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Abstract

The In-orbit Service (I0S) mission is designed to extend the lifespan of spacecraft
in orbit by enabling operations such as refueling, maintenance, and corrective
interventions. Within this context, the present thesis, conducted in collaboration
with Thales Alenia Space, focuses on developing Digital Twin version 1.0.0 for the
IOS mission, with particular attention to the Electric Power Subsystem (EPS).

The main objective is to enable testers to safely verify, optimize, and validate
spacecraft performance through simulation before launch. Given the company’s
long-standing collaboration with the European Space Agency (ESA), one of its
existing tools, SIMULUS, was selected as the simulation framework. Within
this framework, the EPS has been modeled in C++ with a focus on the Power
Control and Distribution Unit (PCDU) and its associated power lines, which
are responsible for managing and distributing electrical power to the spacecraft’s
subsystems. The developed module has been integrated into SIMULUS to create
a reliable and extensible simulator. Furthermore, the interface between the EPS
and the On-Board Computer (OBC) has been simulated via the MIL-STD-1553B
data bus and the Packet Utilization Standard (PUS) protocol, enabling telemetry
exchange with ground stations.

The simulator enables evaluation of the PCDU’s behavior, assessment of different
operational scenarios, and analysis of edge cases that would be difficult to reproduce
experimentally. Although the scope of the thesis is limited to software simulation,
the work establishes a foundation for future improvements and practical applications
in satellite mission development.
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Chapter 1

Introduction

1.1 Satellites: Applications, Challenges, and the
Role of Power Management

Satellites are among the most complex systems that the human mind has been
able to built. They are used for several purposes, including global navigation and
positioning via Galileo or GPS, for making internet accessible to the most remote
zones on the Earth with constellations like Starlink, to enable space exploration
missions such as Rosetta and supporting weather forecasting. Satellites are built for
civilians, scientists and today they have also a strategic role in defense and security.
The number of them have grown rapidly in recent years, also for the rise of private
companies. The satellite tracking website “Orbiting Now” lists around 13.000
active satellites in september 2025 and according to the analysts from McKinsey &
Company/[1] the number will be around 27.000

The hostile environment in which they operate makes their development a chal-
lenge. Space is characterized by vacuum, radiaton, extreme temperatures variations
and limited access to energy. Once deployed in orbit, repairs are rarely possible, so
all the loads must be reliable for its lifetime. The loss of just one of the subsystem
of the satellite could cause the failure of the entire mission, leading significant
finalcial and scientific loss. For this reason the construction of a spacecraft requires
rigorus engineering methods and procedures, every component must be follow some
standars and tested before launch.

The architecture of a satellites includes several sub-systems, each dedicated for
a particular function. These are the communication subsystem, the attitude and
orbit control subsystem, the power subsystem and all the specific subsystems for
the mission goals. Although each subsystem performs a specific role, they are all
interconnected and a failure in one of them could spread into failures in others.
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Introduction

Among them, one particular components is the power subsystem because it ensures
that all the others remain operational. Without a stable and sufficient power supply
no hardware can be turn on. Making an example, it represents the foundations of
a house under construction.

1.2 The Role of Simulation in Space Engineering

Given the high cost and risk of space missions, simulators provide a safe environ-
ment for engineers and researchers to test their solutions. They enable analysis,
assessment and verification of spacecraft and mission performance ensuring the
safety, efficiency and the success of complex commands before they are executed in
the real environment [2]. This possibility does not only reduce the risk associated
to unwanted behavior of the system but also accelerates development by allowing
engineers to quickly test different design scenarios.

Simulation is not used only during the development phase but acroos the lifecyle
of the space misison. During the design phase, it helps to evaluate trade-offs
between different technologies or architectures. During integration, it ensure that
each component functions correctly as expected. Even during operations, they can
be used for predict satellites behaviors under specific enviromental conditions. A
simulator is able to represents all those scenarios that are difficult to reproduce
experimentally like battery depletion or unusual load demand that may damage
the spacecraft. If engineers do not want to use software solution for these cases,
they would need costly test facilites risking to damage the hardware. As space
systems become more complex and more expensive during the years, the reliance
on accurante and flexible simulation frameworks is expected to grow.

ESA and Nasa are collaborating to create standardize frameworks to facilitate
interoperability across simultation tools used in different missions. This process
aim to reduce the costs against the development of simulator tools and simulated
models for specific missions. By adopting common standards, these agencies aim
to reuse simulation components across different projects, enanching efficiency in
misison planning [3].

Future generations of spacecrafts will require lighter mass while being sujbect to
higher load and extreme conditions over longer time than the current spacecrafts.
Since extreme thermal condition, mechanical and degradation of the components due
to radiation may be impossible to reproduce in a laboratory the use of computational
simulation assumes a central role. Vehicles will encounter conditions that can not
be predicted so a new approach to verification and validation of models, systems
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and simulation must be developed. In addition the ability to modify real time
parameters for the mission goal will be indispensable.

The new challenges that liea ahead need can not be based just on empirical-based
standard but require new multidisciplinary physics-based methods to ensure ro-
bustness, reliability and sustainability. If the physics models can be integrated with
the on-board sensors they will be able to certificate through simulation supports
real-time health management during missions, making the bases of a Digital Twin.

A Digital Twin is an integrated multiphysics, multiscale and probabilistic sim-
ulation of a spacecraft that uses physical models, sensors, fleet history to mirror
the life of the corresponding flying twin. It is ultra realistic and may include one
or more sub-systems of the specified vehicle. By combining all these information,
the Digital Twin can monitor system health, the remaining life and assess mission
success probability. It can also predict safety-critial events comparing expected
behavior and history behaviors. If the Digital Twin is aware by damagaes or
degradation it may reccomend changes in mission profile to increase the probability
of mission success|[4].

1.3 In Orbit Servincing Mission

The IOS mission is designed to extend the lifespan of spacecraft in orbit by enabling
operations such as refueling, maintenance, and corrective interventions. This
emerging paradigm encompasses essential operations like inspection, component
repair, and transfer of space assets to disposal orbits, representing a significant
technological leap.

Italy has strategically positioned itself within this domain through the National
In-Orbit Servicing Demonstration Mission. Funded by the National Re-
covery and Resilience Plan (PNRR) and managed by the Italian Space
Agency (ASI), the project is dedicated to the development and qualification of
key enabling technologies for future-generation in-orbit services.

The mission was awarded to a Temporary Grouping of Companies (RTI)
led by Thales Alenia Space as the prime contractor, including major industrial
players such as Leonardo, Telespazio, Avio, and D-Orbit. The mission design
involves a dual-satellite configuration—a servicer (an autonomous robotic vehicle)
and a target satellite. Set for launch by 2026, the demonstration will validate
critical capabilities in robotic control, artificial intelligence, and sensing necessary
for complex rendezvous and proximity operations.
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Figure 1.1: 10S satellite

1.4 Thesis Scope, and Objectives

This thesis establishes the foundational work for a Digital Twin, designated
version 1.0.0, dedicated to the Electric Power Subsystem (EPS) of the Italian
In-Orbit Servicing (IOS) mission. This development represents a high-fidelity
simulation effort aimed at creating a robust validation environment for spacecraft
power management and operational procedures.

The entire simulator environment is realized through SIMULUS, which operates
on virtual machines and interacts directly with the mission’s Ground Segment
infrastructure. Due to the critical nature of the application, adherence to the
ECSS-SMP (Spacecraft Model Portability) standard is rigorously enforced,
necessitating that all implementation be performed in C++. The architectural basis
was first defined using UML within the MagicDraw environment, establishing a
scalable architecture engineered for straightforward maintenance and future feature
enhancement.

The central contribution of this work lies in the detailed modeling of the Power
Control and Distribution Unit (PCDU), the core component of the EPS
responsible for managing and distributing electrical power to spacecraft subsystems.
The simulation reproduces its behavior in controlling the activation and deactivation
of power lines, regulating power flow toward onboard consumers, and ensuring
consistent and safe operation across different mission phases.

« Power Control and Distribution Unit (PCDU): The primary focus of this
thesis. The PCDU functions as the spacecraft’s central energy management
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unit, responsible for allocating and supervising power delivered to all electrical
loads through a set of controlled power lines.

e Power Lines: The physical and logical interfaces that distribute electrical

power to the various subsystems of the spacecraft, managed and monitored
by the PCDU.

The critical function of the PCDU requires it to interface with the simulated
On-Board Computer (OBC) through the internal MIL-STD-1553 (Milbus)
protocol, receiving commands for load management and status updates.

A crucial component of this work was enabling seamless communication be-
tween the Ground Station and the simulated spacecraft. This was achieved by
implementing the external telemetry and telecommand exchange using the Packet
Utilization Standard (PUS). Consequently, this thesis delivers a functional,
standard-compliant EPS model in C++, establishing a solid foundation for the IOS
mission’s comprehensive Digital Twin and future extensions to the complete power
subsystem.

1.5 Thesis structure

The thesis is structured into the following chapters. Chapter 2 explains the
state of the art of the software and programming languages used during this
thesis. Chapter 3 discusses the simulator architecture used for the simulation with
particular emphasis on the SIMULUS framework and on the standard used for
programming the models. Chapter 4 details the design and the implementation of
the EPS components as well as their integration with the the On-Baord Computer
via MIL-STD-1553B and the Packet Utilization Standard (PUS). Chapter 5 is
about the results of the simulation, showing how the Digital Twin validates tests on
different operational scenarios. At the end, Chapter 6 contains the closing remarks
about the thesis with outlining the future implementation that can be added.



Chapter 2

State of the Art

This chapter presents an overview of the technologies, tools and methodologies that
has been used for this thesis work. It provides context on the software frameworks,
modelling environment and the standards adopted during the development of the
simulator. The first section introduces the C4++ programming language, outlining
its revelance for developing high-performance software for simulation environments.
The integration between MagicDraw and UML is then discussed. Subsequently, the
SIMULUS framework is presented, describing its role in space simulation and the
compatibility with the ECSS standard. Lastly, this chapter discusses the virtual
machine environment used to host the development. The rationae behind these
technological choices, with a comparison to alternative solutions.

