
POLITECNICO DI TORINO
Master’s Degree in COMPUTER ENGINEERING

Master’s Degree Thesis

Advanced Synthetic Data Generation for
ADAS: Infrastructure Sensors and

CARLA-Omniverse Integration

Supervisors

Prof. Massimo VIOLANTE

Dott. Alessandro TESSUTI

Dott. Simone MARAGLIULO

Candidate

Thomas BARACCO

Academic Year 2024-2025

Abstract

Advanced Driver Assistance Systems (ADAS) validation necessitates large datasets
from a variety of driving situations, yet conventional data gathering techniques
have serious drawbacks in terms of cost, safety, and scenario coverage. This thesis
builds on existing CARLA-based frameworks for generating synthetic data by
adding two important new features aimed at improving dataset quality and realism.
First, an infrastructure-based sensor simulation system was created, expanding
beyond vehicle-mounted sensors to include fixed sensors on traffic lights and road
infrastructure, with a dedicated management tool for dynamic sensor placement
and configuration while retaining nuScenes dataset compatibility. Second, a novel
framework was developed to export complete CARLA simulations to Universal
Scene Description (USD) format for integration with NVIDIA Isaac Sim. This
framework captures entire simulations as temporal sequences with keyframed
animations, allowing deterministic replay in Omniverse’s photorealistic rendering
environment. An Isaac Sim extension was created to facilitate the management
of imported simulations and the collection of sensor data in nuScenes format.
CARLA’s official USD export framework for version 0.9.16 was announced during
development, prompting the strategic decision to prepare for integration with the
forthcoming official solution. Despite the fact that the custom USD implementation
has material limitations in the current visual output, the framework that has been
developed establishes a robust integration pipeline between CARLA and Isaac
Sim. This pipeline will facilitate improved photorealistic rendering capabilities and
enhanced synchronization when combined with the official CARLA USD framework.
This methodology offers a scalable foundation for ADAS validation that maintains
industry-standard compatibility and combines the potential for near-photorealistic
sensor simulation with the flexibility of virtual environments.

Table of Contents

List of Figures viii

Acronyms x

1 Introduction 1
1.1 Motivation and Problem Statement 1

1.1.1 Limitations of Vehicle-Centric Sensing 1
1.1.2 Visual Fidelity Constraints 2

1.2 Research Contributions . 2
1.2.1 Infrastructure-Cooperative Sensor Simulation Framework . . 3
1.2.2 CARLA to Isaac Sim Integration Pipeline 3

1.3 Scope and Limitations . 5
1.4 Expected Impact and Applications 5

2 Literature Review and Related Work 7
2.1 ADAS Validation Methodologies . 7

2.1.1 Traditional Testing Paradigms and Limitations 7
2.1.2 Regulatory Framework and Standardization 8

2.2 Synthetic Data Generation for Autonomous Driving 8
2.2.1 Evolution of Simulation Platforms 8
2.2.2 The nuScenes Dataset Format 8
2.2.3 Photorealistic Rendering Technologies 10
2.2.4 Temporal Consistency and Deterministic Replay 10
2.2.5 Simulation-to-Reality Gap 10

2.3 Infrastructure-Cooperative Sensing Systems 10
2.3.1 V2X Communication Technologies 10
2.3.2 Cooperative Perception Architectures 11
2.3.3 Infrastructure-Based Sensing and Datasets 11

2.4 Gaps in Current Research . 11
2.4.1 Limited Infrastructure Sensing Support in Simulation 11
2.4.2 Visual Fidelity Limitations 12

iii

2.4.3 Fragmented Workflows . 12
2.5 Summary and Research Motivation 12

3 Baseline Framework: Vehicle-Centric Synthetic Data Generation 14
3.1 CARLA Simulator Architecture . 14

3.1.1 Overview and Design Philosophy 14
3.1.2 Client-Server Architecture 15
3.1.3 Synchronous Operation Mode 15

3.2 Vehicle-Centric Sensor Configuration 16
3.2.1 nuScenes Sensor Suite Replication 16
3.2.2 Sensor Attachment and Coordinate Frames 17

3.3 Synchronous Data Collection Pipeline 17
3.3.1 Callback-Based Data Acquisition 17
3.3.2 Data Processing and Transformation 18
3.3.3 Ground Truth Annotation 18

3.4 nuScenes Format Integration . 18
3.4.1 Dataset Structure and Organization 18
3.4.2 Calibration and Ego Pose Management 19

3.5 Environmental Simulation Capabilities 19
3.5.1 Dynamic Weather and Lighting Control 19
3.5.2 Traffic and Scenario Generation 20

3.6 Limitations of the Vehicle-Centric Approach 20
3.6.1 Coverage Limitations and Blind Spots 20
3.6.2 Lack of Infrastructure Sensing Perspectives 20
3.6.3 Visual Rendering Fidelity Constraints 20
3.6.4 Computational Performance Constraints 21

3.7 Summary and Transition . 21

4 Infrastructure-Cooperative Sensor Simulation 22
4.1 Introduction and Motivation . 22
4.2 Sensor Placement Tool . 23

4.2.1 Tool Overview and Architecture 23
4.2.2 User Interface Components 23
4.2.3 Supported Sensor Types . 27

4.3 Tool Features and Functionality . 27
4.3.1 Intersection Detection . 27
4.3.2 Intelligent Sensor Placement 28
4.3.3 Real-time Visualization in CARLA 29
4.3.4 Configuration Persistence 31

4.4 Web-Based Configuration Interface 31
4.4.1 Fixed Sensors View . 31

iv

4.5 Infrastructure Sensor Spawning . 33
4.6 Integration with nuScenes Data Pipeline 33

4.6.1 Backward Compatibility Strategy 33
4.6.2 nuScenes Schema Extensions 34
4.6.3 Coordinate System Transformations 34
4.6.4 Data Collection Pipeline Integration 35
4.6.5 File Organization and Naming Conventions 35

5 CARLA to USD Export Framework 37
5.1 Introduction and Motivation . 37

5.1.1 Motivation for USD-Based Integration 37
5.1.2 Universal Scene Description and NVIDIA Omniverse 38
5.1.3 Evolution of the Export Framework Approach 39
5.1.4 Hybrid Framework Architecture 40

5.2 Universal Scene Description Fundamentals 40
5.2.1 USD Technology Overview 40
5.2.2 USD in Autonomous Driving Simulation 41

5.3 System Architecture and Pipeline Overview 42
5.3.1 High-Level Architecture . 42
5.3.2 Component Interaction . 43
5.3.3 Data Flow Through the Pipeline 43

5.4 Core Export System Implementation 44
5.4.1 USDSceneExporter Architecture 44
5.4.2 Data Capture System . 45
5.4.3 Timeline Management and Temporal Coordination 45

5.5 Coordinate System Transformation 46
5.5.1 CARLA to USD Coordinate System Mapping 46
5.5.2 Transform Conversion Algorithms 46
5.5.3 Validation of Spatial Accuracy 47

5.6 Vehicle Animation System . 48
5.6.1 Keyframe Generation Strategy 48
5.6.2 Transform and Velocity Processing 48

5.7 Asset Management and Visual Representation 49
5.7.1 Hybrid Asset Strategy . 49
5.7.2 Vehicle USD Asset Library 49
5.7.3 Material Properties and Visual Fidelity 49
5.7.4 Asset Coverage and Statistics 50

5.8 Sensor Integration in USD Format 50
5.8.1 Sensor Representation Strategy 50
5.8.2 Camera Sensor Export . 50
5.8.3 LiDAR and Radar Sensor Integration 50

v

5.8.4 Sensor Parameter Preservation and Metadata 51
5.9 Environment Export and Map Integration 51

5.9.1 Hybrid Approach to Environment Representation 51
5.9.2 Official CARLA USD Map Integration 52
5.9.3 Dynamic Road Network Generation 52
5.9.4 Hybrid Strategy Selection Guidelines 53

6 Isaac Sim Extension Development 54
6.1 Introduction: Bridging USD Export and Data Collection 54
6.2 Complete Workflow: From CARLA to

nuScenes Dataset . 55
6.2.1 End-to-End Pipeline Overview 55
6.2.2 Key Advantages of the Integrated Approach 57

6.3 Extension Architecture and Component Design 58
6.3.1 Modular Component Architecture 58
6.3.2 Event-Driven Communication Architecture 59

6.4 Infrastructure-Cooperative Sensor Integration 60
6.4.1 Extended nuScenes Format for Cooperative Sensing 60
6.4.2 Coordinate System Handling for Infrastructure Sensors . . . 61
6.4.3 Infrastructure Sensor Annotations in nuScenes Format . . . 61
6.4.4 Backward Compatibility and Migration Path 62

6.5 Sensor Management System . 62
6.5.1 Automatic Sensor Discovery 62
6.5.2 Sensor Selection and Configuration Management 63
6.5.3 Multi-Modal Data Collection 64

6.6 Timeline Control and Synchronization 64
6.6.1 Isaac Sim Timeline Integration 64
6.6.2 Synchronized Data Collection 65

6.7 nuScenes Dataset Generation and Export 65
6.7.1 Complete nuScenes Database Structure 65
6.7.2 Infrastructure Sensor Integration in Sample Structure 65

6.8 User Interface Design and Interaction 66
6.8.1 Intuitive Sensor Management Interface 66
6.8.2 Real-Time Status Feedback 66

6.9 Performance Optimization and Error Handling 66
6.9.1 Efficient Resource Management 66
6.9.2 Comprehensive Error Handling 68

7 Conclusions and Future Developments 69
7.1 Summary of Contributions . 69

7.1.1 Infrastructure-Cooperative Sensor Simulation 69

vi

7.1.2 CARLA to Isaac Sim Integration Pipeline 70
7.2 Achievement of Research Objectives 70
7.3 Technical Limitations and Constraints 71

7.3.1 Infrastructure Sensing Limitations 71
7.3.2 USD Export and Visual Fidelity Limitations 71
7.3.3 Isaac Sim Extension Limitations 71

7.4 Impact and Practical Applications 72
7.4.1 Industrial Relevance . 72
7.4.2 Research and Development Applications 72

7.5 Future Development Directions . 72
7.5.1 Short-Term Enhancements 72
7.5.2 Medium-Term Extensions 73
7.5.3 Long-Term Research Directions 73

7.6 Concluding Remarks . 74

A Infrastructure-Cooperative Sensor Simulation Code 75
A.1 Intersection Detection . 75
A.2 Configuration Management . 76
A.3 Sensor Spawning . 77
A.4 Coordinate Transformations . 79

B CARLA to USD Export Framework Code 82
B.1 USD Scene Exporter . 82
B.2 Data Capture . 84
B.3 Coordinate System Transformations 86
B.4 Vehicle Animation . 88
B.5 Asset Management . 89
B.6 Sensor Export . 91
B.7 Environment Export . 94

C Isaac Sim Extension Development Code 96
C.1 Extension Initialization . 96
C.2 Infrastructure Sensor Support . 98
C.3 Sensor Discovery and Management 102
C.4 Data Collection . 104
C.5 Timeline Control . 109
C.6 nuScenes Dataset Generation . 112
C.7 User Interface . 118

Bibliography 122

vii

List of Figures

1.1 CARLA to Isaac Sim Integration Pipeline 4
1.2 Official CARLA SimReady USD Exporter [24] 4

2.1 nuScenes Schema [8] . 9

3.1 Ego Vehicle sensor placement [7] . 16

4.1 Main interface of the CARLA Sensor Placement Tool 24
4.2 Sensor perspective view overlay . 25
4.3 Top View minimap panel . 26
4.4 Intersection Selection overlay . 28
4.5 Intersection highlighting in CARLA 3D view 30
4.6 Real-time sensor visualization in CARLA 3D view 30
4.7 Web-based frontend interface for Fixed Sensors simulation 32

6.1 Isaac Sim Extension User Interface 67

viii

Acronyms

2D
Two-Dimensional

3D
Three-Dimensional

AD
Autonomous Driving

ADAS
Advanced Driver Assistance Systems

AI
Artificial Intelligence

API
Application Programming Interface

AV
Autonomous Vehicles

CARLA
Car Learning to Act

CPU
Central Processing Unit

CSV
Comma-Separated Values

x

FOV
Field of View

FPS
Frames Per Second

GNSS
Global Navigation Satellite System

GPS
Global Positioning System

GPU
Graphics Processing Unit

GSR
General Safety Regulation

HIL
Hardware-in-the-Loop

IMU
Inertial Measurement Unit

JSON
JavaScript Object Notation

LiDAR
Light Detection and Ranging

MIL
Model-in-the-Loop

PBR
Physically Based Rendering

RADAR
Radio Detection and Ranging

xi

RGB
Red Green Blue

RTX
Ray Tracing Texel eXtreme

SIL
Software-in-the-Loop

UI
User Interface

USD
Universal Scene Description

V2I
Vehicle-to-Infrastructure

V2X
Vehicle-to-Everything

VIL
Vehicle-in-the-Loop

XML
Extensible Markup Language

xii

Chapter 1

Introduction

The advancement of Advanced Driver Assistance Systems (ADAS) and autonomous
vehicles represents a transformative shift in automotive technology, with the po-
tential to reduce accidents, improve mobility, and revolutionize transportation [1,
2]. However, deploying safety-critical systems requires rigorous validation across
diverse scenarios and edge cases that are impractical to test physically [3].

Modern perception systems require vast amounts of labeled training data rep-
resenting real-world driving scenarios [4]. Traditional validation through physical
testing faces significant limitations in cost, time, repeatability, and safety [5].
Synthetic data generation through high-fidelity simulation has emerged as a com-
plementary approach, enabling controlled, repeatable testing with flexible dataset
generation [6]. The effectiveness of simulation-based validation depends critically
on two factors: the comprehensiveness of sensor perspectives captured, and the
visual fidelity of rendered synthetic data.

1.1 Motivation and Problem Statement
1.1.1 Limitations of Vehicle-Centric Sensing
This research builds upon Federico Stella’s thesis [7], which developed a frame-
work for vehicle-centric synthetic data generation compatible with the nuScenes
dataset format. Stella’s work demonstrated the feasibility of generating high-
quality synthetic sensor data using CARLA, implementing sensor synchronization,
nuScenes-compatible organization, and flexible sensor configuration [6, 8].

While providing a solid foundation for ADAS validation with multiple sensor
modalities (RGB cameras, LiDAR, radar) and proper calibration, the vehicle-centric
approach has fundamental limitations:

• Coverage Limitations: Vehicle-mounted sensors are constrained by their

1

Introduction

platform’s position and trajectory. In complex intersections and scenarios
with occlusions, the ego vehicle may miss critical information about traffic
participants and hazards [9].

• Limited Perspective Diversity: Vehicle-only configurations lack the ele-
vated, strategically positioned perspectives that infrastructure sensors provide.
Infrastructure sensors offer wider fields of view and reduced occlusion effects
[10].

• Inability to Validate Cooperative Systems: The framework cannot vali-
date Vehicle-to-Everything (V2X) communication and cooperative perception
architectures that leverage multi-source data fusion [11], critical as the industry
moves toward cooperative intelligent transportation systems.

1.1.2 Visual Fidelity Constraints

Beyond sensor perspective limitations, visual fidelity represents another critical
challenge. While CARLA provides excellent functional simulation with realistic
physics and traffic management, its rendering pipeline has limitations affecting
camera imagery photorealism [7]. These include simplified material models, limited
dynamic lighting accuracy, absence of advanced rendering features (physically-
accurate reflections, refractions), and computational trade-offs between performance
and quality [12].

These constraints impact vision-based perception algorithm training. Research
shows that training data visual characteristics significantly influence neural network
performance, with models trained on synthetic data sometimes showing degraded
real-world accuracy [13, 14]. This "simulation-to-reality gap" limits the reliability
of purely simulation-validated algorithms.

While the industry has responded with domain randomization, photorealistic
rendering engines, and hybrid approaches [15], the lack of integrated workflows for
seamlessly transferring functional simulations to advanced rendering environments
remains a significant gap.

1.2 Research Contributions

This thesis presents two major contributions addressing these limitations while
maintaining full backward compatibility with established workflows:

2

Introduction

1.2.1 Infrastructure-Cooperative Sensor Simulation Frame-
work

The first contribution develops a comprehensive infrastructure sensor simulation
system extending Stella’s vehicle-centric approach to enable hybrid configurations
with both mobile vehicle sensors and fixed infrastructure sensors. The framework
consists of three integrated components:

• Interactive Sensor Placement Tool: A real-time graphical application
providing intuitive infrastructure sensor deployment control with automatic
intersection detection, intelligent sensor-to-intersection association, real-time
visualization, and comprehensive management capabilities [16]. The tool
supports multiple sensor types: elevated LiDAR (LIDAR_TOP), traffic cam-
eras (CAM_TRAFFIC), directional LiDAR (LIDAR_TRAFFIC), and radar
(RADAR_TRAFFIC).

• Infrastructure Sensor Spawning and Lifecycle Management: Infras-
tructure sensors maintain fixed world coordinates throughout simulations,
providing persistent monitoring regardless of vehicle movements, with special-
ized coordinate transformation in the nuScenes pipeline.

• nuScenes Format Extensions with Backward Compatibility: Com-
prehensive extensions enabling infrastructure sensor data integration while
preserving all existing vehicle-mounted capabilities and ensuring seamless
integration with existing tools [17].

This enables previously inaccessible validation scenarios including complex
intersection monitoring, occlusion analysis, multi-perspective perception, and V2I
communication testing [18, 19].

1.2.2 CARLA to Isaac Sim Integration Pipeline
The second contribution addresses visual fidelity through a framework export-
ing complete CARLA simulations to Universal Scene Description (USD) format,
enabling NVIDIA Isaac Sim integration. The pipeline consists of:

• USD Export Framework: A comprehensive export system converting
CARLA simulations to USD with temporal animation, capturing vehicle
trajectories, pedestrian movements, sensor configurations, environmental con-
ditions, and scene geometry with coordinate transformations [20, 21]. The
framework employs strategic asset integration leveraging official CARLA USD
exports when available, with procedural road generation as fallback.

3

Introduction

• Isaac Sim Extension for Data Collection: A custom Omniverse extension
(omni.carla.sim_controller) providing simulation replay and data collec-
tion with automatic sensor discovery, precise temporal control, synchronized
multi-modal capture, and automated nuScenes generation [22, 23]. The ex-
tension seamlessly supports vehicle-only and infrastructure-only deployment
modes.

Figure 1.1: CARLA to Isaac Sim Integration Pipeline

Figure 1.2: Official CARLA SimReady USD Exporter [24]

4

Introduction

1.3 Scope and Limitations
While advancing synthetic data generation capabilities, several intentional scope
limitations should be acknowledged:

• Infrastructure Deployment Scope: The framework focuses on intersection-
based scenarios and traffic monitoring where fixed sensors provide clear ad-
vantages [19]. The sensor placement tool is optimized for urban intersection
monitoring.

• Visual Fidelity as Foundation: The CARLA-Isaac Sim integration estab-
lishes technical infrastructure rather than delivering immediate photorealistic
improvements. The focus is on robust data transformation, temporal accuracy,
and format compatibility. The late release of CARLA’s official USD export
limited time for rendering optimization.

• Performance Considerations: Both enhancements introduce computational
overhead. Infrastructure sensors increase concurrent data streams, while USD
export and Isaac Sim replay require substantial GPU resources. Current
implementations are optimized for research applications.

• Sensor Modality Coverage: Current implementations support RGB cam-
eras and LiDAR. While extensible to additional modalities (radar, thermal,
event cameras), these are not currently implemented.

1.4 Expected Impact and Applications
The contributions enable several important applications:

• Enhanced Validation Coverage: Infrastructure-cooperative sensing en-
ables validation of complex scenarios with severe occlusions, multi-perspective
validation, wide-area monitoring, and V2I testing [25, 9].

• Improved Training Data Diversity: Infrastructure perspectives provide
greater diversity with elevated viewpoints reducing occlusions, complementary
coverage minimizing blind spots, and multi-modal fusion scenarios for robust
algorithms [10].

• Flexible Validation Workflows: CARLA-Isaac Sim integration enables
functional testing in CARLA followed by visual enhancement in Isaac Sim,
comparative studies, and future integration of additional tools.

5

Introduction

• Foundation for Future Enhancements: Both contributions are extensible
to additional sensor modalities, deployment scenarios, advanced rendering
techniques, domain randomization, and emerging technologies [26].

The methodologies, tools, and frameworks are designed to be practical and
applicable to real-world ADAS validation while maintaining compatibility with
established standards, ensuring gradual integration into industrial workflows.

6

Chapter 2

Literature Review and
Related Work

ADAS validation is a critical challenge as autonomous vehicle systems grow in
complexity and assume greater control responsibilities [5]. This chapter exam-
ines current ADAS validation approaches, synthetic data generation technologies,
infrastructure-cooperative sensing paradigms, and simulation-to-reality gap chal-
lenges, establishing the theoretical foundation for this thesis’s contributions.

2.1 ADAS Validation Methodologies

2.1.1 Traditional Testing Paradigms and Limitations

ADAS validation historically follows a hierarchical X-in-the-Loop approach, pro-
gressing from Model-in-the-Loop (MiL) through Software-in-the-Loop (SiL), Hard-
ware-in-the-Loop (HiL), to Vehicle-in-the-Loop (ViL) testing. The European
General Safety Regulation (GSR) [1], implemented in phases from July 2022 to
January 2029, mandates comprehensive validation for systems including Intelligent
Speed Assistance, Emergency Lane Keeping, Advanced Emergency Braking, and
Driver Drowsiness Warning.

Traditional validation faces fundamental scalability challenges. Physical testing
provides the highest fidelity but requires extensive resources to cover operational
scenarios. RAND Corporation research demonstrates that autonomous vehicles
would need hundreds of millions—potentially billions—of miles of driving to achieve
statistically significant safety validation [3], rendering purely physical testing
impractical.

7

Literature Review and Related Work

2.1.2 Regulatory Framework and Standardization

The regulatory landscape has evolved from informal guidelines to comprehensive
protocols. Euro NCAP has established detailed testing procedures for AEB, Lane
Support Systems, and Speed Assistance [27]. International efforts include UNECE
Global Technical Regulation No. 22 for driver monitoring, ISO 26262 [28] for
functional safety, and ISO 21448 (SOTIF) [29] addressing system limitations, edge
cases, and sensor performance in complex scenarios.

2.2 Synthetic Data Generation for Autonomous
Driving

2.2.1 Evolution of Simulation Platforms

Autonomous driving simulation has evolved from early physics-based simulators
to sophisticated platforms capable of high-fidelity multi-modal sensor simulation.
CARLA Simulator [6], built on Unreal Engine 4.26 (for the version 0.9.16 [24]), has
emerged as a leading open-source platform with realistic physics, traffic management,
environmental controls, and multi-sensor support (cameras, LiDAR, radar). Its
client-server architecture enables distributed data generation.

LGSVL Simulator [30] emphasized photorealistic rendering and integration with
Apollo and Autoware, though development was discontinued in 2022. Recent
advances focus on visual fidelity through neural rendering techniques like NeuRAD
[26] and S-NeRF [31], which leverage neural radiance fields for photorealistic scene
generation, though at significant computational cost.

2.2.2 The nuScenes Dataset Format

The nuScenes dataset [8], introduced by Motional, has become the de facto standard
for autonomous driving perception benchmarks. It comprises over 1000 20-second
driving scenes from Boston and Singapore with challenging urban environments.
The sensor suite includes six cameras providing 360-degree coverage, one spinning
LiDAR (Velodyne HDL-32E), and five radar sensors.

The annotation schema supports 23 object classes with detailed 3D bounding
boxes, tracking identities, and visibility states, provided at 2 Hz. The standardized
database schema using relational JSON structures facilitates integration across
data sources and enables transfer learning between synthetic and real datasets [32,
33].

8

Literature Review and Related Work

Figure 2.1: nuScenes Schema [8]

9

Literature Review and Related Work

2.2.3 Photorealistic Rendering Technologies
Physically-based rendering (PBR) approaches provide high-fidelity synthetic im-
agery through accurate material properties, light transport simulation, and atmo-
spheric effects [34]. Advanced techniques like path tracing and photon mapping
enable complex lighting phenomena including reflections, refractions, and global
illumination.

Hardware-accelerated ray tracing through NVIDIA RTX technology [35] has
transformed photorealistic rendering from offline to interactive capability. Studies
show synthetic datasets using ray-traced rendering exhibit significantly improved
transfer learning performance compared to traditional rasterization [12].

2.2.4 Temporal Consistency and Deterministic Replay
Temporal consistency is critical for training algorithms that process sequential
data. Modern ADAS systems rely heavily on temporal information for track-
ing, motion prediction, and scene understanding. Advanced animation systems
supporting keyframe interpolation and motion capture enable realistic movement
representations [15].

Deterministic replay systems enable exact scenario reproduction, facilitating
reproducible benchmarking and regression testing. The Universal Scene Descrip-
tion (USD) format, developed by Pixar, provides a standardized framework for
representing animated 3D scenes with temporal consistency guarantees.

2.2.5 Simulation-to-Reality Gap
Despite advances, the simulation-to-reality gap persists across visual domain differ-
ences, sensor characteristic variations, and behavioral discrepancies [36]. Models
trained exclusively on synthetic data often exhibit degraded real-world performance,
particularly in challenging conditions.

Contemporary approaches include domain randomization [37], which varies
rendering parameters to encourage robust learning; adversarial training [38] using
GANs to align feature distributions; and style transfer methods that translate
synthetic imagery while preserving semantic content.

2.3 Infrastructure-Cooperative Sensing Systems

2.3.1 V2X Communication Technologies
Vehicle-to-Everything (V2X) communication encompasses V2V, V2I, V2P, and
V2N modes. Cellular V2X (C-V2X), standardized through 3GPP Release 14

10

Literature Review and Related Work

[39], provides direct communication (PC5) for low-latency safety applications and
network-based communication (Uu) for broader connectivity. Integration with 5G
promises enhanced bandwidth, reduced latency, and improved reliability.

V2X enables cooperative perception architectures extending beyond vehicle-
centric approaches. By sharing sensor data and perception outputs, cooperative
systems extend sensing ranges, overcome occlusions, and provide redundant detec-
tions [11].

2.3.2 Cooperative Perception Architectures
Cooperative perception systems employ various architectural approaches:

• Early Fusion: Shares raw sensor data or low-level features, providing maxi-
mum information but requiring substantial bandwidth.

