/

‘I

’ A . .
’jj!y‘;: Politecnico
{.ﬁiﬁfﬁiiﬁ%ﬁ%i:z; a2 i Torino
\\‘\ 1859 #1:’

M
1]}

Politecnico di Torino

Master’s Degree in

INGEGNERIA INFORMATICA (COMPUTER ENGINEERING)

a.y. 2024/2025
Graduation Session October 2025

Resource Allocation Techniques for
Planning the Teaching Timetable

Supervisors: Candidate:

Renato Ferrero Paolo Cagliero

Sophie Fosson

Summary

The goal of this thesis is to develop a tool that supports the creation of the course
timetable for a university. The timetable generation problem can be modeled as a
mixed-integer optimization problem, characterized by large numerical complexity.
Furthermore, in universities with a large number of Students and Teachings, the
problem size increases considerably, making it even more challenging.

As a case study, I consider the Teachings of the Degree Courses related to the
Computer, Cinema, and Mechatronic Engineering (ICM) and Electronic, Telecom-
munication, and Physical Engineering (ETF) Colleges of the Politecnico di Torino.

The timetable must satisfy many constraints. Some constraints are related
to the students, e.g., mandatory Teachings cannot overlap, there cannot be too
many consecutive lecture hours or too many empty Slots between lectures. Other
constraints are related to the Teachers, e.g. Teachers can specify Slots in which
they cannot have any lecture, and to the single Teachings, e.g. the lectures of some
Teachings should be allocated in two consecutive Slots at least once per Week.

Among these constraints, I identify hard constraints, which must be respected,
and soft constraints, which, if not respected, can introduce penalties in the opti-
mization function.

Two theses were conducted on this topic, in which the timetable allocation was
modeled as an Integer Linear Programming (ILP) problem and solved using the
solver CPLEX. This thesis, also based on ILP, explores a novel methodology, which
consists of representing the timetable as a two-dimensional matrix with the lecture
Slots on the columns and the Teachings on the rows. Each element of the matrix
is 1 if there is a lecture for that Teaching in that Slot, and 0 otherwise. The aim
is to develop a solution that reduces the numerical complexity and run time with
respect to the existing approaches. This goal requires a review of the hard and soft
constraints.

The first phase of the thesis focuses on identifying the requirements of the
problem. Some are inherited from the previous works, some are introduced, and
some are not considered since they are not useful for finding a valid solution.

After the requirements analysis, the thesis provides a study of the technologies
and the literature in order to find the models and approaches already available.

II1

Following this study, the conclusion is that the best option is to use the CPLEX
software, developed by IBM, which is capable of solving optimization problems.
CPLEX is widely known for its performance and robustness, and the fact that
it was used in the previous works represents an advantage. Initially, I generate
timetables considering the courses related to the academic year 2023-24, in order to
have a direct comparison between the timetables generated with this new approach
and those generated in the previous theses. This requires refining the constraints
to obtain compact timetables without too many consecutive lecture Slots or empty
Slots.

Once satisfactory results are achieved, I retrieve the course data for the academic
year 2025-26 and generate the timetables using those Teachings. The number of
Teachings for the academic year 2025-26 is significantly larger than the number
of Teachings for the academic year 2023-24, which requires another refinement of
the constraints in order to generate timetables in a reasonable amount of time and
with a good quality of the solutions.

The final results are encouraging. The generated timetable, obtained in a com-
putational time of 13 hours, satisfies all hard constraints and is able to adequately
handle soft constraints. The results therefore meet the needs of both Teachers and
Students. Questionnaires are underway to identify any potential issues.

An important aspect to take into account during this work is code readability
and cleanliness. Other thesis students, teachers, and collaborators have to be able
to understand the code and modify it. For this reason, I use SonarQube to perform
code reviews automatically and highlight potential issues in the code structure.

The final section of the thesis provides some suggestions for future improvements.

The work is completed by instruction manuals that describe how to use the
tools developed.

v

Acknowledgements

Well, here we are. These five years have been challenging, made of joys and difficult
moments. But none of the goals I have achieved would have been possible alone. I
have to say thank you to all the people who have walked this path with me.

My parents, Loredana and Marco, who have given me moral and financial
support throughout all these years.

My grandparents, Pietro, Maria, and Marisa, who accompanied me during this
journey.

My friend Beatrice, who has always been by my side through the highs and
the lows and always knew what to say to cheer me up when the burden of exams
became too much.

My friends Andrea, Samuele, and Tommaso, who have given me a way to
“escape” and find moments of lightness whenever I needed them.

My supervisors, Professors Renato Ferrero and Sophie Fosson, for their trust
and guidance during this thesis.

And all my other friends and colleagues - too many to name all of them - who
have faced this journey with me and who I hope will be by my side on many more.

To all of you, thank you.

Paolo

Ringraziamenti

Ebbene, eccoci qua. Questi 5 anni sono stati impegnativi, fatti di gioie e momenti
difficili. Ma nessuno dei traguardi che ho raggiunto sarebbe stato possibile da solo.
Devo ringraziare tutte le persone che hanno affrontato questo cammino insieme a
me.

I miei genitori, Loredana e Marco, che mi hanno dato supporto morale ed
economico durante questi anni.

I miei nonni, Pietro, Maria e Marisa, che mi hanno accompagnato durante
questo viaggio.

La mia amica Beatrice, che ¢ sempre stata al mio fianco attraverso gli alti e i
bassi di questo percorso e sapeva sempre cosa dire per tirarmi su quando il peso
degli esami diventava troppo.

I miei amici Andrea, Samuele e Tommaso, che mi hanno dato modo di “fuggire”
e trovare momenti di leggerezza ogni volta che ne avevo bisogno.

I miei relatori, i professori Renato Ferrero e Sophie Fosson, per la loro fiducia e
guida durante questa tesi.

E tutti i miei altri amici e compagni di universita - troppi per nominarli tutti -
che hanno affrontato questo percorso con me e che spero siano al mio fianco per
molti altri.

A tutti voi, grazie.

Paolo

VII

Table of Contents

List of Figures

1 Introduction

2

3

1.1 Thesis structure
Background
2.1 Operations research
2.2 Integer Linear Programming
2.2.1 Linear expression
2.2.2 Linear constraint
2.2.3 Symbolic representation of an LP
2.3 Numerical optimization solvers.
2.3.1 CPLEX Optimizer
2.4 ILP model for timetable allocation . . .
2.4.1 Constraints
2.4.2 Objective function
2.4.3 Types of problems and solutions .
2.5 Technical debt
2.5.1 SonarQube
2.6 Terminology
Problem definition
3.1 Requirements
3.1.1 Inherited requirements
3.1.2 New Requirements
3.1.3 Other Requirements
3.2 Correlations
3.3 List of Constraints
3.3.1 Hard Constraints
3.3.2 Soft Constraints

IX

XIII

4 Design
4.1 Datasources. e
4.1.1 Database Courses DB
4.1.2 Excelfiles
4.2 Lecture scheduling software: the state of theart
4.2.1 Genetic Algorithm 0oL
4.2.2 Ant Colony System Algorithm
4.2.3 FET Scheduling Software
4.2.4 Algorithm Choice,
4.3 Optimization Softwares Analysis
4.3.1 CBC e
432 GLPK
433 Gurobi
4.3.4 CPLEX e
435 PuLP
4.3.6 Google OR-Tools
4.4 Adopted model
4.4.1 Bidimensional Matrix Model
Implementation
5.1 Retrieving Courses data
5.2 Incremental approach L.
5.3 Computer Engineering
5.4 2026 Teachings
5.5 Teachers preferences about lectures organization
5.6 ICM, ETF, and All Courses Timetables
5.7 'Technical debt management: the usage of SonarQube
How to use the tool
6.1 Excel to db converter,
6.2 Timetable Allocator
6.2.1 Start from existing timetable
6.2.2 Allocation on Saturday
6.2.3 Export to Excel o000
6.2.4 Function add_ teachings constraints
6.2.5 add teachers constraints
6.2.6 Parameters,
6.3 Web Applicationo
6.3.1 Allocation plan section
6.3.2 Teachers section
6.3.3 Timetable differences section

7 Validation and performances

7.1 Checking timetable goodness - Students
7.2 Checking timetable goodness - Teachers
7.3 Analyzing differences with previous timetable
7.4 Performances with data from the academic year 2023/24

7.4.1 Mechatronic Engineering

742 Allcourses.
7.5 Performances with data for the academic year 2025/26

7.5.1 Teachers’ preferences

7.6 Questionnaire for Teachers and Student’s Representatives

8 Conclusions

8.1 Future works

Bibliography

XI

61
61
61
62
62
62
63
63
63
63

67
68

71

List of Figures

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
0.2

2.3

6.1
6.2
6.3

6.4
6.5

7.1
7.2
7.3

Genetic Algorithm description 24
Genetic Algorithm diagram, 25
Ant pathsearch 26
Ant Colony Algorithm description 28
Adding a subject in FET 29
Timetable view in FET 30
Example of a portion of the Bidimensional matrix 41
Example of subset of Degree Courses with the parameters 45
Teachers’ preferences (they are in Italian because they are saved in

this format in the university’s office) 47
SonarQube Code Analysis 48
Timetable with weekly visualization 52
Timetable with Teaching visualization 53
Allocation plan section - Teachings in red are mandatory and Teach-

ings in yellow are chosen from a table o7
Teachers section 58
Timetable differences section 59

Comparison between the timetable generated and the last year’s one 65
Teachers preferences on Slots allocation 65
Lecture distribution over the week 66

XIII

Chapter 1
Introduction

The goal of this thesis is to develop a tool that supports the creation of the courses
timetable for a university. In particular, as a case study, I consider the Computer,
Cinema, and Mechatronic Engineering (ICM) and Electronic, Telecommunication,
and Physical Engineering (ETF) Colleges of the Politecnico di Torino.

The timetable is subject to many constraints. Some constraints are related to
the Students, e.g., mandatory Teachings cannot overlap, there cannot be too many
consecutive hours of lectures or too many empty Slots between lectures. Other
constraints are related to the Teachers, e.g. Teachers can specify Slots in which
they cannot have any lecture, and to the single Teachings, e.g. the lectures of some
Teachings should be allocated in two consecutive Slots at least once per Week.
Among these constraints, I identify Hard Constraints, which must be respected,
and Soft Constraints, which, if not respected, can introduce penalties. The goal
is to find a timetable that respects all the Hard Constraints and maximizes an
objective function built from the Soft Constraints.

Two theses were conducted on this topic, see [1] and [2], in which the timetable
allocation was modeled as an ILP (Integer Linear Programming) problem and
solved using the solver CPLEX. This thesis, also based on ILP, explores a novel
methodology, which consists of representing the timetable as a two-dimensional
matrix with the lecture Slots on the columns and the Teachings on the rows. Each
element of the matrix is 1 if there is a lecture for that Teaching in that Slot, and 0
otherwise. The aim is to develop a solution that reduces the numerical complexity
and run time with respect to the existing approaches.

The first phase of the thesis focuses on identifying the requirements of the
problem. Some are inherited from the previous works, some are introduced, and
some are not considered since they are not useful for finding a valid solution.

After the requirements analysis, the thesis provides a study of the technologies
and the literature in order to find the models and approaches already available.

Initially, I generate a timetable considering only the hard constraints in order

1

Introduction

to verify the validity of the model and that it can generate a solution within
a reasonable amount of time. I work on the data related to the academic year
2023-24, since they are already available from the previous theses and allow a direct
comparison between my results and those obtained in the previous works. In order
to generate timetables faster, during the initial phase, I consider a subset of those
data, which includes only the Mechatronic Engineering Degree Course. This allows
the algorithm to generate a timetable in less than a minute!.

I then proceed with a review of the timetable generated and I compare it with
those of the previous theses to verify its validity and refine the hard constraints.

Afterwards, I introduce the soft constraints, which allow me to generate a more
compact timetable, with fewer overlaps between Teachings and fewer empty Slots
compared to the one with only hard constraints. As for the previous timetable, this
one only considers the Mechatronic Engineering Degree Course, and the algorithm
is able to generate it in around 10 minutes.

I review the new timetable and compare it with those generated in the previous
works.

Once all the hard and soft constraints have been refined and the algorithm is
able to generate a valid timetable for Mechatronic Engineering, I include all the
Degree Courses of the ICT and ETF Colleges and generate a timetable considering
all of them simultaneously. This expansion significantly increases the problem
size, from 20 Teachings for Mechatronic Engineering to more than 320 for all the
Degree Courses combined. As a result, both hard and soft constraints require
another refinement in order to be able to find a feasible solution. Even after the
adjustments, finding a timetable requires excessive time and the solutions found are
not optimal, with many empty Slots or consecutive lecture Slots. For this reason, I
explore a different approach, considering a subset of Degree Courses at a time and
generating the timetable incrementally. With this strategy, the algorithm is able
to find a solution in approximately 3 hours.

After comparing the results with those from the previous theses again and

making the final adjustments to the constraints, [am ready to retrieve the data
related to the academic year 2025-26. The data about those Degree Courses is
stored in Excel files, so I use an algorithm to extract it and save it to a database,
which is then used by the allocator algorithm.
One of the main challenges encountered with the data about the academic year
2025-26 is that the number of Teachings is significantly larger compared to the
academic year 2023-24, which requires an additional review of constraints and
parameters. After these refinements, the algorithm is able to generate a feasible
solution in approximately 4 hours and 30 minutes.

LAll execution times are based on a PC with a 16-threads processor and 32GB of RAM.