2.1 The C+4++ Programming Language

C+-+ is a compiled, object oriented programming language that allows the developer
to have fine-grained control over hardware resources and memory. It combines the
efficiency and flexibility of low-level programming with the abstraction capabilities
of a high-level language, enabling both performance optimization and structured
software design. It is statically typed, meaning that the type of every variable is
declared or determined at compile time rather than at runtime. It is also a case-
sensitive language, distinguishing between uppercase and lowercase identifiers. Since
C++ source code is compiled directly into machine-specific instructions, programs
typically run faster and more efficiently than those written in interpreted languages,
where code is executed line by line. Furthermore, C++ is officially supported by the
ECSS standard, as well as by development tools such as MagicDraw and SIMULUS,
making it a suitable choice for software engineering in the space domain.
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2.2 Model-Based Design with MagicDraw and
UML

The Unified Modeling Language (UML) is a general-purpose, object-oriented
graphical language used to represent the architecture and design of a system. It
provides a standardized way to describe the behavior, interactions, and structure
of the various components that compose a system.

In this thesis, UML has been employed to design the Power Control and Distribu-
tion Unit (PCDU) and to model its interactions with other components within the
simulator. As UML is a standardized language that requires specialized software
for its interpretation, MagicDraw has been used for this purpose.

MagicDraw, developed by Dassault Systemes, has been widely adopted in the
aerospace and systems engineering domains since its early development. From its
inception, it has been designed with a strong focus on model-based system engineer-
ing (MBSE), making it particularly suitable for complex aerospace applications.
Furthermore, MagicDraw is officially supported by the SIMULUS framework and
enables the automatic generation of code compliant with the adopted standards
through UML model import.

Figure 2.1: PCDU UML

The image above represents the PCDU UML that will be discussed in the next
chapters.
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2.3 European Cooperation for Space Standardiza-
tion Simulation Model Portability Standard
ECSS - SMP

The ECSS-SMP standard is a set of guidelines for simulation models developed by
the European Space Agency (ESA) in collaboration with other organizations in the
European space industry, such as the European Space Operations Centre (ESOC).
It is widely adopted for the engineering of simulation software for space systems.

The standard defines the structure and behavior of simulation environments
and models, providing all the necessary specifications and tools for building a space
simulator that is compliant with ECSS requirements. One of its main advantages
is the ability to reuse simulation models across different projects and simulators,
as long as each simulator adheres to the SMP standard.

Each simulation model is designed as a stand-alone component. This modularity
allows users to simulate complex systems, such as satellites, by selecting and
connecting the required models according to the standard and assigning appropriate
values to ensure compliance with the specified requirements.

2.4 SIMULUS

SIMULUS is a modular framework for the development of spacecraft simulators,
developed by the European Space Agency - European Space Operations
Centre (ESA/ESOC) and based on the ECSS-SMP standard [5]. It provides tools
for building high-fidelity mission simulations, including CPU emulators (ERC32,
LEON2, LEON3) and generic models representing spacecraft subsystems. The
framework is designed to be flexible and scalable, allowing developers to select com-
ponents according to mission requirements and to create models tailored for specific
scenarios. By adhering to ECSS-SMP, SIMULUS ensures model interoperability,
reusability, and traceability across different simulation projects.

A core part of SIMULUS is SIMSAT, the software infrastructure for modeling
satellites. SIMSAT offers a GUI-based Man-Machine Interface (MMI) to monitor
and control simulations in real time. Through SIMSAT, users can observe model
parameters, execute commands or scripts, log simulation events, and save or restore
states. This environment supports interactive testing, scenario exploration, and
debugging, making it suitable for both development and operational verification of
satellite systems.

SIMULUS employs a component-based approach where models represent space-
craft subsystems or functional units, and services provide global simulation function-
alities. Models are uniquely identified via UUIDs, configurable for mission-specific
parameters, and can be dynamically connected through well-defined interfaces.

8



State of the Art

This design enables modularity, facilitates integration with UML/MagicDraw, and
supports a wide range of simulation types, from functional and analytical models
to hardware emulators like the PCDU, battery, or solar array.

2.5 Avionic Communication Protocols

During the thesis development, two distinct avionics communication protocols
were utilized: the Packet Utilization Standard (PUS) and Milbus. The PUS
is employed for space-to-ground and ground-to-space telemetry exchange,
handling the sending and receiving of vital spacecraft data. In contrast, Milbus
serves as the internal satellite data bus, facilitating information exchange
between various onboard subsystems and units. This internal function is broadly
analogous to the role of Ethernet in a standard computer network, providing a
local communication link between connected components.

2.5.1 Packet Utilization Standard

The Packet Utilization Standard (PUS), defined under the **European Co-
operation for Space Standardization (ECSS-E-ST-70-41)**, is the core protocol
for space-to-ground and ground-to-space communication. It governs the
structure and content of all data exchanged between the spacecraft and the ground
control segment. PUS establishes a standardized framework for Telemetry (TM)
and Telecommand (TC) services, categorizing them into functional domains (e.g.,
On-Board Operations, Data Management, Housekeeping) via predefined Service
Types and Subtypes. This modular, service-oriented structure is crucial for
defining, managing, and verifying the execution of operations, facilitating robust
and interoperable command and control across various missions.

2.5.2 Milbus

The MIL-STD-1553 is a widely adopted military standard that defines the me-
chanical, electrical, and functional characteristics of a time-division multiplexed
(TDM) serial data bus. While initially designed for military avionics, its high relia-
bility and robust architecture led to its widespread use in spacecraft on-board
data handling (OBDH) subsystems for both military and civil applications.
The protocol is structured around a central Bus Controller (BC) that governs
all communication with connected Remote Terminals (RTs), ensuring strict
control over data flow. Furthermore, it is characterized by a half-duplex com-
mand /response protocol and commonly features dual-redundant balanced
line physical layers to maximize fault tolerance.

9
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2.6 Rationale for Technology Selection

The selection of both the programming language and the simulation environment
was guided by the need for high computational efficiency, real-time performance,
and direct control over hardware interactions—requirements paramount for an
accurate satellite simulator.

While numerous languages are available for software development, including C,
Python, and Java, C++ was selected as the optimal choice for its unique balance
of performance and object-oriented simplicity.

o C: As a low-level language, C offers absolute control but necessitates exten-
sive manual implementation of fundamental features, such as object-oriented
concepts and complex library integrations. This requirement for excessive low-
level programming compromises development speed and code maintainability,
despite offering high performance.

o Python: Python is a high-level, interpreted language. Although it excels in
rapid prototyping and data analysis, its interpreted nature leads to inefficient
execution unsuitable for the strict, real-time requirements of a performance-
critical simulator kernel.

« Java: Java, which relies on the Java Virtual Machine (JVM), sacrifices direct
memory management for portability. This intermediate layer and garbage
collection mechanism introduce overhead and remove the critical low-level
control necessary to guarantee the predictable performance required for time-
sensitive avionics applications.

o Rust: While languages like Rust offer excellent speed and memory safety, its
relative novelty means that many established avionics frameworks, supporting
tools, and legacy systems—including those required for this project—lack
mature support, making its adoption impractical at this time.

In conclusion, C4++ was chosen as it provides native support for high-performance
Object-Oriented Programming (OOP), direct memory management, and the com-
pilation to native machine code, satisfying the strict efficiency and control require-
ments of the simulator.

Alternative simulation tools were evaluated against the primary objective: cre-
ating a high-fidelity satellite subsystem simulator.

« MATLAB and Simulink: These commercial tools from MathWorks are
highly effective for specific tasks. MATLAB is designed primarily for nu-
merical algorithms and data analysis, while Simulink excels at graphical

10
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Model-Based Design for simulating dynamic systems (e.g., control laws, elec-
trical models). However, they lack the specific architecture and interfaces
designed for integrating with a space mission control system and are not
optimized for full, high-speed, operational spacecraft simulation.

SIMULUS: Developed specifically by the European Space Agency (ESA),
SIMULUS is an operational simulation framework built explicitly for spacecraft
simulation. Its key advantages are its inherent ability to model all satellite
subsystems, its native consideration of mission time, and its perfect integration
with C++ (the language of choice), providing a robust platform tailored
precisely to the project’s objectives.

11



Chapter 3
Simulator Architecture

This chapter provides a detailed examination of the simulator’s architecture, in-
cluding the underlying physical hardware and the rationale guiding the chosen
virtualization strategy.

The simulator resides within a virtualized environment hosted on a single, high-
specification physical workstation. The system is built around an Intel Core Ultra
9 285K processor, supported by an ample 128 GB of RAM, and utilizing a 2
TB Solid State Drive (SSD) running the Windows 11 operating system. This
robust hardware foundation was indispensable; the computational load imposed
by the high-fidelity SIMULUS framework, particularly when modeling complex
subsystems, necessitated a strong resource baseline to guarantee efficient and
reliable operation.

The entire platform is implemented using VMware Workstation Pro 17,
adopting a strategy of strong virtualization. This approach was intentionally
chosen over light virtualization, predominantly for two critical reasons: the enhanced
isolation and security it provides, protecting the host machine’s filesystem from
any potential compromise within the simulation environment, and its ability to grant
the guest operating systems greater independence from the inherent virtualization
challenges of the Windows 11 host.

The available physical resources were meticulously allocated across the two
primary virtual machines based on their functional demands:

e Spacecraft Simulator Machine: As the kernel for the performance-intensive
SIMULUS framework, this VM received the majority of the resources, specif-
ically allocated 16 virtual cores and approximately 100 GB of dedicated
RAM. This high provision ensures the necessary smoothly execution for
simulator.

e Ground Station Machine: Given that its sole function is constrained to
external packet-level communication (sending and receiving PUS data), the

12
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Ground Station VM required fewer resources. Consequently, it was allocated
8 virtual cores and 10 GB of RAM.

