
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

From OntoUML model to graph database -
completion of the workflow, case study and

benchmark

Supervisors
Dr. Michal Valenta
Prof. Luca Ardito

Contributor
Ing. Jiřı́ Zikán

Candidate
El Mahdi Affaoui

June 2025

Abstract
Software development faces increasing complexity as systems grow in scale and so-
phistication, requiring developers to manage layered architectures and diverse tech-
nologies. Model-Driven Development (MDD) addresses these challenges by elevat-
ing the design process through high-level abstractions. This thesis builds upon the
work of Ing. Jiřı́ Zikán, who developed a tool to automatically generate Neo4j graph
database triggers from OntoUML models. Expanding on his research, this work evalu-
ates the tool’s real-world applicability and performance through a practical case study
involving Uniqway, a car-sharing application. The thesis outlines improvements made
to the transformation pipeline, including support for models imported from Visual
Paradigm. Performance benchmarks assess the effectiveness and efficiency of the
generated triggers, comparing system behavior with and without their application.
The results offer insights into the correctness, scalability, and operational impact of
integrating OntoUML-based constraints into graph-based systems, thereby contribut-
ing to the broader goal of enhancing software reliability through model-driven ap-
proaches.

2

Acknowledgments

FIRST AND FOREMOST, I am deeply grateful to my supervisor, Dr. Michal
Valenta, for his invaluable guidance, encouragement, and patience.

His expertise and insightful feedback have been fundamental in shaping
this work. Coming into this thesis completely inexperienced, being my one
first ever, I was fortunate to benefit from his steady mentorship and clarity
throughout the process. I would also like to extend my sincere thanks to
Ing. Jiřı́ Zikán, whose own master’s thesis laid the foundation to mine and
whose suggestions helped me start my work.

I’m truly grateful to all the new people I met during my time in Prague,
some of whom ended up becoming a real part of my everyday life. The
time we spent together, playing games, exploring the city, chasing sunsets
or simply getting through the ups and downs of life, made this experience
so much richer and more enjoyable. Since the first they I loved the city but
spending a lot of time on my own, the city appeared cold and my love for
it felt unrequited. But meeting you changed that. You brought warmth,
laughter, and a sense of belonging that slowly turned this place into some-
thing that truly felt like home.

Of course, heartfelt thanks go to my family back home, especially my mother,
whose constant thought and care were a source of comfort across the dis-
tance. Her support helped me avoid homesickness and reminded me that
no matter how far I was, I was never alone. I’m equally thankful to all my
friends who stayed in touch despite the distance.

Coming from an immigrant community where many face economic hard-
ships, pursuing higher education is a significant achievement, not just for
me, but for many others who, despite the challenges, are striving for a bet-
ter future. This thesis represents not only my personal effort but also the
collective determination of those who, like me, are working hard to create
new opportunities and break cycles. It reminds me that I am part of a larger
story, one of resilience and hope.

Finally, I would like to thank the city of Prague itself. Here, for the first
time, I experienced what it truly means to change one’s life: to start anew,
to live independently, and to grow. It was here that for the first time I
marched to raise awareness about the necessity of a free Palestine for all,
from the river to the sea. It was here that I built the confidence and strength
I’ll carry forward, ready to face future challenges and take ownership of
my life and the decisions ahead.

3

Ringraziamenti

PER PRIMA COSA, desidero esprimere la mia più profonda gratitudine al
mio relatore, il Dr. Michal Valenta, per la sua guida preziosa, il suo in-

coraggiamento e la sua pazienza. La sua competenza e i suoi suggerimenti
puntuali sono stati fondamentali per plasmare questo lavoro. Essendo alla
mia prima tesi e del tutto inesperto, ho avuto la fortuna di poter contare
sulla sua costante disponibilità e chiarezza. Desidero inoltre ringraziare
sinceramente l’ingegner Jiřı́ Zikán, la cui tesi magistrale ha rappresentato
la base su cui si fonda il mio lavoro, e i cui consigli iniziali mi hanno aiutato
a partire con il piede giusto.

Sono profondamente grato a tutte le nuove persone conosciute durante il
mio periodo a Praga, alcune delle quali sono diventate parte essenziale
della mia quotidianità. Il tempo trascorso insieme, tra giochi, esplorazioni,
tramonti e confidenze, ha reso questa esperienza molto più ricca e significa-
tiva. Fin dal primo giorno ho amato questa città, ma la solitudine la faceva
spesso sembrare fredda. Incontrare voi ha cambiato tutto: avete portato
calore, risate e un senso di appartenenza che l’ha trasformata in qualcosa
che finalmente potevo chiamare casa.

Un ringraziamento speciale va, naturalmente, alla mia famiglia, in parti-
colare a mia madre, la cui premura costante è stata un conforto prezioso
nonostante la distanza. Il suo sostegno mi ha aiutato a non cedere alla nos-
talgia, ricordandomi che, per quanto lontano, non ero mai davvero solo.
Sono ugualmente riconoscente agli amici con cui ho mantenuto i contatti
nonostante la distanza.

Venendo da una comunità di immigrati dove molti affrontano difficoltà
economiche, proseguire gli studi universitari è un traguardo importante,
non solo per me, ma per tutti coloro che, nonostante le sfide, si impegnano
per un futuro migliore. Questa tesi rappresenta non solo il mio sforzo, ma
anche la determinazione collettiva di chi lavora per creare nuove opportu-
nità e spezzare i cicli. Mi ricorda che faccio parte di una storia più grande,
fatta di resilienza e speranza.

Infine, vorrei ringraziare la città di Praga stessa. È qui che, per la prima
volta, ho scoperto cosa significa cambiare vita: iniziare da capo, vivere da
solo, crescere. È qui che ho manifestato per la prima volta per una Palestina
libera per tutti, dal fiume al mare. Ed è qui che ho costruito la fiducia e la
forza che porterò con me, pronto ad affrontare le sfide future e a prendere
in mano la mia vita.

4

CONTENTS

Contents
Abstract 2

Acknowledgments 3

Ringraziamenti 4

Introduction 11
Motivation . 11
Objectives of the Thesis . 11
Contents . 11

1 Background: OntoUML and Graph Databases 13
1.1 OntoUML . 13

1.1.1 Overview of OntoUML . 13
1.1.2 OntoUML’s integration of the UFO framework 13

1.2 Graph Databases . 15
1.2.1 Introduction to Neo4j . 16
1.2.2 Cypher Query Language . 16
1.2.3 Transaction life cycle . 17
1.2.4 Optimization in Neo4j . 17
1.2.5 Apoc support for triggers . 18
1.2.6 Use Cases and Advantages of Graph Databases 20

2 Methodology: From the OntoUML Model to a Neo4j Database 21
2.1 Motivation for Transformation . 21
2.2 Transformation Approach . 21
2.3 Updating the Transformer with Importer from Visual Paradigm 23

3 Case Study: Uniqway, a Car-Sharing Application 25
3.1 Overview of Uniqway and Available Data 25
3.2 Data Selection and Preparation . 25
3.3 Data Integration into Neo4j . 28

4 Benchmark Design and Implementation 31
4.1 Positive tests . 31

4.1.1 Test P1: adding new User . 32
4.1.2 Test P2: adding a new reservation 33
4.1.3 Test P2Alt: creating a reservation leveraging the index 34
4.1.4 Test P3: Creating a new car . 36
4.1.5 Test P4: Creating a new ride . 36
4.1.6 Test P5: Changing the address of a person 38

4.2 Negative tests . 39
4.2.1 Test N1: Creating a new ride without defining a starting time . . 39
4.2.2 Test N2: Creating a new car without a model 42

5

4.2.3 Test N3: Creating a new ride without it being related to a reser-
vation . 44

4.2.4 Test N3alt . 46
4.2.5 Test N4: Creating a new reservation without associating a car . . 47
4.2.6 Test N5: Creating a new reservation by an unregistered person . 47

5 Evaluation and Results 50
5.1 Methodology . 50
5.2 Results and discussion . 53

5.2.1 P1: adding new User . 53
5.2.2 P2 and P2alt: adding a new reservation 53
5.2.3 P3: Creating a new car . 54
5.2.4 P4: Creating a new ride . 55
5.2.5 P5: Changing the address of a person 55
5.2.6 N1: Creating a new ride without defining a starting time 56
5.2.7 N2: Creating a new car without a model 56
5.2.8 N3 and N3alt: Creating a new ride without it being related to a

reservation . 57
5.2.9 N4: Creating a new reservation without associating a car 57
5.2.10 N5: Creating a new reservation by an unregistered person 57
5.2.11 Duration of the population fo the database 58

6 Conclusion 59
6.1 Summary of Findings . 59
6.2 Limitations and Challenges . 59
6.3 Further Work . 60

A Comments from the constraint generator 61

B Tables’ sizes 65

C Database Sizes 66

D Cypher script for the population of the Neo4j Database 68

E Summary of tests 72

F Hardware and Software specifications 74

G Code for the JSONImporter 75

H Execution plans for the benchmark queries 83

References 97

LIST OF FIGURES

List of Figures
1 UFO taxonomy of endurant types adapted from Guizzardi (2022). 14
2 Example of portion of execution plan . 19
3 Original OntoUML model for Uniqway 26
4 Simplified OntoUML model for Uniqway 27
5 Zoom on element creation and setting of properties 33
6 Zoom on element empty result production 33
7 Zoom on matching operation for P2 . 35
8 Zoom on matching operation for P2alt . 36
9 Zoom on the eager operator . 38
10 Zoom on the Expand(All) operator . 38
11 Zoom on the execution of SubqueryForeach 40
12 Zoom on matching operation for N3 . 46
13 Zoom on matching operation for N3alt . 47
14 Graph of the match queries execution times 55
15 Execution plan of test P1 . 84
16 Execution plan of test P2 . 85
17 Execution plan of test P2Alt . 86
18 Execution plan of test P3 . 87
19 Execution plan of test P4 . 88
20 Execution plan of test P5 . 89
21 Execution plan of test N1 . 90
22 Execution plan of test N2 . 91
23 Execution plan of test N3 . 92
24 Execution plan of test N3alt . 93
25 Execution plan of test N4 . 94
26 Execution plan of test N5 . 95

7

LIST OF TABLES

List of Tables
1 Mapping between OntoUML and Neo4j constructs from Jiřı́ Zikán’s

master’s thesis . 21
2 P1 execution times . 53
3 P2 execution times . 53
4 P2alt execution times . 54
5 Simple match execution times . 54
6 P3 execution times . 55
7 P4 execution times . 56
8 P5 execution times . 56
9 N1 execution times . 56
10 N2 execution times . 57
11 N3 execution times . 57
12 N3alt execution times . 57
13 N4 execution times . 58
14 N5 execution times . 58
15 Times needed for populating the database for each size 58
16 Summary of positive tests . 72
17 Summary of negative tests . 73
18 Negative tests and violated constraints . 73
19 Hardware and software configuration used for benchmarking. 74

8

LIST OF SOURCE CODES

List of source codes
1 Script for constraint PROPERTY MUST BE UNIQUE 23
2 Script for constraint RELATIONSHIP MUST BE PRESENT(RESERVER,

RESERVATION) . 29
3 Test P1 query . 32
4 Test P2 query . 34
5 Test P2alt query . 35
6 Test P3 query . 36
7 Test P4 query . 37
8 Test P5 query . 39
9 Test N1 query . 41
10 Script for constraint PROPERTY MUST BE PRESENT(Ride, startedAt) . 41
11 Test N2 query . 42
12 Script for RELATIONSHIP MUST BE PRESENT(Car, CarModel) 43
13 Test N3 query . 44
14 Script for RELATIONSHIP MUST BE PRESENT(Ride, OngoingReser-

vation) . 45
15 Test N3alt query . 46
16 Test N4 query . 47
17 Test N5 query . 48
18 Script for LABEL MUST BE IN COMBINATION(Reserver, User) 48
19 Python function running performance test on positive queries 51
20 Python function running performance test on negative queries 52
21 S1 : Matching with no index . 54
22 S2 : Matching with an index . 54
23 Cypher script for the population of he Neo4j Database 71
24 Code for the JSONImporter . 82

9

LIST OF SOURCE CODES

Introduction
Motivation

Software development is an inherently complex and evolving discipline, driven by the
need to build reliable, scalable, and maintainable systems in an increasingly fast-paced
environment. As applications grow in size and sophistication, developers must man-
age intricate architectures, multiple layers of abstraction, and a wide range of tech-
nologies. This complexity often leads to increased development time, higher costs,
and greater potential for errors. To address these challenges, the industry continually
seeks methodologies and tools that can improve productivity, reduce human error,
and enhance the overall quality of software. One such approach is Model-Driven De-
velopment (MDD), which aims to shift focus from low-level implementation details to
high-level design and abstraction.

Objectives of the Thesis

This thesis builds upon the work of Ing. Jiřı́ Zikán, whose master’s thesis focused on
the development of a tool for automatically generating triggers for the Neo4j graph
database management system based on OntoUML models [Zik23]. His research intro-
duced a novel approach for bridging conceptual modeling and runtime enforcement
of constraints in graph-based systems, laying the groundwork for practical applica-
tions of OntoUML in NoSQL environments. The present work should be regarded as
a continuation and extension of that research. In particular, this thesis aims to eval-
uate the real-world applicability of the trigger generator through a case study that
demonstrates its integration in a functional system. It further assesses the tool’s qual-
ity and performance by conducting benchmarks that compare system behavior with
and without the generated triggers, providing insights into both the correctness and
efficiency of the approach.

Related Works

In addition to Jiřı́ Zikán’s previously cited work on graph databases derived from
OntoUML, several other relevant contributions in this area include the studies by
Pokorný, Valena, and Zikán [PRV+24, PVZ25, PVK17]. Further related research in-
cludes work by Rybola et al. on transforming OntoUML models into relational databases
[RP17], as well as Grievink’s thesis on generating Java code from OntoUML models
[Gri24].

Contents

This thesis is structured into six main chapters and eight appendices, each addressing
a key aspect of the research.

Section 1: Background introduces the foundational concepts necessary to under-
stand the rest of the work. It begins with an overview of OntoUML, including its
conceptual basis and its integration with the UFO (Unified Foundational Ontology)

11

LIST OF SOURCE CODES

framework. The chapter then shifts focus to graph databases, with a particular em-
phasis on Neo4j, the Cypher query language, support for triggers through the APOC
library, and the practical advantages and use cases of graph-based storage.

Section 2: Methodology presents the transformation process from OntoUML mod-
els to a Neo4j graph database. It discusses the motivation behind this transforma-
tion, reviews the methodology adopted. This includes the development of a signifi-
cant update to the transformation pipeline to support models imported from Visual
Paradigm.

Section 3: Case Study applies the proposed methodology to a real-world scenario
involving Uniqway, a car-sharing application. The chapter provides an overview of
Uniqway, explains the data selection and preparation steps, and describes how this
data was integrated into a Neo4j graph database.

Section 4: Benchmark Design and Implementation details the design of perfor-
mance benchmarks used to evaluate the effectiveness and efficiency of the proposed
transformation and data model.

Section 5: Evaluation and Results presents the results obtained from the bench-
marks. It outlines the evaluation methodology, discusses the key findings, and pro-
vides an interpretation of the results in relation to the goals of the thesis.

Section 6: Conclusion summarizes the main contributions of the work, discusses
its limitations and challenges encountered, and proposes directions for future research.

The Appendices provide supplementary materials. Appendix A lists the com-
ments generated by the tranformer, Appendix B provides the sizes of the tables used,
Appendix C provides the cardinalities fro each of the main labels in the different
graph database instances, Appendix D includes the Cypher script used to populate
the Neo4j database, Appendix F provides the specifications for the machine used dur-
ing the tests, Appendix G provides the C# code for the JSON importer developed to
bridge the gap from Visual Paradigm to the constraint generator, Appendix H con-
tains images of the full execution plans of the benchmark queries, Appendix E shows
a summary of the benchmark tests used.

12

1 BACKGROUND: ONTOUML AND GRAPH DATABASES

SECTION 1
Background: OntoUML and

Graph Databases
1.1 OntoUML

OntoUML is a structural modeling language developed initially by Guizzardi in his
Ph.D. thesis [Gui05]. It is grounded in the Unified Modeling Language (UML), which
it extends by introducing ontologically well-founded types and constraints based on
the Unified Foundational Ontology (UFO) [GG+22]. OntoUML enables the construc-
tion of semantically rich models by ensuring that model elements correspond to well-
defined ontological categories.

The Unified Foundational Ontology (UFO), on which OntoUML is based, is a com-
prehensive axiomatic system that draws upon insights from analytic philosophy and
cognitive science to support conceptual modeling and domain analysis [GSAG21].
It provides a formal distinction between different types of entities, such as objects,
events, properties and relations, and defines meta-properties like identity, rigidity and
dependence, which OntoUML leverages to classify modeling constructs [GSAG21].

The consistency and expressivity derived from its ontological grounding, allows
OntoUML to offer benefits in tasks such as domain understanding, communication
among stakeholders [ea23], and system design validation [ea10].