1.1 — Thesis structure

The last goal of this work is to include the Teachers’ preferences about the Slots
allocation for their lecture. The introduction of this constraint, modeled as a soft
constraint, represents a challenge, since it increases significantly the number of
soft constraints and therefore CPLEX tries to optimize the solution indefinitely
without ever returning a result. In order to solve this problem, it is necessary to
limit CPLEX execution time, and the final time needed to find a solution increases
to 13 hours.

Finally, in order to know if the results can be applied in a real-world scenario, I
prepare a questionnaire and send it to the Teachers and the Students’ representatives,
asking for their feedback on the generated timetable and any suggestions for further
improvements.

Documentation has also been produced along with the code, with the aim of
providing practical guidance both for those who wish to use the tool to generate a
timetable and for those who wish to edit the code to add new constraints or modify
the existing ones.

The thesis, in conclusion, provides some suggestions for future improvements.
Among those, we have the exploration of a different methodology, not based
on Integer Linear Programming or CPLEX] in order to generate the timetables
(CPLEX has good performance with a limited amount of constraints and Teachings,
but when those numbers increase it does not scale well), the avoidance of CPLEX
running indefinitely when trying to optimize the solution, and a better Database
organization.

Another important aspect to take into account during the development of the
thesis is code readability and cleanliness. Other thesis students, teachers, and
collaborators have to be able to understand the code and, if needed, modify it, so
the code developed has to be as clean as possible and the technical debt has to be
reduced to a minimum.

For this reason, I use the SonarQube tool to perform code reviews automatically
and highlight potential issues in the code structure. These issues are divided into
identity disharmonies (flaws that affect single entities), collaboration disharmonies
(flaws that affect several entities at once), and classification disharmonies (flaws
that affect entities tied by inheritance or abstraction).

By using SonarQube, I am able to maintain high code quality standards and
effectively manage the technical debt.

1.1 Thesis structure

The rest of the thesis is organized as follows:

o Chapter 2 introduces the main concepts about Linear Programming and
Constraint Programming, useful to understand the following chapters, as well

3

Introduction

as the technologies and software used during the thesis.

Chapter 3 describes the requirements for the timetable, as well as the hard
and soft constraints implemented.

Chapter 4 presents the design process behind the implementation of the
algorithm and analyzes other software available on the market and the state-
of-the-art.

Chapter 5 provides an overview on how the algorithm has been implemented.

Chapter 6 is a more practical chapter, that provides a guide on how to configure
and use the algorithm.

Chapter 7 describes the process to validate the generated timetable, and
analyzes the performances of the tool.

Chapter 8 provides further considerations about the results obtained, followed
by possible future developments of the work.

Chapter 2

Background

This chapter introduces the main concepts to understand the thesis.

2.1 Operations research

Operations research is a field of applied mathematics which uses mathematical
modeling, statistical analysis, and optimization techniques to solve complex prob-
lems and make informed decisions. The goal of using operations research is to make
decisions that maximize outcomes and minimize costs.

Operations Research divides into three steps:

o Problem formulation, involving clearly defining the problem, identifying the
variables, objective function, and constraints.

o Representing the problem in mathematical form, using linear or integer pro-
gramming. Data collection and analysis represent a crucial part of this step.

o Optimizing the solutions found, in order to return the optimal or near-optimal
one.

Operations research is used extensively in the economic, infrastructural, logistical,
military, service, and transport fields. See [3] for more details.

2.2 Integer Linear Programming

According to [4], Linear programming (LP) is a method of achieving the optimal
(or suboptimal) solution in a mathematical model in which all decision variables are
continuous. Furthermore, in LP, the objective function and the constraints must
consist of linear expressions. A particular case of LLP is Integer Linear Programming

5)

Background

(ILP), in which all of the variables are restricted to be integers. During this thesis,
I applied ILP to the timetable generation problem.

2.2.1 Linear expression

A linear expression is a scalar product; for example, the expression:

D ait;

where a; represents constants (that is, data) and z; represents variables or unknowns.
This expression can also be written in short form as a vector product:

"AX

where A is the vector of constants and X is the vector of variables.

2.2.2 Linear constraint

A linear constraint is expressed by an equality or inequality:

o linear _expression = linear__expression
e linear__expression > linear__expression

e linear expression < linear expression

Note: strictly greater than or less than operators (< and >) are not allowed in
linear constraints.

2.2.3 Symbolic representation of an LP

Typically, a symbolic representation of an LP problem is:
min Cx
st. Avr > B
x>0
where z € R", A € R™" and B € R™.

2.3 Numerical optimization solvers

As described in [5], optimization solvers solve mathematical programming models,
constraint programming, and constraint-based scheduling models. They deal
with generating and selecting the best solution among those that respect the
given constraints. After an extensive analysis of the different optimization solvers
available on the market, which is covered in detail in chapter 4, I concluded that
the best option for this work is the CPLEX Optimizer.

6

2.4 — ILP model for timetable allocation

2.3.1 CPLEX Optimizer

The CPLEX Optimizer, developed by IBM, is a high-performance numerical
optimization solver. It is widely used for solving optimization problems, such as:

o LP problems.

« Mixed-Integer Programming problems.

e Quadratic Programming problems.

e Quadratically Constrained Programming problems.

The main characteristics that distinguish CPLEX among other numerical opti-
mization solvers are its efficiency, reliability, and ability to handle large problems
with millions of variables and constraints.

In this thesis, the CPLEX Optimizer software is used in combination with
Python, via its Python language interface, DOcplex. Please refer to [6] for a
detailed description of the software capabilities as well as tutorials on how to use it.

2.4 ILP model for timetable allocation

This section reports the main concepts related to the ILP model used for the
Teaching timetable allocation.

2.4.1 Constraints

According to [7], in operations research, constraints refer to limitations, conditions,
or restrictions that must be satisfied. In reality, they divide into hard constraints,
which must always be respected, and soft constraints, which compose an objective
function that should be maximized.

Key Characteristics:

» Feasibility: Constraints represents real-world limitations, to ensure that
solutions to an optimization problem that respect these constraints are feasible
in a real-case scenario.

« Mathematical Representation: Each constraint must have a mathematical
representation in order to be implemented in the model. In LP they are
expressed as equations or inequalities involving decision variables.

e Role in Optimization: Constraints help narrowing down the number of
possible solutions and, therefore, the search space. By analyzing the constraints
it is possible to exclude a portion of the search space, eliminate infeasible

7

Background

solutions, and identify the most practical and viable solutions that meet all
requirements.

o Trade-offs: Constraints often introduce trade-offs in optimization problems.
You might not be able to respect all the constraints of the model at the same
time, therefore it is important to understand the impact of each constraint on
the problem and which have to be prioritized.

2.4.2 Objective function

In LP, an objective function is a linear function composed of the soft constraints
that has to be minimized or maximized. An example of an objective function with
two decision variables is:

Z =ax + by

in which z and y are the decision variables that represent the soft constraints and
a and b are the penalties introduced if those constraints are not respected. The
result, Z, has to be minimized (or maximized). We refer the reader to [8] for more
details.

2.4.3 Types of problems and solutions

An admissible solution of an LP problem is an array z € R” that satisfies all the
hard constraints.

The set of all admissible solutions is the admissible region or admissible set.

An optimal solution xx is an admissible solution that minimizes or maximizes
the objective function. A detailed description is available at [9].

In LP, we identify 3 types of problems:

e The problem is inadmissible: The set of admissible solutions is empty.

e The problem is unlimited: It is possible to find admissible solution that
minimize (or maximize) the objective function without any limit.

e The problem allows an optimal solution: There is at least one admissible
solution that optimizes the objective function.

2.5 Technical debt

In software development, technical debt is a metaphor introduced by Ward Cun-
ningham and refers to the costs of additional work and potential problems that
arise from choosing an expedient solution in the short term but suboptimal or
unsustainable in the medium-long term.

8

2.6 — Terminology

Similarly to financial debt, technical debt can accumulate "interest" over time and
lead to increased maintenance costs, reduced code quality, and slower development
velocity. Technical debt is not always negative; in fact, it can be a useful resource
that allows companies to deliver a product over a short period of time. However, it
needs to be carefully managed and repaid in a reasonable amount of time, in order
to maintain software quality and long-term sustainability. Managing technical
debt is an activity that involves identifying, tracking, and prioritizing areas that
require improvement, and a portion of the development time should be assigned to
technical debt repayment. Please refer to [10] for more details.

2.5.1 SonarQube

As described in [10] and [11], SonarQube is an open-source platform developed by
SonarSource for continuous inspection of code quality. It analyzes and measures
source code in terms of code reliability, security vulnerabilities, and maintainability
issues (or code smells). SonarQube produces reports each time the codebase is
updated, classifying the issues in the code into high, medium, and low priority.
With these reports, developers can easily track the technical debt in their code and
effectively manage it.

2.6 Terminology

The final section of this chapter introduces the terminology related to the Degree
Courses and the timetable allocation of the Politecnico di Torino, which will be
used throughout the rest of this thesis.

« College: College refers to an internal organization responsible for the coor-
dination and management of the educational activities related to a specific
cultural and disciplinary area. As a case study for the timetable allocation, I
am interested in the Computer, Cinema, and Mechatronic Engineering (ICM)
and Electronic, Telecommunication, and Physical Engineering (ETF) Colleges.

o Degree Course: A Degree Course is an academic program offered by the
university that leads to the award of a specific academic degree (Bachelor’s or
Master’s). Each degree is composed by one or more Orientations.

e Orientation: Within a Degree Course, an Orientation is a disciplinary path
that Students can choose in order to specialize in a specific area of their Degree
Course.

» Teaching: A Teaching is a single educational unit. It corresponds to a subject
or topic taught during one or more semesters and is associated with one or

9

Background

more Teachers, a certain number of Slots, and one or more Orientations. All
Teachings have at least one Theory lecture Slot, and can have Practice lectures
and Laboratory lectures.

Teacher: A Teacher is a member of the academic staff responsible for de-
livering one or more Teachings within a Degree Course. Teachers at the
Politecnico di Torino may hold different academic roles, such as professor,
associate professor, or researcher.

Slot: A Slot is a single, indivisible lecture unit, that lasts 1 hour and 30
minutes. Each lecture of each Teaching is allocated in one or more Slots.
There are 7 Slots per Day (8:30-10:00, 10:00-11:30, ..., 17:30-19:00).

Day: Day refers to the days in which students can have lectures. There can
be 5 (Monday-Friday) or 6 (Monday-Saturday) days of lectures per Week. As
mentioned, there are 7 Slots per Day, except for Saturday, which can have 1-7
lecture Slots.

10

Chapter 3
Problem definition

The timetable allocation problem is modeled as an ILP problem. The timetable
has to respect a list of constraints, divided into hard and soft constraints. With
respect to [1] and [2], I update this list. In particular, I add some significant
constraints, while I remove the less useful ones to reduce the numerical complexity.
Here I provide a detailed analysis of the timetable requirements and the constraints
used, as well as those that have been removed or modified. The reason behind the
removal or the edit of some of the constraints used in the previous theses is to be
found in the desire to obtain a lighter and more efficient model.

3.1 Requirements

Requirements represent the high-level considerations that have been made before
generating the timetable. They are necessary in order to design the model.

3.1.1 Inherited requirements

I report here the requirements inherited from the previous theses:

e "There are Colleges!, Degree Courses, Orientations, Teachings, Slots, Days,
and Teachers".

o "The Degree Courses are divided in Master’s Degree and Bachelor’s Degree".

o "A Degree Course has different Orientations?".

11CM and ETF

2There is more than one orientation for each Degree Course

11

Problem definition

e "An Orientation has different Teachings".
o "A Teaching can be in different Orientations".

e "An Orientation is composed by different years, 3 for Bachelor’s Degree
Orientations and 2 for Master’s Degree Orientations".

o "The Teachings in an Orientation have a certain Correlation between them,
which can vary between 0 and 1003".

¢ "There can be different paths in an Orientation®".

» "Each Teaching is associated to one or more Semesters and to one Year for
each Orientation".

o "A Teaching has one or more Slots".

o "A Teaching is associated to one or more Teachers and one of them is the
Main Teacher".

o "A Teaching has a fixed allocation plan for the whole semester".

« "A Teaching is part of a College".

e "A Slot can be a Theory lecture, Practice lecture, or Laboratory lecture'.
o "A Teaching can have Slots in which the students are divided in groups'.
e "One or more Teachers are associated with each Slot".

o "Each Slot is in a Day of the Week: Monday to Friday and eventually on
Saturday".

« "Each Slot consists of 1.5 hours and is in a Time Slot, between 8:30 and 19:00".
» "Each Teacher can specify up to 4 Slots in which they are unavailable".

o "Teachers might have more unavailabilities related to Teachings in other
Colleges".

o "For each Teaching a weekly allocation plan is defined".

3The Teachings in a Year do not have the same importance. There are Teachings that are
mandatory and others that can be chosen. The correlation is a number that express how two
Teachings are related to each other

4A path is the set of Teachings chosen by a student. It is important to note that not all
students choose the same Teachings.

12

3.1 — Requirements

I

"Students choose and Orientation and a study plan®'.
"Two Teachings can:

— Never overlap: hard constraint.
— Partially overlap: soft constraint.
— Overlap completely: no constraints."
"An Allocation Plan corresponds to the weekly timetable of all the Teachings,

containing all their Slots with the information such as Day, Time Slot, Teachers,
Type, and Group'".

"There is the Allocation Plan related to the previous year®".

3.1.2 New Requirements

Here I report the requirements that were not considered in [1] and [2] and are
added during this work:

"The Main Teacher of a Teaching can express preferences regarding the allo-
cation of Slots for that Teaching” (for example, there should be at least one
double Slot® during the Week, there should be no double Slots during the
Week, there should be only double Slots)".

"The number of consecutive lecture Slots should be limited".
"The number of empty Slots between two lectures should be limited".