This deliberate distribution guarantees that critical simulation components receive
the essential computing capacity to operate effectively and reliably within the
established architecture. Communication between the two virtual machines is facili-
tated over a dedicated Local Area Network (LAN) segment using the TCP /TP
protocol. This setup effectively isolates the simulation network, enhancing fidelity
by ensuring only the Ground Station and the simulated Spacecraft interact. The
Spacecraft machine hosts a continuous process that operates as the server,
listening for incoming connections on a specified network port. Conversely, the
Ground Station machine functions as the client, initiating the TCP/IP connection
to establish the communication link. To streamline the setup and ensure consistent
operational startup—thereby eliminating the need to modify configuration files
prior to each simulation run—a static IP address was assigned to the Space-
craft server. This practice is crucial for maintaining a reliable, persistent network
configuration throughout the development and testing lifecycle.
The image below represents the environment configuration.

| Model N

| SMDL Emulator
. Model
| \

Figure 3.1: Environment Configuration

00

| External SMDL |

Model 1 .
: TCP/IP .
l o I
X Simulator .
) External SMDL |

3.1 Spacecraft Machine

The spacecraft machine runs SUSE Linux Enterprise Server (SLES) distribu-
tion and acts as the spacecraft, where the simulation is executed.

SLES was chosen because it provides a stable, secure and long-term supported
environment. Unlike the other Linux distros, this one is ideal for mission-critical
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workloads, which aligns with the aerospace industry. Its a long-term support
system, ensuring continuity during long development and testing phase without
disruptive upgrades. Furthermore, this operating system is optimized for running
computationally intensive simulations, such as the heavy numerical processing
needed for a digital twin. It also integrates advanced security mechanisms, includ-
ing confidential computing to protect data during processing and granular user and
system permissions protecting an environment full of sensitive information [6].

Within the spacecraft VM, satellite is simulated using SIMULUS. Before pro-
ceeding, its important to clarify the distinction between simulation and emulation.
The spacecraft VM hosts the On-Board Software (OBSW), which requires the
On-Board Computer (OBC) to operate. Since the OBC hardware is expensive and
not available in the laboratory, it is emulated within SIMULUS using the resources
of the virtual machine and TEMU Emulator. At the same time, the OBC needs
to communicate with the spacecraft loads that are not physically present and that
are simulated by C++ modules integrated into SIMULUS.

Emulated On-Board Computer

On-Board Software

Simulated Loads

C++ moadel

Figure 3.2: Emulation/Simulation Boundary Diagram

3.1.1 TEMU Emulation Utility

TEMU (Terma Mission Utility) is a high-performance commercial tool specif-
ically designed for the emulation of spacecraft processor cores and subsystems,
often utilized in Software-in-the-Loop (SIL) environments. TEMU utilizes ad-
vanced techniques such as dynamic binary translation to achieve high performance
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in emulating processor cores from major aerospace families, including SPARCv8
(e.g., LEON3, LEON4, GR740) and PowerPC. Crucially for this project’s context,
TEMU provides detailed models for standard spacecraft buses and devices, in-
cluding support for the MIL-STD-1553 data bus. Its architecture, featuring an
easy-to-use device modeling API in C or C++, facilitates seamless integration into
existing simulation frameworks and test benches, supporting the development and
validation of complex On-Board Software (OBSW) prior to deployment on flight
hardware.

3.1.2 Software Infrastructure for Modelling Satellites (SIM-
SAT)

It is the SIMULUS Graphical User Interface (GUI) called as Man Machine
Interface (MMI) since it allows to actively monitor and controll the simulation.
MMI can display the status of each simulated model such as parameters, services,
variables and connections. This software allows the user to control the ongoing
simulation via commands and scripts, recording the logs, raising exception in case
of anomalous behaviour and saving or restoring the states of the modules. The
image below shows the SIMULUS GUI. It provides several features, listed below:

Figure 3.3: MMI|[7]

o Simulation Tree View: It shows all Services, Models and published Field-
s/Properties of the attached simulation

o Message Displays: Shows current and past messages with all the error
information from the MMI itself
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o Events Display: Overview of all scheduled events and their properties

o Properties Display: Shows the properties of the currently selected node in
the Simula

« MAT Displays: Configurable Table View to track the value of one or more
Simulation Parameters/Properties

« GRD Displays: Configurable Graphical Display to track the value of one or
more Simulation Parameters/Properties

o Action Executor: Allows to send commands to th connected script host to
interact with the simulation

The Figure 3.3 represents the GUI as the user sees it. On the bottom right there
is the Simulation Status bar, it gives information about the simulation time (S)
in seconds, Epoch (E), Zulu (Z), Start Mission Time (StM) and Mission
Elapsed Time (MET). It has also a Speed Factor (S) allowing the simulation
to run faster than the actual time. On top is present the simulation control bar
that gives access to severals tools such as saving and restoring the simulation state,
run and pause the simulation, change the scheduler configuration. On the left there
is the simulation tree. This view allows the user to view and explore the component
hierarchy of the attached simulation. Exist multiple kind of nodes, some of them
are complex nodes, having child nodes, others can be object or even more granular
as variables. Since projects are really complex, so the hierarchy contains a huge
number of nodes, a search function is available.

Is important to notice that the connection between the Ground Station Machine
and the spacecraft one can not be established unless SIMSAT is running, since it
has a process listening on a port.

Inside a folder on the desktop named tasi.sve are presented different folders,
Src with all the satellite simulated model in C++, Simulator containing the
scripts in order to run SIMSAT and target containing all the scripts and the
configuration files the setup the simulator and the new models. This structure is
revelant since in the implementation part this terms will return.

3.2 Ground Station Machine

This virtual machine, named Echo, which operates on the Windows 7 operating
system. This specific OS was chosen due to its essential compatibility with the
proprietary internal frameworks utilized for ground segment operations. The
machine’s primary function is to host the operational software necessary to establish,
monitor, and control the communication link with the simulated spacecraft.
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Establishing and maintaining communication with the spacecraft simulator
requires sequential execution of several interconnected software applications. These
tools are critical for translating user commands into network packets and interpret-
ing incoming telemetry.

o iride_ if.exe (Interface Manager): This software is responsible for es-
tablishing the fundamental TCP /IP connection between the Echo and
Spacecraft VMs. During initialization, it loads a configuration file containing
all necessary network parameters, including static IP addresses and dedicated
communication ports. The use of static IP addresses is critical here, as it
ensures consistent and repeatable connection establishment without requiring
configuration file modification for every simulation run. Furthermore, the
configuration specifies distinct ports for Telecommand (TC) transmission and
Telemetry (TM) reception, a requirement dictated by the SIMSAT framework.

o Message Transport Protocol (MTP): The MTP software defines the
necessary rules and mechanisms for reliably transmitting messages across
the network nodes. Its function is to ensure that data is delivered correctly,
in sequence, and without duplication or loss, handling low-level tasks such
as error detection and flow control. The integrity of the ground system is
verified during the MTP boot phase, as it checks all configuration files; any
mismatch in network parameters (e.g., altered IP or port settings) indicates a
configuration fault.

« OBE4.exe (Packet Decommutation and Monitoring): OBE is a crucial
monitoring tool that reads the outgoing Telecommands (TCs) and the incoming
Telemetries (TMs). Its core function is to deserialize the received data packets,
making them understandable to the user via a Graphical User Interface (GUI).
This process relies on a pre-loaded dataset of known commands for proper
interpretation; unknown packets will be flagged (typically with a ’?”) but will
not compromise software stability. OBE allows the user to verify the successful
execution of commands, as a corresponding telemetry packet is expected upon
every successful TC transmission.

+ Telecommand Console (TCC): TCC provides the graphical interface that
allows the operator to send Telecommands to the spacecraft. While it typically
relies on a database of predefined commands, the need to constantly update this
database for developmental testing presents a logistical challenge. To bypass
this, especially in the context of this thesis where official Telecommands were
not fully established, the software permits the transmission of **RAW byte
data®™* directly to the onboard software. Upon execution, TCC sends initial
boot Telecommands to the spacecraft; their absence in the OBE monitor
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signals either a configuration issue or a failure of the On-Board Software
(OBSW) to recognize the initial commands.

This machine provides also all relevant technical documentation and opera-
tional manuals, providing immediate support for troubleshooting and maintenance
activities.
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Chapter 4

Implementation and
Development Process

This chapter provides a detailed explanation of the development and validation
processes for the Electric Power Subsystem (EPS) software model. The primary
focus is placed upon the Power Control and Distribution Unit (PCDU)
and the associated modeling of the satellite’s power lines. The discussion includes
all simulation techniques utilized, along with a comprehensive justification for
the implementational choices adopted. It is important to note that the PCDU
developed in this work does not follow the exact requirements of the units used
in the IOS missions, due to confidential reason. Instead, a representative and
functionally equivalent model has been designed to demonstrate realistic behavior
within the simulator. Before proceeding to the in-depth analysis of the software
implementation, it is essential to first establish a functional and physical description
of the PCDU to properly contextualize the objectives of this modeling.

4.1 Power Control and Distribution Unit overview

The role of this component is to distribute the power generated by the battery and
the solar array across the system. It sits between these sources and all the spacecraft
loads and unlike other spacecraft’s component it operates more independently from
the On-Board-Computer (OBC). The unit features two main interfaces, one for
each power source, the electronic to handle the power distribution, the dedicated
powerline interfaces for the loads and also a module to exchange Milbus messages
with the On-Board-Computer, acting as remote terminal.

In addition to its distribution role, the PCDU protects power lines to prevent
failure propagation between loads and the electrical power subsystem (EPS),
provides load switching capabilities, conditions the bus voltage and offers command
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to support health monitoring and control[8].

The unit operates in two possible scenarios: the eclipse phase and the sunlight
phase. During the eclipse phase, the spacecraft moves through the shadow of a
celestial body (usually a planet) and the solar panels are unable to generate power.
In this condition, the battery is the sole power source, discharging to supply the
loads while PCDU ensures stable power delivery across the powerlines. During the
sunlight phase, the solar panels provide the power. If the generated power exceeds
the demand of the active systems, the surplus is used to recharge the battery in
preparation of the next eclipse; otherwise, all the generated power is directed to
the loads.

Unregulated loads

SAR SSL i LCL
" Heater drivers

- Regulated load 1

BCM‘| 1 DC/DC LCL
Regulated load 2

Internal Data bus Dc/DC LcL
Regulated load 3

- m e
BATTERY
L p—

Internal Data bus TM/TC module

Figure 4.1: PCDU schema

The structural view of this hardware is presented in Figure 4.1 above, defining
the following elements:

« Serial Shunt Switching Regulators (S3R).
e Unregulated and Regulated Bus.