1.1.1 Overview of OntoUML

After its introduction in the aforementioned Ph.D. thesis from 2005 by Guizzardi [Gui05],
OntoUML was continually researched and expanded in successive papers [G+18] [GSAG21]
[FSGA19] leading to the definition of its newest incarnation called OntoUML 2.0 and
to the expansion of its practical applications across various domains.

Among the use cases that have been researched for OntoUML we can cite Braga et
al.’s paper on transforming the OntoUML model to the logic-based language Alloy to
perform model validation [ea10]. Of course, it is also being used to generate databases,
both relational [RP17] and graph-based, as in the research-line this thesis is based and
expands upon [Zik23] [PVK17] [PRV+24] [PVZ25]. While regarding the use of On-
toUML as a reference ontology for the development of application Grievnik’s master
thesis researched a transformer from OntoUML to Java code to ensure the semantics
of the model are respected during development.[Gri24]

1.1.2 OntoUML’s integration of the UFO framework

OntoUML’s metamodel is deeply integrated with the Unified Foundational Ontology
(UFO), providing a robust framework for classifying entities based on ontological dis-
tinctions. A full taxonomy of the UFO is shown in Figure 1 [GG+22].

13

1 BACKGROUND: ONTOUML AND GRAPH DATABASES

Figure 1: UFO taxonomy of endurant types adapted from Guizzardi (2022).

Each type is characterized by meta-properties derived from UFO, such as rigidity,
dependence, and identity. This structured approach ensures that conceptual models
are semantically precise and align with real-world ontological distinctions [GSAG21].

UFO divides types of entities in two fundamental distinctions, endurants and per-
durants. Endurants are individuals that exist continuously in time and can accumulate
changes through their existence. On the other hand, perdurants represent events at a
determinate time, as such they exist only in the past and cannot really change[GG+22].

A rich taxonomy of endurants was introduced by Guizzardi et al. in 2021 [GSAG21]
based on several meta-properties. The first meta-property by which we classify them
into their taxonomy is Substantiality, a substantial entity is an entity that has inde-
pendent existence, as opposed to a moment which is an entity whose existence is de-
pendent on another[GSAG21].

For substantial types the categorization makes use of the concepts of Sortality and
Rigidity. A sortal type is a type that defines the properties that define the identity of
its instances (properties that can’t be shared by different objects), while a non-sortal
type aggregates properties shared between instances of different sortals [GSAG21]. A
rigid type is a type that necessarily applies to its instances, an anti-rigid type clas-
sifies only contingently to its instances and exists only as a subtype of a rigid type;
an additional category of semi-rigidity exists for types that generalize both rigid and
anti-rigid subtypes. In other words we can say that a type is rigid if its instances can
only lose its properties by ceasing to exist[GSAG21]. Depending on these properties
types can be divided in different categories, called sterotypes, or metetypes. The most
important stereotypes are the following:

14

1 BACKGROUND: ONTOUML AND GRAPH DATABASES

• Kind: a substantial, sortal and rigid type

• Subkind: similar to a Kind but it inherits from a Kind or another Subkind while
Kind is used only for the most general type

• Phase and Role: both substantial, sortal and antirigid types. The difference be-
tween them stands in how Phase depenends on intrinsic conditions while role’s
classification condition is relational

• Category: substantial, non-sortal and rigid type that defines some essential prop-
erties of its instances without providing any identity for them

• Phase Mixin and Role Mixin: non-sortal and anti-rigid substantial types that gen-
eralize and provide contingent properties respectively of Phases and Roles of
different kinds

• Mixin: non-sortal and non-rigid type that generalizes properties that are essential
for some instances and contingent for others

• Quality: a moment type that represents a property of the substantial object on
which it depends

• Relator: a moment type which ties together the multiple substantial entities on
which it depends

[GG+22]

1.2 Graph Databases

Graph databases are a class of NoSQL databases designed to represent and store data
using graphs as the underlying data structure with elements represented as vertices
and edges representing the relationships between them. Unlike relational databases,
which model data in tabular formats, graph databases focus on the explicit represen-
tation of relationships between entities. Where relational databases would require
multiple slow recursive joins to follow paths composed of subsequent relationships,
graph databases can handle relationships natively and traverse the graph with very
fast speeds and efficient memory usage thanks to theirs native graph processing en-
gines that avoid the need for costly joins [AG08, RWE15].

Graph databases are particularly well-suited for domains where relationships carry
as much meaning as the data itself, and where traversing complex connections is com-
mon such as social networks, spatially embedded networks (for example for trans-
portation), recommendation systems and semantic data. [RWE15].

Over the years, various graph data models and query languages have emerged.
Among them, the labeled-property graph model and the RDF triple model are most promi-
nent. Property graphs allow multiple labels per node and arbitrary properties on both
nodes and relationships, offering a flexible schema-less structure [RWE15].

Graph databases can be divided into native and non-native stores. Native graph
databases use purpose-built storage and indexing mechanisms optimized for graph
processing, while non-native systems provide graph capabilities over general-purpose
stores. Native systems like Neo4j offer index-free adjacency, which enables constant-
time traversals of relationships between nodes, a significant performance advantage
for complex queries [RWE15].

15

1 BACKGROUND: ONTOUML AND GRAPH DATABASES

1.2.1 Introduction to Neo4j

Neo4j is one of the most mature and widely used native graph databases. Initially re-
leased in 2007, it implements the labeled-property graph model and supports the declar-
ative query language Cypher, which is tailored for expressing graph patterns in an
intuitive way [RWE15].

In addition to its expressive query capabilities, Neo4j includes limited support for
data integrity and efficient retrieval through uniqueness constraints on node proper-
ties and indexes. Neo4j also supports composite and full-text indexes, enabling fast
lookup of nodes or relationships based on one or more properties, which is crucial for
performance in large-scale graph queries.

Neo4j ensures transactional consistency (ACID) and allows further extensibility
through the APOC (Awesome Procedures on Cypher) library. It also provides a rich
ecosystem for data visualization and integration with other technologies, making it
a preferred platform for applications involving graph-based reasoning, recommenda-
tion systems, or semantic analysis [Neo].

1.2.2 Cypher Query Language

Neo4j uses the Cypher language for its queries. It was developed specifically for use
on Neo4j and it makes use of a declarative approach similar to SQL, where the query
focuses on the data particulars of the request while the execution plan, which forms
the algorithm through which the query will be executed, will be generated in a subse-
quent interpretation by the engine. Also from SQL it borrows some of the query syntax
which it simplifies and expands for ease of use in the new context. One of the most rel-
evant new feature is its arrow notations for relationships, in the form (a)-[:R]->(b)
to denote a relation of type R between a and b. Cypher also is adapted to Neo4j by not
requiring to follow any schema, allowing for example to add or remove properties to
specific nodes without any consideration for other nodes in the graph[Cyp]. Unless, of
course, we enforced a certain schema through indices and constraints like the method
we demonstrate here.

Following is an example to compare the syntax of SQL and Cypher:

1 SELECT actors.name

2 FROM actors

3 LEFT JOIN acted_in ON

acted_in.actor_id =

actors.id

ñ→

ñ→

4 LEFT JOIN movies ON

movies.id =

acted_in.movie_id

ñ→

ñ→

5 WHERE movies.title = "The

Matrix"ñ→

1 MATCH (actor:Actor)-[:ACTED_IN]->

2 (movie:Movie {title: "The

Matrix"})ñ→

3 RETURN actor.name

16

1 BACKGROUND: ONTOUML AND GRAPH DATABASES

1.2.3 Transaction life cycle

In Neo4j, all operations that access the graph, indexes, or schema are encapsulated
within transactions to uphold the ACID properties — Atomicity, Consistency, Isola-
tion, and Durability. This ensures that each unit of work is executed reliably: ei-
ther fully completed or not applied at all, leaving the database in a consistent state.
Transactions in Neo4j are single-threaded and confined, meaning they operate inde-
pendently without sharing state with other transactions. This design avoids complex
concurrency issues and simplifies reasoning about transactional behavior.

The life-cycle of a transaction in Neo4j is straightforward: it begins, executes a
series of read or write operations, and then finishes by either committing or rolling
back. A commit applies all the changes to the database, making them durable and vis-
ible to subsequent transactions, while a rollback undoes all changes made during the
transaction. Despite each transaction running in isolation, Neo4j supports concurrent
transactions, even for write operations. To handle potential race conditions and en-
sure consistency, Neo4j uses a locking mechanism: write locks are acquired on nodes,
relationships, or properties being modified. If two transactions attempt to write to the
same data, one will wait or fail, depending on lock availability and timing. This mech-
anism guarantees serializability, the highest isolation level, ensuring that concurrent
transactions yield the same result as if executed sequentially. Nevertheless the default
isolation level is read-commited isolation, in which a locks are not acquired for reading,
allowing another transaction to write to an element before a transaction that reads that
same element has finished. This is a weaker level of isolation but is sufficient for most
use cases and provides greater performance. [Neo]

1.2.4 Optimization in Neo4j

As previously stated, a Neo4j query is initially written as a Cypher query in the form
of a string. This query represents the pattern to be matched, along with statements
describing operations to be performed on the database. The query is parsed into an
internal structure, which is then passed to the query optimizer. The optimizer ana-
lyzes the structure by comparing it with statistics about the contents of the database
and existing indexes. It then assigns logical operators to the various components of
the query, aiming to identify the most efficient execution strategy in the current con-
text. This logical plan is finally converted into a physical plan, which is the actual
executable form of the query. This physical plan is executed by the Cypher runtime.

Various options for query execution can be specified by prepending the statement
CYPHER query-option [further-query-options] to the query. For example,
writing planner=dp instead of planner=idp allows the use of the dynamic pro-
gramming (DP) planner rather than the IDP (Interleaved DP) planner. The DP planner
explores a larger search space of possible execution plans, potentially identifying more
efficient plans at the cost of increased planning time. This can be advantageous when
a query is executed frequently, such that the time saved during execution offsets the
longer planning time.

The Cypher query planner relies on accurate statistics to create efficient execu-
tion plans. These statistics are automatically maintained and updated by Neo4j as
the database evolves. Examples include the number of nodes per label, relationships
per type and per pair of node labels, and index selectivity.

Cypher supports three query runtimes: slotted, pipelined, and parallel. The slotted

17

1 BACKGROUND: ONTOUML AND GRAPH DATABASES

runtime, which is the default in the Neo4j Community Edition, is optimized for per-
formance by using fixed memory slots for each variable. The pipelined runtime
allows intermediate results to be passed between operators in a streaming fashion,
which reduces memory usage and can improve performance for certain queries. The
parallel runtime extends the pipelined approach by executing parts of the query
plan in parallel threads when possible, further improving performance on multi-core
systems. The runtime can be selected using a query option such as runtime=slotted.

To inspect and debug query performance, Cypher provides two keywords: EXPLAIN
and PROFILE. The EXPLAIN keyword parses and plans the query, returning the exe-
cution plan without executing the query itself. This is useful for understanding how
Neo4j intends to execute the query. The PROFILE keyword both executes the query
and returns the detailed execution plan, including runtime statistics such as the num-
ber of database hits and rows processed at each step.

When executing a query with the EXPLAIN or PROFILE on the Neo4j browser
client the execution plan is returned in an image format as shown in Figure 2. Each
operator is shown as a rectangular block on the header of which the name of such
operator can be read. The body of the block is divided in two parts. On top we have
the schema of the row: the elements the operator receives as variable and on which
can operate. The bottom part represents the actual operations being performed on the
elements of the row. Additionally on the connections between blocks we can see a
numbered representing how many rows the query planner expect to receive based on
the statistics, it is according to this number that the optimizations are performed.

The execution plan does not need to be recalculated every time Neo4j executes a
query. Neo4j maintains a cache of the last 1000 execution plans to avoid redundant
planning. This cache operates at the level of the Abstract Syntax Tree (AST) resulting
from query parsing. Consequently, even if a query is written in a syntactically dif-
ferent but semantically equivalent form, or if it contains different literal values, the
cached plan can still be reused. A divergence threshold, set to 75% by default, limits
how much the underlying database statistics are allowed to change before the cached
execution plan is considered invalid and a new one must be generated.

1.2.5 Apoc support for triggers

The APOC (Awesome Procedures on Cypher) library is a powerful and widely-used
extension for Neo4j that provides a rich set of procedures and functions to enhance
Cypher’s capabilities. One of its key features is support for triggers, which enable
users to define custom logic that automatically executes in response to write opera-
tions—such as the creation, update, or deletion of nodes and relationships. These trig-
gers allow for reactive behavior within the database, supporting use cases like data
validation, automatic property management, auditing, and the enforcement of busi-
ness rules. Defined and managed using Cypher, APOC triggers offer a flexible mech-
anism for extending Neo4j’s native functionality [Apo]. This library is leveraged by
the constraint generator developed by Jiřı́ Zikán, which uses APOC to automatically
derive and apply constraints to a Neo4j graph based on an OntoUML model [Zik23].

The function use for trigger instantiation is apoc.trigger.add. It has the fol-
lowing syntax apoc.trigger.add(name, statement, selector [, config
]) where the argument name is a string representing the name chosen for the trigger
being created, statement is a string variable representing the query being execute

18

1 BACKGROUND: ONTOUML AND GRAPH DATABASES

Figure 2: Example of portion of execution plan

19

1 BACKGROUND: ONTOUML AND GRAPH DATABASES

by the trigger and selector is a map of the type phase : PHASE through which the
phase of the transaction in which the trigger is activated, e.g. phase: ’before’ makes
the trigger execute before the commit[Apo].

In addition apoc.trigger provides additional data structures and functions to
make the triggers more efficient for common uses. The data structures can be con-
sumed as parameters by the statement (e.g. $transactionId returns the id of the trig-
gering transaction and allows us to use it in the query) and include most importantly
collections of modified nodes, relationships and property, e.g. $createdNodes is the
set of all nodes created in the transaction. A common way to employ these parame-
ters is by making use of the statement UNWIND (i.e. UNWIND ($createdNodes) as
createdNode) makes the rest of query execute for each created node. A useful faction is
apoc.trigger.nodesByLabel(labelEntries, label)where labelEntries
is a collection fo nodes, for example those returned by parameter such us $createdNodes,
and label is string representing the label we want to filter from the collection. This
allows us to easily and efficiently make triggers that operate only nodes with a specific
label.

1.2.6 Use Cases and Advantages of Graph Databases

Graph databases offer significant performance advantages over traditional relational
databases, primarily due to their use of index-free adjacency. In graph databases,
each node directly references its adjacent nodes, eliminating the need for expensive
join operations. In contrast, relational databases rely on joins whose performance de-
grades as table sizes grow. This fundamental difference gives graph databases su-
perior scalability, especially as data complexity increases. Additionally, systems like
Neo4j provide high flexibility, making them more adaptable to evolving application
requirements. Unlike relational databases, which often require time-consuming and
costly schema migrations, graph databases can accommodate structural changes with
minimal overhead.[RWE15]

Thanks to these characteristics, graph databases are particularly well-suited for
domains where data is naturally represented as a network of relationships. A promi-
nent example is social networks, where users and their interactions form a complex,
highly connected graph. Graph databases can efficiently extract insights such as mu-
tual connections, communities, or influence chains. In geospatial applications, graphs
can model real-world adjacency (e.g., roads, intersections, or regions), making it pos-
sible to implement fast and dynamic routing algorithms or analyze spatial proximity.
Another important use case is network and IT infrastructure management, where de-
vices and their connections can be monitored and optimized as part of a live, updat-
able graph. In all these cases, the ability to traverse relationships quickly and intu-
itively is key—and graph databases excel precisely in that area. [RWE15]

20

2 METHODOLOGY: FROM THE ONTOUML MODEL TO A NEO4J DATABASE

SECTION 2
Methodology: From the

OntoUML Model to a Neo4j

Database
This thesis makes use of the constraint generator developed by Jiřı́ Zikán in his mas-
ter’s thesis [Zik23] and expands the workflow by integrating it with the UML model-
ing Visual Paradigm.

2.1 Motivation for Transformation

Having such a generator allows for fast and reliable model driven development. As
cited in the original thesis, model driven development is still not as common in great
part because of the lack of tools like this that could help better define the workflow by
automating part of the work necessary in actually implementing the model previously
developed.

2.2 Transformation Approach

The theory of the generator involves first defining a mapping from OntoUML con-
structs to the Neo4j constructs that will be used to manage them and ensure that the
model is respected. The mapping derived is shown in Table 1.

OntoUML constructs Neo4j constructs
Classes Labels

Attributes Integrity Constraints on the properties of vertices
Stereotypes Integrity Constraints on the combination of labels

Generalizations Integrity Constraints on the combination of labels
Associations Integrity Constraints on the presence of edges

Table 1: Mapping between OntoUML and Neo4j constructs from Jiřı́ Zikán’s master’s
thesis

Following this mapping the generator was developed to create all the required
integrity constraints for each instance in which these constructs are applied. The map-
ping shows already why this approach is very promising since all the constraints
required involve computations which Neo4j is very efficient in doing, thanks to it’s
native handling of relationships and multi-label nodes which allow fast checking of
constraints on types.