• Late Fusion: Shares high-level detections, reducing bandwidth requirements
but potentially losing valuable low-level information.

• Intermediate Fusion: Shares feature-level representations, balancing infor-
mation content with communication efficiency [10].

2.3.3 Infrastructure-Based Sensing and Datasets
Infrastructure-mounted sensors provide fundamentally different capabilities through
elevated positions offering wider fields of view, reduced occlusions, and persistent
coverage of critical areas. The DAIR-V2X dataset [25] provides the first large-scale
real-world dataset for vehicle-infrastructure cooperative 3D detection with 464,000
annotations. TUMTraf V2X [40] extends this with Munich traffic data.

Optimal infrastructure sensor placement requires considering traffic patterns,
intersection geometry, communication constraints, and line-of-sight requirements
[16].

2.4 Gaps in Current Research
2.4.1 Limited Infrastructure Sensing Support in Simulation
Despite recognized benefits of infrastructure-cooperative sensing, current simulation
platforms provide limited support for infrastructure-mounted sensors. Existing
frameworks, including Stella’s work [7], primarily focus on vehicle-centric sensing.
Researchers lack tools for configuring infrastructure placements, visualizing cov-
erage, managing parameters, and generating datasets including both vehicle and
infrastructure perspectives.

11

Literature Review and Related Work

2.4.2 Visual Fidelity Limitations
While CARLA provides extensive functionality, its rendering capabilities exhibit
limitations:

• Material and Lighting: Simplified models lacking real-world surface prop-
erty complexity and full lighting phenomena [7].

• Weather Effects: Approximate representations of fog, rain, and nighttime
illumination differing noticeably from reality.

• Performance Trade-offs: Computational constraints create fundamental
trade-offs between speed and visual fidelity [30].

2.4.3 Fragmented Workflows
Fragmentation between simulation and rendering platforms creates workflow chal-
lenges. Manually reconstructing scenarios when transferring between platforms
limits scalability and creates overhead. The integration gap between functional
simulation (CARLA) and advanced rendering (NVIDIA Omniverse) represents a
fundamental challenge.

2.5 Summary and Research Motivation
This review identifies three critical gaps motivating this thesis:

• Infrastructure Sensing Gap: Lack of comprehensive infrastructure-cooperative
sensing support in simulation frameworks, limiting evaluation of next-generation
cooperative perception systems.

• Visual Fidelity Gap: Open-source simulator rendering limitations con-
tributing to the simulation-to-reality gap and potentially impacting synthetic
training data quality.

• Integration Gap: Fragmentation between functional simulation and ad-
vanced rendering engines constraining practical application of photorealistic
techniques.

The following chapters present contributions addressing these gaps through:

1. An infrastructure-cooperative sensor simulation framework (Chapter 4) extend-
ing Stella’s vehicle-centric approach with infrastructure sensing capabilities,
sensor placement tools, and nuScenes extensions maintaining backward com-
patibility.

12

Literature Review and Related Work

2. A CARLA-to-Isaac Sim integration pipeline (Chapters 5-6) establishing infras-
tructure for exporting CARLA simulations to NVIDIA Omniverse, enabling
deterministic replay and providing a foundation for visual fidelity enhance-
ments.

These contributions maintain practical applicability through compatibility with
established formats, incremental enhancement of existing frameworks, and prag-
matic adaptation to ecosystem developments such as CARLA’s official USD export
support.

13

Chapter 3

Baseline Framework:
Vehicle-Centric Synthetic
Data Generation

This chapter presents Federico Stella’s foundational framework [7], which provides
baseline capabilities for vehicle-mounted sensor simulation and nuScenes-compatible
data generation in CARLA. Understanding this system is essential for contextualiz-
ing the infrastructure-cooperative sensing and Isaac Sim integration contributions
in subsequent chapters.

Stella’s vehicle-centric approach successfully demonstrated feasibility of generat-
ing high-quality synthetic sensor data, implementing precise sensor synchronization,
nuScenes-compatible organization, and flexible configuration interfaces. How-
ever, the paradigm exhibits limitations in sensor perspective diversity, coverage
completeness, and visual fidelity that constrain applicability for next-generation
cooperative sensing systems. These limitations motivate this thesis’s two major
contributions: the infrastructure-cooperative sensor framework (Chapter 4) and
the CARLA-to-Isaac Sim integration pipeline (Chapters 5-6).

3.1 CARLA Simulator Architecture
3.1.1 Overview and Design Philosophy
CARLA (Car Learning to Act) is an open-source simulator designed for autonomous
urban driving research [6]. Built on Unreal Engine 4.26 (for the 0.9.16 version [24]),
CARLA provides realistic, customizable virtual environments supporting training,
prototyping, and validation of autonomous systems. The simulator enables flexible
configuration of environmental conditions, traffic scenarios, and sensor specifications,

14

Baseline Framework: Vehicle-Centric Synthetic Data Generation

generating critical signals including GPS coordinates, IMU measurements, LiDAR
and radar point clouds, camera imagery, and collision detection.

CARLA’s design emphasizes modularity and extensibility, enabling customiza-
tion of virtually every simulation aspect. The platform supports diverse research
applications from perception algorithm training to end-to-end driving policy learn-
ing, with particular strength in generating large-scale labeled datasets.

3.1.2 Client-Server Architecture
CARLA implements a client-server architecture where the server manages the
simulation environment while clients interact through a comprehensive API [6].

The server component, built on Unreal Engine 4, handles:
• Physics Simulation: NVIDIA PhysX integration provides realistic vehicle

dynamics, collision detection, and rigid body interactions

• Scene Rendering: Unreal Engine’s pipeline generates sensor imagery with
configurable quality settings

• Sensor Data Generation: Processes sensor models to produce synchronized
outputs

• Environmental State Management: Tracks all actors, positions, velocities,
and states for deterministic reproduction

The client component, typically implemented in Python, communicates via
TCP. Clients control simulation execution, spawn and configure actors, place and
configure sensors, retrieve sensor data through callbacks, and manage environmental
conditions.

3.1.3 Synchronous Operation Mode
For multi-sensor data collection, temporal synchronization is critical. CARLA
supports two modes:

• Asynchronous Mode (default): Server executes simulation as rapidly as
possible, maximizing throughput but introducing temporal inconsistencies

• Synchronous Mode: Server advances only when commanded by client
through world.tick(). This guarantees perfect temporal alignment across
all sensors

Stella’s framework implements synchronous mode to ensure data collection
integrity. The synchronous workflow ensures each sensor’s data corresponds to
the same simulation timestamp, preventing temporal misalignment that would
compromise multi-modal sensor fusion.

15

Baseline Framework: Vehicle-Centric Synthetic Data Generation

3.2 Vehicle-Centric Sensor Configuration

3.2.1 nuScenes Sensor Suite Replication
Stella’s primary design goal was replicating the exact sensor configuration used in
the real-world nuScenes dataset [8], ensuring synthetic data maintains compatibility
with established analysis tools and validation workflows.

Figure 3.1: Ego Vehicle sensor placement [7]

Camera Configuration

Six RGB cameras provide comprehensive coverage:

• CAM_FRONT: Forward-facing, primary view for obstacle detection

• CAM_FRONT_LEFT/RIGHT: Side-forward cameras for intersections
and turns

• CAM_BACK_LEFT/RIGHT: Rear-quarter cameras for blind spots and
lane changes

• CAM_BACK: Rear-facing for rearward awareness

Each camera is configured with intrinsic parameters including resolution (1600
x 900 pixels), field of view, and lens distortion parameters matching nuScenes
specifications.

16

Baseline Framework: Vehicle-Centric Synthetic Data Generation

LiDAR Configuration

The LIDAR_TOP sensor, roof-mounted, provides 3D point cloud data with
vertical channels (32 or 64), rotation frequency, points per second, and maximum
range. CARLA uses ray-casting to simulate light detection, computing intersections
between emitted rays and scene geometry.

Supplementary Sensors

Additional sensors include:

• RADAR: Provides range-rate information through Doppler simulation

• IMU: Supplies acceleration and angular velocity measurements

• GNSS: Provides global position estimates

3.2.2 Sensor Attachment and Coordinate Frames
All sensors attach to the ego vehicle using CARLA’s transform system. Each sensor
is defined by a six-degree-of-freedom pose (position vector and rotation vector)
relative to the vehicle’s coordinate frame. This attachment ensures sensors move
rigidly with the vehicle, maintaining relative positions throughout simulation.

This paradigm creates naturally ego-centric datasets but inherently limits the
ability to capture stationary perspectives or maintain persistent monitoring of fixed
locations—motivating the infrastructure sensor extensions in Chapter 4.

3.3 Synchronous Data Collection Pipeline

3.3.1 Callback-Based Data Acquisition
Stella’s framework implements a callback-based architecture balancing performance
with temporal consistency. Each sensor registers a callback function executing when
new data becomes available. When simulation advances via world.tick(), the
server generates sensor data and invokes registered callbacks. Each callback receives
raw data, processes it (including coordinate transformations and format conver-
sions), and buffers processed data to prevent disk I/O from blocking subsequent
operations. [7]

A synchronization barrier ensures all sensor callbacks complete before the next
simulation tick, guaranteeing temporal coherence across sensor modalities. [7]

17

Baseline Framework: Vehicle-Centric Synthetic Data Generation

3.3.2 Data Processing and Transformation
Raw sensor data requires several processing steps [7]:

• Camera Data: RGB images converted from BGRA to RGB format, encoded
into PNG/JPEG, with intrinsic calibration matrices computed and metadata
associated

• LiDAR Data: Point clouds transformed from CARLA’s left-handed coordi-
nate system to nuScenes’ right-handed convention and encoded into binary
formats.

• Coordinate System Transformations: Critical transformations manage
differences between CARLA (left-handed, Z-up, centimeters) and nuScenes
(right-handed, Z-up, meters). The pipeline implements axis remapping
(X, Y, Z)CARLA → (Y, −X, Z)nuScenes with appropriate scaling.

3.3.3 Ground Truth Annotation
Synthetic data generation provides perfect ground truth annotations without
manual labeling. During each tick, the framework queries CARLA for all actors
and their properties: semantic category, 3D bounding box, position, orientation,
velocity, and additional attributes. This information is automatically processed to
generate nuScenes-compatible annotations with coordinate transformations and
unique instance identifiers for tracking. [7]

3.4 nuScenes Format Integration
3.4.1 Dataset Structure and Organization
The nuScenes dataset format [8] defines a comprehensive organizational structure
for multi-modal autonomous driving data. The hierarchical structure (Figure 2.1)
includes:

• scene: Continuous driving sequence (~20 seconds)

• sample: Temporal keyframes at 2 Hz

• sample_data: Individual sensor outputs with file paths, timestamps, ego-
vehicle pose, and calibration references

• sensor: Sensor definitions (camera, lidar, radar)

• calibrated_sensor: Intrinsic and extrinsic calibration information

18

Baseline Framework: Vehicle-Centric Synthetic Data Generation

• ego_pose: Vehicle pose in global coordinate frame (2D localization in x–y;
z=0)

• instance: Enumeration of object instances (not preserved across scenes)

• sample_annotation: 3D bounding boxes, attributes, visibility, and temporal
links (prev/next) per instance at each sample

• category: Taxonomy of object classes and sub-classes

• attribute: Dynamic properties (e.g., vehicle parked/stopped/moving; cycle
with/without rider)

• log: Acquisition metadata (vehicle, date, location)

• map: Semantic top-down masks (e.g., drivable surface, sidewalk)

• visibility: Discrete visibility levels (0–40%, 40–60%, 60–80%, 80–100%)

• lidarseg: Links to per-point lidar semantic labels (.bin files) for keyframes

This relational structure enables efficient querying and ensures compatibility
with nuScenes-devkit tools.

3.4.2 Calibration and Ego Pose Management
The framework generates comprehensive calibration data:

Camera Intrinsic Calibration: Camera intrinsic matrices K define projection
from 3D camera coordinates to 2D image coordinates:

K =

fx 0 cx

0 fy cy

0 0 1


Extrinsic Calibration: Defines rigid transformation from sensor to vehicle

coordinates using rotation matrix R and translation vector t.
Ego Pose Tracking: Records vehicle pose in global frame at each timestamp:

position (x, y, z) and orientation quaternion (qw, qx, qy, qz).

3.5 Environmental Simulation Capabilities
3.5.1 Dynamic Weather and Lighting Control
CARLA provides comprehensive environmental control with parameters including
precipitation, fog density, wetness, wind, sun position, and cloudiness. The lighting
system implements physically-based rendering with accurate sun/sky models, street
lights, vehicle lights, and indirect lighting from environmental reflections. [6]

19

Baseline Framework: Vehicle-Centric Synthetic Data Generation

3.5.2 Traffic and Scenario Generation
CARLA’s Traffic Manager orchestrates NPCs and pedestrians, implementing lane-
keeping behaviors, traffic light compliance, overtaking maneuvers, and collision
avoidance. The system supports diverse traffic densities and enables scripting
of specific scenarios including emergency braking, cut-in maneuvers, intersection
conflicts, and pedestrian crossings. Scenarios can be deterministically reproduced
through synchronous mode combined with fixed random seeds. [6]

3.6 Limitations of the Vehicle-Centric Approach
While Stella’s framework successfully established comprehensive capabilities, several
limitations constrain applicability for next-generation ADAS validation:

3.6.1 Coverage Limitations and Blind Spots
Vehicle-mounted sensors are constrained by their mobile platform’s position. Dense
urban intersections create extensive occlusion zones where critical areas remain
unobserved until the vehicle is committed to a maneuver. Limited predictive
context prevents generation of datasets for long-horizon prediction algorithms.
Fixed sensor configurations represent compromises rather than optimal placements
for specific scenarios.

3.6.2 Lack of Infrastructure Sensing Perspectives
The vehicle-centric paradigm lacks elevated and strategically positioned perspectives
from infrastructure-mounted sensors, which offer persistent monitoring of specific
locations, elevated vantage points reducing occlusions, and complementary external
perspectives. This prevents validation of cooperative perception algorithms and
V2I communication systems—motivating Chapter 4’s infrastructure-cooperative
sensor framework.

3.6.3 Visual Rendering Fidelity Constraints
CARLA’s visual fidelity exhibits limitations contributing to simulation-to-reality
gap:

• Material and Lighting: Simplified models lacking real-world surface com-
plexity [7]

• Texture and Detail: Lower-resolution textures and simplified geometry

• Weather Effects: Incomplete rendering of complex photometric interactions

20

Baseline Framework: Vehicle-Centric Synthetic Data Generation

These limitations affect vision-based perception algorithms, motivating the
CARLA-to-Isaac Sim integration in Chapters 5-6.

3.6.4 Computational Performance Constraints
The comprehensive sensor suite imposes significant computational demands. Cam-
era rendering overhead can reduce frame rates by up to 70

3.7 Summary and Transition
This chapter presented Stella’s comprehensive vehicle-centric framework, demon-
strating feasibility and utility of synthetic data for ADAS validation. However,
identified limitations in coverage, perspective diversity, visual fidelity, and compu-
tational performance motivate this thesis’s two contributions:

1. The infrastructure-cooperative sensor framework (Chapter 4) extends
the vehicle-centric approach with fixed infrastructure sensors, addressing
coverage limitations

2. The CARLA-to-Isaac Sim integration pipeline (Chapters 5-6) establishes
infrastructure for enhanced visual fidelity through advanced rendering

Both contributions maintain full backward compatibility with Stella’s baseline
framework, ensuring existing workflows remain functional while enabling new
capabilities.

21

Chapter 4

Infrastructure-Cooperative
Sensor Simulation

4.1 Introduction and Motivation
The infrastructure-cooperative sensor framework represents the first major contri-
bution of this thesis, introducing a fundamental evolution from Federico Stella’s
vehicle-centric approach [7] to a hybrid sensing system that integrates mobile
vehicle-mounted sensors with strategically positioned fixed infrastructure sensors.
This chapter presents the technical architecture, implementation details, and inte-
gration methodologies that enable cooperative sensing scenarios within the CARLA
simulation environment.

While Stella’s framework established comprehensive capabilities for vehicle-
mounted sensor simulation and nuScenes-compatible dataset generation, it inher-
ently limited validation scenarios to perspectives achievable from the ego vehicle.
This constraint becomes particularly problematic in complex urban intersections
where occlusions, limited sensor range, and geometric constraints can compromise
detection capabilities. Infrastructure-mounted sensors address these limitations
by providing persistent, elevated vantage points that complement mobile vehicle
sensors, enabling validation of cooperative perception algorithms and vehicle-to-
infrastructure (V2I) communication systems.

The framework consists of three integrated components: (1) a real-time sensor
placement management tool that provides intuitive graphical control over infras-
tructure sensor deployment with automatic intersection detection capabilities, (2)
infrastructure sensor spawning mechanisms that complement vehicle-mounted sen-
sors in the CARLA simulation, and (3) extensions to the nuScenes data pipeline that
maintain backward compatibility while supporting infrastructure sensor data collec-
tion. This modular architecture ensures that the infrastructure sensing capabilities

22

Infrastructure-Cooperative Sensor Simulation

enhance rather than replace the existing vehicle-centric framework.

4.2 Sensor Placement Tool
4.2.1 Tool Overview and Architecture
The sensor placement management tool implements a real-time interactive ap-
plication that bridges CARLA’s simulation environment with intuitive graphical
controls for infrastructure sensor deployment. The tool provides a comprehensive
interface for managing infrastructure sensors throughout their lifecycle: from initial
placement and configuration, through real-time visualization and verification, to
final configuration persistence and data collection deployment.

The tool architecture follows a model-view-controller pattern where the CARLA
world represents the model, the Pygame interface provides the view, and the event
handling system serves as the controller. The tool operates through a continuous
event loop that maintains synchronization between the graphical interface and
the CARLA simulation state. At each iteration, the system: (1) queries the
CARLA spectator position and orientation to determine the current viewport, (2)
processes user input events including keyboard commands and mouse interactions,
(3) updates the graphical interface to reflect current sensor placements and system
state, and (4) executes requested actions such as sensor placement or configuration
saving. The 30 FPS target provides smooth visual feedback without overwhelming
the system with excessive update frequency.

The complete system architecture integrates the CARLA simulator, the sensor
placement management tool, the configuration persistence layer, and the nuScenes
data generation pipeline. The architecture maintains strict separation between the
interactive sensor placement phase and the data collection phase, ensuring that
infrastructure sensor configurations can be established independently and reused
across multiple simulation runs.

4.2.2 User Interface Components
The graphical interface consists of four integrated panels that provide comprehensive
visualization and control capabilities. Figure 4.1 shows the main interface with
deployed sensors, Figure 4.2 shows the sensor perspective view feature, and Figure
4.4 demonstrates the intersection management overlay.

The Top View Panel displays a 300×300 pixel minimap representation of the
current CARLA map, loaded from pre-generated PNG images stored in the project
directory structure. The minimap provides real-time visualization of the spectator
position as a cyan marker with directional indication, showing the user’s current
location and orientation within the simulation environment. Deployed sensors

23

Infrastructure-Cooperative Sensor Simulation

Figure 4.1: Main interface of the CARLA Sensor Placement Tool

24

Infrastructure-Cooperative Sensor Simulation

Figure 4.2: Sensor perspective view overlay

25

Infrastructure-Cooperative Sensor Simulation

appear as colored markers indicating their types and positions. The minimap
updates at each frame to reflect spectator movement and sensor placement actions.
Figure 4.3 shows a detailed view of the minimap panel with deployed sensors.

Figure 4.3: Top View minimap panel

The Placed Sensors Panel maintains a scrollable list of all deployed in-
frastructure sensors on the current map. Each entry displays the sensor type,
associated intersection ID, unique sensor identifier, and world coordinates. The
panel uses color coding to distinguish sensor types: cyan for LIDAR_TOP, green for
CAM_TRAFFIC, red for LIDAR_TRAFFIC, and yellow for RADAR_TRAFFIC.
Users can select sensors from this list to view their perspectives, remove sensors, or
visualize their coverage areas in the CARLA 3D view.

The Spectator Information Panel displays real-time feedback about the
current spectator state, including world position coordinates (x, y, z), rotation
angles (pitch, yaw, roll), and the currently selected sensor type for placement. This
panel provides essential context for understanding the sensor placement operation
and verifying coordinate accuracy.

The Control Button Panel provides access to all tool functionality through
a vertical array of interactive buttons. Key functions include sensor placement,
sensor type selection, sensor view activation, configuration saving, sensor deletion,
intersection detection, and automatic placement. The button interface implements
hover effects and visual feedback to enhance usability.

26

Infrastructure-Cooperative Sensor Simulation

4.2.3 Supported Sensor Types
The system supports four primary sensor types specifically designed for infrastruc-
ture deployment, each optimized for different monitoring requirements:

• CAM_TRAFFIC: RGB cameras positioned at traffic intersections for visual
monitoring. Default configuration includes 800×600 pixel resolution and 90-
degree horizontal field of view. These sensors provide photorealistic image
data suitable for vision-based perception algorithm validation and can be
positioned at any height according to monitoring requirements.

• LIDAR_TRAFFIC: Directional LiDAR sensors with 100-meter range, 32
vertical channels, and 56,000 points per second sampling rate. These sensors
provide focused coverage of specific intersection approaches, complementing
the omnidirectional LIDAR_TOP sensors with higher point density in targeted
directions.

• RADAR_TRAFFIC: Traffic monitoring radar with 30-degree horizontal
FOV, 10-degree vertical FOV, and 100-meter detection range. Radar sensors
provide robust detection under adverse weather conditions and enable velocity
measurement for approaching vehicles.

• LIDAR_TOP: 360-degree elevated LiDAR sensors positioned at 8 meters
above ground level, providing complete intersection coverage. These sensors
replace the ego vehicle’s top-mounted LIDAR in the nuScenes annotation
pipeline while offering superior coverage from stationary elevated positions.
The LIDAR_TOP configuration includes 60-meter range, 32 channels, 150,000
points per second, and 10 Hz rotation frequency.

4.3 Tool Features and Functionality
4.3.1 Intersection Detection
The intersection detection system implements automatic identification of strategic
sensor placement locations by analyzing CARLA’s road network topology. The
algorithm extracts junction information from the map’s waypoint graph and com-
putes geometric properties essential for sensor placement decisions. Listing A.1
presents the core intersection detection algorithm.

The algorithm processes the map topology in three stages. First, it identifies
all waypoints that belong to junction areas by querying the is_junction property
of each waypoint in the topology graph. Second, it groups waypoints by their
associated junction ID to handle junctions that may have multiple waypoint
representations. Third, it calculates geometric properties for each unique junction,

27

Infrastructure-Cooperative Sensor Simulation

including the center point (computed as the centroid of all junction waypoints),
bounding box dimensions (derived from the minimum and maximum waypoint
coordinates), and a characteristic size metric (used for sensor placement scoring).

This automated approach ensures consistent intersection identification across
different CARLA map environments without requiring manual annotation. The
geometric information enables intelligent sensor placement algorithms and provides
spatial context for sensor association during data collection.

Figure 4.4 shows the intersection management interface that provides compre-
hensive control over detected intersections, allowing users to highlight specific
intersections in the 3D view or directly place sensors at selected locations.

Figure 4.4: Intersection Selection overlay

4.3.2 Intelligent Sensor Placement
The sensor placement algorithm implements a sophisticated scoring mechanism
that evaluates optimal sensor-to-intersection associations based on both proximity
and directional alignment. When a user places a sensor at a specific location and
orientation (controlled through the spectator position), the system automatically
determines which intersection the sensor should monitor.

28

Infrastructure-Cooperative Sensor Simulation

The algorithm calculates a composite score for each detected intersection using
the formula:

Score = (0.7 × Direction_Score) + (0.3 × Distance_Score) (4.1)

where the Direction_Score represents the dot product between the sensor’s
forward vector (derived from spectator rotation) and the normalized vector point-
ing toward the intersection center, and the Distance_Score provides normalized
proximity weighting calculated as 1.0 − (distance/max_distance) with a maximum
consideration distance of 100 meters.

The scoring mechanism prioritizes directional alignment over pure proximity
through empirically determined weights (0.7 for direction, 0.3 for distance). This
design decision ensures that sensors are associated with intersections that align
with their intended monitoring direction rather than simply the closest available
intersection. The algorithm selects the intersection with the highest combined score
for sensor assignment, enabling intuitive sensor placement where users position the
spectator camera to define both sensor location and viewing direction.

4.3.3 Real-time Visualization in CARLA
The tool maintains continuous bidirectional communication with the CARLA
simulator through the Python API. This integration enables real-time queries of
world state, dynamic sensor spawning for preview purposes, and visual debugging
through CARLA’s built-in debug drawing system.

The debug drawing system visualizes sensor placements by rendering temporary
markers, arrows, and lines directly in the 3D simulation view. For each sensor,
the system draws a position marker, an orientation arrow indicating the sensor’s
forward direction, and optional coverage cones for directional sensors. When a
sensor is associated with an intersection, the system also draws a connection line
between the sensor location and the intersection center, providing clear visual
feedback about sensor-intersection relationships.

The CARLA debug drawing system provides temporary visual elements that
render directly in the 3D simulation view, enabling users to visualize sensor place-
ments, coverage areas, and intersection associations without permanently modifying
the world. The life_time parameter controls how long these debug visualizations
persist, with typical values of 5.0 seconds providing sufficient visibility without
cluttering the view.

Figure 4.5 demonstrates the intersection highlighting feature in the CARLA 3D
view, while Figure 4.6 shows the visual feedback provided for deployed sensors.

For sensor preview functionality, the tool temporarily spawns actual CARLA
sensor actors at selected positions to capture real-time images from their perspec-
tives. This capability enables users to verify sensor placement effectiveness before

29

Infrastructure-Cooperative Sensor Simulation

Figure 4.5: Intersection highlighting in CARLA 3D view

Figure 4.6: Real-time sensor visualization in CARLA 3D view

30

Infrastructure-Cooperative Sensor Simulation

committing configurations. The preview system maintains proper lifecycle manage-
ment for temporary sensor actors, ensuring that preview sensors are destroyed when
no longer needed to prevent resource leaks. The image processing callback converts
CARLA’s raw image data into Pygame-compatible surfaces with appropriate color
space conversions and geometric transformations.

