarity
is preserved. Two pieces of text with similar meaning will appear close together in this
space, while unrelated texts will be far apart. The smallest meaningful unit processed in
this mapping is called token, and can correspond to a phrase, a single word, or even a
part of a word [10].

A common real-world example of embeddings in action is provided by search engines
such as Google [10]. When a query is issued, results are retrieved from a massive search
space through the following steps:

1. Pre-computing the embeddings for Billions of items in the search space;
2. Mapping the user’s query into the same embedding space;
3. Efficiently retrieving the items whose embeddings are closest to that of the query;

The dimensionality (i.e., the number of elements of a single vector) of the Embedding
can vary depending on the mode, and this choice directly influences the quality of the rep-
resentation. Higher-dimensional Embedding can capture more complex semantic patterns,
but also requires greater computational and storage resources. Moreover, since these spaces
usually have hundreds of dimensions, they cannot be directly visualized and represented
in a classical Cartesian graphic. However, similarity between two vectors can still be eval-
uated with mathematical techniques such as cosine similarity, which operate regardless of
the number of dimensions [10].

Although the full representation is not directly human-interpretable, compressed pro-
jections into two or three dimensions can still provide valuable insights. For instance, in
Figure 2.3, male-related words such as "man", "king", and "father" are clearly separated
from female-related ones as "woman', "mother"', and "queen" along the gender axis.

2.3.4 Practical Example of Text Embeddings: Word2Vec

One of the most well-known models for generating word embeddings is Word2Vec, intro-
duced by Mikolov et al. at Google in 2013 [39]. The core idea of Word2Vec is to learn
numerical representations of words from large text corpora, so that words occurring in
similar contexts are located close to one another in the vector space. Compared to previ-
ous approaches, Word2Vec was much more efficient thanks to its training mechanism, and
made it possible to train embeddings on billions of tokens.

A Word2Vec model is trained on a large collection of raw text using a sliding window
mechanism. For each position of the window, the model generates "training pairs" that
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Figure 2.3. Visualization of word embeddings in three dimensions [11]

associate a target word with its surrounding context. This process produces millions of

input-output pairs without requiring manual annotation [7].
Figure 2.4 illustrates how the sliding window generates training samples from a sentence.
When the window is centered on "shalt not make', one word is taken as the output and

the other two are labeled as input.

Thou shalt not make A machine in the likeness of a human mind

Sliding window across running text Dataset
output
thou shalt not make a machine in the ... thou shalt not
thou shalt not make a machine in the shalt not make

Figure 2.4. Example of the Sliding Window Mechanism [7].
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Two alternative architectures are used in Word2Vec (see Figure 2.5):

« Continuous Bag-of-Words (CBOW): the model receives the context words as
input and tries to predict the central target word. For example, given the sequence’
the _is barking', the model should predict "dog".

o Skip-gram: the model does the opposite. It takes a single word as input and at-
tempts to predict the surrounding context words. For example, given the input "dog",
it should predict "the" and "barking".

Both architectures share the same principle, but CBOW is faster and more effective
on large datasets, while Skip-gram performs better with rare words and captures richer
semantic relations [40].

CBOW Skip-Gram
input projection output input projection output
W, W,
W, W,
w 2w w0
W, W,
W, W,

Figure 2.5.  Continuous Bag-of-Words vs Skip-Gram [10].

One of the most surprising properties of Word2Vec embeddings is their ability to pre-
serve semantic meaning even under simple algebraic operations. For example:

vec(King) — vec(Man) + vec(Woman) ~ vec(Queen) (2.1)

This property demonstrates that the vectors capture both syntactic and semantic reg-
ularities, going far beyond simple keyword matching. As a result, Word2Vec has been
widely applied to NLP tasks such as information retrieval, question answering, and ma-
chine translation [40].

However, Word2Vec and other similar embedding models have a fundamental limitation:
they represent words in a static way. For instance, the vector for "bank" will always be
the same, regardless of whether it appears in the meaning of "bank of a river', or "bank as
a financial institution" [25].

This limitation was addressed with the introduction of the attention mechanism first
proposed by Bahdanau et al. in 2014, for neural machine translation, and later generalized
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in the Transformer Architecture [59]. Attention dynamically computes the relationships
between words, taking into account the entire context of the input sequence rather than a
small local window. This allows the model to capture long-range dependencies and complex
linguistic patterns [56].

2.3.5 Seq2Seq as example of Attention Model

Sequence to sequence (Seq2Seq) models are a class of deep learning architectures that
have obtained success in machine translation and text summarization. For instance, Google
adopted them in 2016 as the foundation of Google Translate [8]. A sequence-to-sequence
model is designed to take a sequence of elements (e.g., words, characters, or even image
features) as input and to generate another sequence as output.

Seq2Seq models are built upon Recurrent Neural Networks (RNNs), a family of
neural architectures specifically designed to handle sequential data, where the order of the
elements is crucial. RNNs employ a mechanism called recurrent connections: where the
output at each time step (i.e. the output of each neuron) is fed back as input for the next
steps. This mechanism allows them to maintain a hidden state, which acts as a form of
memory and is updated at every step based on both the current input and the previous
hidden states [62].

A Seq2Seq architecture typically consists of two components: an encoder and a de-
coder [8]. As described in Figure 2.6, the encoder processes the input sequence one element
at a time and compresses it into a fixed-length numerical representation context vector.
This vector is then passed to the decoder, which generates the output sequence token by
token. For example, in machine translation, the encoder reads an English sentence, and
the decoder produces its Italian translation based on the encoded representation. A similar
process applies to text summarization.

Despite their effectiveness, Seq2Seq models face a key limitation: the fixed-length con-
text vector often struggles to represent long input sequences, leading to a loss of informa-
tion. This issue was solved with the introduction of attention, which allows the decoder
to focus on the most relevant parts of the input sequence while generating each output
token [8, 56].

In practice, attention enhances Seq2Seq models in two ways. First, instead of passing
only the last hidden state, the encoder provides the decoder with the entire sequence of
hidden states, each associated with a specific input token. Second, at each decoding step,
the decoder computes a set of attention weights, which assign a relevance score to each
hidden state. These scores are later normalized using the softmax function, and used
to compute a weighted sum of the encoder states, amplifying the important ones while
suppressing the less useful ones [8].

This process is repeated for every output token, enabling the model to dynamically
align input and output sequences [8]. The attention mechanism rapidly became a central
component in neural machine learning models and other NLP tasks. Building on this
concept, Vaswani et al. introduced in 2017 the Transformer, a new architecture that
relies entirely on attention to model dependencies between tokens [63]. The Transformer
eliminated the sequential bottleneck of RNN-based models, enabling highly parallelized
training and setting the foundation for today’s large-scale generative models.
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Figure 2.6. Sequence-to-sequence architecture [46].

2.3.6 The Transformer Architecture

The Transformer is a neural network architecture entirely built on the attention mecha-
nism, introduced in the paper Attention is All You Need [56]. The key novelty of this model
is that it removes recurrence and convolution, relying instead on a mechanism called multi-
head attention to capture dependencies between tokens. This design allows the model to
significantly reduce training time compared to earlier architectures such as LSTMs, while
improving performance on tasks such as translation [6, 63].

At a high level, the Transformer takes a sequence of words in one language and gives
the corresponding outputs depending on the task, just like a classical Seq2Seq model [6].
However, on the inside, the Transformer is composed by a stack of encoder and decoder,
as depicted in Figure 2.7 connected through the so called "attention layers’ In the original
architecture, both encoder and decoder are composed of six layers, but the number can be
adjusted depending on the task [56].

Each encoder has the same internal structure, but different weights. On the inside,
encoders are composed of two elements (see Figure 2.8):

o Self Attention: the component where the relationships between words in the same
sentence are calculated [56].

o Feed Forward Neural Network: where the calculated attention is multiplied by
the weights to obtain the output [60].

The decoder follows a similar design but includes an additional Encoder-Decoder
Attention layer between the self-attention and the feed-forward network (see Figure 2.8).
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Figure 2.7. Transformer architecture: composed of an encoder stack and a decoder stack

connected by attention layers [6].

This extra layer is used by the decoder to focus only on the relevant inputs, ignoring the

remaining tokens.
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Figure 2.8. The internals of decoder and encoder components [6].

The central component of the Transformer is the self-attention mechanism, which
allows each token in the sequence to incorporate information from all the other tokens.
This is particularly useful to resolve ambiguities that depend on the context. For example,
in the sentence "The animal didn’t cross the street because it was too tired’, the word "it'
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refers to "animal" and not to "street'. While this is intuitive for a reader, it requires a
model to connect the pronoun with the correct noun. This is exactly what self-attention
is used for. When the model encodes the word "it", it can link it to the representation of
"animal" and integrate this information into the encoding of the word [6]. This mechanism
also enables parallelization: while RNNs capture context through a hidden state updated
step by step, self-attention gives the model direct access to the entire sequence at once [63].

Several models were built using the Transformer architecture, including BERT and
GPT, which represent the evolution of Transformers towards large-scale pre-trained lan-
guage models that are now the state of the art in NLP applications [59].

2.3.7 From Transformer to BERT and GPT

Two of the most influential models derived from the Transformer architecture are:

« Bidirectional Encoder Representations from Transformers (BERT): is based
only on the encoder part of the Transformer architecture. Its main contribution is
to provide a bidirectional representation of text, where each token is interpreted in
the context of both its left and right neighbors. This design makes BERT partic-
ularly powerful for tasks that require a strong understanding of language, such as
question answering. BERT was released in 2018 and quickly integrated into practical
applications, like Google Search [4]

« Generative Pre-trained Transformer (GPT): is based on the decoder side of
the architecture. GPT models are trained in an ’auto-regressive way’, predicting
each word in a sequence based on the preceding ones. This approach makes this
family of models well-suited for generative tasks. GPT was released in 2018, and
later, with GPT-2 and GPT-3 up to GPT-5 in 2025, demonstrated that scaling up
training data and parameters leads to huge improvements in fluency and coherence
of generated text [5, 61].

Therefore, BERT and GPT show two complementary directions of the Transformer
architecture. In particular, GPT marked the beginning of the current wave of large pre-
trained language models, which today represent the foundation of most advanced NLP
applications [59].

2.3.8 Pre-training of Large Language Models

As explained in the previous section, Large Language Models (LLMs) are tools that
take a sentence as input and calculate the most probable next word. But, how is it
possible to have models capable of solving more complex tasks like question answering or
text summarization? LLMs receive two learning phases: pre-training and post-training.
The first pre-training stage exposes the model to a huge amount of unlabeled textual
data, in order to let it acquire general knowledge of the language and world. This stage
consists of 3 main steps:

1. Data Collection and filtering: pre-training requires a vast corpus, usually collected
by crawling the internet [45]. This raw data is then filtered to remove inappropriate
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material (e.g. racism or sexual content), sensitive information, and to select one or
more languages.

2. Tokenization: after collection, text must be converted into symbols that the neural
network can process.

3. Neural Network Training: the core of pre-training is predicting the next token in a
sequence, or filling a missing token (masked language modeling). A sliding window
of tokens is fed to the Transformer, which outputs a probability distribution over the
next token. Since the correct continuation is known, the difference between prediction
and reality can be measured with a loss function. Then, gradient descent is used
to update the network and reduce this loss. This process is repeated billions of times
until the model parameters converge. For example, LLaMA 3, a model from Meta,
was trained to reach hundreds of billions of parameters on trillions of tokens [32].

The output of pre-training is a so-called base model. It can be seen as a compressed
statistical simulator of the dataset, generating continuations that look realistic. Post-
training is required to make the model more reliable and aligned.

2.3.9 Post-training: Supervised Finetuning and Reinforcement
Learning

To transform the base model into a more sophisticated model, the Supervised Fine-
tuning is performed. This stage is much less computationally expensive than pre-training.

The key idea is to train the model on a dataset containing examples of human-assistant
dialogues. The conversation can teach the model the length, the type, and the style of the
answers. An essential part of fine-tuning is Alignment [36], where the model is taught
not to respond to harmful or offensive requests.

In practice, these conversation data are transformed into token sequences, and special
markers are used to indicate the beginning or the end of a text, denoting the role of the
speaker and the boundaries of each turn. Then, the generated sequences are used for
a shorter training phase, which occurs exactly like the first one, but with an increased
network magnitude to enhance effectiveness. The result is a model that is aligned with the
creator’s goals: it can answer questions, maintain a polite style, and refuse inappropriate
requests.

2.3.10 Limitations of LLMs

Despite their performance, Large Language Models present several well-documented limi-
tations that are important to consider when applying them in practical scenarios.

The most critical one is the phenomenon of Hallucination, where the model produces
answers that are fluent and plausible, but factually incorrect. For instance, when asked
about a non-existent person, the model may invent a detailed biography. Hallucination can
be broadly divided into two categories [66]: intrinsic, where the output conflicts with the
given input or source, and extrinsic, where the model introduces fabricated or unverifiable
information. These errors arise from multiple factors, including the quality of training data,
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knowledge gaps between pre-training and fine-tuning, and the non-deterministic nature of
text generation.

In addition, LLMs operate within a fixed context window. When prompts exceed this
window, the model must truncate or summarize, which can degrade performance on tasks
that require long-range dependencies. Another related problem is that the longer the
context window, the longer the computational costs. In fact, LLMs that demand thousands
of GPU hours and huge budgets, with a non-negligible environmental impact, are called
Red AI [34]. These trade-offs make it necessary to carefully evaluate their use in practical
applications.

In this study, rather than relying on models with hundreds of billions of parameters, the
focus was placed on lightweight local LLMs and transformer-based classifiers that can
run on resource-constrained machines, such as those described in Section 4.3, while larger
models were used only for comparison purposes. This methodological choice represents a
trade-off between computational efficiency, data privacy, and model accuracy, while also
reducing operational costs. Furthermore, by testing multiple prompt-engineering and fine-
tuning strategies, this work aims to assess whether these smaller and resource-efficient
models can achieve accuracy levels comparable to state-of-the-art large-scale LLMs.
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Chapter 3

Related Works

After having introduced the background on NLP, on the 5G infrastructure, and on the
CVE framework, this chapter reviews the existing studies that are most relevant to the
present research. The goal is to analyze how the academic community has approached the
problem of automatically processing and classifying vulnerabilities.