"The number of Students who have lecture at 8:30 and at 17:30 in the same
Day should be reduced to the minimum".

These new requirements take into account the Students’ needs about consecutive
lecture Slots and empty Slots, as well as the Teachers’ needs about their courses’
Slots organization.

5By choosing non mandatory Teachings you can generate a study plan, which is an instance
of a path

6This requirement was considered in the first thesis but not in the second one

"In other words, the Main Teacher can express a preference on how the Theory, Practice, and
Laboratory lecture Slots of its Teachings should be organized.

8 A double Slot are 2 consecutive Slots of the same lecture.

13

Problem definition

3.1.3 Other Requirements

Here there is a list of requirements that were used in [1] and [2] but not in this
work, since they are not considered useful for finding a valid solution.

"For each Teaching a Timetable Template is defined".
"A Teaching is attended by a certain number of students".

"Rooms can be Classrooms or Laboratories. Classrooms are divided in Aule
attrezzate CA2, Aule attrezzate CA, Aule TableBox, Aule WallBoz, and Aula
5T. Laboratories are: LABINF, LAIB, LADISPE, LED, LED1, LED2, and
ACSLAB".

"Slots must be allocated in a specific Room type".

"Classrooms have a maximum capacity. This is in relation with the number of
students that attend a Teaching".

"Each Slot is related to a Room".

"Teachers can express preferences about the Slots in which they want to have
lectures".

The requirements that are not considered are those related to the Rooms
allocation and the Teachers’ preferences about the Slot in which they would like
to have lectures. The decision to exclude these constraints is due to the desire of
reducing the numerical complexity of the model.

3.2 Correlations

During the previous theses, in order to model the relation between two Teachings
and define whether or not they could overlap, the Teachings were divided into
categories (Mandatory, Mandatory - chosen from table, Suggested, Choice from
table, Free Credits) and the concept of Correlation was introduced.

During this work, the Teachings categories are reduced, in order to have a lighter
model. Those that are maintained are:

Mandatory: A Teaching that must be followed by all Students enrolled in a
specific Orientation.

« Mandatory, chosen from table: This is a type of semi-compulsory course.

When filling their Study Plan, Students are required to select one or more
Teachings from a predefined list (for example, Students can choose a Teaching
in Italian or in English).

14

3.3 — List of Constraints

« Free Credits: Students can freely allocate these Teachings so that they can
personalize their study plan according to their interests.

The Correlation is a value that can vary between 0 and 100 and expresses how
two Teachings compare to each other. A Correlation of 100 means that those
Teachings are chosen by the vast majority of Students and should never overlap
(hard constraint). A Correlation between 1 and 99 means that the two Teachings
can overlap, but if they do, a penalty proportional to the Correlation value is
introduced (soft constraint). Lastly, a Correlation of 0 (or no Correlation) means
that little-to-no students choose both of the Teachings in the same semester and
therefore can completely overlap (no constraint).

In Table 3.1 I report the correlation values that I used to build the model.

Mandatory, chosen from ta- | Free
Mandatory ble credit
Mandatory | 100 100/n__teachings_in_ table | 20
Mandatory,
chosen 100/n_teachings in_table | 100/n_teachings in_table | 20
from table
Free credit | 20 20 20

Table 3.1: Correlations between Teachings

3.3 List of Constraints

In order to be able to satisfy the requirements, they have to be implemented in the
allocator in the form of Constraints. Since this thesis uses a different approach than
those explored in the previous two, I decided to rewrite the Constraints instead of
starting from those implemented in the previous works.

I divide the Constraints between hard and soft constraints, and they are reported
here:

3.3.1 Hard Constraints
Teachings:

o Slots per Week: Each Teaching must have the exact amount of Theory,
Practice, and Lab Slots per Week specified in the Teaching’s description.

e« Number of consecutive Slots: Each Teaching must have at most 2 Slots
in a Day and, if so, the two Slots must be consecutive.

15

Problem definition

o Limited number of Teachings in a Day: The number of Correlated
Teachings in a Day is limited, in order to not have too many consecutive
lectures in the same Day.

e Overlaps:

— Teachings with a Correlation above a certain threshold must never over-
lap. Furthermore, Mandatory Teachings must never overlap with other
Teachings, regardless of their type.

— Different Groups of Practice lectures of the same Teaching cannot overlap,
since there might be only one Teacher for all the Practice Groups.

— Same as above but for Laboratories.

— The same groups of Practice and Laboratory lectures of the same Teaching
cannot overlap (e.g. Practice Groupl of TeachingA cannot overlap with
Lab Groupl of TeachingA, but Practice Groupl of TeachingA can overlap
with Lab Group2 of TeachingA only if the Practice and Laboratory
Teachers are different).

— The same Groups of Practice lectures of different Teachings with a Cor-
relation above a certain threshold cannot overlap (e.g. Practice Groupl
of TeachingA cannot overlap with Practice Groupl of TeachingB, but
Practice Groupl of TeachingA can overlap with Practice Group2 of Teach-
ingB).

— The same Groups of Laboratory lectures of different Teachings with a
Correlation above a certain threshold cannot overlap (e.g. Lab Groupl
of TeachingA cannot overlap with Lab Groupl of TeachingB, but Lab
Groupl of TeachingA can overlap with Lab Group2 of TeachingB).

o Correlation between first and last Slot of the Day: The sum of the
Correlation of the Teachings in the first and last Slot of the Day must be
under a threshold, in order to minimize the number of Students who have
lectures at 8:30 and at 17:30 on the same Day.

Teachers:

o Overlaps: Teachings taught by the same Teacher must not overlap (consider-
ing Theory lectures, Practices, and Labs).

o Unavailable Slots: Each Teacher can indicate up to 4 Slots in which they
are unavailable. Their Teachings cannot be allocated in those Slots.

16

3.3 — List of Constraints

3.3.2 Soft Constraints

Difference between the first and last lecture of a Day: The difference
between the first lecture Slot of a Day and the last one should be minimized
(while maintaining some empty Slots during the Day), in order to have a more
compact timetable and avoid too many empty Slots.

Overlaps: The overlaps between Teachings with a Correlation below the
threshold should be minimized.

Teachers’ preferences: As said previously, a Teaching’s Main Teacher can
express a preference about the Slots allocation. The amount of Slots (whether
they are Theory, Practice, or Laboratory Slots) that respect these preferences
should be maximized.

Distance between different Groups of the same Practice/Laboratory:
Where possible, Practice or Laboratory Slots of different Groups for the same
Teaching in the same Day should be consecutive. For example, considering
the Laboratory Groups for Teaching A, it would be ideal to have Group 1 in
Slot 1 and Group 2 in Slot 2, so that students from Group 1 can stay for the
Group 2’s lecture if needed.

17

18

Chapter 4
Design

This chapter analyzes how the timetable generation problem has been represented
and how I modeled the constraints.

4.1 Data sources

One of the main problems in the previous theses was the heterogeneity of the data
sources. The previous allocator worked with Excel files, CSV files, and a Database.
So, in order to have cleaner code, I opted to merge all those data into one single
Database called Courses DB, which is used throughout the whole project.

Using the script Ezcel _to_db_converter, I insert all the information from the
various Excel files into the database.

4.1.1 Database Courses. DB

This database contains all the data needed by the allocator to generate the timetable,
as well as the results of the computation. The Italian names, as well as the
inconsistencies in the naming system, are due to the fact that many of the tables
in the database had already been defined in the previous theses, and I added new
tables during this work.

Here I report a list of the tables, in alphabetical order:

o Corso__di_ laurea: This table contains the names of the Degree Courses for
which I generate the timetable.

e Docente: The table contains the information about the names and IDs of
the Teachers of all the Degree Courses taken into account.

e Docente__in_ Insegnamento: This table associates each Teacher with their
Teaching(s), specifying the number of hours (nOre) they have on that Teaching

19

Design

and the lecture type (tipoLez; it can be L - Theory lecture, EA - Practice
lecture, or EL - Laboratory lecture).

Docente__in__Slot: Once the timetable is generated, the lecture Slots for
each Teacher are saved in this table.

Info_ correlazioni: Here there are the correlations between Teachings. The
column Correlazione (Correlation) represents the Correlation extracted from
the data sources.

In the previous thesis, the possibility to correct the Correlations by hand was
introduced. In this case, they are saved in the column Correlazione finale
(Final Correlation) (I do not use this option during this thesis).

A third column, Obbligatorio (Mandatory), is useful to know if one of the two
Teachings in the Correlation is mandatory and, therefore, cannot overlap with
the other one.

Insegnamento: This table contains the information about each Teaching,
including the Main Teacher, the hours of Theory, Practice, and Labora-
tory lectures, the Teachers’ preferences about the allocation of those hours
(n_min_double_slots, n_min_single slots, n_min_double_slots practice,
n_min_single_ slots_ practice), and the information about the allocation of
the Laboratory’s blocks (double_slots lab = 1 if the Laboratory blocks should
consist of double Slots, 0 otherwise).

Insegnamento__in_ Orientamento: This table associates the Teachings
with the Orientation(s) they belong to.

Insegnamento__ listCodlIns: This table associates the IDs of the Teachings
with their ID_INC (ID Incarico, different from the Teachings’ IDs because
the same Teaching can have different IDs in different Orientations, but only
one ID_INC).

Orientamento: This table contains the information about the Orientations
of each Degree Course.

PianoAllocazione: The list of the generated timetables is stored here. You
can also provide a description for each of them.

PreviousSolution: This table contains a previous timetable that can be used
by CPLEX as a base to start from when generating a new one.

Slot: This table contains the information about the Slots of a generated
timetable. For each Teaching, I save its Slots here.

20

4.1 — Data sources

SlotSettimana: The table saves the information about the Slots in a Week
(for example, Mon. 8:30-10:00). This is used by the GUI Web Application
when representing the timetable.

Teachers_ Unavailability: This table contains the Slots in which a Teacher
is not available.

4.1.2 Excel files

File PreferenzeDocenti.xlsx

This file is extracted from the university’s portal and contains the preferences of
the Main Teachers about their Teachings’ Slot allocation, as well as the Teachers’
unavailabilities. Note that the column names are in Italian. I am interested in
these columns in particular:

NUM_ ORE_ TOT: The total number of hours of a Teaching in a semester,
considering lectures, Practices, and Laboratories.

NUM_ ORE__ESE: The total number of Practice hours in a semester.
NUM_ SQU__ESE: Number of Practice groups.

NUM_ ORE_ LAB: The total number of Laboratory hours in a semester.
NUM_ SQU__LAB: Number of Laboratory groups.

ORGANIZZAZIONE_BLOCCHI__LEZIONE: Contains the Teacher’s
preference about the allocation of the lecture Slots. Its values can be: “tutti i
blocchi da 3h” (all blocks of 3h), “un blocco da 3h e gli altri da 1,5h” (one block
of 3h and the others of 1.5h), “un blocco da 4,5h (Atelier per Architettura)”
(one block of 4.5h, Atelier for Architecture).

ORGANIZZAZIONE__BLOCCHI__ESERCITAZIONE: Contains the
Teacher’s preference about the allocation of the Practice Slots. Its values can
be: “tutti i blocchi da 1,5h per ciascuna squadra” (all blocks of 1.5h for each
group), “tutti i blocchi da 3h per ciascuna squadra” (all blocks of 3h for each
group), “un blocco da 3h e gli altri da 1,5h per ciascuna squadra” (one block
of 3 hours and the other of 1.5h for each group). NOTE: in some cases the
Teachers request blocks of 3 hours (2 Slots), but there is only one Slot per
Week. In that case the algorithm allocates blocks of 1.5 hours (1 Slot).

NUM_ BLOCCHI_SETTIMANALI LAIB_ ATENEO: Number of
blocks per Week for the Laboratory.

21

Design

NOTE: this can be empty, but the information about the blocks per Week
could be found in the column
NUM__BLOCCHI_SETTIMANALI LAB_DIPARTIMENTALE.

« NUM_SQUADRE_SETTIMANALI_LAIB__ATENEO: Number of
Laboratory groups.

NOTE: this can be empty, but the information about the Laboratory groups
could be found in the column

NUM_SQUADRE_SETTIMANALI LAB DIPARTIMENTALE.

e« ORGANIZZAZIONE BLOCCHI_LAIB ATENEO: Preference about
the Slot allocation for the Laboratories. Its values can be: “blocchi da 1,5h per
ciascuna squadra” (blocks of 1.5h for each group), “blocchi da 3h per ciascuna
squadra” (blocks of 3h for each group), “indifferente” (no preference).

NOTE: this can be empty, but the information about the organization of the
Lab Slots could be found in the column
ORGANIZZAZIONE_BLOCCHI_LAB_DIPARTIMENTALE.

« INDISPONIBILITA_SETTIMANALI: Slots in which the Teacher is

unavailable (max. 4 per Teacher).

NOTE: some Teachers do not express their preferences for their Teachings here.
Therefore, in order to retrieve the number of Practice and Laboratory hours, I have
to use the columns h_ese and h_lab of the Degree Courses files (see 4.1.2 for more
details).

File "Percorsi-gruppi-insegnamenti aa 2026.xlsx"

In this file, which is also extracted from the university’s portal, there is all the
information about the Teachings for the academic year 2025/26. This file does not
only contain the Degree Courses associated with ICM and ETF Colleges, but also
those from other Colleges. So, before extracting the data, the script has to select
only the Courses related to ICM and ETF. As for the previous file, column names
are in Italian. The columns in which I am interested are:

« ID__COLLEGIO: Contains the ID of the College (ICM or ETF).

o TIPO_LAUREA: Degree type. Can be 1 (Bachelor’s Degree) or Z (Master’s
Degree).

« NOME__CDL: Name of the Degree Course.