4.3.4 Configuration Persistence
Infrastructure sensor configurations persist to JSON files organized by CARLA
map name, enabling reuse of carefully designed sensor networks across multiple
simulation sessions. The configuration format stores complete sensor specifications
including type, position, orientation, associated intersection ID, and sensor-specific
parameters. Listing A.2 demonstrates the JSON configuration structure.

The configuration system implements atomic write operations to ensure file
consistency during save operations. The JSON format provides human-readable
configurations enabling manual inspection, debugging, and external processing by
analysis tools or batch processing scripts. Each sensor receives a unique identifier
combining the sensor type, associated intersection ID, and a random hexadecimal
suffix to prevent ID collisions.

Configuration loading occurs automatically when the tool starts or when users
switch maps. The system filters configurations by map name to display only
relevant sensors for the current environment. The atomic write operation using
temporary files prevents corruption of existing configurations in case of interruption
during save operations. The configuration system maintains map-specific files to
organize sensor deployments by environment, facilitating reuse of carefully planned
sensor networks across multiple simulation scenarios.

4.4 Web-Based Configuration Interface
While the Sensor Placement Tool provides real-time interactive sensor deployment
within the CARLA 3D environment, the framework also includes a complementary
web-based configuration interface that enables comprehensive simulation setup and
sensor management through a browser-based application. This Driver-in-the-Loop
frontend extends the original vehicle-centric interface [7] with dedicated support
for infrastructure sensor configuration.

4.4.1 Fixed Sensors View
The web interface implements a dedicated "Fixed Sensors" view that provides
centralized management of infrastructure sensor networks (Figure 4.7). This
interface complements the Sensor Placement Tool by offering an alternative workflow

31

Infrastructure-Cooperative Sensor Simulation

for users who prefer configuration through structured forms rather than interactive
3D placement.

Figure 4.7: Web-based frontend interface for Fixed Sensors simulation

The Fixed Sensors panel displays the currently loaded infrastructure sensor
configuration from the JSON files generated by the Sensor Placement Tool. Each
sensor entry shows its type and unique identifier, with visual status indicators
(green "Active" badges) confirming sensor availability for data collection. Users
can toggle sensor activation, review sensor deployment across the map preview,
and configure simulation parameters including traffic generation, environmental
conditions, and USD export options.

The interface integrates seamlessly with the Sensor Placement Tool workflow:
configurations created through the interactive 3D tool automatically appear in the
web frontend’s sensor list, while the frontend provides access to broader simulation
parameters not available in the placement tool. The "Run Placement Tool" button
enables direct launching of the interactive sensor placement application from within
the web interface, facilitating smooth transitions between configuration approaches.

This dual-interface approach accommodates diverse user preferences and use
cases. The interactive 3D tool excels for initial sensor placement with real-time
visual feedback, while the web interface provides convenient access for configuration
review, sensor activation management, and integration with broader simulation
parameter setup. Both interfaces operate on the same underlying JSON configu-
ration files, ensuring consistency regardless of which tool users employ for sensor

32

Infrastructure-Cooperative Sensor Simulation

management.

4.5 Infrastructure Sensor Spawning
A critical distinction between infrastructure and vehicle-mounted sensors lies in their
spawning mechanisms and lifecycle management within the CARLA simulation.
Vehicle-mounted sensors attach to the ego vehicle actor, inheriting its transform
and movement throughout the simulation. Infrastructure sensors, conversely,
spawn as independent actors at fixed world coordinates, maintaining stationary
positions regardless of vehicle movement. Listing A.3 demonstrates the spawning
implementation differences.

The spawning distinction propagates through the entire data collection pipeline.
Infrastructure sensors require absolute world coordinate specifications from the
configuration files, while vehicle sensors use relative offsets from the ego vehicle’s
coordinate frame. This architectural separation enables mixing infrastructure
and vehicle sensors within a single simulation, supporting cooperative sensing
scenarios where both fixed and mobile perspectives contribute to the complete
scene understanding.

Infrastructure sensors spawn once at simulation initialization and persist through-
out the entire data collection session, providing consistent viewpoints across all
recorded frames. Vehicle sensors, attached to the moving ego vehicle, spawn once
but capture data from continuously changing positions as the vehicle traverses
the environment. This fundamental difference in movement behavior necessitates
distinct coordinate transformation procedures in the nuScenes data generation
pipeline.

4.6 Integration with nuScenes Data Pipeline

4.6.1 Backward Compatibility Strategy
The infrastructure sensor framework maintains full compatibility with Federico
Stella’s existing nuScenes data generation pipeline [7, 8] while extending function-
ality to support fixed infrastructure sensors. The integration strategy preserves
all existing vehicle-mounted sensor capabilities while adding infrastructure sensing
without disrupting established workflows or data formats.

The framework extends the existing sensor management architecture through
modular additions that complement rather than replace the original vehicle-centric
approach. Infrastructure sensors utilize the same nuScenes data structures, file
formats, and database schema established in the original implementation, en-
suring seamless integration with existing analysis tools and validation pipelines.

33

Infrastructure-Cooperative Sensor Simulation

The extension maintains the original nuScenes database tables including sensor,
calibrated_sensor, and sample_data structures, with infrastructure sensors pop-
ulating these tables using procedures adapted to handle world-fixed coordinate
frames [8].

4.6.2 nuScenes Schema Extensions
To support infrastructure sensors within the existing nuScenes [8] framework,
the implementation introduces a critical extension to the sensor metadata: the
intersection_id field. This field associates each infrastructure sensor with its
corresponding intersection, enabling spatial queries and multi-sensor fusion based
on geographic context.

The intersection_id field stores the CARLA junction ID assigned during sen-
sor placement, creating a persistent association between sensors and their monitored
intersections. This association enables advanced validation scenarios including
multi-sensor coverage analysis, intersection-specific performance evaluation, and
cooperative perception algorithm testing. The extension modifies both the sensor
and calibrated_sensor tables to include the intersection ID alongside traditional
sensor metadata, ensuring that intersection associations propagate through the
entire nuScenes data hierarchy.

The calibrated_sensor table receives similar extensions, storing the intersec-
tion association alongside traditional calibration parameters. This dual representa-
tion ensures that intersection associations propagate through the entire nuScenes
data hierarchy.

4.6.3 Coordinate System Transformations
Infrastructure sensors require specialized coordinate transformation procedures
to maintain consistency with the nuScenes format while handling world-fixed
coordinate frames. Unlike vehicle-mounted sensors that use ego-vehicle-relative
coordinates, infrastructure sensors operate in absolute world coordinates that
remain constant throughout the simulation.

The transformation pipeline implements three distinct coordinate frames: (1)
CARLA world coordinates (left-handed, Z-up), (2) nuScenes world coordinates
(right-handed, Z-up), and (3) sensor-local coordinates for point cloud and image
data. The transformation pipeline converts between these frames while preserving
geometric relationships.

Listing A.4 presents the coordinate transformation implementation for infras-
tructure sensors.

The coordinate transformation implementation handles three critical aspects:
(1) translation conversion between CARLA [6] and nuScenes world frames through

34

Infrastructure-Cooperative Sensor Simulation

axis-specific operations, (2) rotation matrix transformation accounting for handed-
ness differences between coordinate systems, and (3) preservation of sensor intrinsic
parameters including camera intrinsic matrices for camera sensors. The transfor-
mation ensures that infrastructure sensor data integrates correctly with vehicle
sensor data in the unified nuScenes dataset, maintaining geometric consistency
across heterogeneous sensor sources.

For LiDAR sensors, the coordinate transformation extends to individual point
clouds, converting each 3D point from CARLA’s left-handed coordinate system to
nuScenes’ right-handed convention. This point-wise transformation preserves the
relative spatial relationships within point clouds while aligning the global coordinate
frame with nuScenes standards. The implementation maintains intensity values
and other point attributes unchanged during coordinate transformation.

4.6.4 Data Collection Pipeline Integration
Infrastructure sensors integrate into the existing data collection pipeline through
callback-based mechanisms that parallel vehicle-mounted sensor handling. The
system extends Stella’s synchronous data acquisition approach to support simulta-
neous collection from both vehicle-mounted and infrastructure sensors, maintaining
temporal coherence across all sensor modalities.

During each simulation tick, the data collection pipeline executes a coordinated
sequence: (1) freeze simulation state to ensure consistency, (2) trigger callbacks for
all registered sensors (both vehicle-mounted and infrastructure), (3) process and
buffer collected data with appropriate coordinate transformations, and (4) advance
simulation only after all sensors confirm data capture completion. The pipeline
applies different coordinate transformation procedures based on sensor mounting
type—infrastructure sensors use world-fixed coordinates while vehicle sensors use
ego-relative coordinates—ensuring proper integration into the unified nuScenes
sample structure.

The data collection pipeline maintains proper separation between infrastructure
and vehicle sensor processing while ensuring both integrate into the unified nuScenes
sample structure. Each sample represents a temporal snapshot containing data
from all sensors—both vehicle-mounted and infrastructure—captured at the same
simulation timestamp.

4.6.5 File Organization and Naming Conventions
File organization follows the established nuScenes directory structure with exten-
sions to accommodate infrastructure sensors. The system creates separate subdi-
rectories for each sensor modality (cameras, LiDAR, radar) and uses consistent
naming conventions that incorporate sensor type, intersection ID (for infrastructure

35

Infrastructure-Cooperative Sensor Simulation

sensors), and timestamp information. Infrastructure sensor data files use the prefix
pattern SENSORTYPE_INTERSECTIONID_ to distinguish them from vehicle sensor
files while maintaining compatibility with nuScenes loading utilities.

Sample data entries in the nuScenes database link to these files through the
filename field, which stores relative paths from the dataset root. The system
maintains the original nuScenes sample structure where each sample contains
references to data from all available sensors at a specific timestamp. Infrastructure
sensor sample_data entries appear alongside vehicle sensor entries within the
same sample, with the sensor_token field distinguishing between different sensor
sources.

This organization ensures compatibility with existing nuScenes data loading
scripts while clearly identifying the source of each data file through the filename
prefix and sensor channel designation.

36

Chapter 5

CARLA to USD Export
Framework

5.1 Introduction and Motivation
The integration between CARLA simulation and NVIDIA Isaac Sim represents the
second major contribution of this thesis, establishing a foundation for advanced
synthetic data generation workflows. This framework addresses the need to bridge
CARLA’s functional simulation capabilities with environments capable of enhanced
rendering quality. While CARLA excels in physics simulation, traffic management,
and sensor modeling, the integration with NVIDIA Omniverse ecosystem opens
pathways for future enhancements in rendering fidelity through Isaac Sim’s advanced
RTX-based rendering capabilities.

The primary contribution of this work lies not in achieving complete photo-
realistic rendering, but rather in establishing the technical infrastructure and
methodology for CARLA-to-USD export with temporal animation support. This
framework provides a foundation upon which future work can build, including
the integration of enhanced visual quality, improved material systems, and more
sophisticated rendering techniques. The focus of this chapter is on the technical
pipeline, data transformation accuracy, and temporal animation capabilities that
enable deterministic simulation replay in Omniverse environments.

5.1.1 Motivation for USD-Based Integration
The autonomous driving industry increasingly recognizes the importance of high-
fidelity synthetic data for training and validating perception systems. Modern
computer vision algorithms, particularly deep convolutional neural networks, demon-
strate sensitivity to the visual characteristics of training data. The phenomenon

37

CARLA to USD Export Framework

known as the "simulation-to-reality gap" or "sim-to-real gap" manifests when mod-
els trained on synthetic data exhibit degraded performance when deployed on
real-world systems [13, 14].

This framework establishes the technical foundation for addressing these chal-
lenges by enabling CARLA simulation data to be exported and replayed in en-
vironments with advanced rendering capabilities. The focus of this work is on
developing robust data transformation pipelines, ensuring temporal accuracy, and
maintaining compatibility with industry-standard formats. Future work can build
upon this foundation to leverage Isaac Sim’s advanced rendering features including
ray-traced lighting, physically-based materials, and realistic environmental effects.

The value of this contribution lies primarily in:
• Technical Infrastructure: A complete pipeline for CARLA-to-USD conver-

sion with temporal animation support

• Data Transformation Accuracy: Robust coordinate system conversion
and timeline management

• Extensibility: A foundation that future work can enhance with improved
rendering quality

• Industry Standard Integration: Compatibility with USD and Omniverse
ecosystems

5.1.2 Universal Scene Description and NVIDIA Omniverse
Universal Scene Description (USD) is an open-source framework developed by
Pixar Animation Studios that has emerged as the industry standard for describing,
composing, simulating, and collaborating on 3D scenes [21]. USD provides a
comprehensive ecosystem for managing complex 3D content with support for
hierarchical scene composition, temporal animation data through keyframing,
sophisticated material and lighting systems, and cross-platform compatibility across
major 3D software applications.

NVIDIA Omniverse builds upon USD to create a collaborative platform for 3D
workflows, with Isaac Sim serving as a robotics-focused simulation environment
within the Omniverse ecosystem [22]. Isaac Sim provides advanced rendering
capabilities through NVIDIA’s RTX technology and sophisticated sensor simulation
models.

The integration developed in this thesis establishes the technical pipeline for
CARLA simulation data to be exported, transformed, and replayed within the
Omniverse ecosystem. This creates opportunities for future enhancements including:

• Advanced Rendering: Future integration with Isaac Sim’s ray-tracing
capabilities for improved visual fidelity

38

CARLA to USD Export Framework

• Enhanced Materials: Potential to leverage Omniverse’s material libraries
and PBR systems

• Sensor Simulation: Foundation for integrating Isaac Sim’s advanced sensor
models

• Collaborative Workflows: Access to Omniverse’s multi-user collaboration
features

This work focuses on establishing the core technical infrastructure—accurate
data transformation, temporal animation, and format compatibility—upon which
these future enhancements can be built.

5.1.3 Evolution of the Export Framework Approach
During the initial development phases of this thesis work, CARLA version 0.9.15
was the latest available release, lacking native USD export capabilities. This
motivated the development of a custom USD export framework to enable CARLA-
Isaac Sim integration. The initial framework design emphasized proof-of-concept
functionality over production optimization, intentionally maintaining a simplified
implementation suitable for demonstrating integration concepts.

However, during the final stages of thesis development, CARLA released version
0.9.16 with official USD export functionality [24]. Comprehensive testing of this
official implementation revealed both its capabilities and its limitations.

Official CARLA USD Export Capabilities:

• High-quality static map exports with proper materials and geometric detail

• Individual vehicle models exported as standalone USD assets

• Proper material definitions with PBR parameters

• Optimized mesh representations with appropriate level-of-detail

• Integration with Omniverse asset libraries

Critical Limitations of Official Export:

• No temporal animation support: Exports only static scenes without timeline
data

• No simulation replay capability: Cannot capture and replay complete simula-
tion sequences

39

CARLA to USD Export Framework

• No multi-agent animation: Does not support animated vehicle trajectories

• No sensor configuration export: Sensor placements and parameters not included

• No synchronized data capture: Cannot maintain temporal consistency with
nuScenes format

These limitations necessitate the continued development of a complementary
export framework. The approach evolved from a complete replacement system to a
hybrid strategy that leverages official CARLA USD exports for static content while
implementing custom functionality for temporal animation and simulation replay.

5.1.4 Hybrid Framework Architecture
The final framework design adopts a hybrid approach that combines the strengths
of both official CARLA USD exports and custom temporal animation systems:

1. Static Asset Utilization: The framework can optionally use official CARLA
USD map exports, benefiting from improved material quality and geometric
detail

2. Custom Animation Pipeline: A complete temporal animation system
captures vehicle trajectories, sensor configurations, and simulation state over
time

3. Dynamic Scene Composition: The system composes complete animated
USD stages by combining static assets with temporal animation data

4. nuScenes Integration: Maintains compatibility with nuScenes dataset
format and sensor synchronization requirements

This hybrid approach provides the best of both worlds: leveraging official tools
where available while filling critical gaps in temporal animation and simulation re-
play capabilities. The framework remains essential for generating time-synchronized
synthetic datasets suitable for ADAS validation workflows.

5.2 Universal Scene Description Fundamentals
5.2.1 USD Technology Overview
Universal Scene Description provides a comprehensive framework for representing
3D scene data with particular strengths in handling temporal animations and hier-
archical scene composition [20]. The technology consists of several key components
that make it particularly suitable for autonomous driving simulation applications.

40

CARLA to USD Export Framework

• Scene Composition and Layering: USD implements a sophisticated
layering system that enables non-destructive composition of scene elements.
Multiple USD files can be composed together, with later layers overriding
or extending earlier layers without modifying the original source files. This
capability proves valuable for managing complex simulation scenarios where
vehicle trajectories, sensor configurations, and environmental conditions can
be managed as separate compositional layers.

• Temporal Animation Support: USD includes native support for time-
varying data through its attribute animation system. Any scene attribute can
be keyframed over time, enabling precise control of object transformations,
property changes, and state transitions. The framework supports various
interpolation modes including linear, held, and custom interpolation functions,
ensuring smooth and accurate motion representation.

• Hierarchical Scene Organization: USD scenes are organized as hierarchical
stage graphs where scene elements (prims) can contain other prims in a tree
structure. This hierarchy naturally represents the parent-child relationships
common in vehicle simulation, such as sensors attached to vehicle bodies or
wheels connected to chassis components. Transform hierarchies ensure that
child elements move correctly with their parents.

• Metadata and Custom Attributes: USD provides extensive metadata
capabilities, allowing arbitrary custom data to be associated with scene el-
ements. This feature enables preservation of CARLA-specific parameters,
sensor configurations, and simulation metadata alongside the geometric and
animation data.

5.2.2 USD in Autonomous Driving Simulation
The autonomous driving industry has increasingly adopted USD as a standard
format for simulation data exchange and collaboration. Several characteristics
make USD particularly well-suited to ADAS development workflows:

• Deterministic Replay: USD’s support for keyframed animation enables
exact reproduction of complex multi-agent scenarios. A complete simulation
can be captured as a temporal sequence and replayed with frame-accurate
precision, ensuring reproducible validation results across different tools and
platforms.

• Multi-Tool Workflows: USD’s open standard and broad industry adoption
enable seamless data exchange between simulation, validation, and visualiza-
tion tools. A scenario captured in CARLA can be visualized in Isaac Sim,

41

CARLA to USD Export Framework

analyzed in custom tools, and reviewed in standard 3D applications without
format conversions.

• Scalability and Performance: USD’s design emphasizes efficient handling
of large-scale scenes with millions of elements. Lazy loading, instancing, and
sophisticated caching mechanisms enable real-time interaction with complex
urban environments containing numerous vehicles, pedestrians, and infrastruc-
ture elements.

• Industry Standardization: Major automotive OEMs and simulation pro-
viders have adopted USD as a standard format for scenario description and
synthetic data exchange. This standardization facilitates collaboration between
organizations and reduces toolchain integration complexity.

5.3 System Architecture and Pipeline Overview
5.3.1 High-Level Architecture
The CARLA to USD export framework implements a modular pipeline architecture
that processes simulation data through multiple stages, transforming CARLA’s
runtime representation into deterministically replayable USD scenes. The system
design emphasizes separation of concerns, with distinct components responsible for
data capture, temporal management, coordinate transformation, and USD stage
generation.

The system operates through a clearly defined sequence of processing stages,
with data flowing from CARLA’s simulation environment through multiple trans-
formation and composition phases before final USD stage generation.

The architecture consists of three primary subsystems:

• Data Acquisition Layer: This layer interfaces directly with CARLA, ex-
tracting complete scene state information at each simulation timestep. The
DataCapture component queries CARLA’s world state, retrieving vehicle
transforms, sensor configurations, environmental conditions, and map topol-
ogy. The capture system operates synchronously with CARLA’s simulation
loop, ensuring temporal consistency across all captured data.

• Processing and Transformation Layer: Captured data undergoes multiple
processing stages to prepare it for USD representation. The TimelineManager
converts CARLA’s microsecond-based timestamps to USD time codes, estab-
lishing frame-accurate temporal mapping. The TransformUtils component
performs coordinate system conversions, transforming CARLA’s left-handed
coordinate system to USD’s right-handed convention. The ActorProcessor

42

CARLA to USD Export Framework

extracts and organizes vehicle-specific data including animation keyframes
and mesh references.

• USD Generation Layer: The final layer assembles processed data into
hierarchical USD stage structures. The USDStageGenerator orchestrates
stage creation, coordinating specialized components for vehicle animation
(VehicleCreator), environment setup (EnvironmentCreator), and sensor
representation (SensorCreator). The AssetManager resolves vehicle mesh
references and handles material assignment.

5.3.2 Component Interaction
The framework implements a coordinator pattern where the USDSceneExporter
class serves as the central orchestrator, managing interactions between specialized
components.

The USDSceneExporter maintains references to all major subsystems and coor-
dinates their operations through a well-defined sequence. Listing B.1 presents the
core structure.

Component interactions follow a clear dependency hierarchy. Low-level utili-
ties (TransformUtils, FileUtils) provide foundational services to processing
components (ActorProcessor, RoadProcessor). Processing components pre-
pare data for consumption by USD generation components (VehicleCreator,
EnvironmentCreator). The USDStageGenerator coordinates all generation com-
ponents while the USDSceneExporter manages the entire pipeline.

5.3.3 Data Flow Through the Pipeline
Data progresses through the pipeline in three distinct phases: capture, processing,
and generation.

• Capture Phase: During CARLA simulation execution, the framework cap-
tures scene state at regular intervals synchronized with the simulation timestep.
The first captured frame includes comprehensive scene information including
road network geometry (when using dynamic road export mode), while subse-
quent frames focus on dynamic elements such as vehicle positions and states.
Each capture operation produces a structured data dictionary containing all
information necessary for later USD reconstruction.

• Processing Phase: After simulation completion, captured data undergoes
batch processing to prepare it for USD representation. The TimelineManager
analyzes the complete temporal sequence, computing frame timing rela-
tionships and establishing the target playback framerate (24 FPS). The

43

CARLA to USD Export Framework

ActorProcessor organizes vehicle data into per-vehicle timelines, applying
coordinate transformations to all spatial data. Sensor configurations are
extracted and formatted for USD representation.

• Generation Phase: The final phase assembles the USD stage structure.
The USDStageGenerator creates the stage hierarchy, beginning with environ-
ment setup (either loading official CARLA USD maps or generating dynamic
road geometry). The VehicleCreator instantiates vehicle prims with ap-
propriate mesh references and applies temporal animation keyframes. The
SensorCreator adds sensor visualization prims at correct positions. Material
properties are assigned through the MaterialManager, and the complete stage
is written to disk as a binary USD file.

5.4 Core Export System Implementation

5.4.1 USDSceneExporter Architecture
The USDSceneExporter class implements the main export orchestration logic,
providing a high-level interface for CARLA integration while managing the complex
pipeline of data capture, processing, and USD generation.

The class maintains several critical state variables throughout the export process:

• carlaWorld: Reference to the CARLA world instance, enabling queries of
simulation state

• export_map: Boolean flag controlling environment export strategy (true =
use official USD map, false = generate dynamic road network)

• scene_data: Accumulated list of captured frame data, representing complete
simulation history

• timeline_manager: Handles temporal coordination and timestamp-to-time-
code conversion

• data_capture: Interfaces with CARLA to extract scene state information

The exporter provides two primary methods for external interaction:
capture_scene_state(timestamp, frame_number): Called during simulation

execution to capture the current scene state. This method should be invoked after
each CARLA world tick, typically within the main simulation loop. The method
records timing information, extracts complete scene data, and accumulates it for
final export.

44

CARLA to USD Export Framework

export_to_usd_stage(output_path): Called after simulation completion to
generate the final USD file. This method instantiates the USDStageGenerator,
processes all accumulated scene data, and writes the resulting USD stage to disk.

5.4.2 Data Capture System
The DataCapture component implements comprehensive scene state extraction,
interfacing directly with CARLA’s Python API to query world state. The capture
system must handle various actor types, sensor configurations, and environmental
conditions while maintaining data consistency across frames. Listing B.2 presents
the implementation.

The capture system implements several optimization strategies to minimize
performance impact on simulation execution. Vehicle data capture focuses on
transform and velocity information, avoiding expensive queries for properties that
remain static across frames. Road network extraction occurs only once (first
frame) when using dynamic export mode, as road geometry does not change during
simulation. Sensor configurations are captured comprehensively but only for sensors
attached to the ego vehicle, following nuScenes dataset conventions.

5.4.3 Timeline Management and Temporal Coordination
Accurate temporal representation presents a significant challenge due to funda-
mental differences between CARLA’s simulation time model and USD’s animation
system. CARLA operates with microsecond-precision timestamps that may not
correspond to uniform frame intervals, while USD animations typically target a
specific playback framerate (24 FPS in this implementation).

The TimelineManager addresses this challenge through a systematic timestamp-
to-timecode conversion strategy. The manager tracks the simulation’s start times-
tamp and converts subsequent CARLA timestamps (in microseconds) to USD time
codes by calculating elapsed time and multiplying by a target framerate of 24 FPS.
This approach ensures consistent playback timing in Omniverse regardless of the
original CARLA simulation framerate, enabling deterministic replay of recorded
scenarios.

The timeline system maintains all recorded timestamps to enable accurate
conversion during USD generation. The timestamp_to_time_code method imple-
ments the core conversion algorithm, calculating elapsed time from simulation start
and scaling it to achieve the target playback framerate. This approach ensures that
relative timing relationships between simulation events are preserved exactly, even
though absolute frame numbers may differ from the original CARLA capture rate.

The hardcoded 24 FPS target framerate represents a deliberate design choice
balancing animation smoothness with file size considerations. Higher framerates

45

CARLA to USD Export Framework

would provide smoother playback but significantly increase USD file sizes due to
additional keyframe data. The 24 FPS rate provides acceptable motion quality for
validation workflows while maintaining manageable file sizes.

5.5 Coordinate System Transformation
5.5.1 CARLA to USD Coordinate System Mapping
One of the most critical and technically challenging aspects of the USD export
framework involves accurate coordinate system transformation. CARLA inherits
Unreal Engine 4’s left-handed coordinate system, while USD and the broader
Omniverse ecosystem employ a right-handed coordinate system following industry
standards for 3D graphics and robotics applications. This fundamental difference
requires careful transformation of all spatial data to maintain correct spatial
relationships and orientations.