3.1 Vulnerability Classification

The task of vulnerability classification aims to identify, starting from a group of CVE
records, those that can impact the 5G infrastructure. Since only a small number of these
vulnerabilities are relevant for a specific infrastructure, it is essential to develop automated
methods that can analyze CVE records and map them to a specific domain. Although the
focus of this thesis is on the classification of 5G CVEs, it is useful to consider the broader
field of CVE automated analysis to observe similar methodological trends and has a vision
of how well models are capable of understanding CVEs.

A recent work by Marchiori et al. (2025) [38] provides a detailed evaluation of the
task of CVE classification in CVSS vectors. The authors compare different open-source
and proprietary LLMs, including LLama, Qwen, Gemma, Deepseek, and Mistral, with
embedding-based approaches combined with traditional Classifiers such as Logistic Re-
gression, Random Forest, and XGBoost. The results show that LLMs perform well, with
Gemma 3 reaching an accuracy above 0.90, but the accuracy falls below 0.50 on more
subjective components such as confidentiality, integrity, and availability. On the contrary,
embedding-based methods, in particular all-MiniLM with XGBoost, achieve more consis-
tent results with a mean accuracy of 0.81, showing the ability, once fine-tuned on the
dataset, to capture more vague and subjective patterns.

Another notable work has been proposed by Ghosh et al. [28], who evaluated fine-tuned
open-source models like Mistral-7B and LLama-7B. Their study focused on vulnerability
evaluation in the context of medical devices, including classification tasks, and demon-
strated that domain-adapted LLMs can be employed for this purpose.

A broader perspective is offered by Zhang et al. [67], who conducted a systematic
review on the use of LLMs in cybersecurity by analyzing more than 300 works. This paper
explores 10 different scenarios and, among these, the vulnerability detection is directly
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related to the problem of CVE classification addressed in this thesis. The study highlights
high potential for LLMs in this task, but also shows their limitation: in particular, the lack
of datasets for specific domains.

3.1.1 Motivation

Given the literature reviewed above, it becomes evident that while many works address
general CVE analysis or vulnerability detection, none focus on a complete evaluation of
the vulnerability classification. In addition, to the best of my knowledge, no open-source
study specifically considers the classification of CVEs relevant to 5G infrastructures.

This thesis aims to contribute to the development of reliable and efficient tools for
local automated 5G vulnerability classification by evaluating the performance of modern
open-source LLMs and comparing them to classifiers such as SVM and XGBoost. The
evaluation is conducted on a publicly available annotated 5G CVEs dataset [14], containing
136 records, and over an expanded version of the dataset by the same authors, not yet
publicly available. Therefore, this work represents, to the best of my knowledge, a first
step towards a systematic evaluation of 5G-related CVEs automated classification, opening
the way to the adoption of such tools in real-world 5G security operations.
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Chapter 4

Methodology

This chapter presents the methodology adopted for evaluating and, eventually, optimizing
the automated classification of 5G-related vulnerabilities. Figure 4.1 provides a high-level
overview of the classification strategies explored in this work. The pipeline starts from
the dataset and forks between the two complementary families of approaches investigated:
Embedding-based and LLM-based. To ensure the fidelity of the evaluation, these two ap-
proaches are compared against each other, and against the applied optimization techniques,
using well-defined evaluation metrics.
This chapter is organized as follows:

e Dataset 4.1 introduces the dataset construction process and its structure.

o FEwvaluation Metrics 4.2 describes the evaluation metrics used to assess performance
across different models.

o Tools 4.3 details the tools, hardware configurations, and software libraries adopted to
implement the experimental pipeline.

o Embedding-Based Approaches 4.4 presents the embedding-based classification ap-
proach and the corresponding evaluation strategy.

o LLM-Based Approaches 4.5 discusses the LLM-based approaches, including prompt
engineering techniques and fine-tuning strategies.

o Prototype Development 4.6 illustrates the prototype application, developed as a proof
of concept, that integrates the best-performing model into an operational classification
system.

4.1 Dataset

The dataset was constructed at Fondazione Ugo Bordoni (FUB), starting from the National
Vulnerability Database(NVD), covering a time span ranging from 2014 to 2024. This
dataset serves as the foundation for all subsequent evaluations.

To identify vulnerabilities related to the 5G domain, an initial keyword-based fil-
tering step was performed. The filtering relied on a set of technical terms and acronyms
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Figure 4.1. General overview of the 5G CVE classification methodology.

commonly associated with 5G networks, including but not limited to those seen in Sub-
Section 2.1.1: 5G, 5G-aka, ausf, amf, bsf, chf, core network, du, embb, flap, free5Ge, gnb,
gtp, http2, imsi, mmitc, network slice, new radio, ngap, nrf, opendGs, pcf, pfcp, ran, sba,
smf, srsran, udm, udr, ueransim, upf, urllc, rnap.

The vulnerabilities obtained through this filtering process were then manually reviewed
and annotated by FUB’s researchers. Specifically, a CVE has been labeled as "5G" if:

o it targets core components of the 5G Standalone (SA) architecture, such as AMF,
SMF, UPF, AUSF, or gNodeB (gNB);

o it affects 5G-specific components within user equipment (UE), such as the baseband
processor or 5G chipset firmware;

« it exploits a vulnerability in 5G-specific protocols or interfaces defined by 3GPP, such
as NAS security, N1/N2/N3 signaling, or Service-Based Architecture (SBA) protocols.

On the contrary, a CVE was considered "no5G" if:
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o it refers to legacy or hybrid network components (e.g., LTE/EPC, NSA deployments,
MME);

o it affects non-5G components within devices, such as operating systems, applications,
GPUs, Wi-Fi chips, or processors unrelated to 5G connectivity;

 the term '"5G" was used coincidentally (e.g., references to the Wi-Fi 5 GHz band,
product names containing "5G");

e it impacts generic platforms (e.g., Linux, Windows, VMware, Docker) without di-
rectly targeting 5G-specific functions.

Finally, the dataset was balanced to contain an equal number of records for each class
(i.e., "5G", "no5G") and a total of 136 CVE records, organized into four columns [14]:

« CVE ID
Type: String
Description: Unique identifier according to the CVE standard.
Format: CVE-YYYY-NNNNN (e.g., CVE-2023-43239).
Purpose: Ensures traceability and provides a reference to the official CVE record.

« CPE (Common Platform Enumeration)
Type: String
Description: Standardized identifier of the vulnerable platform or product.

Purpose: Provides precise identification of the affected system or component.

e« CVE Description
Type: String
Description: Technical description of the vulnerability, including vulnerability type,
affected components, and potential impact.
Language: English, using specialized technical terminology.

o Label
Type: String
Description: Final classification label.
Values: 5G for vulnerabilities related to 5G networks and no5G for vulnerabilities
not correlated to 5G.
Purpose: Defines the binary classification task used to train and evaluate machine
learning models.

In this way, the dataset represents a reliable starting point for evaluating the per-
formance of both embedding-based and LLM-based classification approaches. For this
purpose, the records are converted into a JSON format as follows:

{
"CveID": "CVE-2023-41305",
n Cpe n . [
"cpe:2.3:0:huawei:emui",
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"cpe:2.3:0:huawei:harmonyos"

1,
"description": "Vulnerability of 5G messages being sent without...",
"label": "5G"

In later stages of this work, an extended dataset consisting of 476 CVE records, pub-
lished between 2019 and July 2025, and written in the exact same format, was provided
by FUB. Although not yet publicly available, this dataset enabled additional experiments
and allowed for more precise evaluation.

4.2 Evaluation Metrics

To assess the performance of the proposed classification approaches, a set of standard
evaluation metrics is used. These metrics are derived from the confusion matrix, which
summarizes the prediction outcomes into four categories:

True Positives (TP): records correctly predicted as 5G (actual class is 5G)
False Positives (FP): records incorrectly predicted as 5G (actual class is no5G)
True Negatives (TN): records correctly predicted as no5G (actual class is no5G)

False Negatives (FN): records incorrectly predicted as no5G (actual class is 5G)

Based on these four quantities, the following evaluation metrics are defined:

Accuracy
Measures the proportion of correctly classified records among the total number of

samples:
TP+TN

TP+TN+ FP+ FN

Accuracy =

Precision
Indicates the fraction of correctly predicted 5G records among all the records pre-

dicted as 5G:
TP

P C . _
recision TP L FP

Recall
Also called sensitivity, measures the fraction of actual 5G records that were correctly

identified:
TP

| P
Recall = 7-5=5 %

F1-Score
Harmonic mean of precision and recall, providing a balanced metric between the two:

Fl— 9 x Precision x Recall

Precision + Recall
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« Matthews Correlation Coefficient (MCC)
MCC takes into account all four categories of the confusion matrix:
TPxTN—FP x FN
V(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

MCC =

« MCC improvement
To measure the contribution of optimization with respect to the baseline, the MCC
improvement is calculated as follows:

AMCC = MCCApproaCh - MCCreference

The improvement can also be shown as a percentage:

AMCC

It is important to note that the dataset used in this work was explicitly balanced to
contain the same number of 5G and no5G records. As a result, accuracy provides a reliable
overall measure of correctness. Nevertheless, complementary metrics such as precision,
recall, and F1-score are included to capture different aspects of classification performance.
In particular, a high precision score highlights the ability to avoid false positives, and recall
measures the ability to identify all actual 5G vulnerabilities, while the Fl-score provides
a balanced trade-off between these two perspectives.

The Matthews Correlation Coefficient (MCC) is also reported, as it remains one of the
most informative metrics for binary classification, compressing in a single value a quantity
that takes into account all four elements of the confusion matrix, and has been chosen over
other metrics such as ROC-AUC, thanks to its high reliability [18]. In addition, to directly
assess the benefits of more advanced strategies, the improvement in MCC with respect to
the baseline configuration provides a straightforward interpretation of the effectiveness of
each approach compared to the starting point.

4.3 Tools

The implementation of the methodology relies on a combination of hardware resources and
software libraries. The experimental setup was designed to be flexible and reproducible,
with all adopted libraries being cross-platform and compatible with the main operating
systems, including Windows, macOS, and Linux, as well as both Arm and CUDA archi-
tectures. The only exception is the Unsloth library, used for fine-tuning, which is not yet
compatible with Arm-based systems.

4.3.1 Hardware

The experiments were conducted on different hardware configurations, depending on the
computational requirements of each model. When evaluating Al models, the most critical
resources are typically the GPU, which determines the inference and training speed, and
the RAM, which constrains the maximum model size that can be executed. In this work,
four main configurations were employed 4.1:

33



Methodology

e m2_ pro: a MacBook Pro with Apple M2 Pro chip, used for development, prepro-
cessing, and experiments conducted on lightweight models. *Note: In this system,
the RAM and VRAM are shared and dynamically allocated from the os.

o rtx_ 4090: a high-performance workstation used for running large models.

» colab: a Google cloud computing platform which provides, in its free tier, a T4 GPU
employed for finetuning smaller models with the Unsloth library.

o external__api: commercial APIs or platforms accessed remotely to benchmark pro-
prietary LLMs and to support dataset preparation for fine-tuning.

Configuration | CPU RAM GPU VRAM | TFLOPs (FP32)
m2__pro M2 Pro 16 GB Integrated | 16 GB* | 5.68

rtx_ 4090 Ryzen 9 64 GB RTX 4090 | 24 GB 82.58

colab Virtualized | 12.7 GB | Tesla T4 15 GB 8.1

Table 4.1.  Comparison Between available Configurations [30, 31, 29].

4.3.2 Software

All the experiments were implemented using Python 3.11, which served as the primary
programming environment. Python was chosen for its wide adoption in the machine learn-
ing community, its rich ecosystem of libraries, and the availability of efficient implementa-
tions for both classical machine learning models and large language models (LLMs).

Embedding-based Classification Libraries For the embedding-based approaches, the
following libraries were adopted:

o Sentence Transformers is a library that provides pre-trained transformer models
specifically optimized for producing sentence-level embeddings [49]. Several models
are available and, among these, the selected one was all-MiniLM-L12-v2, which is
widely adopted in text classification tasks, as it represents the most powerful runnable
text embedding model that could be reliably executed on the available hardware [43].

o Scikit-learn is one of the most widely used machine learning libraries in Python
[47]. It was used in this work in multiple stages of the pipeline. First, it was used
to train and evaluate traditional classifiers, including Logistic Regression, Support
Vector Machines (SVM), and XGBoost, which are the core of the embedding-based
approaches. Logistic Regression is a linear model that converts input into a prob-
ability value between 0 and 1, and based on that probability assigns a binary label
to the CVE, based on that probability. A Support Vector Machine (SVM) is a
supervised model that generates, during the training phase, the optimal hyperplane
(i.e., a high-dimensional plane) which maximizes the margin between the two classes
in the embedding space. XGBoost is an optimized implementation of gradient-
boosting decision trees [16]. Unlike linear models, XGBoost builds an ensemble of
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decision trees, starting from the training set, which allows it to capture non-linear
relationships in the embedding space. In the case of binary classification, only a
single regression tree is induced. Despite being more computationally demanding, it
is widely used for its strong generalization ability. Second, scikit-learn provided the
implementation of standard evaluation metrics 4.2 such as accuracy, precision, recall,
Fl-score, and the Matthews Correlation Coefficient (MCC), ensuring consistency in
the validation process. Finally, it was used to represent and analyze a compressed
version of the embedding space through dimensionality reduction techniques such as
Principal Component Analysis (PCA) and t-Distributed Stochastic Neighbor Embed-
ding (t-SNE), which were used to visualize the separability between the two classes
in two and three-dimensional plots.