» Latching Current Limiter (LCL).

» Heaters.

« TM/TC module (Data bus handling).

« Battery Charging Module (BCM).

The following subsections present the main electrical components of the PCDU
hardware, without going into excessive detail.
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4.1.1 Serial Shunt Switching Regulators

As previously established, the PCDU is situated between the Battery and the
Solar Array, managing the power interface. The Solar Array subsystem inherently
generates power independently of the spacecraft’s variable load demands. This
disparity between the instantaneous power generation and the power required
by the main bus can introduce undesirable voltage and current fluctuations,
potentially compromising system health. To mitigate this critical issue, the most
widely adopted solution is the Serial Shunt Switching Regulator (S’R), also
commonly referred to as a Direct Energy Transfer (DET) device. Shunt
Regulators operate by actively regulating the current drawn from the solar array,
thereby ensuring the array’s output voltage remains consistently clamped to the
required main bus voltage level.

4.1.2 Regulated and Unregulated bus

Loads are connect through power buses, which can be either regulated or un-
regulated. The difference between those two implementations lies in the use
of controllers to maintain a stable voltage. In an unregulated bus, the voltage
depends on the battery characteristic, leading to significant variations between
fully charged and fully discharged states. Regulated bus instead provides stable
voltage and current making it situable for all those components that are sensible to
supply variations. However, the implementation of a regulated bus requires power
converters, increasing the complexity and cost of the system.

According to the European Space Agency (ESA) [8], the implementation
choice depends primarily on the power needed by the loads:

e From about 500W to 1.5KW, 28V is used;
o Up to 8kW or so, 50V bus is used;

o For higher power, 100V bus is used

The decision of the implementation depends also on mission-specific requirements,
efficiency constraints and on the sensitivity of onboard subsystems. For example,
small satellites often adopt unregulate buses to minimize mass and cost, while
large spacecrafts with high-performance electroncics, such as telecommunications
satellites, typically employ regulated buses to ensure reliable operations.

In the unregulated bus architecture, loads are connected directly to the battery
output.
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4.1.3 Battery Charging Module (BCM)

The BCM is linked to both the main bus and to the S3R. It reads the voltage
and uses monitors to read the charging and discharging current. Based on these
measurements, the BCM regulates the S3R to mantain the desired current on the
main bus. This module implements control algorithms for both constant current
(CC) and constant voltage (CV) phases.

Beyond the purely regulated and unregulated topologies, hybrid architectures
also exits, combining elements of both approaches. In such configurations, part of
the power is handed through direct battery connection (unregulated), while all the
specific loads requiring steady voltage are employed on specific regulated powerline
using DC/DC converters.

4.1.4 Latching Current Limiter

The Power Control & Distribution Unit, as expressed before, allows the current
to flow to satellite loads. Since it is not redundant, it represents the single point
of failure. To prevent failures from propagating to all systems, measures shall be
implemented. A circuit able to do it is the Latching Current Limiter (LCL)
(?77?), it is placed between the loads and the DC/DC converter in the regulated bus.
This circuit monitors the amount of current flowing out of the PCDU and, if the
amount of current exceed a define threshold, it disconnect the circuit switching to
an open state, preventing further current flow.

4.1.5 Heater Drivers

PCDU has also heaters driver (??) to turn ON/OFF heaters in all the spacecraft.

Each electronic device has a range of temperature where it performs optimally;
therefore, thermal conditions must be carefully managed. During the sunlight
phase of the orbit, the satellite’s external panels regulated the incoming radiation
by reflecting the sunlights, limiting the heat absorption. In contrast, during the
eclipse phase, since the outside temperature is closed to the absolute 0, heaters
are turned on to maintain the internal temperature in the optimal range.

These heaters are regulated by this unit through telecommand (TC) and are
able to send back data to check their correctness.

Since this component needs to interact with the on-board computer, it has
an interface module with an own terminal address that is able to receive and
transmit command following the MILBUS standard, it will be discussed directly in
the next pages.
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4.2 UML implementation

Following the definition of the PCDU’s functional requirements—including critical
constraints on minimum bus voltage, maximum battery charging current, and the
specified terminal address for internal bus communication—the project entered the
design phase, starting with a UML (Unified Modeling Language) approach
using MagicDraw.

Inside the tasi.sve terminal, the following two commands were executed:

e bootstrapper -deps tasi.sve -name tasi.sve.pcdu -output tasi.sve/Src
This command creates the tasi.sve.pcdu folder inside tasi.sve/Src.

« make -C target/debug run_magicdraw
This command launches MagicDraw, already configured to use the Src folder
inside tasi.sve as the project root.

Once MagicDraw is open, it prompts the user to open a folder, which in this case
is tasi.sve.pcdu. At this point, all dependencies required by the UML module
must be added. There are three main dependencies in this project:

o ECSS and ISIS libraries: These libraries support models developed accord-
ing to the ECSS standard. For this project, version 10.3 of the ECSS library
was used because it is stable and well-tested. They provide a set of generic
simulation models, such as the Satellite Electrical Network Simulation
Model (SENSE), which can be reused across different SMP-based simulators.
Each model includes interfaces for communication, failure modeling, events,
and parameters. The library file is located in the folder Simulator10__3 on
the desktop.

o Tasi.sve.common libraries: Developed by Thales Alenia Space, these
libraries contain standard-compliant sample models. They accelerate the
development of new simulators by providing reusable components. Although
the library is present in the Src folder, it is not yet linked to the simulator
environment, as it only contains sample models.

Once all dependencies have been added, the model development can begin follow-
ing standard UML methodology. Key concepts such as inheritance, ownership,
composition, and multiplicity (often represented as numbers on arrows) are
applied throughout the design.
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...........

Figure 4.2: PCDU UML

Figure 4.2 represents the UML design of the PCDU. To fulfill the previous
explained functionality, this model is composed of several specialized OOP compo-
nents, each dedicated to a specific task, as listed below:

o Pcdu:lt represents the main object in the UML model and contains all the
data required to configure the key parameters, such as the power needed by
the component to operate, the bus voltage range, the battery End-of-Charge
Voltage (EOCV), and flags for specific operations (e.g., the firing of the pyro).
This component inherits from GenericCyclicModel, as it must update its
state cyclically every few milliseconds in order to comply with the behavior of
the real hardware component.

e PcduBatPowerConsumer: It represents the PCDU module that interacts with
the battery interfaces. It receives the power generated by the battery and
inherits from GenericPowerConsumer, as it is modeled as an electrical power
consumer. The module implements the methods GetCurrent, SetCurrent,
GetVoltage, and SetVoltage, which define its interaction with the battery.

e PcduSAPowerConsumer: It represents the PCDU module that interacts with
the solar array interfaces. It receives the power generated by the solar array and
inherits from GenericPowerConsumer, as it is modeled as an electrical power
consumer. The module implements the methods GetCurrent, SetCurrent,
GetVoltage, and SetVoltage, which define its interaction with the solar
array.

o PcduPowerSupplier: It represents the PCDU module that interacts with the
output interfaces. It sends to each on loads, the current amount of voltage and
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current they need. Since this component provides just few features, it inherits
from GenericModel. The important functions are UpdateSuppliedPower,
SetPortImplementation, SetStatusLoad.

e Pcdu1553: It represents the PCDU module responsible for communicat-
ing with the onboard computer. It is able to handle the MILBUS mes-
sages and responding appropriately to the commands received. This mod-
ule simulates the behavio of the remote terminal within the PCDU. It in-
herits from GenericRemoteTerminal and the main functions are BCtoRT,
caseCmdBcRTRead, enableSubAddress.

In the figure, it can be seen that the components inherit only from the Generic
models, while all submodels are instantiated inside the Pcdu object. This design
does not prevent exchanging values between submodels, because the ECSS standard
provides each element with common attributes, such as a pointer to the element
that instantiated it, allowing values to be shared across all simulated models. The
UML diagram also defines three power lines, which are not visible in the figure:
one connected to the battery, one to the solar array, and one to the generic loads.

In the diagram, it can be seen that all variables are defined as SMDLfield, while
all methods are defined as SMDLoperation. When these definitions are made public
and tagged with SMDL, the variables and methods become directly visible in
SIMSAT. This allows the user to monitor variables in real time or even execute
methods while the simulation is running.

After the UML has been drawn, MagicDraw allows the user to export it directly
in a C++ format compliant with the ECSS standards, clicking on the button on
the navbar, having a hierarchical tree as shown in figure below.

Figure 4.3: PCDU tree hierarchy
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It can be observed that for each component, different files are generated, such as
Smp and Forward. The Smp file contains the class constructor, while the Forward file
defines the namespace where the component or its subcomponents are declared. The
creation of these files depends entirely on the ECSS-SMP compliant architecture.

At this point of the process, the model is not still linked on the simulator, its just
a stand alone project. In order to link models between them, SIMULUS provides
a configuration XML files where the hierarchy of the entire subsystem with their
component is defined. Exists a general XML files where all the XML files of each
model is connected to.

Name="RT_LINE B" Container ="Models"

Figure 4.4: PCDU XML

The figure above shows the XML configuration related to the PCDU. The
Assembly tag specifies the node of the spacecraft hierarchy where the module must
be added, in this case STUBS. The InstanceNode tag defines a component that
will be instantiated dring the simulator boot phase. Here, the PCDU module
tasi::sve::pcdu: :Pcdu is instantiated, and its name will be visible in SIMSAT,
provided that the path is correct.

The AliasNode tag is used to create references to elements that already exist
once the simulation is running. For this reason, the Name attribute of the AliasNode
must match the name of the corresponding element instantiated in the Configure
function. In this case, a reference is created between a PowerLine instantiated in
in the configuration and the RCU module. The other end of this power line is
linked to the refPowerLine variable defined in the RCU.

