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Abstract

This research presents a novel approach to interpretable machine learning
through the development of an evolutionary algorithm-based concept refinement
pipeline for handwritten digit classification. The work addresses a fundamental
challenge in explainable artificial intelligence: automatically discovering optimal
granularities for interpretable concepts while maintaining or improving classification
performance.

The pipeline relies on three core components: a visual concept detector, a
concept bottleneck model, and evolutionary algorithm for concept refinement. The
visual concept annotator transforms raw MNIST digit images into binary concept
annotations for five visual concepts (loops, vertical lines, horizontal lines, diagonal
lines, and curves) using computer vision techniques such as convexity analysis,
Sobel edge detection, Hough line transforms, and curvature analysis. Adaptive
thresholding based on 75th percentile scoring converts continuous measurements to
binary annotations, achieving 25% detection rates for most concepts, even though
curve detection failed due to algorithmic saturation.

The concept bottleneck model implements a true interpretable bottleneck ar-
chitecture where all classification decisions flow only through the learned concept
representations. The neural network uses a multi-stage design: an image encoder
generating 64-dimensional concept embeddings, concept prediction layers with
sigmoid activation, and a minimal digit classifier accepting only concept predictions
as input. Multi-objective training simultaneously optimizes concept prediction
accuracy and digit classification performance using equal-weighted binary cross-
entropy and sparse categorical cross-entropy losses. Training results demonstrate
excellent digit classification performance (97.8% accuracy) despite the bottleneck
constraint, while concept prediction accuracy remained modest (48.6%), indicating
substantial room for evolutionary improvement.

The evolutionary algorithm represents the core innovation, implementing sophis-
ticated optimization to discover optimal concept granularities through clustering
refinement. Each individual encodes complete clustering configurations specifying
subdivision strategies for all concepts simultaneously. The system integrates both
K-Means and DBSCAN clustering algorithms with adaptive parameter estimation
and intelligent constraint handling. Fitness evaluation employs Random Forest
classification on evolved binary concept features, using computational optimization
strategies including subset sampling to enable efficient population-based search.

Experimental results reveal significant performance differences between clus-
tering approaches. K-Means clustering achieved superior results with a +32.9



percentage point improvement over original concepts (from 31.4% to 64.3% ac-
curacy), discovering an optimal configuration of 7 loop clusters, 9 vertical line
clusters, 6 horizontal line clusters, and 8 diagonal line clusters. The evolutionary
algorithm demonstrated excellent convergence characteristics over 15 generations
with stable optimization behavior. PCA visualizations confirmed high-quality clus-
ter separation with concept-specific granularity patterns reflecting the complexity
of different visual features.

In contrast, DBSCAN clustering achieved more modest improvements (+4.9
percentage points to 36.2% accuracy) despite discovering higher granularity config-
urations (up to 45 horizontal line clusters). The density-based approach produced
extensive noise point distributions and more volatile convergence patterns, suggest-
ing that concept embeddings favor centroid-based over density-based clustering
characteristics.

Concept distribution analysis was able to verify the level of correctness of the
original concepts, with loops predominating in digits 0, 6, and 8, vertical lines in
digits 1, 4, and 7, and horizontal lines in digits 7 and 4. T-SNE visualizations
revealed sophisticated embedding space structures supporting meaningful clustering
operations, confirming that the concept bottleneck model successfully learned
discriminative representations.

The research demonstrates that evolutionary algorithms can automatically dis-
cover refined concept subdivisions that significantly enhance interpretable classifi-
cation performance. The 32.9 percentage point improvement achieved by K-Means
clustering represents substantial progress toward bridging the interpretability-
performance gap in machine learning systems. While evolved concepts (64.3%
accuracy) did not match the concept bottleneck model’s performance (97.8%) or
raw pixel classification (91.2%), they provide complete interpretability through
human-understandable visual concepts.

This work establishes evolutionary concept optimization as a promising direction
for automated interpretable machine learning, offering a systematic approach to
concept granularity discovery that reduces reliance on manual concept engineering.
Future research directions include addressing curve detection limitations, exploring
alternative clustering algorithms, and extending the approach to more complex
visual domains beyond handwritten digits.
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Chapter 1

Introduction

Artificial Intelligence is experimenting a remarkable shift with the growth that
deep neural networks are receiving, especially with the outstanding results noted in
diverse fields of study ranging from image recognition to natural language process-
ing. However, the progress achieved in the computation of information has created,
on the hand, a rather important challenge related to the opacity of these highly ar-
ticulated technological systems’ decision making processes. Modern neural network
models are often portrayed as a “black box” whose internal mechanisms remain
largely difficult to comprehend, even to the people who designed their architectures.
This limitation highlights integral problems where interpretability are essential,
especially in classification tasks in domains such as medicine or autonomous vehicles.

In order to remediate the issue at hand, Explainable Artificial Intelligence be-
came a fundamental discipline at orchestrating methods in to comprehend and
clearly interpret deep neural networks system decisions. We do find among these
promising methods; Concept Bottleneck Models represent significant innovative
progress that focuses on enforcing all predictions to go through human-interpretable
visual concepts. Nonetheless, these models are traditionally correlated with prede-
fined concepts that are humanly annotated and may prove to be too general or
incapable to encapsulate the complexity of visual patterns that are needed for an
optimal classification.

The crossing between machine learning interpretability and evolutionary opti-
mization presents a promising opportunity that helps mitigate these limitations.
Although the state of the art in evolutionary algorithms have shown great success in
“Automatic feature engineering” and “Neural architecture search”, their application
to “Concept refinement” in interpretable machine learning reside largely unexplored
for this matter.
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Introduction

The most important obstacle addressed within this dissertation lies in the rigidity
between model interpretability and classification performance in machine learning
systems. Actual concept bottleneck models, though provide some interpretability,
sustain important constraints that limit their practical effectiveness and strength.