« DESC_ ORI: Name of the Orientations in a Degree Course.
22

4.1 — Data sources

« PERIODO__INI: Didactic period in which the Teaching starts (can be 1 or
2). If the Teaching can be chosen from a table, the didactic period can be
found in the columns PERIODO_ INI S or PERIODO INI SS.

o ANNO: Year of the Teaching (can be 1, 2, or 3).

« COD_INS: Teaching ID. The same Teaching can have different IDs in
different Orientations.

o« TITOLO: Name of the Teaching. There are some Teachings (Challenge,
Thesis, Internship, etc.) that the script should ignore. If the Teaching can be
chosen from a table by the students, this column will contain the name of the

table (for example, "Insegnamento a scelta da tabella A" and the Teaching’s
name can be found in the columns TITOLO_S or TITOLO__SS).

o CFU: Number of credits of the Teaching.

o ID_INC: The unique identifier of the Teaching (unlike the Teaching ID, it
does not depend on the Orientation).

« MATRICOLA: The ID of the Main Teacher of the Teaching.

Folder Courses Data

The Courses Data subfolder contains information about the Teachings. Here, there
is one Excel file for each Degree Course. The main columns in these files are:

e h_lez: Number of hours of Theory lectures of a Teaching, not to be confused
with the field "NUM_ ORE_ TOT" of the file "PreferenzeDocenti.xlsx", which

includes Theory, Practice, and Laboratory hours.

o h__ese: Number of Practice hours and groups, in format: TYPE h_ practice*n_ groups*n_ teache
NOTE: h_ practice refers to the Practice hours for each group individually.

o h_lab: Number of Laboratory hours and groups, in format: TYPE h_lab*n_ groups™n_ teachers
NOTE: h_ lab refers to the Laboratory hours for each group individually.

e id__inc: The unique identifier of the Teaching.
o matricola: ID of the Main Teacher of the Teaching.

o Collaboratori: Contains the information about the collaborators Teachers
for the Teaching (i.e. the Teachers other than the Main Teacher), the type of
their lectures, and their hours.

23

Design

4.2 Lecture scheduling software: the state of the
art

This section provides an analysis of the literature in order to understand if there
are other solutions to the lecture allocation problem and how they have been
implemented.

4.2.1 Genetic Algorithm

A widely used approach when generating lecture timetables exploits Genetic Al-
gorithm. This type of algorithm, based on evolutionary biology techniques such
as heredity, mutation biology, and natural selection, can be applied to solve op-
timization problems that are not well suited for standard algorithms, especially
those where the objective function is not linear. These algorithms are often more
efficient when compared to traditional ones, with a higher success rate in finding
the best optimal solution. See [12] and [13] for more details.
I report here a high-level description of how a genetic algorithm works:

Produce the initial population of individuals
Evaluate the fitness of every individual
While termination condition not satisfied do
;
Select individual for reproduction
Recombine between individuals
Mutate individuals
Evaluate new solutions for fitness of modified individuals

Generate a new population

End while

Figure 4.1: Genetic Algorithm description

The flow diagram of the algorithm in Figure 4.1 is:

24

4.2 — Lecture scheduling software: the state of the art

Initialize

Y

Evaluate

d

A 4

Selection

Y

Crossover

d

Mutation

Is criteria
satisfied?

Optimal solution

Figure 4.2: Genetic Algorithm diagram

25

Design

4.2.2 Ant Colony System Algorithm

An alternative to Genetic Algorithm, when solving the lecture allocation problem,
is the Ant Colony System Algorithm. This algorithm is used to solve optimization
problems such as the traveling salesman problem. It is part of the metaheuristic
algorithms, a family of algorithms that imitate social behavior or strategies that
exist in nature.

This algorithm chooses a path in a similar way as ants move to search for food.
Ants initiate the search by moving randomly around their nests. This opens up
multiple paths from the nest to the food. Once the food is found, a portion of it is
carried back to the nest, leaving a trace of pheromones on the return path, whose
concentration depends on food quantity and quality. The probability of other ants
following the path depends on the pheromone concentration and its evaporation.
Please refer to [14] for more details.

Colony Food Colony . [Food

Colony -Food Colony H = ood

Figure 4.3: Ant path search

In the figure above, for simplicity, I consider only one food source and two
possible paths. Initially, the ants split equally between the two paths in order
to reach the food. When they have to return to the colony, in order to choose
the path to take, they base their decision on the concentration of pheromone.
Since the straight path is shorter, the pheromone concentration will be higher
(less pheromone will have evaporated), leading more ants to choose that path and
increasing the pheromone concentration.

The Ant Colony Algorithm simulates this behavior via weighted graphs where
the ant colony and the food source are vertices, the paths are the edges, and the

26

4.2 — Lecture scheduling software: the state of the art

pheromone traces are the weights of the edges.

Let G = (V, E) be the graph, where V and E are the edges and vertices of
the graph. We consider two vertices, V, the vertex representing the ant colony
(source) and V; the vertex representing the food source (destination). We have
two edges, F, and F,, with lengths L; and L, and pheromone values R, and R.
Therefore, the starting probability of an ant selecting a path between E; and Ey
can be expressed as
— RZ . 2 —
R+ Ry '

Now, while returning through the shortest path E;, the pheromone value is
updated for that path, based on the length of the path as well as the evaporation
rate.

Update of R; according to the length of the path (K is a parameter of the
model):

P, 1,2

K

Update of R; according to the evaporation rate v € (0, 1]:
Ri+ (1—v)*R;; 1=1,2

At each iteration, the ants are in the source vertex V; and move towards the
destination Vy. After reaching Vj, they return to the source, choosing the return
trip. A detailed description is available at [15].

The high-level description of the algorithm is:

27

Design

Initialize necessary parameters and pheromone trials

While termination condition not satisfied do

/

Generate ant population
Calculate fitness values associated with each ant
Find best solution through selection methods

Update pheromone trial

End while

Figure 4.4: Ant Colony Algorithm description

4.2.3 FET Scheduling Software

There are many softwares on the market that are based on the two types of
algorithms presented above. The majority of them require a yearly subscription in
order to be used, and prices vary from 8.000€ to 12.000€, but there are some free
alternatives as well.

Among the free alternatives, the one that I consider the most complete is the
FET Scheduling Software. FET is a software written in C++ that uses the Ant
Colony System Algorithm to generate timetables. It has very good performance:
it can solve simple timetables in under 5 minutes, complicated timetables in 5-20
minutes, and extremely difficult timetables in hours. More details can be found at
[16].

When using FET, you can specify the Teachings, the Teachers, the Classrooms,
and the constraints between these three entities, and the software calculates a
timetable based on those parameters.

28

4.2 — Lecture scheduling software: the state of the art

& Subjects
Computer Science Subject
Math Name=Computer Science
English Long name=
Physics Code=
Time constraints directly related to this subject:
Space constraints directly related to this subject:
Z Add subject X
Please enter subject's name
Add Rename Remove Long name Code Comments
Activate all activities for selected subject
Deactivate all activities for selected subject
Up Down Sort Close

Figure 4.5: Adding a subject in FET

29

Design

D1 D2 D3 D4 D5
H1
First Year
H2 Math First Year First Year First Year
MathTeacher } .
Physics Math Computer Science
" PhysicsTeacher MathTeacher ComputerScienceTeacher
First Year First Year
H4 Computer Science Computer Science
ComputerScienceTeacher ComputerScienceTeacher
H5
Hé6
First Year First Year
. Computer Science Math
First ‘Hjear ComputerScienceTeacher MathTeacher
H7 Physics
PhysicsTeacher
First Year
H8 Physics
PhysicsTeacher
First Year
H9 English
EnglishTeacher
H10
H11 First Year First Year First Year
English Math English
a2 EnglishTeacher MathTeacher EnglishTeacher

Figure 4.6: Timetable view in FET

4.2.4 Algorithm Choice

After an extensive analysis of the techniques mentioned above and the software
available on the market, the conclusion is that, while the performances can be
better when compared to the ILP methodology, one big problem common to the
Genetic Algorithm and the Ant Colony Algorithm is that it is difficult to specify
complex constraints such as the Teachers’ preferences about lecture organization
and the personalization options are limited.

Therefore, I believe that building a custom, ad-hoc algorithm using ILP tech-
niques is the best option. I also made this decision because ILP was used in the
previous theses, so there is already a basis to start from.

4.3 Optimization Softwares Analysis

After deciding the technique to use, I evaluate different optimization software. The
previous theses both use CPLEX, but I want to explore other possibilities as well.
In this section, I analyze the software evaluated and their pros and cons.

30

4.3 — Optimization Softwares Analysis

4.3.1 CBC

CBC (COIN-OR Branch and Cut), developed by the COIN-OR foundation, is
an open-source solver for LP and Mixed Integer Programming (MIP) problems,
written in C++.

Pros:

o Free and open source.

o Modifiable, the full source code is available.

« Easy to learn and use.

o Lightweight, has a small footprint on memory.
Cons:

o Limited scalability: While it works well with small problems, it becomes too
slow when the problems’ complexity grows.

e No parallelism: CBC does not support multi-threading natively.
« Does not support Constraint Programming

One of the main strengths of CBC is the fact that it is open source. However,
the limited scalability and the limitations in further development and support
represent a big obstacle. See [17] for more details.

4.3.2 GLPK

GLPK (GNU Linear Programming Kit) is an open-source solver for LP and MIP
problems. It is part of the GNU project.

Pros:

e Free and open source.

« Easy to learn and use.

o Lightweight, has a small footprint on memory.
Cons:

o Works well with small and medium problems, but does not scale well with
large models.

31

Design

No parallelism: GLPK does not support multi-threading natively.

The project is relatively old, the last update was in 2012 and the community
support is limited.

Similarly to CBC, GLPK is open source as well. The performance on medium-
size models is marginally better than that offered by CBC, but performance on
large models still represents a problem. A detailed comparison between CBC and
GLPK is available at [17].

4.3.3 Gurobi

Gurobi, developed by Gurobi Optimization, LLC, is a proprietary, high-performance
solver used for LP, MIP, and Constraint Programming problems.

Pros

Very high performance, Gurobi is one of the best-in-class solvers and scales
well with complex problems.

Fast updates, Gurobi frequently releases new features and updates.
Multi-threading, the algorithm supports multi-core CPUs natively.

Gurobi provides extensive documentation, and community support can be
easily found over the Internet.

Academic license. Although Gurobi is a proprietary software, it is available
free of charge for academic use.

Cons

For the problem definition, Gurobi relies entirely on external APIs, it has no
built in modeling language.

More complex to use than other softwares.

Gurobi’s licenses are expensive for non-academic or non-research uses.

Out of the software analyzed up to this point, Gurobi is the most suitable one
for complex problems with many constraints and variables, such as the timetable
allocation. Its scalability and multi-threading support drastically improve the
performance when compared to other solvers. Please refer to [18] for an extended
analysis.

32

4.3 — Optimization Softwares Analysis

4.3.4 CPLEX

CPLEX, used in the previous two theses, is a proprietary software developed by
IBM. It supports LP, MIP, Constraint Programming, and more.

Pros

Top-tier performance and robustness. Just like Gurobi, CPLEX offers very
high performances and works well even with complex problems.

Includes algorithms such as parallel branch & bound, presolving, and heuristics,
that reduce the research space and, therefore, the time needed to generate a
solution.

Similarly to Gurobi, CPLEX supports multi-threading natively.

CPLEX offers many customization options. When executing the softwares,
there are many parameters that can be changed in order to modify CPLEX’s

behaviour and how it utilizes RAM and CPU.

CPLEX is widely used across the world, therefore many support and guides
can be found online. Above that, you can find comprehensive documentation
on IBM’s website.

Like Gurobi, CPLEX provides academic license.

This algorithm was used during the previous thesis, so using it would provide
a direct comparison on performances and results with the models implemented
in the previous works.

Cons

CPLEX is Closed-Source, which means the source code cannot be seen or
modified.

This Software has a larger installation footprint when compared to others.

CPLEX is widely known for its performance and robustness, which are very
similar to those provided by Gurobi. Furthermore, the fact that it was used during
the previous works represents a big advantage over other alternatives. Refer to [18]
for a comparison between CPLEX and Gurobi.

For this reason, after evaluating the pros and cons of each solver, I consider
CPLEX to be the best one for this thesis. Therefore, I am using this software via
its Python API, DOcplex.

After choosing the solver, I report here the evaluation of two Python models
that can help to define optimization problems in an easier way, and then export
them and solve them using CPLEX. More details are available at [19].

33

Design

4.3.5 PuLP

PuLP is a modeling library for LP and MIP. It allows users to define and implement
optimization problems, which can then be solved using external software, such as
CPLEX or GLPK.

Pros:

« By using this modeler, the problem definition is easier when compared to
modeling the problem directly in CPLEX.

Cons

o For complex problems, CPLEX’s API is more complete and has better perfor-
mance.

o PuLP offers less functionalities when compared to CPLEX’s API.

4.3.6 Google OR-Tools

OR-Tools is an open-source software suite for solving optimization problems devel-
oped by Google. As PuLP, it allows you to model the problem in the programming
language of your choice and use an external solver to solve it.

Pros
e More powerful than PuLP, allows users to model more complex problems.

o It is actively maintained, there are frequent updates and the documentation
is complete.

Cons

o Even though it is more powerful than PuLP, it still does not allow the
representation of a problem as complex as the timetable allocation.

After evaluating those tools, the conclusion is that they are not powerful enough
to model the timetable allocation problem. Even though they would make the
modeling easier, their limitations can be an obstacle with more complex constraints.
Therefore, I exclude them and decide to model the problem by using CPLEX’s
API for Python.