Finally, another InstanceNode is used to instantiate the Pcdu1553 module itself,
which groups the remote terminal lines and enables communication between the
PCDU and the on-board computer.
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The AliasNode tag is used to instantiate smaller components within a larger
module. In this case, two SimpleNodes define the remote temrinal lines (RT_LINE_A
and RT_LINE B) inside the Pcdu1553 module. These lines are linked to the
on-board computer via the MILBUS, with references to BUS15653_A_GR740 and
BUS1553_B_GR740, since the bus is redundant.

In the main XML file, the Pcdu component is declared directly under STUBS. This
means that when SIMSAT is running, the PCDU variables can be accessed under
the STUBS node in the tree displayed on the right side of the GUI.

Figure 4.5: Main XML file

In this context, the Subnodes tag indicates that the element is not a node itself,
but rather a port of the node. The corresponding subnode data are defined within
the InstanceNode element, whose Name attribute matches the value specified in
the Subnodes tag — in this case, Pcdu.

4.3 ECSS-SMP compliancy

The ECSS compliancy is directly visible inside the defined objects since all of them
share the same characteristics listed below:

e Universally Unique Identifier (UUID):isa 128 bit long unique identifier,
which guarantees unambiguous referencing across simulations and projects.
The use of UUIDs avoids naming collisions, simplifies traceability, and ensures
that models can be reliably reused and exchanged.

o Configure method: initializes the model’s parameters, defines operational
ranges, and binds external interfaces. Configuration allows the same model
template to be adapted for different mission scenarios simply by altering its
parameter set. This flexibility is essential to maintain modularity and reduce
development cost.

e Connect method: establishes links between internal model ports and external
data flows, replicating telemetry, telecommand, or sensor pathways present in
real spacecraft. The explicit connection mechanism guarantees consistency in
data exchange and enforces compliance with interface definitions.

e Publish method: allows a variable or method to be visible and run on SIMSAT
while the simulator is running.
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o Types: in the ECSS does not exists the standard variables but each of them
is a type of Smp, for example Uint8 is defined as Smp: :Uint8, giving to it all
the properties that it needs to be compliant with these standard.

During the boot phase of each components these methods are called in the
following order: Smp constructor, Publish, Configure and Connect.

4.4 Pcdu Main Object Implementation

The constructor of the PCDU is defined but not implemented since for debugging
purposes has been usefull defined the viariables and their value in a configuration.
Its pseudocode is shown below:

. procedure INITIALIZECONSTANTS > — Constant Definitions —
: const UInt8 rt «— 11 > for testing purposes
const UInt8 phyAddr <+ 18 > for testing purposes
const Float64 regulatedVoltage <— 28

const Float64 vMean < 55.0

const Float64 nBattDis < 0.98

const Float64 nBattCha < 0.86

const Float64 eocv < 61.5

const Float64 battResistence < 25e-3

const Float64 equivalentResistence <— 15.12e-3 + 25e-3

11: end procedure

N —

H
Boououew

After the call to the constructor, the Publish method is invoked to publish
all the relevant variables and method in the SIMSAT environemt, following the
ECSS-SMP standard. Below is shown the pseudocode summarizing the main
operations:

Algorithm 1 Publishing Fields

1: procedure PUBLISHFIELDS(receiver)
: Call base class Publish(receiver)
if requestHandlers is empty then
PopulateRequestHandlers(this, requestHandlers)
end if

> — Publish Fields —

PublishField("p_ powerBusMaxVoltage", &p_ powerBusMaxVoltage)
PublishField("p_ powerBusMaxCurrent', &p_powerBusMaxCurrent)
: PublishField("isOn", &isOn)
10: PublishField("passivationOn", &passivationOn)
11: PublishField("tmtcOn", &tmtcOn)
12: PublishField("dnelOn", &dnelOn)
13: PublishField("pbrOn", &pbrOn)
14: PublishField("batterySwitchOn", &batterySwitchOn)
(
(
(

2

3

4

5

6: PublishField("p_ powerBusMinVoltage", &p_ powerBusMinVoltage)
7.

8

9

15: PublishField("solar ArrayVoltage", &solarArrayVoltage)
16: PublishField("batteryVoltage", &batteryVoltage)

17: PublishField("powerWatt", &powerWatt)

18: end procedure
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Algorithm 2 Publishing Properties

1: procedure PUBLISHPROPERTIES > — Publish Properties —
PublishProperty("IsOn", Bool)
PublishProperty("BatterySwitchOn'", Bool)
PublishProperty("SolarArrayVoltage", Float64)
PublishProperty("BatteryVoltage", Float64)
PublishProperty("PowerWatt", Int32)
end procedure

The Configure method is executed. For each subcomponent, the internal
function common: : CommonRoot: :CreateContainedModel is called with the corre-
sponding UUID passed as an argument. The result of this operation is a container,
pointed by a variable, whose first element (index 0) holds the instantiated subcom-
ponent. This method instantiates all the previously described subcomponents, and
the boot phase for each of them starts again.

In addition, the the Configure method defines the EntryPoints, which are
events triggered automatically, without human intervention. In this case, the entry
points are used to increase or decrease the amount of power requested by the PCDU
from the solar arrays and the battery. Once defined, the entry points are registered
with the scheduler, which integrates them into the simulation environment through
the AddSimulationTimeEvent function. The following pseudocode summarizes the
main operations performed by the Configure methond in Pcdu:

procedure CONFIGURE - PcDuU > Instantiate all subcomponents
for each subcomponent do
container <— common::CommonRoot::CreateContainedModel(UUID)
subcomponent < container|0]
end for > Define automatic EntryPoints
for each EntryPoint do
scheduler.AddSimulationTimeEvent(EntryPoint)
end for
end procedure

Immediately after, the simulator calls the Connect method. In this phase, the
PCDU is linked to the Solar Arrays and to the Battery according to the XML
schema defined for the other components. Once the connections are established, the
models can communicate with each other. At this point, the vBus variable and the
solar array module are initialized to the battery voltage through the GetVoltage
and SetVoltage functions. This initialization ensures that, at simulation time zero,
both the bus voltage and the solar array voltage match the battery voltage. The
following pseudocode summarizes the main operations performed by the Connect
methond in Pedu:
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procedure CONNECT - PcDU

solarArrayl + refSAPort_ 1

solarArray2 < refSAPort_ 2

bta < refBtaPort

solarArrayl.SetVoltage(vBus)

solarArray2.SetVoltage(vBus) > Set values at instant 0
end procedure

IR Rl S

4.4.1 PulseRaisingPort

Each GenericCyclicModel inherits a function named PulseRaisingPort which
is a function called multiple times per second, giving to the model the property to
change its state in run time having a real time behavior. In this function the PCDU
update its state, calling the Update function and share with the solar arrays and the
loads the new voltage and current values. The following pseudocode summarizes
the main operations performed by the PulseRaisingPort method:

. procedure PULSERAISINGPORT - PcDu

Update()

solarArrayl.SetVoltage(vBus)

solarArray2.SetVoltage(vBus)

supplier.UpdateSuppliedPower() > Set values at instant 0
end procedure

ST

In order for the function to be called by the simulator, it is necessary to link it
to a clock frequency reference within the simulator by adding the following line to
the main XML file:

Algorithm 3 Interface Link Definition

procedure CREATEINTERFACELINK

Set Name «+ ""

Set ProviderNode < "PCDU"

Set Reference + "refClockFrequency 8"

Set ConsumerNode < "PULSE GENERATOR"
end procedure

In this case the Pcdu model is linked to a PULSE_GENERATOR that will call
PulseRaisingPort every 125 ms since refClockFrequency is equal to 1 second.

The main core is the Update function. It calculates the power obtained by
the solar array and if it is greater than the load demand, , the excess is sent to
the battery for charging during the sun phase, using the CC/CV algorithm and
complying with all satellite requirements. During the eclipse phase, the loads rely
entirely on the battery. In cases where the solar arrays do not provide enough
power for the load demand, the battery supplies the remaining required power.
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4.4.2 Battery Charge Module Implementation

This component within the PCDU is responsible for recharging the battery using a
Constant Current / Constant Voltage (CC/CV) algorithm, illustrated in Figure 4.6.

0 Constant current
charging
18A foeerin.. :
0A ; : >
: : Time
Constant voltage charging
D e »:
EOCV |......... SR 2V
Vmin 15V . >
: . Time
Charging start Charging finished

Figure 4.6: Battery charging profile

For this charging scenario to occur, the battery must not be fully charged, and
the satellite must be illuminated by the Sun so that the solar array can generate
power. In addition, the generated power must exceed the power demanded by the
loads, allowing the surplus energy to be used for charging.

During charging, it is essential to ensure that the current flowing into the battery
does not exceed its maximum allowable value, as this could cause damage. In this
thesis, the CC/CV algorithm is implemented inside the Update function of the
Pcdu component using the following variables:

[residual = [solarArray - [Tequired (41)
Lwimmum = 42.0 A (4.2)
EOCV —0oCV

[maximumCurrentAtVoltage = R
equivalent
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Here, I azimumCurrentAtvoltage T€Presents the maximum current that the battery
can safely receive at a given voltage. When the battery is deeply discharged,
this value equals the maximum current it can accept. As the battery approaches
full charge, the allowable current decreases significantly. If the residual current
exceeds 42.0 A but the battery is nearly charged, the charging current is limited to
IazimumCurrent AtV oltage Tather than the fixed maximum. Conversely, if the residual
current is below this value, only that available amount is used for charging. At
each iteration, the algorithm selects the minimum between these two values to
determine the actual charging current.

In this context:

o« FOCYV is the end-of-charge voltage, i.e., the maximum voltage the battery
can reach;

e OCYV is the open-circuit (current) voltage of the battery;

o Requivalent Tepresents the equivalent resistance between the battery and the
PCDU.

4.4.3 Unregulated Bus Implementation

The unregulated bus implementation is based on a function that depends on two
main factors: the open-circuit voltage (OCV) and the current flowing into or out
of the battery. The relationship is expressed by the following equation:

VBus = VOCV + ItoBattery X Requivalent (44)

It should be noted that I;,pater, varies at each simulation step. As the battery
discharges, the current flowing out of it increases, while during charging, the incom-
ing current increases instead. Consequently, the bus voltage (Vp,s) continuously
changes throughout the simulation.

