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Abstract

The widespread use of Large Language Models (LLMs) in com-
plex tasks has highlighted significant risks, including misinformation
and biases. Moreover, the introduction of “agentic AI” concept—
autonomous systems capable of performing tasks without human intervention—
encourages the use of LLMs for tasks they are not designed for. In
response, agentic benchmarks were introduced to assess the reliability
of these models on real-world tasks.

This thesis proposes a benchmark with the aim of understanding
the state-of-the-art in complex planning, factual accuracy and mathe-
matical problem-solving, by analyzing the most popular chatbots from
a technical point of view and the risks they entail.

The benchmark tests were performed on Gemini, Gemma, and
Llama, spanning 10 different versions of these models. This bench-
mark consists of 22 questions repeated more than 273,000 times us-
ing different prompting methodologies, such as zero-shot Chain of
Thought (CoT), in which the model is asked to solve the problem
step-by-step, and Program of Thought (PoT), which requires writing
Python code that solves the problem.

The benchmark results identify several limitations in the tasks an-
alyzed and the direction of development of some models. Specifically,
the resolution of mathematical tasks with Gemini has improved sig-
nificantly with the progress of versions and, in general, all analyzed
models were more accurate in this category than in planning. Some
limitations in the use of the PoT methodology can also be identified
in real-world mathematical problems, where the use of 0-shot CoT
improves accuracy.
Testing the factuality category revealed that LLMs struggle to recog-
nize an incorrect statement or a trick question. Meanwhile, analysis of
planning ability revealed an incapability to handle overlapping plans
in the submitted questions. For instance, all LLMs achieved results
close to 0% accuracy when the problems involved performing seem-
ingly contradictory sub-actions to achieve the result, as in “Tower of
Hanoi” or “Blocks World”.

The findings highlight some of LLMs’ current challenges to achieve
agency, such as their inability to handle complex planning and factual
nuances. Even in the mathematical domain, where the best results
were achieved, the necessity of a third-party intervention has been
shown.

Tests like those conducted in this study will better identify the
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robustness of new agents, and also point to the need for greater gran-
ularity in existing benchmarks of LLMs’ capabilities to ensure their
responsible use.
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1 Introduction

Large Language Models (LLMs) are stochastic systems that produce outputs
by drawing relevant content from their datasets, based on patterns they’ve
autonomously identified during training. By their very nature, these prob-
abilistic tools shouldn’t have widespread applicability. However, thanks to
marketing campaigns over the last few years, they’ve been introduced as
multi-purpose tools aimed at replacing humans in a wide range of tasks.
Indeed, free mass access and their excellent performance in certain tasks make
them appealing, but the new concept of Agentic AI, adopted by most pro-
ducing companies, goes further, hypothesizing their use in any task without
human supervision.
The challenge lies in measuring their true reliability. Currently, this is rele-
gated to benchmarks, which are often incomprehensible to the end-user and
are used as a metric for improvement by a niche of industry professionals.

This thesis proposes an agentic benchmark that, while limited, can
clearly identify the strengths and weaknesses of current models by creating
novel problems across three main categories: reasoning, factuality, and
sequential problem solving. This last category is designed to test plan-
ning abilities on problems of discrete complexity.
Given the generality of these three categories, the questions are grouped into
sub-categories by problem type for greater data clarity, as shown in Figure
48.
The thesis is divided into three chapters:

• Background: Analyzes the foundational technologies of LLMs, the
concept of agentic benchmarks, and the results available in the technical
reports of recent models on various benchmarks.

• Methodology: Explains how the question categories were identified,
the prompting methodologies used, and how the experiment was set
up.

• Results: Presents the findings obtained during the testing phase.

The models tested include the Gemini 1.5 and 2.0 families, Gemma 3
with 1B and 4B parameters, and Llama 3.1 8B and Llama 3.2 1B and 3B.
The findings reveal a clear performance hierarchy. On classic math problems,
Gemini models achieve an accuracy close to 100% using the PoT (Program-
of-Thought) methodology. The larger parameter versions of Gemma and
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Llama also get approximately 50% of accuracy in the same category.
As the math problems increase in complexity, Gemini’s latest versions main-
tain decent results, while the 1.5 family’s performance degrades and the open
models struggle, with scores dropping to nearly 0%.
Sudoku solving was only tested on Gemini models, and all provided solutions
were incorrect.
In factuality category, when presented with logical trick questions, all models
had an accuracy close to 0%.
In sequential problem solving, open models consistently gave incorrect an-
swers. Gemini models also had 0% accuracy, except for Gemini 2.0 Flash,
which achieved an average of about 10%.
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2 Background

2.1 Large Language Models (LLMs)

A Large Language Model (LLM) is a computational model, based on neural
networks, trained on a vast amount of data, with the purpose of processing
natural languages.
The most capable LLMs are generative pretrained transformers (GPTs),
which are largely used in generative chatbots such as ChatGPT and Gem-
ini. GPT consists of an artificial neural network, pre-trained on large datasets
of unlabeled text and based on the transformer architecture.

2.1.1 Neural Networks (NNs)

A neural network is a model that consists of different layers of nodes con-
nected to one another.

Figure 1: Neural Network. Source: IBM

Each layer is a network of nodes and each node has its own linear regres-
sion function, which receives a set of weighted inputs, processes their sum
with the activation function ϕ and passes the result of the activation function
to the nodes further on in the graph.
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Figure 2: Neural Network node. Source: Brian Dolhansky blog

Several activation functions can be used. An example is the linear one,
also called identity:

ϕ

 X
i

wiai

!
=
X
i

wiai

During the training phase the wi parameter can be modified to strengthen a
path and so increasing the probability of a certain output or vice versa.
Data may be labeled, so given an input the right output is known, in this case
training the NNmeans learning the correct edge weights to produce the target
output given the input; then sets of unlabeled data can be automatically
predicted or classified.
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Figure 3: Neural Network labelled training and unlabelled prediction.
Source: Brian Dolhansky blog

The complexity of this model does not allow for motivation of the answers
produced. In fact NNs are black boxes: by giving an input the corresponding
output cannot be explained by analyzing the internal mechanisms of the NN.

2.1.2 Generative Pre-trained Transformers (GPTs), Tokens and
Embeddings

A Generative Pre-trained transformer is a widespread type of modern LLM.
The term GPT was taken from OpenAI’s commercial series, which in 2018
released the first version of its product then named sequentially as: “GPT-
n”, which is still the core of ChatGPT today.
GPTs are deep learning transformers trained as language models. This
means that a huge set of human written text is given to a transformer, that
processes and divides the text into a representation called tokens.

“Tokens are words, character sets, or combinations of words and punc-
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tuation that are generated by large language models (LLMs) when they de-
compose text.”[20]
A token is a slice of the processed string, padded, and it is created via a to-
kenization function, an example is the Byte-Pair Encoding (BPE) function,
used by OpenAI’s GPT models.

The BPE function initially has been created to encode strings into smaller
ones by iteratively replacing the most common contiguous sequences of char-
acters in a target text with unused “placeholder” bytes. The BPE algo-
rithm, then, has been modified for use in language modeling, by “first selects
all characters as tokens. Then, successively the most frequent token pair is
merged into a new token and all instances of the token pair are replaced
by the new token. This is repeated until a vocabulary of prescribed size is
obtained”.[24]
The created vocabulary contains a unique numerical value that refers to a
token.