34

4.4 — Adopted model

4.4 Adopted model

Along with the choice of the solver, another important phase of this thesis is the
definition of the model used to represent the problem. During the previous theses,
two models were explored: the Multidimensional Matrix Model and the Slots Model.
Refer to [1] and [2] for a detailed description. This work explores a third model:
the Bidimensional Matrix Model.

4.4.1 Bidimensional Matrix Model

As the name suggests, this model is based on a bidimensional matrix. On the
columns of this matrix, there are the weekly Slots (Monday 8:30-10:00, Monday
10:00-11:30, etc.) and on the rows, there are the Teachings. Each cell of the matrix
is 1 if the Teaching has a lecture in that Slot, and 0 if there is no lecture. This
model simplifies the generation of the timetable, since there are fewer factors to
take into account when compared to the Slots Model and the Multidimensional
Matrix Model, but may not be suitable to implement a more complex allocator
that also takes classrooms into account.

Variables

« Teachings index t € [0,nTeachings) = T, T is the set of all the Teachings'.
« Teachers index i € [0,nTeachers) = I, I is the set of all the Teachers?.

 Slots index s € [0,nSlot) = S, S is the set of the weekly Slots. nSlot can vary
between 35 and 42, according to the number of Slots that the user wants to
allocate on Saturday.

« Days index d € [0,nDays) = D, D is the set of Days in a Week. nDays can
vary between 5 and 6, depending on whether the allocation on Saturday is
enabled or not.

« Timetable Matrix: boolean variables timetable _matriz, s € {0,1}:

_ _ 1, lecture of Teaching ¢ allocated in Slot s
timetable__matriz, s =) .
’ 0, lecture of Teaching ¢ not allocated in Slot s

!Comprehends both the Teachings that have to be allocated and those that have already been
allocated and are considered as constraints for the model.

2T only consider the Teachers related to the Teachings to allocate.

35

Design

As can be observed, the number of variables is lower when compared to those used
in the previous theses, resulting in a lighter and faster model.

Functions

« Teachings Slots: a function getSlots(t) returns the number of Slots in a
Week for a Teaching:
getSlots : T'— N

tl—>tj€N

Get Slots in Day: a function getSlotsInDay(d) returns the list of Slots
that belong to a certain Day d:

getSlotsInDay : D — 2°
d— Sd - S

Get correlated Teachings: a function getCorrelatedT eachings(t) returns
the list of Teachings correlated with the Teaching t:

getCorrelatedTeachings : T — 27
t— T, CT

Get first Slot of a Day: a function getFirstSlotO f Day(d) returns the first
Slot of the Day d:
getFirstSlotOfDay : D — S

d— S; €8

Get last Slot of a Day: a function getLastSlotO f Day(d) returns the last
Slot of the Day d:
getLastSlotOfDay : D — S

dl—>Sd€S

Get first Slot of a Day: a function getFirstSlotO f DayTeaching(t,d)
returns the first lecture Slot of the Day d for the Teaching ¢:

getFirstSlotO f DayTeaching : T x D — S

t,des Siq €S

36

4.4 — Adopted model

» Get last Slot of a Day: a function get LastSlotO f DayTeaching(t, d) returns
the last lecture Slot of the Day d for the Teaching ¢:

getLastSlotO f DayTeaching :'T'x D — S
t, d— S@d es

« Get Teacher’s Teachings: a function getTeacherTeachings(i) returns the
Teachings taught by the Teacher 7:

getTeacherTeachings : I — 27
11— T, CT

« Get Teacher’s unavailable Slots: a function getUnavailableSlots(i) re-
turns the Slots in which the Teacher 7 is unavailable:

getUnavailableSlots : T — 2°

» Get Teacher’s preferences respected: a function teacher Pre ferencesRespected(t)
calculates the number of preferences expressed by the Teaching t’'s Main
Teacher that have been respected in the allocation:

teacher PreferencesRespected : T — N

tl—>tj€N

Constraints

Constraints on the rows

Here I provide an analysis of the constraints that apply to each row individually
(note: each row represents a Teaching):

» Lectures Slots in a Week: The sum of the cells in one row (i.e., the number
of weekly Slots of a Teaching) of the matrix should be equal to the number of
weekly lecture Slots of that Teaching.

Vt € T, n_slots := getSlots(t), Z timetable _matriz,s = n_ slots
seS

37

Design

o Double Slots: Considering only the cells related to Slots that belong to the
same Day, a maximum of two of these cells can be equal to 1 at the same time
and, if there are two cells equal to 1, they should be consecutive (i.e. if there

are two cells equal to 1 in the same Day, the sum of each pair (slot, slot+1) of
that Day should be either 0 or 2).

Yde D, VteT, Z timetable_matriz, s < 2
segetSlotsInDay(d)

Vd € D, Vs € [1, getSlotsInDay(d) — 1], Vt € T,

timetable _matrix, s + timetable_matriz, .41 € {0,2}

» Teachers’ unavailable Slots: The sum of the Slots in a Teaching where a
Teacher is unavailable should be 0.

Vie I, t € getTeacherTeachings(i), unSlots := getUnavailableSlots(i)

Z timetable _matriz, s = 0
seunsSlots

» Teachers’ preferences: The sum of the Slots in a Teaching that respect the
Main Teacher’s preferences should be maximized.

Vt € T, maximize teacher PreferencesRespected(t)

Constraints on the columns

I now describe the constraints that apply to each column of the matrix (note:
each column represents one time Slot):

e Overlaps - Students: Considering two correlated Teachings, the sum of the
cells that belong to the same columns for those two Teachings should be < 1,
in order to avoid overlaps between them.

Vse S, VteT, > timetable_matriz,,,,, s € {0,1}

teorr€getCorrelatedT eachings(t)

e Overlaps - Teachers: Teachings taught by the same Teacher should not
overlap.
Vi € I, ticacher := getTeacherTeachings(i), s € S,

> timetable_matriz, s € {0,1}

t€lieacher

38

4.4 — Adopted model

Constraints both on the rows and the columns

Finally, there are some constraints that, in order to be expressed, must consider
both the rows and the columns of the matrix:

« Maximum number of lectures in a Day: The sum of correlated Teachings
in a Day should be under a threshold.

Vde D, VteT,

Z timetable_matriz,,,,, s < threshold

teorr€getCorrelatedTeachings(t),
segetSlotsInDay(d)

o Limit correlation between first and last Slot: Considering two correlated
Teachings, the sum of the cell that represents the first lecture Slot of the Day
of one Teaching and the cell that represents the last lecture Slot of the same
Day of the other Teaching should be < 1.

Vd € D, V¥t € T, Vteorr € getCorrelatedT eachings(t),
sy = getFirstSlotO fDay(d), s; := getLastSlotO f Day(d)
timetable_matriz, ;, + timetable_matriz,,,,, s € {0,1}

o Minimize lecture dispersion: Considering two correlated Teachings, the
distance between the first cell of the Day that is = 1 of one Teaching and
the last cell of the same Day that is = 1 of the other Teaching should be
minimized.

Vd € D, Yt € T, Vi € getCorrelatedTeachings(t),
sy = getFirstSlotO f DayTeaching(t, d),

s := getLastSlotO f DayT eaching(tcor, d),

minimize timetable_matrizy,,,, s, — timetable_matriz, ,,

Conclusions

In order to test the performances of this model, I use data related to the academic
year 2023/243. The results are encouraging: the Slot Model used in the previous

3T use the data related to the academic year 2023/24 because the model used in the previous
thesis was run using this data, so I have a direct comparison.

39

Design

thesis could find a solution in 36 hours*, while the Bidimensional Matrix Model
finds a solution in around 3 hours®.
However, this model presents some criticalities:

o It cannot take classrooms into account, since adding this constraint would be
too complex.

o The model works well with a medium amount of Teachings (around 320), but
when the number of Teachings is large (> 700) it does not scale well.

o The soft constraints might represent a problem: if they are too many, CPLEX
tries to optimize the solution indefinitely and does not provide any results.

4Using a server with 64 threads and 100GB of RAM.
5Using a PC with 16 threads and 32GB of RAM.

40

4.4 — Adopted model

£8556¢C
22856¢C
Qg8 et
£6056¢C

Figure 4.7: Example

TIYg6e
86056¢C
£T8S6T
£E8L6T
8LSY6C
615562
8LSY6C
LLSY6T
#7856¢C
69L56C

of a portion of the

41

89LS6T
8LTE6C
gI @sJnog

0
]
eg”
uol

Be"wT 00°¢T 0¢°TT 00°0T Be'8 0¢ LT 00°9T 0e"vT 08" ¢T BE°TT 00°0T
anl an| anl anL an| ang uoy uol uol uoly uoy uoy

00°9T

0g°8 0E°LT
pam anl

00°0T
pam

Bidimensional matrix

42

Chapter 5

Implementation

Finding the optimal way to implement the algorithm that generates the timetable
is a process that requires a lot of effort, due to difficulties related to the Teachings
organization in the different Degree Courses, especially Computer Engineering.
This chapter provides an analysis of those problems in detail, together with an
explanation of how they have been solved.

Y

5.1 Retrieving Courses data

Before implementing the algorithm to generate the timetables, a critical aspect
that must be taken into consideration is the one related to retrieving the Courses
data. As said in Chapter 4, those data are stored in different Excel files. Therefore,
the information has to be first extracted from those files and saved in the database.
I retrieve information about:

e The Degree Courses in ICM and ETF Colleges, their Orientations, and the
Teachings in each Orientation.

o The type of each Teaching (Mandatory, Mandatory - Chosen from table, Free
credit) and the correlations between them.

« The Teachers of a Teaching (both the Main Teacher and the collaborators).
e The number of Theory lectures hours and preference about their allocation.

 The organization of Practice and Laboratory Slots (number of Groups, number
of Slots per Week, preference about Slot organization).

e The Slots in which the Teachers are unavailable.

43

Implementation

5.2 Incremental approach

In an initial phase of the thesis, I tried to generate a timetable with all the Degree
Courses from the a.y. 2023/24 together. Using this approach, the time needed
to find a solution is around 36 hours, and the timetable that is generated is not
optimal since the number of lectures in a Day is too high and there are too many
consecutive empty Slots.

The main problems are due to the relations between Degree Courses, Computer
Engineering and Mechatronic Engineering in particular. These two Degree Courses
have many Teachings and Teachers in common, which causes difficulties in gen-
erating a timetable. CPLEX either fails to find a solution or returns suboptimal
results after an extended computation.

For this reason, I explored an alternative approach: instead of generating a

timetable by considering all the courses simultaneously, I try to generate many
smaller timetables, each with a subset of Degree Courses. This is done by keeping
the Teachings that had already been assigned to a timetable fixed and incrementally
adding the other Teachings on top of them.
This methodology allows having different parameters for each subset of courses.
For example, when generating the timetable for Computer Engineering, I can set
the maximum number of correlations in a Day to 700 and, when generating the
timetable for Mechatronic Engineering, I can change this number to 800, which
was not possible when considering all the courses together.

This new approach drastically improves performance, reducing the time needed
to find a solution to just 3 hours. Above this, I am also able to add constraints
that were not considered previously, such as the Teacher’s preferences about lecture
Slots organization, and refine the parameters to reduce the number of lectures in a
Day and of consecutive empty Slots.

The final order of Degree Courses is the following:

o Ingegneria Informatica (Computer Engineering).

o All other Degree Courses except Ingegneria Informatica, Mechatronic Engi-
neering (Ingegneria Meccatronica), and Ingegneria Elettronica.

o Mechatronic Engineering (Ingegneria Meccatronica).
o Ingegneria Informatica.

o Ingegneria Elettronica.

44

5.3 — Computer Engineering

{

"courses": [
"INGEGNERIA DEL CINEMA E DEI MEZZI DI COMUNICAZIONE",
"CYBERSECURITY",
"DATA SCIENCE AND ENGINEERING",
"ELECTRONIC AND COMMUNICATIONS ENGINEERING (INGEGNERIA ELETTRONICA E DELLE COMUNICAZIONI)",
"INGEGNERIA FISICA",
"AGRITECH ENGINEERING",
"COMMUNICATIONS ENGINEERING",
"ICT FOR SMART SOCIETIES (ICT PER LA SOCIETA' DEL FUTURO)",
"NANOTECHNOLOGIES FOR ICTs (NANOTECNOLOGIE PER LE ICT)",
"PHYSICS OF COMPLEX SYSTEMS(FISICA DEI SISTEMI COMPLESSI)",
"QUANTUM ENGINEERING",
"INGEGNERIA ELETTRONICA (ELECTRONIC ENGINEERING)"

1,

"orientations": [],

"course_type": "",

"max_corr_in_day": 800,

"max_corr_first_last_slot": 20,

"min_corr_overlaps": 35,

"no_overlap_mandatory_practice_lab": False,

"no_overlap_groups": False,

"teachers_unavailabilities": True

H

Figure 5.1: Example of subset of Degree Courses with the parameters

5.3 Computer Engineering

Generating a timetable for Computer Engineering requires particular attention.
This is due to the large number of its free credits, no other Degree Course has as
many (for example, the Software Orientation alone includes 18 Teachings in the
first semester of the second year). This means that generating a timetable is a
challenging task, since all those Teachings must be considered.

When trying to generate a timetable with all the Degree Courses simultaneously,
CPLEX struggles to find a solution. However, by excluding Computer Engineering,
the solution is found in 2 hours and 15 minutes.

Therefore, using the incremental approach, first of all I generate a timetable for
Computer Engineering only and then add the other Degree Courses. This allows
generating the Computer Engineering timetable in about 50 minutes.