During the eclipse phase, Ii,pattery is negative because current flows out of the
battery, resulting in a bus voltage lower than the battery voltage at that moment.
Conversely, during the sunlight phase, the current is positive, making the bus
voltage higher than the battery voltage. When the battery is nearly discharged,
the voltage difference between the battery and the bus reaches its maximum, as
the discharge current is limited (clamped) to 42.0 A.

The following pseudocode represented how the previous concepts has been
implemented.
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1: procedure UPDATE - Pcbu > Update the internal Pcdu State

2: btaVoltage < bta.GetVoltage()

3: Psa < solarArray.GetVoltage() * solarArray.GetCurrent()

4: Psc < powerWattPcdu + totalPower Amount

5: currentToSendToBattery = 0 > Power generated by Solar Arrays and power needed by the loads

6: if Psa > Psc then

7 mode < SolarOnly

8: else if Psa # 0.0 then

9: mode < BatteryOnly

10: else

11: mode «+ SolarPlusBattery

12: end if

13: switch mode

14: case SolarOnly

15: requiredCurrent < Psc / vBus

16: remainingCurrent < solarArray.GetCurrent - requiredCurrent

17: maximumCurrentAtVoltage < (EOCV - btaVoltage) / equivalentResistance > If there is more
current than required, send the current to the battery

18: if remainingCurrent > 0 and btaVoltage < EOCV then

19: currentToSendToBattery - Min(maximumCurrentAtVoltage,remainingCurrent,42.0) > Current
towards the battery shall follow the CC/CV algorithm and shall be less than 42.0 A

20: vBus « btaVoltage + equivalentResistance * currentToSendToBattery

21: bta.SetCurrent(current ToSend ToBattery)

22: else

23: vBus «+ btaVoltage

24: bta.SetVoltage(0.0) > In case there is no enough current to send to the battery, it is equal to 0

25: end if

26: end case

27: case BatteryOnly

28: if vBus > minBusVoltage then

29: current ToSendToBattery < - Psc / vBus

30: if btaVoltage + equivalentResistance * currentToSendToBattery > powerBusMinVoltage then

31: vBus < btaVoltage + equivalentResistance * currentToSendToBattery

32: else

33: vBus < minBusVoltage

34: currentToSendToBattery <— (vBus - btaVoltage) / equivalentResistance

35: end if

36: bta.SetCurrent(current ToSend ToBattery)

37: end if

38: end case

39: case SolarPlusBattery

40: to do

41: end case

42: end switch
43: end procedure

It is important to note that this function is executed every 125 ms. At each
iteration, it calculates both the power generated by the solar array and the power
demanded by the loads. When the solar array produces power (i.e., the satellite is
in the sunlight phase), the system prioritizes using this power over drawing energy
from the battery. This behavior is managed through the conditional statements
within the function.

The implementation also includes checks for special conditions, such as when
the battery is fully charged or discharged. As shown in the pseudocode, the bus
voltage (vBus) is updated in all operating modes. Additionally, a case is defined
for situations where the solar array alone cannot meet the load demand—in such
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scenarios, the battery supports the power supply. This last mode represents an
edge condition not fully explored in this thesis but included for potential future
development.

4.5 Milbus Development

The file named Pcdu1553 implements the MIL-STD-1553 bus interface and
handles the received messages. Its boot phase begins when it is instantiated in
the configuration phase by the main component, as previously described. Since
this element is relative simple, the Configure method call just a function named
enableSubAddress which turn on all the subaddresses of this model and the
pseudocode is shown below.

Algorithm 4 Enabling All Subaddresses in Pcdul553

1: procedure ENABLESUBADDRESS - PcDU1553 > Enable all subaddresses from 1 to 30 and set directions
2 for subAddress + 1 to 30 do

3 tmpSubAddrConf <+ subAddressMap[subAddress]

4 tmpSubAddrConf.isManaged < true

5: tmpSubAddrConf.en.directionSaToBc < true

6: tmpSubAddrConf.en.directionBcToSa <« true
7.
8
9

tmpSubAddrConf.en.enableSubAddress < true
tmpSubAddrConf.enDefault.directionSaToBc < true
: tmpSubAddrConf.enDefault.directionBcToSa < true
10: tmpSubAddrConf.enDefault.enableSubAddress < true
11: subAddressMap[subAddress] < tmpSubAddrConf
12: end for
13: end procedure

The Connect methods is left empty since the connection to the Milbus physical
bus is established directly from the XML file of the Pcdu.

Before starting with the explaination of the implementation is relevent introduce
the Milbus and its properties.

4.5.1 Milbus Overview

Figure 4.7 shown the architecture of the Milbus protocol and defines only three
type of terminals:

« Bus controller (BC): it’s the master in the protocol and is main function
is to control all the communications on the bus. It initiates the data transfers
following a command/response schema - the BC sends a commant to the RTs,
which reply with a response. Are allowed more than one BC on the same
architecture but only one can be active at a time, others can be implemented
for redundant purposes. In this thesis context, the Bus Controlled is the
On-board Computer, emulated using TEMU.
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Figure 4.7: milbus architecture

+ Remote Terminal (RT): it’s the slave in the protocol and always answer
to a message from the BC. An RT represents any subsystems that needs to
exchange data using the 1553 data bus. This protocol is plug and play, since
if the device does not natively support it, an interface unit can be used to
translate messages and connect the device to the BC. In this thesis context,
the Remote Terminal is the PCDU since it needs to communicate with the
On-board Computer

Messages are made by words, which are the smallest unit that can be transmitted
over the bus. The protocol defines three type: command, data and status.

Command Word

Remote terminal address Receive or Location (sub-address) of| Number of words to
(0-31) Transmit data (1-30) expect (1-32)
1’2‘3‘4‘5 6 7‘8‘9‘10‘11 12’13‘14‘15‘16

Figure 4.8: Command word bit usage

The Command Word (Figure 4.8) consists of the following fields: first 5 bits
identify the remote terminal receiving. The sixth bit indicates the direction of
the transfer, 0 for receiving and 1 for transmitting. Bits from seventh to eleventh
specify the sub-address that indicate where store or get data on the terminal. Last
5 bits indicate how many words to expect after the command word, the limit
depends on how many values you represent with 5 bits, which is from 0 to 31.

4.5.2 Milbus Implementation

The class inherits from GenericRemoteTerminal, which provides the BCtoRT func-
tion. The BCtoRT function is invoked directly from the simulator environment
whenever the on-board computer sends a MIL-STD-1553 message to the remote
terminal, which is divided in data (a sequence of byte out of the protocols archi-
tecture) and command (having the same structure of the status word explained
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before). The following pseudocode summarizes the main operations performed by
the BCtoRT method:

procedure BCTORT - Pcpul553(commandW, data, exchangeStatus,exchangeEpochTime,exchangeSimTime)
switch mode
case CMD BROADCAST READ
to do
end case
case CMD_ READ caseCmdBcRtRead(data, commandW)
end case
case MODE BROADCAST READ
: to do
10: end case
11: end switch
12: end procedure

This switch defines the logic required to handle the different types of messages
supported by the MIL-1553 protocol. Within the scope of this thesis, the main
objective is to enable the reception of a MIL-1553 command to turn a generic load
on or off. For this reason, only the CMD_READ case has been implemented. It is
important to highlight that MIL-1553 communication calls are managed directly
by the emulator, and that the variable names and command structures are defined
in compliance with the ECSS standard.

This implementation serves as a foundation for future extensions, where addi-
tional message types (e.g., broadcast commands or mode-specific operations) could
be supported to simulate a more complete MIL-1553 communication interface.

When a read message is received, the caseCmdBcRtRead function is triggered.
This function analyzes the data field, extracting the load identifier and its corre-
sponding status. The function invokes the SetStatusLoad method in PcduPowerSupplier|
class. The following pseudocode summarizes the main operations performed by the
caseCmdBcRtRead method:

1: procedure caseCMDBCRTREAD - Pcbul553(data, commandW)

2 cmd < data & 0x7F

3 turnOnOrOff «+— (data > 7) & 0x01

4: load <+ (data > 8) & OxFF > Retrieve information from the data field
5t Print("Subaddress:", commandW.subAddress)

6 Print("turnOnOrOff:", turnOnOrOff)

7 Print("Load:", load)

8 switch commandW.subAddress

©-0 e e

: case SA_2 > The Switch act as a filter based on the command subaddress
10: switch load
11: case 0
12: supplier.SetStatusLoad(Loads(load), Status(turnOnOrOff))
13: end case
14: end switch
15: end case

16: end switch
17: end procedure
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This function performs the direct interpretation of the MIL-1553 message con-
tained in data using the associated commandW. Within the scope of this thesis, it is
sufficient to handle a single dummy message. For this purpose, only messages with
a subaddress equal to 2 are processed, and the data field is restricted to a single
byte.

In this byte, the most significant bit indicates the command type: if it is set
to 1, the corresponding load is turned on; if it is 0, the load is turned off. The
remaining bits are used to identify which load in memory should be affected. This
implementation demonstrates the basic mechanism for decoding and acting on
MIL-1553 messages, while serving as a foundation for handling more complex or
multiple-message scenarios in future work.

4.6 Pcdu Outgoing Interface Implementation

The class named PcduPowerSupplier implements the Pcdu supply interfaces.
Loads are identified by an enumeration, and each load is associated with a status.
The SetStatusLoad method updates the status of a specified load, provided it
exists in the internal collection. The status is expressed using the dedicated
Status boolean value. The following pseudocode summarizes the main operations
performed by the SetStatusLoad method:

procedure SETSTATUSLOAD(load, status)
loadPowerLine < loads.find(load)
if loadPowerLine = loads.end() then
return > Load not found
end if
loadPowerLine.status <— status > Set ON or OFF
end procedure

In this function, the object maintains a static collection loads, where each load
is identified by an enum and its corresponding status is stored as a separate value.
If the specified load is found in the collection, its status is updated to the new
value, effectively turning the load ON or OFF. This mechanism ensures that load
states are managed consistently and can be accessed or modified throughout the
simulation.