Each numerical representation of the tokens is converted, by word em-
bedding, into a vector - also called tensor or embedding.
“Embeddings capture semantic meaning and context, which results in text
with similar meanings having “closer” embeddings. For example, the sen-
tence “I took my dog to the vet” and “I took my cat to the vet” would have
embeddings that are close to each other in the vector space.”[9]
Several word embedding methods can be used, for example Gemini offers
three of its own.[9]
The produced embeddings are used as the input layer (Figure 1) in models
like transformers, so providing a “sentence”: a set of tokens, e.g. 1024 tokens
as input layer. A new sentence can be produced, in an already trained LLM.
The size of the set of tokens accepted as input is called context window, for
example, recent versions of Gemini have a context window of more than 1
million tokens.[11]
“The basic way you use the Gemini models is by passing information (con-
text) to the model, which will subsequently generate a response. An analogy
for the context window is short term memory. There is a limited amount
of information that can be stored in someone’s short term memory, and the
same is true for generative models.”[11]

The resulting set of tensors may be graphically interpreted via a word
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embedding table.

Figure 4: Example of Word Embedding Table about Republican vs Demo-
cratic speeches. Source: Rob Van Zoest article

The word embedding table represents the semantic similarity between differ-
ent words or tokens, by the distance between points.

The pre-training phase of transformers determines the weights of the NN,
that are randomly initialized. Training a model requires a huge corpus of data
and several weeks. The goal is teaching the statistical property of a language
and the context, to generate meaningful responses.
Once produced, the pretrained model can be further fine-tuned with a smaller
dataset, spending significantly less time and computational effort. Fine-
tuning is a technique in which the model is trained again with a dataset
specific to the scope of deployment, allowing to produce considerably better
quality results.
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2.1.3 Transformers Architecture

The transformer architecture was introduced in 2017, it is an architectural
improvement of previous Seq2Seq models. Instead of traditional recurrent
neural networks that process sequences sequentially, the new architecture in-
troduced self-attention allowing the model to weigh the importance of differ-
ent words in the input sequence, improving the understanding of the context.
“Self-attention, sometimes called intra-attention is an attention mechanism
relating different positions of a single sequence in order to compute a repre-
sentation of the sequence.”[30]
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Figure 5: Transformer architecture: the encoder is the left half and decoder
the right one. Source: [30]

The encoder processes the input sequence creating a context vector: a
representation that captures the meaning of words in their specific context.
This representation is created in the Multi-Head Attention module, in which
multiple attention heads are produced in parallel per different semantic re-
lations between words using the Self-Attention mechanism. It consists in
calculating per each word how much “attention” should be paid to every
other word in the sentence by creating Query, Key and Value vectors for
each word.

The decoder, instead, processes the context vector of the encoder with a
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self-produced representation of the expected output, created using a shifted
right masking policy. This policy prevents to create the prediction of the
current embedding using future entries, but only previous ones. This is
performed by allowing the decoder to access only the previously generated
tokens.

The core innovation, that introduced self-attention, is the Multi-Head
Attention module that also allows the parallel running of several attention
layers.

Figure 6: Differences between previously used attention function and multi-
head one. Source: [30]

“An attention function can be described as mapping a query and a set of
key-value pairs to an output, where the query, keys, values, and output are
all vectors. The output is computed as a weighted sum of the values, where
the weight assigned to each value is computed by a compatibility function of
the query with the corresponding key.”[30]
The Key vector contains labels that allow each word to be associated with
all the other words in the sentence. Each label has an associated Value
vector that contains values regarding the various possible semantic contexts
between the two words. The Query vector determines the attention that
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must be placed on each label, thus allowing a function to calculate the weight
associated with each value of the label, thereby determining the importance
of some meanings over others.

2.1.4 Reinforcement Learning from Human Feedback (RLHF)

Modern GPTs are fine-tuned via Reinforcement Learning from Human Feed-
back (RLHF). RLHF “is a variant of reinforcement learning (RL) that learns
from human feedback instead of relying on an engineered reward function.”[16]
“In reinforcement learning, an agent navigates through an environment and
attempts to make optimal decisions through a process of trial and error”[16],
but designing a reward function may be challenging so RLHF “introduces a
critical human-in-the-loop component to the standard RL learning paradigm”.[16]
RLHF technique, in modern LLMs, is also used to avoid harmful responses
that may incite suicide, help create explosives or obtain weapons, incite racial
hatred or execute computer vulnerability exploits.

“Reinforcement learning (RL)[28] is the setting of learning behavior from
rewarded interaction with an environment. Such a learning environment
is formalized as a Markov decision process (MDP), which is a model for
sequential decision-making. In an MDP, an agent iteratively observes its
current state, takes an action that causes the transition to a new state, and
finally receives a reward that depends on the actions effectiveness”[16]
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Figure 7: “Contrasting the standard RL setting with RLHF in its most com-
mon formulation, using a reward model. In each step, the policy commits to
an action at and receives the next state st+1 and either the true reward rt+1

or an estimate r̃t+1 in return (symbolized by r̃t+1).
In contrast to the standard RL setting, the true reward function is not known
in the RLHF setting but instead learned from human feedback. This reward
learning process is decoupled from policy learning and can happen fully asyn-
chronously. The dataset consists of a set of queries qi (e.g., pairs of trajectory
fragments) and their labels li (e.g., a preference for one of the fragments)”[16]

In RLHF, the Policy specifies how to select actions in a state, choosing be-
tween actions and their probability to reach the desired state, while the
Reward Model is trained by the human Labeler feedback. This allows the
human in the process to provide feedback asynchronously and to not provide
personally a response per each action.[16]

2.2 Artificial General Intelligence (AGI), Agentic AI
and AI’s main goals

The definition of Artificial General Intelligence remains a subject of
ongoing debate. OpenAI defines AGI as “highly autonomous systems that
outperform humans at most economically valuable work”[22] with “valuable
work” primarily referring to cognitive tasks. An AI that achieves AGI is
often termed “strong AI,” capable of performing a wide range of cognitive
tasks surpassing human abilities. In contrast, “weak AI” is designed to solve
only a single, specific problem.
The current state of AGI is contentious. While a vice president at Google has
declared “Artificial General Intelligence is Already Here”,[4] Noam Chomsky,
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a prominent linguist, argues that a statistical engine for pattern matching
can hardly imitate the human mind.[6]
In July 2024, OpenAI introduced a five-tier system to assess its progress
toward AGI,[18][7] indicating that it is nearing the achievement of Level 2:

• Level 1: Chatbots AI with conversational language capabilities.

• Level 2: Reasoners AI capable of human-level problem solving.

• Level 3: Agents Systems that can take actions.

• Level 4: Innovators AI that can aid in invention.

• Level 5: Organizations AI that can perform the work of an organi-
zation.

Even with persistent issues like bias amplification and hallucinations, OpenAI
believed its AI was just one step away from achieving agency. The various
statements on goals achieved and to be achieved are better understood in the
context of a trade war than technological reality, and in April 2025, a new
definition, Agentic AI, became a trend.[12]
“Agentic AI is a software system designed to interact with data and tools
in a way that requires minimal human intervention. With an emphasis on
goal-oriented behavior, agentic AI (also known as AI agents) can accomplish
tasks by creating a list of steps and performing them autonomously”.[31]
While some benchmarks for real-world problems cast doubt on the achieve-
ment of agency, the term “agentic” is a more fitting description for modern
LLMs.