To begin with, reliance on manually annotated concepts constitutes a significant
challenge in the development process, which then requires specific domain expertise
and notable trial-and error to distinguish appropriate concept lists from improper
ones. These predefined concepts usually work on generally defined granularity basis
that mis-captures distinctive visual patterns necessary for correct discriminative
classification. For example, the concept “has fur” associated to an image of a cat
may be insufficient to distinguish with other animals that have fur for that matter,
like rabbits or hamsters. Thus, missing implicit but important variations could
increase classification accuracy.

Secondly, current methods lack precise methodologies that help in finding op-
timal concept specifications. The choice that surrounds how to accurately detail
visual concepts remains largely intuitive, potentially leading to suboptimal concept
hierarchies that either oversimplify complex patterns located in visual concepts or
end up creating unnecessary distributed representations that affect interpretability.

Finally, the static nature of humanly defined concepts counters the process of
adaptive refinement based on learned representative embeddings, which means that,
once a concept is defined, it remains fixed throughout the training and deployment
phases, unable to evolve to patterns discovered during these processes. This tension
reduces the possibility of discovering any compelling concepts that could represent
learned embedding spaces by the neural network.

The focal point of the research conducted, thus, poses a critical question: How
can evolutionary algorithms be used to automatically discover emerging concepts
that enhance both interpretability and classification results in deep neural network
systems? This question contains several critical sub-problems: specification on
concept granularity, maintaining interpretability while rendering the model fun-
damentally discriminative, and implementing important evaluation decisions for
evolved concept and their hierarchies.

We try and answer these limitations and restrictions in five elaborated compre-
hensive sections that systematically develop, implement and evaluate the proposed
emerging evolutionary concept pipeline.

In the first section, literature review and theoretical foundations are provided
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Introduction

for a deep understanding of explainable artificial intelligence, concept bottleneck
models, and evolutionary optimization in machine learning. Clear and coherent
groundwork will establish necessary explanations that focus on the intersection
between interpretability and evolutionary computation, while notably identifying
the gaps that motivate the current research performed.

In the next section, we will present an extensive illustration of automatic concept
detection based on the MNIST dataset. It will also contain a technical analysis on
the design choices, adaptive thresholding that were adopted in order to present a
significant concept detection accuracy on the MNIST digits.

In the following part, we will then discuss the concept bottleneck model archi-
tecture and training with its complete implementation from the concept bottleneck
design to the multi objective training performed, followed by an analysis of the
embedding extraction mechanism and full understanding of the training framework.
An elaborated demonstration of how deep neural networks can show limitations to
provide interpretability while achieving great classification performances.

In the fourth section, we will introduce the evolutionary algorithm for concept
refinement which is the core methodological addition by presenting a thorough
description of the evolutionary framework, that ranges from genetic representation
strategies, fitness evaluation decisions and the integration of a clustering algorithm
that encapsulates the newly generated concepts. This section contains a compre-
hensive analysis of the design choices and optimization strategies.

The final section will conclude our discussion with an explanation of the ex-
perimental results and analysis of the information provided. The results provided
will present a detailed argumentation of the validity of the proposed approach
going from a comparative analysis of the clustering paradigms that were utilized to
a detailed evaluation of the generated concepts’ quality. This part will precisely
demonstrate the actual effectiveness of the evolutionary approach while providing
insights that highlight the relation between clustering algorithms and concept
embedding characteristics.

The thesis concludes with a comprehensive discussion of the contributions made,
the limitations that were present, and directions that future research could inter-
estingly conduct to enhance the current state that was reached within a broader
context that englobes both interpretable machine learning and evolutionary com-
putation research.
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1.1 Goal

The main goal of this research that has been conducted is to study whether evo-
lutionary algorithms can automatically discover refined visual concepts that can
improve interpretability while keeping an important classification performance in
deep neural networks, while specifically addressing the challenge between model
clarity and the accuracy of the predictions in Explainable Artificial Intelligence
(XAI).

This project aims to develop and validate a sequential three-stage pipeline that
removes the need for any extensive definition of concepts manually by actually
discovering optimal concept granularity though evolutionary optimization automat-
ically. It is also extremely crucial to consider maintaining complete explanation
of the model through a concept bottleneck architecture that forces all predictions
to flow exclusively through visual concepts such as loops,lines and curve that are
understandable by humans.

Additionally, the research performed focuses on demonstrating that evolutionary
algorithms can discover new emerging concepts that can find impressive classifi-
cation accuracy over baseline of manually-defined concepts, which establishes the
first integrated framework that combines both concept bottleneck models with
evolutionary algorithms that aims for automatic concept generation.

One of the key objectives of this study is to systematically evaluate and compare
K-Means clustering, a centroid-based technique, with DBSCAN clustering which is
more of density-based approach, all within the evolutionary framework. This will
allow us to determine which clustering technique works better with the concept
embedding spaces for optimal concept refinement. The expected results include
a pipeline that is able to contain visual concept annotation, concept bottleneck
modeling and evolutionary concept refinement, along with performance results that
demonstrates the effectiveness of evolved concepts. The analysis of the pipeline
will also represent the evidence that supports that the evolutionary algorithm
works well for automated concept discovery, as well as a comparison analysis of the
clustering algorithms and a foundation for future research.

By achieving these objectives, the research will demonstrate that interpretable
machine learning systems do not need to sacrifice significant performance for
interpretability, while also providing a practical way toward deploying AI systems
in critical domains such as medical diagnosis and autonomous vehicles where both
high accuracy and complete clarity on the results are extremely important.
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1.2 Structure of the thesis
This thesis is structured as follows:

• Chapter 1: Introduces the research problem of interpretable machine learning
and defines the objectives of evolutionary concept refinement.

• Chapter 2: Explains the previous literature present on explainable AI, concept
bottleneck models, and evolutionary algorithms which then establishes the
theoretical foundation for this work.

• Chapter 3: Describes the methodology, including visual concept detection
algorithms, concept bottleneck architecture, and evolutionary optimization
framework.

• Chapter 4: Presents experimental results comparing K-Means and DBSCAN
clustering approaches, demonstrating significant performance improvements
through evolutionary refinement.

• Chapter 5: Concludes with a summary of key findings and contributions to
interpretable machine learning.

• Chapter 6: Discusses limitations and outlines future research directions for
extending the evolutionary concept optimization approach.