This class also provides the UpdateSuppliedPower method, which is invoked
by Pcdu to update the internal states of the active loads. The PCDU keeps track
of which loads are switched on. If a load is connected to a regulated bus, it
receives a fixed regulated voltage; otherwise, it receives the instantaneous Vbus
voltage. This mechanism ensures thatthe satellite simulator behaves as a real-
time system, where all internal states are continuosly updated at each simulation
step. The following pseudocode summarizes the main operations performed by the
UpdateSuppliedPower method:
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1: for each load in loads do

2 switch load.status

3 case ON

4: if load.voltageType = REGULATED then
5: voltageToSupply < regulatedVoltage

6 else

7 voltageToSupply <— batteryVoltage

8 end if

9 current < load.powerNeeded / voltageToSupply
10: update load with current and voltage

11: end case

12: case OFF

13: update load with 0 voltage and 0 current
14: end case

15: end switch

16: end for

Each load has an associated enum specifying its voltage type, as defined in the
configuration file described earlier. If a load is ON and connected to a regulated bus,
it receives a fixed voltage equal to the regulated voltage; otherwise, it receives the
current bus voltage. The current supplied to the load is calculated as the required
power divided by the voltage it receives. If a load is OFF, both the supplied voltage
and current are set to 0. This structure ensures that each load receives the correct
power according to its state and voltage type throughout the simulation.

4.7 Powerline Implementation

All the module developed on simsat are independent module and in order to
communicate they could implement several kind of solutions. SMP supports three
different methods for components communication: direct interface, data flow and
event based.

In the first one, a model has several interfaces that establish an agreement be-
tween the others. Every model implementing the interface has all the functionalities
it provides, defining a Consumer and a Provider. In this thesis context this
approach has been used.

The figure above illustrates a unidirectional powerline architecture. In this setup,
communication occurs in only one direction: Model B can invoke methods defined
in Model A to retrieve data or set new values. This functionality is enabled by
the powerline interface defined in the ECSS standard. Model A cannot directly
communicate with Model B; a separate powerline in the opposite direction would
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Model A Model B

PowerLine interface

Getvoltage GetCurrent standard

function X

A

SetCurrent SetVoltage

Figure 4.9: powerline architecture

be required for bidirectional interaction.

In the context of this thesis, Model A corresponds to the battery, since the
PCDU sets its current and uses a Get method to read the voltage. Similarly, the
PcduPowerSupplier also functions as Model A for all satellite loads, as they set
the current and retrieve the voltage from it.

In order to implement this architecture, the model A shall define a method
name SetPortImplementation having the following pseudocode:

procedure SETPORTIMPLEMENTATION - PCDUPOWERSUPPLIER
powerPortImplementation.getCurrentPort <— Bind(GetCurrent, this)
powerPortImplementation.setCurrentPort <— Bind(SetCurrent, this, placeholder)
powerPortImplementation.getVoltagePort +— Bind(GetVoltage, this)
powerPortImplementation.setVoltagePort +— Bind(SetVoltage, this, placeholder)
ConnectPort(PowerLine, PortImplementation, UnregulatedPower Line, powerPortImplementation, true)
end procedure

In this function, the powerPortImplementation interface maps its methods
using the C++4 Bind function to the corresponding getter and setter methods of
the object. Once mapped, the port is connected to one end of an unregulated
power line defined in the ISIS model. For the powerline to operate correctly, a
corresponding module must exist at the other end.

The counterpart is defined in the XML file of Model A using an alias node:

1: procedure CREATEALIASNODE - POWER_OUT__UNREGULATED_ POWER__LINE
2: TypeName < "tasi::sve::common::system::iif::PowerLine"

3 Name < "POWER_ OUT_ Unregulated_ Power_ Line"

4: Container < "unregulatedPowerLine"

5: Description < "PCDU connection"

6: ConsumerNode < "RCU"

7 Reference <+ "refPowerLine"

8: end procedure

This alias node serves as the endpoint for the powerline, ensuring that data
flows correctly between the PCDU and the connected loads or modules (in the
examples is named as RCU). It defines the consumer node and reference, allowing
the PCDU to provide current and voltage to the connected elements through the
unregulated power line.
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The model B in its Connect method must connect its part to the cable, as Pcdu
did for the battery and solar arrays.

It is important to note that the connections between models are established
within the Connect function. Therefore, all calls to SetPortImplementation must
be executed beforehand during the Configure phase. The following pseudocode
illustrates this process in the PcduPowerSupplier object.

1: procedure CONFIGURE - PCDUPOWERSUPPLIER (logger, linkRegistry) > Create the unregulated power line
model
model <+  CreateContainedModel("_Unregulated Power_Line", this, unregulatedPowerLine,
UUID__PowerLine)
assert(model)
> Store interfaces for later use
unregPowerLinelnterface <— model casted to IPowerLinelF
unregPowerLine <— model casted to PowerLine
> Bind getters and setters to the power port before connecting models
SetPortImplementation()
> Call base class Configure last to perform state transition
GenericModel::Configure(logger, linkRegistry)
end procedure

4.8 Battery and Solar Array Interface

At the beginning of the thesis, the interfaces for connecting the modules were
defined in Pcdu. These objects are implemented using a consistent approach: each
has Get and Set methods that internally call the corresponding getters and setters
of the Pcdu object.

Below are pseudocode snippets of some of these methods, included for reference
and potential use in future extensions.

. procedure ISCHARGING - PCDUBATPOWERCONSUMER
return charging > Return true if the battery is currently charging, false otherwise
: end procedure

W =

: procedure SETCHARGING - PCDUBATPOWERCONSUMER (value)
charging < value > Set the charging state to true or false
. end procedure

LoD

1: procedure STOPCHARGING - PCDUBATPOWERCONSUMER

2: charging < false > Stop charging the battery
3: currentSupplied < 0 > Reset the current supplied to zero
4

: end procedure
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Chapter 5
Validation and Verification

The verification and validation (V&V) phase is essential to ensure the reliability of
the developed simulator. The verification process addresses the question “Are we
building the system right?”, by ensuring that the implementation adheres to the
defined design specifications and requirements, while the validation process focuses
on determining whether the system accurately reproduces the expected real-time
behavior. In the context of the PCDU and power system simulator, V&V activities
ensure that the implemented algorithms (e.g., power distribution, CC/CV battery
charging, regulated /unregulated bus management) are correctly realized in software,
that the internal states (voltages, currents, and power flows) evolve consistently
with the underlying models, and that the outputs match expected behaviors
under nominal conditions, boundary cases, and fault scenarios. Furthermore, the
validation has been performed by comparing the simulator’s results against the
official power budget provided by TASI for the IOS mission, ensuring that the
developed model aligns with realistic mission-level power profiles. This phase
therefore provides confidence that the simulator can be reliably used as a test and
analysis tool for satellite subsystems.

In-orbit servicing satellites were conceived to extend the operational life
of spacecraft already in orbit. A satellite’s lifespan is heavily constrained by its
fuel reserves and its inability to receive repairs once deployed. In-orbit servicing
addresses these limitations by enabling a dedicated spacecraft to approach an
existing satellite, dock with it, and perform maintenance tasks. Depending on the
mission objectives, the servicer can refuel the client satellite, correct malfunctions,
or restore functionality when performance deviates from expectations.

In the following paragraph, a set of simulation is presented to support the
verification and validation activities. The graphs illustrated the behavior under
different operating conditions, allowing the comparion with the expected system
response. For each mission phases are reported the following data:
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Power Generated from Solar Arrays

Power loads request

Battery charge/discharge current

Main bus (unregulated +49/+63) voltage

Battery State of Charge (SOC)

5.1 From Launch to In-Orbit Operations: Mis-
sion Phases

In the first experiment are simulated different mission phases:
e Ground and Launch: lasts 4760 seconds
o Launcher Separation to SA deployment: lasts 3181 seconds

e« SA deployment to target release - starting in sunlight: lasts 6144
seconds

 In-orbit phase (S-band Tx only):lasts 10 orbital cycles, 5520 seconds
 In-orbit phase(S-band + X-band Tx):lasts 10 orbital cycles, 5520 seconds

As shown in the solar arrays power figure, during ground and launch phase
and the launcher separation to SA deployment, the power is supplied only by the
on-board battery, reason why the power generated by the solar array is equal to
0. From "solar panels deploy" onwards, the orbital phase begins, during which
power is supplied by the solar panels in the sunlight phase and by the battery
during the eclipse phase The red markes in the figure indicate the transition points
between one mission phase and the next. The variations in power demand arise
from different combinations of loads being activated or switched off across the
mission phases. These specific loads are not detailed here for confidentiality reasons.
In the plots, the solar incidence angle is 7° during the deployment of the solar
arrays, while a value of 30° is used for the in-orbit phases.

Before commenting this graphs, is important describe what is the State of Charge
(SOC). It quantifies the remaining capacity available in the battery. It is defined as
the ratio of the remaining charge in the battery, divided by the maximum charge
that the battery can deliver. The result is expressed as a percentage. Even when the
battery is not being used, its SOC decrease over time. It’s known as self-discharge
In the SOC plot of Figure 5.2, the state of charge decreases as expected during the
initial mission phase, since the solar array is not yet generating power. As time
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Figure 5.2: SOC, battery current and bus voltage

progresses, the behavior of the CC/CV charging algorithm becomes apparent. At
the start of each sunlight period, the charging current to the battery is higher,
while towards the end it decreases, according to:

5.1
Req 7 V;)us ( )

As expected, the bus voltage Vs does not coincide with the battery voltage.
Instead, it follows:

) (EOCV —0CV P, — PSC>
]battery = min

‘/bus = OCVBatt + Req : Ibattery (52)
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During sunlight phases, the current flowing into the battery is positive, resulting
in a bus voltage higher than the open-circuit voltage. This corresponds to the
step-up visible in the plot. When transitioning to eclipse, the current decreases or
reverses, causing Vj,s to step down.

Finally, since the algorithm follows the CC/CV method, once the battery reaches
full charge and no current flows into it, Vs settles at the battery end-of-charge
voltage.

5.2 Rendezvous Phases

In the second experiment, a rendezvous scenario is simulated, in which the I0S
satellite begins its approach to the target during an eclipse period. The sequence
is divided into the following phases:

» Start of target approach: no fixed duration.

o Target recognition: lasts 600 seconds.

e Docking phase in close range: lasts 300 seconds.
o Capturing phase: lasts 1200 seconds.