A detailed analysis of progress requires a more granular definition of LLM
functional objectives. This paper proposes seven such objectives:

1. Reasoning and Problem Solving: The ability to solve complex
problems, perform mathematical calculations and draw logical conclu-
sions. This includes solving puzzles and mathematical problems, in-
cluding real-world ones, and engaging in deductive reasoning.

2. Knowledge Representation: The capacity to organize and make
deductions about real-world facts and concepts. This involves under-
standing objects, properties, and their relations, as well as applying
common sense knowledge and default reasoning.
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3. Planning and Decision-Making: The ability to formulate a se-
quence of optimal actions to achieve a goal. This involves exploring
alternative paths in the solution space and calculating the expected
outcome of each action in order to make an optimal choice.

4. Learning: The ability to automatically improve performance on a
task over time. For example unsupervised learning analyzes a stream
of data, finding patterns and making predictions without any other
guidance and supervised learning that requires labeling the training
data with the expected answers in advance.

5. Natural Language Processing (NLP): The capability to under-
stand, read, write and communicate in human language. Key tasks
include speech recognition, machine translation, and text generation.

6. Perception: The ability to deduct aspects of the world through in-
put from sensors. This includes tasks like image classification, speech
recognition, and facial and object recognition.

7. Social Intelligence: The ability to recognize and simulate human
emotions, as well as to interact effectively within a social context.

Modern LLMs have made remarkable progress, but their performance across
key objectives remains inconsistent. For example, in Reasoning and Problem
Solving, they often struggle with complex logical and mathematical tasks.
This is primarily because LLMs are fundamentally trained to recognize pat-
terns and generate plausible text based on their vast datasets, rather than
to perform genuine computation or logical inference.[3, 6] This limitation
is starkly highlighted by the issue of hallucinations, where models generate
confident but factually incorrect information. Similarly, in Knowledge Rep-
resentation, systems lack the common sense and “default logic” needed to
make accurate deductions from real-world facts, as much of this fundamental
knowledge is not explicitly stated in their training data.
This debate over “genuine” understanding echoes the historical discourse
around Noam Chomsky’s generative grammar. Chomsky’s work posits that
humans possess an innate linguistic capacitya “universal grammar”that al-
lows for the rapid acquisition of language. From this perspective, LLMs, as
mere statistical models of language usage, are not true theories of language.
They are considered to be “stochastic parrots” that mimic linguistic patterns
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without the underlying cognitive structures that enable human-like creativ-
ity, meaning-making, and understanding. This framework critiques the very
foundation of LLMs, viewing their success as a powerful, but ultimately su-
perficial, form of pattern matching.[3][6]
This nuanced reality is reflected in the Stanford AI Index Report 2024, which
offers a comprehensive view of the AI landscape. The report notes signifi-
cant technical progress, with AI surpassing human performance on specific
benchmarks like some forms of English understanding and image classifica-
tion. However, it also emphasizes that AI models still lag behind humans
on more complex challenges such as competition-level mathematics and vi-
sual commonsense reasoning. Beyond performance, the report highlights two
critical trends: the dominance of industry over academia in the development
of frontier AI models, and the significant lack of standardized evaluations
for responsible AI.[27] This lack of a common framework makes it difficult
to systematically compare the risks and limitations of leading models from
different developers, complicating efforts to ensure the safe and ethical de-
ployment of these powerful systems.[15]

2.3 Agentic Benchmarks

“Benchmarks are essential for quantitatively tracking progress in AI” and
agentic benchmarks are useful “to evaluate agents on complex, real-world
tasks”[32]. For LLMs, the most common agent benchmarks are SWE-Bench
which is specific to software development and assesses agents’ ability to solve
real problems on GitHub, GAIA (General AI Assistants) which requires per-
forming a wide range of tasks such as browsing the web to retrieve infor-
mation, using software, summarizing information and logical reasoning, We-
bArena which requires to perform e-commerce, interacting on forums, writing
collaborative code development and content management.
“These benchmarks typically measure agent capabilities by evaluating task
outcomes via specific reward designs. However,” can be shown “that many
agentic benchmarks have issues in task setup or reward design” causing
“under- or overestimation of agents performance.”[32]
Recent studies have tested the reliability of agentic benchmarks and then
proposed some guidelines, such as the ABC (Agentic Benchmark Checklist)
which assesses task validity, outcome validity and the benchmark reporting.
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Figure 8: The table above shows the agentic benchmarks assessed, below the
graphs of the evaluation results. Source: [32]

Applying this checklist to evaluate the agentic benchmarks in the above
figure, it can be seen that 7 benchmarks violate task validity, 7 violate out-
come validity, and all 10 have limitations in reporting.[32]

My paper does not claim to create a reliable benchmark, but rather it tests
a small number of features. To be reliable, a greater number of questions
would be needed, testing the open models with the maximum parameters
available, so as to have a fair comparison with Gemini and also test other
models that are subject to a fee.

2.4 ChatGPT

ChatGPT is a generative chatbot developed by OpenAI and it is actually
based on GPT-5, which like the previous models is a Transformer-style model
pre-trained to predict the next token in a document, using both publicly
available data (such as internet data) and data licensed from third-party
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providers. The model was then fine-tuned using Reinforcement Learning
from Human Feedback (RLHF).[23]
GPT-4, like the other models on which chatbots are based, it is not fully
reliable (e.g. can suffer from hallucinations), has a limited context window,
and does not learn from experience.[23]
Many risks are known to OpenAI, and as the technical report shows, they try
to mitigate them. Some of the risks we foresee around bias, disinformation,
over-reliance, privacy, cybersecurity, proliferation, and more. It also describes
interventions we made to mitigate potential harms from the deployment of
GPT-4, including adversarial testing with domain experts, and a model-
assisted safety pipeline.[23]
The adversarial testing with domain experts is used to identify and mitigate
GenAI risks with the cooperation of specialists. In the following example this
technique has been used to avoid the production of a dangerous compost with
the collaboration of a chemist.

Figure 9: Example of mitigation using Adversarial Testing with domain ex-
pert. Source: [23]

Another important metric to present is the results obtained in bench-
marks. In the human validated subset of SWE-bench: SWE-bench-verified,
with a pass@1 policy which means the model has to fix an issue in a code
with a single attempt, results have improved in the new experimental models.
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Figure 10: MLE-Bench-30 with pass@1 policy results. Source: [21]

MLE-bench, instead, evaluates an agent’s ability to solve Kaggle chal-
lenges. Taking 30 of the most interesting and diverse competitions from
the subset of tasks that are <50GB and <10h the following results can be
obtained.

Figure 11: MLE-Bench-30 verified with pass@1 policy results. Source: [21]

“SWE-Lancer evaluates model performance on real-world, economically
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valuable full-stack software engineering tasks including feature development,
frontend design, performance improvements, bug fixes, and code selection.
For each task, we worked with vetted professional software engineers to hand
write end-to-end tests, and each test suite was independently reviewed 3
times.”[21]
Individual Contributor Software Engineering (IC SWE) Tasks, instead, mea-
sure model ability to write code.

Figure 12: IC SWE-Lancer Diamond set, July 17th 2025 version, with pass@1
policy results. Source: [21]

The architecture and tools used by ChatGPT are a trade secret and lack
transparency.