5



Chapter 2

Background and State of the
Art

2.1 Explainable Artificial Intelligence: Founda-
tions and Evolution

The domain of Explainable Artificial Intelligence (XAI) was developed as a response
to the opacity that surrounds deep learning architectures. The “black-box enigma”
that comes within Deep Neural Networks interfere with the widespread utilization
of such powerful instruments. This can be widely seen within industries that adopt
extremely strict regulations where error margins must be immensely low. As a
result, there has been a significant expansion within the field of explainable AI
[1], that focuses on improving the comprehensive quadrant of deep learning systems.

The most crucial obstacles that are challenged by XAI lies in the tension between
complicated models and their interpretability. The impressive revolution of artificial
intelligence was represented by machine learning models that adopt traditional
approaches that operate like “black boxes”, where the mapping from input to the
desired output is completely opaque even to the designers of such complex archi-
tectures. This “obscurity” in comprehension became especially tricky in critical
applications to AI systems such as medical diagnosis, judicial decision-making, and
autonomous systems, where understanding the reasoning behind the decision that
is being taken is crucial for trust and accountability.

Explainable Artificial Intelligence literature has developed several taxonomies
that subdivide methods that help with interpretability. The most important dif-
ference lies between intrinsic interpretability methods, which are the main
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impetus behind a direct representation of neural network models, from post-hoc
explanation methods that try to explain already-trained models through diverse
methodologies and analysis.

Post-hoc explanation methods have been extremely important in the early stages
of XAI research, with feature attribution approaches representing the most widely
adopted category. Nowadays, the most publicly adopted domain in XAI is feature
importance methods. For a given data point, these practices assign a score that
displays the influence of each feature to the algorithm’s decision. The designated
features could be represented by a pixel, a patch or a word vector for instance.
Nonetheless, feature importance methods have shown to be strongly affected by
any perturbation done to the input vector or model parameters, experiments have
shown that these practices do not significantly increase human understanding or
trust in the functionality of the models in that sense [1].

The reliability problem that comes with these methods has been extensively rep-
resented, but on the other hand, the inconsistencies of these methods demonstrate
their fragility to input and model perturbations. Research has shown that the
4 interpretation of a neural network is intrinsically shaky with any small change
that is done to the model parameters [2] that may lead to drastically different
explanations for the same identical inputs.

Intrinsic interpretability practices, on the other hand, attempt to mitigate the
issues presented in the post-hoc ones by focusing on the added clarity into the
model architecture. This paradigm has gained a lot of popularity especially in
applications where understanding model reasoning is important.

A promising direction within intrinsic interpretability has gained a lot of attention
to try and solving the problem of interpretability of neural models. Concept-based
explanation approaches provide explanations in terms of human understandable
concepts instead of low-level features. This transition defines meaningful concepts
(such as “white wings” or “curved beak” in bird classification) rather than individual
pixels or words that resonates slower with human’s cognitive abilities.

Due to the obstacles that were discussed in the feature importance strategies,
the other two types of XAI approaches have been receiving a notable amount
of attention from model extraction approaches, and concept-based explanation
approaches. Model extraction approaches attempt to translate complex black-box
models into simple understandable models. On the other hand, Concept-based
explanation approaches present explanations in terms of high-level concepts, by
extracting this concept information from model’s latent space.
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The work performed on Testing with Concept Activation Vectors (TCAV)
quantifies the degree to which user-defined concepts influence model predictions.
It works through concept activation vectors located in the model’s representation
space. However, it is important to note that TCAV needs predefined concepts and
operates as a post-hoc analysis tool rather than building interpretability into the
model architecture itself [1].

Based on these foundations, researchers have developed awareness around “con-
cept based explanations” that reflect on whether a given set of concepts contains
sufficient information for accurate classification [2]. This work emphasized an
important obstacle on how to determine the necessary concepts that are plausibly
enough for a certain classification task.

2.2 Concept Bottleneck Models: Architecture
and Theoretical Foundations

The presentation of Concept Bottleneck Models (CBMs) presents an ideal
transition toward intrinsically interpretable neural networks. CBMs offer inter-
pretability within the design architecture, meaning that all predictions flow through
an intermediate layer of human-interpretable concepts [2]. This method funda-
mentally differentiates from post-hoc explanation methods by making sure that no
information flows without passing through the concept layer.

The CBM architecture implements a two-stage prediction process: X → C →
Y, where X represents input features, C denotes the concept predictions and Y
indicates final task labels [1]. This subdivision in layers showcases a clear human
reasoning process, that typically involves the identification of relevant concepts,
usually made through visual observations, before making any classification decisions.
The intermediate concept layer C serves a bottleneck for the flow of information that
constrains the model to make decisions solely on interpretable concept information.

We can clearly see that concept-based models aim to increase human trust
in deep learning models by using human understandable concepts to train inter-
pretable models such as logistic regression or decision trees. This methodology
helps in the augmentation of human trust in AI predictors that have been behaving
in an opaque manner rather than a clear understandable decision-making process.

Training CBMs needs concept annotations at training time, representing both
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the strength and weakness of the strategy adopted. The presence of concept super-
vision allows for the optimization of accuracy with respect to concept prediction,
ensuring that the intermediate architecture is in line with the human-interpretable
concepts.

Research has shown us that CBMs can achieve important classification perfor-
mances while maintaining interpretability through the concept bottleneck constraint.
Experiments conducted on the CUB-200-2011 bird classification dataset showed
that CBMs could achieve high accuracy while providing transparent reasoning
paths through detected visual concepts [2].

However, several limitations were noticed in the original CBM methodology
regarding concept leakage – where information bypasses the concept bottleneck
due to insufficient bottleneck constraints present – which has been remediated by
adding further regularization techniques and stricter architectural design modifica-
tions. Additionally, researchers have indulged into other methods to handle the
incompleteness that can result from concept sets, where predefined concepts may
not capture all information necessary for optimal classification performance.