Coordinate System Characteristics:

• CARLA (Left-Handed System):

– X-axis: Forward direction (vehicle heading)
– Y-axis: Right direction (perpendicular to heading)
– Z-axis: Up direction (vertical)
– Rotation: Counter-clockwise positive when viewed from positive axis

• USD/Omniverse (Right-Handed System):

– X-axis: Right direction (or sometimes forward, depending on convention)
– Y-axis: Up direction (vertical)
– Z-axis: Forward direction (or backward, depending on convention)
– Rotation: Counter-clockwise positive when viewed from positive axis

(following right-hand rule)

5.5.2 Transform Conversion Algorithms
The TransformUtils class implements comprehensive transformation algorithms
ensuring precise spatial relationships are maintained during coordinate system
conversion. The transformation involves three distinct operations: position vector
conversion, rotation quaternion transformation, and velocity vector remapping.
Listing B.3 presents the implementation.

46

CARLA to USD Export Framework

The transformation algorithm implements several critical operations:

• Position Vector Transformation: The Y-coordinate is inverted while X and
Z remain unchanged. This inversion accounts for the difference in handedness
between the two systems. In CARLA, positive Y points to the vehicle’s right;
in USD, positive Y points upward (or in some conventions, to the left).

• Rotation Conversion: Rotations require more complex handling due to the
interaction between coordinate system handedness and rotation conventions.
The algorithm first converts CARLA’s Euler angles (in degrees) to radians,
then negates the yaw angle to account for handedness change. The Euler
angles are then converted to quaternion representation, which USD uses for
rotations due to its advantages in interpolation and gimbal lock avoidance.

• Velocity Vector Transformation: Velocity vectors undergo the same axis
remapping as position vectors, ensuring that motion vectors remain correctly
oriented in the transformed coordinate system.

5.5.3 Validation of Spatial Accuracy
The coordinate transformation system includes comprehensive validation mecha-
nisms to ensure accuracy and consistency of spatial data throughout the conversion
process.

• Round-Trip Testing: Transformation accuracy is verified through round-trip
conversion tests where CARLA transforms are converted to USD format and
then back to CARLA coordinates. The test validates that the round-trip
conversion produces results within floating-point precision tolerances (typically
< 10−6) of the original values.

• Reference Point Validation: Known reference points with well-defined
coordinates in both systems are used for validation. For example, the origin
point (0, 0, 0) should remain unchanged except for coordinate axis remapping,
and unit vectors along each axis should transform according to expected
mathematical relationships.

• Spatial Relationship Preservation: Relative distances and angles between
objects must remain constant through transformation. The validation system
computes distances between pairs of vehicles in both CARLA and USD
representations, verifying that relative spatial relationships are preserved
exactly.

47

CARLA to USD Export Framework

• Orientation Consistency: Vehicle heading directions are validated by
comparing forward vectors in both coordinate systems. A vehicle facing north
(positive X direction) in CARLA should maintain equivalent heading in USD
after transformation.

5.6 Vehicle Animation System

5.6.1 Keyframe Generation Strategy

The vehicle animation system generates smooth, temporally accurate motion repre-
sentations by converting captured vehicle trajectories into USD keyframed anima-
tions. The system must handle varying capture rates, coordinate transformations,
and USD’s specific animation representation requirements.

The keyframe generation process follows a systematic pipeline that transforms
raw capture data into properly formatted USD animation curves.

The VehicleCreator component implements the animation generation logic.
Listing B.4 presents the implementation.

The animation system creates keyframes at each captured simulation frame,
with USD’s interpolation system handling smooth motion between keyframes.
This approach ensures that vehicle trajectories are reproduced accurately while
minimizing animation data size.

5.6.2 Transform and Velocity Processing

Vehicle state data extracted from CARLA includes not only position and orientation
but also velocity information critical for physics-accurate replay and analysis. The
ActorProcessor extracts complete vehicle state from CARLA actors through the
coordinate transformation pipeline. Each vehicle’s transform (position, rotation)
and velocity undergo coordinate system conversion via TransformUtils (see Listing
B.3), with additional metadata including vehicle ID, blueprint type, and mesh
information for asset resolution. This comprehensive state capture enables both
visual replay and physics-based analysis within USD environments.

Velocity information, while not directly used in USD animation keyframes, is
preserved in the exported data for potential use in physics-based replay systems or
for analysis purposes.

48

CARLA to USD Export Framework

5.7 Asset Management and Visual Representa-
tion

5.7.1 Hybrid Asset Strategy
The framework implements a hybrid asset management strategy that leverages both
official CARLA USD exports and custom fallback mechanisms to ensure robust
visual representation across all scenarios.

With the release of CARLA 0.9.16’s official USD export capability, the framework
can now utilize high-quality vehicle and map assets when available. However, to
maintain compatibility with earlier CARLA versions and handle cases where official
USD assets are unavailable, the system retains a comprehensive fallback system.

5.7.2 Vehicle USD Asset Library
The system maintains a library of USD vehicle asset references corresponding to
CARLA’s vehicle blueprints. When creating vehicle representations, the framework
attempts to reference official CARLA USD assets first, falling back to custom assets
or procedural geometry if necessary. Listing B.5 presents the implementation.

This three-tier asset resolution strategy prioritizes official CARLA USD assets
to ensure the highest visual quality when available, while fallback mechanisms
guarantee that the framework remains functional across all scenarios.

5.7.3 Material Properties and Visual Fidelity
The material system implements different strategies depending on the asset source:

• Official CARLA USD Assets: When using official CARLA exports, ma-
terials are fully defined with PBR (Physically Based Rendering) parameters
including base color, metallic properties, roughness values, and normal maps.
These materials are compatible with Isaac Sim’s RTX-enabled rendering
pipeline, providing a foundation for future visual quality enhancements.

• Custom Assets: Custom vehicle USD assets use simplified material defi-
nitions with basic PBR parameters. While less detailed than official assets,
these materials still provide reasonable visual quality suitable for validation
workflows.

• Fallback Geometry: Procedurally generated fallback geometry uses solid
color materials assigned deterministically based on vehicle IDs, ensuring visual
consistency and distinctiveness across the simulation.

49

CARLA to USD Export Framework

The deterministic color generation ensures that vehicles maintain consistent
appearance across multiple exports of the same simulation, facilitating visual
comparison and analysis.

5.7.4 Asset Coverage and Statistics
The framework includes asset coverage analysis functionality that tracks the avail-
ability of USD representations for encountered vehicle types. The system maintains
statistics on vehicle types encountered during export, categorizing them into those
with available USD assets versus those requiring fallback geometry. Upon export
completion, the framework reports coverage percentages and lists vehicle types that
utilized fallback representations, providing visibility into asset library completeness
and identifying opportunities for asset acquisition or creation.

These statistics provide valuable feedback for identifying gaps in asset coverage
and prioritizing asset acquisition or creation efforts.

5.8 Sensor Integration in USD Format

5.8.1 Sensor Representation Strategy
Sensors in the USD export serve dual purposes: they provide visual representation
for scene understanding and they preserve sensor configuration metadata for poten-
tial use in Isaac Sim’s sensor simulation system. The export framework implements
sensor representations that balance visual clarity with metadata completeness.

5.8.2 Camera Sensor Export
Camera sensors are exported as USD Camera prims with comprehensive parameter
preservation. Listing B.6 presents the implementation.

The camera export preserves critical parameters including field of view, resolu-
tion, and focal length calculations that enable accurate sensor simulation in Isaac
Sim.

5.8.3 LiDAR and Radar Sensor Integration
LiDAR sensors receive special handling to leverage Omniverse’s sensor asset library
when possible. Listing B.7 presents the implementation.

The LiDAR integration attempts to reference realistic sensor models from
Omniverse’s asset library, providing visual accuracy while preserving the technical
parameters needed for potential sensor simulation in Isaac Sim.

50

CARLA to USD Export Framework

5.8.4 Sensor Parameter Preservation and Metadata
All sensor types include comprehensive metadata preservation to enable future
integration with Isaac Sim’s sensor simulation capabilities:

Sensor Type USD Representation Preserved Parameters
RGB Camera UsdGeom.Camera FOV, resolution, focal

length, aperture, clipping
range

Semantic Camera UsdGeom.Camera + metadata Same as RGB + segmen-
tation class mapping

Depth Camera UsdGeom.Camera + metadata Same as RGB + depth
range parameters

LiDAR Asset reference or cylinder Channels, range, rotation
frequency, points per sec-
ond

Radar Cylinder geometry Range, horizontal/verti-
cal FOV, points per sec-
ond

Table 5.1: Sensor type mapping and parameter preservation

This comprehensive parameter preservation ensures that the USD export main-
tains all information necessary for potential high-fidelity sensor simulation in
Isaac Sim, even though the current implementation focuses primarily on visual
representation and animation replay.

5.9 Environment Export and Map Integration
5.9.1 Hybrid Approach to Environment Representation
The environment export system implements a flexible hybrid approach that can
leverage official CARLA USD map exports (when using CARLA 0.9.16+) or
generate dynamic road network representations (for compatibility with earlier
versions or when official maps are unavailable).

This hybrid strategy is controlled through the export_map parameter:
• export_map=True: Load and reference official CARLA USD map assets

• export_map=False: Generate dynamic road network from CARLA waypoint
data

51

CARLA to USD Export Framework

5.9.2 Official CARLA USD Map Integration
When using official CARLA USD map exports, the environment setup process
becomes streamlined. Listing B.8 presents the implementation.

Official USD maps provide several significant advantages:

• Visual Fidelity: Complete building geometry, detailed road textures, proper
materials with PBR parameters

• Lighting Accuracy: Pre-configured lighting setups appropriate for the
environment

• Asset Consistency: Maps exported directly from CARLA maintain perfect
geometric alignment with simulation

• Professional Quality: Maps benefit from CARLA’s professional 3D asset
pipeline

However, these advantages come with trade-offs:

• File Size: Complete maps can be several gigabytes

• Version Dependency: Requires CARLA 0.9.16 or later

• Static Content Only: Official exports do not include animated elements

5.9.3 Dynamic Road Network Generation
For scenarios where official USD maps are unavailable or when a lightweight
representation is preferred, the framework can generate road network geometry
from CARLA’s waypoint topology. The RoadProcessor samples waypoints across
the map at regular intervals (typically 2 meters) and groups them by road and
lane identifiers. For each lane, the processor generates a triangle mesh strip by
calculating road edge positions perpendicular to waypoint directions, using an
approximate lane width of 4 meters. Consecutive waypoint pairs are connected
through quad faces (two triangles), creating a continuous road surface mesh. The
resulting geometry undergoes coordinate transformation to USD conventions and
is exported with basic materials, providing a functional spatial reference for vehicle
motion even when high-fidelity environmental assets are unavailable.

Dynamic road generation provides complementary advantages:

• Lightweight: Significantly smaller file sizes (megabytes vs gigabytes)

• Version Independence: Works with any CARLA version

• Customizability: Road appearance can be adjusted programmatically

52

CARLA to USD Export Framework

• Runtime Generation: Can adapt to custom or procedurally generated maps

The trade-offs include:

• Visual Simplicity: Only road surfaces, no buildings or detailed environment

• Basic Materials: Simple texture mapping without advanced PBR

• Generation Overhead: Requires processing time during export

5.9.4 Hybrid Strategy Selection Guidelines
The choice between official USD maps and dynamic road generation depends on
specific use case requirements:

• Use Official USD Maps When:

– Visual realism is critical for perception algorithm training
– Large file sizes are acceptable for the workflow
– Using CARLA 0.9.16 or later
– Creating datasets for publication or external sharing
– Need consistency with CARLA’s official visualization

• Use Dynamic Road Generation When:

– File size constraints are important
– Working with CARLA versions before 0.9.16
– Focus is on vehicle trajectory analysis rather than perception
– Need maximum compatibility across CARLA versions
– Implementing custom or procedurally generated maps

• Hybrid Approach (Both): The framework also supports a hybrid approach
where official USD maps provide environmental context while custom elements
(such as dynamically placed infrastructure sensors from Chapter 4) are added
programmatically. This combines visual fidelity with customization flexibility.

53

Chapter 6

Isaac Sim Extension
Development

6.1 Introduction: Bridging USD Export and Data
Collection

The USD export framework presented in Chapter 5 established the technical
foundation for converting CARLA simulations into deterministic, replayable scenes
within NVIDIA Isaac Sim. This conversion creates temporal USD animations that
preserve all spatial relationships, vehicle trajectories, and sensor configurations from
the original CARLA simulation. However, the USD export alone represents only
half of the integration pipeline—a mechanism is required to replay these imported
simulations, manage sensor data collection, and generate industry-standard datasets
compatible with existing ADAS validation workflows.

This chapter presents the complementary software component that completes
the CARLA-to-Isaac Sim integration: the omni.carla.sim_controller extension,
a custom Isaac Sim extension designed to bridge the gap between USD-exported
simulations and practical synthetic data generation requirements. The extension
provides comprehensive sensor management capabilities, intuitive simulation control,
and automated nuScenes dataset generation—all while maintaining full backward
compatibility with both Federico Stella’s vehicle-centric approach and this thesis’s
infrastructure sensing extensions.

The extension serves multiple critical functions within the overall pipeline:

• Sensor Discovery and Management: Automatic detection and configura-
tion of both vehicle-mounted and infrastructure sensors within imported USD
scenes

54

Isaac Sim Extension Development

• Simulation Replay Control: Precise temporal control over imported
CARLA animations with configurable playback parameters

• Multi-Modal Data Capture: Synchronized collection of camera and LiDAR
data across all detected sensors

• nuScenes Dataset Generation: Automated export of collected data in
nuScenes format with complete metadata structure

• Cooperative Sensing Support: Native integration of infrastructure sensor
data alongside vehicle sensor data within unified datasets

A key innovation of this extension lies in its seamless support for infrastructure-
cooperative sensing scenarios. While Stella’s original framework focused exclusively
on vehicle-mounted sensors, this extension natively handles both vehicle-attached
and world-fixed sensors within the same data collection workflow. This capabil-
ity enables validation of cooperative perception algorithms, V2I communication
systems, and multi-perspective sensing scenarios that would be impossible with
vehicle-centric approaches alone.

The extension architecture prioritizes modularity, maintainability, and extensibil-
ity. Each major functional component—sensor management, timeline control, user
interface, and nuScenes dataset generation—operates as an independent module
with well-defined interfaces. This design facilitates future enhancements, debugging,
and integration with additional Omniverse capabilities as the ecosystem evolves.

6.2 Complete Workflow: From CARLA to
nuScenes Dataset

Before detailing the extension’s technical architecture, it is essential to understand
how this component integrates within the complete data generation pipeline. The
workflow spans multiple software environments and processes, with the Isaac Sim
extension serving as the final orchestrator of data collection and dataset generation.

6.2.1 End-to-End Pipeline Overview
The complete workflow from initial scenario design to final nuScenes dataset involves
seven distinct phases:

• Phase 1: Scenario Configuration in CARLA. Users configure the simu-
lation scenario within CARLA, defining map selection, weather conditions,
traffic density, and ego vehicle behavior (if present). This phase utilizes the
standard CARLA Python API and configuration tools established in previous
work [7].

55

Isaac Sim Extension Development

• Phase 2: Sensor Configuration (Flexible Deployment). The framework
supports two distinct sensor deployment modes, enabling flexible validation
scenarios:

– Vehicle-Only Mode: Sensors are configured exclusively on the ego
vehicle using the sensor placement interface described in previous work
[7]. This mode replicates the original framework capabilities with cameras
for 360-degree coverage, roof-mounted LiDAR sensors, and additional
perception sensors mounted on the vehicle.

– Infrastructure-Only Mode: Sensors are deployed exclusively on fixed
infrastructure positions using the sensor placement management tool
developed in Chapter 4. This mode enables traffic monitoring scenarios,
intersection surveillance validation, and infrastructure-centric perception
testing without requiring an ego vehicle. The tool provides real-time
visualization of sensor perspectives, automatic intersection detection, and
configuration management for each infrastructure sensor.

The choice of deployment mode depends on the specific validation objectives.
Vehicle-only mode maintains backward compatibility with the original frame-
work, while infrastructure-only mode enables new monitoring and surveillance
scenarios. While the framework’s architecture supports the theoretical com-
bination of both modes simultaneously (cooperative sensing), the current
implementation focuses on these two distinct operational modes.

• Phase 3: Simulation Execution and USD Export. The configured
CARLA simulation executes in synchronous mode with fixed time steps, ensur-
ing deterministic behavior. The USD export framework (Chapter 5) captures
the complete simulation state at each time step, recording vehicle trajectories
(if ego vehicle present), sensor configurations (both vehicle and/or infras-
tructure), actor positions, and environmental parameters. Upon simulation
completion, the framework generates a single USD file containing the entire
temporal sequence as keyframed animations.

• Phase 4: USD Import into Isaac Sim. The generated USD file is imported
into NVIDIA Isaac Sim, where it appears as a fully replayable animation
within the Omniverse environment. The import process preserves all spatial
relationships, temporal synchronization, and sensor metadata from the original
CARLA simulation. Users can inspect the imported scene using Isaac Sim’s
standard viewport tools before proceeding to data collection.

• Phase 5: Extension-Based Data Collection. The sim_controller
extension is activated within Isaac Sim, automatically scanning the imported

56

Isaac Sim Extension Development

USD scene to detect all available sensors regardless of their mounting type
(vehicle-attached or infrastructure-fixed). Users select which sensors to activate
for data collection and configure sampling parameters (frame rate, output
paths, nuScenes metadata). The extension then replays the USD animation
while capturing synchronized sensor data from all selected sensors.

• Phase 6: nuScenes Dataset Generation. Upon completion of the sim-
ulation replay and data collection, the extension automatically generates a
complete nuScenes-compatible dataset. This includes all required JSON meta-
data files defining scene structure, sensor calibrations, sample relationships,
and temporal organization. The dataset structure adapts to the deployment
mode used:

– Vehicle-only datasets follow the standard nuScenes structure with ego-
vehicle-centric annotations

– Infrastructure-only datasets use world-fixed coordinate frames with infras-
tructure sensor metadata

The resulting dataset is immediately compatible with existing nuScenes devkit
tools, perception algorithms, and validation pipelines without requiring any
format conversion or post-processing.

6.2.2 Key Advantages of the Integrated Approach
This integrated workflow provides several significant advantages over traditional
approaches:

• Deterministic Reproducibility: The USD-based approach enables perfect
reproduction of simulation scenarios. Once a USD animation is generated,
it can be replayed indefinitely with identical results, facilitating controlled
experiments and comparative analysis.

• Separation of Concerns: The separation between simulation execution
(CARLA) and data collection (Isaac Sim) enables independent optimization of
each component. CARLA focuses on physics accuracy and scenario generation,
while Isaac Sim concentrates on rendering quality and sensor simulation.

• Enhanced Visual Fidelity Foundation: While the current implementation
utilizes basic USD materials, the framework establishes the foundation for
future integration with Isaac Sim’s advanced rendering capabilities, including
ray-traced lighting and physically-based materials.

57

Isaac Sim Extension Development

• Flexible Data Collection: Users can replay the same simulation multiple
times with different sensor configurations, sampling rates, or processing param-
eters without re-executing the computationally expensive CARLA simulation.

• Multiple Deployment Modes: The framework’s support for vehicle-only
and infrastructure-only sensing modes enables validation of diverse scenarios:

– Traditional ego-vehicle perception testing (vehicle-only mode)
– Traffic monitoring and surveillance validation (infrastructure-only mode)

While the architecture is designed to potentially support simultaneous vehicle
and infrastructure sensors in future work, the current implementation focuses
on these two distinct operational modes.

• Backward Compatibility: Vehicle-only mode maintains full compatibil-
ity with the original framework [7] and existing validation workflows, while
infrastructure-only mode provides new capabilities without disrupting estab-
lished processes.

6.3 Extension Architecture and Component De-
sign

6.3.1 Modular Component Architecture
The Isaac Sim extension implements a modular architecture pattern that cleanly
separates functional concerns across specialized components. This separation en-
sures maintainability, facilitates debugging, and enables independent enhancement
of individual subsystems. The architecture consists of four primary components
that work in coordination through well-defined interfaces and event-driven commu-
nication patterns:

• The Sensor Manager (sensor_manager.py) implements comprehensive sen-
sor discovery, selection, and data collection capabilities. This component
automatically scans imported USD scenes to identify available sensors, man-
ages user-specified sensor selection, and orchestrates synchronized data capture
from multiple sensor modalities. The Sensor Manager handles both camera
and LiDAR sensors while maintaining separate processing pipelines for each
modality to optimize performance and ensure proper data formatting.

• The Timeline Controller (timeline_controller.py) provides precise con-
trol over simulation playback and temporal synchronization. This component

58

Isaac Sim Extension Development

interfaces with Isaac Sim’s timeline system to manage play/pause/stop oper-
ations, monitors current frame position, and triggers data collection events
at appropriate intervals. The Timeline Controller ensures that sensor data
capture remains synchronized with animation playback while preventing frame
duplication or data loss.

• The UI Controller (ui_controller.py) implements the user interface layer,
providing intuitive graphical controls for all extension operations. The interface
design prioritizes accessibility for users with varying technical expertise while
providing advanced configuration options for power users. The UI Controller
manages sensor selection checkboxes, playback control buttons, configuration
parameters, and real-time status displays.

• The nuScenes Manager (nuscenes_manager.py) handles the complex task
of generating nuScenes-compatible datasets from collected sensor data. This
component maintains the complete nuScenes database schema, manages to-
ken generation for all dataset elements, organizes collected data into proper
directory structures, and exports all metadata in JSON format. The nuScenes
Manager also implements the infrastructure sensor extensions developed in
Chapter 4, ensuring that both vehicle and infrastructure sensor data integrate
seamlessly within unified datasets.

Listing C.1 presents the extension initialization and component coordination.

6.3.2 Event-Driven Communication Architecture
The extension implements an event-driven communication pattern that enables
loose coupling between components while maintaining responsive user interaction
and reliable data collection. This architecture ensures that intensive operations do
not block the user interface while guaranteeing proper synchronization between
simulation playback and data capture.

Timeline events serve as the primary coordination mechanism. When Isaac Sim’s
timeline advances during playback, it generates events that the Timeline Controller
captures and processes. For each event, the controller determines whether data
collection should occur based on the configured sampling rate. If collection is
required, the controller invokes the Sensor Manager to capture data from all active
sensors and updates the nuScenes Manager with new sample information.

The callback-based design ensures that data collection operations execute asyn-
chronously relative to the main UI thread. This prevents the interface from freezing
during intensive sensor data processing, particularly when handling multiple high-
resolution cameras or large LiDAR point clouds simultaneously. Status updates

59

Isaac Sim Extension Development

propagate back to the UI Controller through return values and state queries,
enabling real-time progress visualization.

Component interactions are mediated through well-defined callback mechanisms
rather than direct method invocation. This approach facilitates testing, debugging,
and future enhancement by minimizing dependencies between components. Each
component exposes a clear API surface while encapsulating internal implementation
details.

6.4 Infrastructure-Cooperative Sensor Integra-
tion

6.4.1 Extended nuScenes Format for Cooperative Sensing
The most significant innovation of the Isaac Sim extension lies in its native support
for infrastructure-cooperative sensing scenarios. While Federico Stella’s framework
established comprehensive capabilities for vehicle-mounted sensor simulation, it
was inherently designed around a mobile ego vehicle perspective. This chapter’s
extension fundamentally evolves that approach to seamlessly integrate both vehicle-
attached and world-fixed sensors within unified datasets.

The integration required careful extension of the nuScenes data structures to
accommodate infrastructure sensors while maintaining complete backward com-
patibility with existing tools and workflows. The solution implements a minimally
invasive approach that adds infrastructure sensor support through optional meta-
data fields rather than structural changes to core database tables.

Enhanced DataLog Structure

The DataLog class, which serves as the primary data accumulation structure
during simulation replay, was extended to distinguish between vehicle-mounted and
infrastructure-based LiDAR sensors. Listing C.2 presents the enhanced structure.

The key innovation is the _LID_INTER_val field, which maintains a separate
collection for infrastructure LiDAR sensor data. This separation is necessary be-
cause infrastructure sensors require different coordinate transformation procedures
compared to vehicle sensors. Vehicle-mounted sensors use ego-vehicle-relative coor-
dinates that change with vehicle motion, while infrastructure sensors use world-fixed
coordinates that remain constant throughout the simulation.

The separation also facilitates proper sensor calibration metadata generation.
Each sensor type requires different calibration parameters in the nuScenes for-
mat—vehicle sensors include ego-to-sensor transformations that vary over time,
while infrastructure sensors maintain constant world-to-sensor transformations.

60

Isaac Sim Extension Development

6.4.2 Coordinate System Handling for Infrastructure Sen-
sors

Infrastructure sensor integration requires careful handling of coordinate system
transformations to maintain compatibility with the nuScenes format while properly
representing world-fixed sensor perspectives. The implementation addresses three
distinct coordinate frames:

1. Isaac Sim World Coordinates: The native coordinate system of the
Omniverse environment, which may use different conventions than CARLA

2. nuScenes World Coordinates: The standardized right-handed, Z-up coor-
dinate system required by the nuScenes format

3. Sensor-Local Coordinates: The local coordinate frame of each individual
sensor, used for point cloud and image data representation

The extension automatically detects whether each sensor is vehicle-mounted or
infrastructure-based by analyzing its USD hierarchy path. Sensors attached to the
ego vehicle follow a specific path pattern (e.g., /World/Car/SensorName), while
infrastructure sensors are positioned directly in the world hierarchy. This automatic
detection enables proper selection of coordinate transformation procedures without
requiring manual configuration. Listing C.3 presents the implementation.

6.4.3 Infrastructure Sensor Annotations in nuScenes For-
mat

Infrastructure sensor data must be properly annotated within the nuScenes database
structure to enable correct interpretation by analysis tools. The extension imple-
ments specialized annotation procedures that maintain temporal continuity while
clearly identifying infrastructure sensor sources.

The sensor table entries for infrastructure sensors include the intersection_id
metadata field introduced in Chapter 4, associating each sensor with its monitored
intersection. This association enables spatial queries and multi-sensor fusion based
on geographic context. Listing C.4 presents the implementation.

The is_fixed parameter serves as the primary discriminator enabling down-
stream tools to apply appropriate processing procedures. Analysis pipelines can
query this field to determine whether sensor data should be interpreted using
ego-relative or world-fixed coordinate frames.