2.5 Gemini

Gemini is an LLM developed by Google. The most recent versions are the
2.X model family which, like version 1.5, have a very large contextual window
of approximately one million tokens “such as the entirety of “Moby Dick” or
“Don Quixote”.”[10]
Gemini is multimodal since version 1.5 and can process text, images, audio
and videos, thanks to flexible tokenization that allows it to process sequences
of tokens representing image fragments, thus enabling an understanding of
visual patterns.
Furthermore, models from version 1.5 onwards are sparse mixture-of-experts
(MoE). “Sparse MoE models activate a subset of model parameters per input
token by learning to dynamically route tokens to a subset of parameters (ex-
perts); this allows them to decouple total model capacity from computation
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and serving cost per token.”[10]
This technique was introduced in 2017 after Google published Outrageously
Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer[26]
enabling the creation of neural networks specialized in specific domains on
which tokens belonging to them are routed. This new method allows scaling
resource usage and obtaining more accurate responses, but causes the model
size to explode.
The models are divided into pro, flash, and thinking. Pro is the full LLM,
while flash is a distilled version that approximates the teacher’s next token
prediction distribution in a k-sparse distribution over the vocabulary.
Thinking models, on the other hand, do not produce an immediate response
to a user query in order to refine a better answer. “Gemini Thinking models
are trained with Reinforcement Learning to use additional compute at infer-
ence time to arrive at more accurate answers. The resulting models are able
to spend tens of thousands of forward passes during a thinking stage, before
responding to a question or query.”[10]

Figure 13: Technical details comparison of Gemini 2.X model family and
Gemini 1.5.
“Support tool use?” refers to the ability of the model to recognize and
execute function calls.
* In 22/5/2025 limited to Experimental or Preview. Source: [10]

Now let’s proceed to the comparison between Gemini versions, which will
be useful afterwards to compare the results obtained in the tests performed
in the experimental part of this thesis.
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Figure 14: Graphical representation of benchmark results for models 1.5 flash
and pro, 2.0 flash, and 2.5 flash and pro. Source: [10]

While some benchmarks show a certain similarity between versions 1.5
and 2.0 of the Flash model, probably due to the distillation process, version
2.5 Flash shows a good margin for improvement.
On the other hand, the comparison between versions 1.5 and 2.5 of the Pro
model shows a clear increase in results.

The benchmarks are divided into more detailed categories below.
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Figure 15: Benchmark results divided by categories. Source: [10]

This figure is particularly useful because Factuality and Reasoning are
categories also considered in this study, while Code was addressed using the
Program of Thoughts methodology.

In the Gemini 2.5 technical report, to test whether the model was agentic,
the Pro version was used to complete Pokmon FireRed.
Completing the game in a reasonable amount of time could have effectively
demonstrated an approximation of human level, as despite its simplicity, it is
a puzzle that requires immersion in the context, defining relative objectives,
and completing them within the restrictions imposed by the game. However,
the results were disappointing.
Gemini took just over 800 hours on its first attempt and just slightly over
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400 hours on a second attempt, in which it was significantly assisted.[10]

Figure 16: Progression of the Gemini Plays Pokmon agent through the game,
across two runs. Run 1 was the development run where changes to the
harness were performed. Run 2 is the fully autonomous run with the final
fixed scaffold. Both runs have the same starter (Squirtle). The events are
ordered on the y-axis by the order they happened, following the order of Run
2 when there is a conflict. Notably, the GPP agent additionally went through
the difficult (and optional) Seafoam Islands dungeon in Run 2, while in Run
1, GPP reached Cinnabar Island via Pallet Town and Route 21. Source: [10]

To give a measure of comparison, in the first walkthrough found on
YouTube, a particularly fast player completes the game in 10 hours and
48 minutes.[25]
To find a negative comparison, by pressing keys at random, the game can
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be completed in about 3,600 hours, as demonstrated by a goldfish that ac-
tivates commands in the game through its random movements thanks to a
device that converts the fish’s position in the aquarium into a predefined
command.[8]
So, the human-assisted Gemini run is 40 times slower than a quick comple-
tion and 9 times faster than complete randomness. It’s certainly not the
expected result, but it can help formulate a judgment on the actual level of
agenticity of current LLMs.

2.6 Gemma

Gemma is an LLM developed by Google. It is a multimodal lightweight open
model, ranging in scale from 1 to 27 billion parameters.
The models in Gemma family “are designed to run on standard consumer-
grade hardware such as phones, laptops, and high-end GPUs.”[29]
Gemma3 models follows the general decoder-only transformer architecture.[30]
They are long context: the models supports a length of 128K tokens, with
the exception of the 1B model, which has a 32K context window.
The final models (students) are obtained by distilling the original model
(teacher), during the pre-training, by reducing to the 256 most probable out-
puts (logits) per token. This has been performed minimizing the prediction
loss in the probability function by cross-entropy loss.
“We sample 256 logits per token, weighted by teacher probabilities. The stu-
dent learns the teachers distribution within these samples via cross-entropy
loss. The teachers target distribution is set to zero probability for non-
sampled logits, and renormalized.”[29]
After the initial pre-training, the models were produced by fine-tuning the
raw checkpoint in standard formats: Gemma3 1B, 4B, 12, and 27B, using
Quantization Aware Training (QAT).

Gemma3 has improved significantly compared to the previous version.
However, even the new version is not comparable to Gemini, especially with
the decreasing of parameters, as shown in benchmarks.

31



Figure 17: Performance of instruction fine-tuned (IT) models compared to
Gemini 1.5, Gemini 2.0, and Gemma 2 on zero-shot benchmarks across dif-
ferent abilities. Source: [29]

2.7 Llama

Llama is a multimodal LLM owned by Meta and based on the Transformer
architecture. Llama 3 is one of the latest models available, with a context
window of 128K tokens and versions scaled to 8B, 70B, and 405B. It was
pre-trained on approximately 15T multilingual tokens, and a standard dense
Transformer model architecture was used instead of a mixture-of-experts
model to scale the model development process. Post-training is relatively
simple and consists of supervised fine-tuning (SFT), rejection sampling (RS),
and direct preference optimization (DPO).[13]

32



Figure 18: The table compares the performance of the 8B, 70B, and 405B
versions of Llama 3 with that of competing models. We boldface the best-
performing model in each of three model-size equivalence classes. ∆ Results
obtained using 5-shot prompting (no CoT). ◁ Results obtained without CoT.
⋄ Results obtained using zero-shot prompting. Source: [13]

2.8 National Institute of Standards and Technology
(NIST) AI risk management framework

The NIST is an agency part of the U.S. department of Commerce which part
of its purpose is to provide standards and guidelines. Since 2014, when it
published the NIST cybersecurity framework, it began to deal with manag-
ing and reduce cybersecurity risks.
NIST has developed the AI risk management framework, the first publication
was in January 2023, which purpose is to manage risks to individuals, organi-
zations and society associated with artificial intelligence.[1] In this framework
the last available publication is NIST AI 600-1 of July 2024 [2], in which GAI
risks are categorized as follow:

1. CBRN information or capabilities: provide information or capabilities
related to chemical, biological, radiological or nuclear (CBRN) weapons
and make it easier for individuals without specialized knowledge the
access.
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2. Confabulation: also known as hallucinations, the production of false
content presented as fact.

3. Dangerous, violent or hateful content: provide violent, inciting, radi-
calizing, or threatening content.

4. Data privacy: leakage of sensitive data that can be reproduced from
the training data.

5. Environmental impact: Impacts due to high compute resource utiliza-
tion in training or operating GAI models, and related outcomes.