The notable performance of CBMs has encouraged several extensions and vari-
ations that address specific and variation that can help mitigate the limitations
presented. Fuzzy bottleneck approaches, for instance, allow concept activation
to be numerically continuous instead of the traditional binary approach. This
approach has fundamentally changed the perception of how concepts are presented
in the input data from binary decision making to a “degree of confidence” that
relates to the presence of the concept. Additionally, it proved to be particularly
valuable in domains where concepts can exist in continuous form rather than a
discrete one

Interactive CBMs, another variant of the traditional model, allow users to
correct concept predictions during inference and training. This approach fixes
concept prediction errors by allowing real-time correction and model refinement
based on human feedback. The interactive paradigm has shown promise in medical
applications, where domain experts can present specific corrections that improve
both concept accuracy and classification performance.

9
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2.3 Automated Concept Discovery and Extrac-
tion

Although CBMs provide a strong framework for interpretable classification, they do
contain a fundamental limitation: they heavily depend on manually defined concept
sets. This reliance creates several obstacles that stop concept-based approaches
from being theoretically complete or practically applicable.

The concept selection problem revolves around determining which concepts
are relevant for a specific classification task. Manual concept selection usually is
done by experts in a certain domain or through intuitive thinking, which may
actually overlook important but non-obvious concepts or even include irrelevant
concepts that add noise without improving discrimination. This constraint becomes
critical when dealing with complex domains where the relationship between visual
patterns and classification outcomes is not directly obvious.

Another challenge lies within concept granularity that deals with the appro-
priate level of abstraction for concept definitions. Concepts that are too broad (such
as “has a beak”) may lack the necessary discrimination for an accurate performance
in terms of classification. On the other hand, concepts that are too specific may
render the representational space extremely detailed to a point where generalization
is no longer effective. Extensive experimentation and domain expertise are certainly
required while determining an optimal concept representation space with effective
granularity.

Concept Model Extraction (CME) presents a framework for analyzing
deep neural networks through concept-based extracted models. CME addresses
the limitations presented in requiring extensive concept annotations by dealing
with partially-labeled datasets and extracting concept information from multiple
network layers [1].

The CME framework introduced above divides the neural networks into two
separate functions: an input-to-concept function that maps raw inputs to
concept representations, and a concept-to-output function that predicts task
labels from concept information. This separation enables us to analyze how neural
networks encode and utilize concept information for classification decisions.

CME exploits Semi-Supervised Multi-Task Learning (SSMTL) to get
concept predictions from network representations, treating each concept as an
independent prediction task [1]. The framework adds concept information across

10



Background and State of the Art

multiple network layers, identifying the optimal layer for each concept prediction
based on its accuracy. This multi-layer strategy makes sure that different concepts
may be best represented at different levels of abstraction within the network division.

It is notable to mention that concept-based explanation approaches are usually
capable of handling binary-valued concepts only, which implies that multi-valued
concepts must be converted into binary first. For instance, given a concept such as
“shape”, with possible value “square” and “circle”, these approaches must convert
“shape” into two binary concepts “is_square” and “is_circle”. This undermines
that such approaches are computationally expensive, since the binary representation
of a concept space usually has a high cardinality, and error prone. On the other
hand, CME can handle multi-valued concepts directly, without the need to binarize
concepts.

Moreover, concept-based explanation methodologies are typically correlated to
the representative space of a single layer when extracting concept information.
DNNs have been more performant, in terms of feature extraction, when using layers
closer to the output utilizing higher-level data representations, compared to layers
closer to the input. This does clearly mean that choosing a single layer imposes an
unnecessary trade-off between low and high-level concepts. CME is able to combine
latent space information efficiently from multiple layers and thus, overcome this
problem.

The extracted models give us a plethora of analytical possibilities: model
precision through concept-based decision analysis, model debugging by identifying
problems within inactive concepts, and most importantly the knowledge gained
behind the identification of the effectiveness of key concepts in classification accuracy,
with case studies showing how model can be improved by over 14%, using only
30% of the available concepts [1].

2.4 Neural-Symbolic Integration and Concept
Reasoning

Looking to the limitations of traditional concept-based models, the Deep Con-
cept Reasoner (DCR) presents the first interpretable concept-based model that
builds on concept embeddings [2]. However, state-of-the-art concept-based models,
which rely on concept embeddings to attain high performance, are not completely
interpretable. In fact, concept embeddings lack clear semantics on single isolated
dimensions, which loses interpretability in favor of the capacity of the model which
may lead to a reduction in human trust when using such types of models for that
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matter.

DCR takes into account this challenge by implementing a differentiable-based
approach on concept embeddings that build a set of fuzzy rules which can then
be executed on semantically meaningful concept truth degrees to provide a final
interpretable prediction. This architecture heavily relies on activation functions
that limit the number of concepts per rule, while making sure that learned rules
remain interpretable and maintain a significantly decent performance.

Indeed, DCR showcases the capability to discover meaningful logic rules, that
matches known ground truths, even if we take into consideration the absence of
training concept supervision. The system, in fact, learns to apply logical operations
instead of concept representations, which then enables both the learning process
and reasoning process withing a single framework. This implementation fixes fun-
damental limitations of neural symbolic approaches by combining learned concepts
with reasoning mechanism which renders the model more interpretable.

Experimental results have shown that DCR accomplish better task accuracy
than state-of-the-art interpretable concept-based models, while discovering mean-
ingful logic rules. These discovered rules present transparent representations of
model behavior and can explain misclassifications at the level of tasks. For example,
a task might be mis predicted because some concepts have been predicted wrongly,
or the scores in selecting the set of concepts did not fully reflect the relevance of
these concepts. This transparency helps in the extraction of simple counterfactual
explanations without the need to integrate external algorithms [2].

A crucial characteristic of explanations is stability while having small perturba-
tions. Users do not take into consideration explanations that change significantly
while having similar inputs for which the model makes the same prediction. DCR
explanations have proven to be, in fact, very consistent, especially when comparing
them to local post-hoc explainers [2]. Stability is fundamental for building trust in
concept-based systems.