45

Implementation

5.4 2026 Teachings

After generating and validating a timetable for the courses related to the academic
year 2023/24, I can consider the courses for the academic year 2025/26. This
represents a challenge as well, since the number of Teachings in 2025/26 is more
than double that of 2023/24'. This means that it is not possible to find a solution
using the same parameters as for the 2023/24 data. A review of the parameters
and the constraints is therefore needed.

In this case, the main problem is related to the correlations between Teachings;
the correlation values used in the previous theses could not be applied to the
Teachings of the academic year 2025/26. Therefore, I conduct some tests to
find correlation values that ensure no overlaps between main courses while still
guaranteeing a feasible solution.

The conclusion is that the problem is related to the correlation values for the
Teachings that can be chosen from a table. Therefore, I change the correlation for
Teachings chosen from a table from 90 to

100/n_ teachings in_ table

while maintaining the same correlation for mandatory Teachings and free credits
as before. I then refine the parameters according to these new correlations.

5.5 Teachers preferences about lectures organi-
zation

When considering soft constraints, one that requires attention is the Teachers’
preferences about the Slots organization of their lecture. For each Teaching, the
Main Teacher can express a preference on how they want the Theory, Practice, and
Laboratory lecture Slots to be organized. For example, a Teacher can specify that
the Laboratory lectures for a Teaching should be allocated in two Slots per Week,
and that those Slots should be consecutive.

Adding these constraints represents a challenge. It not only requires the redefi-
nition of the parameters, since the timetables generated change due to the different
allocation of the lecture Slots, but it also introduces a new problem as well: since
the number of soft constraints is large, CPLEX has difficulties in handling them,
and when it tries to optimize the objective function, it cannot reach the objective
prefixed and continues to run indefinitely.

I This is due to the fact that the Degree Courses offered by the Politecnico di Torino change
every year and, generally, the number of Teachings increases over time

46

5.6 — ICM, ETF, and All Courses Timetables

For this reason, it is necessary to introduce a limit to the execution time: after
6 hours, CPLEX returns the best solution it could find for a subset of Degree
Courses, even if it is not the most optimized one.

ORGANIZZAZIONE_BLOCCHI_LEZIONE ORGANIZZAZIONE_BLOCCHI_ESERCITAZIONE ORGANIZZAZIONE_BLOCCHI_LAIB_ATENEO
tutti i blocchida 3h tutti i blocchi da 1,5h per ciascuna squadra blocchi da 3h per ciascuna squadra
tutti i blocchi da 3h tutti i blocchi da 1,5h per ciascuna squadra blocchi da 3h per ciascuna squadra
tutti i blocchida 3h tutti i blocchi da 3h per ciascuna squadra blocchi da 3h per ciascuna squadra
tutti i blocchi da 3h tutti i blocchi da 3h per ciascuna squadra blocchida 1,5h per ciascuna squadra

un blocco da 3h e gli altrida 1,5h un blocco da 3h e gli altri da 1,5h per ciascuna squadra blocchida 1,5h per ciascuna squadra
un blocco da 3h e gli altri da 1,5h un blocco da 3h e gli altri da 1,5h per ciascuna squadra blocchida 1,5h per ciascuna squadra
tutti i blocchi da 3h tutti i blocchi da 3h per ciascuna squadra indifferente

Figure 5.2: Teachers’ preferences (they are in Italian because they are saved in
this format in the university’s office)

5.6 ICM, ETF, and All Courses Timetables

When reviewing the timetables, I discovered that many problems arise from the
relationships between the ETF and ICM Degree Courses. These two Colleges
share a large number of Teachings, as well as Teachers. Therefore, in order to be
able to generate a timetable that takes both Colleges into account, I must allow
overlaps between the Practices and Laboratories of mandatory Teachings and those
of Teachings chosen from a table, as well as overlaps between different Groups of
Practice or Laboratory of the same Teaching.

Instead, by considering ICM and ETF College separately, generating timetables
is much simpler and I do not have to make such compromises.

In the final version of the project, you will find three different timetables: one
that considers ICM Courses only, one with ETF Courses only, and one with the

47

Implementation

Courses from both of those Colleges combined.

5.7 Technical debt management: the usage of
SonarQube

Another main challenge during this thesis is to write clean, understandable code
that can be easily reused and modified. This is a process that should not be
overlooked, since understanding the strategies used for the timetable generation
and how they have been implemented is a very difficult task, but it is necessary for
someone who wants to modify and improve the algorithm.

Therefore, to better manage the code, reduce technical debt, and keep its
complexity to a minimum, I use the SonarQube software. This tool connects to a
Git repository, analyzes the code every time it is pushed to that repository, and
produces a report about the code quality. This report highlights security, reliability,
and maintainability issues. Solving these issues means less technical debt and
better code quality and readability. Therefore, part of the time is spent on code
refactoring in order to reduce the number of issues raised by SonarQube as much
as possible. When working on those issues, I start from the high-priority ones (as
classified by SonarQube) and, once those have been solved, I can focus on medium
and low-priority issues.

The final number of issues is 17, all related to maintainability. I have to accept
those 17 issues in order to have more readable code, solving them would make the
code too complex to analyze.

Security Reliability Maintainability

0 Open issues 0 Open issues 17 Open issues

Figure 5.3: SonarQube Code Analysis

48

Chapter 6
How to use the tool

The thesis is divided into three distinct projects: Fxcel to db converter,
Timetable__Allocator, and GUI orario_Tesi. This chapter describes how to use
those three tools and their parameters. This is aimed at both those who simply
want to use the tools to generate timetables and those who want to modify the
code to add or remove constraints. Please refer to the README file of the project
for more details.

6.1 Excel to db_converter

As described in Chapter 4, most of the information about the Teachings and the
Teachers (number of Theory, Practice, and Laboratory hours, Teachers’ preferences
about the Slot allocation, and Teachers’ unavailabilities) is saved in Excel files.
This Python script retrieves the data about Teachers and Teachings from those
Excel files and saves it in the database so that it can be used by the Allocator.

To run the program, simply execute the main.py file.

First, the script retrieves the information about Degree Courses, Orientations,
and Teachings from the file Percorsi-gruppi-insegnamenti aa 2026.xlsz.

Once this information has been retrieved, the script reads the Excel files in the
Courses Data folder and the PreferenzeDocenti.zlsz file and saves the data related
to each Teaching and Teacher in the Database.

In the Utils folder, there are 3 files:

o Teaching.py: This file contains a class that represents a Teaching. The list
of Teachings was previously loaded from the file Percorsi-gruppi-insegnamenti
aa 2026.xlsx and therefore is retrieved from the database.

e Get__Teachings_Data.py: This file contains the functions that retrieve
the information about the Teachings from the Excel files and save it in the

49

14
15

16
17
18
19
20

21
22
23
24
25

26
27

How to use the tool

Database.

o Get__Teachers_ Data.py: This file contains the functions that retrieve the
information about the Teachers (Slots in which they are unavailable and the
preferences about the allocation of their Teachings).

’>?’’Teachings’’’

Get the Degree Courses related to DAUIN and DET departments (IDs
CL003 and CL006)

get_teachings ()

Calculate the correlation for each Teaching

calculate_correlations ()

Load the Teachings from the DB
list_teachings = db_api.get_teachings ()
teachings = []

Converting the data in the 1list

for row in list_teachings:
teachings.append(Teaching(id_teaching=row[0], title=rowl[1],
main_teacher=row[2]))

Get the number of lecture hours from the Excel files and insert
it in the database
get_teaching_information(teachings)

’>?’’Teachers’’’

Get the Teachers preferences for the courses and save them in
the database

get_teachers_preferences (teachings)

get_practice_lab_not_in_preferences ()

Get the information about unavailable Slots for each Teacher
from the PreferenzeDocenti.xlsx Excel file

and insert them in the database

get_teachers_unavailabilities ()

Listing 6.1: Retrieving information about Teachings and Teachers

6.2 Timetable Allocator

Once all the data needed is loaded by the Fxcel to DB _Converter and inserted
in the Database, the user can utilize the Timetable_Allocator project to generate
a Timetable.

50

6.2 — Timetable Allocator

First of all, the script initializes the Teachings and Teachers classes, retrieving
the information from the Database, and then it generates a timetable using the
incremental approach described in Chapter 5.

There are different aspects of the Timetable Allocator that require attention
when using or modifying it. They are listed here.

6.2.1 Start from existing timetable

When executing the script, users can decide if they want to use an existing timetable
from previous years as a starting point to generate the new one.

The program asks the user if they want to use this methodology and, if their
reply is affirmative, the program reads the database table PreviousSolution and
loads the data related to that timetable in the CPLEX software. Then, CPLEX
generates a solution using that timetable as a starting point.

This has two benefits: it ensures a faster execution time, since CPLEX does not
have to start from scratch but tries to optimize a timetable that already exists,
and it will generate a solution that is similar to the one provided.

However, if the new constraints differ significantly from those used when gener-
ating the previous timetable, CPLEX will abandon the optimization of the existing
timetable and will ignore it.

6.2.2 Allocation on Saturday

The software provides the possibility to allocate Slots on Saturday.

When executing the script, the user is asked whether to enable allocation on
Saturday. If enabled, the user must specify the number of Slots that can be
allocated on Saturday (minimum 1, maximum 7). Then, the timetable is generated,
and Teachings can be allocated on Saturday the same way they can be allocated
on other Days.

6.2.3 Export to Excel

After the timetable is generated, the user is given the option to export it to an
Excel file. If they want to do so, two files are generated and saved in the folder
Data/*timetable name*.

The first Excel file contains the timetables saved in weekly format: each sheet
corresponds to a Degree Course and contains separate timetables for every Orien-
tation and Year. The timetables are represented as tables with the Days in the
columns and the hours in the rows.

51

How to use the tool

Orientation: Cryptography expert - Year: 1-1
index Lun Mar
Big data: architectures and data analytics (Lezione) X .
8.30-10.00 X i Quantum computing (Lezione)
Quantum computing (Lezione)
10.00-11.30 |Computer architectures and operating systems (Lezione) |Big data: architectures and data analytics (Laboratorio - Squadra2)
o . i Information systems security (Esercitazione - Squadra2)
11.30-13.00 |Optimization methods and algorithms (Lezione) X) i .

Big data: architectures and data analytics (Laboratorio - Squadral)
13.00-14.30 |Information systems security (Lezione) Information systems security (Esercitazione - Squadral)
14.30-16.00 |Networks & Cloud Technologies and Security (Lezione) |Networks & Cloud Technologies and Security (Lezione)

Machine learning for networking (Lezione) i i .
16.00-17.30 R . Information systems security (Lezione)
Quantum computing (Lezione)
17.30-19.00 |Information systems security (Laboratorio - Squadra2) |Information systems security (Laboratorio - Squadra2)

Figure 6.1: Timetable with weekly visualization

The second Excel file instead focuses on the single Teachings: there is the
same structure with one sheet for each Degree Course, and for each of them the
timetables are divided by Orientation and Year. But, in this case, there is one row
for each Teaching, correlated with its Slots. This visualization is suitable for a
Teacher who wants to view the Slots for their Teachings.

52

6.2 — Timetable Allocator

Orientation: Cryptography expert - Year: 2-1

Teaching Slots
Lun 10.00-11.30 (Esercitazione - Squadral)
Advanced cryptography Lun 13.00-14.30 (Lezione)

Ven 11.30-13.00 (Lezione)
Gio 11.30-13.00 (Lezione)

Ven 10.00-11.30 (Lezione)
Mer 14.30-16.00 (Lezione)
Cybersecurity laws and regulations Gio 14.30-16.00 (Lezione)
Ven 13.00-14.30 (Lezione)
Lun 11.30-13.00 (Lezione)

Ven 14.30-16.00 (Lezione)

Lun 8.30-10.00 (Lezione)

Mer 16.00-17.30 (Laboratorio - Squadral)
Mer 17.30-19.00 (Laboratorio - Squadral)
Security verification and testing Gio 10.00-11.30 (Lezione)

Gio 16.00-17.30 (Laboratorio - Squadra2)
Gio 17.30-19.00 (Laboratorio - Squadra2)
Ven 17.30-19.00 (Lezione)

Al and Cybersecurity

Data protection, Privacy and Anonymity

Lun 14.30-16.00 (Esercitazione - Squadral)
Lun 16.00-17.30 (Laboratorio - Squadral)
Lun 17.30-19.00 (Laboratorio - Squadral)
Mar 14.30-16.00 (Lezione)

Mar 16.00-17.30 (Laboratorio - Squadra2)
Mar 17.30-19.00 (Laboratorio - Squadra2)
Mer 11.30-13.00 (Lezione)

Mer 16.00-17.30 (Laboratorio - Squadra2)
Mer 17.30-19.00 (Laboratorio - Squadra2)
Gio 16.00-17.30 (Laboratorio - Squadral)
Gio 17.30-19.00 (Laboratorio - Squadral)
Ven 8.30-10.00 (Lezione)

Advanced Information systems security

Figure 6.2: Timetable with Teaching visualization

6.2.4 Function add__teachings_ constraints

This function adds the constraints related to the Teachings. For each individual
constraint, a dedicated function is called, where the constraint is defined and added
to the model. If the constraint must also apply to Practices and/or Laboratories,
an additional function is called to add the constraint to those lecture types.

53

e 2]

10
11
12

t = w N =

Nelie ol o)

10

12
13

How to use the tool

Add the constraint about the number of Slots that each
Teaching should have in a Week

))

def add_slots_per_week_teaching(model, timetable_matrix, teachings
, slots):
for teaching in teachings:

model.add_constraint (model.sum(timetable_matrix[teaching.

id_teaching, s] for s in slots) == teaching.lect_slots)

’??Practice Slots’’’
add_slots_per_week_practice(model, timetable_matrix,
teaching, slots)

’>?2Lab Slots’’’
add_slots_per_week_lab(model, timetable_matrix, teaching,
slots)

Listing 6.2: Example of a function that adds a Teaching constraint

6.2.5 add_teachers constraints

Similarly to the function add_ teachings constraints, this function adds the con-
straints related to the Teachers.