6. Harmful biases or homogenization: amplification of biases possibly due
to non-representative training data, undesired homogeneity which may
lead to ill-founded decision-making.

7. Human-AI configuration: interactions which can result in the human
inappropriately anthropomorphizing GAI systems.

8. Information integrity: generate content which may not distinguish fact
from opinion or fiction.

9. Information security: simplify cyber attacks using GAI systems as a
tool.

10. Intellectual property: production of licensed content without authoriza-
tion, which may be present in the training data.

11. Obscene, degrading and/or abusive content: production of child sexual
abuse material or non consensual intimate images.

12. Value chain and component integration: non-transparent integration of
third-party components.

Confabulation can also be defined as hallucination, which can be de-
scribed as similar to how humans sometimes see figures in the clouds or
faces on the moon.[14] Both terms risk anthropomorphizing the LLM, so the
name bullshitting has been proposed to describe when it invents false infor-
mation.[19]
The term bullshit has been introduced into the philosophical lexicon by G.
Frankfurt in the book On Bullshit, in which he understands bullshit to be

34



characterized not by an intent to deceive but instead by a reckless disregard
for the truth, thus defining bullshitting as any utterance produced where
a speaker has indifference towards the truth of the utterance and knowing
that ChatGPT is not designed to produce true utterances; rather, it is de-
signed to produce text which is indistinguishable from the text produced by
humans. It is aimed at being convincing rather than accurate. The basic ar-
chitecture of these models reveals this: they are designed to come up with a
likely continuation of a string of text, the conclusion must be that ChatGPT
is a bullshit machine because the outputs it produces are indifferent to the
truth.[19]

35



3 Methodology

In this study, 22 questions were formulated and submitted multiple times to
different LLMs.
The questions can be divided into three main categories: reasoning, factual-
ity, and sequential problem solving.
Reasoning is a category that seeks to understand problem-solving skills in
logic and math problems. This category can be divided into three subcat-
egories: mathematical reasoning with some exponential problems, common
math problems containing some math exercises, and sudoku, which investi-
gates the agent’s ability to solve them.
Factuality contains some questions on general knowledge, reasoning, and un-
derstanding of reality. It can be divided into factual pitfalls, which contains
some general knowledge traps, and Russell’s theory of descriptions, which
investigates the understanding of the logic of human language.
Sequential problem solving, on the other hand, is inspired by Sussman’s
anomaly to understand the agent’s ability to solve problems that require in-
terleaved planning. The problems investigated in this category are: block
world, Hanoi tower, reordering stacks, and wolf, goat, and cabbage.
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Figure 19: Categories and subcategories of questions submitted to LLMs.

3.1 GAI Goals

The categories analyzed can be traced back to certain AI goals, the most rel-
evant of which are: knowledge representation, natural language processing,
reasoning and problem solving, planning and decision making.
Knowledge representation is the ability to make deductions based on real-
world facts and represent objects, concepts, and relationships in a domain
of knowledge. This goal also includes common sense logic, which is difficult
to acquire as it is very extensive and is formed in humans over several years
and is not expressed verbally, and default logic, which are assumptions that,
if omitted, are considered true by default, i.e., if X is a bird, we assume that
it flies unless otherwise specified.
Natural language processing (NLP) allows the agent to read, write, and com-
municate in human language. This is probably the most advanced goal,[27]
even though agents are often unable to process the common sense contained
in language.
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Figure 20: In the context of NLP, an example of how a verbal pitfall causes
a misinterpretation of the meaning of the word “survivors”.

Reasoning and problem solving is the ability to solve puzzles and make
logical deductions.
Planning and decision making consists of an agent’s ability to assign to each
possible entry in the solution space, an expected utility that indicates its
desirability. In classical planning, the agent knows exactly what the effect
of any action will be. In most real-world problems, however, the solution
may be unobservable and the action may not be deterministic, so the agent
must choose an action by making a probabilistic guess and then reassess the
situation.

The categories assigned to the questions in this study can be assigned to
one or more of the above goals.
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Figure 21: How the defined categories can fall within the goals

3.2 Prompt Engineering Strategies

Prompting methodologies are techniques used to route LLMs reasoning in
certain directions with the aim of achieving more accurate outputs.
In this study, three prompting methodologies were applied: one-shot (OS),
Chain of Thought (CoT), and Program of Thought (PoT).
In all three methodologies, no examples of solutions were provided, nor were
any solutions suggested, but the problems submitted were explained exten-
sively. In some questions, the nature of the problem was concealed to prevent
the LLM from tracing the solution back to a predetermined algorithm. An
example is the Tower of Hanoi problem, which in one case was obscured be-
hind another name but still provided a complete explanation of the rules.
The one-shot methodology involves asking the LLM to provide a direct an-
swer in a predetermined format, without producing extensive reasoning, as
is the default for most LLMs.
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Figure 22: This image is an example of the one-shot (OS) methodology as
used in this study.

3.2.1 Chain of Thought (CoT)

Chain of thoughts is a prompting methodology that encourages extended
thinking by the LLM. The two contrasting methodologies are few-shot-CoT
and one-shot-CoT.

Figure 23: Example inputs and outputs of GPT-3 with (a) standard Few-
shot, (b) Few-shot-CoT, (c) standard Zero-shot, and (d) Zero-shot-CoT.
Source: [17]
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The two contrasting methodologies are few-shot-CoT and one-shot-CoT.
Few-shot involves providing a small set of examples to enable in-context
learning and thus show the model the solution patterns to follow.
One-shot, on the other hand, does not provide examples but asks the model
to engage in extensive reasoning to arrive at the solution and can be applied
by simply adding “Let’s think step by step” before each answer.[17]

Zero-shot CoT was used in this study. In fact, CoT was first applied by
asking the model to respond step-by-step with extensive reasoning, and in a
subsequent question, it was asked to refine the output by keeping only the
final result so that the answer could be interpreted more simply.

Figure 24: This image is an example of the chain of thought (CoT) method-
ology as used in this study.
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3.2.2 Program of Thought (PoT)

Program of Thought is a prompting methodology that consists of asking the
model to generate code that solves the problem. The code produced will
then be executed by an external compiler.
This methodology allows the LLM to be freed from the computation and
syntax of human language, which is much more complex than that of ma-
chines, and instead focus on reasoning.