« Matplotlib is a standard Python library for data analysis and visualization [35]. In
this work, it was used to generate learning curves and validation curves, helping to
assess the behavior of the models during training and to detect possible underfitting or
overfitting. These visualizations support both the analysis of classifiers’ performance
and the interpretability of the embedding space.

Hyperparameter Configuration Fach classifier was evaluated by adjusting a limited
set of hyperparameters, selected to balance performance and computational efficiency while
keeping the search space interpretable. For each model, the main tunable parameters were
the following:

» Logistic Regression: the regularization strength parameter C' € {0.01,0.1,1, 10}
and the penalty type (L1 or L2). A higher value of C' reduces regularization, allowing
the model to fit the training data more closely. The L1 penalty applies a constraint
on the sum of absolute values of the model weights, promoting sparsity by forcing
some coefficients to zero, while the L2 penalty restricts the sum of squared weights,
leading to smoother and more stable models.

« Support Vector Machine (SVM): the regularization parameter C' € {0.1,1,10}
and the kernel type (linear, RBF). The parameter gamma for the RBF kernel was
explored in {1073,1072,1071}, controlling the influence of individual samples on the
decision boundary.

+ XGBoost: the maximum tree depth (max_depth € {3,5,7}), learning rate (eta
€ {0.01,0.1,0.3}), and number of boosting rounds (n_estimators € {50,100, 200}).
The objective function was set to binary:logistic to match the binary nature of
the classification task.

The selection of hyperparameter values was guided by grid search and by monitoring
learning and validation curves, discussed in Section 4.4.2, to prevent overfitting and ensure
stable convergence across models.

LLM-based Classification Libraries For the approaches that directly leverage Large
Language Models, several libraries and frameworks were adopted:
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« Llama.cpp is an open source software library [27], written in C+4-, which works
on a wide variety of devices and architectures. It supports both Apple silicon and
CUDA (NVIDIA) and makes it possible to experiment locally with open-source LLMs.
In this work, Llama.cpp was the core engine to run local models and test different
approaches.

o Unsloth is a library specifically designed for fine-tuning LLMs with limited memory
resources [19]. It leverages the technique of Low-Rank Adaptation (LoRA), which
does not update all the parameters of the network during training. Instead, it learns a
set of low-rank adapter matrices that approximate the difference between the original
weights and the fine-tuned weights, which are then injected into specific layers of the
model. This mechanism drastically reduces the number of trainable parameters and
memory usage, making fine-tuning feasible even in low-resource environments, such
as those offered by Google Colab. However, since Unsloth is not yet compatible with
Apple Silicon architectures, Colab was employed for the fine-tuning experiments in
this work.

« Jina AI provides neural search and retrieval-augmented generation capabilities [2].
It was integrated into the "web_ context_llm" approach to enrich the prompts with
additional context retrieved from external knowledge bases. This allowed LLM models
to perform classification not only based on the information available from the NIST
NVD page, but also supported by external information, retrieved from the web.

» Sentence Transformers + Scikit-learn are already explained in Paragraph 4.3.2.
These libraries were additionally used in the "web_ context_embedding" approach,
where the cosine similarity method is used to extract the most relevant information
from web pages, which can help the models with the classification.

LLM Inference Parameters The inference process in Llama.cpp allows control over
several decoding hyperparameters that directly influence the diversity and determinism of
the generated text. In this work, when available, the parameters suggested by the model
developers were adopted as default settings, while additional tests were performed with
a temperature set to 0 to obtain fully deterministic outputs. The main parameters used
are:

o Temperature: controls the randomness of token sampling. Lower values (close to
0) make the output more deterministic, whereas higher values (e.g., 0.7-1.0) increase
variability and creativity in the generated responses.

« Top-p (nucleus sampling): limits token selection to the smallest set whose cumulative
probability exceeds p. For instance, with top-p = 0.9, only tokens contributing to 90%
of the probability mass are considered.

o Top-k: restricts sampling to the k£ most probable tokens at each decoding step.
Smaller values make the outputs more focused, while larger values increase diversity.

o Repeat Penalty: applies a multiplicative penalty to previously generated tokens to
reduce repetition and encourage more coherent reasoning chains.
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Hugging-Face Hugging Face [24] is an open-source platform that provides a unified
ecosystem for developing, sharing, and deploying transformer-based models. It includes a
large model hub that hosts thousands of pre-trained models for Natural Language Process-
ing (NLP). The Hugging Face Transformers library standardizes the interface for model
loading, tokenization, and inference across different model architectures such as BERT,
GPT, Qwen, Llama, and Gemma. This library was used in the context of this study
for downloading and managing various models. In particular, Hugging Face provides pre-
converted models into the GPT-Generated Unified Format (GGUF), which already
includes chat templates necessary to execute the model locally with Llama.cpp.

Models The experiments involved multiple families of Large Language Models (LLMs),
differing in architecture, parameter count, and training objectives. The models were se-
lected based on three criteria: open-source availability and compatibility with local infer-
ence through Llama.cpp. The following models were adopted:

o Llama 3.1, Developed by Meta [meta__llama], optimized for efficiency and reason-
ing capabilities, used both in base and fine-tuned configurations.

« Gemma 3, is the state-of-the-art open-source Google’s model [50], designed for local
execution.

« Qwen 3, a multilingual model by Alibaba [33], demonstrating strong performance in
classification and analytical reasoning tasks.

« Mistral is the only European LLM in the list [3]. It features a lightweight architecture
that emphasizes high throughput and efficiency.

» Sec-GPT, developed by Clouditera [64], is a model specialized in cybersecurity rea-
soning. All these models were loaded in quantized (Q4 K M) GGUF format to
enable local execution on limited-resource hardware.

Prototype Libraries To showcase the final system, a prototype application was devel-
oped. It mainly reuses the core libraries already described, such as Llama.cpp, sentence-
transformers, and scikit-learn, which constitute the backbone of the classification pipeline.
In addition, the following libraries and tools were integrated to provide external data access,
a user interface, and alerting functionalities:

« National Vulnerability Database (NVD) API, provided by NIST, was used to
retrieve up-to-date CVE records directly from the NVD, enabling the prototype to
operate on real-world data, in real time.

o Streamlit used to design a lightweight graphical web interface to interact with the
classification pipeline, enabling users to upload CVEs and view results in real time.

o Telegram Bot APIs were integrated to provide an alerting system when new 5G-
related vulnerabilities are detected.
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4.4 Embedding-Based Approaches

This family of methods is based on the use of an embedding model, combined with a
supervised classifier. As illustrated in Figure 4.2, the process starts from the 5G CVE
Dataset, described in Section 4.1, and goes across two main stages. First, the 5G CVE
dataset is encoded through an embedding model. Second, a classifier receives the
vector representations of the dataset and computes the binary classification (i.e., "5G" and
"no5G"), used to compute the evaluation metrics defined in Section 4.2.

5G CVE Embedding model —:::tcoer—» Classifier —Predictions—»| Evaluation Metrics

Dataset

Figure 4.2. General overview of the embedding-based classification architecture.

Although the diagram in Figure 4.2 represents a simplified overview of the pipeline
structure, it highlights the clear separation between the two functional blocks, which al-
lows each component to be independently replaced. In this way, different combinations
of embedding models and classifiers can be seamlessly tested within the same evaluation
framework.

In this section, this architecture is described in greater detail, explaining how it has
been implemented and which embedding models and classifiers have been employed for the
experiments.

4.4.1 Fixed Train-Test Pipeline

As shown in Figure 4.3, the first evaluation pipeline developed relies on a fixed train-test
split, following the standard 80%-20% ratio. Starting from the dataset, each CVE record
is preprocessed and encoded into a vector space by the selected embedding model. The
resulting vector space, along with the corresponding labels, is then divided into two subsets:

o Training Set: 80% of the dataset is used for the training phase, during which the
classifier learns a decision boundary that separates the two classes;

o Testing Set: the remaining 20% of the dataset is used for the testing phase, where
the classifier is evaluated on unseen records that were not included in the training.

The split is computed randomly, starting from a fixed seed to ensure reproducibility, and
in a stratified way, meaning that both subsets preserve the same proportion between the
two classes. After the testing phase, the predictions are compared with the ground-truth
labels to compute the Evaluation Metrics.

This configuration provides a straightforward estimate of both the embedding model’s
ability to generate a high-fidelity vector representation of the dataset and the classifier’s
ability to interpret this representation by distinguishing between the two classes. However,
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Figure 4.3. Pipeline of embedding-based classification.

the reliability of this fixed split may be affected by the randomness of the partition on
which the classifier is tested. Omne possible solution would be to repeat the experiment
multiple times with different random seeds, but this alone does not guarantee that the
resulting partitions will be significantly different each time. Moreover, changing the seed
does not provide deterministic control over which records are assigned to the training or
testing subsets.

4.4.2 Cross-Validation Strategy

To overcome the limitations of the fixed train-test split, a cross-validation strategy was
adopted. Cross-validation provides a more robust and statistically reliable estimate of
model performance by ensuring that all records are used for both training and testing
across different iterations. In this study, a Stratified K-Fold approach with K = 5 was
applied, as illustrated in Figure 4.4. In this configuration, the dataset is divided into five
equally sized folds, preserving the same proportion between the two classes within each
fold.

At every iteration, four folds (i.e., 80% of the data) are used for training, and the
remaining one (i.e., 20%) is used for testing. This process is repeated five times so that
each fold serves as the test set exactly once, ensuring that every CVE record contributes to
both training and evaluation, mitigating the effect of potential biases introduced by a single
data partition. The final result is obtained by computing the mean and standard deviation
of each metric across the five folds, providing a balanced and more reliable performance
estimation across alternative embedding-classifier configurations.

4.4.3 Diagnostic Functions: Avoiding Overfitting and Underfit-
ting

One of the key aspects when evaluating a classification model is to ensure that it has learned
the general patterns of the data rather than memorizing the training samples. When the
classifier fits "too closely" to the training data, it tends to perform exceptionally well on
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Figure 4.4. Pipeline of cross-validation embedding-based classification.

the training set but poorly on unseen data, a phenomenon known as overfitting. On the
other hand, when the model is too simple to capture the relationship between the vectors
and classes, it will result in higher error rates, a condition referred to as underfitting.

In the context of embedding-based classification, both problems may occur depending
on the combination of embedding model, classifier, and the chosen hyperparameters (see
Paragraph 4.3.2). To prevent these issues, the training process is accompanied by the
monitoring of two plots: Learning Curves and Validation Curves.

Learning Curves illustrates how model performance evolves as the amount of training
data increases. They are obtained by plotting a performance metric (such as accuracy, F1-
score, loss, and so on) on the y-azis, against either the number of training samples or the
number of training epochs on the z-azis. Learning curves provide an immediate visual
understanding of how well the model generalizes as it is exposed to more data. Figure 4.5
shows a typical loss curve, but these three typical cases can be generalized to any type of
learning curves:

 Underfitting (on the left), where both training and validation losses remain inert,
indicating that the model is unable to capture patterns from the data, regardless of
the amount of training.

 Overfitting (on the right), in which the training loss continues to decrease while the
validation loss starts to increase after a certain point. The large gap between the two
curves reveals that the model is memorizing the training data.

o In the center, the curves show a clear example of right fit, where there is a small gap
between training and validation curves, indicating that the model has learned the
relevant patterns and generalizes well.

In practice, the goal is to obtain a "right fit" configuration, where both curves converge
smoothly to similar values without excessive divergence. This typically indicates that the
model and its regularization parameters are well balanced with respect to the available
data.
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Figure 4.5. Comparison of underfitting, right fit, and overfitting using learning curves [42].

Validation Curves, on the other hand, illustrate how performance varies as a function
of a model’s hyperparameter. They are obtained by plotting a chosen evaluation metric (see
Section 4.2) (e.g., accuracy, Fl-score, MCC, and so on) on the y-axis against a varying
hyperparameter on the x-axis, typically in a logarithmic scale. This family of curves is
primarily used to evaluate the impact of a specific hyperparameter on model performance,
helping to determine the parameter value that provides the best results.

For instance, in Figure 4.6, the training and validation accuracies are plotted as func-
tions of the regularization parameter gamma in SVM. On the left side of the plot, both
training and validation scores are low, indicating that the parameter is too restrictive.
On the right side, the training score remains high while the validation score decreases,
a symptom of overfitting. The optimal region is located near the peak of the validation
curve, where the validation score is maximized and the gap between the two curves is
minimal. This point represents the best trade-off between bias and variance, and it should
be selected as the final parameter configuration.

4.5 LLM-Based Approaches

This section describes the second family of approaches explored in this study, which directly
leverage Large Language Models (LLMs). Unlike embedding models, LLMs are pre-
trained on a vast textual corpus and are, out of the box, capable of capturing a broad
range of domain-specific knowledge. This capability enables them to process the CVE
description (optionally enriched with CPE information) and produce a structured output,
containing both the binary classification and an explanation of the reasoning that led to
that decision.

Figure 4.7 represents the base LLM pipeline deployed in this work. It starts from the
5G CVE dataset (see Section 4.1) and uses the CVE description and CPEs to build a
prompt, which is provided as input to the Large Language Model. The LLM produces
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Figure 4.6. SVM validation curve over parameter gamma [21].

both a short Reasoning explaining the classification and the Predicted Label in the form of
a structured JSON object for easy parsing. This process is repeated for every CVE record
inside the database. In the end, the predicted labels are compared with the ground truth
labels to compute the evaluation metrics described in Section 4.2.

CVE Record Reasoning
D —_—
DESCRIPTION Base Prompt, Large Language
Description, CPE Model
CPE J

LABEL

5G CVE
Dataset

Predicted Label

Ground Truth
Label Evaluation —>{ Evaluation Metrics

Figure 4.7. Baseline LLM-based classification pipeline.