))

Teachings with the same Teacher should not overlap
))
def add_no_overlap_constraint(model, timetable_matrix, teacher,
slots):
Getting the IDs of the Teachings taught by "teacher" for the
first and the second semester
teaching_ids_1, teaching_ids_2 = get_teaching_ids (teacher)

for s in slots:

Constraints for the first semester

model.add (model.sum(timetable_matrix[t_id, s] for t_id in
teaching_ids_1) <= 1)

Constraints for the second semester
model .add (model.sum(timetable _matrix[t_id, s] for t_id in
teaching_ids_2) <= 1)

Listing 6.3: Example of a function that adds a Teaching constraint

54

6.2 — Timetable Allocator

6.2.6 Parameters

The Allocator uses a series of parameters that can be adjusted to obtain a better
timetable or to reduce the time needed to generate one. These parameters are
defined in the file Parameters.py.

course__order: This structure defines the sets of Degree Courses used to
generate the timetable. Changing the order of these Degree Courses can
change the time needed to generate a timetable as well as the results. Along
with the each set of Degree Courses, it is possible to change the parameters
used to generate the timetable for that set.

slot__per__day: number of lecture Slots per Day. Default is 7.

n_weeks in_semester: number of Weeks in a Semester, used to calculate
how many Slots per Week need to be allocated to a Teaching. Default is 14.

hours_in_ slot: number of hours in a Slot. At the moment, Slots are 1.5
hours long.

start_ from_ previous_ solution: boolean variable that is true if starting
from an existing solution is enabled. Default is false.

saturday__enabled: boolean variable that is true if lecture allocation on
Saturday is enabled. Default is false.

n_slots_ saturday: number of Slots on Saturday. Minimum is 1, maximum
is 7, default is 4.

max__corr__in__day: number of maximum correlated lectures in a Day.

max__corr_first last slot: maximum correlation value between the first
and last Slot of the Day. The lower the number, the least student will have
lecture at 8:30 and 17:30 in the same Day.

min__corr__overlaps: the minimum number of correlation between Teachings
for which it is guaranteed that there are no overlaps.

no__overlap__mandatory__practice__lab: if true, Practices and Laborato-
ries of mandatory Teachings cannot overlap with lectures of other correlated
Teachings.

no__overlap__groups: if true, groups of the same Practice or Laboratory
cannot overlap with each other.

teachers__unavailabilities: if false, the algorithm does not consider Teachers’
unavailabilities when generating the timetable.

55

How to use the tool

max__consecutive__slots_ teaching: maximum number of consecutive Slots
that a Teaching can have.

teaching_overlap__penalty: the penalty in the objective function for over-
laps between Teaching with a correlation < min__corr_overlaps.

lecture__dispersion__penalty: the penalty in the objective function for
lecture dispersion (defined as the difference between the first and last lecture
Slot of a Day).

teacher_preferences_ penalty: the penalty in the objective function for
Teachers’ preferences about Slot organization that have not been respected
(note that this value should be negative, since the objective is to maximize
the number of Teachers’ preferences respected).

consecutive__groups__penalty: the penalty in the objective function for
different Practice or Laboratories groups of the same Day that are not con-
secutive (note that this value should be negative, since the objective is to
maximize the number of consecutive groups).

timetable name: the name with which the timetable is saved in the DB.

days and time_ slots: the name of the Days (“Lun”, “Mar”, “Mer”, etc.
- in Italian because they are saved like this in the Database) and the Slots
(“8.30-10.00”, “10.00-11.30”, etc.), used when saving the timetable in the DB.

6.3 Web Application

During the previous theses, in order to be able to visualize the timetables generated
and easily read them, a web application that displays the timetable via a GUI was
developed. This web application reads the generated timetable in the Database
and displays it in a graphical, user-friendly way. In this thesis, the web application
has been extended and new functionalities have been added.

6.3.1 Allocation plan section

The web application is organized in different sections. The most important one
when validating the timetables is the one related to the allocation plan. Here users
can select the Allocation Plan that they are interested in validating and visualize
the weekly timetable, divided by the degree type (Bachelor’s or Master’s Degree),
the Degree Course, the Semester, and the Orientation.

56

6.3 — Web Application

Orario Piano allocazione Insegnamenti Docenti Sovrapposizioni Differenze orario

Piano allocazione: ICM Courses timetable ¥

Tipo CDL Nome CDL
INGEGNERIA INFORMATICA (COMPUTER ENGINEERING) ¥
Periodo didattico Orientamento

1-1~ Software ¥
ICM Courses
timetable Lunedi Martedi
8.30-10.00
10.00-11.30
11.30-13.00 Computer network t 293833 _slot_2 Data Science e Tec 294578 _practice_group1_slot_9
13.00-14.30 Data Science e Tec 294578 slot_3 Computer network t 293833 slot_10

Architetture dei s 295769 _lab_group1_slot_3

14.30-16.00 Architetture dei s 295769 _lab_group2_slot_4 Tecnologie e servi 295823 slot_11

16.00-17.30 Data Science and D 294577_practice_group1_slot_5
Architetture dei s 295768 _slot_5 Architetture dei s 295769 _slot_5
Computer architect 295844 slot_5

17.30-19.00 Data Science e Tec 294579 _practice_group1_slot_6 Architetture dei s 295768 _slot_13 Architetture dei s 295769_slot_13

Computer architect 295844 slot_6 C hi 295844 | ice_group1_slot_13

Figure 6.3: Allocation plan section - Teachings in red are mandatory and Teachings
in yellow are chosen from a table

6.3.2 Teachers section

The Teachers section allows users to visualize the Slots for each Teacher and analyze
if they have too many consecutive hours or not. Users can select the allocation
plan and the Teacher they are interested in and see its Teachings.

57

How to use the tool

QOrario Piano allocazione Insegnamenti Docenti Sovrapposizioni Differenze orario

Piano ICM Courses timetable >
allocazione:

Docente:

022269 ¥

Orario 022269 Lunedi Martedi Mercoledi

8.30-10.00

10.00-11.30

11.30-13.00

13.00-14.30

14.30-16.00
16.00-17.30

17.30-19.00 Computer architect 295844 slot_6 Computer architect 295844 _practice_group1_slot_13

Figure 6.4: Teachers section

6.3.3 Timetable differences section

A new section has been added during this thesis: the Timetable differences section.
This section is useful to compare the timetables generated with another timetable
(for example, the timetables generated during this thesis were compared with the
one generated during the previous works relating to the academic year 2023/24) in
order to visualize the differences in the allocation of the single Teachings.

This section also provides an analysis that quantifies the number of Days and
Slots that differ between the two timetables and how they have changed (if the
Teaching’s Slots have been moved to the beginning or the end of the Week or
whether they remain unchanged).

58

6.3 — Web Application

Orario Piano allocazione Insegnamenti Docenti Sovrapposizioni Differenze orario

Piano allocazione: ICM Courses timetable ¥
Tipo CDL Nome CDL
INGEGNERIA INFORMATICA (COMPUTER ENGINEERING) ¥
Periodo didattico Orientamento
1-1~ Software ¥
Insegnamento

Computer architectures ¥

previous timetable

@ this timetable

ICM Courses timetable Lunedi Martedi

8.30-10.00

10.00-11.30

11.30-13.00

13.00-14.30

14.30-16.00

16.00-17.30

17.30-19.00
Stats:

e # Days changed: 1

o # Slots changed: 7

e Average position in week:
Previous timetable: 16.40
Current timetable: 20.00
Difference: +3.60 Slots

Figure 6.5: Timetable differences section

59

60

Chapter 7
Validation and performances

After generating a timetable, it has to be validated in order to check its goodness
and that it can be used in a real-case scenario. This chapter analyzes the validation
process and the performance of the model. Please note that all the performances
are referred to a PC with a 16-thread processor and 32GB of RAM.

7.1 Checking timetable goodness - Students

One of the most important analyses that have to be made in order to check the
validity of a timetable is the one related to the Students’ constraints. For this
validation, I check that the numbers of consecutive Teachings and empty Slots that
Students have in a Day are limited and that the overlaps between Teachings are
not critical. In order to do so, I visualize the timetable using the web application.

This is a trial-and-error process: I generate a timetable, check its validity, change
the constraints and parameters to solve the problems that emerge, and re-generate
the timetable.

7.2 Checking timetable goodness - Teachers

Along with constraints related to the Students, another important part of the
timetable is represented by the constraints related to the Teachers. Using the web
application, I am able to check if a Teacher has too many consecutive lecture Slots
and if the Slots in which the Teacher is unavailable have been respected, and adjust
the constraints consequently in case of problems.

Since the constraints about Teachers are less than those about Students, this
process is simpler.

61

Validation and performances

7.3 Analyzing differences with previous timetable

After solving the problems related to the constraints, I am interested in analyzing
the differences between the timetables generated in this work and those generated in
the previous theses. I can perform this analysis by using the Timetable differences
section of the web application.

The conclusion is that the algorithm developed in this thesis explores the space
of possible solutions in a different way compared to the one implemented in the
previous thesis, leading to timetables that are dissimilar from those generated by
the previous algorithm. For the majority of the Teachings, the number of Slots
changed is high (above 80%). But, it is also worth mentioning that the changes on
Days are few, with zero or one Days changed compared to the previous timetable.

Another interesting analysis is about the Teaching’s average position in the

Week. It is calculated as o
>~ slot__position

#slots_in__week

and is needed in order to study if a Teaching is towards the start of the Week (low
values), the end of the Week (high values), or the middle. I then compared the
average position of the timetables generated in this thesis with the previous ones
and concluded that some of the Teachings have been moved towards the end of
the Week, some have been moved towards the start, and some have maintained a
similar position.

7.4 Performances with data from the academic
year 2023 /24

As mentioned before, in order to validate the new Bidimensional Matrix Model
implemented, in an initial phase I generate timetables using the data related to
the academic year 2023/24.

7.4.1 Mechatronic Engineering

I start the tests by considering Mechatronic Engineering only, so that the time
needed to generate the timetables (and check the validity of the constraints imple-
mented) is minimal. Considering only hard constraints, the algorithm is able to
generate timetables in less than a minute. This time increases to 10 minutes when
I introduce soft constraints.

62

7.5 — Performances with data for the academic year 2025/26

7.4.2 All courses

After the timetables for Mechatronic Engineering are good and I am satisfied with
the hard and soft constraints, I extend the algorithm and consider all the Degree
Courses related to the academic year 2023/24.

Using the Bidimensional Matrix model together with the incremental approach
described in Chapter 5, I obtain a good performance, finding an admissible solution
in less than 10 minutes and generating an optimal solution in around 3 hours
(compared to the 36 hours needed with the model used in the previous thesis).
However, this solution does not consider the Teachers’ preferences about Slot
organization, which are introduced later with the data for the academic year
2025/26.

7.5 Performances with data for the academic year
2025/26

Once the data related to the academic year 2025/26 is available in the form of an
Excel file, I add that data to the database and generate the timetables with these
Degree Courses.

In this case, since there are more Teachings, the generation is longer. The
algorithm is able to find an admissible solution in 1 hour and 30 minutes and
generate an optimized solution in 4 hours and 30 minutes, not considering the
Teachers’ preferences.

7.5.1 Teachers’ preferences

The final constraint added is about the Teachers’ preferences on the organization
of the Slots for their Teachings. This constraint introduces new problems, since
there are too many soft constraints and therefore CPLEX tries to optimize the
timetable indefinitely and never returns a solution.

For this reason, I have to introduce a limit on CPLEX’s execution time, ensuring
that the software returns a solution within a maximum of 6 hours for each subset
of Degree Courses. This means that the time needed to find a solution increases to
13 hours.

7.6 Questionnaire for Teachers and Student’s
Representatives

After generating the timetable for the 2025/26 Degree Courses, I prepared two
questionnaires, one for the Teachers and the other for the Students’ representatives,

63

Validation and performances

in order to ask them for their opinion about the timetable and if there are any
criticalities or improvements that can be made.

When answering the questionnaire, Teachers and Students are provided with
the timetable in the form of an Excel file and are asked the following questions:

o If they are satisfied by the timetable.

o If the distribution of lectures in a Week is adequate.

o If there are overlaps that can represent a problem.

o If the lecture Slots and empty Slots are well distributed.
o If the timetable generated encourages the attendace.

o If the timetable allows for good time management between lectures and
study/other commitments.

 If the preferences about Slots organizations have been respected.
o A comparison between the timetable generated and the official one.

One of the main criticalities highlighted by the questionnaire concerns the fact
that some Teachings do not have a sufficient number of Slots during the Week.
After double-checking the information related to these Teachings, it emerged that,
for some of them, the approximations made when converting the total number
of hours for a semester into weekly Slots resulted in an insufficient allocation. A
review of these data is therefore required.

Another issue is the dissimilarity between the timetable generated in this thesis
and the official one, as reported in Figure 7.1. For this reason, studying how
CPLEX explores the space of possible solutions and having it return results that
are in line with the existing timetable can be beneficial.

As highlighted in Figure 7.2, a third important aspect that emerged when
analysing the questionnaire’s results is about the Teachers’ preferences. Many
Teachers report that the preferences expressed about the allocation of their Teach-
ings have only been respected partially or have not been respected at all. This
therefore requires a redefinition of the soft constraint related to the Teachers’
preferences, assigning a higher penalty if they are not respected.

On a positive note, as shown in Figure 7.3, the Lecture distribution during
the Week seems balanced, and the majority of the people who answered the
questionnaire say that there is a good division of time between lectures, research,
studying, and other commitments.