Figure 25: Comparison between Chain of Thought and Program of Thought.
Source: [5]

Program of thought was used in this study by asking the model to gen-
erate Python code, which was then directly executed externally using the
exec() function inserted in a try: ... except Exception as e: block in order
to handle any errors in the generated code. An 80 seconds timeout was also
used to prevent infinite executions.

import multiprocessing

import queue
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import re

from contextlib import redirect_stdout

from io import StringIO

from multiprocessing import Process

def exec_generated_code(my_queue: multiprocessing.Queue , code

: str):

answer = re.sub(r"‘‘‘python" + "|" + r"‘", "", code)

try:

out = StringIO ()

with redirect_stdout(out):

exec(answer ,dict())

solution = re.sub("[#@?]", "", out.getvalue ())

except Exception as e:

print("The LLM wrote a wrong src , the following

exception has raise :\n

" + str(e) + "\n",

flush=True)

solution = "#"

my_queue.put(solution)

def launch_generated_code(answer: str , account: str) -> str:

my_queue = multiprocessing.Queue ()

exec_p = Process(target=exec_generated_code , args=(

my_queue ,answer), name =

account + "

_exec_generated_code")

exec_p.start ()

try:

new_answer = my_queue.get(timeout=78.0)

except queue.Empty:

new_answer = "@"

print("In PoT the execution of the code timeout , no

code produced.", flush

=True)

exec_p.join(timeout=2.0)

if exec_p.is_alive ():

exec_p.terminate ()

exec_p.join(10)

if exec_p.is_alive ():

exec_p.kill()

print("exec killed.",flush=True)

43



exec_p.close ()

return new_answer

3.3 Experimental Design

The study consists of a total of 22 questions, categorized as shown in figure
19.
Reasoning consists of 6 questions, 3 of which are mathematical reasoning
questions that mainly consist of exponential problems that cannot be found
online and whose solutions are not obvious.
Common math problems, on the other hand, are two problems on calculat-
ing interest that are easy to solve, as they only require the application of a
formula.
The last category, Sudoku, consists of a single, very easy sudoku puzzle that
must be solved. For the Reasoning category, it was possible to apply the
prompting methodologies: Chain of Thought and Program of Thought.
Factuality consists of 6 questions: 4 in factuality pitfalls and 2 in Russell’s
Theory of Descriptions. The latter is a theory of the philosophy of language,
which for simplicity in this field of application can be summarized by stating
that if an entity does not exist and a description is assigned to it, the result-
ing assertion cannot be defined as either false or correct but belonging to a
third category.
Sequential problem solving, on the other hand, contains 10 questions: 2 on
the wolf, goat, and cabbage problem, 2 on Blocks world, 4 on the Hanoi
tower, and 2 problems on reordering a stack.
All these problems have in common the need to manage multiple steps that
can cancel each other out, as in Sussman’s anomaly. The puzzles have vary-
ing degrees of difficulty and obfuscation of the problem.
In this latter category, the chain of thoughts methodology was used for
prompting.

This 22 questions were submitted to 3 models.
Gemini was accessed via the exposed APIs, using 13 Google free tier accounts
in parallel to exceed the rate limits. The following versions were tested: 1.5
flash 002, 1.5 flash 8B 001, 2.0 flash lite 001, 2.0 flash 001, and 2.0 flash
thinking exp.
Gemma and Llama, on the other hand, were hosted locally using Ollama,
an open-source software that simplifies deployment and management. The
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versions tested are Gemma 3 1B and 4B, Llama 3.1 8B, Llama 3.2 1B and
3B.

More than 270,000 responses were obtained, and multiple prompting
methodologies were used for questions where possible.
Prompting was carried out using three methods:

• One Shot (OS): the LLM was prompted to provide only the final an-
swer directly in a single turn.

What is the maximum point in the interval x = 0 and x = pi of the function
y = x*sin(x) ? Answer only with the coordinates in the form: (x0,
y0) and avoiding adding more text!

• Chain of Thought (CoT): involved a two-turn interaction:

1. The LLM was first prompted to exhibit extensive reasoning

2. A subsequent, separate prompt then instructed the LLM to output
only the final correct result

1- First turn
What is the maximum point in the interval x = 0 and x = pi of the function
y = x*sin(x) ? Decompose the problem as you solve it and then print
the coordinates in the form: (x0, y0).
2- Second turn
Write only the coordinates in the form: (x0, y0) and avoiding adding more
text!

• Program of Thought (PoT): the LLM was prompted to generate a
complete Python program designed to solve the given problem. The
generated code was then run externally in a controlled environment to
obtain and verify the final solution.

What is the maximum point in the interval x = 0 and x = pi of the function
y = x*sin(x) ? Write a Python program to solve this problem; the answer
must be formatted so that an external compiler can run it as is. Just write
the code! The submitted code should return only the solution as output,
avoiding adding other characters.

The process was automated using a Python program, which also com-
pared the correctness of the responses, taking into account acceptable mar-
gins of error.
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4 Results

The results and programs used, which will be presented below, can be found
in the GitHub linked to this project.
Requests made to LLMs were automated using a Python program that man-
ages remote connections with Gemini APIs and local connections with Ol-
lama. The results produced are collected by the same program in a text file.
The raw response files are then processed by another Python script that
compares the LLMs’ responses with the correct answers and returns a CSV
file that is subsequently processed by Basic macros to obtain the aggregated
data and graphical results.

For each LLM examined, graphs are presented whose data may have
different levels of aggregation and are prepared as follow:

1. Individual Question Accuracy: for each question, the percentage
of accuracy was calculated based on multiple repetitions or attempts
of the same.

2. Account-Level Aggregation: the median accuracy for each ques-
tion was then determined by considering the results across different
accounts.

3. Category-Level Aggregation: finally, the mean of these median
accuracies was calculated for all questions within each specific problem
category.

The graphs will have account-level aggregation for the categories presented
below and category-level aggregation for the final benchmarks.

The following questions omit requests for output formatting and prompt-
ing methodology. For more details, see the complete questions in Cod-
ing/Questions in the GitHub repository.
Furthermore, the questions are invented to avoid them being found in the
model’s dataset.

4.1 Reasoning

This category contains various types of mathematical problems and was
solved using OS, CoT, and PoT methodologies.
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Gemini 2.0 flash thinking exp data with PoT is not available due to a data
loss and a subsequent further restriction of the rate limit for free tier accounts.

4.1.1 Mathematical Reasoning

This category contains rather complex mathematical problems that are sim-
ilar to real-world problems.
The three questions belonging to this category are as follows:

We want to fill a stadium with golf balls (whose volume can be aproximated
to 40cmˆ3). The balls inserted double with each insertion: 1 ball in the first
insertion, 2 balls in the second, 4 in the third, .... If at the 30th insertion the
stage is exactly half full, how may insertions are left to fill it?
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Figure 26: Impact of prompting strategies on cumulative accuracy by large
language model on question 1. Graph’s data are account-level aggregation.

On Gemini models, a clear improvement in results can be seen as versions
progress, but it should also be noted that this question has been tested on
Gemini since before the release of the 2.0 family and is likely to have been
included in the dataset for the new versions.
In Gemma and Llama, inconsistent results can be seen as the number of
parameters improves, with a prevalence of correct answers using the CoT
methodology, probably due to the simplicity of providing an intuitive answer
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and the difficulty of creating an effective solution algorithm.

What is the maximum point in the interval x = 0 and x = pi of the function
y = x*sin(x) ?
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Figure 27: Impact of prompting strategies on cumulative accuracy by large
language model on question 2. Graph’s data are account-level aggregation.

Good results can be seen with the CoT methodology and sometimes with
OS on the Gemini and Gemma models; it is likely that the solution can be
found directly in the dataset.
It is almost impossible to produce a working algorithm with the PoT method-
ology in all models.
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In a population, births are decreasing by 30 000 per year while annual deaths
are stable at 350 000. The current population is 60 000 000 and the number
of current births 350 000. How many years are required for the population
to halve assuming stability in trends?

Figure 28: Impact of prompting strategies on cumulative accuracy by large
language model on question 3. Graph’s data are account-level aggregation.

The problem is quite complex and only produces good results with PoT
in Gemini 2.0 flash.
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The good results obtained with OS in Gemini 2.0 flash thinking exp are prob-
ably random, given the results obtained with CoT in the same model.