61

Isaac Sim Extension Development

6.4.4 Backward Compatibility and Migration Path
Critical to the infrastructure sensor integration is complete backward compatibility
with existing nuScenes tools and datasets. The extension achieves this through
several design decisions:

• Optional Metadata Fields: All infrastructure-specific fields (is_fixed,
intersection_id, sensor_type) are implemented as optional metadata ra-
ther than required schema modifications. Datasets containing only vehicle
sensors omit these fields entirely, ensuring compatibility with original nuScenes
tools.

• Standard Table Structure: No modifications were made to the core
nuScenes table structures (sample, sample_data, ego_pose, etc.). Infras-
tructure sensors populate these tables using the same procedures as vehicle
sensors, with infrastructure-specific handling occurring only in coordinate
transformation and calibration generation.

• Sensor Channel Naming: Infrastructure sensors use distinct channel nam-
ing conventions (e.g., LIDAR_TRAFFIC_, CAM_TRAFFIC_) that clearly identify
their type while remaining compatible with nuScenes string-based sensor
identification.

• Separate Processing Paths: The extension implements separate processing
paths for vehicle and infrastructure sensors internally, but these paths converge
to generate identical output structures in the final dataset. This approach
ensures that infrastructure sensor data can be analyzed using the same tools
as vehicle sensor data.

This backward compatibility enables gradual adoption of infrastructure sensing
capabilities within existing ADAS validation pipelines without requiring wholesale
replacement of established tools and workflows.

6.5 Sensor Management System

6.5.1 Automatic Sensor Discovery
The Sensor Manager implements sophisticated automatic sensor discovery capabili-
ties that can identify and categorize available sensors within imported USD scenes.
The discovery system must handle diverse sensor representations resulting from
different export procedures, varying sensor types, and both vehicle-mounted and
infrastructure-based deployments.

62

Isaac Sim Extension Development

The discovery process operates through multiple detection methods applied
in sequence, with each method targeting specific sensor representation patterns.
This multi-method approach ensures robust detection across different USD export
configurations and sensor types.

• Method 1: Camera Primitive Detection. The first detection method
searches for USD Camera primitives (UsdGeom.Camera) within the scene
graph. Camera primitives represent the standard USD representation for
camera sensors and contain intrinsic parameters such as focal length, sensor
size, and projection type. The detection traverses the entire scene hierarchy,
identifying all camera primitives regardless of their attachment point (vehicle
or world).

• Method 2: LiDAR Asset Reference Detection. LiDAR sensors exported
by the USD framework may appear as asset references (links to external USD
files containing sensor geometry). The discovery system searches for primitive
names matching LiDAR patterns (LIDAR, LID, RTX, Ouster) and attempts to
resolve their asset references. This method handles both CARLA’s native
LiDAR sensors and Isaac Sim’s RTX LiDAR implementations.

• Method 3: Geometric Proxy Detection. For LiDAR sensors that were
exported as simple geometric proxies (cylinders or spheres representing sensor
positions), the discovery system searches for appropriately named mesh primi-
tives. This fallback method ensures detection of sensors that lack sophisticated
USD representations but maintain correct spatial positioning.

• Method 4: Metadata-Based Detection. Some sensor representations
include custom metadata attributes that explicitly identify sensor type and
parameters. The discovery system queries these metadata fields to supplement
information from geometric and primitive-based detection.

Listing C.5 presents the multi-method sensor discovery implementation.

6.5.2 Sensor Selection and Configuration Management
Following sensor discovery, users interact with the UI Controller to select which
sensors should be activated for data collection. The Sensor Manager maintains the
selection state and ensures that only activated sensors participate in data capture
operations.

The selection system provides individual control over each detected sensor,
enabling users to create custom sensor configurations for specific validation scenarios.
For example, users might select only front-facing cameras for forward-collision

63

Isaac Sim Extension Development

testing, or activate all infrastructure sensors to evaluate cooperative perception
coverage.

Configuration parameters managed by the Sensor Manager include:

• Camera Resolution: Configurable image resolution for camera sensors, with
default 500×350 pixels matching nuScenes specifications

• Sampling Rate: Frame interval for data collection (e.g., every 5th frame),
enabling control over dataset density

• Output Paths: Directory locations for sensor data storage, organized by
sensor type and name

• Data Formats: Format selection for each sensor type (PNG for cameras,
NPY/CSV for LiDAR)

6.5.3 Multi-Modal Data Collection
The Sensor Manager orchestrates synchronized data collection from all selected
sensors during simulation replay. Data collection occurs through timeline event
callbacks, ensuring proper temporal alignment across all sensors.

Camera Data Collection

Camera data collection implements a robust pipeline that handles various image
formats and color spaces while ensuring consistent output quality. Listing C.6
presents the implementation.

LiDAR Data Collection

LiDAR data collection presents additional complexity due to the variety of LiDAR
sensor implementations within Isaac Sim and the need to handle both vehicle-
mounted and infrastructure-based sensors. Listing C.7 presents the implementation.

6.6 Timeline Control and Synchronization

6.6.1 Isaac Sim Timeline Integration
The Timeline Controller implements precise integration with Isaac Sim’s animation
timeline system, ensuring synchronized data collection during simulation replay.
Isaac Sim represents USD animations through a timeline interface that controls
playback of all animated properties within the scene.

64

Isaac Sim Extension Development

The Timeline Controller registers callbacks with Isaac Sim’s timeline event
system, receiving notifications for each frame advance during playback. These
callbacks provide the frame number and playback state (playing/paused/stopped),
enabling the extension to coordinate data collection activities. Listing C.8 presents
the implementation.

6.6.2 Synchronized Data Collection

The synchronization mechanism ensures that all sensor data collected at a given
frame corresponds to the exact same simulation state. This temporal consistency
is critical for multi-sensor fusion algorithms and perception system validation.

The data collection callback implements a sampling rate mechanism that controls
collection frequency. Listing C.9 presents the implementation.

6.7 nuScenes Dataset Generation and Export

6.7.1 Complete nuScenes Database Structure

Upon completion of simulation replay and data collection, the nuScenes Manager
generates the complete database structure required by the nuScenes format. This
process transforms the accumulated sensor data and metadata into the thirteen
interconnected JSON tables that comprise a valid nuScenes dataset.

The generation process occurs in a specific order to ensure referential integrity
between tables. Listing C.10 presents the orchestrated dataset generation.

6.7.2 Infrastructure Sensor Integration in Sample Structure

A critical aspect of the nuScenes generation is proper integration of infrastructure
sensor data within the sample structure. Each sample represents a temporal
keyframe containing references to data from all available sensors at that moment.

The implementation ensures that infrastructure sensor data appears alongside
vehicle sensor data within each sample, with proper coordination through the
sample_data table. Listing C.11 presents the unified sample structure implemen-
tation.

The resulting dataset structure seamlessly integrates infrastructure sensor data
within the standard nuScenes format, enabling analysis tools to process vehicle and
infrastructure sensors uniformly while allowing specialized handling when needed.

65

Isaac Sim Extension Development

6.8 User Interface Design and Interaction

6.8.1 Intuitive Sensor Management Interface
The UI Controller provides a user-friendly graphical interface that makes the
extension accessible to users with varying levels of technical expertise. The interface
design prioritizes clarity, organization, and responsive feedback while providing
access to advanced configuration options.

The interface (Figure 6.1) is organized into collapsible sections that group related
functionality, providing a clean and scalable layout that accommodates varying
numbers of detected sensors. The implementation demonstrates the detection of
both vehicle-mounted sensors (OmniverseKit series) and infrastructure sensors
(CAM_TRAFFIC, LIDAR_TOP), showcasing the extension’s capability to handle
heterogeneous sensor configurations. Listing C.12 presents the implementation.

6.8.2 Real-Time Status Feedback
The interface provides continuous feedback about extension state, data collection
progress, and any errors or warnings that occur. During active recording, the
status display shows the current frame number and count of active sensors (e.g.,
"Recording: Frame 150 | 2 camera(s) | 1 LiDAR(s)"). When idle, the display
indicates readiness and reports the total number of detected sensors. This real-
time feedback enables users to monitor data collection without interrupting the
simulation workflow.

The interface design makes the extension immediately usable while providing
sufficient control for advanced users who need fine-grained configuration.

6.9 Performance Optimization and Error Han-
dling

6.9.1 Efficient Resource Management
The extension implements several performance optimization strategies to ensure
responsive operation during intensive data collection operations:

• Frame Tracking and Deduplication. A set-based tracking mechanism
prevents redundant processing of frames that have already been captured.
Before processing each frame, the extension checks if the frame number
exists in a tracking set; if present, processing is skipped. This approach is
particularly important during pause/resume operations or when manually

66

Isaac Sim Extension Development

Figure 6.1: Isaac Sim Extension User Interface

67

Isaac Sim Extension Development

stepping through the timeline, preventing duplicate data collection that would
waste computational resources and storage space.

• Memory Management and Cleanup. The extension implements proper
memory management to prevent memory leaks during extended data collection
sessions. Upon timeline stop, the extension clears frame tracking sets, resets
the nuScenes manager’s internal buffers, and releases sensor data caches. This
cleanup ensures that memory consumption remains bounded regardless of
session duration, enabling long-duration data collection without performance
degradation.

• Independent Sensor Processing. Data collection operations execute in-
dependently for each sensor, with per-sensor error handling ensuring that
failures in individual sensors do not halt entire collection cycles. Camera and
LiDAR collection occur in separate try-catch blocks, allowing the system to
continue capturing data from functioning sensors even if others encounter
errors. This architecture maintains system robustness during data collection
while preserving interface responsiveness.

• Selective Processing. Users can selectively enable or disable individual
sensors to optimize performance based on specific requirements. Disabling
unused sensors reduces processing overhead and storage requirements, enabling
users to tailor data collection to their validation scenarios.

6.9.2 Comprehensive Error Handling
The extension implements robust error handling throughout all components to
ensure continued operation even when individual sensors or operations encounter
problems.

This multi-level error handling strategy ensures that the extension remains
operational even when encountering unexpected conditions, preventing total failure
due to individual sensor issues.

68

Chapter 7

Conclusions and Future
Developments

7.1 Summary of Contributions
This thesis advances synthetic data generation for ADAS validation by addressing
two critical limitations: vehicle-centric sensor restrictions and visual fidelity gaps.
Building upon Stella’s foundational work [7], this research introduces infrastructure-
cooperative sensing and establishes a CARLA-Omniverse integration pipeline.

7.1.1 Infrastructure-Cooperative Sensor Simulation
The first contribution develops a comprehensive framework for infrastructure-
based sensor simulation. The sensor placement management tool provides
intuitive interface for positioning infrastructure sensors with automatic intersection
detection, intelligent sensor-to-intersection association, and real-time visualization.
Supported sensors include LIDAR_TOP, CAM_TRAFFIC, LIDAR_TRAFFIC,
and RADAR_TRAFFIC.

The spawning mechanism differentiates between vehicle-attached and world-fixed
sensors, implementing independent lifecycle management for stationary infrastruc-
ture sensors maintaining fixed world coordinates throughout simulations.

The nuScenes format extensions maintain full backward compatibility
through an intersection_id metadata field, specialized coordinate transforma-
tion procedures, and processing paths converging to identical dataset structures,
ensuring seamless integration with existing nuScenes devkit tools.

The framework enables previously challenging validation scenarios: complex
intersection monitoring, occlusion analysis from elevated vantage points, cooperative
perception algorithm testing, and V2I communication validation.

69

Conclusions and Future Developments

7.1.2 CARLA to Isaac Sim Integration Pipeline
The second contribution establishes technical foundation for bridging CARLA’s
simulation capabilities with environments offering advanced rendering potential.

The USD export framework captures entire CARLA simulations as tem-
poral sequences with keyframed animations, implementing comprehensive scene
capture including vehicle trajectories, sensor configurations for vehicle-mounted
and infrastructure-based deployments, environmental conditions, and temporal syn-
chronization. The framework handles coordinate system transformations between
CARLA’s left-handed and USD’s right-handed conventions.

During development, CARLA 0.9.16 was released with official USD export
capabilities [24]. While providing high-quality static map exports and proper mate-
rial definitions, it lacks critical temporal animation support for simulation replay,
multi-agent animations, sensor configuration export, and synchronized nuScenes-
compatible data capture. These limitations validated continued development of
the custom USD export framework focusing on temporal animation and simulation
replay capabilities.

The implementation leverages official CARLA USD assets when available with a
three-tier asset resolution strategy providing fallback mechanisms for compatibility
across CARLA versions.

The Isaac Sim extension (omni.carla.sim_controller) completes the pipe-
line with simulation replay and data collection capabilities, implementing automatic
sensor discovery, precise temporal control, synchronized multi-modal data capture,
and automated nuScenes dataset generation.

A key innovation is seamless support for both vehicle-only and infrastructure-
only deployment modes, enabling diverse validation requirements from traditional
perception testing to infrastructure-centric monitoring applications.

7.2 Achievement of Research Objectives
Research objectives have been successfully achieved with strategic adaptations
based on CARLA ecosystem developments.

The infrastructure sensing capability has been fully realized through
production-ready sensor placement tool and complete nuScenes integration. The
CARLA-Isaac Sim integration has been achieved through functional USD
export pipeline and comprehensive Isaac Sim extension. The backward compati-
bility objective has been maintained throughout all implementations.

CARLA’s official USD export framework announcement during development
prompted a strategic pivot toward developing complementary capabilities addressing
temporal animation and simulation replay—functionality not provided by the official
framework, demonstrating pragmatic engineering decision-making.

70

Conclusions and Future Developments

7.3 Technical Limitations and Constraints

7.3.1 Infrastructure Sensing Limitations

The framework exhibits several constraints. The emphasis on intersection-based
scenarios means highway monitoring and tunnel surveillance receive less opti-
mization. The computational overhead from infrastructure sensors compounds
performance challenges—each camera sensor incurs significant GPU-to-CPU trans-
fer costs. The fixed sensor type catalog (LIDAR_TOP, CAM_TRAFFIC,
LIDAR_TRAFFIC, RADAR_TRAFFIC) does not yet support emerging modali-
ties like thermal imaging or acoustic sensors.

7.3.2 USD Export and Visual Fidelity Limitations

The framework successfully leverages official CARLA USD assets but exhibits
limitations. The primary limitation is static geometry representation—while
the framework animates vehicle positions, rotations, and velocities, USD assets
are static meshes. Vehicle wheels do not rotate, steering wheels remain neutral,
suspension systems do not compress, and doors remain closed. This impacts visual
realism particularly in slow-speed maneuvers or sharp turns.

The export system does not handle parked vehicles (represented as static meshes
rather than dynamic actors) or pedestrians (requiring skeletal mesh animation
conversion to USD SkelAnimation format). Additional limitations include lack
of support for weather effects, dynamic lighting, and traffic control device state
changes. The temporal animation system uses linear interpolation that may
not perfectly replicate CARLA’s physics-based motion in high-dynamic maneuvers.

7.3.3 Isaac Sim Extension Limitations

The extension represents an initial proof-of-concept implementation with significant
limitations. Computational performance and loading times are substan-
tial—USD files with complete CARLA maps can require several minutes for initial
loading. Runtime performance struggles to achieve real-time playback speeds
(20-30 fps) with complete map exports and multiple active sensors. CARLA’s
official USD export arrived during final thesis stages, severely limiting time for
optimization and visual enhancement. The extension demonstrates feasibility
but requires extensive future work to achieve production-ready performance and
robustness.

71

Conclusions and Future Developments

7.4 Impact and Practical Applications

7.4.1 Industrial Relevance
The collaboration with Reply - Concept Quality provided direct insights into
industry validation requirements. The infrastructure sensing framework responds
to automotive industry’s increasing interest in V2I communication systems and
cooperative perception architectures. The nuScenes format compatibility ensures
datasets can be immediately utilized with existing validation pipelines, reducing
adoption barriers.

7.4.2 Research and Development Applications
The frameworks enable research applications beyond traditional ADAS validation:
cooperative perception algorithm development with synchronized multi-perspective
datasets, urban traffic monitoring research for traffic flow analysis and intersection
safety studies, and sim-to-real transfer learning to explore domain adaptation
techniques.

7.5 Future Development Directions

7.5.1 Short-Term Enhancements
Performance Optimization for Isaac Sim Integration

The most critical near-term development involves addressing computational perfor-
mance limitations. Priority efforts should focus on scene loading performance
through LOD systems, selective asset loading, Omniverse instancing, and asset
streaming. Runtime performance optimization should target render pipeline
optimization, sensor scheduling strategies, configurable quality presets, and dis-
tributed rendering approaches.

Articulated Vehicle Components

Implementing articulated vehicle components would enhance visual realism. Priority
features include wheel rotation animation, steering animation, suspension dynamics,
and turn signal/brake light activation.

Extended Sensor Type Support

Adding semantic segmentation cameras, depth cameras, and thermal imaging
simulation would expand framework applicability.

72

Conclusions and Future Developments

Pedestrian and Parked Vehicle Support

Pedestrian support requires converting CARLA’s skeletal mesh animations to
USD SkelAnimation format. Parked vehicle detection necessitates extending the
framework to identify static mesh instances.

7.5.2 Medium-Term Extensions
Cooperative Sensing Mode

Extending to support simultaneous vehicle and infrastructure sensors would enable
true cooperative sensing scenarios, requiring unified coordinate transformation
procedures, sensor fusion ground truth generation, and nuScenes format extensions.

Dynamic Infrastructure Sensor Control

Implementing runtime control would enable sensors to activate/deactivate based
on traffic conditions, adjust parameters dynamically, and simulate sensor failures.

Integration with Traffic Simulation Tools

Integration with tools like SUMO would enable realistic traffic patterns, complex
multi-vehicle scenarios, and large-scale urban simulations.

7.5.3 Long-Term Research Directions
Advanced Rendering Integration

Full integration with Isaac Sim’s RTX ray-traced rendering for photorealistic
lighting, physically-based material systems, and Omniverse’s asset libraries.

Procedural Scenario Generation

Automated scenario generation with parameterized complexity, automatic sensor
placement based on coverage optimization, and edge case generation.

Real-World Validation and Calibration

Collecting paired real-world and synthetic datasets, developing metrics quantifying
sim-to-real gap, and implementing calibration procedures.

73

Conclusions and Future Developments

Standardization and Interoperability

Contributing to industry standards: proposing nuScenes format extensions for
infrastructure sensors, participating in USD working groups, and collaborating
with ASAM on OpenSCENARIO and OpenDRIVE integration.

7.6 Concluding Remarks
This thesis demonstrates that advanced synthetic data generation capabilities can be
developed while maintaining compatibility with established validation frameworks
and industry-standard data formats. The infrastructure-cooperative sensing frame-
work addresses critical coverage limitations in vehicle-centric validation approaches.
The CARLA-to-Isaac Sim integration establishes technical infrastructure that,
while facing performance challenges, provides a foundation for production-ready
ADAS validation workflows as both ecosystems evolve.

The pragmatic approach—maintaining backward compatibility, building upon
existing frameworks, and adapting to ecosystem developments—ensures contribu-
tions remain relevant and adoptable by industry stakeholders. The frameworks are
stepping stones in the ongoing evolution of ADAS validation methodologies.

The collaboration with Reply - Concept Quality ensured solutions address
practical industry challenges. As ADAS technologies advance and regulatory
requirements intensify, the frameworks provide tools addressing current needs and
anticipating future requirements.

The future of ADAS validation lies in intelligent integration of synthetic and
real-world approaches. This thesis advances that integration by providing new
capabilities while maintaining compatibility with existing validation ecosystems.
The technical foundations—particularly the infrastructure sensing framework and
CARLA-Omniverse integration pipeline—provide platforms upon which the research
community and industry practitioners can build increasingly sophisticated validation
methodologies.

74

Appendix A

Infrastructure-Cooperative
Sensor Simulation Code

A.1 Intersection Detection

Listing A.1: Intersection Detection Algorithm
1 def find_and_mark_intersections (self):
2 """
3 Automatically detect and characterize road intersections

in CARLA map.
4

5 Uses CARLA ’s topology system to identify junction
waypoints , groups them

6 by junction ID , and calculates geometric properties for
sensor placement .

7 """
8 carla_map = self.world. get_map ()
9 topology = carla_map . get_topology ()

10

11 # Extract all waypoints that are part of junctions
12 junction_waypoints = []
13 for w1 , w2 in topology :
14 if w1. is_junction :
15 junction_waypoints . append (w1)
16 if w2. is_junction :
17 junction_waypoints . append (w2)
18

19 # Group waypoints by their junction ID
20 unique_junctions = {}

75

Infrastructure-Cooperative Sensor Simulation Code

21 for wp in junction_waypoints :
22 jid = wp. get_junction ().id
23 if jid not in unique_junctions :
24 unique_junctions [jid] = []
25 unique_junctions [jid]. append (wp)
26

27 # Calculate geometric center and bounding extent for
each junction

28 self. intersection_centers = []
29 for junction_id , waypoints in unique_junctions .items ():
30 # Compute centroid
31 center_x = sum(w. transform . location .x for w in

waypoints) / len(waypoints)
32 center_y = sum(w. transform . location .y for w in

waypoints) / len(waypoints)
33

34 # Compute bounding box
35 x_coords = [w. transform . location .x for w in

waypoints]
36 y_coords = [w. transform . location .y for w in

waypoints]
37 extent_x = (max(x_coords) - min(x_coords)) / 2.0
38 extent_y = (max(y_coords) - min(y_coords)) / 2.0
39

40 self. intersection_centers . append ({
41 ’id’: junction_id ,
42 ’center ’: carla. Location (center_x , center_y ,

waypoints [0]. transform . location .z),
43 ’extent ’: (extent_x , extent_y),
44 ’size ’: max(extent_x , extent_y) * 2.0
45 })

A.2 Configuration Management

Listing A.2: Infrastructure Sensor Configuration Format
1 {
2 " LIDAR_TOP_189_b90f74 ": {
3 "type ": " LIDAR_TOP ",
4 "map ": " Town10HD ",
5 " intersection_id ": 189,
6 "x": -47.8,
7 "y": 20.4 ,

76

Infrastructure-Cooperative Sensor Simulation Code

8 "z": 8.0,
9 "pitch ": 0.0,

10 "yaw ": -90.0,
11 "roll ": 0.0,
12 "range ": "60.0" ,
13 " nChannels ": "32" ,
14 " pointsPerSecond ": "150000" ,
15 " rotFrequency ": "10.0"
16 },
17 " CAM_TRAFFIC_189_2e7a19 ": {
18 "type ": " CAM_TRAFFIC ",
19 "map ": " Town10HD ",
20 " intersection_id ": 189,
21 "x": -63.0,
22 "y": 4.6,
23 "z": 5.0,
24 "pitch ": -15.0,
25 "yaw ": -120.0 ,
26 "roll ": 0.0,
27 " resolutionW ": "800" ,
28 " resolutionH ": "600" ,
29 "fov ": "90.0"
30 }
31 }

A.3 Sensor Spawning

Listing A.3: Infrastructure vs Vehicle-Mounted Sensor Spawning
1 def spawn_infrastructure_sensor (world , sensor_config):
2 """
3 Spawn infrastructure sensor at fixed world coordinates .
4

5 Infrastructure sensors are independent actors that
remain stationary

6 throughout the simulation , providing persistent
monitoring of specific

7 locations regardless of vehicle movements .
8

9 Args:
10 world: CARLA world object
11 sensor_config : Dictionary containing sensor

configuration

77

Infrastructure-Cooperative Sensor Simulation Code

12

13 Returns :
14 Spawned sensor actor
15 """
16 blueprint = world. blueprint_library .find(sensor_config [’

blueprint ’])
17

18 # Configure sensor - specific parameters
19 for key , value in sensor_config [’attributes ’]. items ():
20 blueprint . set_attribute (key , str(value))
21

22 # Create transform using absolute world coordinates
23 transform = carla. Transform (
24 carla. Location (
25 x= sensor_config [’x’],
26 y= sensor_config [’y’],
27 z= sensor_config [’z’]
28),
29 carla. Rotation (
30 pitch= sensor_config [’pitch ’],
31 yaw= sensor_config [’yaw ’],
32 roll= sensor_config [’roll ’]
33)
34)
35

36 # Spawn as independent actor (not attached to any
vehicle)

37 sensor = world. spawn_actor (blueprint , transform)
38 sensor . listen (lambda data: process_sensor_data (data ,

sensor_config))
39

40 return sensor
41

42 def spawn_vehicle_sensor (world , ego_vehicle , sensor_config):
43 """
44 Spawn vehicle sensor attached to ego vehicle .
45

46 Vehicle sensors move with the ego vehicle and use
relative coordinate

47 offsets from the vehicle ’s center . This is the
traditional approach

48 used in Federico Stella ’s thesis .
49

50 Args:
51 world: CARLA world object

78

Infrastructure-Cooperative Sensor Simulation Code

52 ego_vehicle : Vehicle actor to attach sensor to
53 sensor_config : Dictionary containing sensor

configuration
54

55 Returns :
56 Spawned and attached sensor actor
57 """
58 blueprint = world. blueprint_library .find(sensor_config [’

blueprint ’])
59

60 # Configure sensor - specific parameters
61 for key , value in sensor_config [’attributes ’]. items ():
62 blueprint . set_attribute (key , str(value))
63

64 # Create transform relative to vehicle center
65 relative_transform = carla. Transform (
66 carla. Location (
67 x= sensor_config [’offset_x ’],
68 y= sensor_config [’offset_y ’],
69 z= sensor_config [’offset_z ’]
70),
71 carla. Rotation (
72 pitch= sensor_config [’pitch ’],
73 yaw= sensor_config [’yaw ’],
74 roll= sensor_config [’roll ’]
75)
76)
77

78 # Attach to ego vehicle - sensor will follow vehicle
motion

79 sensor = world. spawn_actor (
80 blueprint ,
81 relative_transform ,
82 attach_to = ego_vehicle
83)
84 sensor . listen (lambda data: process_sensor_data (data ,

sensor_config))
85

86 return sensor

A.4 Coordinate Transformations

Listing A.4: Infrastructure Sensor Coordinate Transformations

79

Infrastructure-Cooperative Sensor Simulation Code

1 def create_calibrated_sensor_infrastructure (sensor_type ,
sensor_config):

2 """
3 Create calibrated_sensor entry for infrastructure sensor

.
4

5 Infrastructure sensors use world -fixed coordinates ,
requiring explicit

6 transformation from CARLA ’s left - handed coordinate
system to nuScenes ’

7 right - handed coordinate system . Unlike vehicle sensors ,
infrastructure

8 sensors maintain constant world coordinates throughout
the simulation .