The transformer generates the following constraints:

21

2 METHODOLOGY: FROM THE ONTOUML MODEL TO A NEO4J DATABASE

• PROPERTY MUST BE OF DATATYPE: checks that the values of the property
of vertices respect the types defined in the model for the class to which the vertex
belongs to

• PROPERTY MUST BE PRESENT: checks that the properties specified as manda-
tory for a certain class are indeed present in vertices that bear the corresponding
label

• PROPERTY MUST BE UNIQUE: ensures uniqueness of identity attributes of a
class among vertices with the corresponding label

• LABEL MUST BE IN COMBINATION: this constraint is extracted both from
analysis on stereotypes and on generalizations. In the case of the stereotypes,
it ensures that a label for a NonSortal class can be applied to a vertex only if it
is in combination with at least one label for a sortal class that is intransitively
related to it. For the purpose or this constraint a related sortal is defined as a
sortal that is a subclass of the NonSortal or of one of it’s superclasses, and an
intransitively related sortal is a related sortal that is not a subclass of another
related sortal. While for the generalizations it ensures that an entity belonging to
a class also belongs to all of its superclasses and that the superclass of a covering
generalization set exist always with at least on of its subclasses.

• LABEL CANNOT BE IN COMBINATION: another constraint extracted both
from analysis on stereotypes and on generalizations. On the stereotypes it en-
sures that a vertex does not belong to more than one identity providing class
while on generalizations it ensure that a vertex cannot have multiple labels be-
longing to disjoint generalization set.

• RELATIONSHIP MUST BE PRESENT: ensures that if class has a lower bound
for a relationship greater than 0 this relationship is always present.

• RELATIONSHIP MUST BE LIMITED: ensures that the higher bound for the
cardinality of classes in the relationships are respected.

After the transformatons the program generates to files: one called comment.txt
contains a list of the constraints by name as shown in the previous list and provides
an accessible way for the user to check what are the constraints that resulted from the
OntoUML model; another file called triggers.txt contains the Cypher script that
can be used on the Neo4j server to instantiates the triggers.

In the triggers.txt file, each constraint is translated into an APOC trigger, with
the exception of the PROPERTY MUST BE UNIQUE constraint. This specific con-
straint can be directly enforced using Neo4j’s built-in constraint mechanisms, which
allow the declaration of a uniqueness constraint on a property of a node or relation-
ship.

Uniqueness constraints in Neo4j are implemented internally by creating a backed
unique index on the specified property. This ensures that no two nodes (or relation-
ships, in newer versions) with the given label can have the same value for that prop-
erty. If a user attempts to insert or update a node in a way that violates this con-
straint, Neo4j will reject the operation and raise an error. This enforcement happens at
the database engine level, making it more efficient and reliable than application-level
checks or triggers.

22

2 METHODOLOGY: FROM THE ONTOUML MODEL TO A NEO4J DATABASE

The template used to generate this type of constraint is provided in Code 1. For
all other constraint types, which cannot be enforced using native mechanisms, equiv-
alent APOC triggers are generated. Details on how these triggers are defined and
implemented can be found in Section 1.2.5, while concrete examples from the use case
are shown in Section 4.2.

1 //CONSTRAINT: PROPERTY_MUST_BE_UNIQUE

2 //INPUT: labelName, propertyName

3 CREATE CONSTRAINT {labelName}_{propertyName}_must_be_unique IF NOT

EXISTSñ→

4 FOR (node:{labelName}) REQUIRE node.{propertyName} IS UNIQUE

Listing 1: Script for constraint PROPERTY MUST BE UNIQUE

2.3 Updating the Transformer with Importer from Visual Paradigm

The program makes use of an internal data structure created through C# code to repre-
sent the OntoUML model to be transformed. To further streamline the workflow I here
expanded the original transformer by adding to it an importer that allows to create the
original model in a visual modeling program and import it into the transformer.

The modeling program chosen is Visual Paradigm, a software platform used for
modeling, designing, and managing software development projects. It provides tools
for creating diagrams like UML, BPMN, ERD, and more, helping teams visualize sys-
tem architecture, business processes, and data structures. The key reason for chosing
this program is that a plug in has been developed for it that allows efficient use of
OntoUML constructs.[Ontb] A related work is the OntoUML JSON2Graph decoder
which also decodes the json file exported from Visual Paradigm but then transforms
it into ONTOUML Vocabulary, an implementation of OntoUML in the Web Ontology
Language [Bar] [Onta].

In this case I designed a JSONImporter class to parse and translate the JSON file
exported from Visual Paradigm into the internal representation used for further pro-
cessing within the Neo4jConstraintGenerator system. Its primary responsibility is to
read a JSON file, analyze its contents, and reconstruct the OntoUML model as a col-
lection of well-defined C# objects, including classes, associations, generalizations, and
generalization sets. This enables a seamless transition from a textual data exchange
format to a typed, object-oriented model that can be used for logic validation or con-
version to database constraints.

Upon instantiation, the JSONImporter is provided with a file path pointing to the
target JSON file. The CreateModelFromJSON() method orchestrates the entire im-
port process. It begins by reading and parsing the JSON document, and accesses
model.contents which contains all the information about the elements of the mod-
els, included data about the graphical dispositions of the elements in the Visual Paradigm
diagram which can be safely ignored for the purposes of this project. The program sep-
arates the relevant elements into categories based on their OntoUML types (i.e., Class,
Generalization, Relation, GeneralizationSet, DataType). Special attention is given to
distinguishing between regular classes and data types, which are represented in the

23

2 METHODOLOGY: FROM THE ONTOUML MODEL TO A NEO4J DATABASE

JSON object as Classes with the stereotype datatype but must be stored and pro-
cessed differently due to their semantic roles in the model.

The categorization process is of fundamental importance since the JSON models
uses references through ids. Categorizing the elements into lists allows us to process
them in order so that every time a reference by id is being interpreted, the relative
element has already been processed and can be accessed via id through a dictionary.
Since classes depend on datatypes for the types of their properties, generalizations
and relations refer to classes and generalization sets depend on generalizations one of
the possible orderings and the one is in the present code is the following: datatypes,
classes, generalizations, relations, generalization sets.

The importer uses dedicated lookup functions to interpret OntoUML-specific se-
mantics. For example, lookupStereotype() maps string representations of OntoUML
stereotypes (e.g., kind, role, relator) to corresponding enum values used internally.
Similarly, lookupMultiplicity() translates multiplicity constraints from their string for-
mat (e.g., ”1”, ”0..*”) into structured Multiplicity objects. Class attributes, including
their names, types, and identity markers, are also extracted and mapped accordingly.

Finally, once all elements have been parsed and instantiated, they are assembled
into the Model object defined for the original transformer. This object encapsulates
the full OntoUML structure and is used during the process of constraint generation.
Through this modular and systematic approach, the JSONImporter provides a reliable
bridge between external OntoUML representations and the internal logic of the Neo4j
constraint generation pipeline.

The code for the JSON importer is available in Appendix G.

24

3 CASE STUDY: UNIQWAY, A CAR-SHARING APPLICATION

SECTION 3
Case Study: Uniqway, a

Car-Sharing Application
3.1 Overview of Uniqway and Available Data

Our case study for an implementation of the method involves Uniqway, a car-sharing
service established through a collaboration between Czech Technical University (CTU),
the University of Economics in Prague (VŠE), the University of Life Sciences (CZU),
ŠKODA AUTO and ŠKODA AUTO DigiLab and operated by students of the partici-
pating universties [Uni].

3.2 Data Selection and Preparation

An OntoUML model fitting the data was developed by Jiřı́ Zikán (Figure 3). How-
ever, for the current study, we will work with a simplified model that represents only
a subset of the data (Figure 4). I defined this subset by creating a simplified OntoUML
model that includes primarily the entities that form the core of the problem domain
and for which a reasonable number of records in the original database is available.
These primarily include the following four entities with their related roles: Person-
/User/Reserver/Driver, Car/ReservedCar/DrivenCar, Reservation, and Ride. To this
core elements, a few additional entities have been added to allow testing of some ad-
ditional features that would not have otherwise appeared.

To understand the OntoUML schema it’s easier to start with the User class, which
represents a concept that is intuitively understood in the domain. In OntoUML, User
is stereotyped as a role, indicating that it is a context-dependent instantiation of a more
general category—in this case, Person. The User role is mediated by a relator class
called Registration, meaning that an individual becomes a user through the act
of registration, which establishes a dependency between the User and other related
entities such as an Account.

The Person class is stereotyped as a kind, representing a substantial entity that
provides an identity criterion and persists through all its role instantiations. It defines
the essential properties of a person, independently of contextual roles. While, in this
schema, a Person only instantiates the User role, the separation of these classes al-
lows for the future inclusion of other person-related roles (e.g. relate to employees),
thus ensuring the model’s extensibility and semantic clarity.

Each Person is related to one or two instances of the quality class HomeAddress,
capturing address information with more precision. The use of the quality stereo-
type indicates that HomeAddress represents a non-substantial property of a Person,
modeled as a separate class to support constraints (e.g., cardinality) and the possibil-
ity of attaching additional attributes (e.g., isPrimaryAddress). The cardinality [1..2]
allows a person to have both a residential and a correspondence address.

25

3 CASE STUDY: UNIQWAY, A CAR-SHARING APPLICATION

Figure 3: Original OntoUML model for Uniqway

26

3 CASE STUDY: UNIQWAY, A CAR-SHARING APPLICATION

Figure 4: Simplified OntoUML model for Uniqway

27

3 CASE STUDY: UNIQWAY, A CAR-SHARING APPLICATION

The Registration relator connects the User to their Account, establishing the
foundational context for their participation in the system. Furthermore, a User may
play the role of a Reserver, and a Reserver may subsequently play the role of a
Rider, depending on their participation in the Reservation and Ride relators, re-
spectively. This role chain reflects a progression of user interactions within the system,
preserving ontological rigor by distinguishing each context-dependent state.

A similar structure is adopted for vehicles. The class Car is stereotyped as a kind,
representing physical cars in the domain. In way that resemble the hierarchy of User
subtypes, it can instantiate the roles ReservedCar and DrivenCar, depending on
its involvement in a Reservation or a Ride. Each Car is an instantiation of a
CarModel, which is stereotyped as a type. In OntoUML, the type stereotype repre-
sents a general concept (or category) that classifies individuals without providing an
identity criterion. In this case, CarModel provides shared structural and behavioral
characteristics (e.g., brand, tank capacity, number of seats) that are common across
multiple Car instances.

Finally, the model includes the OngoingReservation role, played by a Reservation
in the context of a Ride. This allows the system to distinguish reservations that are
actively engaged in a ride from those that are not, supporting a fine-grained represen-
tation of temporal states within the reservation lifecycle.

3.3 Data Integration into Neo4j

Executing the constraint generator with JSON export from Visual Paradigm produces
the triggers to use on our Neo4j database. Since the triggers are very numerous and the
script generated for their instantiation is over 2000 lines long, only the comment.txt
file produced by the constraint generator is included in Appendix A. This file de-
scribes the constraints in concise human-readable form. Here, we present a simple
example of one such comment and the corresponding triggers it references.
For instance, the comment RELATIONSHIP MUST BE PRESENT(RESERVER, RESERVATION)
refers to the following triggers:

28

3 CASE STUDY: UNIQWAY, A CAR-SHARING APPLICATION

1 CALL apoc.trigger.add(

2 "reserver_must_be_in_relationship_with_reservation_labelassigned",

3 'UNWIND (

4 apoc.trigger.nodesByLabel($assignedLabels, "Reserver")

5) AS node1

6 CALL apoc.util.validate(

7 SIZE([(node1)--(n2:Reservation) | n2]) < 1,

8 "Reserver label must be in relationship with Reservation label",

9 null

10)

11 RETURN null', { phase:"before" });

12 CALL apoc.trigger.add(

13 "reserver_must_be_in_relationship_with_reservation_labelremoved",

14 'UNWIND (

15 apoc.trigger.nodesByLabel($removedLabels, "Reservation")

16) AS node2

17 UNWIND (

18 [(n1:Reserver)--(node2) | n1]

19) AS node1

20 CALL apoc.util.validate(

21 SIZE([(node1)--(n2:Reservation) | n2]) < 1,

22 "Reserver label must be in relationship with Reservation label",

23 null

24)

25 RETURN null', { phase:"before" });

26 CALL apoc.trigger.add(

27 "reserver_must_be_in_relationship_with_reservation_relationdeleted",

28 'UNWIND (

29 $deletedRelationships

30) AS rel

31 UNWIND (

32 [apoc.rel.startNode(rel), apoc.rel.endNode(rel)]

33) AS node1

34 CALL apoc.util.validate(

35 apoc.label.exists(node1, "Reserver") and

36 (SIZE([(node1)--(n2:Reservation) | n2]) < 1),

37 "Reserver label must be in relationship with Reservation label",

38 null

39)

40 RETURN null', { phase:"before" });

Listing 2: Script for constraint RELATIONSHIP MUST BE PRESENT(RESERVER,
RESERVATION)

29

3 CASE STUDY: UNIQWAY, A CAR-SHARING APPLICATION

The CSV files corresponding to the relevant tables are exported from the origi-
nal PostgreSQL server and subsequently loaded on the Neo4j database through the
Cypher script provided in Appendix D.

A major concern during the development of this script was to ensure that its mem-
ory requirements wouldn’t exceed the 2GB of heap space allocated the Java Virtual
Machine running the Neo4j server. This is complicated by the extensive use of triggers
and the large number of tuples in some tables, such as reservations and rides (see Ap-
pendix B for the sizes of the various tables used). To achieve this, the script makes use
of USING PERIODIC COMMIT 1000, which instructs Neo4j to commit every 1000
lines processed [Cyp]. This periodic commits allows the freeing up of memory space
by preventing the accumulation of all intermediate changes in memory at once. How-
ever, one caveat of using periodic commits is that the commit when not all the oper-
ations for a certain query are completed, setting off triggers which would otherwise
be respected. This implementation addresses this problem by assigning temporary la-
bels (ex. Reservation Importing), which are not related to any trigger, to the imported
nodes. And only after the loading of the CSV is completed, a lighter query replace the
real labels for the node in question and the ones related to it, at which point trigger
constraints are properly enforced.

30

4 BENCHMARK DESIGN AND IMPLEMENTATION

SECTION 4
Benchmark Design and

Implementation
To evaluate the performance impact of triggers and verify their correct functioning, we
designed a series of benchmarks that test both positive and negative scenarios. We will
measure the performance with 5 positive benchmarks and 5 negative. All benchmarks
used involve creation or modification of data, as this is the only case in which the
constraints play a role in the performance.

Positive benchmarks measure the performance of typical database operations with
and without triggers enabled. We defined five positive benchmarks to compare the
execution time and assess any performance overhead introduced by the triggers.

Negative benchmarks are designed to ensure that triggers are working as intended
and that their mechanisms for enforcing constraints or preventing invalid operations
are effective. Again, we defined five such benchmarks to evaluate the correctness and
efficiency of the triggers.

To investigate how database size affects performance, we tested the benchmarks
on five different datasets of varying sizes. The size of the database was controlled
by limiting the number of people loaded, with the population script loading only the
reservations and rides related to these people. The sizes of the databases are available
in Appendix C, but they correspond to total sizes that is roughly 100%, 70%, 40%, 25%
and 13% of the original database and will henceforth be named DB100, DB70, DB40,
DB25, DB13.

The execution plans for the benchmark queries were generated using the EXPLAIN
keyword in the Neo4j browser client. An execution plan describes the steps that the
Neo4j query engine will take to execute a query, including details about how data is
accessed, matched, filtered, and returned. It helps to understand the query’s perfor-
mance characteristics and identify potential bottlenecks.

We generated execution plans for each of the different database sizes (DB100, DB70,
DB40, DB25, and DB13) to check for any variations that might arise due to database
size. However, since the execution plans were identical across all sizes, indicating that
the query engine uses the same plan regardless of dataset scale, we will present only
one representative execution plan in this report.

4.1 Positive tests

Positive tests are designed to verify that a system behaves correctly under expected
conditions. In our case, we use positive tests to compare the performance of the
server with constraints enabled versus the server without constraints. This allows
us to measure the impact of constraints on performance in a controlled, functional
scenario where all operations are valid.

31

4 BENCHMARK DESIGN AND IMPLEMENTATION

For simplicity in running the tests, the positive benchmark queries are written as
templates presenting variables as ${number} and are presented as such in the follow-
ing sections. This will allow us to run the same query multiple times, modifying the
ids through code to respect constraints.