The rendezvous takes place entirely during the eclipse period, when no power
would be generated by the solar arrays regardless. Since the battery starts fully
charged from the previous mission phase, this scenario represents the best possible
case.

wl
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Figure 5.3: Loads power, SA power, sun/eclipse flag

In this case, the entire satellite relies on the battery throughout the operation.
Unlike the previous experiment, the power demand is higher, as this scenario
represents the mission’s core activity and requires more subsystems to be active.
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The target approach begins while the battery is still almost fully charged,
making it the most favorable starting point for an eclipse phase. It is important to
note that, during the power demand peak, the bus voltage approaches its minimum
operating threshold without crossing it. At the same time, the current drawn from
the battery increases as expected.
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Figure 5.4: SOC, battery current and bus voltage

These results show that the considered mission phases can be sustained under
the assumed onboard conditions.

5.3 Ground Segment Testing

The simulation environment consists of two virtual machines connected through the
same NAT network: a SUSE VM, running the spacecraft simulator (SIMSAT. sh),
and a Windows VM, referred to as ECHO, which serves as the ground station.

The setup begins by launching the SIMSAT process on the SUSE VM without
starting the simulation. This ensures that the simulator is ready to accept connec-
tions from the ground station interface. On the ECHO VM, the ground station
interface (iride_if.exe) is configured with the simulator’s IP address, the satellite
identifier corresponding to the simulated spacecraft, and the communication ports
defined in the SIMSAT configuration. Once configured, the interface establishes
TCP/IP connections for both telecommands (TC) and telemetry (TM), and the
connection status is confirmed by logs on the simulator.

Following this, the ground station mission operations software is launched,
enabling the management of mission setup, telemetry monitoring, and session
initialization. Additional monitoring applications capture telemetry data and
confirm that the communication links with the simulator are active. This prepara-
tion ensures that all subsystems, including the on-board PCDU, can respond to
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telecommands as expected.

With the connections established, the simulation is started from SIMSAT.
Telemetry generated by the on-board software is displayed both in SIMSAT and
the ground station consoles, allowing verification of data flow and system behavior.
Predefined test telecommands can be issued to validate the communication links
and confirm proper reception and execution by the simulated spacecraft.

The telecommand control (TCC) module provides mission control capabil-
ities, including sending telecommands, switching session modes, and monitoring
execution results. Custom telecommands can be sent through TCC, and their
progress is tracked via telemetry packets that indicate reception, validation, ex-
ecution, and acknowledgment stages. This closed-loop setup ensures that both
nominal operations and custom test scenarios can be executed, monitored, and
validated in a controlled environment. simulator runs on a SUSE virtual machine,
while a second virtual machine, called Echo, is used as the ground station. Both
machines are part of the same NAT network and therefore share the same network
segment. SIMSAT has a process listening on a specific port, which allows the
SUSE machine to accept a TCP/IP connection from Echo. Once the connection is
established, Echo can send PUS commands to the SUSE machine. These commands
are then forwarded to the on-board software, which interprets them. If the PUS
command targets an internal load, a MILBUS message is sent to the corresponding
subsystem—in this case, the PCDU.
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Figure 5.5: Overview of simulator and ground station connection views. Top row
shows the ground and simulator interface views, bottom row shows internal system
displays.

Once the connection is established, ECHO is able to send telecommand to the
simulated spacecraft. and from the TCC console can be seen the result as shown
in figure below:

In the Figure 5.6, four telemetry packets transmitted from the on-board software
to the ground station are shown, namely TM(1,1), TM(1,2), TM(1,3), and
TM(1,7). These packets report the status of telecommands sent from the ground
station to the on-board computer (OBC):

o TM(1,1) indicates that the telecommand has been successfully received by
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the OBC and has passed validation.

« TM(1,2) indicates that the telecommand was received by the OBC but failed
validation. This packet may include additional information explaining the
reason for the failure.

o TM(17,2) indicates the answer to the specific command sent, containing its
response.

« TM(1,7) indicates that the execution of the command has been successfully
completed.

These telemetry packets provide a clear sequence of the telecommand lifecycle,
from reception and validation to execution, allowing the ground station to monitor
the status and outcome of each command.

Figure 5.6: TCC after command sent

At this point a raw pus packet can be sent, but before desribing the chosen byes
is important give a brief introduction to the protocol.

5.4 PUS overview

All telecommand packets shall conform to the structure shown in Figure 5.7 below.

Packet Header (48 Bits) Packet Data Field (Variable)
Data Field Packet
Packet Sequence Packet Header Application Error
Packet ID Control Length | Optional) | Data | P& | Control
(see Note 1) (see Note 2)
. Data | Appli
;,’e’:‘f“r Type | Field | tion |Sequence Sequence
WO | L) | Header | Process Flags | Count
= Flag D
3 1 1 1 2 14
16 16 16 Variable Variable | Variable 16

Figure 5.7: Telecommand structure
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It is divided in Packet Header of 48 bits and in Packed data field with variable
lenght, it is decided during the mission design.

e Version Number: This field is always equal to 0. By changing it, in future
more variations on packet usability can be introduced.

o Type: This bit distinguishes between telecommand and telemetry packets. Is
equal to 1 for telecommand, otherwise 0.

o Data Field Header Flag: This indicates the presence of absence of a data
field header. All packets shall have it because it and it shall be set to 1.

 Apllication Process ID (APID): The APID corresponds to the on-board
application process which is the destination for this packet. Each mission has
its own list of possible APIDs.

Ss(i(u)itl:ljaiy o PaCk‘Et Service Service
Header PUS Version Ack Type S~ Source ID Spare
Number
Flag
Boolean Enumerated | Enumerated( | Enumerated | Enumerated | Enumerated | Fixed BitString
(1 bit) (3 bits) 4 bits) (8 bits) (8 bits) (. bits) (n bits)

Figure 5.8: Data field header

The data field header contains information about the service and the subservice,
allowing the Ground Station to have granular access to the satellites loads.
Giving this information the command sent are shown in the following figures:

| IS E PCDU_sample ot £ |

L]
aaaz

Figure 5.9: PUS string

The last byte of the message, 96 or 16, is interpreted by the Pcdu1553 when it
receives a Milbus packet. PUS packets do not always carry a Milbus packet directly;
instead, the onboard software maintains a list of Milbus packets to transmit over
the internal bus when a PUS packet is received. If the PUS packet corresponds to
a known Milbus packet, the software sends it over the satellite bus. A specific PUS
packet—Service 2 with Subservice 7—allows the PUS packet to carry Milbus data
directly. For example, this can be compared to sending data over Ethernet without
passing through the other protocol layers.
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Chapter 6
Conclusion

The primary objective of this thesis was to design and implement a scalable and
reliable simulator for the Electrical Power Subsystem (EPS) of a satellite, integrated
into the SIMULUS framework. This objective has been successfully achieved. The
simulator reproduces the behavior of the EPS, including the battery, solar arrays,
and the Power Control and Distribution Unit (PCDU), as well as the interface with
the On-Board Computer (OBC) through the MIL-STD-1553B bus and the Packet
Utilization Standard (PUS). By integrating these components, the simulator allows
for accurate assessment of satellite power management under different operational
scenarios, including nominal, boundary, and fault conditions.

The verification and validation (V&V) activities presented in Chapter 5 con-
firmed that the simulator operates according to the specified design requirements.
The implemented CC/CV charging algorithm correctly regulates the battery cur-
rent, while the bus voltage behaves consistently with the expected system dynamics.
Simulated mission phases demonstrated the capability of the EPS to sustain power
demands during both sunlight and eclipse periods, including complex scenarios
such as rendezvous operations. These results provide confidence that the simulator
can serve as a reliable tool for testing, validation, and optimization of spacecraft
power systems before launch.

One of the key contributions of this work is the scalable architecture of the
simulator. The modular design allows for future extensions, enabling developers to
add additional loads, power sources, or subsystems with minimal changes to the
existing codebase. This flexibility ensures that the simulator can evolve alongside the
increasing complexity of spacecraft missions and can accommodate new technologies
or mission-specific requirements. Moreover, the integration with SIMULUS ensures
compatibility with existing European Space Agency (ESA) simulation standards,
facilitating interoperability and potential reuse across multiple projects.

Beyond its immediate technical achievements, this simulator represents a practi-
cal step towards the development of Digital Twins for spacecraft. By combining
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physics-based models with real-time telemetry and historical data, future iterations
of the simulator could provide predictive capabilities for on-orbit system health
monitoring, mission planning, and anomaly detection. Such developments would
enable operators to make informed decisions during critical mission phases, reducing
risks and increasing the probability of mission success.

While the current work focuses on the EPS subsystem and software simulation,
several opportunities for future improvements have been identified:

« Expansion of subsystems: Integration of additional satellite subsystems,
such as thermal control, attitude control, or communication payloads, would
enable more comprehensive mission simulations.

* Real-time interaction: Incorporating a real-time interface with actual
hardware components or ground station simulators could enhance the fidelity
of the simulation.

e Advanced modeling: Implementing more detailed battery degradation
models, solar array aging, or fault injection scenarios would improve predictive
capabilities and reliability assessment.

o Digital Twin integration: Linking the simulator with on-board telemetry
and fleet history could support real-time monitoring and predictive mainte-
nance strategies, effectively creating a full-scale Digital Twin.

In conclusion, this thesis has demonstrated the feasibility and benefits of de-
veloping a modular, scalable, and validated EPS simulator for satellite missions.
The work provides a solid foundation for future research, testing, and operational
support. By enabling engineers to simulate complex operational scenarios safely
and efficiently, this simulator contributes to the advancement of satellite power sys-
tem design and management, while also offering a pathway toward comprehensive
Digital Twin implementations.

The successful completion of this project highlights the importance of simulation
in modern space engineering, where cost, risk, and system complexity demand
advanced virtual testing environments. The EPS simulator developed in this work
exemplifies how rigorous engineering methods, combined with modular software
design and adherence to industry standards, can produce reliable and extensible
tools that enhance both the development process and mission safety.
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