9

10 Coordinate System Conventions :
11 - CARLA: Left - handed (X forward , Y right , Z up)
12 - nuScenes : Right - handed (X right , Y forward , Z up)
13

14 Args:
15 sensor_type : Sensor channel identifier (e.g., ’

LIDAR_TRAFFIC_189 ’)
16 sensor_config : Dictionary containing sensor

configuration
17

18 Returns :
19 Dictionary containing calibrated sensor entry for

nuScenes format
20 """
21 # Extract sensor pose in CARLA world coordinates
22 carla_location = carla. Location (
23 x= sensor_config [’x’],
24 y= sensor_config [’y’],
25 z= sensor_config [’z’]
26)
27

28 carla_rotation = carla. Rotation (
29 pitch= sensor_config [’pitch ’],
30 yaw= sensor_config [’yaw ’],
31 roll= sensor_config [’roll ’]
32)
33

34 # Convert CARLA rotation to rotation matrix for
transformation

80

Infrastructure-Cooperative Sensor Simulation Code

35 carla_transform = carla. Transform (carla_location ,
carla_rotation)

36 rotation_matrix = carla_transform . get_matrix ()
37

38 # Apply coordinate frame conversion : CARLA to nuScenes
39 # This involves both translation and rotation

transformations
40 translation_nuscenes = [
41 carla_location .x, # nuScenes X = CARLA X
42 -carla_location .y, # nuScenes Y = -CARLA Y (left

-to -right hand)
43 carla_location .z # nuScenes Z = CARLA Z
44]
45

46 # Apply rotation matrix transformation for handedness
change

47 # Transformation matrix T converts CARLA rotation to
nuScenes :

48 # T = [[1, 0, 0], [0, -1, 0], [0, 0, 1]]
49 # R_nuscenes = T @ R_carla @ T^T
50 R_carla = rotation_matrix [:3, :3]
51 T = np.array ([[1 , 0, 0], [0, -1, 0], [0, 0, 1]])
52 rotation_nuscenes = T @ R_carla @ T.T
53

54 # Create calibrated sensor entry compatible with
nuScenes schema

55 calibrated_sensor = {
56 ’token ’: generate_token (),
57 ’sensor_token ’: sensor_config [’sensor_token ’],
58 ’translation ’: translation_nuscenes ,
59 ’rotation ’: rotation_matrix_to_quaternion (

rotation_nuscenes),
60 ’camera_intrinsic ’: get_camera_intrinsic (sensor_type

, sensor_config)
61 if ’CAM_ ’ in sensor_type else []
62 }
63

64 # Add infrastructure - specific metadata (optional
extension fields)

65 if ’intersection_id ’ in sensor_config :
66 calibrated_sensor [’intersection_id ’] = sensor_config

[’intersection_id ’]
67

68 return calibrated_sensor

81

Appendix B

CARLA to USD Export
Framework Code

B.1 USD Scene Exporter

Listing B.1: USDSceneExporter Core Structure
1 class USDSceneExporter :
2 """
3 Main exporter orchestrating USD conversion pipeline .
4

5 Coordinates data capture from CARLA , temporal
synchronization ,

6 and USD stage generation for Omniverse integration .
7 """
8

9 def __init__ (self , carlaWorld , export_map =True):
10 """
11 Initialize USD exporter with CARLA world reference .
12

13 Args:
14 carlaWorld : CARLA world object containing

simulation state
15 export_map : If True , use official CARLA USD map

exports ;
16 if False , generate dynamic road

network
17 """
18 self. carlaWorld = carlaWorld
19 self. export_map = export_map

82

CARLA to USD Export Framework Code

20

21 # Initialize core managers
22 self. timeline_manager = TimelineManager ()
23 self. data_capture = DataCapture (carlaWorld ,

export_map)
24

25 # Scene data accumulator
26 self. scene_data = []
27 self. current_frame = 0
28

29 def capture_scene_state (self , timestamp , frame_number):
30 """
31 Capture complete scene state at current simulation

timestep .
32

33 Extracts all relevant data from CARLA including
vehicle states ,

34 sensor configurations , and environmental conditions .
35

36 Args:
37 timestamp : CARLA simulation timestamp (

microseconds)
38 frame_number : Sequential frame identifier
39

40 Returns :
41 Dictionary containing complete scene state
42 """
43 # Record timing information for temporal

synchronization
44 self. timeline_manager . record_timestamp (timestamp)
45

46 # Determine if road geometry should be captured (
first frame only)

47 include_roads = (frame_number == 0) and not self.
export_map

48

49 # Extract complete scene data from CARLA simulation
50 scene_state = self. data_capture . capture_frame (
51 timestamp ,
52 frame_number ,
53 include_roads = include_roads
54)
55

56 # Accumulate for final USD export
57 self. scene_data . append (scene_state)

83

CARLA to USD Export Framework Code

58 self. current_frame = frame_number
59

60 return scene_state

B.2 Data Capture

Listing B.2: Scene State Capture Implementation
1 class DataCapture :
2 """
3 Captures complete scene state from CARLA simulation .
4

5 Extracts vehicle trajectories , sensor configurations ,
environmental

6 conditions , and optionally road network geometry for USD
export .

7 """
8

9 def __init__ (self , carlaWorld , export_map):
10 self.world = carlaWorld
11 self. export_map = export_map
12 self. actor_processor = ActorProcessor ()
13 self. road_processor = RoadProcessor (carlaWorld .

get_map ())
14

15 def capture_frame (self , timestamp , frame_number ,
include_roads =False):

16 """
17 Extract complete scene state at current frame.
18

19 Args:
20 timestamp : CARLA timestamp for this frame
21 frame_number : Sequential frame identifier
22 include_roads : Whether to include road network

geometry
23

24 Returns :
25 Dictionary containing all scene data for this

frame
26 """
27 frame_data = {
28 ’timestamp ’: timestamp ,
29 ’frame_number ’: frame_number ,

84

CARLA to USD Export Framework Code

30 ’vehicles ’: [],
31 ’sensors ’: [],
32 ’weather ’: None ,
33 ’roads ’: None
34 }
35

36 # Capture all vehicle states and transformations
37 for actor in self.world. get_actors (). filter (’vehicle

.*’):
38 vehicle_data = self. actor_processor .

process_actor (actor)
39 if vehicle_data :
40 frame_data [’vehicles ’]. append (vehicle_data)
41

42 # Capture sensor configurations (attached to ego
vehicle)

43 ego_vehicle = self.world. get_actors (). filter (’
vehicle .*’)[0]

44 for sensor in self.world. get_actors (). filter (’sensor
.*’):

45 if sensor . parent and sensor . parent .id ==
ego_vehicle .id:

46 sensor_data = self. _process_sensor (sensor)
47 frame_data [’sensors ’]. append (sensor_data)
48

49 # Capture road network geometry (first frame only ,
if using dynamic export)

50 if include_roads and not self. export_map :
51 frame_data [’roads ’] = self. road_processor .

extract_road_network ()
52

53 # Capture current weather and lighting conditions
54 frame_data [’weather ’] = self. _capture_weather ()
55

56 return frame_data
57

58 def _process_sensor (self , sensor):
59 """ Extract sensor configuration and spatial

parameters """
60 return {
61 ’id’: sensor .id ,
62 ’type ’: sensor .type_id ,
63 ’transform ’: sensor . get_transform (),
64 ’attributes ’: dict(sensor . attributes)
65 }

85

CARLA to USD Export Framework Code

66

67 def _capture_weather (self):
68 """ Extract current weather parameters from CARLA

world"""
69 weather = self.world. get_weather ()
70 return {
71 ’cloudiness ’: weather .cloudiness ,
72 ’precipitation ’: weather . precipitation ,
73 ’sun_altitude_angle ’: weather . sun_altitude_angle

,
74 ’sun_azimuth_angle ’: weather . sun_azimuth_angle
75 }

B.3 Coordinate System Transformations

Listing B.3: Coordinate System Transformation Implementation
1 class TransformUtils :
2 """ Utility class for coordinate system conversions

between CARLA and USD"""
3

4 @staticmethod
5 def convert_carla_to_usd_transform (carla_transform):
6 """
7 Convert CARLA transform to USD coordinate system .
8

9 Coordinate System Conventions :
10 - CARLA: Left - handed (X forward , Y right , Z up)
11 - USD: Right - handed (X right , Y up , Z back)
12

13 This conversion is critical for proper spatial
representation in

14 Omniverse and other USD -based tools.
15

16 Args:
17 carla_transform : carla. Transform object
18

19 Returns :
20 Dictionary with ’position ’ and ’quaternion ’ in

USD coordinates
21 """
22 location = carla_transform . location
23 rotation = carla_transform . rotation

86

CARLA to USD Export Framework Code

24

25 # Convert position : Invert Y-axis for handedness
change

26 position = [
27 location .x, # X unchanged
28 -location .y, # Y inverted (right -> left

handedness)
29 location .z # Z unchanged
30]
31

32 # Convert rotation to quaternion for USD
33 # CARLA uses degrees , USD uses radians
34 pitch_rad = math. radians (rotation .pitch)
35 yaw_rad = math. radians (- rotation .yaw) # Negate yaw

for handedness
36 roll_rad = math. radians (rotation .roll)
37

38 # Compute quaternion from Euler angles (ZYX rotation
order)

39 cy = math.cos(yaw_rad * 0.5)
40 sy = math.sin(yaw_rad * 0.5)
41 cp = math.cos(pitch_rad * 0.5)
42 sp = math.sin(pitch_rad * 0.5)
43 cr = math.cos(roll_rad * 0.5)
44 sr = math.sin(roll_rad * 0.5)
45

46 qw = cr * cp * cy + sr * sp * sy
47 qx = sr * cp * cy - cr * sp * sy
48 qy = cr * sp * cy + sr * cp * sy
49 qz = cr * cp * sy - sr * sp * cy
50

51 # Normalize quaternion to ensure unit length
52 magnitude = math.sqrt(qw*qw + qx*qx + qy*qy + qz*qz)
53 quaternion = [qx/magnitude , qy/magnitude , qz/

magnitude , qw/ magnitude]
54

55 return {
56 ’position ’: position ,
57 ’quaternion ’: quaternion
58 }
59

60 @staticmethod
61 def convert_velocity_to_usd (carla_velocity):
62 """

87

CARLA to USD Export Framework Code

63 Convert velocity vector from CARLA to USD
coordinates .

64

65 Args:
66 carla_velocity : carla. Vector3D velocity vector
67

68 Returns :
69 List of three floats representing velocity in

USD coordinates
70 """
71 return [
72 carla_velocity .x, # X component unchanged
73 -carla_velocity .y, # Y component inverted
74 carla_velocity .z # Z component unchanged
75]

B.4 Vehicle Animation

Listing B.4: Vehicle Animation Keyframe Generation
1 def _create_vehicle_animation (self , vehicle_xform ,

vehicle_timeline):
2 """
3 Generate keyframed animation for vehicle trajectory in

USD.
4

5 Creates temporal animation by setting transformation
keyframes at

6 computed USD time codes. This enables deterministic
replay of the

7 CARLA simulation in Omniverse .
8

9 Args:
10 vehicle_xform : USD Xform primitive for the vehicle
11 vehicle_timeline : List of vehicle states across all

frames
12 """
13

14 # Get or create USD transform operations
15 # These define how the vehicle ’s position and

orientation change over time
16 translate_attr = vehicle_xform . AddTranslateOp ()
17 orient_attr = vehicle_xform . AddOrientOp ()

88

CARLA to USD Export Framework Code

18 scale_attr = vehicle_xform . AddScaleOp ()
19

20 # Apply keyframes for each captured frame
21 for frame_data in vehicle_timeline :
22 # Convert CARLA timestamp to USD time code
23 # This ensures temporal alignment across all

animated elements
24 usd_time = self. timeline_manager .

timestamp_to_time_code (
25 frame_data [’timestamp ’]
26)
27

28 # Extract transformed position and rotation
29 position = frame_data [’transform ’][’position ’]
30 quaternion = frame_data [’transform ’][’quaternion ’]
31

32 # Set keyframe values at computed time code
33 translate_attr .Set(
34 Gf.Vec3f(position [0], position [1], position [2]) ,
35 time= usd_time
36)
37

38 # USD quaternion format : (w, x, y, z)
39 orient_attr .Set(
40 Gf.Quatf(quaternion [3], quaternion [0],

quaternion [1], quaternion [2]) ,
41 time= usd_time
42)
43

44 # Scale remains constant (vehicle dimensions don ’t
change)

45 if usd_time == 0:
46 scale_attr .Set(Gf.Vec3f (1.0 , 1.0, 1.0))

B.5 Asset Management

Listing B.5: Vehicle Asset Resolution System
1 def _create_vehicle_mesh (self , vehicle_xform , vehicle_data):
2 """
3 Create or reference vehicle mesh geometry using

hierarchical fallback strategy .
4

89

CARLA to USD Export Framework Code

5 Attempts multiple asset resolution methods in order of
visual quality :

6 1. Official CARLA USD exports (CARLA 0.9.16+) - highest
fidelity

7 2. Custom USD asset library - intermediate quality
8 3. Procedural bounding box - lowest quality fallback
9

10 Args:
11 vehicle_xform : USD Xform primitive for vehicle

placement
12 vehicle_data : Dictionary containing vehicle metadata
13 """
14 vehicle_path = str(vehicle_xform . GetPath ())
15 blueprint_id = vehicle_data .get(’blueprint ’, ’unknown ’)
16

17 # Attempt 1: Reference official CARLA USD export (CARLA
0.9.16+)

18 official_usd_path = self. _get_official_carla_usd_path (
blueprint_id)

19 if official_usd_path and os.path. exists (
official_usd_path):

20 vehicle_ref = self.stage. DefinePrim (f"{ vehicle_path
}/ VehicleAsset ")

21 vehicle_ref . GetReferences (). AddReference (
official_usd_path)

22 print(f"Using official CARLA USD asset: {
official_usd_path }")

23 return
24

25 # Attempt 2: Reference custom USD asset from library
26 custom_asset_url = self. _get_custom_asset_url (

blueprint_id)
27 if custom_asset_url :
28 try:
29 vehicle_ref = self.stage. DefinePrim (f"{

vehicle_path }/ VehicleAsset ")
30 vehicle_ref . GetReferences (). AddReference (

custom_asset_url)
31 print(f"Using custom USD asset: {

custom_asset_url }")
32 return
33 except Exception as e:
34 print(f" Custom asset reference failed : {e}")
35

36 # Fallback : Generate simple bounding box geometry

90

CARLA to USD Export Framework Code

37 # This ensures visual representation even without asset
library

38 print(f"Using fallback geometry for { blueprint_id }")
39 self. _create_fallback_geometry (vehicle_path ,

vehicle_data)
40

41 def _create_fallback_geometry (self , vehicle_path ,
vehicle_data):

42 """
43 Create simple bounding box representation for vehicle .
44

45 Generates colored box geometry as visual placeholder
when

46 high - fidelity assets are unavailable .
47 """
48 mesh_info = vehicle_data .get(’mesh_info ’, {})
49 extent = mesh_info .get(’extent ’, [2.0 , 1.0, 0.75]) #

Default car dimensions
50

51 # Create box geometry
52 box_path = f"{ vehicle_path }/ Geometry "
53 box = UsdGeom .Cube. Define (self.stage , box_path)
54 box. CreateSizeAttr ().Set (1.0)
55 box. CreateExtentAttr ().Set ([(- extent [0], -extent [1], -

extent [2]) ,
56 (extent [0], extent [1],

extent [2])])
57

58 # Apply distinctive color based on vehicle ID
59 color = self. get_vehicle_color (vehicle_data [’id’])
60 box. CreateDisplayColorAttr ().Set ([Gf.Vec3f(color [0],

color [1], color [2])])

B.6 Sensor Export

Listing B.6: Camera Sensor USD Creation
1 def _create_camera_sensor (self , sensor_id , sensor_config ,

base_path , attached =False):
2 """
3 Create USD Camera representation with complete intrinsic

parameters .
4

91

CARLA to USD Export Framework Code

5 Generates proper USD Camera primitive with focal length ,
aperture ,

6 and field of view parameters compatible with Isaac Sim
rendering .

7

8 Args:
9 sensor_id : Unique sensor identifier

10 sensor_config : Dictionary containing camera
parameters

11 base_path : USD path for sensor placement
12 attached : Whether sensor is attached to vehicle or

world -fixed
13

14 Returns :
15 Created UsdGeom .Xform primitive
16 """
17 camera_path = f"{ base_path }/{ sensor_id }"
18 camera_xform = UsdGeom .Xform. Define (self.stage ,

camera_path)
19

20 # Create Camera primitive
21 camera = UsdGeom . Camera . Define (self.stage , f"{

camera_path }/ Camera ")
22

23 # Extract camera intrinsic parameters from CARLA
configuration

24 width = sensor_config .get(’image_size_x ’, 1920)
25 height = sensor_config .get(’image_size_y ’, 1080)
26 fov = sensor_config .get(’fov ’, 90.0)
27

28 # Calculate focal length from FOV and sensor dimensions
29 # Standard pinhole camera model: focal_length = (

sensor_width / 2) / tan(fov / 2)
30 sensor_width = 36.0 # mm , standard full -frame sensor
31 focal_length = (sensor_width / 2.0) / math.tan(math.

radians (fov / 2.0))
32

33 # Set USD camera intrinsic attributes
34 camera . CreateFocalLengthAttr ().Set(focal_length)
35 camera . CreateHorizontalApertureAttr ().Set(sensor_width)
36 camera . CreateVerticalApertureAttr ().Set(sensor_width *

height / width)
37

38 # Set camera spatial transform
39 transform = sensor_config .get(’transform ’, {})

92

CARLA to USD Export Framework Code

40 self. _apply_sensor_transform (camera_xform , transform ,
attached)

41

42 # Set clipping planes for rendering
43 camera . CreateClippingRangeAttr ().Set(Gf.Vec2f (0.1 ,

1000.0))
44

45 return camera_xform

Listing B.7: LiDAR Sensor USD Creation
1 def _create_lidar_sensor (self , sensor_id , sensor_config ,

base_path , attached =False):
2 """
3 Create USD LiDAR representation with Omniverse asset

reference .
4

5 Attempts to reference realistic LiDAR sensor models from
Omniverse

6 asset library . Falls back to simple geometric proxy if
assets unavailable .

7

8 Args:
9 sensor_id : Unique sensor identifier

10 sensor_config : Dictionary containing LiDAR
parameters

11 base_path : USD path for sensor placement
12 attached : Whether sensor is attached to vehicle or

world -fixed
13

14 Returns :
15 Created UsdGeom .Xform primitive
16 """
17 lidar_path = f"{ base_path }/{ sensor_id }"
18 lidar_xform = UsdGeom .Xform. Define (self.stage ,

lidar_path)
19

20 # Attempt to reference Omniverse LiDAR asset (Ouster OS0
model)

21 lidar_asset_url = " omniverse :// localhost / NVIDIA / Assets /
Isaac /4.5/" \

22 "Isaac/ Sensors / Ouster /OS0/
OS0_REV6_128_10hz .usd"

23

24 try:

93

CARLA to USD Export Framework Code

25 lidar_ref = self.stage. DefinePrim (f"{ lidar_path }/
LidarAsset ")

26 lidar_ref . GetReferences (). AddReference (
lidar_asset_url)

27 print(f" Referenced LiDAR asset from Omniverse
library ")

28 except Exception as e:
29 # Fallback : Create simple cylinder geometry as

visual placeholder
30 print(f"LiDAR asset reference failed ({e}), using

fallback geometry ")
31 lidar_geom = UsdGeom . Cylinder . Define (self.stage ,
32 f"{ lidar_path }/

LidarGeometry ")
33 lidar_geom . CreateHeightAttr ().Set (0.1)
34 lidar_geom . CreateRadiusAttr ().Set (0.05)
35 lidar_geom . CreateDisplayColorAttr ().Set ([Gf.Vec3f

(0.0 , 1.0, 0.0)])
36

37 # Apply spatial transform
38 transform = sensor_config .get(’transform ’, {})
39 self. _apply_sensor_transform (lidar_xform , transform ,

attached)
40

41 # Store LiDAR technical parameters as USD metadata
42 # This enables potential integration with Isaac Sim

sensor simulation
43 lidar_prim = self.stage. GetPrimAtPath (lidar_path)
44 lidar_prim . SetMetadata (’lidar: channels ’,
45 sensor_config .get(’channels ’, 64)

)
46 lidar_prim . SetMetadata (’lidar:range ’,
47 sensor_config .get(’range ’, 100.0)

)
48 lidar_prim . SetMetadata (’lidar: rotation_frequency ’,
49 sensor_config .get(’

rotation_frequency ’, 10.0))
50

51 return lidar_xform

B.7 Environment Export

Listing B.8: Official USD Map Loading

94

CARLA to USD Export Framework Code

1 def _setup_environment_with_official_map (self , map_name):
2 """
3 Load official CARLA USD map export (CARLA 0.9.16+) .
4

5 Leverages NVIDIA ’s official CARLA -to -USD export pipeline
for

6 high - fidelity environmental representation . Falls back
to dynamic

7 road generation if official exports unavailable .
8

9 Args:
10 map_name : CARLA map identifier (e.g., ’Town01 ’, ’

Town10HD ’)
11

12 Returns :
13 Boolean indicating success of official map loading
14 """
15 # Construct path to official CARLA USD map export
16 # CARLA 0.9.16+ exports maps to: carla/ Export /Maps/
17 carla_install_path = os. environ .get(’CARLA_ROOT ’, ’/opt/

carla ’)
18 map_usd_path = f"{ carla_install_path }/ Export /Maps /{

map_name }. usd"
19

20 if not os.path. exists (map_usd_path):
21 print(f" Official USD map not found: { map_usd_path }")
22 print(" Falling back to dynamic road generation ")
23 return False
24

25 # Reference the map USD into the environment hierarchy
26 # This creates a link to the external USD file rather

than copying content
27 env_path = "/World/ Environment "
28 env_xform = UsdGeom .Xform. Define (self.stage , env_path)
29

30 map_ref_path = f"{ env_path }/ Map"
31 map_prim = self.stage. DefinePrim (map_ref_path)
32 map_prim . GetReferences (). AddReference (map_usd_path)
33

34 print(f" Successfully loaded official USD map: { map_name }
")

35 return True

95

Appendix C

Isaac Sim Extension
Development Code

C.1 Extension Initialization

Listing C.1: Extension Initialization and Component Coordination
1 class SimControllerExtension (omni.ext.IExt):
2 """
3 Main extension class coordinating all simulation control

components .
4

5 Orchestrates sensor management , timeline control ,
nuScenes dataset

6 generation , and user interface within Isaac Sim
environment .

7 """
8

9 def on_startup (self , ext_id):
10 """
11 Initialize all components in proper dependency order

.
12

13 The initialization sequence ensures that
dependencies are satisfied

14 before dependent components are created :
15 1. nuScenes Manager (data format specification)
16 2. Sensor Manager (data collection , depends on

nuScenes format)

96

Isaac Sim Extension Development Code

17 3. Timeline Controller (playback control , triggers
data collection)

18 4. UI Controller (user interface , orchestrates all
other components)

19 """
20 try:
21 # Step 1: Initialize nuScenes manager for

dataset generation
22 # Provides infrastructure sensor support via

is_fixed parameter
23 self. _nuscenes_manager = NuScenesManager (
24 vehicle_name ="Car",
25 map=" Town10HD ",
26 is_fixed =True # Enable infrastructure

sensor support
27)
28

29 # Step 2: Initialize sensor manager with
nuScenes integration

30 # Links sensor data collection to dataset
generation pipeline

31 self. _sensor_manager = SensorManager (
32 nuscenes_manager =self. _nuscenes_manager
33)
34

35 # Step 3: Initialize timeline controller for
playback management

36 # Registers callbacks for frame -by -frame data
collection

37 self. _timeline_controller = TimelineController (
38 on_timeline_event_callback =self.

_on_timeline_event ,
39 on_timeline_stop_callback =self.

_stop_simulation ,
40)
41

42 # Step 4: Initialize UI controller as
coordination layer

43 # Provides user interface for all other
components

44 self. _ui_controller = UIController (
45 self. _sensor_manager ,
46 self. _timeline_controller ,
47 self. _nuscenes_manager
48)

97

Isaac Sim Extension Development Code

49

50 print("[CARLA Sim Controller] All components
initialized successfully ")

51

52 except Exception as e:
53 print(f"[CARLA Sim Controller] Initialization

error: {e}")
54 # Proper error handling ensures graceful

degradation

C.2 Infrastructure Sensor Support

Listing C.2: Enhanced DataLog Structure Supporting Infrastructure Sensors
1 class DataLog :
2 """
3 Extended data accumulation structure supporting

cooperative sensing .
4

5 Maintains all sensor data captured during a single
simulation frame ,

6 including both vehicle - mounted and infrastructure
sensors . The structure

7 extends Federico Stella ’s original implementation with
infrastructure

8 sensor support through the _LID_INTER_val field.
9 """

10

11 def __init__ (self , sample):
12 self. _sample = sample # Sample /frame

identifier
13 self. _timestamp = None # Unix

timestamp in microseconds
14

15 # Camera data from all sensors (vehicle +
infrastructure)

16 # Combined storage enables unified processing
pipeline

17 self. _RGB_val = []
18

19 # Vehicle - mounted LiDAR data (original Stella
implementation)

20 self. _LID_val = []

98

Isaac Sim Extension Development Code

21

22 # Infrastructure - mounted LiDAR data (NEW - this
thesis contribution)

23 # Separate storage enables appropriate coordinate
transformation

24 self. _LID_INTER_val = []
25

26 # Ego vehicle transformation (pose) for vehicle -
relative coordinates

27 self. _egoTransform = None
28

29 # Scene actors for 3D bounding box annotation
generation

30 self. _actors = []

Listing C.3: Infrastructure Sensor Detection and Coordinate Handling
1 def detect_sensor_type (sensor_path : str) -> str:
2 """
3 Determine if sensor is vehicle - mounted or infrastructure

-based.
4

5 Uses USD scene graph path analysis to classify sensor
attachment type.

6 This classification is critical for applying appropriate
coordinate

7 transformations during data processing .
8

9 Args:
10 sensor_path : Full USD scene graph path to sensor
11

12 Returns :
13 ’vehicle ’ for ego -vehicle - attached sensors
14 ’infrastructure ’ for world -fixed sensors
15 """
16 # Vehicle sensors follow pattern : /World/Car /...
17 if ’/Car/’ in sensor_path or sensor_path . startswith (’/

Car ’):
18 return ’vehicle ’
19

20 # Infrastructure sensors are placed directly in world
hierarchy

21 # Typical naming patterns : /World/ LIDAR_TRAFFIC_ ... or /
World/ CAM_TRAFFIC_ ...