In Figure 4.7, the baseline configuration represents the fundamental setup on which all
subsequent optimization techniques are built and evaluated.
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4.5.1 Prompt Engineering

Prompt Engineering refers to the process of designing and optimizing the input instruc-
tions given to a Large Language Model in order to guide its behavior toward a desired task
or output format [9]. Since LLMs are pretrained on a wide variety of natural language
data and not specifically on the task of 5G vulnerability classification, the way the prompt
is formulated plays a crucial role in determining the quality, reliability, and consistency of
the predictions.

In this context, prompt engineering aims to explicitly define the task, provide output
constraints, and optionally include examples or external information that help the model
interpret the CVE description correctly. Properly engineered prompts can significantly im-
prove performance without requiring model retraining, making this technique a lightweight
alternative to more resource-intensive alternatives, such as fine-tuning.

4.5.2 Baseline Prompt

The baseline prompt, reported in Listing 4.7, defines the standard instructions used to
interact with the LLM in a zero-shot configuration (i.e., without giving examples). It is
organized into multiple sections, each with a specific purpose, designed to ensure that the
model receives complete and unambiguous instructions for the classification task.

The prompt, as seen in Listing 4.1, begins with a clear Role Definition. It is used
to align the model’s internal context with the domain of cybersecurity and telecommuni-
cations. In fact, grounding the model with a specific role improves the consistency and
relevance of its reasoning, especially in specialized technical domains [52].

You are a telecommunications security analyst specializing in 5G
infrastructure.
Your task is to determine whether a CVE is relevant to 5G networks.

Listing 4.1. Role definition block.

The second section explicitly states the task to be performed (see Listing 4.2), ensuring
that the model focuses on a strict and binary classification rather than open-ended
summarization. The task description also clarifies the input format and describes the class
separations between "5G" and "no5G" labels.

You are provided with a CVE description and, if available, a list of
CPEs identifying
the affected products.

Your classification must be **strict and binary**, using only:
- "5G" if the vulnerability directly or indirectly affects 5G
networks, components, or protocols.
- "nobG" if it is unrelated to 5G, or belongs to legacy tech like
4G, 3G, or unrelated fields
(e.g., 5GHz Wi-Fi, IoT, industrial devices).

Listing 4.2. Task constraints.

The Listing 4.3 represents the core part of the prompt and reproduces, in natural
language, the same labeling criteria used by human labelers during the dataset annotation
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process (see Section 4.1). It enumerates the exact criteria under which a CVE should be
considered "5G”, including attacks on 5G Core, RAN, UE components, or 3GPP-defined
interfaces and protocols, as seen in SubSection 2.1.1.

### Classification Criteria

A CVE is *xb5G-related*x if:

It targets core components of the 5G Standalone (SA) architecture.
The vulnerability must affect a network function or component
unique to the 5G SA core (5GC) or the 5G New Radio (NR) access
network.

- 5G Core (5GC) Network Functions, such as the Access and
Mobility Management Function (AMF), Session Management
Function (SMF), User Plane Function (UPF), or Authentication
Server Function (AUSF).

- 5G Radio Access Network (RAN) components, specifically the
gNodeB (gNB) .

It affects the 5G-specific components within User Equipment (UE).
For a vulnerability in a device (like a smartphone or IoT sensor)
to be in scope, it must specifically compromise the hardware or
firmware responsible for 5G communication.

- The 5G baseband processor or modem.

- Firmware managing the 5G chipset or its radio frequency
components.

It exploits a vulnerability in a 5G-specific protocol or interface.
The CVE must be tied to protocols and interfaces defined within
the 3GPP standards for 5G, rather than a gemneric networking
protocol.

- Signaling interfaces like N1, N2, or N3 that connect the UE,
RAN, and Core.

- Protocols within the 5G Core’s Service-Based Architecture
(SBA).

- 5G Non-Access Stratum (NAS) security protocols.

Listing 4.3. Criteria for classification.

The Steps section, shown in Listing 4.4, guides the model through a structured reason-
ing process: reading the CVE description, analyzing the CPEs, applying the classification
criteria, and finally selecting one of the two allowed labels. Such procedural framing en-
courages the model to reason step-by-step, reducing the likelihood of hallucinations or
inconsistent outputs.

### Steps

1. Read and interpret the CVE description carefully.

2. Examine the CPEs to identify the product type.

3. Apply the Classification Criteria to determine the final label.
4. Use only "5G" or "nobG" as the final classification label.

### Answer using the following JSON format

{
"reasoning": "Explain clearly why this CVE is or isn’t related to
5G.",
"classification": "5G | no5G"
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Listing 4.4. Reasoning steps.

Finally, in Listing 4.5, the prompt enforces a strict output schema, requiring the model
to produce a compact JSON object containing two fields. "reasoning’, which explains
the decision, and classification, which contains the final label. This constraint has been
used to automatically parse the output in order to produce the evaluation metrics, defined
in Section 4.2. The explicit instruction "Answer using the following JSON format" was
included to avoid additional text such as "l have analyzed the CVE and here is the result
of the classification", which is often produced by this kind of model.

### Answer using the following JSON format

{
"reasoning": "Explain clearly why this CVE is or isn’t related to
5G.",
"classification": "5G | no5G"
}

Listing 4.5. Output JSON schema.

The last component of the baseline prompt, shown in Listing 4.6, defines the input
placeholders. These placeholders are dynamically replaced at runtime with the actual
content of each CVE record before being passed to the model. Specifically, the variable {de-
scription} is substituted with the text of the CVE description from the 5G CVE Dataset,
while {CPEs} is replaced with the list of affected products in Common Platform Enu-
meration (CPE) format. In this way, the prompt preserves a uniform structure across all
records while adapting its content to each specific CVE instance.

**CVE Descriptionx**:
{description}

**Vulnerable Products CPEx*x*:
{CPEs}

Listing 4.6. Input placeholders.

Finally, the complete baseline prompt, reported in Listing 4.7, is obtained by concate-
nating all the previously described blocks: (1) role definition, (2) task specification, (3)
classification criteria, (4) reasoning steps, (5) output schema, and (6) input placeholders.

You are a telecommunications security analyst specializing in 5G
infrastructure.
Your task is to determine whether a CVE is relevant to 5G networks.

You are provided with a CVE description and, if available, a list of
CPEs identifying
the affected products.

Your classification must be **strict and binary**, using only:

- "5G" if the vulnerability directly or indirectly affects 5G
networks , components, or protocols.

- "nobG" if it is unrelated to 5G, or belongs to legacy tech like
4G, 3G, or unrelated fields
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(e.g., 5GHz Wi-Fi, IoT, industrial devices).
### Classification Criteria

A CVE is *xb5G-related*x if:

It targets core components of the 5G Standalone (SA) architecture.
The vulnerability must affect a network function or component
unique to the 5G SA core (5GC) or the 5G New Radio (NR) access
network.

- 5G Core (5GC) Network Functions, such as the Access and
Mobility Management Function (AMF), Session Management
Function (SMF), User Plane Function (UPF), or Authentication
Server Function (AUSF).

- 5G Radio Access Network (RAN) components, specifically the
gNodeB (gNB).

It affects the 5G-specific components within User Equipment (UE).
For a vulnerability in a device (like a smartphone or IoT sensor)
to be in scope, it must specifically compromise the hardware or
firmware responsible for 5G communication.

- The 5G baseband processor or modem.

- Firmware managing the 5G chipset or its radio frequency
components.

It exploits a vulnerability in a 5G-specific protocol or interface.
The CVE must be tied to protocols and interfaces defined within
the 3GPP standards for 5G, rather than a generic networking
protocol.

- Signaling interfaces like N1, N2, or N3 that connect the UE,
RAN, and Core.

- Protocols within the 5G Core’s Service-Based Architecture
(SBA) .

- 5G Non-Access Stratum (NAS) security protocols.

### Steps

1. Read and interpret the CVE description carefully.

2. Examine the CPEs to identify the product type.

3. Apply the Classification Criteria to determine the final label.
4. Use only "5G" or "mnobG" as the final classification label.

### Answer using the following JSON format

{
"reasoning": "Explain clearly why this CVE is or isn’t related to
5G.",
"classification": "5G | nob5G"
}

**CVE Description**:
{description}

**Vulnerable Products CPEx*x*:
{CPEs}

Listing 4.7. Full Baseline prompt for LLM classification.
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4.5.3 Few-Shot

The few-shot strategy aims to provide the model with explicit reasoning patterns and
decision boundaries, helping the model to generalize more reliably on new records, since this
strategy can improve the performance of LLMs and sometimes also match the performance
of fine-tuned models on the same task [15].

As illustrated in Figure 4.8, the 5G CVE record is processed as in the baseline setup, but
the prompt is enriched with a few representative examples. In particular, four examples
were written: one representing the 5G class and three belonging to the negative no5G
class. This choice has been made because the no5G class spans many unrelated domains
(e.g., general OS issues, enterprise networking gear, web applications, or references to the
'5 GHz" frequency band). Multiple negative examples help cover this variability, reducing
spurious matches triggered by generic networking terms. Each example includes both the
CVE Record input and the assistant output in JSON format.

Examples of
classification
CVE Record Reasoning
ID .
DESCRIPTION Base Prompt, Large Language
Description, CPE Model
B Predicted Label

CPE
Ground Truth
Label Evaluation —>{ Evaluation Metrics

LABEL
Figure 4.8. Few-shot LLM-based classification pipeline.

5G CVE
Dataset

These examples are built starting from real vulnerabilities, not contained in the dataset,
to cover the following typical cases:

o vulnerabilities in 5G Core or RAN components ;

o edge cases, where possible misclassifications can be caused by unrelated references to
'5G" (e.g., Wi-Fi 5GHz or product names);

o CVEs affecting general-purpose software or network devices not specific to 5G infras-
tructure.

Example 1 — Networking-related CVE

Listing 4.8 shows an example of a vulnerability representative of vulnerabilities that may
initially appear relevant due to networking context, but are, in fact, unrelated to 5G tech-
nology or 3GPP-defined components. Including such examples helps the model learning
to distinguish between generic network software and actual 5G infrastructure.

USER INPUT:
[baseline instruction truncated for brevity]
CVE description:
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A vulnerability in the NX-API feature of Cisco NX-0S Software could
allow an authenticated, remote attacker to execute arbitrary
commands with root privileges.

CPE:

[’cpe:2.3:0:cisco:nx-o0s"’]

ASSISTANT OUTPUT:

{

"reasoning": "The vulnerability affects Cisco NX-0S Software,
which is used in data center switches and not in 5G networks or
5G-specific protocols.",

"classification": "nobG"

¥

Listing 4.8. Few-shot example — CVE not related to 5G (Cisco NX-0S).

Example 2 — RAN-related 5G CVE

Listing 4.9 presents a vulnerability of a component explicitly designed for 5G Radio Access
Networks (RAN). This example represents the class of true positives, where the CVE
clearly refers to software components involved in 5G communication.

USER INPUT:

[baseline instruction]

CVE description:

An issue was discovered in appmgr in O0-RAN Near-RT RIC I-Release. An
attacker could register an unintended RMR message type during
xApp registration to disrupt other service components.

ASSISTANT OUTPUT:

{

"reasoning": "The CVE affects the O0-RAN Near-RT RIC I-Release, a
component of the Open Radio Access Network (O0-RAN) architecture
used in 5G systems.",

"classification": "5G"

}

Listing 4.9. Few-shot example — CVE related to 5G (O-RAN Near-RT RIC).

Example 3 — Non-5G CVE in a 5G vendor’s product

Listing 4.10 includes a web application vulnerability in a ZTE firmware. Although ZTE is
a telecommunications vendor, the affected component is unrelated to 5G networking. Such
an example is useful to teach the model that vendor names alone are insufficient indicators

of 5G relevance.

USER INPUT:
[baseline instruction]
CVE description:
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The version V6.01.03.01 of the ZTE ZXCDN IAMWEB product is impacted
by a code injection vulnerability. An attacker could exploit the
vulnerability to inject malicious code into the management page,
resulting in user information leakage.

CPE:

[’cpe:2.3:0:2zte:zxcdn_iamweb_firmware’]

ASSISTANT OUTPUT:

{

"reasoning": "The vulnerability affects the ZTE ZXCDN IAMWEB
firmware, which is not a 5G network component. There is no
indication that this product is part of a 5G mnetwork
infrastructure or related to 5G-specific protocols. The issue
is a code injection in a management interface unrelated to 5G
communication layers.",

"classification": "nob5G"

}

Listing 4.10. Few-shot example — CVE not related to 5G (ZTE ZXCDN IAMWEB).

Example 4 — Non-5G network related CVE

Listing 4.11 shows another example of a non-5G vulnerability, involving a router. This
device is a general-purpose router and not used specifically in 5G network. This example
helps constrain the model’s interpretation of "network-related vulnerabilities" to truly 5G-

specific components.

USER INPUT:

[baseline instruction]

CVE description:

A Use After Free vulnerability in the Advanced Forwarding Toolkit
(AFT) manager process (aftmand) of Juniper Networks Junos 0S
allows an unauthenticated remote attacker to cause a kermel crash
and Denial of Service (DoS). Continued gathering of interface
statistics will create a sustained DoS condition. This issue
affects Junos 0S on MX Series platforms in versions between
20.1R1 and 21.2R2.

CPE:

[’cpe:2.3:0:juniper: junos’]

ASSISTANT OQUTPUT:
{
"reasoning": "The vulnerability affects Junos 0S running on MX
Series routers, which are general-purpose routing platforms.
The CVE does not mention 5G network components, protocols, or
functions, and the product is not explicitly tied to 5G Core or
RAN. Therefore, it is not related to 5G networks.",
"classification": "nob5G"

Listing 4.11. Few-shot example — CVE not related to 5G (Juniper Junos OS).
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4.5.4 Web-Context

With the techniques previously explained, LLM relies solely on the information contained
in the CVE description and CPEs to make the classification. However, these fields are
often short and may not be enough to understand the context of the vulnerability. To
overcome this limitation, a web-context prompting strategy was introduced. In this
approach, the model is enriched with external information retrieved from online sources,
allowing it to reason based on both the CVE record and additional supporting evidence.