4.1.1 Test P1: adding new User

Test P1 involves the creation of a new user in the database. To meet the requirements,
the node is created with both the Person and User labels. Additionally, the associ-
ated HomeAddress and Account nodes are created and the relations to them are set,
together with all the necessary properties in the right type. The code for the test is
provided below:

1 CREATE (p:Person {id: toInteger(${number})})

2 CREATE (add:HomeAddress {id: toInteger(${number})})

3 CREATE (acc: Account {id: toInteger(${number})})

4 CREATE (p)-[:LIVES_IN]->(add)

5 CREATE (p)-[:HAS_CORRESPONDANCE_ADDRESS]->(add)

6 CREATE (p) -[:REGISTERED]-> (r:Registration {id:

toInteger(${number}), registrationDate: date("2025-05-06")})ñ→

7 CREATE (r)-[:HAS_ACCOUNT]->(acc)

8 SET p.firstName = "Jan",

9 p.lastName = "Novak",

10 p.dateOfBirth = date("1999-01-01"),

11 p.gender = "m",

12 p.userPhone = "1234567890",

13 add.city = "Praha",

14 add.country = "Czechia",

15 add.street = "Namesti Miru",

16 acc.language = "en",

17 acc.note = "null",

18 acc.password = "password",

19 acc.promoCode = "null",

20 p.userEmail = "jan.novak@gmail.com",

21 p:User;

Listing 3: Test P1 query

Figure 15 shows the corresponding execution plan. The plan for this query is sim-
ple as it uses only simple operators and it replicates 1 by 1 the CYPHER code for the
query. It first executes a create operation executing all the Create arguments in the
query, then we see SetProperties (and SetProperty) (Figure 5) appearing sep-
arately for each object and setting the properties in the exact order used in the query
and SetLabel similarly setting the label User for the node p representing the person.

32

4 BENCHMARK DESIGN AND IMPLEMENTATION

In the end of the query we see the generation of the result of the query, since in all
the benchmark queries developed for the current thesis no return statement has been
used it will always appear the same: showing an EmptyResult, which discards all
the rows leaving nothing as a result, and ProduceResults which would prepare the
result to be returned but in this case does nothing as it receives from EmptyResult
(Figure 6).

Figure 5: Zoom on element creation
and setting of properties

Figure 6: Zoom on element empty re-
sult production

Interestingly the execution plan shows the exact same structure used in the query.
Which means that the query optimizer didn’t unite the setting of the properties from
the same object or integrating the setting of properties in the creation of the nodes. This
result is relevant as it shows that either there is no significant performance difference
between the setting of properties in the Create operator, in SetProperties or in
SetProperty or that the syntactical choice in the writing of the Cypher query plays
a very significant role on the performance of the query once executed.

4.1.2 Test P2: adding a new reservation

Test P2 involves the creation of a new reservation for a User and a Car, it addition-
ally sets the participants as Reserver and ReservedCar to ensure compliance with
constraints. The code for the test is provided below:

33

4 BENCHMARK DESIGN AND IMPLEMENTATION

1 MATCH (u:User {id: toInteger(123)}), (c:Car {id: toInteger(51)})

2 CREATE (r:Reservation {id: toInteger(${number}), pricePerKilometer

: 23.5, pricePerHour : 31.2, freePricing : toBoolean("true"),

reason: "null"})

ñ→

ñ→

3 CREATE (u)-[:RESERVED]->(r)

4 CREATE (c)-[:IS_RESERVED]->(r)

5 SET r:Reservation,

6 u:Reserver,

7 c:ReservedCar;

Listing 4: Test P2 query

Figure 16 shows the execution plan for this query. It starts by searching the User
and the Car nodes by the id. An important thing to note from this query is that we
can see it leverages the constraint on the uniqueness of the id to find the Car, since
this constraint creates an index allowing Neo4j to use the NodeUniqueIndexSeek
operator, but it cannot do the same on User, being forced to use a NodeByLabelScan
on the label User followed by a filter on the value of the id property (Figure 7). This
happens because nowhere has a constraint on uniqueness been set for the id of User,
even though we know it must be unique due to id being part of the properties defined
by Person, a superclass of user, for which it has been defined as unique. To compare
the performance I propose an alternative version of TestP2, called Test P2Alt.

After the fetching operators we see that the results from both branches are com-
bined in a rows composed by the User node and the Car node, with the CartesianProduct
operator. In this case the combination of the rows is trivial as we receive one row only
from each branch, but if it receives multiple rows from the two banches the operator
will combine each row from one branch with every single row from the other branche,
as the name implies.

The execution plane then continues as with the same nodes that appeared in the
previous query matching closely the Cypher query and returning no result.

4.1.3 Test P2Alt: creating a reservation leveraging the index

Test P2Alt substitutes the User label with Person to leverage the efficiency provided
by the uniqueness constraints on the id, which makes the database generate an index
on it. The code follows below:

34

4 BENCHMARK DESIGN AND IMPLEMENTATION

1 MATCH (u:Person {id: toInteger(123)}), (c:Car {id: toInteger(51)})

2 CREATE (r:Reservation {id: toInteger(${number}), pricePerKilometer

: 23.5, pricePerHour : 31.2, freePricing : toBoolean("true"),

reason: "null"})

ñ→

ñ→

3 CREATE (u)-[:RESERVED]->(r)

4 CREATE (c)-[:IS_RESERVED]->(r)

5 SET r:Reservation,

6 u:Reserver,

7 c:ReservedCar;

Listing 5: Test P2alt query

Figure 17 shows the execution plan where we can see the initial NodeByLabelScan+Filter
to match the User element has been substituted by Index seek and united with the
similar operation used for the Car element into a MultiNodeIndexSeek ((Figure 8)).
This operator can retrieve nodes from both MATCH statements and combine them
with a cartesian product. Again in this case the cartesian product is trivial as both
indexes have the UNIQUE constraints, but Neo4j supports also non unique indexes in
which case this operator can also be used.

Figure 7: Zoom on matching operation for P2

35

4 BENCHMARK DESIGN AND IMPLEMENTATION

Figure 8: Zoom on matching operation for P2alt

4.1.4 Test P3: Creating a new car

Test P3 is a straightforward query that creates a new car node and associates it an
already existing car model.

1 MATCH (cm:CarModel {id: toInteger(4)})

2 CREATE (n:Car)

3 CREATE (n)-[r:IS_OF_MODEL]->(cm)

4 SET n.id = toInteger(${number}),

5 n.carName = "Ludmila",

6 n.manufactureYear = toInteger("2025"),

7 n.color = "#F00",

8 n.codeVIN = "TMBGR9NW1L3034800",

9 n.licencePlate = "2ME41423",

10 n.locked = toBoolean("false")

Listing 6: Test P3 query

Figure 18 shows the execution plan for this query. As we can see it is very straight-
forward as the CarModel node is fetched with NodeUniqueIndexSeek and then the
Cypher query is closely replicated with the node we already saw.

4.1.5 Test P4: Creating a new ride

Test P4 creates a new ride. It matches 1 single Reservation that doesn’t bear the label
OngoingReservation, implying it doesn’t have an associated ride, and associates the
new ride with it and its associated user and car.

36

4 BENCHMARK DESIGN AND IMPLEMENTATION

1 MATCH (res:Reservation)

2 WHERE NOT res:OngoingReservation

3 WITH res LIMIT 1

4 MATCH (u:User)-[:RESERVED]->(res), (c:Car)-[:IS_RESERVED]->(res)

5 CREATE (rr:Ride {id: toInteger(${number}), startedAt :

date("2025-01-01"),ñ→

6 finishedAt : date("2025-01-01"), initialMileage :

toInteger(418),ñ→

7 finalMileage: toInteger(444),

8 initialFuelLevel: toInteger(75),

9 finalFuelLevel: toInteger(60)})

10 CREATE (rr)-[:FROM_RESERVATION]->(res)

11 CREATE (u)-[:RIDES]->(rr)

12 CREATE (c)-[:IS_DRIVEN]->(rr)

13 SET res:OngoingReservation,

14 u:Driver,

15 c:DrivenCar;

Listing 7: Test P4 query

Figure 19 shows the plan for this query. As can see it gets all the nodes labeled as
Reservation, filters out all those that bear the label OngoingReservation, then
the operator Limit which returns only the first n Lines of the input it receives, in
this case 1. The operator Eager serves as a way to sinchronize the pipeline, forcing
all the previous operators to execute fully before continuing execution. The operator
visualizations even informs us as to why this operator has been inserted. In this case
we read ”overlapping set labels: OngoingReservation”, meaning that the next op-
erators change the label OngoingReservation, potentially influencing the previous
Filter operator. By analyzing carefully the execution plan we notice that it is indeed
superfluous as it only modifies the label for the node that has already been received, in
addition limiting the rows to one means that when the Eager operator is reached the
first time the execution of the previous operators is already complete, as all the other
rows are discarded (Figure 9). [Cyp]

The rest of the query follows closely the Cypher query using operators that already
appeared in the previous queries with the exception of Expand(All) operator which
is used to traverse relationships and retrieve the related nodes (Figure 10).

Special attention is to be given to the fact that if we specify the Label for the ob-
ject we are retrieving from the relation Neo4j will have to use a filter to verify that
label, even when we already know thanks to our predefined model that all nodes we
can reach through that relationship bear that label. As a consequence this should be
considered when optimizing query for small improvement which could still be mean-
ingful when applied to massively executed queries.

37

4 BENCHMARK DESIGN AND IMPLEMENTATION

Figure 9: Zoom on the eager operator Figure 10: Zoom on the Expand(All)
operator

4.1.6 Test P5: Changing the address of a person

Test P5 involves changing the address of a person. The writing of such a query in a
form compliant with the constraints is complex as multiple operations have to be done
before the triggers are checked. The implementation used here looks for the person
and its LIVES IN relationship which ties it to the home address (there is also another
relationship to HomeAddress which shows the correspondance address), creates the
new address, deletes the relationship with the previous address and substitutes it with
a relationship to the new address, then a subquery follows enclosed in a CALL { ... }
statement which checks if the old addressed is still holding a relationship (in case
more than one person have the some address or the person still holds that address as
the correspondence address) to delete only in case it doesn’t hold any. The use of the
OPTIONAL MATCH is necessary since it doesn’t discard the the rows for which the
match produces no result, allowng the continuation of the execution.

38

4 BENCHMARK DESIGN AND IMPLEMENTATION

1 MATCH (p:Person {id: 50})-[r1:LIVES_IN]->(a1)

2 CREATE (a2:HomeAddress {

3 id: toInteger(${number}),

4 city: "Praha",

5 country: "Czechia",

6 street: "Namesti Miru"

7 })

8 DELETE r1

9 CREATE (p)-[:LIVES_IN]->(a2)

10 WITH a1

11 CALL {

12 OPTIONAL MATCH (a1)--()

13 WITH a1, count(*) AS relCount

14 WHERE relCount = 0

15 DELETE a1

16 }

Listing 8: Test P5 query

Figure 20 shows the plan for this query. The visualization is ambiguous because
of how it shows the execution of the subquery but by analyzing it and comparing
it with Cypher code we can notice how the branch on the left is the first part of the
query, after it has created the new address and subistuted the relation to the old ad-
dress with a relation between the person and the newly created adress it reches a node
SubqueryForeach which executes the other branch, the callee, for each row it re-
ceives (Figure 11).

The first operator is Argument which receives the variables from the Caller and
constitutes the start of the subquery. Then the execution continues using OptionalExpand(all)
for the expand match on the relations and EagerAggregation for the calculation of
the relCount aggregate variable.

4.2 Negative tests

Negative tests, on the other hand, are used to ensure the system correctly handles
invalid or unexpected inputs. Here, we use negative tests to verify that the defined
constraints are enforced properly. These tests deliberately attempt to violate the con-
straints, and we check that the server appropriately rejects or handles these operations.

4.2.1 Test N1: Creating a new ride without defining a starting time

Test N1 involves a query creating a new Ride node respecting all the constraints ex-
cept that is doesn’t set the property startedAt which is specified as a mandatory
property in the OntoUML for the class Ride.

39

4 BENCHMARK DESIGN AND IMPLEMENTATION

Figure 11: Zoom on the execution of SubqueryForeach

40

4 BENCHMARK DESIGN AND IMPLEMENTATION

1 MATCH (res: Reservation {id: toInteger(7841)}),

2 (u:User)-[:RESERVED]->(res), (c:Car)-[:IS_RESERVED]->(res)

3 CREATE (rr:Ride {id: toInteger(21344556),

4 finishedAt : date("2025-01-01"), initialMileage :

toInteger(418),ñ→

5 finalMileage: toInteger(444),

6 initialFuelLevel: toInteger(75),

7 finalFuelLevel: toInteger(60)})

8 CREATE (rr)-[:FROM_RESERVATION]->(res)

9 CREATE (u)-[:RIDES]->(rr)

10 CREATE (c)-[:IS_DRIVEN]->(rr)

11 SET res:OngoingReservation,

12 u:Driver,

13 c:DrivenCar;

Listing 9: Test N1 query

From the file comments.txt (available in Appendix A)) we already know of the
existence of the constraint PROPERTY MUST BE PRESENT(Ride, startedAt). The
definition of this trigger can be recovered from the triggers.cql file generated by
the transformer and is the following:

1 //PROPERTY_MUST_BE_PRESENT(RIDE, STARTEDAT)

2 CALL apoc.trigger.add("ride_startedat_must_be_present",

3 'UNWIND (

4 $createdNodes +

5 apoc.trigger.nodesByLabel($assignedLabels, "Ride") +

6 apoc.trigger.nodesByLabel($removedNodeProperties, "Ride")

7) AS node

8 CALL apoc.util.validate(

9 apoc.label.exists(node, "Ride") and not

10 exists(node.startedAt),

11 "startedAt property of Ride must be present",

12 null

13)

14 RETURN null', { phase:"before" });

Listing 10: Script for constraint PROPERTY MUST BE PRESENT(Ride, startedAt)

Which means that whenever a node is created, the label Ride of node is added or
removed, or the properties of a node labeled as Ride has been changed the trigger

41

4 BENCHMARK DESIGN AND IMPLEMENTATION

throws an error if the label Ride is present and the property startedAt is absent.
Figure 21 shows the plan for this query.

4.2.2 Test N2: Creating a new car without a model

Test N2 involves a query that attempts the creation of a Car node without creating a re-
lation from it to its relative CarModel node. This should be an error as the OntoUML
model specifies the relationship between the classes Car and CarModel as ”*–1” mak-
ing it mandatory for car to have exactly one relation to CarModel.

1 CREATE (n:Car)

2 SET n.id = toInteger(9949),

3 n.carName = "Ludmila",

4 n.manufactureYear = toInteger("2025"),

5 n.color = "#F00",

6 n.codeVIN = "TMBGR9NW1L3034800",

7 n.licencePlate = "2ME41423",

8 n.locked = toBoolean("false")

Listing 11: Test N2 query

From the file comments.txt (available in Appendix A)) we know the existence
of the constraints RELATIONSHIP MUST BE PRESENT(Car, CarModel) and
RELATIONSHIP MUST BE LIMITED(Car, CarModel, 1)which ensure that the re-
lationship between Car and CarModel respects the model. In particular the current
test doesn’t respect RELATIONSHIP MUST BE PRESENT(Car, CarModel) which is
created by the following command:

1 //RELATIONSHIP_MUST_BE_PRESENT(CAR, CARMODEL)

2 CALL apoc.trigger.add(

3 'car_must_be_in_relationship_with_carmodel_labelassigned',

4 'UNWIND (

5 apoc.trigger.nodesByLabel($assignedLabels, "Car")

6) AS node1

7 CALL apoc.util.validate(

8 SIZE([(node1)--(n2:CarModel) | n2]) < 1,

9 "Car label must be in relationship with CarModel label",

10 null

11)

12 RETURN null', { phase:"before" });

13 CALL apoc.trigger.add(

14 'car_must_be_in_relationship_with_carmodel_labelremoved',

15 'UNWIND (

42

4 BENCHMARK DESIGN AND IMPLEMENTATION

16 apoc.trigger.nodesByLabel($removedLabels, "CarModel")

17) AS node2

18 UNWIND (

19 [(n1:Car)--(node2) | n1]

20) AS node1

21 CALL apoc.util.validate(

22 SIZE([(node1)--(n2:CarModel) | n2]) < 1,

23 "Car label must be in relationship with CarModel label",

24 null

25)

26 RETURN null', { phase:"before" });

27 CALL apoc.trigger.add(

28 "car_must_be_in_relationship_with_carmodel_relationdeleted",

29 'UNWIND (

30 $deletedRelationships

31) AS rel

32 UNWIND (

33 [apoc.rel.startNode(rel), apoc.rel.endNode(rel)]

34) AS node1

35 CALL apoc.util.validate(

36 apoc.label.exists(node1, "Car") and

37 (SIZE([(node1)--(n2:CarModel) | n2]) < 1),

38 "Car label must be in relationship with CarModel label",

39 null

40)

41 RETURN null', { phase:"before" });

Listing 12: Script for RELATIONSHIP MUST BE PRESENT(Car, CarModel)

As we can see it is maintained by three different triggers. In the first one, validation
is run for all nodes to which the label Car is added and it involves the calculation of
the size of a list comprehension, throwing an error if the size is less than 1. The list
comprehension means [(node1)–(n2:CarModel) — n2] means that it finds all relations
matching the pattern represented on the left side (relations between the triggering
node and CarModel-labeled nodes) and returns a list of the term represented on the
right side, i.e. a list of all the the CarModel nodes related to the triggering node.

The other two scripts involves a similar check when a label CarModel is removed,
possibly causing related cars to lose the related Car nodes to lose their CarModel, and
when a relationship is deleted. In this last case the trigger checks for each extremity of
the relation if it is a Car and if it is still related to CarModel node.

Figure 22 shows the plan for this query.