22 if ’TRAFFIC ’ in sensor_path or ’INTER ’ in sensor_path :

99

Isaac Sim Extension Development Code

23 return ’infrastructure ’
24

25 # Default to vehicle for backward compatibility with
Stella ’s implementation

26 return ’vehicle ’
27

28 def apply_coordinate_transform (point_cloud , sensor_type ,
ego_transform):

29 """
30 Apply appropriate coordinate transformation based on

sensor type.
31

32 Infrastructure and vehicle sensors require different
coordinate handling :

33 - Infrastructure sensors : Already in world coordinates ,
only need

34 coordinate convention adjustment (Isaac Sim ->
nuScenes)

35 - Vehicle sensors : Require transformation to ego -
relative frame ,

36 then coordinate convention adjustment
37

38 Args:
39 point_cloud : Nx4 numpy array of LiDAR points (x, y,

z, intensity)
40 sensor_type : ’vehicle ’ or ’infrastructure ’
41 ego_transform : Current ego vehicle transformation

matrix
42

43 Returns :
44 Transformed point cloud in nuScenes coordinate

convention
45 """
46 if sensor_type == ’infrastructure ’:
47 # Infrastructure sensors already in world

coordinates
48 # Only apply nuScenes coordinate convention

adjustment
49 return convert_to_nuscenes_coords (point_cloud)
50 else:
51 # Vehicle sensors need ego - relative transformation

first
52 ego_relative = transform_to_ego_frame (point_cloud ,

ego_transform)
53 return convert_to_nuscenes_coords (ego_relative)

100

Isaac Sim Extension Development Code

Listing C.4: Infrastructure Sensor Metadata in nuScenes Format
1 def generate_infrastructure_sensor_entry (sensor_info):
2 """
3 Generate sensor table entry with infrastructure - specific

metadata .
4

5 Creates nuScenes - compatible sensor entry with optional
extension fields

6 that identify infrastructure sensors and associate them
with monitored

7 intersections . These optional fields maintain backward
compatibility

8 while enabling infrastructure sensor support .
9

10 Args:
11 sensor_info : Dictionary containing sensor

configuration
12

13 Returns :
14 Dictionary formatted as nuScenes sensor table entry
15 """
16 return {
17 ’token ’: generate_unique_token (),
18 ’channel ’: sensor_info [’channel ’], # e.g., ’

LIDAR_TRAFFIC_189 ’
19 ’modality ’: sensor_info [’modality ’], # ’lidar ’ or ’

camera ’
20

21 # Standard nuScenes fields
22 ’is_ego_vehicle ’: False , # Infrastructure sensors

not on ego vehicle
23

24 # Infrastructure - specific extension fields (optional
)

25 # These fields are ignored by standard nuScenes
tools but enable

26 # infrastructure -aware processing in custom analysis
pipelines

27 ’is_fixed ’: True , # World -fixed
sensor indicator

28 ’intersection_id ’: sensor_info [’intersection_id ’],
Junction association

101

Isaac Sim Extension Development Code

29 ’sensor_type ’: ’infrastructure ’, # Explicit type
identification

30 }

C.3 Sensor Discovery and Management

Listing C.5: Multi-Method Sensor Discovery Implementation
1 def scan_for_sensors (self):
2 """
3 Comprehensive sensor discovery using multiple detection

methods .
4

5 Implements robust sensor detection that handles various
USD representations

6 resulting from different export procedures . Uses
hierarchical detection

7 strategy with multiple fallback methods to ensure
comprehensive coverage .

8

9 Detection Methods :
10 1. USD Camera primitive type detection (standard USD

cameras)
11 2. Name pattern matching for LiDAR sensors
12 3. Asset reference detection for complex sensors
13 4. Metadata -based detection for explicitly tagged

sensors
14

15 Returns :
16 Dictionary with counts : {’ cameras ’: int , ’lidars ’:

int}
17 """
18 stage = get_current_stage ()
19 discovered_cameras = {}
20 discovered_lidars = {}
21

22 # Method 1: Traverse all primitives in scene hierarchy
23 for prim in Usd. PrimRange (stage. GetPseudoRoot ()):
24 prim_path = str(prim. GetPath ())
25

26 # Camera detection via USD Camera primitive type
27 if prim.IsA(UsdGeom . Camera):
28 camera_name = prim. GetName ()

102

Isaac Sim Extension Development Code

29 try:
30 # Initialize Isaac Sim Camera wrapper for

data access
31 camera_object = Camera (prim_path)
32 camera_object . initialize ()
33 discovered_cameras [camera_name] =

camera_object
34 print(f"[Sensor Manager] Detected camera : {

camera_name }")
35 except Exception as e:
36 print(f"[Sensor Manager] Camera

initialization failed "
37 f"for { camera_name }: {e}")
38

39 # LiDAR detection via name pattern matching
40 # Supports multiple naming conventions : LIDAR , LID ,

RTX , Ouster
41 if any(pattern in prim_path .upper () for pattern in
42 [’LIDAR ’, ’LID_ ’, ’RTX ’, ’OUSTER ’]):
43 lidar_name = prim. GetName ()
44 lidar_info = {
45 ’path ’: prim_path ,
46 ’type ’: self. _determine_lidar_type (prim),
47 ’prim ’: prim
48 }
49 discovered_lidars [lidar_name] = lidar_info
50 print(f"[Sensor Manager] Detected LiDAR: {

lidar_name }")
51

52 # Update internal state with discovered sensors
53 self. available_cameras = discovered_cameras
54 self. available_lidars = discovered_lidars
55

56 # Initialize selection state (all sensors disabled by
default)

57 self. selected_cameras = {name: False for name in
discovered_cameras }

58 self. selected_lidars = {name: False for name in
discovered_lidars }

59

60 return {
61 ’cameras ’: len(discovered_cameras),
62 ’lidars ’: len(discovered_lidars)
63 }

103

Isaac Sim Extension Development Code

C.4 Data Collection

Listing C.6: Camera Data Collection and Processing
1 def save_camera_data (self , current_frame : int , save_data :

bool = True):
2 """
3 Capture and save data from all selected cameras .
4

5 Implements robust per - camera error handling to ensure
failures in

6 individual cameras don ’t halt entire collection process .
7

8 Args:
9 current_frame : Current simulation frame number

10 save_data : If True , write data to disk; if False ,
only process

11 """
12 try:
13 selected_cameras = [name for name , selected in self.

selected_cameras .items ()
14 if selected]
15

16 for camera_name in selected_cameras :
17 try:
18 camera = self. available_cameras [camera_name]
19

20 # Initialize camera if not already
initialized

21 if not camera . is_initialized ():
22 self. _initialize_camera (camera ,

camera_name)
23

24 # Retrieve raw camera data from Isaac Sim
25 camera_data = self. _get_camera_data (camera ,

camera_name)
26

27 if camera_data is not None and ’rgba ’ in
camera_data :

28 if save_data :
29 # Process and save image data
30 self. _save_camera_image (
31 camera_data [’rgba ’],
32 camera_name ,
33 current_frame

104

Isaac Sim Extension Development Code

34)
35

36 # Update collection tracking
37 self. last_saved_frames [f"cam_{

camera_name }"] = current_frame
38 else:
39 print(f"[Sensor Manager] No valid data

for camera : { camera_name }")
40

41 except Exception as cam_error :
42 # Per - camera error handling prevents total

collection failure
43 print(f"[Sensor Manager] Error processing {

camera_name }: { cam_error }")
44

45 except Exception as e:
46 print(f"[Sensor Manager] Camera collection error: {e

}")
47

48 def _save_camera_image (self , rgb_data , camera_name : str ,
current_frame : int):

49 """ Process and save camera image with format
normalization """

50

51 if not isinstance (rgb_data , np. ndarray) or rgb_data .size
== 0:

52 return
53

54 # Normalize data type to uint8 for consistent image
format

55 if rgb_data .dtype in [np.float32 , np. float64]:
56 # Float data assumed to be in [0, 1] range
57 rgb_data = (np.clip(rgb_data , 0, 1) * 255). astype (np

.uint8)
58 elif rgb_data .dtype != np.uint8:
59 rgb_data = rgb_data . astype (np.uint8)
60

61 # Handle different channel configurations
62 if len(rgb_data .shape) == 3 and rgb_data .shape [:2] !=

(0, 0):
63 if rgb_data .shape [2] == 4:
64 # RGBA to RGB conversion (discard alpha channel)
65 rgb_data = rgb_data [:, :, :3]
66

67 # Convert numpy array to PIL Image for saving

105

Isaac Sim Extension Development Code

68 image = Image. fromarray (rgb_data)
69

70 # Create nuScenes - compatible directory structure
71 camera_dir = os.path.join(self.save_path ,

camera_name)
72 os. makedirs (camera_dir , exist_ok =True)
73

74 # Generate filename with zero - padded frame number
75 filename = f" frame_ { current_frame :06d}. png"
76 filepath = os.path.join(camera_dir , filename)
77

78 # Save with high quality PNG compression
79 image.save(filepath , quality =95)
80

81 # Record in nuScenes manager for metadata generation
82 self. nuscenes_manager . record_camera_sample (
83 camera_name , filepath , current_frame
84)

Listing C.7: LiDAR Data Collection with Infrastructure Support
1 def save_lidar_data (self , current_frame : int , save_data :

bool = True):
2 """
3 Capture and save LiDAR point cloud data.
4

5 Handles both vehicle - mounted and infrastructure LiDAR
sensors with

6 appropriate coordinate transformations for each type.
Implements

7 multi - method data retrieval to handle various Isaac Sim
LiDAR interfaces .

8

9 Args:
10 current_frame : Current simulation frame number
11 save_data : If True , write data to disk; if False ,

only process
12 """
13 try:
14 selected_lidars = [name for name , selected in self.

selected_lidars .items ()
15 if selected]
16

17 for lidar_name in selected_lidars :
18 try:

106

Isaac Sim Extension Development Code

19 lidar_info = self. available_lidars [
lidar_name]

20

21 # Retrieve point cloud data using
appropriate interface

22 point_cloud = self. _get_lidar_point_cloud (
lidar_info)

23

24 if point_cloud is not None and len(
point_cloud) > 0:

25 # Determine sensor type for proper
coordinate handling

26 sensor_type = detect_sensor_type (
lidar_info [’path ’])

27

28 if save_data :
29 # Save point cloud in multiple

formats
30 self. _save_lidar_pointcloud (
31 point_cloud ,
32 lidar_name ,
33 current_frame ,
34 sensor_type
35)
36

37 # Record in nuScenes manager with sensor
type information

38 if sensor_type == ’infrastructure ’:
39 self. nuscenes_manager .

record_infrastructure_lidar_sample (
40 lidar_name , point_cloud ,

current_frame
41)
42 else:
43 self. nuscenes_manager .

record_vehicle_lidar_sample (
44 lidar_name , point_cloud ,

current_frame
45)
46

47 self. last_saved_frames [f" lidar_ {
lidar_name }"] = current_frame

48

49 except Exception as lidar_error :

107

Isaac Sim Extension Development Code

50 print(f"[Sensor Manager] Error processing {
lidar_name }: { lidar_error }")

51

52 except Exception as e:
53 print(f"[Sensor Manager] LiDAR collection error: {e}

")
54

55 def _save_lidar_pointcloud (self , point_cloud , lidar_name ,
current_frame , sensor_type):

56 """
57 Save LiDAR point cloud in multiple formats for

flexibility .
58

59 Generates three output files per point cloud:
60 - .npy: Binary NumPy format (efficient , preserves

precision)
61 - .csv: Text format (human -readable , debugging)
62 - .json: Metadata (sensor info , frame info , statistics)
63 """
64 # Create sensor - specific directory
65 lidar_dir = os.path.join(self.save_path , lidar_name)
66 os. makedirs (lidar_dir , exist_ok =True)
67

68 base_name = f" frame_ { current_frame :06d}"
69

70 # Save NumPy binary format (primary format for
processing)

71 npy_path = os.path.join(lidar_dir , f"{ base_name }. npy")
72 np.save(npy_path , point_cloud)
73

74 # Save CSV format (for tools preferring text input)
75 csv_path = os.path.join(lidar_dir , f"{ base_name }. csv")
76 np. savetxt (csv_path , point_cloud , delimiter =’,’,
77 header =’x,y,z, intensity ’, comments =’’)
78

79 # Save metadata JSON
80 metadata = {
81 ’frame ’: current_frame ,
82 ’sensor_name ’: lidar_name ,
83 ’sensor_type ’: sensor_type ,
84 ’point_count ’: len(point_cloud),
85 ’timestamp ’: int(time.time () * 1 _000_000),
86 ’bounds ’: {
87 ’x_min ’: float(np.min(point_cloud [:, 0])),
88 ’x_max ’: float(np.max(point_cloud [:, 0])),

108

Isaac Sim Extension Development Code

89 ’y_min ’: float(np.min(point_cloud [:, 1])),
90 ’y_max ’: float(np.max(point_cloud [:, 1])),
91 ’z_min ’: float(np.min(point_cloud [:, 2])),
92 ’z_max ’: float(np.max(point_cloud [:, 2]))
93 }
94 }
95

96 json_path = os.path.join(lidar_dir , f"{ base_name }. json")
97 with open(json_path , ’w’) as f:
98 json.dump(metadata , f, indent =2)

C.5 Timeline Control

Listing C.8: Timeline Controller Implementation
1 class TimelineController :
2 """
3 Manages simulation timeline control and data collection

synchronization .
4

5 Interfaces with Isaac Sim ’s timeline system to control
playback and

6 trigger synchronized data collection at appropriate
intervals .

7 """
8

9 def __init__ (self , on_timeline_event_callback ,
on_timeline_stop_callback):

10 """
11 Initialize timeline controller with event callbacks .
12

13 Args:
14 on_timeline_event_callback : Called on each

timeline update
15 on_timeline_stop_callback : Called when timeline

stops
16 """
17 self. _timeline = omni. timeline .

get_timeline_interface ()
18 self. _on_event_callback = on_timeline_event_callback
19 self. _on_stop_callback = on_timeline_stop_callback
20 self. _is_playing = False
21 self. _current_frame = 0

109

Isaac Sim Extension Development Code

22

23 # Register with Isaac Sim ’s timeline event stream
24 self. _timeline_event_stream = self. _timeline .

get_timeline_event_stream ()
25 self. _timeline_subscription = \
26 self. _timeline_event_stream .

create_subscription_to_pop (
27 self. _on_timeline_event
28)
29

30 def _on_timeline_event (self , event):
31 """
32 Process timeline events from Isaac Sim.
33

34 Handles play/pause state changes , frame position
updates ,

35 and timeline reset events .
36 """
37 if event.type == int(omni. timeline . TimelineEventType

.PLAY):
38 self. _is_playing = True
39 self. _current_frame = int(
40 self. _timeline . get_current_time () *
41 self. _timeline . get_time_codes_per_seconds ()
42)
43

44 elif event.type == int(omni. timeline .
TimelineEventType .PAUSE):

45 self. _is_playing = False
46

47 elif event.type == int(omni. timeline .
TimelineEventType .STOP):

48 self. _is_playing = False
49 self. _on_stop_callback () # Trigger dataset

generation
50

51 elif event.type == int(omni. timeline .
TimelineEventType . CURRENT_TIME_CHANGED):

52 self. _current_frame = int(
53 self. _timeline . get_current_time () *
54 self. _timeline . get_time_codes_per_seconds ()
55)
56

57 # Invoke data collection callback during
playback

110

Isaac Sim Extension Development Code

58 if self. _is_playing :
59 self. _on_event_callback (self. _current_frame ,

self. _is_playing)
60

61 def play(self):
62 """Start timeline playback """
63 self. _timeline .play ()
64

65 def pause(self):
66 """Pause timeline playback """
67 self. _timeline .pause ()
68

69 def stop(self):
70 """Stop timeline and trigger dataset generation """
71 self. _timeline .stop ()
72

73 def get_current_frame (self):
74 """Get current frame number """
75 return self. _current_frame
76

77 def is_playing (self):
78 """Check if timeline is currently playing """
79 return self. _is_playing

Listing C.9: Frame-Level Data Collection Synchronization
1 def _on_timeline_event (self , current_frame : int , is_playing :

bool):
2 """
3 Handle timeline events and orchestrate synchronized data

collection .
4

5 Called by Timeline Controller for each frame during
playback .

6 Implements sampling rate control and prevents duplicate
collection .

7

8 Args:
9 current_frame : Current frame number from timeline

10 is_playing : Whether timeline is actively playing
11 """
12 try:
13 if not is_playing or not hasattr (self , ’

_sensor_manager ’):
14 return

111

Isaac Sim Extension Development Code

15

16 # Apply sampling rate to control dataset density
17 # Example : sampling_rate =5 means collect every 5th

frame
18 if current_frame % self. _sampling_rate != 0:
19 return
20

21 # Prevent duplicate collection of same frame
22 if current_frame in self. _saved_frames :
23 return
24

25 # Mark frame as collected
26 self. _saved_frames .add(current_frame)
27

28 # Create new DataLog entry for nuScenes format
29 data_log = DataLog (current_frame)
30 data_log . _timestamp = int(time.time () * 1 _000_000)

Unix microseconds
31

32 # Capture ego vehicle transformation for this frame
33 data_log . _egoTransform = self. _get_ego_transform ()
34

35 # Add to nuScenes manager ’s data collection
36 self. _nuscenes_manager . data_list . append (data_log)
37

38 # Trigger synchronized multi -modal sensor data
collection

39 self. _sensor_manager . save_sensor_data (current_frame)
40

41 # Update UI with current progress
42 if hasattr (self , ’_ui_controller ’):
43 self. _ui_controller . update_status ()
44

45 except Exception as e:
46 print(f"[Extension] Timeline callback error: {e}")
47 # Log error but continue collection for remaining

frames

C.6 nuScenes Dataset Generation

Listing C.10: Orchestrated nuScenes Dataset Generation
1 def generate_dataset (self):

112

Isaac Sim Extension Development Code

2 """
3 Generate complete nuScenes dataset from collected data.
4

5 Produces all thirteen required JSON tables with proper
referential

6 integrity and temporal structure . Infrastructure sensor
support is

7 integrated throughout the generation process .
8

9 Table Generation Order (ensures referential integrity):
10 1. Ontology tables (category , attribute , visibility)
11 2. Sensor tables (sensor , calibrated_sensor)
12 3. Meta - information (log , map)
13 4. Temporal structure (scene , sample , sample_data)
14 5. Poses and annotations (ego_pose , instance ,

sample_annotation)
15 """
16 if not self. save_enabled :
17 print("[nuScenes Manager] Save disabled , skipping

dataset generation ")
18 return
19

20 try:
21 print("[nuScenes Manager] Beginning dataset

generation ...")
22

23 # Phase 1: Generate ontology tables (order -
independent)

24 self. _generate_categories () # Object
classification taxonomy

25 self. _generate_attributes () # Object attribute
definitions

26 self. _generate_visibility () # Visibility level
definitions

27

28 # Phase 2: Generate sensor configuration tables
29 self. _generate_sensors () # Sensor type

definitions
30 self. _generate_calibrated_sensors () # Sensor

calibration parameters
31

32 # Phase 3: Generate meta - information tables
33 log_token = self. _generate_log () # Data collection

session info

113

Isaac Sim Extension Development Code

34 self. _generate_map (log_token) # Map/ environment
information

35

36 # Phase 4: Generate temporal structure
37 scene_token = self. _generate_scene (log_token) #

Scene definition
38 self. _generate_samples (scene_token) # Keyframe

samples
39

40 # Phase 5: Generate sensor data references
41 self. _generate_samples_data () # Link samples to

sensor files
42

43 # Phase 6: Generate pose and annotation data
44 self. _generate_ego_pose () # Vehicle

trajectory
45 self. _generate_instances () # Object tracking

identities
46 self. _generate_sample_annotations () # 3D bounding

boxes
47

48 # Phase 7: Export all tables to JSON files
49 self. _export_all_tables ()
50

51 print("[nuScenes Manager] Dataset generation
complete !")

52 print(f"[nuScenes Manager] Output directory : {self.
output_path }")

53

54 except Exception as e:
55 print(f"[nuScenes Manager] Dataset generation error:

{e}")
56 raise
57

58 def _export_all_tables (self):
59 """
60 Export all database tables to JSON files.
61

62 Creates standard nuScenes v1.0- trainval directory
structure with

63 one JSON file per table.
64 """
65 tables = {
66 ’category ’: self.categories ,
67 ’attribute ’: self.attributes ,

114

Isaac Sim Extension Development Code

68 ’visibility ’: self. visibility_levels ,
69 ’sensor ’: self.sensors ,
70 ’calibrated_sensor ’: self. calibrated_sensors ,
71 ’log ’: self.logs ,
72 ’map ’: self.maps ,
73 ’scene ’: self.scenes ,
74 ’sample ’: self.samples ,
75 ’sample_data ’: self. sample_data_entries ,
76 ’ego_pose ’: self.ego_poses ,
77 ’instance ’: self.instances ,
78 ’sample_annotation ’: self. sample_annotations ,
79 }
80

81 output_dir = os.path.join(self. output_path , ’v1.0-
trainval ’)

82 os. makedirs (output_dir , exist_ok =True)
83

84 for table_name , table_data in tables .items ():
85 output_file = os.path.join(output_dir , f"{ table_name

}. json")
86

87 with open(output_file , ’w’) as f:
88 json.dump(table_data , f, indent =2)
89

90 print(f"[nuScenes Manager] Exported { table_name }.
json "

91 f"({ len(table_data)} entries)")

Listing C.11: Unified Sample Structure with Infrastructure Sensors
1 def _generate_samples_data (self):
2 """
3 Generate sample_data table linking samples to sensor

files.
4

5 Creates entries for both vehicle and infrastructure
sensor data ,

6 ensuring proper temporal alignment and metadata
preservation .

7 Each sample_data entry represents one sensor observation
at one

8 temporal keyframe .
9 """

10 self. sample_data_entries = []
11

115

Isaac Sim Extension Development Code

12 for sample_info in self. collected_samples :
13 sample_token = sample_info [’token ’]
14 frame_number = sample_info [’frame ’]
15

16 # Process vehicle - mounted camera data (Stella ’s
original)

17 for camera_name in self. vehicle_cameras :
18 if camera_name in sample_info [’camera_files ’]:
19 entry = self.

_create_camera_sample_data_entry (
20 sample_token = sample_token ,
21 camera_name = camera_name ,
22 file_path = sample_info [’camera_files ’][

camera_name],
23 frame= frame_number ,
24 is_infrastructure =False
25)
26 self. sample_data_entries . append (entry)
27

28 # Process infrastructure camera data (NEW - this
thesis)

29 for camera_name in self. infrastructure_cameras :
30 if camera_name in sample_info [’camera_files ’]:
31 entry = self.

_create_camera_sample_data_entry (
32 sample_token = sample_token ,
33 camera_name = camera_name ,
34 file_path = sample_info [’camera_files ’][

camera_name],
35 frame= frame_number ,
36 is_infrastructure =True # Infrastructure

sensor flag
37)
38 self. sample_data_entries . append (entry)
39

40 # Process vehicle - mounted LiDAR data (Stella ’s
original)

41 if ’lidar_file ’ in sample_info :
42 entry = self. _create_lidar_sample_data_entry (
43 sample_token = sample_token ,
44 lidar_name =’LIDAR_TOP ’,
45 file_path = sample_info [’lidar_file ’],
46 frame= frame_number ,
47 is_infrastructure =False
48)

116

Isaac Sim Extension Development Code

49 self. sample_data_entries . append (entry)
50

51 # Process infrastructure LiDAR data (NEW - this
thesis)

52 for lidar_name in self. infrastructure_lidars :
53 if lidar_name in sample_info [’

infrastructure_lidar_files ’]:
54 entry = self. _create_lidar_sample_data_entry

(
55 sample_token = sample_token ,
56 lidar_name =lidar_name ,
57 file_path = sample_info [’

infrastructure_lidar_files ’][lidar_name],
58 frame= frame_number ,
59 is_infrastructure =True # Infrastructure

sensor flag
60)
61 self. sample_data_entries . append (entry)
62

63 def _create_camera_sample_data_entry (self , sample_token ,
camera_name ,

64 file_path , frame ,
is_infrastructure):

65 """
66 Create sample_data entry for camera with proper metadata

.
67

68 Links camera observation to parent sample , ego pose , and
sensor

69 calibration while maintaining infrastructure sensor
identification .

70 """
71 # Find corresponding sensor and calibrated_sensor tokens
72 sensor_token = self. _find_sensor_token (camera_name)
73 calibrated_sensor_token = self.