As illustrated in Figure 4.9, the web-context prompting pipeline extends the baseline
approach by introducing an additional information retrieval phase. For each CVE record
in the dataset, the corresponding URLs listed in the References section of the NVD entry
(see Section 2.2) were collected. These links typically point to vendor advisories, technical
blogs, or security bulletins that contain additional details about the vulnerability.

The retrieved web pages were parsed and summarized to extract concise and relevant
text segments describing the affected components, exploitation vectors, or impacted sys-
tems. This summarized context, referred to as web context, was then appended directly
to the input prompt along with the CVE description and CPEs.

5G CVE
Dataset

DESCRIPTION
Model

CPE
Ground Truth
Label

CVE Record Reasoning
ID
Prompt, Description, Large Language |
CPE, Web Context

Predicted Label

LABEL

Evaluation —»| Evaluation Metrics

Figure 4.9. Web-context LLM-based classification pipeline.

To obtain the web context associated with each CVE, the URLs were processed using
the Jina AI framework, in particular Jina Al Reader, introduced in Section 4.3, which
parses the web page, removing all non-informative elements such as HTML tags or code
fragments.

Since the raw web content can be long and contain mostly irrelevant information, the
summarization step is fundamental to include in the prompt only relevant context. Two
alternative summarization strategies were explored 4.12.

LLM Summarizer

In the first configuration, illustrated in Figure 4.10 and referred to as the LLM sum-
marizer, the same language model used for classification was also adopted to summarize
the retrieved web pages. To perform this task, the model was guided through specific
summarization prompts.

To assess the impact of different prompt formulations on the quality of the generated
summaries, four distinct prompt configurations were tested. They differ in two main as-
pects:
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CVE Record

ID

Large Language

DESCRIPTION Prompt, Description,

CPE, Web Context Model

CPE

LABEL

Summary
|

Large Language
Model

Summarization Prompt

Web Context

Figure 4.10. *

(a) LLM-based summarization.

Figure 4.12.

CVE Record

ID
DESCRIPTION

CPE

LABEL

Large Language
Model

Prompt, Description,
CPE, Web Context
Summary: Culsine Similarity

Vector Space

Embedding Model

Web Context

Figure 4.11. *

(b) Embedding-based summarization.

Comparison between the two web context summarization strate-

gies: (a) using a Large Language Model as summarizer, and (b) using embedding

similarity with cosine distance.

o the task definition, i.e., whether the model is explicitly instructed to summarize
the text for the purpose of 5G classification (5G-specific summary) or to produce a
general summary (generic summary);

o the presence of CVE-specific information in the prompt, i.e., whether the CVE
ID, CPEs, or CVE description are provided to help the model focus on the relevant

product or vulnerability.

Table 4.2 summarizes the four configurations used for the summarization experiments.

‘ Task Definition ‘ CVE Information Included

Prompt ID
Web Prompt 0 | 5G-specific
‘Web Prompt 1 | 5G-specific

Web Prompt 2
Web Prompt 3

Table 4.2.

To have an idea of what these prompts look like, Listing 4.12 shows the complete text of
the first configuration (Web Prompt 0), which corresponds to the 5G-specific summariza-
tion task without providing CVE-specific information. The model is instructed to extract
only the information relevant for determining whether a vulnerability is related to 5G or

Generic summary
Generic summary

Not Provided
CVE 1D, Description, CPEs
Not Provided
CVE 1D, Description, CPEs

Summary of the LLM-based web context summarization prompts.

not, while discarding irrelevant or generic text.

You are a summarizer assistant for an LLM that will classify

vulnerabilities.

Below is the raw text extracted from a web page linked to a CVE.

The text may contain technical details,
or unrelated material.

general content,
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Your task is to analyze the text and extract only the information
that can help classify the CVE as 5g or non-5g related, without
refactoring it or modifying it in any way.

DO NOT add assumptions or unrelated info.

### Use the following JSON format for your classification:
{32
"info": "relevant information for the classification",
"useful": "yes | no"

{33

If useful is "yes", the ’info’ field must contain relevant technical
information. If "no", leave it empty.{nothink_string}

### Text to analyze:

{web_text}

Listing 4.12. Example of LLM-based web summarization prompt (Web Prompt 0).

However, this configuration has a major drawback: it introduces a significant increase
in computational cost.

Embedding Summarizer

To overcome this limitation, LLM-based summarization was compared with a embedding-
based summarizer, illustrated in Figure 4.11. The retrieved web content was instead
represented in a vector space using the all-MiniLM-L12-v2 sentence transformer model.
The first ten text segments with the highest cosine similarity to the CVE description were
selected and concatenated to form the summary. The quantity of sentences to insert in
the prompt was decided based on the maximum number of tokens that the context can
contain using the available computational resources, described in Section 4.3.

This method is computationally lightweight and avoids redundant information, while
still providing enough contextual cues for the LLM to reason effectively during inference.

Both summarization strategies were evaluated to understand the trade-offs between
context quality, inference latency, and overall classification performance improvement.

4.5.5 Prompt Chaining

While the previous strategies rely on a single, monolithic prompt to guide the reasoning
process, the Prompt Chaining approach decomposes the task into multiple consecutive
steps. Each step produces an intermediate output that becomes the input for the following
one, thus allowing the model to reason in a more structured and interpretable way. This
approach aims to improve consistency during the analysis of the CVE, and it has been
proven to improve accuracy in complex tasks [17].

As illustrated in Figure 4.13, the classification task is divided into three sequential
stages.

The first step leverages the prompt presented in Listing 4.13 to extract from the CVE
description and the CPEs the type of Affected product (e.g., protocol, network device,
user equipment, or software product). This helps the model establish a clear context for
the subsequent reasoning stage.
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R Prompt 1: Affected Iysis Prompt 2: Classiicaton_( Prompt 3: JSON
e Product Analysis LLM stﬁ LLM Results Formatting Hn

Figure 4.13. Overview of the Prompt Chaining approach.

The second step builds on the product description obtained in Step 1 and extends
the baseline prompt described in Listing 4.3. Here, the model receives both the CVE
information and the identified component, and must determine whether the vulnerability
is relevant to 5G infrastructure and perform the classification.

Finally, in the last step, the model reformulates its decision in a compact JSON format
containing both the reasoning and the classification, starting from the previous results,
with a prompt that is a variation of the baseline presented in Listing 4.5.

Given the following CVE description and CPEs, identify what type of
component is affected by the vulnerability.

**CVE Descriptionx*x*:

{description}

**Vulnerable Products CPExx*:

{CPEs}

Your goal is to describe what kind of product, technology, or
protocol is involved.

Listing 4.13. Prompt Chaining — Step 1: Component Identification.

This approach enhances the interpretability of the model’s decision process and provides
more transparent intermediate reasoning. However, it also triples the inference cost, since
the model must be queried multiple times for each CVE.

4.5.6 Chain-of-Thought

The Chain Of Thought (Cot) prompting technique encourages the model to reason
explicitly by producing intermediate steps before reaching the final answer [57]. Unlike the
Prompt Chaining approach, where reasoning is divided into multiple separate prompts,
CoT operates within a single prompt, asking the model to think step by step to reach the
final decision. This increases the number of generated tokens per response, yet it remains
computationally efficient than Prompt Chaining because it still requires only one inference
call.

In this configuration, the LLM receives the same inputs used in the baseline prompt
(see Listing 4.7), but is explicitly instructed to verbalize its reasoning step by step (see
Listing 4.14), rather than providing only a short justification in the JSON output. To
preserve the ability to automatically parse the model’s responses, the reasoning section is
enclosed in <think> tags, while the final JSON output is enclosed within <answer> tags.

Base prompt....
### Steps
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5. Make sure to reason step by step before answering, enclose your
reasoning in <think> tags, then answer using this JSON format and
enclose it in <answer> tags.

....Rest of the base prompt....

Listing 4.14. Example of Chain of Thought prompting.

4.5.7 Tree-of-Thought (ToT)

The Tree-of-Thought (ToT prompting technique extends the Chain-of-Thought paradigm
by allowing the model to explore multiple reasoning paths instead of following a single lin-

car one [65]. In contrast to CoT, where the reasoning is sequential, ToT introduces a

branching exploration mechanism where alternative lines of reasoning are generated, eval-

uated, and progressively refined before converging on a final decision. This approach aims

to emulate the human process of deliberation, exploring several hypotheses, comparing

them, and reaching a consensus.

In this work, the Tree-of-Thought methodology was implemented following the Panel-
GPT prompt [55], where "3 experts are discussing the question with a panel discussion,
trying to solve it step by step, and make sure the result is correct and avoid penalty”
[54]. As illustrated in Figure 4.14, each expert acts as an independent reasoning branch,
expressing its initial interpretation, reacting to others’ observations, and refining its stance
over multiple turns. The goal is to achieve a structured form of collective reasoning that
converges toward a single, well-justified classification outcome.

Y Majarity vote

(a) Input-Output  (c) Chain of Thought  (c) Self Consistency
Prompting (1Q) Prompting (CoT) with CoT (CoT-SC

(d) Tree of Thoughts (ToT)

Figure 4.14. Comparison between prompting strategies [65].

In the prompt, the experts are explicitly instructed to discuss whether a CVE is related
to 5G or not; also, the criteria from Listing 4.3 are included. Experts must alternate turns,
consider each other’s reasoning, and conclude the discussion with a JSON output format
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that mirrors the baseline format. A simplified version of the implemented prompt is shown
in Listing 4.15.

You are simulating a panel of 3 security experts discussing whether
a CVE is related to 5G or not.

Each expert must reason independently, then respond to others, and
reach a final consensus.

Discussion Process:
1. Each expert (Expertl, Expert2, Expert3) shares an initial
assessment .
2. Experts read others’ reasoning and refine their positions.
3. The discussion MUST end with at least one expert producing
the final JSON output.

Use these tags:

s s to mark turns.

If an expert cannot apport any improvement to the discussion, they
must state it explicitly and may leave the discussion.

Even in full agreement, the final JSON output is mandatory.

Final output format:
{

"reasoning": "Concise explanation of why this CVE is or isn’t
related to 5G networks.",
"classification": "5g | nob5g"

}
Listing 4.15. Simplified Tree-of-Thought (multi-expert) prompt.

The final classification corresponds to the most consistent and collectively endorsed
reasoning path. However, as with other deliberative methods, ToT incurs a higher compu-
tational cost compared to single-pass prompting due to the highly increased length of the
generated text.

4.5.8 Prompt Engineering Techniques Summary

To conclude the analysis of prompt engineering methods, Table 4.3 summarizes all the
strategies explored in this work. Comparing how many distinct LLM calls are required to
complete a single classification (N. of. Inf. column), and the computational effort they
require to be executed (Cost column)

4.5.9 Fine Tuning

Large Language Models (LLMs) are pretrained through an unsupervised process on mas-
sive text corpora, allowing them to acquire both linguistic competence and a broad under-
standing of technical concepts (See SubSection 2.3.8). During this phase, the model learns
general linguistic and technical knowledge across a wide range of domains. To perform a
task, the model needs to be guided through a prompt, which provides all the necessary
information and constraints on how the task should be completed.
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Approach Description N. of Inf. Cost

Baseline Prompt Single zero-shot prompt defining the classi- 1 Low
fication task and output format.

Few-Shot Prompting Extends the baseline prompt by includinga 1 Low

small number of labeled examples to guide
the model’s reasoning.

Web-Context (LLM) Enriches the prompt with contextual infor- 2 High
mation retrieved from external web sources,
summarized by an LLM.

Web-Context (Emb.) Enriches the prompt with external infor- 1 Medium
mation summarized using cosine similarity
over sentence embeddings.

Prompt Chaining Decomposes the task into multiple sequen- 3 High
tial steps: component identification, rele-
vance evaluation, and output generation.

Chain of Thought (CoT) Encourages explicit reasoning by instruct- 1 Medium
ing the model to verbalize intermediate
steps within a single prompt.

Tree of Thoughts (ToT)  Simulates multiple reasoning paths through 1 High
a multi-agent discussion that converges to-
ward a consensus decision.

Table 4.3. Summary of the Prompt Engineering Strategies explored in this work.

In the field of 5G CVE classification, the base prompt (Listing 4.7) instructs the models
with all the relevant network functions, protocols, and architectural components required
to distinguish between the two classes. Extending this instruction with examples, as done
in the few-shot configuration (see Listing 4.8), helps the model better understand the task.
However, due to the limited context window of LLMs, these examples may still not provide
enough coverage for the model to capture the complex linguistic and semantic patterns in
the vulnerability Description that characterize 5G-related vulnerabilities.

To bridge this gap, a more effective approach consists of Fine-Tuning, where the
model is trained directly on a dataset of conversations between a human user requesting
the CVE classification and an assistant performing the task. This approach allows the
neural network to autonomously learn the recurring linguistic and semantic patterns that
differentiate 5G-related vulnerabilities from generic ones. The fine-tuning process slightly
adjusts the model parameters to adapt to the specific task or domain, while preserving the
general knowledge acquired during pretraining [48].

There exist multiple fine-tuning strategies, ranging from full-parameter training to
parameter-efficient fine-tuning (PEFT) methods such as LoRA (Low-Rank Adaptation).
These families of techniques drastically reduce memory usage and computational cost by
updating only a small set of low-rank matrices instead of all model parameters [19]. In
this work, the fine-tuning process was implemented using the Unsloth library (see Sub-
Section 4.3.2), which supports LoRA-based training even on resource-constrained devices
or cloud-hosted notebooks, such as the free tier on Google Colab used in this study (see
SubSection 4.3.1).
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Pipeline

LoRA introduces a set of small, trainable matrices into selected layers of the pretrained
model. Instead of updating the full weight matrices, LoRA decomposes its update into
the product of two lower-rank matrices, so that the original pretrained weights remain un-
changed, drastically accelerating the fine-tuning process and reducing memory consump-
tion, since not all the parameters need to be loaded in VRAM.