43

4 BENCHMARK DESIGN AND IMPLEMENTATION

4.2.3 Test N3: Creating a new ride without it being related to a reservation

Test N3 involves the creation of a new Ride node without it being related to an
OngoingReservation node while respecting all the other constraints. The relation-
ship between Ride and OngoingReservation is defined in the OntoUML model as
”1..*–1”, which means that each Ridemust be related to exactly one OngoingReservation
and an OngoingReservation must be related to at least one Ride.

1 MATCH (u:User {id: toInteger(8519)}), (c:Car{id: toInteger(60)})

2 CREATE (rr:Ride {id: toInteger(21345564),

3 startedAt : date("2025-01-01"),

4 finishedAt : date("2025-01-01"), initialMileage :

toInteger(418),ñ→

5 finalMileage: toInteger(444),

6 initialFuelLevel: toInteger(75),

7 finalFuelLevel: toInteger(60)})

8 CREATE (u)-[:RIDES]->(rr)

9 CREATE (c)-[:IS_DRIVEN]->(rr)

10 SET u:Driver,

11 c:DrivenCar;

Listing 13: Test N3 query

The following constraints are responsible of ensuring that the relationship rules are
respected as specified by the OntoUML model:
RELATIONSHIP MUST BE PRESENT(OngoingReservation, Ride),
RELATIONSHIP MUST BE LIMITED(Ride, OngoingReservation, 1) and
RELATIONSHIP MUST BE PRESENT(Ride, OngoingReservation).
In this case the constraint violated is the latter which is defined in the following way:

1 //RELATIONSHIP_MUST_BE_PRESENT(RIDE, ONGOINGRESERVATION)

2 CALL apoc.trigger.add(

3 "ride_must_be_in_relationship_with_ongoingreservation_labelassigned",

4 'UNWIND (

5 apoc.trigger.nodesByLabel($assignedLabels, "Ride")

6) AS node1

7 CALL apoc.util.validate(

8 SIZE([(node1)--(n2:OngoingReservation) | n2]) < 1,

9 "Ride label must be in relationship with OngoingReservation

label",ñ→

10 null

11)

12 RETURN null', { phase:"before" });

44

4 BENCHMARK DESIGN AND IMPLEMENTATION

13 CALL apoc.trigger.add(

14 "ride_must_be_in_relationship_with_ongoingreservation_labelremoved",

15 'UNWIND (

16 apoc.trigger.nodesByLabel($removedLabels, "OngoingReservation")

17) AS node2

18 UNWIND (

19 [(n1:Ride)--(node2) | n1]

20) AS node1

21 CALL apoc.util.validate(

22 SIZE([(node1)--(n2:OngoingReservation) | n2]) < 1,

23 "Ride label must be in relationship with OngoingReservation

label",ñ→

24 null

25)

26 RETURN null', { phase:"before" });

27 CALL apoc.trigger.add(

28 "ride_must_be_in_relationship_with_ongoingreservation_relationdeleted",

29 'UNWIND (

30 $deletedRelationships

31) AS rel

32 UNWIND (

33 [apoc.rel.startNode(rel), apoc.rel.endNode(rel)]

34) AS node1

35 CALL apoc.util.validate(

36 apoc.label.exists(node1, "Ride") and

37 (SIZE([(node1)--(n2:OngoingReservation) | n2]) < 1),

38 "Ride label must be in relationship with OngoingReservation

label",ñ→

39 null

40)

41 RETURN null', { phase:"before" });

Listing 14: Script for RELATIONSHIP MUST BE PRESENT(Ride, OngoingReserva-
tion)

As this constraint is of the type RELATIONSHIP MUST BE PRESENT, appearing
also in Test N2, we can compare the two and notice how the implementation is ex-
actly the same. With just a simple change in the labels involved.

Figure 23 shows the plan for this query. As we can see, we again see the situa-
tion appeared in Test N2 because we are searching a User node by id. I therefore
also include a new TestN3alt which uses Person instead of User, similar to how it
happened earlier (Figure 12).

45

4 BENCHMARK DESIGN AND IMPLEMENTATION

4.2.4 Test N3alt

1 MATCH (u:Person {id: toInteger(8519)}), (c:Car{id: toInteger(60)})

2 CREATE (rr:Ride {id: toInteger(21345564),

3 startedAt : date("2025-01-01"),

4 finishedAt : date("2025-01-01"), initialMileage :

toInteger(418),ñ→

5 finalMileage: toInteger(444),

6 initialFuelLevel: toInteger(75),

7 finalFuelLevel: toInteger(60)})

8 CREATE (u)-[:RIDES]->(rr)

9 CREATE (c)-[:IS_DRIVEN]->(rr)

10 SET u:Driver,

11 c:DrivenCar;

Listing 15: Test N3alt query

As long as the Person node we are using is also a User the considerations in terms
of constraints involved are exactly the same as earlier.

Figure 24 shows the plan for this query, which shows the usage of MultiNodeIndexSeek
we were aiming for (Figure 13).

Figure 12: Zoom on matching operation for N3

46

4 BENCHMARK DESIGN AND IMPLEMENTATION

Figure 13: Zoom on matching operation for N3alt

4.2.5 Test N4: Creating a new reservation without associating a car

Test N4 involves creating a new Reservation node without associating a ReservedCar
node. This violates the definition of the relation between Reservation and ReservedCar.

1 MATCH (u:User {id: toInteger(123)})

2 CREATE (r:Reservation {id: toInteger(99959999),

3 pricePerKilometer : 23.5, pricePerHour : 31.2,

4 freePricing : toBoolean("false"), reason: "null"})

5 CREATE (u)-[:RESERVED]->(r)

6 SET r:Reservation,

7 u:Reserver;

Listing 16: Test N4 query

Figure 25 shows the plan for this query.

4.2.6 Test N5: Creating a new reservation by an unregistered person

Test N5 involves the creation of an unregistered Person, that doesn’t have an asso-
ciated Registration and doesn’t hold the label User, and of a new Reservation
where this Person appears as Reserver. This shouldn’t be possible as the OntoUML
model (Figure 4) shows that Reserver inherits from User and therefore must hold
this label too.

1 MATCH (c: Car {id:60})

2 CREATE (p:Person {id: toInteger(9999959)})

47

4 BENCHMARK DESIGN AND IMPLEMENTATION

3 CREATE (a:HomeAddress {id: toInteger(23782342)})

4 CREATE (p)-[:LIVES_IN]->(a)

5 CREATE (p)-[:HAS_CORRESPONDANCE_ADDRESS]->(a4)

6 CREATE (r:Reservation {id: toInteger(99999979),

7 pricePerKilometer : 23.5, pricePerHour : 31.2,

8 freePricing : toBoolean("true"), reason: "null"})

9 CREATE (p)-[:RESERVED]->(r)

10 CREATE (c)-[:IS_RESERVED]->(r)

11 SET p.firstName = "Jan",

12 p.lastName = "Novak",

13 p.dateOfBirth = date("1999-01-01"),

14 p.gender = "m",

15 p.userPhone = "1234567890",

16 a.city = "Praha",

17 a.country = "Czechia",

18 a.street = "Namesti Miru",

19 r:Reservation,

20 p:Reserver,

21 c:ReservedCar;

Listing 17: Test N5 query

Looking at the constraints we can identify LABEL MUST BE IN COMBINATION(Reserver,
User) as the constraint that ensures the generalization from Reserver to User. It is
defined this way:

1 CALL apoc.trigger.add('reserver_must_be_with_user',

2 'UNWIND (

3 apoc.trigger.nodesByLabel($assignedLabels, "Reserver") +

4 apoc.trigger.nodesByLabel($removedLabels, "User")

5) AS node

6 CALL apoc.util.validate(

7 apoc.label.exists(node, "Reserver") and not

8 (apoc.label.exists(node, "User")),

9 "Reserver label must be in a combination with User labels",

10 null

11)

12 RETURN null', { phase:"before"});

Listing 18: Script for LABEL MUST BE IN COMBINATION(Reserver, User)

48

4 BENCHMARK DESIGN AND IMPLEMENTATION

As we can see the triggers acts when a query assigns the label Reserver or re-
moves the label User from a node and it throws an error when it finds a node which
is a Reserver but not a User.

For the sake of proving the sufficiency of the constraints we can describes some
ways we could try to go around this constraint and create Reservation from an
unregistered Person and how they would fail. Since the constraint are previous query
didn’t comply with was LABEL MUST BE IN COMBINATION(Reserver, User) we
can start by trying to avoid using the label Reserver. In this case we would run into
the constraint RELATIONSHIP MUST BE PRESENT(Reservation, Reserver) as
it wouldn’t be satisfied by a Person node which is not Reserver. Another way to
avoid the constraint would be to assign the label User to the Reserver, this would
trigger the constraint
RELATIONSHIP MUST BE PRESENT(User, Registration). This ensures that a
negligent developer wouldn’t be able to violate schema requirements by simply using
the labels improperly.

Figure 26 shows the plan for this query.

49

5 EVALUATION AND RESULTS

SECTION 5
Evaluation and Results

5.1 Methodology

All benchmarks were executed on my local machine to ensure consistency in the test-
ing environment. The specifications of the machine used for these benchmarks are
provided in Appendix F. Since the constraint transformer is not yet compatible with
Neo4j 5, all tests were carried out using Neo4j version 4.4.42. This version was selected
to ensure compatibility with the current implementation of the transformer. Addi-
tionally, Neo4j 4.4.42 requires Java 11, so the database was run on OpenJDK 11.0.26.4.
Newer versions of the JDK are not supported by this Neo4j release, making it nec-
essary to use an older Java environment. This setup provides a reliable baseline for
evaluating the transformer’s functionality until support for Neo4j 5 is implemented.

The tests were carried out using the Neo4j Python Driver 5.28. The Neo4j Python
Driver is an official client library that allows Python applications to connect to and
interact with Neo4j graph databases. It provides a high-level API to execute Cypher
queries, manage transactions, and handle query results. Under the hood, it commu-
nicates with the Neo4j database using the Bolt protocol, a binary protocol specifically
designed by Neo4j for efficient communication between clients and the database. Bolt
is optimized for low-latency, high-throughput transmission of Cypher queries and re-
sults, making it significantly faster and more efficient than traditional HTTP-based
interactions. The driver handles connection pooling, authentication, and data seri-
alization, abstracting away the complexity of the Bolt protocol while leveraging its
performance benefits.

Each test was executed 1,000 times for each database size, both with and without
constraints. The total execution time was recorded and then divided by 1,000 to obtain
the average time in milliseconds.

Below is the code of the function used to run the tests for positive benchmarks.
As previously mentioned, positive benchmarks were written as templates to allow the
use of different triggers while ensuring compliance with the specified constraints. In
this function, baseint serves as the starting number from which IDs are assigned;
it is incremented by one on each iteration. To prevent duplicate IDs, a sufficiently
large baseint value is chosen each time run cypher query is executed on the same
instance, ensuring no conflicts with existing IDs in the database.

50

5 EVALUATION AND RESULTS

1 def run_cypher_query(basequery, baseint, user = "neo4j", password =

"password"):ñ→

2

3 driver = GraphDatabase.driver("bolt://localhost:7687",

4 auth=(user, password))

5 session = driver.session()

6 m=1000

7 start_time = time.time()

8 try:

9 for i in range(1, m):

10 result = session.run(Template(basequery)

11 .substitute(number=baseint+i))

12 summary = result.consume()

13 except ConstraintError as e:

14 print("Contstraint error: " + e.message)

15 except ClientError as e:

16 print("Error: " + e.message)

17 except Exception as e:

18 print("Unexpected error: " + e.message)

19 end_time = time.time()

20 return (end_time - start_time)*1000/m

Listing 19: Python function running performance test on positive queries

Below is the function used to run tests for negative benchmarks. This function
is similar to the positive test function, but in this case the for-loop terminates if the
operation does not raise a ConstraintError or ClientError, since that indicates
that the constraints are not enforced as expected and the error message is captured
from the first occurrence of the expected error, enabling validation that the error is of
the correct type. While the performance when failing the constraints is not as rele-
vant as in the case of working queries as this kind of test cases display a failure in the
implementation and do not represent how the working performance of the database
in a normal setting, they are displayed here for completeness and to show how the
database doesn’t perform particularly differently when commit a transaction or exe-
cuting a rollback due to constraint failure.

51

5 EVALUATION AND RESULTS

1 def run_negative_test(query, user = "neo4j", password =

"password"):ñ→

2

3 driver = GraphDatabase.driver("bolt://localhost:7687",

4 auth=(user, password))

5 session = driver.session()

6 m=1000

7 start_time = time.time()

8 errorMessage = ""

9 first = True

10 for i in range(1, m):

11 trig = False

12 try:

13 result = session.run(query)

14 summary = result.consume()

15 except ConstraintError as e:

16 trig = True

17 if(first):

18 first = False

19 errorMessage = "Constraint successfully triggered: "

20 + e.message

21 except ClientError as e:

22 trig = True

23 if(first):

24 first = False

25 errorMessage = "Constraint successfully triggered: "

26 + e.message

27 except Exception as e:

28 errorMessage = "Unexpected error: " + e.message

29 break

30 if(trig==False):

31 errorMessage = "ERROR: No constraint triggered"

32 break

33 end_time = time.time()

34 return errorMessage, (end_time - start_time)*1000/m

Listing 20: Python function running performance test on negative queries

52

5 EVALUATION AND RESULTS

DB13 DB25 DB40 DB70 DB100
Without Triggers 15.157 16.649 15.207 15.035 9.954

With Triggers 49.344 47.309 43.504 50.311 80.679

Table 2: P1 execution times

DB13 DB25 DB40 DB70 DB100
Without Triggers 8.343 9.753 9.436 11.563 11.930

With Triggers 31.421 30.512 31.177 34.256 46.203

Table 3: P2 execution times

5.2 Results and discussion

5.2.1 P1: adding new User

Table 2 shows the average time in milliseconds needed for the execution of the query
relative to the database size and to presence or absence of triggers.

This first test provides us already with a great amount of information. The first we
can see is that even by averaging the times from 1000 executions the results are still
strongly influenced by randomness, leading to no clear correlation and a more difficult
analysis. Nevertheless, a few things can be evidently noticed.

As regards the influences of triggers on the time we can see that running the query
on the database without triggers consistently takes more then thrice the time needed
with triggers enabled. A similar slow down was to be expected as this test creates
three different nodes, one of which (Person) involving even a second label (User),
triggering validations of properties, relations and labels from 4 different classes.

When considering the influence of database size the first we notice is that the re-
sults in both cases for DB100 show clear degeneracy from what would be expected
looking at other results. We can evidently discard the possibility that for larger database
instances we obtain better performance without triggers but the results still show that
there is no clear correlation between time and database size at all. For this query this
is to be expect as it involves only write operations.

If we look at the influence of size when triggers are included again the only result
that shows a possible different performance is DB100, while when considering the
others it seems to be roughly constant. While we accept the possibility that the per-
formance is getting influenced, this is not necessarily so: as all the elements involved
are created in the query itself none of the the triggers involved has to perform checks
involving other existing elements the number of which would be related to the size of
the database. In additions constraints checking on the relations do not require joins
thanks to the native graph implementation of Neo4j.

5.2.2 P2 and P2alt: adding a new reservation

Table 3 and Table 4 show respectively the average execution times recorded for Test
P2 and Test P2alt.

In this queries the magnitude of the penalty to the performance caused by the val-
idation of the performance seems to be sensibly lower than that observe in Test P1.
This observation is consistent with the fact that this query involves the creation of

53

5 EVALUATION AND RESULTS

DB13 DB25 DB40 DB70 DB100
Without Triggers 10.843 13.612 10.117 11.251 14.097

With Triggers 34.210 30.537 33.314 37.145 43.537

Table 4: P2alt execution times

DB13 DB25 DB40 DB70 DB100
S1 Without Triggers 3.883 3.977 4.305 4.863 5.958
S2 Without Triggers 3.864 6.51 4.495 4.916 6.084

S1 With Triggers 4.199 4.211 4.294 4.803 6.423
S2 With Triggers 3.557 3.331 3.385 3.418 3.583

Table 5: Simple match execution times

single node and the application of 2 labels related to SubKinds having no additional
constraints related to them except a generalization and the relation to Reservation.

This time we also notice a clear correlation between performance and database size.
The reason for this is that the query starts by searching 2 nodes, operation which is of
course strongly dependent on size when we use a node scan followed by a filter as we
do in P2 but also when we execute an index seek, although to a lesser degree. As a con-
sequence of this it is a surprising result that we see no performance increase in P2alt
when we compare its results with those obtained by P2. This could probably be due to
the fact that most of the time is taken by writing to memory and constraint checking
which in addition to the inevitable randomness in the results causes the difference to
be obscure. A more useful test can be done by comparing the speed of the following
two queries on different database sizes with and without constraints.