The logic rules clearly showcase which concepts play an important factor in
prediction. Following established methods, DCR generates counterexamples by first
ranking the concepts present in the rule based on their relevance scores, then starting
from the most relevant concept and inverting their truth value until the prediction
changes. For example, knowing that the relevance score of “yellow” is the highest
relevance score for a concept when it comes to predicting a “banana”, flipping its
truth value will automatically render the input classified NOT a “banana”.
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2.5 Evolutionary Algorithms in Machine Learn-
ing

Evolutionary Algorithms (EA) define a group of optimization techniques where
natural selection and genetic processes are the basis of these techniques. The
foundational work established Genetic Algorithms as the first systematic approach
to evolutionary computation, introducing key concepts such as population-based
search, genetic operators (selection, crossover, mutation), and fitness-based survival
[3].

The EA family has grown significantly, englobing foundations such as Genetic
Programming, Differential Evolution, Evolution Strategies, and Evolutionary Pro-
gramming [3]. Each variant presents a solution for obstacles found in optimization
through specific representations, operators and selection mechanisms.

The fundamental EA principles include population-based search, which allow the
algorithm to explore potential solutions in parallel; genetic operators, on the other
hand, help in balancing the exploration and exploitation through limited amount
of randomness; fitness-based selections, finally, help in guiding the search toward a
high-valued solution. These principles have proven to be especially effective when
optimizing problems characterized by complex, non-linear, multi-modal objective
functions.

EAs were able to be a significant game changer within applications in neural
network optimization, addressing challenges in architecture design, hyperparameter
tuning and feature engineering. Neural Architecture Search (NAS) represents one
of the most successful applications, where EAs automatically discover optimal
network architectures for specific tasks and datasets [4].

Additionally, EAs have shown significant success in feature engineering, where
they use different combinations, transformations, and selection strategies. This
application domain shares important characteristics with our target of concept
refinement: both involve discovering optimal representations that can balance
performance with interpretability.

Genetic Programming for Feature Engineering, in fact, uses mathematical expres-
sions that transform raw input features into more discriminative representations.
These evolved features often discover unusual relationships between input variables
that improve classification performance while remaining interpretable as mathe-
matical expressions [4].
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The success of EAs in feature engineering suggests their potential applicability
to concept generation and concept refinement dilemmas. Just as EAs can discover
optimal feature combinations through evolutionary search, they may be capable
of discovering optimal concept subdivisions and organizations that enhance both
discrimination and interpretability.

2.6 Research Gaps and Opportunities
2.6.1 Concept Granularity Optimization
One of the biggest obstacles in applying current concept-based techniques practi-
cally is the manual specification of concept granularities. Finding the best concept
subdivision to use is still very much done intuitively, with no systematic attempt
to strike a balance between interpretability and discrimination.

In the end, the issue of concept granularity revolves around questions of how far
broad concepts should be subdivided, when subdividing concepts helps or hurts
classification performance, and how to preserve interpretability as the concept sets
get more granular. Each of these constitutes a roadblock toward the formation
of automated procedures capable of systematically exploring concept granularity
spaces.

2.6.2 Dynamic Concept Refinement
Within existing CBM approaches, static concept definitions remain fixed throughout
training and deployment; thus, adaptation to patterns discovered within learned
embedding spaces or refinement on the basis of classification performance is pre-
vented.

Dynamic concept refinement thus remains an under-researched avenue with
the potential for greatly increasing the flexibility and effectiveness of concept-
based approaches. Integration of concept refinement with training procedures can
allow for discovering more effective concept organizations while still preserving
interpretability guarantees.

2.6.3 Evolutionary Concept Optimization
The intersection of evolutionary algorithms and concept-based interpretability
remains largely unexplored, despite the high correlation between EA optimization
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capabilities and concept refinement challenges. EA has proven that it can be
successful in feature engineering and neural architecture optimization which makes
a case for their potential in finding emerging concepts and organization problems.

Evolutionary concept optimization could address several current limitations:
automatic discovery of optimal concept granularities, exploration of concept sub-
division strategies, and integration of interpretability and performance objectives
through multi-objective optimization. This research direction represents a signifi-
cant opportunity for advancing the state of interpretable machine learning.

The success of these research directions (concept bottleneck models, automated
concept discovery, neural-symbolic reasoning, and evolutionary optimization) cre-
ates an optimistic opportunity for developing complex and automated approaches
to interpretable machine learning that can discover optimal concept refinements
while it can maintain correctness, and it remains understandable for humans.

15



Chapter 3

Experimentation

After a thorough examination of the state-of-the-art revolving around Explainable
AI, concept bottleneck models and evolutionary algorithms. We start by presenting
the core potential of this research that presents an innovative approach that tackles
interpretable machine learning by the development of an evolutionary algorithm-
based concept generative pipeline for handwritten digit classification. The pipeline
sequentially encapsulates the reasoning behind neuro-symbolic strategies with evo-
lutionary optimization to directly discover and refine visual concepts that increase
both the classification performance and the model interpretability.

The core foundation of the pipeline presents the implementation of three major
components: The visual concept detector, the neural bottleneck model
and the evolutionary concept algorithm for clustering the embeddings of the
concepts. Instead of considering the black-box feature learning, this approach
models human-interpretable visual concepts present in digits, such as, loops and
lines, and uses evolutionary algorithms to automatically discover new generated
concepts.

The system described above discusses a crucial problem in Explainable AI,
which revolves around the methodology used in order to discover the right level of
abstraction for interpretable concepts while prevailing or improving the classification
results. The traditional systems already implemented usually relied on predefined
concepts or manually annotated concepts. This pipeline introduces, instead, an
automated evolutionary approach that discovers refined concepts directly from
learned embeddings.
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3.1 Visual Concept Annotator
The visual concept annotator presents the foundation of the interpretable concept
learning pipeline by transforming raw MNIST digit images into meaningful
concept annotations with a final binary form adopted in the training phase of the
concept bottleneck model. This primal phase utilizes computer vision techniques to
detect five humanly understandable visual concepts that can help in distinguishing
handwritten digits.

3.1.1 Loop Detection – Identifying Circular and Oval Struc-
tures

Loop detection analyses the shape properties of digit contours, especially when it
comes to measuring how “round” or “closed” a shape is. The algorithm calculates
the convexity of the shape, which is a mathematical that indicates whether a shape
resembles a circle or oval.