64

7.6 — Questionnaire for Teachers and Student’s Representatives

Is the generated timetable similar to last year's one?

@ No, it is completely different
® Yes, but only in part

| don't know
® Yes, it is very similar

4 (10,0%)

8 (20,0%)

Figure 7.1: Comparison between the timetable generated and the last year’s one

Were the preferences regarding the organization of practice
and laboratory slots respected?
@ No, not at all
® Yes, but only in part
® Yes, completely

| don't know

16 (40,0%)

8 (20,0%)

Figure 7.2: Teachers preferences on Slots allocation

65

Validation and performances

Does the timetable adequately distribute lectures throughout
the week?

@ Yes, the distribution is balanced
® Yes, but it could further improve

@ No, there are days with too
many lectures

| don't know

@ No, there are days that are too
6 (15.0%) empty

12 (30,0%)

Figure 7.3: Lecture distribution over the week

66

Chapter 8

Conclusions

The timetable generation is a challenging task, due to the amount of Teachings
involved, the fact that the list of those Teachings evolves every year, and the number
of constraints that the timetable must satisfy. Therefore, some approximations had
to be made and some constraints had to be relaxed in order to be able to generate
a solution. Finding the right approximations that make it possible to generate
a solution while maintaining a good representation of reality is one of the major
problems encountered during this thesis, and the one on which I spent the most
amount of time.

Although I had to face these problems, the results are encouraging: the algorithm
is able to generate timetables in a few hours (compared to days in the previous
theses) and those generated seem to be balanced, with a good lecture distribution
over the Week.

The further development of the correlation model studied in the previous thesis,
and its combination with the Bidimensional Matrix Model and the incremental
approach, allows the algorithm to generate solutions in a more efficient way, while
always maintaining a good representation of the possible Teachings combinations
that Students can choose. The Bidimensional Matrix Model is in fact capable of
generating timetables faster than the Slot Model used in the previous thesis, where
timetable generations could take up to 400% more time.

The questionnaire sent to the Teachers and the Students’ representatives is
important to receive feedback from people directly affected by the timetable, as
well as highlighting problems with the timetable generated.

A strength point of the algorithm is that the timetables that it generates are
balanced, with a good distribution of Teachings during the Week.

However, some critical aspects emerged from the questionnaire, mainly related
to the Teachers preferences about Slots allocation and the data regarding the
Teachings, on which I based the timetable generation. A review of these aspects
will be important in future works, in order to solve these issues and obtain a

67

Conclusions

timetable that better satisfies Teachers and Students needs.

Another potential problem with the timetable generated during this thesis can
be the differences when compared to the one generated in the previous work. This
algorithm explores the space of possible solutions in a different way, leading to
timetables that can be profoundly different when compared to the official one or
those from the previous theses.

Finally, the CPLEX software proved to work well with a medium number of
Teachings (around 300) and constraints, but when this number increases and more
constraints are introduced, it does not scale well, leading to higher execution times
and difficulties in finding a solution.

8.1 Future works

The final section of this thesis gives some ideas for possible future works.

An interesting analysis that can be done is related to the method used to

generate the timetables: in this thesis, I used ILP with CPLEX in order to explore
the new Bidimensional Matrix approach, but since CPLEX does not scale well
when there are too many Teachings and Constraints, it might be worth exploring
different methodologies to represent and solve the problem, that do not rely on
CPLEX or ILP.
In recent years, new optimization algorithms with equality and inequality constraints
have been studied. In particular, in [20] and [21], the authors propose a novel
methodology, called Controlled Multipliers Optimization, which starts from the
Lagrangian of the problem and defines a dynamic system where a control law is
applied to the Lagrange multipliers. This approach makes it possible to reach a
minimum of the optimization problem with a lower computational time compared
to classical algorithms, such as interior-point methods. Moreover, this method can
effectively solve mixed-integer problems, such as the timetable one, which makes it
an interesting approach; see [20] for more details.

Other possible future works are related to the application of the Genetic Al-
gorithm and the Ant Colony System algorithm analyzed in Chapter 4 to solve
the timetable problem. They can be a valid alternative to ILP for this kind of
problems, even though, as discussed, representing more complex constraints might
be challenging.

Lastly, the FET software analyzed in Chapter 4 can be further studied, and its
performance can be compared to the algorithm implemented in this thesis.

Possible improvements of this work include:

o Avoiding CPLEX running indefinitely when optimizing the solution, requiring
a time limit.

68

8.1 — Future works

Reviewing the data related to each Teaching, assigning the right amount of
weekly Slots.

Reviewing the penalties assigned to each soft constraint, generating timetables
that are more in line with Teachers preferences.

Attempting to generate timetables that are more similar to those generated
in the previous theses or to the official one.

Uniforming the tables and columns names in the database, in order to use the
same standard in all of them.

69

70

Bibliography

[10]

[11]

Francesco Lasagno. Modellazione e ottimizzazione della pianificazione della
didattica. 2022. URL: https://webthesis.biblio.polito.it/23530/ (cit.
on pp. 1, 11, 13, 14, 35).

Manuel Messina. Nuovi metodi di modellazione e ottimizzazione per la piani-
ficazione della didattica. 2023. URL: https://webthesis.biblio.polito.
it/27660/ (cit. on pp. 1, 11, 13, 14, 35).

Bob Stanke. Operations Research: Optimizing Decision-Making for Success.
July 2023. URL: https://www.bobstanke.com/blog/operations-researc
h-overview (cit. on p. 5).

IBM. Tutorial: Linear Programming. URL: https://ibmdecisionoptimizat
ion.github.io/tutorials/html/Linear Programming.html (cit. on p. 5).

IBM. Optimization Software. URL: https://www.ibm.com/optimization-
solver (cit. on p. 6).

CPLEX User’s Manual. «Ibm ilog cplex optimization studio». In: Version
12.1987-2018 (1987), p. 1 (cit. on p. 7).

Solvice. Constraints. URL: https://www.solvice.io/glossary/constrain
ts (cit. on p. 7).

Geeks for Geeks. Objective Function. July 2025. URL: https://wuw.geeksfo
rgeeks.org/maths/objective-function/ (cit. on p. 8).

L. De Giovanni. Note su Programmazione Lineare e Metodo del Simplesso. URL:
https://www.math.unipd.it/~1luigi/courses/ricop/m02.PLsim.01.pdf
(cit. on p. 8).

Antonio Vetro. Technical Debt. private communication. Nov. 2024 (cit. on
p. 9).

Wikipedia contributors. SonarQube — Wikipedia, The Free Encyclopedia.

[Online; accessed 25-July-2025]. 2024. URL: https://en.wikipedia.org/w/
index.php?title=SonarQube&oldid=1263144878 (cit. on p. 9).

71

https://webthesis.biblio.polito.it/23530/
https://webthesis.biblio.polito.it/27660/
https://webthesis.biblio.polito.it/27660/
https://www.bobstanke.com/blog/operations-research-overview
https://www.bobstanke.com/blog/operations-research-overview
https://ibmdecisionoptimization.github.io/tutorials/html/Linear_Programming.html
https://ibmdecisionoptimization.github.io/tutorials/html/Linear_Programming.html
https://www.ibm.com/optimization-solver
https://www.ibm.com/optimization-solver
https://www.solvice.io/glossary/constraints
https://www.solvice.io/glossary/constraints
https://www.geeksforgeeks.org/maths/objective-function/
https://www.geeksforgeeks.org/maths/objective-function/
https://www.math.unipd.it/~luigi/courses/ricop/m02.PLsim.01.pdf
https://en.wikipedia.org/w/index.php?title=SonarQube&oldid=1263144878
https://en.wikipedia.org/w/index.php?title=SonarQube&oldid=1263144878

BIBLIOGRAPHY

[12]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Jumoke Soyemi, John Akinode, and Samson Oloruntoba. «Electronic Lecture
Time-Table Scheduler Using Genetic Algorithmy». In: 2017 IEEE 15th Intl
Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on
Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence
and Computing and Cyber Science and Technology Congress (DASC/PiCom,/-
DataCom/CyberSciTech). 2017, pp. 710-715. DOI: 10.1109/DASC-PICom-
DataCom-CyberSciTec.2017.124 (cit. on p. 24).

Mathworks. What Is the Genetic Algorithm? URL: https://www.mathworks.
com/help/gads/what-is-the-genetic-algorithm.html (cit. on p. 24).

Tejo Herianto. «Implementation of the Ant Colony System Algorithm in
the Lecture Scheduling Process». In: Instal: Jurnal Komputer 12.02 (2020),
pp. 50-56 (cit. on p. 26).

Geeks for Geeks. Introduction to Ant Colony Optimization. URL: https :
/ /www . geeksforgeeks . org/machine-1learning/introduction-to-ant-
colony-optimization/ (cit. on p. 27).

Liviu Lalescu. FET Free Timetabling Software. URL: https://lalescu.ro/
liviu/fet/ (cit. on p. 28).

Jordi Castro. «A computational evaluation of optimization solvers for CTA».
In: International Conference on Privacy in Statistical Databases. Springer.
2012, pp. 11-21 (cit. on pp. 31, 32).

Josef Jablonsk et al. «Benchmarks for current linear and mixed integer
optimization solvers». In: Acta Universitatis Agriculturae et Silviculturae
Mendelianae Brunensis 63.6 (2015), pp. 1923-1928 (cit. on pp. 32, 33).

Ashutosh Shenoy. MIP Solvers Unleashed: A Beginner’s Guide to PuLP,
CPLEX, Gurobi, Google OR-Tools, and Pyomo. Apr. 2025. URL: https :
//medium . com/operations-research-bit/mip-solvers-unleashed-
a-beginners—-guide-to-pulp-cplex-gurobi-google-or-tools—and-
pyomo-0150d4bd3999 (cit. on p. 33).

V. Cerone, S. M. Fosson, S. Pirrera, and D. Regruto. «A new framework for
constrained optimization via feedback control of Lagrange multipliers». In:
IEEFE Transactions on Automatic Control (2025), pp. 1-16. DOI: 10.1109/
TAC.2025.3568651 (cit. on p. 68).

V. Cerone, S. M. Fosson, S. Pirrera, and D. Regruto. «A feedback control
approach to convex optimization with inequality constraints». In: 2024 IEEE
63rd Conference on Decision and Control (CDC). 2024, pp. 2538-2543. DOL:
10.1109/CDC56724.2024.10885825 (Cit. on p. 68).

72

https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.124
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.124
https://www.mathworks.com/help/gads/what-is-the-genetic-algorithm.html
https://www.mathworks.com/help/gads/what-is-the-genetic-algorithm.html
https://www.geeksforgeeks.org/machine-learning/introduction-to-ant-colony-optimization/
https://www.geeksforgeeks.org/machine-learning/introduction-to-ant-colony-optimization/
https://www.geeksforgeeks.org/machine-learning/introduction-to-ant-colony-optimization/
https://lalescu.ro/liviu/fet/
https://lalescu.ro/liviu/fet/
https://medium.com/operations-research-bit/mip-solvers-unleashed-a-beginners-guide-to-pulp-cplex-gurobi-google-or-tools-and-pyomo-0150d4bd3999
https://medium.com/operations-research-bit/mip-solvers-unleashed-a-beginners-guide-to-pulp-cplex-gurobi-google-or-tools-and-pyomo-0150d4bd3999
https://medium.com/operations-research-bit/mip-solvers-unleashed-a-beginners-guide-to-pulp-cplex-gurobi-google-or-tools-and-pyomo-0150d4bd3999
https://medium.com/operations-research-bit/mip-solvers-unleashed-a-beginners-guide-to-pulp-cplex-gurobi-google-or-tools-and-pyomo-0150d4bd3999
https://doi.org/10.1109/TAC.2025.3568651
https://doi.org/10.1109/TAC.2025.3568651
https://doi.org/10.1109/CDC56724.2024.10885825

	List of Figures
	Introduction
	Thesis structure

	Background
	Operations research
	Integer Linear Programming
	Linear expression
	Linear constraint
	Symbolic representation of an LP

	Numerical optimization solvers
	CPLEX Optimizer

	ILP model for timetable allocation
	Constraints
	Objective function
	Types of problems and solutions

	Technical debt
	SonarQube

	Terminology

	Problem definition
	Requirements
	Inherited requirements
	New Requirements
	Other Requirements

	Correlations
	List of Constraints
	Hard Constraints
	Soft Constraints

	Design
	Data sources
	Database Courses_DB
	Excel files

	Lecture scheduling software: the state of the art
	Genetic Algorithm
	Ant Colony System Algorithm
	FET Scheduling Software
	Algorithm Choice

	Optimization Softwares Analysis
	CBC
	GLPK
	Gurobi
	CPLEX
	PuLP
	Google OR-Tools

	Adopted model
	Bidimensional Matrix Model

	Implementation
	Retrieving Courses data
	Incremental approach
	Computer Engineering
	2026 Teachings
	Teachers preferences about lectures organization
	ICM, ETF, and All Courses Timetables
	Technical debt management: the usage of SonarQube

	How to use the tool
	Excel_to_db_converter
	Timetable_Allocator
	Start from existing timetable
	Allocation on Saturday
	Export to Excel
	Function add_teachings_constraints
	add_teachers_constraints
	Parameters

	Web Application
	Allocation plan section
	Teachers section
	Timetable differences section

	Validation and performances
	Checking timetable goodness - Students
	Checking timetable goodness - Teachers
	Analyzing differences with previous timetable
	Performances with data from the academic year 2023/24
	Mechatronic Engineering
	All courses

	Performances with data for the academic year 2025/26
	Teachers' preferences

	Questionnaire for Teachers and Student's Representatives

	Conclusions
	Future works

	Bibliography