_find_calibrated_sensor_token (camera_name)
74

75 # Find ego pose token for this frame
76 ego_pose_token = self. _find_ego_pose_token (frame)
77

78 return {
79 ’token ’: generate_unique_token (),
80 ’sample_token ’: sample_token ,
81 ’ego_pose_token ’: ego_pose_token ,
82 ’calibrated_sensor_token ’: calibrated_sensor_token ,

117

Isaac Sim Extension Development Code

83 ’filename ’: file_path , # Relative path from dataset
root

84 ’fileformat ’: ’png ’,
85 ’width ’: self. camera_resolution [0],
86 ’height ’: self. camera_resolution [1],
87 ’timestamp ’: self. _get_timestamp_for_frame (frame),
88 ’is_key_frame ’: True ,
89

90 # Optional infrastructure sensor metadata (extension
field)

91 ’is_infrastructure_sensor ’: is_infrastructure ,
92 }

C.7 User Interface

Listing C.12: UI Controller Implementation
1 def _create_sensor_section (self):
2 """
3 Create the sensor management section of the UI.
4

5 Provides intuitive controls for sensor discovery ,
selection , and

6 debugging within Isaac Sim ’s UI framework .
7 """
8 with ui. CollapsableFrame (" Sensor Management ", collapsed =

False , height =0):
9 with ui. VStack (spacing =3):

10 # Control buttons for sensor discovery
11 with ui. HStack (spacing =3):
12 ui. Button (
13 "Scan for Sensors ",
14 clicked_fn =self. _on_scan_sensors ,
15 tooltip =" Detect all available sensors in

the USD scene"
16)
17

18 ui. Button (
19 "Debug Scan",
20 clicked_fn =self. _on_debug_scan ,
21 width =80,
22 tooltip ="Print detailed sensor detection

information to console "

118

Isaac Sim Extension Development Code

23)
24

25 ui. Button (
26 "Debug LiDAR",
27 clicked_fn =self. _on_debug_lidar ,
28 width =80,
29 tooltip =" Display LiDAR sensor details

and data statistics "
30)
31

32 ui.Label(" Available Sensors :")
33

34 # Organized sensor lists with collapsible
sections

35 with ui. VStack ():
36 # Camera section
37 with ui. CollapsableFrame (" Cameras ",

collapsed =False , height =0):
38 self. _camera_scroll = ui. ScrollingFrame (

height =100)
39 with self. _camera_scroll :
40 self. _camera_list = ui. VStack (

spacing =1)
41

42 # LiDAR section
43 with ui. CollapsableFrame (" LiDARs ", collapsed

=False , height =0):
44 self. _lidar_scroll = ui. ScrollingFrame (

height =100)
45 with self. _lidar_scroll :
46 self. _lidar_list = ui. VStack (spacing

=1)
47

48 def _populate_sensor_lists (self):
49 """
50 Populate sensor selection lists after scanning .
51

52 Creates checkbox for each detected sensor with clear
labeling to

53 distinguish vehicle sensors from infrastructure sensors .
54 """
55 # Clear existing lists
56 self. _camera_list .clear ()
57 self. _lidar_list .clear ()
58

119

Isaac Sim Extension Development Code

59 # Populate camera list with checkboxes
60 for camera_name in sorted (self. _sensor_manager .

available_cameras .keys ()):
61 with ui. HStack ():
62 # Checkbox for sensor activation
63 checkbox = ui. CheckBox ()
64 checkbox .model. add_value_changed_fn (
65 lambda model , name= camera_name :
66 self. _on_camera_selected (name , model.

get_value_as_bool ())
67)
68

69 # Sensor name label with type indicator
70 sensor_type = "INFRA" if " TRAFFIC " in

camera_name else " VEHICLE "
71 ui.Label(f"{ camera_name } ({ sensor_type })")
72

73 # Populate LiDAR list with checkboxes
74 for lidar_name in sorted (self. _sensor_manager .

available_lidars .keys ()):
75 with ui. HStack ():
76 checkbox = ui. CheckBox ()
77 checkbox .model. add_value_changed_fn (
78 lambda model , name= lidar_name :
79 self. _on_lidar_selected (name , model.

get_value_as_bool ())
80)
81

82 sensor_type = "INFRA" if " TRAFFIC " in lidar_name
else " VEHICLE "

83 ui.Label(f"{ lidar_name } ({ sensor_type })")
84

85 def _create_control_section (self):
86 """ Create playback control section """
87 with ui. CollapsableFrame (" Timeline Controls ", collapsed =

False , height =0):
88 with ui. HStack (spacing =3):
89 ui. Button ("Play", clicked_fn =self.

_timeline_controller .play)
90 ui. Button ("Pause", clicked_fn =self.

_timeline_controller .pause)
91 ui. Button ("Stop", clicked_fn =self.

_timeline_controller .stop)
92

93 def _create_settings_section (self):

120

Isaac Sim Extension Development Code

94 """ Create data collection settings section """
95 with ui. CollapsableFrame ("Data Collection Settings ",

collapsed =False , height =0):
96 with ui. VStack (spacing =3):
97 # Enable nuScenes dataset generation
98 with ui. HStack ():
99 self. _nuscenes_checkbox = ui. CheckBox ()

100 self. _nuscenes_checkbox .model.
add_value_changed_fn (

101 self. _on_nuscenes_toggle
102)
103 ui.Label(" Enable nuScenes Generation ")
104

105 # Enable data saving to disk
106 with ui. HStack ():
107 self. _save_checkbox = ui. CheckBox ()
108 self. _save_checkbox .model.

add_value_changed_fn (
109 self. _on_save_toggle
110)
111 ui.Label("Save Sensor Data")
112

113 # Real -time status display
114 self. _status_label = ui.Label(" Status : Ready")

121

Bibliography

[1] European Commission. Commission Regulation (EU) 2019/2144 on type-
approval requirements for motor vehicles and their trailers. Nov. 2019 (cit. on
pp. 1, 7).

[2] Global status report on road safety 2018. en. url: https://www.who.int/
publications/i/item/9789241565684 (cit. on p. 1).

[3] Nidhi Kalra and Susan M Paddock. «Driving to safety: How many miles of
driving would it take to demonstrate autonomous vehicle reliability?» en. In:
Transportation Research Part A: Policy and Practice 94 (Sept. 2016). doi:
10.1016/j.tra.2016.09.010. url: https://doi.org/10.1016/j.tra.
2016.09.010 (cit. on pp. 1, 7).

[4] Keli Huang, Botian Shi, Xiang Li, Xin Li, Siyuan Huang, and Yikang Li.
Multi-modal Sensor Fusion for Auto Driving Perception: A Survey. 2024.
arXiv: 2202.02703 [cs.CV]. url: https://arxiv.org/abs/2202.02703
(cit. on p. 1).

[5] Philip Koopman and Michael Wagner. «Challenges in Autonomous Vehicle
Testing and Validation». en. In: SAE International Journal of Transportation
Safety 04.1 (Apr. 2016), pp. 15–24. issn: 2327-5626, 2327-5634. doi: 10.
4271/2016- 01- 0128. url: https://saemobilus.sae.org/articles/
challenges-autonomous-vehicle-testing-validation-2016-01-0128
(cit. on pp. 1, 7).

[6] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and
Vladlen Koltun. «CARLA: An Open Urban Driving Simulator». In: Pro-
ceedings of the 1st Annual Conference on Robot Learning. 2017, pp. 1–16
(cit. on pp. 1, 8, 14, 15, 19, 20, 34).

[7] F. Stella. «Virtual vehicle sensor’s set-up and synchronous logging from
CARLA Simulator». MA thesis. Turin, Italy: Politecnico di Torino, Apr. 2025
(cit. on pp. 1, 2, 11, 12, 14, 16–18, 20, 22, 31, 33, 55, 56, 58, 69).

122

https://www.who.int/publications/i/item/9789241565684
https://www.who.int/publications/i/item/9789241565684
https://doi.org/10.1016/j.tra.2016.09.010
https://doi.org/10.1016/j.tra.2016.09.010
https://doi.org/10.1016/j.tra.2016.09.010
https://arxiv.org/abs/2202.02703
https://arxiv.org/abs/2202.02703
https://doi.org/10.4271/2016-01-0128
https://doi.org/10.4271/2016-01-0128
https://saemobilus.sae.org/articles/challenges-autonomous-vehicle-testing-validation-2016-01-0128
https://saemobilus.sae.org/articles/challenges-autonomous-vehicle-testing-validation-2016-01-0128

BIBLIOGRAPHY

[8] Holger Caesar et al. nuScenes: A multimodal dataset for autonomous driving.
2020. arXiv: 1903.11027 [cs.LG]. url: https://arxiv.org/abs/1903.
11027 (cit. on pp. 1, 8, 9, 16, 18, 33, 34).

[9] Manabu Tsukada, Takaharu Oi, Masahiro Kitazawa, and Hiroshi Esaki.
«Networked Roadside Perception Units for Autonomous Driving». In: Sensors
20.18 (2020). issn: 1424-8220. doi: 10.3390/s20185320. url: https://www.
mdpi.com/1424-8220/20/18/5320 (cit. on pp. 2, 5).

[10] Guangzhen Cui, Weili Zhang, Yanqiu Xiao, Lei Yao, and Zhanpeng Fang.
«Cooperative Perception Technology of Autonomous Driving in the Internet
of Vehicles Environment: A Review». In: Sensors 22.15 (2022). issn: 1424-
8220. doi: 10 . 3390 / s22155535. url: https : / / www . mdpi . com / 1424 -
8220/22/15/5535 (cit. on pp. 2, 5, 11).

[11] Syed Adnan Yusuf, Arshad Khan, and Riad Souissi. «Vehicle-to-everything
(V2X) in the autonomous vehicles domain – A technical review of communi-
cation, sensor, and AI technologies for road user safety». In: Transportation
Research Interdisciplinary Perspectives 23 (2024), p. 100980. issn: 2590-1982.
doi: https://doi.org/10.1016/j.trip.2023.100980. url: https:
//www.sciencedirect.com/science/article/pii/S2590198223002270
(cit. on pp. 2, 11).

[12] Zhihang Song et al. «Synthetic Datasets for Autonomous Driving: A Survey».
In: IEEE Transactions on Intelligent Vehicles 9.1 (Jan. 2024), pp. 1847–1864.
issn: 2379-8858. doi: 10.1109/tiv.2023.3331024. url: http://dx.doi.
org/10.1109/TIV.2023.3331024 (cit. on pp. 2, 10).

[13] Xiaoyu Chen, Jiachen Hu, Chi Jin, Lihong Li, and Liwei Wang. Understanding
Domain Randomization for Sim-to-real Transfer. 2022. arXiv: 2110.03239
[cs.LG]. url: https://arxiv.org/abs/2110.03239 (cit. on pp. 2, 38).

[14] Chinmay Vilas Samak, Tanmay Vilas Samak, Bing Li, and Venkat Krovi.
Sim2Real Diffusion: Learning Cross-Domain Adaptive Representations for
Transferable Autonomous Driving. 2025. arXiv: 2507.00236 [cs.RO]. url:
https://arxiv.org/abs/2507.00236 (cit. on pp. 2, 38).

[15] Stephan R. Richter, Hassan Abu AlHaija, and Vladlen Koltun. Enhancing
Photorealism Enhancement. 2021. arXiv: 2105.04619 [cs.CV]. url: https:
//arxiv.org/abs/2105.04619 (cit. on pp. 2, 10).

[16] Lingyu Zhang, Li Wang, Lili Zhang, Xiao Zhang, and Dehui Sun. «An
RSU Deployment Scheme for Vehicle-Infrastructure Cooperated Autonomous
Driving». In: Sustainability 15.4 (2023). issn: 2071-1050. doi: 10.3390/
su15043847. url: https://www.mdpi.com/2071-1050/15/4/3847 (cit. on
pp. 3, 11).

123

https://arxiv.org/abs/1903.11027
https://arxiv.org/abs/1903.11027
https://arxiv.org/abs/1903.11027
https://doi.org/10.3390/s20185320
https://www.mdpi.com/1424-8220/20/18/5320
https://www.mdpi.com/1424-8220/20/18/5320
https://doi.org/10.3390/s22155535
https://www.mdpi.com/1424-8220/22/15/5535
https://www.mdpi.com/1424-8220/22/15/5535
https://doi.org/https://doi.org/10.1016/j.trip.2023.100980
https://www.sciencedirect.com/science/article/pii/S2590198223002270
https://www.sciencedirect.com/science/article/pii/S2590198223002270
https://doi.org/10.1109/tiv.2023.3331024
http://dx.doi.org/10.1109/TIV.2023.3331024
http://dx.doi.org/10.1109/TIV.2023.3331024
https://arxiv.org/abs/2110.03239
https://arxiv.org/abs/2110.03239
https://arxiv.org/abs/2110.03239
https://arxiv.org/abs/2507.00236
https://arxiv.org/abs/2507.00236
https://arxiv.org/abs/2105.04619
https://arxiv.org/abs/2105.04619
https://arxiv.org/abs/2105.04619
https://doi.org/10.3390/su15043847
https://doi.org/10.3390/su15043847
https://www.mdpi.com/2071-1050/15/4/3847

BIBLIOGRAPHY

[17] nuTonomy. nuScenes Development Kit. https://github.com/nutonomy/
nuscenes-devkit. ROS2-based devkit with JSON metadata structure. 2024
(cit. on p. 3).

[18] Tao Huang, Jianan Liu, Xi Zhou, Dinh C. Nguyen, Mostafa Rahimi Azghadi,
Yuxuan Xia, Qing-Long Han, and Sumei Sun. Vehicle-to-Everything Cooper-
ative Perception for Autonomous Driving. May 2025. doi: 10.1109/jproc.
2025.3600903. url: http://dx.doi.org/10.1109/JPROC.2025.3600903
(cit. on p. 3).

[19] Lei Chen and Cristofer Englund. «Cooperative Intersection Management: A
Survey». In: IEEE Transactions on Intelligent Transportation Systems 17.2
(2016), pp. 570–586. doi: 10.1109/TITS.2015.2471812 (cit. on pp. 3, 5).

[20] Pixar Animation Studios. Introduction to USD - Universal Scene Description.
https://openusd.org/release/intro.html. Technical documentation on
USD format with hierarchical Prims and composition. 2025 (cit. on pp. 3,
40).

[21] Pixar Animation Studios. Universal Scene Description. Available: https:
//graphics.pixar.com/usd. 2023 (cit. on pp. 3, 38).

[22] NVIDIA Corporation. NVIDIA Omniverse Platform. Available: https://
www.nvidia.com/omniverse. 2024 (cit. on pp. 4, 38).

[23] NVIDIA. Isaac Sim 5.0 Technical Specifications. https://github.com/
isaac-sim/IsaacLab. RTX-based photorealistic environments with 1000+
SimReady assets. 2025 (cit. on p. 4).

[24] Matt Rowe. CARLA 0.9.16 Release. Sept. 2025. url: https://carla.org/
2025/09/16/release-0.9.16/ (visited on 10/13/2025) (cit. on pp. 4, 8, 14,
39, 70).

[25] Haibao Yu et al. DAIR-V2X: A Large-Scale Dataset for Vehicle-Infrastructure
Cooperative 3D Object Detection. 2022. arXiv: 2204.05575 [cs.CV]. url:
https://arxiv.org/abs/2204.05575 (cit. on pp. 5, 11).

[26] Adam Tonderski, Carl Lindström, Georg Hess, William Ljungbergh, Lennart
Svensson, and Christoffer Petersson. NeuRAD: Neural Rendering for Au-
tonomous Driving. 2024. arXiv: 2311.15260 [cs.CV]. url: https://arxiv.
org/abs/2311.15260 (cit. on pp. 6, 8).

[27] Euro NCAP. Assessment Protocol - Safety Assist. European New Car Assess-
ment Programme. 2023 (cit. on p. 8).

[28] ISO 26262-1:2018. en. url: https://www.iso.org/standard/68383.html
(cit. on p. 8).

[29] ISO 21448:2022. en. url: https://www.iso.org/standard/77490.html
(cit. on p. 8).

124

https://github.com/nutonomy/nuscenes-devkit
https://github.com/nutonomy/nuscenes-devkit
https://doi.org/10.1109/jproc.2025.3600903
https://doi.org/10.1109/jproc.2025.3600903
http://dx.doi.org/10.1109/JPROC.2025.3600903
https://doi.org/10.1109/TITS.2015.2471812
https://openusd.org/release/intro.html
https://graphics.pixar.com/usd
https://graphics.pixar.com/usd
https://www.nvidia.com/omniverse
https://www.nvidia.com/omniverse
https://github.com/isaac-sim/IsaacLab
https://github.com/isaac-sim/IsaacLab
https://carla.org/2025/09/16/release-0.9.16/
https://carla.org/2025/09/16/release-0.9.16/
https://arxiv.org/abs/2204.05575
https://arxiv.org/abs/2204.05575
https://arxiv.org/abs/2311.15260
https://arxiv.org/abs/2311.15260
https://arxiv.org/abs/2311.15260
https://www.iso.org/standard/68383.html
https://www.iso.org/standard/77490.html

BIBLIOGRAPHY

[30] Guodong Rong et al. «LGSVL Simulator: A High Fidelity Simulator for
Autonomous Driving». In: (2020). arXiv: 2005.03778 [cs.RO]. url: https:
//arxiv.org/abs/2005.03778 (cit. on pp. 8, 12).

[31] Yurui Chen, Junge Zhang, Ziyang Xie, Wenye Li, Feihu Zhang, Jiachen
Lu, and Li Zhang. S-NeRF++: Autonomous Driving Simulation via Neural
Reconstruction and Generation. 2025. arXiv: 2402.02112 [cs.CV]. url:
https://arxiv.org/abs/2402.02112 (cit. on p. 8).

[32] Jiang Yue, Weisong Wen, Jing Han, and Li-Ta Hsu. LiDAR Data Enrichment
Using Deep Learning Based on High-Resolution Image: An Approach to Achieve
High-Performance LiDAR SLAM Using Low-cost LiDAR. 2020. arXiv: 2008.
03694 [cs.CV]. url: https://arxiv.org/abs/2008.03694 (cit. on p. 8).

[33] Yan Wang, Wei-Lun Chao, Divyansh Garg, Bharath Hariharan, Mark Camp-
bell, and Kilian Q. Weinberger. Pseudo-LiDAR from Visual Depth Estimation:
Bridging the Gap in 3D Object Detection for Autonomous Driving. 2020. arXiv:
1812.07179 [cs.CV]. url: https://arxiv.org/abs/1812.07179 (cit. on
p. 8).

[34] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically Based Rendering:
From Theory to Implementation. 4th. MIT Press, 2023 (cit. on p. 10).

[35] NVIDIA Corporation. RTX Real-Time Ray Tracing. NVIDIA Developer
Documentation. 2023 (cit. on p. 10).

[36] Aayush Prakash, Shaad Boochoon, Mark Brophy, David Acuna, Eric Camer-
acci, Gavriel State, Omer Shapira, and Stan Birchfield. Structured Domain
Randomization: Bridging the Reality Gap by Context-Aware Synthetic Data.
2020. arXiv: 1810.10093 [cs.CV]. url: https://arxiv.org/abs/1810.
10093 (cit. on p. 10).

[37] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and
Pieter Abbeel. Domain Randomization for Transferring Deep Neural Networks
from Simulation to the Real World. 2017. arXiv: 1703.06907 [cs.RO]. url:
https://arxiv.org/abs/1703.06907 (cit. on p. 10).

[38] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate
Saenko, Alexei A. Efros, and Trevor Darrell. CyCADA: Cycle-Consistent
Adversarial Domain Adaptation. 2017. arXiv: 1711.03213 [cs.CV]. url:
https://arxiv.org/abs/1711.03213 (cit. on p. 10).

[39] 3GPP. 3GPP Release 14: LTE-based V2X Services. Tech. rep. 3rd Generation
Partnership Project, 2017 (cit. on p. 11).

125

https://arxiv.org/abs/2005.03778
https://arxiv.org/abs/2005.03778
https://arxiv.org/abs/2005.03778
https://arxiv.org/abs/2402.02112
https://arxiv.org/abs/2402.02112
https://arxiv.org/abs/2008.03694
https://arxiv.org/abs/2008.03694
https://arxiv.org/abs/2008.03694
https://arxiv.org/abs/1812.07179
https://arxiv.org/abs/1812.07179
https://arxiv.org/abs/1810.10093
https://arxiv.org/abs/1810.10093
https://arxiv.org/abs/1810.10093
https://arxiv.org/abs/1703.06907
https://arxiv.org/abs/1703.06907
https://arxiv.org/abs/1711.03213
https://arxiv.org/abs/1711.03213

BIBLIOGRAPHY

[40] Walter Zimmer, Gerhard Arya Wardana, Suren Sritharan, Xingcheng Zhou,
Rui Song, and Alois C. Knoll. TUMTraf V2X Cooperative Perception Dataset.
2024. arXiv: 2403.01316 [cs.CV]. url: https://arxiv.org/abs/2403.
01316 (cit. on p. 11).

126

https://arxiv.org/abs/2403.01316
https://arxiv.org/abs/2403.01316
https://arxiv.org/abs/2403.01316

	List of Figures
	Acronyms
	Introduction
	Motivation and Problem Statement
	Limitations of Vehicle-Centric Sensing
	Visual Fidelity Constraints

	Research Contributions
	Infrastructure-Cooperative Sensor Simulation Framework
	CARLA to Isaac Sim Integration Pipeline

	Scope and Limitations
	Expected Impact and Applications

	Literature Review and Related Work
	ADAS Validation Methodologies
	Traditional Testing Paradigms and Limitations
	Regulatory Framework and Standardization

	Synthetic Data Generation for Autonomous Driving
	Evolution of Simulation Platforms
	The nuScenes Dataset Format
	Photorealistic Rendering Technologies
	Temporal Consistency and Deterministic Replay
	Simulation-to-Reality Gap

	Infrastructure-Cooperative Sensing Systems
	V2X Communication Technologies
	Cooperative Perception Architectures
	Infrastructure-Based Sensing and Datasets

	Gaps in Current Research
	Limited Infrastructure Sensing Support in Simulation
	Visual Fidelity Limitations
	Fragmented Workflows

	Summary and Research Motivation

	Baseline Framework: Vehicle-Centric Synthetic Data Generation
	CARLA Simulator Architecture
	Overview and Design Philosophy
	Client-Server Architecture
	Synchronous Operation Mode

	Vehicle-Centric Sensor Configuration
	nuScenes Sensor Suite Replication
	Sensor Attachment and Coordinate Frames

	Synchronous Data Collection Pipeline
	Callback-Based Data Acquisition
	Data Processing and Transformation
	Ground Truth Annotation

	nuScenes Format Integration
	Dataset Structure and Organization
	Calibration and Ego Pose Management

	Environmental Simulation Capabilities
	Dynamic Weather and Lighting Control
	Traffic and Scenario Generation

	Limitations of the Vehicle-Centric Approach
	Coverage Limitations and Blind Spots
	Lack of Infrastructure Sensing Perspectives
	Visual Rendering Fidelity Constraints
	Computational Performance Constraints

	Summary and Transition

	Infrastructure-Cooperative Sensor Simulation
	Introduction and Motivation
	Sensor Placement Tool
	Tool Overview and Architecture
	User Interface Components
	Supported Sensor Types

	Tool Features and Functionality
	Intersection Detection
	Intelligent Sensor Placement
	Real-time Visualization in CARLA
	Configuration Persistence

	Web-Based Configuration Interface
	Fixed Sensors View

	Infrastructure Sensor Spawning
	Integration with nuScenes Data Pipeline
	Backward Compatibility Strategy
	nuScenes Schema Extensions
	Coordinate System Transformations
	Data Collection Pipeline Integration
	File Organization and Naming Conventions

	CARLA to USD Export Framework
	Introduction and Motivation
	Motivation for USD-Based Integration
	Universal Scene Description and NVIDIA Omniverse
	Evolution of the Export Framework Approach
	Hybrid Framework Architecture

	Universal Scene Description Fundamentals
	USD Technology Overview
	USD in Autonomous Driving Simulation

	System Architecture and Pipeline Overview
	High-Level Architecture
	Component Interaction
	Data Flow Through the Pipeline

	Core Export System Implementation
	USDSceneExporter Architecture
	Data Capture System
	Timeline Management and Temporal Coordination

	Coordinate System Transformation
	CARLA to USD Coordinate System Mapping
	Transform Conversion Algorithms
	Validation of Spatial Accuracy

	Vehicle Animation System
	Keyframe Generation Strategy
	Transform and Velocity Processing

	Asset Management and Visual Representation
	Hybrid Asset Strategy
	Vehicle USD Asset Library
	Material Properties and Visual Fidelity
	Asset Coverage and Statistics

	Sensor Integration in USD Format
	Sensor Representation Strategy
	Camera Sensor Export
	LiDAR and Radar Sensor Integration
	Sensor Parameter Preservation and Metadata

	Environment Export and Map Integration
	Hybrid Approach to Environment Representation
	Official CARLA USD Map Integration
	Dynamic Road Network Generation
	Hybrid Strategy Selection Guidelines

	Isaac Sim Extension Development
	Introduction: Bridging USD Export and Data Collection
	Complete Workflow: From CARLA to nuScenes Dataset
	End-to-End Pipeline Overview
	Key Advantages of the Integrated Approach

	Extension Architecture and Component Design
	Modular Component Architecture
	Event-Driven Communication Architecture

	Infrastructure-Cooperative Sensor Integration
	Extended nuScenes Format for Cooperative Sensing
	Coordinate System Handling for Infrastructure Sensors
	Infrastructure Sensor Annotations in nuScenes Format
	Backward Compatibility and Migration Path

	Sensor Management System
	Automatic Sensor Discovery
	Sensor Selection and Configuration Management
	Multi-Modal Data Collection

	Timeline Control and Synchronization
	Isaac Sim Timeline Integration
	Synchronized Data Collection

	nuScenes Dataset Generation and Export
	Complete nuScenes Database Structure
	Infrastructure Sensor Integration in Sample Structure

	User Interface Design and Interaction
	Intuitive Sensor Management Interface
	Real-Time Status Feedback

	Performance Optimization and Error Handling
	Efficient Resource Management
	Comprehensive Error Handling

	Conclusions and Future Developments
	Summary of Contributions
	Infrastructure-Cooperative Sensor Simulation
	CARLA to Isaac Sim Integration Pipeline

	Achievement of Research Objectives
	Technical Limitations and Constraints
	Infrastructure Sensing Limitations
	USD Export and Visual Fidelity Limitations
	Isaac Sim Extension Limitations

	Impact and Practical Applications
	Industrial Relevance
	Research and Development Applications

	Future Development Directions
	Short-Term Enhancements
	Medium-Term Extensions
	Long-Term Research Directions

	Concluding Remarks

	Infrastructure-Cooperative Sensor Simulation Code
	Intersection Detection
	Configuration Management
	Sensor Spawning
	Coordinate Transformations

	CARLA to USD Export Framework Code
	USD Scene Exporter
	Data Capture
	Coordinate System Transformations
	Vehicle Animation
	Asset Management
	Sensor Export
	Environment Export

	Isaac Sim Extension Development Code
	Extension Initialization
	Infrastructure Sensor Support
	Sensor Discovery and Management
	Data Collection
	Timeline Control
	nuScenes Dataset Generation
	User Interface

	Bibliography