Figure 3.1 below demonstrates the complete loop detection process across three
different digit types:

Figure 3.1: Loop Detection Analysis
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• Digit 0 (Excellent Loop Detection – Score 0.960):The original image
displays a clear oval shape with a perfect loop structure, which presents the
ideal scenario to detect a loop. When converting the image to binary, we use
a specific threshold of 0.3 in order to preserve the complete loop boundary
without any fragmentation found. The next step utilizes a contour detection
algorithm where, in that case, successfully traces the entire oval parameter
continuously. Following the contour detector, a solid contour visualization
algorithm reveals the filled in area of the digit in white as a completely closed
area. Finally, the convex hull analysis of the digit illustrates the minimal
difference between the white contour area and the grey hull area, indicating
that the shape is already correctly convex-bounded. The final score obtained of
0.960, confirms the “near-perfect” loop characteristics and shows why circular
digits like, 0, 6, 8, 9 consistently achieve high loop scores.

• Digit 4 (Poor Loop detection – Score 0.221): The structure of this
digit is more related to right angles rather than convex curvatures which
usually support loop-like characteristics. The comparison with the convex hull
showcases a significant grey area, that shows a huge difference between the
actual contour and the convex hull. This is mainly because of the angular-like
behavior that is present in the digit “4” that create concave regions that must
be filled in instead of convex regions, this results in a larger hull area compared
to the contour area. The low score of 0.221 is realistically expected for a digit
like 4 that has a dominant angular geometry.

• Digit 7 (Moderate Loop detection – Score 0.474) : The number “7”
presents an interesting case, as we can see in the handwritten original pictures
some significant curves at the corners where horizontal and diagonal lines
actually meet, the system detect a partial hull that match a gray hull area
that is larger than the contour but as dramatically different from the digit “4”,
for example. The explanation due to this phenomenon is mainly due to the
junction on the corner between the horizontal and the diagonal line. The score
obtained reflect that the algorithm can catch subtle curved characteristics
even in a significantly dominant linear digit.

In Summary, Loop detection algorithm basically try to answer the question:
“How much does a curved shape resemble a filled circle?” The results demonstrate
that “0” as a digit has a near-perfect oval shape and that the other two digits
have scored low results due to the predominant angular-like shape that they
represent with a distinctive mention that on curvatures that are not totally linear,
the algorithm was able to score a higher result. The algorithm presented above
successfully distinguishes between circular or oval shaped digits and angular shaped
ones, providing a robust measure for loop-like characteristics.
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3.1.2 Vertical Line and horizontal Detection
The vertical line detection uses edge detection techniques to identify strong vertical
gradients in the original image. The algorithm starts by applying a mathematical
filter that searches for vertical edges while ignoring other types (horizontal or diago-
nal for that matter). The algorithm utilizes a vertical Sobel filter that calculates the
intensity changes in the horizontal direction that indicates the presence of vertical
edges. It then projects the edges found by the filter vertically to find columns with
strong vertical features (we can understand it by considering the accumulation of
the rows in a matrix for instance).

On the other hand, the algorithm used for the horizontal line detection follows a
similar pattern to the one used to find vertical lines. A Sobel filter that can detect
the intensity changes in the vertical directions this time, help in the indication
of horizontal edges. The projection performed to find the horizontal features are
performed on a row basis, which means that cumulation of the intensities of the
matrix is performed by adding all the columns, we then explore any significant
intensities found.

Figure 3.2 below demonstrates the complete vertical and horizontal line detection
process across three different digit types, revealing how Sobel edge detection and
projection analysis three different digit types, revealing how Sobel edge detection
and projection analysis distinguish between different linear orientations within
handwritten digits.

• Digit 1 (Vertical Dominance - V-Score: 0.289, H-Score: 0.208):
The original image presents a clean and almost straight vertical edge that
represents the most optimal case when it comes to vertical line detection.
When the filter is applied, it results in a “intense” red-yellow activation that
reproduces a clear vertical band that overlaps the digit edges. This is a
heatmap representation of the structure of the digit. On the other hand, the
horizontal edge detection reveals a drastically different response to the one
found on the vertical detection, showing only a very shy presence of the red
strokes on its heatmap, the red filaments also come in a scattered way with
plenty of noise. The vertical projection represents another clear analysis of
the detection of vertical edges in the original images with an edge strength
that peaks at nearly 0.3 that spans approximately from columns 8 till 18
with a nearly bell-shaped curve distribution. Although the edge strength is
moderate for that matter, it still reflects on the successful determination of the
vertical edges within the intensity distribution. The horizontal projection on
the contrast displays an almost perfectly flat shape that oscillates with small
changes around the baseline, confirming the absence of a horizontal element
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Figure 3.2: Vertical and Horizontal Line Detection Process

within the digit itself. The low score attributed to the edge strength of the
horizontal projection clearly demonstrates for that instance the correctness of
the intuitive visual representation of the digit “1”.

• Digit 4 (Dual Structure Excellence - V-Score: 0.477, H-Score: 0.512):
Although the original image displays a challenging architecture, the detection
system was able to simultaneously identify both orientations with vertical
and horizontal components. The vertical Sobel filter reveals two strong yellow
responses concentrated in two diverse regions. The intense right vertical edge
presents the strongest activation of the heatmap while the left vertical one
showcases a secondary but significant response, creating a unique bimodal
activation filter. The line that connects both edges is represented by a clear
horizontal line in the center that is created by a concentrated bright yellow and
red heatmap. The architecture of this digit is explained by the vertical and
horizontal projection analysis, as it includes a strong peak around columns 18-
22 that corresponds to the right vertical line, then a clear gap that represents
the space, then a notable peak around columns 3-9 that corresponds to the
left element; on the other hand, the horizontal projection shows a noticeable
concentrated spike around row 15 that abruptly rises from the baseline, this
offers a great evidence on the presence of the horizontal line. The algorithm
provides balanced detection scores for both vertical and horizontal projections,
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which represent optimal dual detection effectiveness and proves its success even
though the detection of complex and overlapping structures can be challenging.