The fine-tuning process was performed on a conversational dataset derived from the
5G CVE dataset, described in Section 4.1. Each record was reformulated into a short
dialogue, shown in Listing 4.16, where a human user requests the classification of a vul-
nerability, and the assistant provides both the reasoning and the final label in the JSON
format defined in the baseline prompt (see Listing 4.5). This conversational structure,
known as chat template, is detailed in Paragraph 4.3.2.

{
"conversations": [
{
"role": "user",
"content": {base_promptl},
},
{
"role": "assistant",
"content": { reasoning , classification},
}

Listing 4.16. Structure of the Conversational format.

The conversational dataset was synthetically built from the test performed with larger
models (up to 32B parameters). For each incorrect prediction produced by these models,
the corresponding record was corrected by guiding the model toward the right label and
requesting grounded and consistent reasoning, by extending the base prompt with two
additional steps, and directly feeding the model with the true label, as shown in Listing
4.17.

You are provided with a CVE summary, if available, a list of CPEs
(Common Platform Enumerations) identifying the affected products,
and a label "5g" or "mnobg", which is manually reviewed by experts.

The label means:

- "5G": the vulnerability directly or indirectly affects 5G
networks, components, or protocols.

- "nobG": if it is unrelated to 5G, or belongs to legacy tech like
4G, 3G, or unrelated fields (e.g., 5GHz Wi-Fi, IoT, industrial
devices).

Your goal is looking at the summary to generate a reasoning that
describe why the product have the given label.

###Classification Criteria
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#Steps

5. Describe why the product, components, or protocols are related or
not related to 5G.

**CVE Description*x*:
{description}

**Vulnerable Products CPEx*x*:
{CPEs}

**True Labelx**:
{true_labell}

Listing 4.17. Prompt to build syntetic Conversational dataset.

Given the computational constraints of the available hardware (see Subsection 4.3.1),
the experiments focused on lightweight models ranging from 4 to 8 billion parameters,
including Llama 3.1, Qwen 3, and Gemma 2. This configuration was chosen as a trade-
off of the model provided by the Unsloth library, yet ensuring that the fine-tuning process

could be executed within the limit of the Colab T4 GPU.

The main hyperparameters used during fine-tuning are summarized in Table 4.4. Each
hyperparameter was selected to balance training stability, computational efficiency, and
generalization ability, following the best practices reported in the Unsloth documentation

20].

o The Learning rate controls how much the model weights are updated during each
optimization step. Lower values may lead to underfitting, while higher ones can

destabilize the LoRA adapters and cause divergence.

o The Batch Size determines how many training examples are processed simultane-

ously. Smaller batches help regularize training and reduce GPU memory usage.

e The number of Epochs defines how many times the model iterates over the entire
dataset. A range between 3 and 10 epochs was found to be sufficient to reach con-

vergence, as longer training increases the risk of overfitting the model.

« The Rank (r) defines the dimensionality of the low-rank update matrices in the
LoRA adapters. A lower rank reduces memory usage and training time, while higher

ranks increase model capacity but also the number of trainable parameters.

o Alpha a parameter acts as a scaling factor for the LoRA updates, by controlling how
strongly the learned deltas affect the original weights. It should be tuned accordingly

with the chosen rank factor, to ensure stable gradient propagation.

o Mixed Precision training is possible, from 4-bit to 16-bit quantization, to reduce

memory footprint and accelerate computation.
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Parameter Range

Learning rate 1x107% -3 x 1074
Batch size 2-8

Epochs 3-10

LoRA rank (r) | 8, 16, 32, 64, 128
LoRA alpha («) | equals or double the rank (r or 2r)
Precision 4, 16, or 32-bit

Table 4.4. Fine-tuning configuration parameters and explored ranges.

The complete fine-tuning workflow adopted in this study is summarized in Figure 4.15.
The resulting Fine-tuned LLM is then evaluated, producing the evaluation metrics de-
fined in Section 4.2. By comparing the obtained scores across different hyperparameter
configurations, the best-performing model setup was selected as the final configuration for
the final prototype.

Evaluation Metrics

5G CVE
Dataset

Predicted Label

CVE Record
D [20%4>{ Testing Set }—' Evaluatmn

DESCRIPTION
Finetuned LLM }7

CPE
LABEL
80% .
Reasoning
Conversatlonal Unsloth
Dataset F|natun|ng

Figure 4.15. Overview of the fine-tuning pipeline.

4.6 Prototype Development

To demonstrate the applicability of the proposed classification pipeline in a real-world set-
ting, a lightweight prototype system was developed. The goal of this prototype is to provide
a proof-of-concept tool that can automatically classify newly published vulnerabilities and
notify security analysts when a CVE is likely related to the 5G infrastructure.

The prototype integrates the best-performing model, chosen as a result of the compari-
son of the evaluation metrics. Figure 4.16 illustrates the architecture of the prototype that
adopts the proposed pipeline on fresh CVE feeds. The system retrieves CVE records from
the NVD API, extracts the fields used by the classifier, such as CVE description and
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CPEs, and forwards them to the Classification System. This component is modular, so
that the classification model can be updated, keeping up with the evolution of Al models.

At inference time, the classifier emits a Predicted Label together with a concise Rea-
soning. Both are stored in a audit log for subsequent evaluation. When the predicted
label is 5G, an Alerting System notifies subscribed stakeholders through a dedicated
messaging channel. For the purpose of this prototype, a Telegram Bot has been imple-
mented, but the modular design of the system allows this component to be easily replaced
or extended in future versions.

The system performs classification periodically, looping over a configurable time interval
that can be adjusted according to the user’s needs. At each iteration, it retrieves newly
published CVE records from the NVD API and restarts the classification pipeline, ensuring
continuous monitoring of emerging vulnerabilities.

Predicted Label

Classification P
System
| S Alerting system
Reasoning f

Subscribed
Log stakeholders

—Predicted: 5G

- CVE Record
ID

DESCRIPTION
CPE

NVD API

Figure 4.16. Prototype architecture: from NVD to classification, logging, and alerting.

The NVD API introduces some limitations. The maximum query range for a single
API Key is limited to 120 days, meaning that the application must handle cases in which it
is executed after a longer inactivity period by automatically performing multiple sequential
queries. Moreover, to prevent denial-of-service attacks, the API enforces a rate limit of
5 requests with a rolling 30-second window, which can be increased to 50 requests by
registering on the NIST website. So a short delay of 1 second between consecutive requests
has been introduced to reduce server load.

The classification component of the prototype was implemented using the Llama.cpp
server, which exposes a lightweight HT'TP API for model inference. This choice allows
the system to run the fine-tuned model locally or on any compatible GPU with minimal
dependencies and without relying on external services. Thanks to the asynchronous request
handling, the classifier can process multiple CVE records sequentially within each execution
cycle, maintaining low latency even on limited hardware.

The User interface, pictured in 4.17, was developed using the Streamlit framework and
provides a minimal yet responsive web dashboard where users can visualize and review the
model’s classifications.
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CVE 5G Classifier

Classification Histo
17 Pipeline: NVD Retriever > LLM Classifier > 56

== CVE Recovery from NVD
Settings
CALL_URL ® 29 CVE recovered
http://127.0.0.1:8080/v1/chat
®LLM Classification

Limite batch CVE
50 -+
Mostra reasoning LLM Classification Completed in 122.1s — 5 CVE 5G found
Start pipeline
| Results
5Gfilter Hide ERROR Search by CVE ID
Everyone v
Single CVE test
GED cve_id summary classification is_5g  reasoning
CVE-2024-12345 CVE-2025-41442 A vulnerability exists in Advantech iView versions prior to 5.7.05 build 7057, which co noSg The CVE summary mentions Advantech iview versions, wl
CVE-2025-46358 Emerson ValveLink products do not use or incorrectly uses a protection mechanism { nosg The CVE summary mentions Emerson ValveLink products
s CVE-2025-46704 A vulnerability exists in Advantech iView in NetworkServlet.processimportRequest() | 5g The CVE summary describes a directory traversal vulneral
CVE-2025-48496 Emerson ValveLink products use a fixed or controlled search path to find resources, t nosg The CVE affects Qualcomm Snapdragon processors and tt
CVE-2025-48891 A vulnerability exists in Advantech iView that could allow for SQL injection through tt noSg The CVE summary describes a SQL injection vulnerability
7 CVE-2025-50109 Emerson ValveLink Products store sensitive information in cleartext within a resource noSg The CVE summary mentions Emerson ValveLink Products

CPE list (antianal ane ner line)

Figure 4.17. Screenshot of the Prototype’s Interface.
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Chapter 5

Experimental Results

This chapter presents the experimental results obtained by applying the methodology de-
scribed in Chapter 4.

The goal is to evaluate and compare the performance of different families of classifiers,
including embedding-based and LLM-based, as well as the optimization strategies applied,
such as prompt engineering and fine-tuning.

The evaluation follows a chronological structure reflecting the two experimental stages
of the study (see Section 4.1):

« Evaluation on the Public 5G CVE Dataset (Section 5.1), consisting of 136
CVE records, used to define the baseline pipeline and to evaluate prompt-engineering
techniques on different LLMs. On this dataset, both embedding-based classifiers and
fine-tuning strategies were not feasible due to the restricted size of the CVE dataset.

« Evaluation on the Extended Dataset (Section 5.2), consisting of 476 CVEs,
provided in a later phase, which allowed fine-tuning experiments and a statistically
more robust assessment of embedding-based classifiers.

All models were executed on the hardware configurations introduced in SubSection
4.3.1. Lightweight LLMs (up to 8B parameters) were executed locally on the m2_ pro,
while Larger open-source models (up to 32B parameters) were executed on the rtx_ 4090
workstation. A limited number of proprietary LLMs were evaluated through external
APIs for reference.

5.1 Experiments on the Public 5G CVE Dataset

5.1.1 Baseline

The first set of experiments aimed to establish a baseline performance level, on the 136-
record public 5G CVE dataset detailed in Section 4.1, for the LLMs detailed in Section
4.3.2. Each model was evaluated using the Base prompt described in Listing 4.7, using
two different sets of hyperparameters default temperature configuration suggested
by the model producers, which introduce randomness and reflects standard inference set-
tings, and a more reproducible configuration with temperature 7" = 0, which ensures
consistency across repeated runs.
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As explained in Section 4.2, the Matthews Correlation Coefficient (MCC) is a
representative reference metric for comparing the different prompt-engineering strategies,
providing a single, balanced indicator that simultaneously accounts for true and false pos-
itives and negatives. Therefore, it is used as an indicator together with the Accuracy
metric to create the baseline.

Table 5.1 shows a comparison of these metrics obtained by testing the models over the
reproducible configuration (7' = 0) compared to the default T configuration.

Table 5.1 shows that the T' = 0 configuration consistently achieves slightly higher
accuracy compared to the default temperature settings. This improvement is particularly
evident for lightweight models such as Gemma-3n (4B) and Llama-3.1(8B), while for
larger models, including Gemma-3 (27B) and Qwen-3 (32B), the results obtained with
the two settings converge. For this reason, 7' = 0 can be considered reliable and subsequent
tests, even on an additional model, were conducted with a fixed deterministic temperature
(T =0).

Model Params Accuracy Accuracy MCC
(B) (Default T) (T=0) (Default / T=0)

Llama-3.2 3 0.74 0.76 0.56 / 0.57
Gemma-3n 4 0.74 0.84 0.55 / 0.71
Mistral 7 0.89 0.87 0.78 / 0.77
Qwen3 (8B) 8 0,90 0,91 0,79 / 0,84
Llama-3.1 8 0.89 0.93 0.78 / 0.87
Gemma-3 (12B) 12 0.93 0.95 0.86 / 0.92
SecGPT 14 0.88 0.92 0.77 / 0.85
Gemma-3 (27B) 27 0.98 0.98 0.96 / 0.96
Qwen-3 32 0.96 0.96 0.93 / 0.93

Table 5.1. Comparison between default and deterministic configurations (7=0) for base-
line LLMs on the public dataset.

Additionally, from the plot in Figure 5.1, the overall performance trend can be observed.
It is clear that performance increases almost monotonically with the number of parameters,
from 0.74 for smaller 3-4B models, to values greater than 0.96 for models beyond 12B
parameters. Notably, Qwen3 (8B) and Gemma-3 (12B) have performances comparable
to larger models, achieving an accuracy of around 0.97 and 0.93, indicating that increasing
the number of parameters over 12 billion yields only marginal performance gains.

5.1.2 Prompt Engineering Techniques

After establishing the baseline performance of the models, a series of experiments were
conducted to evaluate the impact of different prompt engineering techniques on the
5G classification task. Compared to the baseline evaluation, this stage also includes the
results for Llama-3 (70B), which was tested only at this point due to its high computational
cost and long inference time.

Table 5.2 summarizes the relative MCC % variations obtained by applying the different
prompt-engineering techniques (see SubSection 4.5.1) to each model, compared against the
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Figure 5.1. Metrics Comparison between Default Configuration and 7' =0

baseline MCC value. For clarity, each prompt-engineering technique has been abbreviated
in the table as follows: Few-Shot (FS), Web Context (WC), Chain-of-Thought
(CoT), Prompt Chaining (PC), and Tree-of-Thought (ToT). It is also important
to note that the symbol “/” indicates cases where the output produced by the model was
unusable, typically due to malformed JSON responses or ambiguous classifications that
could not be automatically parsed. Similarly, the label “unfeasible” marks experiments
that could not be executed due to excessive computational cost or memory requirements,
which made those configurations impractical within the available hardware setup.

Figure 5.2 presents a comparative line plot in which the vertical axis represents the
Matthews Correlation Coefficient (MCC), while the horizontal axis lists the evaluated
models, ordered by increasing number of parameters. From this Figure, Prompt Chaining
and Tree of Thought were excluded due to their poor results and the excessive GPU memory
requirements. Overall, the graph shows that Prompt-engineering techniques appear to be
much more effective on smaller models. As the model size increases, the difference between
the baseline MCC and the optimized prompts generally narrows.