1 MATCH (u:User {id:

toInteger(123)})ñ→

2 RETURN u

Listing 21: S1 : Matching with no index

1 MATCH (u:Person {id:

toInteger(123)})ñ→

2 RETURN u

Listing 22: S2 : Matching with an index

Table 5 shows the results by referring to the match on User as S1 and the match on
Person as S2. As we can see the tests that make use of scan + filter (both cases without
triggers and S1 with triggers) show a clear dependence on the size of the database
while the query that makes use of the index seek operation is very efficient and the
delays correlated with database size appear minimal. This can bettere be seen with
the graph in Image 14

5.2.3 P3: Creating a new car

Table 6 shows the results from Test P3. The results lead to same conclusions reached
about Test P1, with constant time when working without triggers relative to time, and

54

5 EVALUATION AND RESULTS

Figure 14: Graph of the match queries execution times

DB13 DB25 DB40 DB70 DB100
Without Triggers 9.661 10.964 9.496 9.966 10.465

With Triggers 28.100 27.710 26.840 56.695 33.438

Table 6: P3 execution times

a constant increase in time with strong fluctuations when working with triggers.

5.2.4 P4: Creating a new ride

The results from the time measurements of Test P4 can be found on Table 7. Table 7
shows the results for Test P4. Similarly to what was observed in other tests, the exe-
cution times without triggers remain relatively stable across different database sizes,
suggesting that the operation itself scales weakly with the total number of nodes and
relationships.

When triggers are enabled, however, execution times increase significantly, with
values roughly two to five times higher depending on the database size. This behavior
is expected, as the creation of a new Ride node activates several triggers that enforce
data consistency by performing additional validation steps and updates on related
entities.

In particular, each new Ride requires the database to check constraints related to
its associations with Driver, Passenger, and possibly Reservation nodes. These
checks involve matching and filtering existing relationships, operations whose com-
plexity grows with the local connectivity of the graph rather than its overall size.

Therefore, the lack of a clear correlation between total database size and execution
time can be explained by the fact that the structure of the relationships being vali-
dated remains consistent across datasets: each Ride creation triggers a fixed set of
operations whose cost depends primarily on the number of linked nodes rather than
on the global scale of the data.

5.2.5 P5: Changing the address of a person

Table 8 shows the results for Test P5. Again we notice a more or less constant time as
it regards the execution without triggers and we don’t see a clear correlation between
database size and time. Actually for this test we expected to see a correlation seems

55

5 EVALUATION AND RESULTS

DB13 DB25 DB40 DB70 DB100
Without Triggers 12.598 22.384 13.044 25.553 13.701

With Triggers 42.147 65.271 36.572 37.329 70.449

Table 7: P4 execution times

DB13 DB25 DB40 DB70 DB100
Without Triggers 11.593 14.082 12.141 13.757 14.680

With Triggers 27.433 26.414 30.700 25.430 31.069

Table 8: P5 execution times

we are eliminating a relation and the validation of the constraint on the relationships
from User to HomeAddress requires the database to fetch all the nodes related to
User, filtering those that bear the label HomeAddress and checking their number.
This operation is done twice, first to check that they are more than one, then to check
that they are less than two.

A closer inspections reveals that although it is true that the speed of such opera-
tions depends on the number of relations to Reservation and Ride nodes borne by
the User node, and that the number of such nodes is dependent on the size of the
database it is not true that the number of relations from is dependent on the size of the
database as the process of database population always loads all the Reservations
and Rides for every User that is loaded.

5.2.6 N1: Creating a new ride without defining a starting time

The test correctly returns the error relative to the missing property:
Constraint successfully triggered: Error executing triggers
{ride startedat must be present=Failed to invoke procedure
‘apoc.util.validate‘: Caused by: java.lang.RuntimeException:
startedAt property of Ride must be present}

The results from the time measurements of Test N1 can be found on Table 9.

5.2.7 N2: Creating a new car without a model

The test correctly returns the error relative to the missing relationship to a car model:
Constraint successfully triggered: Error executing triggers
{car must be in relationship with carmodel labelassigned=Failed to
invoke procedure ‘apoc.util.validate‘: Caused by:
java.lang.RuntimeException: Car label must be in relationship with
CarModel label}

The results from the time measurements of Test N2 can be found on Table 10.

DB13 DB25 DB40 DB70 DB100
27.183 30.273 44.138 33.148 38.888

Table 9: N1 execution times

56

5 EVALUATION AND RESULTS

DB13 DB25 DB40 DB70 DB100
24.940 40.979 26.546 28.469 24.841

Table 10: N2 execution times

DB13 DB25 DB40 DB70 DB100
45.668 23.483 26.540 36.727 35.351

Table 11: N3 execution times

5.2.8 N3 and N3alt: Creating a new ride without it being related to a reservation

The tests correctly return the error relative to the missing relationship to a reservation:
Constraint successfully triggered: Error executing triggers
{ride must be in relationship with ongoingreservation labelassigned=
Failed to invoke procedure ‘apoc.util.validate‘: Caused by:
java.lang.RuntimeException: Ride label must be in relationship
with OngoingReservation label}

The results from the time measurements of Test N3 and Test N3alt can be found
on Table 11 and Table 12. We can see the time taken by Test N3alt is consistently
better then the time needed for Test N3, even though, as it has been better analyzed in
the section relative to Test P2 we know the improvement is small enough to be easily
obscured by random fluctuations.

5.2.9 N4: Creating a new reservation without associating a car

The tests correctly return the error relative to the missing relationship to a car:
Constraint successfully triggered: Error executing triggers
{reservation must be in relationship with reservedcar labelassigned=
Failed to invoke procedure ‘apoc.util.validate‘: Caused by:
java.lang.RuntimeException: Reservation label must be in
relationship with ReservedCar label}

The results from the time measurements of Test N4 can be found on Table 13.

5.2.10 N5: Creating a new reservation by an unregistered person

The tests correctly return the error relative to the missing User label:
Constraint successfully triggered: Error executing triggers
{reserver must be with user=Failed to invoke procedure
‘apoc.util.validate‘: Caused by: java.lang.RuntimeException:
Reserver label must be in a combination with User labels}

The results from the time measurements of Test N5 can be found on Table 14.

DB13 DB25 DB40 DB70 DB100
25.351 22.787 26.139 26.440 33.377

Table 12: N3alt execution times

57

5 EVALUATION AND RESULTS

DB13 DB25 DB40 DB70 DB100
28.446 25.337 24.463 26.216 31.627

Table 13: N4 execution times

DB13 DB25 DB40 DB70 DB100
30.240 29.760 30.866 30.905 37.792

Table 14: N5 execution times

5.2.11 Duration of the population fo the database

Unlike for the other tests the timings for the population of the database have been
calculated a single time, which makes them more vulnerable to fluctuations which
must be take into account when analyzing the results. Better results could be done by
rerunning the tests multiple times but it hasn’t been done for the present thesis due to
the excessive time needed for such tests and because conclusions are not expected to
differ much from those obtained from the other results.

The results are available in Table 15. The growth in time complexity relative to the
size of the database grows as expected but we don’t see any clear difference in com-
plexity when populating the database with triggers enabled and without, of course
part of this is very likely just due to chance for the reasons previously explained -
most notably the case for the maximum size where the database without constraints
took more time to complete the population then the database with constraints.

DB13 DB25 DB40 DB70 DB100
Without Triggers 460964.84 885260.73 1438760.48 2656183.83 3870398.74

With Triggers 505980.73 836628.50 1441909.68 3089684.52 2391799.47

Table 15: Times needed for populating the database for each size

58

6 CONCLUSION

SECTION 6
Conclusion

6.1 Summary of Findings

The tests performed across the different scenarios reveal a clear and consistent trend:
the presence of triggers significantly impacts query execution times, often increasing
them by a factor of three or more compared to scenarios without triggers. This per-
formance penalty is particularly evident in operations that involve multiple node cre-
ations and consquently complex validations, as observed in P1 (adding a new User)
and P3 (creating a new Car).

Interestingly, while one might expect the database size to correlate with execution
time the results show no consistent linear relationship. For most queries (especially
those involving only writes or local checks), execution times remain relatively con-
stant across different database sizes. This outcome highlights the efficiency of Neo4j’s
graph-based model and its native support for constraint checks without costly joins.

While not the main topic of this thesis, as this operations are neither affected nor
used by most of the triggers validating the constraints, queries that involve searches
or scans before performing write operations (notably P2 and P2alt), execution times
do tend to increase with database size. This observation is consistent with the use of
node scans and filters (or, to a lesser extent, index seeks) that naturally scale with the
number of nodes in the database.

Error-handling tests correctly triggered the intended constraints, confirming the
effectiveness of triggers in enforcing data integrity. In addition it has been showed that
error-handling doesn’t involve degradation of performance compared to successful
transactions.

Overall, these findings indicate that while triggers in Neo4j offer effective mecha-
nisms for maintaining data integrity, they introduce a measurable performance over-
head. Notably, this overhead remains relatively stable even as the database size grows,
suggesting a predictable cost model. When designing systems that leverage triggers,
developers must carefully weigh the trade-offs between ensuring strict data consis-
tency and the potential impact on performance. Given their scalability and consistent
performance characteristics, triggers can represent a viable solution for applications
managing large datasets, particularly where data integrity is a critical priority. How-
ever, the decision to use triggers should be informed by the specific workload require-
ments and tolerance for latency within the application context.

6.2 Limitations and Challenges

A significant limitation encountered during the development of this thesis was the
presence of substantial random noise in the measurements. This issue can be at least
partially attributed to the lack of system isolation during testing. Specifically, the
database was hosted on a personal computer that was simultaneously running other
applications, leading to resource contention and unpredictable interference. Further-

59

6 CONCLUSION

more, additional variability was introduced by the operating system’s buffering and
caching mechanisms, for which no mitigation strategies were implemented. These
factors collectively reduced the consistency and reliability of the performance data,
complicating the evaluation and comparison of different approaches.

6.3 Further Work

Further work in this research field should prioritize comparing the performance of
this approach with similar strategies implemented using relational databases, and of
course updating the constraint generator to work with more recent releases of the
Neo4j, that is Neo4j 5.

For performance testing, future studies should consider larger databases and more
complex schemas and queries to more accurately reflect real-world scenarios. Even
better, tests could be designed using the actual distribution of queries that a given
application typically executes, providing a more realistic picture of the impact on per-
formance.

Regarding performance optimization, research could focus on integrating this ap-
proach with pre-validation mechanisms, which would catch invalid data earlier and
reduce unnecessary load on the database. Additionally, further investigation could ex-
plore how knowledge extracted from the OntoUML diagram might guide database op-
timization, for example by identifying attributes known to be unique from the model
and leveraging that insight to create indexes, as was suggested in the case of the prop-
erties P2 and P2alt in this thesis, as well as other possible indexes that can be identified.

60

A COMMENTS FROM THE CONSTRAINT GENERATOR

APPENDIX A
Comments from the constraint

generator
// ----- ATTRIBUTES

PROPERTY_MUST_BE_OF_DATATYPE(Person, id, INTEGER)
PROPERTY_MUST_BE_OF_DATATYPE(Person, firstName, STRING)
PROPERTY_MUST_BE_OF_DATATYPE(Person, lastName, STRING)
PROPERTY_MUST_BE_OF_DATATYPE(Person, dateOfBirth, DATE)
PROPERTY_MUST_BE_OF_DATATYPE(Person, gender, STRING)
PROPERTY_MUST_BE_OF_DATATYPE(Registration, id, INTEGER)
PROPERTY_MUST_BE_OF_DATATYPE(Registration, registrationDate, DATE)
PROPERTY_MUST_BE_OF_DATATYPE(Car, id, INTEGER)
PROPERTY_MUST_BE_OF_DATATYPE(Car, carName, STRING)
PROPERTY_MUST_BE_OF_DATATYPE(Car, manufactureYear, INTEGER)
PROPERTY_MUST_BE_OF_DATATYPE(Car, color, STRING)
PROPERTY_MUST_BE_OF_DATATYPE(Car, codeVIN, STRING)
PROPERTY_MUST_BE_OF_DATATYPE(Car, licencePlate, STRING)
PROPERTY_MUST_BE_OF_DATATYPE(Car, locked, BOOLEAN)
PROPERTY_MUST_BE_OF_DATATYPE(Reservation, id, INTEGER)
PROPERTY_MUST_BE_OF_DATATYPE(Reservation, pricePerKilometer, FLOAT)
PROPERTY_MUST_BE_OF_DATATYPE(Reservation, pricePerHour, FLOAT)
PROPERTY_MUST_BE_OF_DATATYPE(Reservation, freePricing, BOOLEAN)
PROPERTY_MUST_BE_OF_DATATYPE(Reservation, reason, STRING)
PROPERTY_MUST_BE_OF_DATATYPE(Ride, id, INTEGER)
PROPERTY_MUST_BE_OF_DATATYPE(Ride, startedAt, DATE)
PROPERTY_MUST_BE_OF_DATATYPE(Ride, finishedAt, DATE)
PROPERTY_MUST_BE_OF_DATATYPE(Ride, initialMileage, INTEGER)
PROPERTY_MUST_BE_OF_DATATYPE(Ride, finalMileage, INTEGER)
PROPERTY_MUST_BE_OF_DATATYPE(Ride, initialFuelLevel, INTEGER)
PROPERTY_MUST_BE_OF_DATATYPE(Ride, finalFuelLevel, INTEGER)
PROPERTY_MUST_BE_OF_DATATYPE(HomeAddress, id, INTEGER)
PROPERTY_MUST_BE_OF_DATATYPE(HomeAddress, street, STRING)
PROPERTY_MUST_BE_OF_DATATYPE(HomeAddress, city, STRING)
PROPERTY_MUST_BE_OF_DATATYPE(HomeAddress, country, STRING)
PROPERTY_MUST_BE_OF_DATATYPE(CarModel, id, INTEGER)
PROPERTY_MUST_BE_OF_DATATYPE(CarModel, modelName, STRING)
PROPERTY_MUST_BE_OF_DATATYPE(CarModel, numberOfSeats, INTEGER)
PROPERTY_MUST_BE_OF_DATATYPE(CarModel, tankCapacity, FLOAT)
PROPERTY_MUST_BE_OF_DATATYPE(CarModel, trunkCapacity, FLOAT)

61

A COMMENTS FROM THE CONSTRAINT GENERATOR

PROPERTY_MUST_BE_OF_DATATYPE(Account, id, INTEGER)
PROPERTY_MUST_BE_OF_DATATYPE(Account, password, STRING)
PROPERTY_MUST_BE_OF_DATATYPE(Account, language, STRING)
PROPERTY_MUST_BE_OF_DATATYPE(Account, note, STRING)
PROPERTY_MUST_BE_OF_DATATYPE(Account, promoCode, STRING)
PROPERTY_MUST_BE_OF_DATATYPE(User, userEmail, STRING)
PROPERTY_MUST_BE_OF_DATATYPE(User, userPhone, STRING)
PROPERTY_MUST_BE_PRESENT(Person, id)
PROPERTY_MUST_BE_PRESENT(Person, firstName)
PROPERTY_MUST_BE_PRESENT(Person, lastName)
PROPERTY_MUST_BE_PRESENT(Person, dateOfBirth)
PROPERTY_MUST_BE_PRESENT(Person, gender)
PROPERTY_MUST_BE_PRESENT(Registration, id)
PROPERTY_MUST_BE_PRESENT(Registration, registrationDate)
PROPERTY_MUST_BE_PRESENT(Car, id)
PROPERTY_MUST_BE_PRESENT(Car, carName)
PROPERTY_MUST_BE_PRESENT(Car, manufactureYear)
PROPERTY_MUST_BE_PRESENT(Car, color)
PROPERTY_MUST_BE_PRESENT(Car, codeVIN)
PROPERTY_MUST_BE_PRESENT(Car, licencePlate)
PROPERTY_MUST_BE_PRESENT(Car, locked)
PROPERTY_MUST_BE_PRESENT(Reservation, id)
PROPERTY_MUST_BE_PRESENT(Reservation, pricePerKilometer)
PROPERTY_MUST_BE_PRESENT(Reservation, pricePerHour)
PROPERTY_MUST_BE_PRESENT(Reservation, freePricing)
PROPERTY_MUST_BE_PRESENT(Reservation, reason)
PROPERTY_MUST_BE_PRESENT(Ride, id)
PROPERTY_MUST_BE_PRESENT(Ride, startedAt)
PROPERTY_MUST_BE_PRESENT(Ride, finishedAt)
PROPERTY_MUST_BE_PRESENT(Ride, initialMileage)
PROPERTY_MUST_BE_PRESENT(Ride, finalMileage)
PROPERTY_MUST_BE_PRESENT(Ride, initialFuelLevel)
PROPERTY_MUST_BE_PRESENT(Ride, finalFuelLevel)
PROPERTY_MUST_BE_PRESENT(HomeAddress, id)
PROPERTY_MUST_BE_PRESENT(HomeAddress, street)
PROPERTY_MUST_BE_PRESENT(HomeAddress, city)
PROPERTY_MUST_BE_PRESENT(HomeAddress, country)
PROPERTY_MUST_BE_PRESENT(CarModel, id)
PROPERTY_MUST_BE_PRESENT(CarModel, modelName)
PROPERTY_MUST_BE_PRESENT(CarModel, numberOfSeats)
PROPERTY_MUST_BE_PRESENT(CarModel, tankCapacity)
PROPERTY_MUST_BE_PRESENT(CarModel, trunkCapacity)
PROPERTY_MUST_BE_PRESENT(Account, id)
PROPERTY_MUST_BE_PRESENT(Account, password)
PROPERTY_MUST_BE_PRESENT(Account, language)
PROPERTY_MUST_BE_PRESENT(Account, note)
PROPERTY_MUST_BE_PRESENT(Account, promoCode)
PROPERTY_MUST_BE_PRESENT(User, userEmail)