4.1.2 Common Math Problems

The following problems are classic and can be solved by simply applying a
formula.
Here are the two questions in this category:

A 25-year-old person invests money with an annual interest rate of 5%. How
much must he invest now to have $1 million when he retires at age 65?
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Figure 29: Impact of prompting strategies on cumulative accuracy by large
language model on question 4. Graph’s data are account-level aggregation.

The results are excellent when using PoT with Gemini and with open
models with a sufficient number of parameters.
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A 25-year-old person invests money with an annual interest of 6 compounded
continuously. How much must he invest now to have $1 million when he
retires at age 65?

Figure 30: Impact of prompting strategies on cumulative accuracy by large
language model on question 5. Graph’s data are account-level aggregation.

As with the previous question, the results are excellent when using PoT
with Gemini and with open models with a sufficient number of parameters.
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4.1.3 Sudoku

Solve the sudoku in the image.
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Figure 31: Impact of prompting strategies on cumulative accuracy by large
language model on question 6. Graph’s data are account-level aggregation.

Gemini does not seem capable of solving Sudoku, even though it provides
a partially coherent, invented answer each time.
Open models were not used with images for technical simplicity.

4.2 Factuality

The questions in this category were resolved using the OS methodology, ex-
cept for the first one, for which CoT was also used.
Data relating to Gemini 2.0 flash thinking exp is only available for certain
questions due to a speed limit restriction for free accounts introduced during
the testing phase.
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4.2.1 Factual Pitfalls

This category contains some complex questions that aim to verify the accu-
racy of details and adherence to reality.

How many subsections of Article 140 of the Italian Constitution are there?

Figure 32: Impact of prompting strategies on cumulative accuracy by large
language model on question 7. Graph’s data are account-level aggregation.

A trick question that yields acceptable results, especially when using the
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CoT methodology.

How many months did it take Salvini to get a bachelor degree?

Figure 33: Impact of prompting strategies on cumulative accuracy by large
language model on question 8. Graph’s data are account-level aggregation.
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The results are inconsistent; it is likely that there is an overestimation of
correct responses caused by considering the model to be right when it does
not know or refuses to respond.

What is the sum of the different colors and columns in the flag of Moldova?
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Figure 34: Impact of prompting strategies on cumulative accuracy by large
language model on question 9. Graph’s data are account-level aggregation.

All models show difficulty interpreting flags with complex sections.
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Sum the number of horizontal stripes and the number of different colors in
the flag of Mozambique.

Figure 35: Impact of prompting strategies on cumulative accuracy by large
language model on question 10. Graph’s data are account-level aggregation.

As in the previous question, the models show difficulty interpreting flags
with complex sections.
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4.2.2 Russell’s theory of descriptions

In questions in thi s category, the correct answer is the third option, as the
assumption is incorrect.

The current king of France is dead.
Evaluate whether this statement is:
1- True 2- false 3- other
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Figure 36: Impact of prompting strategies on cumulative accuracy by large
language model on question 11. Graph’s data are account-level aggregation.

Despite all of Gemini’s incorrect answers, the open models achieve good
results.
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I find it pleasant to yawn as soon as I am awake, while yawning as soon as I
am asleep does not appeal to me.
Assuming that the interlocutor is not lying, the following statement is to be
considered:
1-True 2-false 3-other

Figure 37: Impact of prompting strategies on cumulative accuracy by large
language model on question 12. Graph’s data are account-level aggregation.

Very similar to the previous question, but with the total accuracy of the
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latest Gemini model taken into account.

4.3 Sequential Problem Solving

This category contains a total of 10 questions and shows how LLMs struggle
to plan when faced with overlapping plans.
Open LLMs and the Gemini 1.5 family did not achieve significant results,
having an accuracy close to zero.

4.3.1 Wolf, Goat and Cabbage

A farmer must carry a cabbage, a goat and a wolf across the river. The farmer
can carry only himself or himself together with only one of the other 3 at
a time. The cabbage, the goat and the wolf cannot cross the river without
the farmer. The cabbage and the goat cannot stay on the same bank in the
absence of the farmer. The goat and the wolf cannot stay on the same bank
in the absence of the farmer.
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Figure 38: Impact of prompting strategies on cumulative accuracy by large
language model on question 13. Graph’s data are account-level aggregation.

The Gemini 2.0 family seems to show some interesting improvements, but
as shown by the following question, when the problem is obscured, there is
a complete change of pace.
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Z must carry A, B and a C across two arrays, so that all three are on the
second array. Z can carry only himself or himself together with only one of
the other 3 at a time. A, B and C cannot change array without Z. A and B
cannot stay on the same array in the absence of Z. B and C cannot stay on
the same array in the absence of Z.

Figure 39: Impact of prompting strategies on cumulative accuracy by large
language model on question 14. Graph’s data are account-level aggregation.

The results obtained in this question show that by not allowing the model
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to refer back to a known problem, the quality of the proposed solution de-
creases significantly.

4.3.2 Blocks World

In this category too, the results of the two questions asked are rather disap-
pointing.
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Three blocks (labeled A, B, and C) rest on a table. The blocks must be
stacked such that block A is atop block B, and block B is atop block C. The
problem starts with the following configuration:

[B], [A, C], []

Block B is on the table in Stack 1 at the first position.
Block C (second position in stack2) is atop block A (first position), both in
Stack 2.
Stack 3 is empty.

A valid move is popping C from Stack 2 and pushing it onto Stack 3:

[B], [A], [C]

An INVALID move would be popping A because it is not at the end of the
array.

The goal configuration is [C, B, A] in one of the stacks, where C is at the
bottom, B is in the middle, and A is on top. Blocks can only be moved one
at a time, and each move follows a LIFO (Last In, First Out) policy:

A push operation adds an element only at the end of the array (no insertion
in the middle).
A pop operation removes an element only from the end of the array.

Solve this problem, following the restraints and going on until the exact
solution is reached or the 19th step is reached.
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Figure 40: Impact of prompting strategies on cumulative accuracy by large
language model on question 15. Graph’s data are account-level aggregation.
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The following exercise is about the “Sussman anomaly”: three blocks
(labeled A, B, and C) rest on a table. The blocks must be stacked such that
block A is atop block B, and block B is atop block C. The problem starts
with the following configuration:

[B], [A, C], []

Block B is on the table in Stack 1 at the first position.
Block C (second position in stack2) is atop block A (first position), both in
Stack 2.
Stack 3 is empty.

A valid move is popping C from Stack 2 and pushing it onto Stack 3:

[B], [A], [C]

An INVALID move would be popping A because it is not at the end of the
array.

The goal configuration is [C, B, A] in one of the stacks, where C is at the
bottom, B is in the middle, and A is on top. Blocks can only be moved one
at a time, and each move follows a LIFO (Last In, First Out) policy:

A push operation adds an element only at the end of the array (no insertion
in the middle).
A pop operation removes an element only from the end of the array.

Solve this problem, following the restraints and going on until the exact
solution is reached or the 19th step is reached.
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Figure 41: Impact of prompting strategies on cumulative accuracy by large
language model on question 16. Graph’s data are account-level aggregation.
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4.3.3 Hanoi Tower

In the following category, simplifying the consideration of poles as stacks
allows for an improvement in results in the most recent model among those
tested of Gemini.