• Digit 7 (Mixed Orientation Challenge - V-Score: 0.233, H-Score:
0.255): The original image displays a rather intriguing test sample of an
uncertain orientation of the linear edges that are different from what their
usual classification would be because this handwritten digit blends both
horizontal and diagonal features. When applying the vertical filter, it produces
a moderate red-yellow response scattered along the diagonal edge because its
complex pattern contains some vertical components that somewhat gives the
filter some indication in this direction. This mix in orientational property
totally coincides with the behavior of the activation of the filter, as we can
see that it is clearly less intense than pure vertical edges detected but surely
more important than the horizontal edges that come out through the vertical
Sobel filter. On the other hand, the horizontal edge detection algorithm was
able to find a strong, concentrated yellow activation precisely located at the
top of the horizontal bar, that clearly identifies the prominent structural
feature while remaining confined with the upper region of the digit. When
it comes to the projection analysis, the graph in the figure above shows an
interesting side of the mixed orientation: the vertical projection reveals a more
distributed response spanning from approximately columns 8 to 20, which
really projects how the diagonal edge spreads its intensity across multiple
spanned out columns, going from upper left to lower right of the image
space. Although it shows a little activation over the remainder of the vertical
span, the horizontal projection is still greatly concentrated between rows 5
to 8 roughly, forming a tiny, sharp peak that indicates the location of the
horizontal edge. The significantly low V-Score and moderate H-Score are very
close and accurately reflect the mixed nature of the structure and demonstrate
how the algorithm handles digits that do not present a simple and clear
categorization, as neither orientation achieved dominance nor the horizontal
element marginally outperforming the diagonally influenced vertical response.

In conclusion, the basic question that the vertical and horizontal line detection
algorithm aims to address is “What are the primary and secondary linear orienta-
tions in the structure present in this digit?”. The findings that were explored above
do provide a full explanation of the vertical dominance in Digit 1 with respect to
the horizontal one, the mixed orientation in Digit 7 which provided some ambigu-
ous results in terms of scores, while Digit 4’s balanced dual-orientation structure
achieved high scores in both dimensions. The most important thing that this
algorithm has provided is its ability to deal with dual-orientation structures (with
significant scores), mixed orientations (balanced scores) and pure linear orientations
(score separation).
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3.1.3 Diagonal Line Detection - Capturing Angled Patterns
Diagonal detection makes use of the Hough Line Transform, a technique that
helps in identifying straight lines in an image at any angle. The algorithm looks for
lines that are between 20 and 70° and 110 and 160° with respect to the horizontal.

Figure 3.3 below presents how diagonal detection is done using the Hough Line
Transform, this allows us to understand how this complex technique can distinguish
between curved strokes and actual linear diagonal elements.

Figure 3.3: Diagonal Line Detection Analysis

• Digit 2 (Failed Detection - Score: 0.000): The conversion to the binary
representation of the digit initially showcased that digit has a naturally curved
form. As a second step, the Canny edge detection was able to capture the
digit’s curved limits, which provides a unique mapping that displays the form’s
contour. However, when the Hough Line Transform looks at these edges to
find lines segments that fall within the diagonal angle ranges of 20–70° or
110–160°, no line contenders were detected. This happens because the digit is
entirely composed on curvatures, which, although they appear diagonal to the
human eye, they do not have the straight-line characteristics required by the
Hough algorithm. The 0 score indicates that no diagonal lines were detected,
and the final graph is painted black. This shows how accurate the algorithm
is at distinguishing between curved diagonal-like forms and actual straight

22



Experimentation

diagonal line segments.

• Digit 7 (Successful Detection - Score: 0.800): The "7" is a clear
illustration of a successful diagonal detection due to its diverse structural
composition.The binary conversion creates a clean representation that clearly
shows both the horizontal and diagonal components of the digit structure.
Canny edge detection creates accurate edge maps that highlight the horizontal
top bar and the downward diagonal stroke. After examining these edges, the
Hough Line Transform was able to identify the diagonal stroke, as shown by
the bright white line overlay in the final detection panel. As demonstrated
by the highest score of 0.800, which confirms the presence of a true diagonal
structure within the necessary angle range, the method reliably detects straight
diagonal elements while ignoring other orientations present in the same digit.

In conclusion, the diagonal detection algorithm was able to provide impressive
and intriguing performances as shown by the graphs where Digit “2” did not
showcase any signs of clear diagonal line structures while on the other hand the
algorithm did successfully classify the “7” Digit as written number with a diagonal
stroke. The accuracy of this algorithm ensures that only truly linear diagonal
elements are registered while ignoring any curvatures, horizontal or vertical lines.

3.1.4 Curve Detection - Identifying Subtle Curved Ele-
ments

Curve detection considers the most complex mathematical concept as its objective
is to calculate the curvature at each point along the edge by looking at the rate at
which the gradient direction changes. Low curvature indicates straight lines, while
high curvatures imply a curve.

Figure 3.4 below illustrates the sophisticated curvature identification method
with perfect score consistency, which makes use of mathematical concepts akin to
figuring out the "steering wheel angle" when driving around the digit’s edges.

• Digit 0 (Perfect Curve Score: 1.000): We start by analysis the gradient
magnitude of the digit where it can be shown an intense red-yellow ring with
strong edges that are present around the oval boundary. This indicates that
the edge strength remains constant throughout the making of the circle. The
curvature map, as a next step, presents occasional bright spots that indicate
the presence of high curvature scattered throughout the form, which represents
a constant curvature presence in this digit. The analysis performed on the
curvature of strong edges shows purple and pink regions in the final mask
graph where the curvature measurements are concentrated mainly on the edge
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Figure 3.4: Curve Detection Process Analysis

regions to make sure that the algorithm focuses on the most reliable edge
information. This actually makes sure that the curvature represented within
the digit are notable characteristics throughout the boundaries.