62

A COMMENTS FROM THE CONSTRAINT GENERATOR

PROPERTY_MUST_BE_PRESENT(User, userPhone)
PROPERTY_MUST_BE_UNIQUE(Person, id)
PROPERTY_MUST_BE_UNIQUE(Registration, id)
PROPERTY_MUST_BE_UNIQUE(Car, id)
PROPERTY_MUST_BE_UNIQUE(Reservation, id)
PROPERTY_MUST_BE_UNIQUE(Ride, id)
PROPERTY_MUST_BE_UNIQUE(HomeAddress, id)
PROPERTY_MUST_BE_UNIQUE(CarModel, id)
PROPERTY_MUST_BE_UNIQUE(Account, id)

// ----- STEREOTYPES

LABEL_CANNOT_BE_IN_COMBINATION(Person,
{Registration, Car, Reservation, Ride, HomeAddress, Account})

LABEL_CANNOT_BE_IN_COMBINATION(Registration,
{Person, Car, Reservation, Ride, HomeAddress, Account})

LABEL_CANNOT_BE_IN_COMBINATION(Car,
{Person, Registration, Reservation, Ride, HomeAddress, Account})

LABEL_CANNOT_BE_IN_COMBINATION(Reservation,
{Person, Registration, Car, Ride, HomeAddress, Account})

LABEL_CANNOT_BE_IN_COMBINATION(Ride,
{Person, Registration, Car, Reservation, HomeAddress, Account})

LABEL_CANNOT_BE_IN_COMBINATION(HomeAddress,
{Person, Registration, Car, Reservation, Ride, Account})

LABEL_CANNOT_BE_IN_COMBINATION(Account,
{Person, Registration, Car, Reservation, Ride, HomeAddress})

LABEL_CANNOT_BE_REMOVED(Person)
LABEL_CANNOT_BE_REMOVED(Registration)
LABEL_CANNOT_BE_REMOVED(Car)
LABEL_CANNOT_BE_REMOVED(Reservation)
LABEL_CANNOT_BE_REMOVED(Ride)
LABEL_CANNOT_BE_REMOVED(HomeAddress)
LABEL_CANNOT_BE_REMOVED(CarModel)
LABEL_CANNOT_BE_REMOVED(Account)

// ----- GENERALIZATIONS

LABEL_MUST_BE_IN_COMBINATION(Reserver, {User})
LABEL_MUST_BE_IN_COMBINATION(Driver, {Reserver})
LABEL_MUST_BE_IN_COMBINATION(DrivenCar, {ReservedCar})
LABEL_MUST_BE_IN_COMBINATION(ReservedCar, {Car})
LABEL_MUST_BE_IN_COMBINATION(User, {Person})
LABEL_MUST_BE_IN_COMBINATION(OngoingReservation, {Reservation})

// ----- GENERALIZATION SETS

// ----- ASSOCIATIONS

63

A COMMENTS FROM THE CONSTRAINT GENERATOR

RELATIONSHIP_MUST_BE_PRESENT(User, Registration)
RELATIONSHIP_MUST_BE_PRESENT(Registration, User)
RELATIONSHIP_MUST_BE_PRESENT(Driver, Ride)
RELATIONSHIP_MUST_BE_PRESENT(Ride, Driver)
RELATIONSHIP_MUST_BE_PRESENT(DrivenCar, Ride)
RELATIONSHIP_MUST_BE_PRESENT(Ride, DrivenCar)
RELATIONSHIP_MUST_BE_PRESENT(OngoingReservation, Ride)
RELATIONSHIP_MUST_BE_PRESENT(Ride, OngoingReservation)
RELATIONSHIP_MUST_BE_PRESENT(Person, HomeAddress)
RELATIONSHIP_MUST_BE_PRESENT(Registration, Account)
RELATIONSHIP_MUST_BE_PRESENT(Reserver, Reservation)
RELATIONSHIP_MUST_BE_PRESENT(Reservation, Reserver)
RELATIONSHIP_MUST_BE_PRESENT(ReservedCar, Reservation)
RELATIONSHIP_MUST_BE_PRESENT(Reservation, ReservedCar)
RELATIONSHIP_MUST_BE_PRESENT(Car, CarModel)
RELATIONSHIP_MUST_BE_LIMITED(User, Registration, 1)
RELATIONSHIP_MUST_BE_LIMITED(Registration, User, 1)
RELATIONSHIP_MUST_BE_LIMITED(Ride, Driver, 1)
RELATIONSHIP_MUST_BE_LIMITED(Ride, DrivenCar, 1)
RELATIONSHIP_MUST_BE_LIMITED(Ride, OngoingReservation, 1)
RELATIONSHIP_MUST_BE_LIMITED(Person, HomeAddress, 2)
RELATIONSHIP_MUST_BE_LIMITED(Account, Registration, 1)
RELATIONSHIP_MUST_BE_LIMITED(Registration, Account, 1)
RELATIONSHIP_MUST_BE_LIMITED(Reservation, Reserver, 1)
RELATIONSHIP_MUST_BE_LIMITED(Reservation, ReservedCar, 1)
RELATIONSHIP_MUST_BE_LIMITED(Car, CarModel, 1)

64

B TABLES’ SIZES

APPENDIX B
Tables’ sizes

table #tuples
users 8270

reservations 79922
cars 57

userProfiles 8270
carModels 7
carBrands 1
countries 237

rides 67979
addresses 24894

65

C DATABASE SIZES

APPENDIX C
Database Sizes

DB100

label #nodes
Account 8270

HomeAddress 16535
Car 57

CarBrand 1
CarModel 7

Person 8270
Reservation 79915

Ride 67979

DB70

label #nodes
Account 4195

HomeAddress 8388
Car 57

CarBrand 1
CarModel 7

Person 4195
Reservation 59646

Ride 50764

DB40

label #nodes
Account 2066

HomeAddress 4133
Car 57

CarBrand 1
CarModel 7

Person 2066
Reservation 34568

Ride 28840

66

C DATABASE SIZES

DB25

label #nodes
Account 1074

HomeAddress 2147
Car 57

CarBrand 1
CarModel 7

Person 1074
Reservation 22869

Ride 18612

DB13

label #nodes
Account 530

HomeAddress 1059
Car 57

CarBrand 1
CarModel 7

Person 530
Reservation 11727

Ride 8875

67

D CYPHER SCRIPT FOR THE POPULATION OF THE NEO4J DATABASE

APPENDIX D
Cypher script for the population

of the Neo4j Database
1 LOAD CSV WITH HEADERS FROM "file:///csv/cars.csv" AS row

2 WITH row, CASE row.locked

3 WHEN "t" THEN true

4 WHEN "f" THEN false

5 ELSE false

6 END AS locked

7 CREATE (n:Car)

8 SET n.id = toInteger(row.id),

9 n.carName = row.name,

10 n.manufactureYear = toInteger(row.manufacture_year),

11 n.color = row.color,

12 n.codeVIN = row.vin_code,

13 n.licencePlate = row.licence_number,

14 n.locked = toBoolean(locked)

15 WITH n, row

16 MERGE (cm:CarModel {id: toInteger(row.model_id)})

17 CREATE (n)-[r:IS_OF_MODEL]->(cm)

18 SET cm.modelName = "name",

19 cm.numberOfSeats = 0,

20 cm.trunkCapacity = toFloat(0),

21 cm.tankCapacity = toFloat(0);

22

23 LOAD CSV WITH HEADERS FROM "file:///csv/carModels.csv" AS row

24 MATCH (cm:CarModel {id:toInteger(row.id)})

25 SET cm.modelName = row.name,

26 cm.numberOfSeats = toInteger(row.seats),

27 cm.trunkCapacity = toFloat(row.trunk_capacity),

28 cm.tankCapacity = toFloat(row.tank_capacity);

29

30 LOAD CSV WITH HEADERS FROM "file:///csv/userProfiles.csv" AS row

31 CREATE (p:Person {id: toInteger(row.user_id)})

32 SET p.firstName = row.first_name,

68

D CYPHER SCRIPT FOR THE POPULATION OF THE NEO4J DATABASE

33 p.lastName = row.last_name,

34 p.dateOfBirth = date(replace(row.date_of_birth, " ", "T")),

35 p.gender = row.gender,

36 p.userPhone = row.phone

37 WITH p, row

38 MERGE (a3:HomeAddress {id: toInteger(row.home_address_id)})

39 SET a3.city = "city",

40 a3.country = "country",

41 a3.street = "street"

42 WITH a3, p, row

43 CREATE (p)-[:LIVES_IN]->(a3)

44 WITH p, row

45 MERGE (a4:HomeAddress {id:

toInteger(row.correspondence_address_id)})ñ→

46 SET a4.city = "city",

47 a4.country = "country",

48 a4.street = "street"

49 WITH a4, p, row

50 CREATE (p)-[:HAS_CORRESPONDANCE_ADDRESS]->(a4)

51 WITH row

52 MERGE (a: Account {id: toInteger(row.id)})

53 SET a.language = row.language,

54 a.user_id = toInteger(row.user_id),

55 a.note = "nn",

56 a.password = "nn",

57 a.promoCode = "nn";

58

59 LOAD CSV WITH HEADERS FROM "file:///csv/users.csv" AS row

60 WITH row

61 MATCH (p: Person {id: toInteger(row.id)})

62 SET p.userEmail = row.email_lc

63 with row, p,

64 CASE WHEN row.promo_code IS NULL OR row.promo_code = ""

65 THEN "null" ELSE row.promo_code END AS promoCode,

66 CASE WHEN row.note IS NULL OR row.note = ""

67 THEN "null" ELSE row.note END AS note

68 MATCH (a:Account {user_id: toInteger(row.id)})

69 SET a.password = row.password,

70 a.note = note,

71 a.promoCode = promoCode

72 WITH a, p, row

73 CREATE (p) -[:REGISTERED]-> (r:Registration {id: toInteger(row.id),

69

D CYPHER SCRIPT FOR THE POPULATION OF THE NEO4J DATABASE

74 registrationDate: date(datetime(replace(row.added_at, " ",

"T")))})ñ→

75 CREATE (r)-[:HAS_ACCOUNT]->(a)

76 SET p:User;

77

78 USING PERIODIC COMMIT 1000

79 LOAD CSV WITH HEADERS FROM "file:///csv/reservations.csv" AS row

80 WITH row,

81 CASE row.free_pricing WHEN "t" THEN true WHEN "f"

82 THEN false ELSE false END AS freePricing,

83 CASE WHEN row.reason IS NULL OR row.reason = ""

84 THEN "none" ELSE row.reason END AS reasonClean,

85 CASE WHEN row.price_per_km IS NULL OR row.price_per_km = ""

86 THEN toFloat(0) ELSE toFloat(row.price_per_km) END AS

pricePerKilometer,ñ→

87 CASE WHEN row.price_per_hour IS NULL OR row.price_per_hour = ""

88 THEN toFloat(0) ELSE toFloat(row.price_per_hour) END AS

pricePerHourñ→

89 MATCH (u:User {id: toInteger(row.user_id)}), (c:Car {id:

toInteger(row.car_id)})ñ→

90 CREATE (r:Reservation_Importing {id: toInteger(row.id),

91 pricePerKilometer : pricePerKilometer, pricePerHour :

pricePerHour,ñ→

92 freePricing : freePricing, reason: reasonClean})

93 CREATE (u)-[:RESERVED]->(r)

94 CREATE (c)-[:IS_RESERVED]->(r);

95

96 MATCH (u:User)-[:RESERVED]-> (r:Reservation_Importing)

<-[:IS_RESERVED]-(c:Car)ñ→

97 REMOVE r:Reservation_Importing

98 SET r:Reservation

99 SET u:Reserver

100 SET c:ReservedCar;

101

102 USING PERIODIC COMMIT 1000

103 LOAD CSV WITH HEADERS FROM "file:///csv/rides.csv" AS row

104 WITH row,

105 date(datetime(replace(row.started_at, " ", "T"))) as startedAt,

106 CASE WHEN row.finished_at IS NULL OR row.finished_at = ""

107 THEN date(datetime(replace(row.started_at, " ", "T")))

108 ELSE date(datetime(replace(row.finished_at, " ", "T"))) END AS

finishedAtñ→

70

D CYPHER SCRIPT FOR THE POPULATION OF THE NEO4J DATABASE

109 MATCH (res: Reservation {id: toInteger(row.reservation_id)}),

110 (u:User)-[:RESERVED]->(res), (c:Car)-[:IS_RESERVED]->(res)

111 CREATE (rr:Ride_Importing {id: toInteger(row.id), startedAt :

startedAt,ñ→

112 finishedAt : finishedAt, initialMileage :

toInteger(row.initial_mileage),ñ→

113 finalMileage: toInteger(row.final_mileage),

114 initialFuelLevel: toInteger(row.initial_tank_capacity),

115 finalFuelLevel: toInteger(row.final_tank_capacity)})

116 CREATE (rr)-[:FROM_RESERVATION]->(res)

117 CREATE (u)-[:RIDES]->(rr)

118 CREATE (c)-[:IS_DRIVEN]->(rr);

119

120 MATCH (u:User)-[:RIDES]->(r:Ride_Importing)<-[:IS_DRIVEN]-(c:Car),

121 (r)-[:FROM_RESERVATION]->(res)

122 REMOVE r:Ride_Importing

123 SET r:Ride,

124 res:OngoingReservation,

125 u:Driver,

126 c:DrivenCar;

127

128 LOAD CSV WITH HEADERS FROM "file:///csv/addresses.csv" AS row

129 MATCH (aa:HomeAddress {id: toInteger(row.id)})

130 SET aa.country = row.country_id,

131 aa.city = row.city,

132 aa.street = row.street;

133 LOAD CSV WITH HEADERS FROM "file:///csv/countries.csv" AS row

134 MATCH (a:HomeAddress)

135 WHERE a.country = row.id

136 SET a.country = row.name;

Listing 23: Cypher script for the population of he Neo4j Database

71

E SUMMARY OF TESTS

APPENDIX E
Summary of tests

Name Description Involved Classes
P1 Adding new User Person

User
Account
Registration
HomeAddress

P2 Adding a new reservation User
Reserver
Car
ReservedCar
Reservation

P2alt Alternative to P2 where User is substituted by Per-
son to leverage the index generated by the unique
property constraint

Person
Reserver
Car
ReservedCar
Reservation

P3 Creating a new car Car
CarModel

P4 Creating a new ride Reservation
OngoingReservation
Ride
User
Driver
Car
DrivenCar

P5 Changing the address of a person Person
HomeAddress

Table 16: Summary of positive tests

72

E SUMMARY OF TESTS

Name Description Involved Classes
N1 Creating a new ride without defining a starting time Reservation

OngoingReservation
Ride
User
Reserver
Driver
Car
ReservedCar
DrivenCar

N2 Creating a new car without a model Car
N3 Creating a new ride without it being related to a

reservation
User
Car
Ride
Driver
DrivenCar

N3alt Creating a new ride without it being related to a
reservation, leveraging the index on Person in the
match

Person
Car
Ride
Driver
DrivenCar

N4 Creating a new reservation without associating a
car

User
Reserver
Reservation

N5 Creating a new reservation by an unregistered per-
son

Car
ReservedCar
Person
Reserver
HomeAddress
Reservation

Table 17: Summary of negative tests

Name Constraint
N1 PROPERTY MUST BE PRESENT(Ride, startedAt)
N2 RELATIONSHIP MUST BE PRESENT(Car, CarModel)
N3 RELATIONSHIP MUST BE PRESENT(Ride, OngoingReservation)
N3alt RELATIONSHIP MUST BE PRESENT(Ride, OngoingReservation)
N4 RELATIONSHIP MUST BE PRESENT(Reservation, Car)
N5 LABEL MUST BE IN COMBINATION(Reserver, User)

Table 18: Negative tests and violated constraints

73

F HARDWARE AND SOFTWARE SPECIFICATIONS

APPENDIX F
Hardware and Software

specifications
Component Specification
CPU 11th Gen Intel(R) Core(TM) i5-1135G, 4 cores / 8 threads, 2.40GHz
RAM 8,00 GB, 3200 MHz
Storage 512 GB NVMe SSD (NVMe INTEL SSDPEKNW512GZL)
Operating System Windows 11 Home
Java Version OpenJDK 11.0.26.4
Neo4j Version Neo4j 4.4.42
Python Version Python 3.10.11
Neo4j Driver neo4j-python-driver 5.28

Table 19: Hardware and software configuration used for benchmarking.