This trend can be explained by looking at the model scale: for bigger models, the
internal representations may be sufficiently rich to generalize across the task without relying
heavily on external guidance from the prompt, and so only smaller and mid-sized models
benefit from optimized prompting, compensating for their limited capacity by providing
more precise task framing and structured reasoning.

The detailed results presented in Table 5.2 provide a quantitative overview across the
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different prompt engineering techniques with respect to the baseline. The Few-shot (FS)
technique brings the highest mean improvement (+4.89%), suggesting that it is the best
prompt engineering technique as a lightweight and low-cost optimization method. Con-
versely, more complex reasoning strategies such as Prompt Chaining (PC) and Tree-of-
Thought (ToT) exhibit negative or unstable results, highlighting that additional inference
steps and longer prompts do not necessarily translate into higher reliability.

Model Pa(rl-;l;ns Base FS (IYI(\J/I) (E‘ervn(li) CoT PC ToT
Llama-3.2 3 0,57 +31,58 410,53 43,61 +7,02  +24,56 -19,3
Gemma-3n 4 0,71 +14,08 -5,63 -2,82 -4,23 +4,23 +1,41
Mistral 7 0,77 +12,99 +3,90 46,49  -3,90 +5,19 /
Llama-3.1 8 0,87 -6,90 +1,15 0,00 -2,30 -5,75 -13,79
Qwen-3 (8B) 8 0,84 -11,70 -3,19 -3,19 -3,19 0,00 -10,64
Gemma-3 (12B) 12 0,92 0,00 -9,68 0,00 0,00 +3,23 -17,20
SecGPT 14 0,85 +10,59 -1,18 -1,18  +7,06 -38,82 /
Gemma-3 (27B) 27 0,96 -6,25 -3,12 -3,12 0,00 / /
Qwen-3 (32B) 32 0,93 +1,08 +4,30 +3,23  -3,23 +4,30

Llama3 (70B) 70 0,88 +341 -1,14 46,82 +10,23 unfeasible unfeasible
Mean Variation +4,89  -0,41 +0,97  +0,75 -0,38 -11,9

Table 5.2. Comparison of MCC baseline and relative improvements (%) for each promp-
t-engineering strategy on the public 5G CVE dataset.

A complementary perspective is offered by Figure 5.3, which directly compares the MCC
scores obtained across each configuration, excluding PC and ToT, which were unfeasible
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for larger models. Here, the improvement introduced by Few-Shot prompting is visually
evident for the smaller models (Llama-3.2 and Gemma-3n), while the differences among
techniques become progressively less pronounced for larger architectures such as Gemma-3
(27B) and Qwen-3 (32B).

This visualization also confirms that Web-Context enrichment (both LLM and embedding-
based) provides moderate but consistent improvements across small models and will be
further analyzed in SubSection 5.1.3.
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Figure 5.3. Comparison between MCC (%) With Default Configuration and 7' = 0

In conclusion, although some individual models exhibit notable improvements under
specific prompting configurations, these results show a high degree of variability and can-
not be directly generalized to an operational context. The sensitivity of the models to
prompt formulation limits the practical applicability of the strategies tested beyond con-
trolled experiments. Among all tested techniques, Few-Shot prompting emerges as the
most balanced solution, providing consistent gains across multiple architectures without
significantly increasing inference time or computational cost (see Table 4.3). However, it is
essential to note that the examples used in this configuration were derived from the dataset
used for evaluation. As a consequence, while the observed improvements demonstrate the
potential of Few-Shot prompting in guiding model reasoning, these gains might not fully
generalize to unseen vulnerabilities or to CVE records outside the curated dataset.

5.1.3 Web Context LLM Analysis

Despite the fact that the WEB-context approach substantially expands the input prompt
by adding a large amount of external information, the overall MCC variations observed in
Figure 5.3 appear unexpectedly limited compared to other approaches, such as Few-Shot.

This raises a fundamental question: how can long snippets of text produce, on average,
such a small variation in the performance? To address this question, a dedicated analysis
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was conducted on four distinct Web Prompts, designed to investigate how the formula-
tion of the summarization influences the resulting classification. These prompts and the
methodology used to conduct the experiments are described in detail in SubSection 4.5.4.

Due to hardware constraints, the experiments were conducted only on Llama-3.1 (8B)
and Qwen-3 (8B) models, the two configurations that, as shown in Table 5.2, exhibited
the smallest MCC variation in the WC (LLM) approach, among those testable on the
m2__pro hardware configuration. The goal was to understand how the addition of external
context leads the models to change their binary classification between "'5G" and "no5G".

The results presented in Table 5.3 show that, across the four summarization prompts
tested, plus the one that skips the summarization phase, the MCC values vary by ap-
proximately 10% for both models. At first glance, it might be observed that the best
configuration of Llama-3.1 achieves an MCC comparable to that of models nearly three
times its size, as reported in Table 5.1. However, the high variability in MCC across the
tests demonstrates that the binary classification strongly depends on the specific summary
that the LLM receives.

Model Approach Acc. Prec. Rec. F1 MCC AMCC AMCC %
Llama-3.1 Baseline 093 094 093 093 0.87 - -
Llama-3.1 Skip summary step 0.91 0.89 0.93 0.91 0.83 -0.04 -4.60%
Llama-3.1 Web Prompt 0 094 094 094 094 0.88 +0.01 +1.15%
Llama-3.1 Web Prompt 1 091 090 093 091 0.82 -0.05 -5.75%

Llama-3.1  Web Prompt 2 095 098 091 094 0.90 +0.03 +3.45%
Llama-3.1  Web Prompt 3 096 1.00 091 095 0.92 +0.05 +5.75%

Qwen-3 Baseline 097 097 097 097 094 - -

Qwen-3 Skip summary step 0.91  0.85 0.96 0.90 0.82 -0.12 -12.77%
Qwen-3 Web Prompt 0 0.93 0.89 0.97 0.93 0.86 -0.08 -8.51%
Qwen-3 Web Prompt 1 096 094 097 095 0091 -0.03 -3.19%
Qwen-3 Web Prompt 2 0.93 0.88 0.99 0.93 0.86 -0.08 -8.51%
Qwen-3 Web Prompt 3 0.96 0.92 1.00 0.96 0.92 -0.02 -2.13%

Table 5.3. Detailed classification results for different Web Prompt configurations on
Llama-3.1 (8B) and Qwen-3 (8B).

A closer inspection of the logs containing the individual predictions confirms the strong
variability and high prompt sensitivity observed in the aggregated results. A notable
example is the classification of the CVE record CVE-2024-26793 (true label: no5G),
performed by the Llama 3.1 (8B) model. Listings 5.1 and Listing 5.2 show the model’s
responses to two prompts that differ only by the presence of empty <webcontext> tags.
Nevertheless, the model changed its classification from no5G to 5G, solely due to the
structural difference introduced by the empty tags.

....Base Prompt....
### Answer using the following JSON format

{
"reasoning": "Explain clearly why this CVE is or isn’t related to
5G.",
"classification": "5g | nob5g"
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Model Response:
{

"reasoning": "The CVE affects the Linux kernel’s GTP (GPRS
Tunneling Protocol) implementation, which is used in various
network protocols, including 5G. However, upon closer
inspection, it appears that this specific vulnerability is
related to a use-after-free and null-ptr-deref issue in the
gtp_newlink () function. This is not directly related to any
5G-specific protocol or component. The GTP protocol itself is
used in both 4G and 5G networks, but the specific code path
affected by this vulnerability does not seem to be unique to
5G.",

"classification": "nob5G"

Listing 5.1.  Model response to the base prompt (no web context).

....Base Prompt....
### Answer using the following JSON format

{
"reasoning": "Explain clearly why this CVE is or isn’t related to
5G.",
"classification": "5g | nob5g"
}

<webcontext >
</webcontext >

Model Response:
{

"reasoning": "This CVE is related to a Linux kernel vulnerability
in the GTP (GPRS Tunneling Protocol) module, which is used by
various protocols, including GTP-U and NAS. Although these
protocols are used in 5G networks, this specific issue seems to
be more related to general network functiomnality rather than
being unique to 5G. However, it still affects the Linux kernel,
which is used in many 5G infrastructure components.",

"classification": "5G"

Listing 5.2. Model response to the same prompt by with the addition of empty tags.

This example clearly illustrates the problems of this approach and, in general, highlights
how fragile prompt engineering can become when applied to lightweight models, where the
addition of large and potentially noisy external content is likely to exacerbate this inherent

=4

prompt sensitivity. Additionally, looking at the bigger picture, Table 5.3 shows that in
seven out of ten tests, the introduction of web-derived context led to a slight decrease in

performance compared to the baseline configuration.

In light of these observations, the answer to the question posed at the beginning of this
section becomes clearer: the issue is not the lack of information, but rather its quality
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and structure. Small and mid-sized LLMs, such as those tested in this stage, exhibit
a higher degree of prompt sensitivity and limited capacity to filter relevant details from
long, noisy inputs. As a result, extending the prompt with unstructured web text often
introduces ambiguity instead of clarity, leading to unstable reasoning paths and inconsistent
classifications.

That being said, it is out of the scope of this Thesis to demonstrated whether the Web-
Context approach could converge toward more stable results if tested with bigger models
and on a substantially larger dataset.

5.2 Experiments on the Extended Dataset

Following the analysis on the public 5G CVE dataset, this section presents the second ex-
perimental phase of the study, conducted on a substantially larger and more representative
dataset consisting of 476 manually annotated CVE records, described in Section 4.1.

This new dataset was provided in a later stage of the research and enabled techniques
that weren’t possible with the smaller dataset, such as embedding-based approaches and
finetuning.

5.2.1 Baseline

Given the larger size of the extended dataset, it was not feasible to replicate the full
prompt-engineering sweep performed on the public set. To verify the consistency of the
LLMs’ performances, the baseline was built using the two best models from Section 5.1
and using external APIs: Gemma-3 (27B) and Qwen-3 (32B).

Table 5.4 reports the baseline results, with T=0, and the relative MCC variation with
the Few-Shot (F'S) approach, which showed the best results using the smaller dataset. The
results are consistent with those observed on the public dataset: both models maintain
high baseline performance. However, in this case, the Few-Shot approach leads to a small
degradation of MCC in both cases.

This suggests that the examples previously crafted for the public dataset do not transfer
to the extended one, and changing the set of technologies and products affected by the
vulnerability can erase the benefits provided by this kind of approach. However, this
consideration must be proven with broader tests and additional models, which are not
feasible in this study.

Params A MCC (FS)
Model (B) Accuracy (Base) MCC (Base) (% vs. Base)
Gemma-3 27 0.90 0.80 -2.50%
Qwen-3 32 0.90 0.80 -1.25%

Table 5.4. Baseline performance on the extended dataset, with Few-Shot (F'S)
relative MCC variation.

Overall, these findings justify the exploration of alternative strategies beyond prompt
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engineering, namely embedding-based models and fine-tuning, which may offer more oper-
ational reliability.

5.2.2 Embedding-based approaches evaluation

The goal of this phase was to assess the capability of traditional machine learning classifiers,
as detailed in SubSection 4.3.2.

For this purpose, the CVE descriptions, together with associated CPEs, were trans-
formed into numerical vectors using the all-miniLM-L12-v2 model. Three classifiers were
trained and tested under the same 80/20 split: Logistic Regression, SVM (RBF ker-
nel), and XGBoost. Additionally, the performance of the best-performing LLM over
this new dataset (Qwen3-32B) from the previous section was included as a reference for
comparison.

From Table 5.5, the SVM (RBF) clearly emerges as the best-performing classifier,
achieving an accuracy of 0.93 and an MCC of 0.85, outperforming Logistic Regression,
XGBoost, and even Qwen3-32B.

Model Accuracy Precision Recall F1-Score MCC Pred. Correct
Logistic Regression 0.82 0.80 0.85 0.82 0.65 79 / 96
SVM (RBF) 0.93 0.91 0.93 0.92 0.85 89 / 96
XGBoost 0.88 0.83 0.91 0.87 0.75 84 / 96
Qwen3-32B (LLM) 0.92 0.89 0.93 0.91 0.83 88 / 96

Table 5.5. Performance comparison of embedding-based classifiers and Qwen3-32B on
the extended dataset (80/20 split).

To decide the best parameter possible for the SVM configuration, a series of validation
experiments was conducted varying the regularization parameter C' and the kernel coeffi-
cient v. The resulting validation curves, shown in Figure 5.4 and 5.5, illustrate how the
model accuracy changes in relation to these hyperparameters.

The validation curve for C' (Figure 5.4) shows that accuracy rapidly increases for low
values of C' and stabilizes beyond C' = 2, after which the classifier performance converges.

Similarly, the validation curve for v (Figure 5.5) reveals that excessively high values lead
to overfitting: the training accuracy approaches one while validation accuracy decreases.

The optimal configuration was therefore determined as C' = 2 and gamma = 1, balanc-
ing bias and variance effectively.

To verify that the model has reached a good fit on the training set, the learning curve
in Figure 5.7 illustrates how accuracy evolves as the training set size increases.

The validation accuracy steadily grows and converges toward the training curve, indi-
cating that the SVM generalizes well and that additional training data would yield further
improvements without overfitting.

To further evaluate the robustness of the SVM model, a real-world test was conducted
on a set of 9,000 newly published CVE records retrieved from the NVD. These records,
not included in the extended dataset, were published between July 1st and September
13th, 2025. Among them, the SVM model identified 133 vulnerabilities as 5G-related.
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Figure 5.7. Learning curve (accuracy vs. training set size) for SVM (RBF)
with C' =2, v =1).