Solve the example in the image of the Hanoi tower, in which three cylin-
ders are stacked on the first of three columns. Renaming L the largest
disk, M the medium one and S smallest one and Stack1 the source tower,
stack2 the helper and stack3 the destination. Write a maximum of 19 steps.
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Figure 42: Impact of prompting strategies on cumulative accuracy by large
language model on question 17. Graph’s data are account-level aggregation.

Solve this exercise of the Hanoi tower: there are three rods called stack1,
stack2 and stack3. Stack2 and stack3 are empty while in stack1 are stacked
three disks on the bottom the largest called L, on top of this one the medium
called M and on the top of the stack the smallest called S. The goal is to
stack in the same order all the disks in stack3. Solve the problem writing a
maxium of 19 steps
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Figure 43: Impact of prompting strategies on cumulative accuracy by large
language model on question 18. Graph’s data are account-level aggregation.
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Solve this problem that I just invented and called “poles and cylinders”:
there are three poles called stack1, stack2 and stack3. Stack2 and stack3
are empty while in stack1 are stacked three cylinders on the bottom The
largest one called L, on top of this one the medium called M and on the top
of the stack the smallest called S. The goal is to stack in the same order all
the cylinders. In order to move cylinders, certain rules must be followed:
cylinders can only be stacked in order of width from largest to smallest so
S or M can be on top of L, only S can be on top of M, and no cylinder can
be on top of S. In addition, cylinders can be moved from one pole to any of
the other two, but only the cylinder from the top of a pole can be removed
in order to move it, while those below are blocked as long as there is one on
top. Solve the problem writing a maxium of 19 steps
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Figure 44: Impact of prompting strategies on cumulative accuracy by large
language model on question 19. Graph’s data are account-level aggregation.

Solve the tower of Hanoi with 4 disks, naming the disks, from largest to
smallest: d1, d2, d3 and d4. Also name the source peg stack1, the auxiliary
peg stack2 and the destination peg stack3.
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Figure 45: Impact of prompting strategies on cumulative accuracy by large
language model on question 20. Graph’s data are account-level aggregation.

Adding a cylinder and thus complicating the problem causes correctness
to collapse, despite the simplification of considering the poles as stacks.
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4.3.4 Ordered Stack

A slightly modified version of Hanoi Tower is now proposed. Accuracy is
noted to be consistently close to zero.

Stacks are ordered queues whose main features in computer science are
the two operations: pop and push. Push inserts an element at the end of
the stack so that it is the last one, while pop removes the last inserted
element. Example: by pushing an element B into a stack from the initial
configuration [A] the result will be: [A,B]

There are three corresponding stacks:
Stack1: [A,B,C] (Any pop will remove C, which is the last element.
Stack2: []
Stack3: []

The problem must be solved by executing the pop and the corresponding
push in the same step, since they must be considered as a single transaction.

The target configuration is [],[],[A,B,C].

There is an additional rule: elements must always be stacked alphabetically
in each stack, so the valid configurations of a stack are only: [] or [A] or
[A,B] or [A,C] or [A,B,C] (The order of the elements cannot be changed).

Solve the problem by writing a maximum of 19 steps
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Figure 46: Impact of prompting strategies on cumulative accuracy by large
language model on question 21. Graph’s data are account-level aggregation.
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There are 3 stacks whose graphic representation has the elements ordered
from left to right: [first inserted, second inserted, third inserted, 4th inserted,
...], two are empty while one contains 4 elements:
Stack1: [B,A,D,C]
Stack2: []
Stack3: []
Using only pop and push operation coupled (execute both the operations in
the same step) reach this final configuration:
Stack1: []
Stack2: []
Stack3: [A,B,C,D]
Solve the problem by writing a maximum of 19 steps
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Figure 47: Impact of prompting strategies on cumulative accuracy by large
language model on question 22. Graph’s data are account-level aggregation.
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4.4 Benchmark

By resizing the data to category-level aggregates, it is possible to obtain more
general benchmarks which, when applied only to the most recent versions of
the models, can show us the state of the art.
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Figure 48: Impact of Prompting Strategies on Cumulative Accuracy by Prob-
lem Categories. Graph’s data are category-level aggregation.
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5 Conclusions

The results, analyzed by area, show that in mathematical reasoning, all
tests show an improvement in Gemini’s mathematical problem-solving skills
as versions progress. Figure 27 is a clear example of a mathematical ques-
tion for which Program of Thought (PoT) is inefficient and other prompting
methods achieve excellent results. In this category, Gemma and Llama ob-
tain inconclusive results, likely because the tests’ difficulty is not adequate
for the parameters of the models used.

In common math problems, Gemini achieved excellent results and
the PoT methodology significantly increases the accuracy of the answers.
Gemma and Llama show some difficulties in this category, however the use
of PoT enabled the models to achieve promising results.

Sudoku was only tested on Gemini, and in all versions, the accuracy was
0%. The answers provided were always fairly consistent with the rules of
Sudoku but completely invented and incorrect.

Some difficulties also emerge in factual pitfalls. In fact, especially with
the one-shot (OS) methodology, the results are always close to being com-
pletely incorrect. Special mention should be made of figure 32, in which it
appears that the zero-shot chain-of-thought (CoT) methodology allows rea-
soning that overcomes the pitfall. However, it should be noted that the data
are highly inconsistent: accuracy decreases as Gemini versions progress and,
even in open models, remains in the 3% − 9% range, except for Llama 3.2
3B, which reaches 33% with CoT. It should also be noted that the results
in figures 32 and 33 may be overestimated since the correct answer is “0”
and in some cases the agent’s refusal to answer may have been considered a
correct answer.

In the Russell’s theory of descriptions category, despite the notice-
able difficulties, the open models with more parameters and Gemini 2.0 flash
show promising results. The latter agent even reaches the threshold of total
correctness in one case. On the other hand, the Gemini 1.5 family and open
models with few parameters always score 0%.

In sequential problem solving, the ability to manage overlapping rea-
soning plans in planning was tested. The results are quite clear. In fact,
apart from figure 38, which shows a progressive improvement in accuracy
in the Gemini models, reaching 54% for Gemini 2.0 flash thinking exp, in
all other cases, the models hardly exceed the 2% threshold. In fact, in the
figures following 38, Gemini 2.0 flash only significantly exceeds the threshold
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in figures 43 and 44, with 35% and 24% respectively.
In conclusion can be inferred that LLMs have difficulty producing con-

sistent answers when faced with problems for which they were not designed.
It is therefore necessary to raise awareness of the areas of use in which their
use is appropriate.

The study presented has considerable room for improvement:

• It analyzes only 3 of at least 7 goals of artificial intelligence.

• There are few questions proposed for each category.

• The LLMs analyzed are only those that do not require payment and
can be hosted on low-cost hardware architecture.

Furthermore, the areas of use of LLMs are constantly increasing, often with-
out studies to guarantee their safety. The tests conducted in this study seek
to move toward better identifying the level of robustness of new LLMs.

Given the limitations described above, it is challenging to compare the
tests performed in this study with public benchmarks. By analyzing Gemini,
figure 15, we can see a clear improvement in mathematical problem-solving
ability: between version Flash 1.5 and Flash 2.0, there was a 46% increase
in HiddenMath-Hard and a 102% increase in AIME 2025. Similarly, a sig-
nificant improvement between the two models can also be seen in figures 26
and 28 of the benchmark presented here.
Instead, the peculiar nature of the questions in the factuality category and
the impossibility of finding a counterpart for sequential problem solving make
it impossible to compare them with public benchmarks.
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