74

G CODE FOR THE JSONIMPORTER

APPENDIX G
Code for the JSONImporter

1 using Neo4jConstraintGenerator.OntoUML;

2 using System;

3 using System.Collections.Generic;

4 using System.Diagnostics;

5 using System.Linq;

6 using System.Security.Principal;

7 using System.Text;

8 using System.Text.Json;

9 using System.Threading.Tasks;

10

11 namespace Neo4jConstraintGenerator

12 {

13 internal class JSONImporter

14 {

15 string filePath;

16 JsonElement JSONmodel;

17 public JSONImporter(string filePath) {

18 this.filePath = filePath;

19 }

20

21 public Model CreateModelFromJSON()

22 {

23 string json = File.ReadAllText(filePath);

24 using JsonDocument doc = JsonDocument.Parse(json);

25 JsonElement root = doc.RootElement;

26

27 // data stuctures containing the processed element that

make up the internal modelñ→

28 Dictionary<string, Class> classes = new

Dictionary<string, Class>();ñ→

29 Dictionary<string, DataType> types = new

Dictionary<string, DataType>();ñ→

30 Dictionary<String, Generalization> generalizations =

31 new Dictionary<String, Generalization>();

32 List<Association> associations = new

List<Association>();ñ→

75

G CODE FOR THE JSONIMPORTER

33 List<GeneralizationSet> generalizationSets = new

List<GeneralizationSet>();ñ→

34

35 //Lists organizing the different elements in categories

to allow ordered processingñ→

36 List<JsonElement> JSONdatatypes = new

List<JsonElement>();ñ→

37 List<JsonElement> JSONclasses = new List<JsonElement>();

38 List<JsonElement> JSONgeneralizations = new

List<JsonElement>();ñ→

39 List<JsonElement> JSONrelations = new

List<JsonElement>();ñ→

40 List<JsonElement> JSONgeneralizationSets = new

List<JsonElement>();ñ→

41

42

43

44 JSONmodel =

root.GetProperty("model").GetProperty("contents");ñ→

45

46 //cycling through the JSON elements and categorizing

themñ→

47 foreach (JsonElement element in

JSONmodel.EnumerateArray())ñ→

48 {

49 string type =

element.GetProperty("type").ToString();ñ→

50 switch (type)

51 {

52 case "Class":

53 if (!element.GetProperty("type").GetString()

54 .Equals("Class")) continue;

55 string stereotypeString =

element.GetProperty("stereotype")ñ→

56 .GetString();

57 string id =

element.GetProperty("id").GetString();ñ→

58 if (stereotypeString.Equals("datatype"))

JSONdatatypes.Add(element);ñ→

59 else JSONclasses.Add(element);

60 break;

61 case "Generalization":

76

G CODE FOR THE JSONIMPORTER

62 JSONgeneralizations.Add(element);

63 break;

64 case "Relation":

65 JSONrelations.Add(element);

66 break;

67 case "GeneralizationSet":

68 JSONgeneralizationSets.Add(element);

69 break;

70 default:

71 break;

72 }

73 }

74

75 //processing elements from each category

76 foreach (JsonElement element in JSONdatatypes)

77 {

78 string id = element.GetProperty("id").GetString();

79 string typestring =

element.GetProperty("name").GetString();ñ→

80 switch (typestring)

81 {

82 case "int":

83 case "integer":

84 types.Add(id, DataType.Integer);

85 break;

86 case "string":

87 types.Add(id, DataType.String);

88 break;

89 case "float":

90 types.Add(id, DataType.Float);

91 break;

92 case "datetime":

93 types.Add(id, DataType.Date);

94 break;

95 case "boolean":

96 types.Add(id, DataType.Boolean);

97 break;

98 default:

99 types.Add(id, new DataType(typestring));

100 break;

101 }

102 }

77

G CODE FOR THE JSONIMPORTER

103 foreach (JsonElement element in JSONclasses){

104 string stereotypeString =

element.GetProperty("stereotype").ToString();ñ→

105 if (stereotypeString.Equals("datatype")) continue;

106 ClassStereotype stereotype =

lookupStereotype(stereotypeString);ñ→

107 string className =

element.GetProperty("name").GetString();ñ→

108 Class newClass = new Class(className, stereotype);

109 Debug.WriteLine("class " + className);

110 JsonElement properties =

element.GetProperty("properties");ñ→

111 if(properties.ValueKind != JsonValueKind.Null)

112 foreach (JsonElement property in

properties.EnumerateArray())ñ→

113 {

114 JsonElement propertyType =

property.GetProperty("propertyType")ñ→

115 .GetProperty("id");

116 DataType dataType = propertyType.ValueKind ==

JsonValueKind.Null ?ñ→

117 DataType.String :

types[propertyType.ToString()];ñ→

118 string attributeName =

property.GetProperty("name").GetString();ñ→

119 bool isID = attributeName.Equals("id");

120 newClass.Attributes.Add(new

ClassAttribute(attributeName, dataType,

isID));

ñ→

ñ→

121 Debug.WriteLine("Attribute " + attributeName

122 + " of type " + dataType.ToString());

123 }

124 classes.Add(element.GetProperty("id").GetString(),

newClass);ñ→

125 }

126 foreach (JsonElement element in JSONgeneralizations)

127 {

128 string idGen = element.GetProperty("general")

129 .GetProperty("id").GetString();

130 string idSpec = element.GetProperty("specific")

131 .GetProperty("id").GetString();

132

78

G CODE FOR THE JSONIMPORTER

133 generalizations.Add(element

134 .GetProperty("id").GetString(),

135 new Generalization(classes[idGen],

classes[idSpec]));ñ→

136 Debug.WriteLine("Generalization of " +

137 classes[idSpec].Name + " to " +

classes[idGen].Name);ñ→

138 }

139 foreach (JsonElement element in JSONrelations)

140 {

141 Class class1, class2;

142 Multiplicity multiplicity1, multiplicity2;

143 string id1 = element.GetProperty("properties")[0]

144 .GetProperty("propertyType").GetProperty("id")

145 .GetString();

146 string id2 = element.GetProperty("properties")[1]

147 .GetProperty("propertyType").GetProperty("id")

148 .GetString();

149 class1 = classes[id1];

150 class2 = classes[id2];

151 multiplicity1 = lookupMultiplicity(element

152 .GetProperty("properties")[0]

153 .GetProperty("cardinality").GetString());

154 multiplicity2 = lookupMultiplicity(element

155 .GetProperty("properties")[1]

156 .GetProperty("cardinality").GetString());

157 associations.Add(new Association(class1, class2,

multiplicity1, multiplicity2));ñ→

158 Debug.WriteLine("Association of classes " +

class1.Name + "-" + class2.Name +ñ→

159 " with multiplicity (" + multiplicity1 + "," +

multiplicity2 + ")");ñ→

160 }

161 foreach (JsonElement element in JSONgeneralizationSets)

162 {

163 bool isDisjoint, isComplete;

164 isDisjoint =

element.GetProperty("isDisjoint").GetBoolean();ñ→

165 isComplete =

element.GetProperty("isComplete").GetBoolean();ñ→

166 List<Generalization> list = new

List<Generalization>();ñ→

79

G CODE FOR THE JSONIMPORTER

167 foreach (JsonElement generalization in

168 element.GetProperty("generalizations")

169 .EnumerateArray())

170 {

171 list.Add(generalizations[generalization

172 .GetProperty("id").GetString()]);

173 }

174 generalizationSets.Add(new GeneralizationSet(list,

isComplete, isDisjoint));ñ→

175 }

176

177

178 //Constructing the internal model

179 Model model = new Model()

180 {

181 Classes = classes.Values.ToList(),

182 Generalizations = generalizations.Values.ToList(),

183 Associations = associations,

184 GeneralizationSets = generalizationSets

185 };

186

187 return model;

188 }

189

190 ClassStereotype lookupStereotype(string stereotypeString)

191 {

192 ClassStereotype stereotype = ClassStereotype.None;

193 switch (stereotypeString)

194 {

195 case "kind":

196 stereotype = ClassStereotype.Kind;

197 break;

198 case "relator":

199 stereotype = ClassStereotype.Relator;

200 break;

201 case "mode":

202 stereotype = ClassStereotype.Mode;

203 break;

204 case "quality":

205 stereotype = ClassStereotype.Quality;

206 break;

207 case "role":

80

G CODE FOR THE JSONIMPORTER

208 stereotype = ClassStereotype.Role;

209 break;

210 case "subkind":

211 stereotype = ClassStereotype.Subkind;

212 break;

213 case "phase":

214 stereotype = ClassStereotype.Phase;

215 break;

216 case "mixin":

217 stereotype = ClassStereotype.PhaseMixin;

218 break;

219 case "roleMixin":

220 stereotype = ClassStereotype.PhaseMixin;

221 break;

222 case "phaseMixin":

223 stereotype = ClassStereotype.PhaseMixin;

224 break;

225 case "event":

226 stereotype = ClassStereotype.PhaseMixin;

227 break;

228 case "historicalRole":

229 stereotype = ClassStereotype.HistoricalRole;

230 break;

231 case "type":

232 stereotype= ClassStereotype.Type;

233 break;

234 case "datatype":

235 break;

236 default:

237 break;

238 }

239 return stereotype;

240 }

241

242 Multiplicity lookupMultiplicity(string s)

243 {

244 switch (s)

245 {

246 case "1":

247 return Multiplicity.ExactlyOne;

248 case "*":

249 case "0..*":

81

G CODE FOR THE JSONIMPORTER

250 return Multiplicity.ZeroToMany;

251 case "1..*":

252 return Multiplicity.OneToMany;

253 case "0..1":

254 return Multiplicity.ZeroToOne;

255 default:

256 string[] parts = s.Split("..");

257

258 if (parts.Length == 2 && int.TryParse(parts[0],

out int num1)ñ→

259 && int.TryParse(parts[1], out int num2))

260 {

261 return new Multiplicity(num1, num2);

262 }

263 else

264 {

265 throw new NotImplementedException();

266 }

267

268 }

269 }

270 }

271

272 }

273

Listing 24: Code for the JSONImporter

82

H EXECUTION PLANS FOR THE BENCHMARK QUERIES

APPENDIX H
Execution plans for the

benchmark queries

83

H EXECUTION PLANS FOR THE BENCHMARK QUERIES

Figure 15: Execution plan of test P1

84

H EXECUTION PLANS FOR THE BENCHMARK QUERIES

Figure 16: Execution plan of test P2

85

H EXECUTION PLANS FOR THE BENCHMARK QUERIES

Figure 17: Execution plan of test P2Alt

86

H EXECUTION PLANS FOR THE BENCHMARK QUERIES

Figure 18: Execution plan of test P3

87

H EXECUTION PLANS FOR THE BENCHMARK QUERIES

Figure 19: Execution plan of test P4

88

H EXECUTION PLANS FOR THE BENCHMARK QUERIES

Figure 20: Execution plan of test P5

89

H EXECUTION PLANS FOR THE BENCHMARK QUERIES

Figure 21: Execution plan of test N1

90

H EXECUTION PLANS FOR THE BENCHMARK QUERIES

Figure 22: Execution plan of test N2

91

H EXECUTION PLANS FOR THE BENCHMARK QUERIES

Figure 23: Execution plan of test N3

92

H EXECUTION PLANS FOR THE BENCHMARK QUERIES

Figure 24: Execution plan of test N3alt

93

H EXECUTION PLANS FOR THE BENCHMARK QUERIES

Figure 25: Execution plan of test N4

94

H EXECUTION PLANS FOR THE BENCHMARK QUERIES

Figure 26: Execution plan of test N5

95

REFERENCES

References
[AG08] Renzo Angles and Claudio Gutierrez. Survey of graph database models.

ACM Computing Surveys, 2008.

[Apo] https://neo4j.com/docs/apoc/current/overview/apoc/. Apoc
documentation.

[Bar] Pedro Paulo Favato Barcelos. Ontouml json2graph decoder.

[Cyp] Cypher manual at development.neo4j.dev.

[ea10] Bernardo F. B. Braga et al. Transforming ontouml into alloy: Towards con-
ceptual model validation using a lightweight formal method. Innovations in
Systems and Software Engineering, 2010.

[ea23] Renata Guizzardi et al. An ontology-based approach to engineering ethi-
cality requirements. Software and System Modeling, 2023.

[FSGA19] Camila Ramos Fonseca, Tiago Prince Sales, Giancarlo Guizzardi, and João
Paulo A. Almeida. Relations in ontology-driven conceptual modeling. Lec-
ture Notes in Computer Science, 2019.

[G+18] Giancarlo Guizzardi et al. Endurant types in ontology-driven conceptual
modeling: Towards ontouml 2.0. Conceptual Modeling - 37th International
Conference, 2018.

[GG+22] Giancarlo Guizzardi, Giancarlo Guarino, et al. Ufo: Unified foundational
ontology. Applied ontology, 2022.

[Gri24] Guus Grievink. Ontology-driven software development: Generating java
code from ontouml. Master’s thesis, University of Twente, 2024.

[GSAG21] Giancarlo Guizzardi, Tiago Prince Sales, João Paulo A. Almeida, and Re-
nata S. S. Guizzardi. Types and taxonomic structures in conceptual model-
ing: A novel ontological theory and engineering support. Data & Knowledge
Engineering, 2021.

[Gui05] Giancarlo Guizzardi. Ontological Foundations for Structural Conceptual Mod-
els. PhD thesis, Centre for Telematics and Information Technology, Univer-
sity of Twente, 2005.

[Neo] Neo4j Documentation, https://neo4j.com/docs/.

[Onta] Prince Sales, T. (Creator), M. Fonseca, C. (Creator), Favato Barcelos, P.
P. (Creator) (31 Jul 2023). OntoUML Vocabulary. Zenodo. 10.5281/zen-
odo.8199343.

[Ontb] OntoUML plugin for Visual Paradigm, https://github.com/OntoUML/ontouml-
vp-plugin.

96

https://neo4j.com/docs/apoc/current/overview/apoc/

REFERENCES

[PRV+24] Jaroslav Pokorný, Zdeněk Rybola, Michal Valenta, Jiřı́ Zikán, and Robert
Pergl. Instantiation of ontouml models in multilabeled graph databases.
17th IADIS International Conference Information Systems, 2024.

[PVK17] Jaroslav Pokorný, Michal Valenta, and Jiřı́ Kovačič. Integrity constraints in
graph databases. Procedia Computer Science, 109:975–981, 2017.

[PVZ25] Jaroslav Pokorný, Michal Valenta, and Jiřı́ Zikán. Validation of business
process models using graph databases. m, 2025.

[RP17] Zdenek Rybola and Robert Pergl. Towards ontouml for software engineer-
ing: Transformation of kinds and subkinds into relational databases. Com-
puter Science and Information Systems, 2017.

[RWE15] Ian Robinson, Jim Webber, and Emil Eifrem. Graph Databases: New Opportu-
nities for Connected Data. O’Reilly Media, 2nd edition, 2015.

[Uni] Archived version of Uniqway website at
https://web.archive.org/web/20221121120736/https://www.uniqway.cz/.

[Zik23] Jiřı́ Zikán. Implementation of ontouml schemas in graph databases – case
study. Master’s thesis, Czech Technical University in Prague, 2023.

97

	Abstract
	Acknowledgments
	Ringraziamenti
	Introduction
	Motivation
	Objectives of the Thesis
	Contents

	Background: OntoUML and Graph Databases
	OntoUML
	Overview of OntoUML
	OntoUML's integration of the UFO framework

	Graph Databases
	Introduction to Neo4j
	Cypher Query Language
	Transaction life cycle
	Optimization in Neo4j
	Apoc support for triggers
	Use Cases and Advantages of Graph Databases

	Methodology: From the OntoUML Model to a Neo4j Database
	Motivation for Transformation
	Transformation Approach
	Updating the Transformer with Importer from Visual Paradigm

	Case Study: Uniqway, a Car-Sharing Application
	Overview of Uniqway and Available Data
	Data Selection and Preparation
	Data Integration into Neo4j

	Benchmark Design and Implementation
	Positive tests
	Test P1: adding new User
	Test P2: adding a new reservation
	Test P2Alt: creating a reservation leveraging the index
	Test P3: Creating a new car
	Test P4: Creating a new ride
	Test P5: Changing the address of a person

	Negative tests
	Test N1: Creating a new ride without defining a starting time
	Test N2: Creating a new car without a model
	Test N3: Creating a new ride without it being related to a reservation
	Test N3alt
	Test N4: Creating a new reservation without associating a car
	Test N5: Creating a new reservation by an unregistered person

	Evaluation and Results
	Methodology
	Results and discussion
	P1: adding new User
	P2 and P2alt: adding a new reservation
	P3: Creating a new car
	P4: Creating a new ride
	P5: Changing the address of a person
	N1: Creating a new ride without defining a starting time
	N2: Creating a new car without a model
	N3 and N3alt: Creating a new ride without it being related to a reservation
	N4: Creating a new reservation without associating a car
	N5: Creating a new reservation by an unregistered person
	Duration of the population fo the database

	Conclusion
	Summary of Findings
	Limitations and Challenges
	Further Work

	Comments from the constraint generator
	Tables' sizes
	Database Sizes
	Cypher script for the population of the Neo4j Database
	Summary of tests
	Hardware and Software specifications
	Code for the JSONImporter
	Execution plans for the benchmark queries
	References