This subset was then manually reviewed and annotated, and the same records were also
classified using Qwen3-32B, enabling a direct comparison between the two approaches.
As shown in Table 5.6, the SVM model exhibits a severe drop in performance, achieving
only a 0.23 accuracy and a negative Matthews correlation coefficient (MCC = -0.11). In
contrast, Qwen3-32B model maintains performance with respect to the dataset, confirming
its ability to generalize beyond the vocabulary and data distribution of the training set.
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Model Accuracy Precision Recall F1-Score MCC Pred. Correct
SVM (RBF) 0.23 0.23 1.00 0.37 -0.11 31 /133
Qwen3-32B (LLM) 0.98 0.94 0.97 0.95 0.94 130 / 133

Table 5.6. Generalization test of SVM and Qwen3-32B on 133 unseen 5G-related CVEs.

This result highlights an intrinsic limitation of the traditional SVM classifier: despite
not suffering from overfitting on the training set, its decision boundaries are strongly
influenced by keywords present in the training corpus. Consequently, when exposed to
real-world CVE records containing unseen terminology or shifted contexts, SVMs fail to
generalize reliably.

A notable example is the record CVE-2025-53816, describing a vulnerability in 7-Zip,
a software clearly unrelated to 5G technology:

“I-Zip is a file archiver with a high compression ratio. Zeroes written outside heap
buffer in RARS5 handler may lead to memory corruption and denial of service in
versions of 7-Zip prior to 25.0.0.”

The SVM incorrectly classified this vulnerability as 5G-related, likely due to the presence
of the token “RAR5”, which coincidentally resembles keywords found in training samples
(i.e., RAN) associated with telecommunication protocols. When the same description was
slightly modified by masking the term RARS5, the model correctly reclassified the CVE
as non-5QG, revealing a strong dependency on superficial lexical cues rather than on the
semantic meaning of the text.

These findings confirm the limits on the generalization capabilities of embedding-based
classifiers and highlight the more stable reasoning and contextual understanding provided
by LLMs, making them a more promising choice for a 5G CVE classification system.

5.2.3 Fine-tuning Evaluation

The fine-tuning process followed the approach described in SubSection 4.5.9, leveraging the
Unsloth library, which enables memory-efficient training through Low-Rank Adaptation
(LoRA), as detailed in Section 4.3.

All-finetuning experiments were conducted in Google Colab environments using the
free-tier GPU configuration, which imposed heavy constraints on model size and VRAM
availability. As a result, only models up to 4 billion parameters were fine-tuned, namely
Llama3.2-3B and Qwen3-4B, both quantized to Q4__K__ M format for optimization.
The fine-tuning process, using Unsloth, was configured through two key parameters: rank
(r) and LoRA alpha («), which control the dimensionality and scaling of the adapter
layers. Multiple combinations of these parameters were tested to identify the most effective
configuration.

The training used the extended 5G dataset split 80/20 as in previous experiments.
The 80% training set was converted into a conversational format, following the structure
detailed in SubSection 4.5.9, while the remaining 20% was reserved for evaluation.

Table 5.7 reports the results obtained for all fine-tuned models, their corresponding
base versions, and the results obtained on the same test subset for Quwen3-32B, which
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was used as a reference to compute the AMCC(%) values, with the formula reported in
Section 4.2. It can be observed that all fine-tuned models outperform their corresponding
base versions, proving the effectiveness of this strategy. For Llama3.2-3B, the MCC
progressively increases with higher rank and LoRA_ alpha values, reaching 0.69 at the
configuration r = 64, o = 64. A similar trend is observed for Qwen3-4B, where the
configuration r = 32, a = 32 achieves the best results, surpassing even the eight times
larger Qwen3-32B model, with an MCC of 0.81.

Model Pa(r]g;n ® Accuracy MCC AMCC (%)
Llama3.2-3B 3 0.78 0.58 —25.64
Llama3.2-3B_r16_lal6 3 0.80 0.61 —21.79
Llama3.2-3B_1r32 la32 3 0.81 0.63 -19.23
Llama3.2-3B_r64 la64 3 0.84 0.69 ~11.54
Llama3.2-3B_r128 1al28 3 0.83 0.67 —-14.10
Qwen3-4B 4 0.85 0.71 -8.97
Qwen3-4B_r16_1al6 4 0.86 0.74 -5.13
Qwen3-4B_r32_1a32 4 0.91 0.81 +3.85
Qwen3-4B_r64 la64 4 0.85 0.71 -8.97
Qwen3-4B_r128 1al28 4 0.85 0.72 ~7.69
Qwen3-32B (reference) 32 0.89 0.78 0.00

Table 5.7. Performance of fine-tuned models on the extended dataset compared
to their base versions.

Results in Table 5.7 demonstrate that fine-tuning enables lightweight LLMs to achieve
accuracy levels comparable to larger models while maintaining significantly lower compu-
tational requirements.

To further assess whether the fine-tuned models preserve their generalization ability,
the best configuration Qwen3-4B, with r = 32, a = 32, was tested on the same 133 CVE
records used in Subsection 5.2.2 for the SVM evaluation. This test allows us to ensure
that the fine-tuned model maintains the generalization capability, and can serve as further
evaluation to compare its performance with respect to Qwen3-4B base version, and the
large reference model Qwen3-32B.

As shown in Table 5.8, fine-tuning brings a substantial improvement in both accuracy
and MCC, with the finetuned version of Qwen3-4B surpassing the base version and almost
matching the performance of the much larger 32B model. This demonstrates that the
finetuned model maintains high performance even on CVE records outside the extended
dataset.

These findings confirm the effectiveness of LoRA-based fine-tuning in improving the
reasoning and domain adaptation of lightweight LLMs in the task of CVE 5G classification.
Not only does it enhance performance, but it also preserves the ability to execute the model
locally, in a computationally constrained environment, ensuring data privacy and reducing
the dependence on external APIs [13]. Within the context of this Thesis, the fine-tuned
Qwen3-4B model represents the most balanced configuration, achieving high accuracy,
strong generalization, and low computational cost. For this reason, it was selected as the
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5.2 — Experiments on the Extended Dataset

Model Params Accuracy MCC
(B)

Qwen3-4B (base) 4 0.88 0.64

Qwen3-4B (fine-tuned) 4 0.96 0.91

Qwen3-32B (reference) 32 0.97 0.92

Table 5.8. Comparison between fine-tuned and base Qwen3 models on real case scenario.

core model for the prototype implementation discussed in Section 4.6.
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Chapter 6

Conclusions and Future Work

This Thesis addressed the problem of automatically identifying and classifying vulnerabil-
ities that affect 5G infrastructures, in response to the growing number of CVEs published
each year and the increasing complexity of modern network architectures. Traditional ap-
proaches based on keyword filtering and manual review are no longer sufficient to keep up
with the scale and ambiguity of vulnerability data, particularly when vulnerabilities indi-
rectly impact 5G components through shared protocols, libraries, or virtualization layers.

To overcome this challenge, a methodology was developed that combines machine learn-
ing and large language model (LLM)-based techniques to automate the classification of
5G-related CVEs. Two complementary families of approaches were explored: embedding-
based classifiers, which transform CVE descriptions into semantic vector representations
and apply traditional machine learning algorithms such as SVM and logistic regression; and
LLM-based methods, which leverage the contextual understanding of transformer models
to reason directly over textual descriptions. The methodology was evaluated through mul-
tiple experiments, including baseline testing, prompt engineering, and parameter-efficient
fine-tuning, to assess model performance, scalability, and generalization capability in real-
istic operational settings.

The initial experiments were conducted on a dataset of 136 CVE records, which al-
lowed the construction of an LLM-based baseline and the exploration of various prompt-
engineering strategies. The baseline showed a clear correlation between model size and
classification accuracy: performance increased from approximately 74% for 3B-parameter
models to around 90% for models between 8B and 12B parameters. Beyond this, results
began to converge, and additional parameters provided only marginal gains, with accuracy
stabilizing between 96% and 98% for models up to 32B parameters.

Regarding prompt engineering strategies, the results suggest that using prompting as
an optimization technique is generally unreliable, especially for smaller models that are
highly sensitive to minor variations in the prompt structure. This makes prompt-based
optimization difficult to adopt in operational domains such as 5G vulnerability analysis,
where reliability and stability are critical.

The only technique that consistently provided promising improvements was the Few-
Shot prompting approach, which augments the input with examples to guide the model’s
reasoning. This was particularly useful in ambiguous cases, for instance, when the CVE
description referred to technologies whose names resemble 5G-related components (e.g.,
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“56GHz modem”). On average, Few-Shot prompting increased accuracy by roughly 5%
across tested models. However, these examples were inevitably built around the dataset
used at that time and may not generalize well to unseen data. Once the model is ap-
plied outside the original dataset, the benefit of Few-Shot prompting may diminish due to
potential bias in the selected examples.

In later stages of the research, the "Fondazione Ugo Bordoni" provided a larger, unpub-
lished dataset of 476 CVE records—more than triple the size of the initial dataset. Given
hardware constraints, this phase required the use of external APIs to test the models. Only
Qwen3-32B and Gemma3-27B were evaluated as baselines on this extended dataset,
both maintaining strong performance with about 90% accuracy. However, on this larger
and more diverse dataset, the Few-Shot prompting strategy led to slightly worse results,
supporting the hypothesis that the examples previously crafted were not representative of
the broader and more heterogeneous 5G ecosystem.

The availability of a larger dataset also enabled, for the first time, experiments based
on classical training-testing splits (80/20). In this phase, a vectorized representation of
CVE descriptions was created using the al1-MinilM-L12-v2 sentence transformer model,
which maps each record into a semantic vector space. This embedding-based approach
is extremely efficient and computationally lightweight compared to full LLM inference.
Among the tested classifiers, the SVM with RBF kernel achieved the best results,
reaching 93% accuracy on the testing split—slightly higher than the 92% obtained by
Qwen3-32B.

To validate robustness, the models were then tested on a set of 133 newly published
CVEs retrieved directly from the NVD, entirely external to the training data and without
any keyword filtering. This scenario best approximates a real-world operational setting,
where the classifier continuously processes new CVEs as they are published. In this test,
the SVM performance dropped sharply to 23% accuracy, while Qwen3-32B maintained
consistent performance above 90%. These results suggest that the SVM overfits lexical
cues present in the training data, making it unable to generalize to new product names
or unseen terminology. Conversely, the LLM maintained its contextual understanding and
reasoning ability in all domains.

The final and most decisive technique evaluated was parameter-efficient fine-tuning
(PEFT) on compact models of 3-4B parameters. Using the Unsloth library, fine-tuning
was successfully executed within the free tier of Google Colab for both Llama3.2-3B and
Qwen3-4B. The fine-tuning was performed on 80% of the extended dataset, with evalu-
ation on the remaining 20%. Results showed consistent improvements over the respective
base models, and notably, the fine-tuned Qwen3-4B achieved performance comparable to
that of Qwen3-32B despite being eight times smaller.

An additional evaluation of the fine-tuned model on unseen CVEs confirmed its robust-
ness: Qwen3-4B (fine-tuned) reached 96% accuracy compared to 97% for Qwen3-32B.
This result demonstrates that fine-tuned lightweight LLMs retain the rich linguistic and
contextual understanding developed during pretraining, while effectively specializing in the
5G vulnerability classification task through the fine-tuning process. Compared to tradi-
tional classifiers, fine-tuned LLMs exhibit far greater adaptability and semantic reasoning,
enabling them to generalize across domains and remain reliable even in continuously evolv-
ing real-world conditions.
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6.1 — Limitations

6.1 Limitations

Although the proposed methodology demonstrated promising results, several limitations
must be acknowledged to frame the scope of this work correctly.

First, the experiments were strongly constrained by the available hardware resources.
These constraints limited both the number and the scale of experiments that could be
performed, preventing a more extensive and statistically robust evaluation of the mod-
els on the 5G classification task. For instance, the baseline evaluation of the extended
dataset included only a reduced set of models. It should be expanded to obtain a more
complete view of model behaviour across different architectures and parameter sizes. Sim-
ilarly, the parameter-efficient fine-tuning was executed on quantized 4B-parameter models
(Q4_K M) using the free tier of Google Colab. While this setup proved the feasibility of
low-resource fine-tuning, it may be too restrictive, potentially affecting the performance of
the original models.

Second, the evaluation was conducted on two datasets, both constructed through keyword-
based filtering. Although this approach is a practical necessity for identifying 5G-related
vulnerabilities within the National Vulnerability Database, it inevitably introduces selec-
tion bias. The rapidly increasing number of published CVEs each year brings a continuous
variety of technologies, products, and naming conventions that the dataset may not accu-
rately represent. This limitation was particularly evident in the embedding-based classi-
fiers, which performed well during controlled validation but failed to generalize in real-world
conditions. Such behavior does not stem from overfitting to the training data—as shown
by stable learning and validation curves—but rather from a lack of representativeness of
the dataset itself. While this issue can be partially mitigated by leveraging Large Language
Models that have already undergone extensive pretraining, further testing on broader and
more diverse real-world datasets is necessary to fully assess the generalization capabilities
of the proposed approaches and to draw stronger conclusions.

6.2 Future Work

The results obtained in this Thesis open several directions for future research and devel-
opment.

An immediate extension of this work involves the continuous expansion and refinement
of the dataset. Using the same methodology proposed in this study as a supporting tool,
newly published vulnerabilities can be automatically labeled and progressively added to
the dataset. This would enable a continuous improvement loop in which the fine-tuning
process is periodically repeated, leading to increasingly accurate models. In an operational
environment, such a mechanism could facilitate the protection of the entire 5G infrastruc-
ture by automating the classification process and reducing the need for human supervision,
which is essential given the accelerating rate at which new CVEs are disclosed.

In addition, the same methodology can be extended beyond the 5G domain and reused
across other critical sectors, such as energy, transportation, healthcare, and public ad-
ministration. Adapting the classification pipeline to these domains would not only con-
tribute to improving their cybersecurity posture but would also demonstrate the broader
potential of Al-based vulnerability classification. Such cross-domain applications could
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significantly enhance current risk identification frameworks, providing a tangible improve-
ment by supporting timely and data-driven decision-making in the protection of critical
infrastructures.
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