• Digit 6 (Perfect Curve Score: 1.000): This digit demonstrates a more
complex analysis with respect to the previous one due to the presence of a
mixed structural composition of curved edges. The gradient analysis performed
on the original image shows a strong edge detection on both the curved loop
at the top and the straighter section at the bottom of the digit. However, the
curvature analysis demonstrates a more prudent detection of the curves by
showing bright curvature spots primarily concentrated in the curved regions
while showing a minimal curvature receptions in the straight portion at the
bottom. The detection algorithm was able to determine a shadowy figure of the
curvature represented by the digit, while characterized with low intensity, but
still potent enough to trace impeccable curves that delimit the digit. Despite
the mixed structure, a perfect score was still attributed to the representation
and that indicates that the curved portion dominates the curvature analysis
more than the mere mention of straight segments within the digit.

• Digit 3 (Perfect Curve Score: 1.000): This digit represents, perhaps,
one of the most complex curvature representations within all other digits,
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with its characteristics and strongly resembles the “S” shape structure that is
composed by multiple curves. The gradient detection, which shows the edges
across the upper and lower curves, indicates that the algorithm will potentially
analyze multiple curved regions within the digit. The measurements that are
divided across multiple regions show that the algorithm can detect curvatures
across multiple sections rather than a single continuous curve. The complex
geometry at hand which constitutes multiple curved parts that represent the
evaluation of the total curvature, demonstrates that the algorithm can handle
complex curved structures.

It is important to note that the consistent obtainment of perfect scores across
all examples shown above reveals that the curvature detection algorithm tend to
saturate at maximum values for any digit with tendencies of having significant
curved elements. This means that the algorithm is extremely sensitive to curved
structures and that future modifications must include a more conditional algorithm
with a more complex scoring mechanism.

3.1.5 Concept Distribution Analysis across Digit Classes
In the Figure 3.5 below, we can visualize the distribution of the digits across the
initial concepts that are annotated by the concept detector, as we can interpret
the popularity of each digit within each concept based on the distribution it got.

• Loop Concept Distribution Patterns: The concept distribution analysis
reveals highly intuitive patterns that validate the original concept design.
Loop concepts, as expected, show maximum predominance in digit 0 (92%
prevalence) and significant presence in digits 6 (66%) and 8 (42%), with
minimal presence in linear digits like 1, 2, 3, 4, 5. The near-zero prevalence in
digits 2, 3, 4, 5 confirms that the loop detection algorithm is able to correctly
distinguish between curved and angular edges. The moderate presence in digit
9 (17%) may reflect some different variations in handwriting style where some
"9" digits contain more pronounced loop structures.

• Vertical Line Distribution Intelligence: Vertical line concepts display
some discrimination across digit classes, with highest prevalence in digit 1
(69%) as it was expected to be the most purely vertical digit. Significant
presence in digits 4 (31%) and 7 (32%) present the vertical components in these
mixed-structure digits, although digits like 7 for the human eye are more likely
to be associated with a diagonal line but it is mainly related to the structure
of the handwriting in the dataset. We can also detect a moderate presence
in digit 8 (35%) which likely captures the vertical elements in the upper and
lower lines of "8" digit as a vertical line. The algorithm appropriately shows
lower prevalence in primarily horizontal or curved digits.
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Figure 3.5: Concept Distribution Analysis

• Horizontal Line Distribution Accuracy: Horizontal line detection demon-
strated an excellent discrimination with high prevalence for digit 7 (75%)
reflecting the prominent horizontal bar in the upper part of the digit, and
a moderate prevalence in digit 4 (45%) corresponding to the crossbar that
connects both the diagonal edge and vertical edge together, and some shy
presence in digits 2 (22%) and 3 (13%) where horizontal elements play second
to none role basically. The low prevalence in pure vertical digits like 1 validates
the algorithm’s capability to distinguish between different linear orientations,
as it was clear from the MNIST dataset the complete absence of the horizontal
line within this digit for example.

• Diagonal Line Pattern Recognition: Diagonal line distribution shows
a more uniform presence in digits with digits 2 (31%) and 7 (39%) being
the most predominant of all the digits. This result correctly verifies the
traditional and human-recognizable digits that contain diagonal edges. This
moderate presence across other digit classes suggests that the Hough transform
algorithm captures unclear diagonal elements that may not be immediately
distinctive but that clearly contribute to the discriminative of the digit. The
relatively lower overall presence of this concept compared to other ones shows
the scarcity of clear diagonal elements in the MNIST dataset.
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3.1.6 Adaptive Thresholding - How to convert scores to
Binary Concepts

After each algorithm calculates the continuous score for its respective concept, the
system converts them into binary (0/1) annotations using adaptive thresholding
based on the dataset’s 75th percentile of scores. This method notably outperforms
fixed threshold approaches by automatically adapting the distribution of visual
features in the data.

For every concept, all 60,000 training images are assigned continuous values
between 0.0 and 1.0 before the 75th percentile thresholding is performed. Following
the sorting of these scores, the system calculates the value at which exactly 75%
of all values fall below it. Any image that scores higher than this 75th percentile
is given a binary annotation of 1 (concept present), whereas images that score at
or below the threshold are given a binary annotation of 0 (concept absent). With
about 25% of the dataset displaying each concept, this ensures that each concept
is present across all concept types.

Many significant detection problems are resolved by the adaptive nature of
percentile-based thresholding. Loops, for example, naturally produce lower aver-
age scores than vertical lines, suggesting that different concepts should normally
have different baseline frequencies and score distributions. Using percentile-based
thresholds ensures that each concept captures its most representative examples,
without strongly considering the score distribution. This method also gives us some
robustness by automatically adapting to different datasets or image properties
without the need for a manual threshold adjustment for each concept type.

3.1.7 Concept Annotator Results and Analysis
The implementation produced the following concept distribution results:

• The system was able to create distinct concept distribution patterns across the
MNIST dataset that reveal both successful performances and more challenging
ones. Loop detection successfully identified 15,000 training samples out of the
60,000 representing exactly the 25 percentiles of the training dataset. This
was also transmitted to the test set where 2,500 out of the 10,000 images were
classified as containing loop structures, maintaining the same 25.0% detection
rate. Vertical line detection has shown very similar characteristics as it was
able to identify 15,000 sample for the training set and 2,500 samples for the test
set, both representing 25.0% detection rate with perfect consistency between
training and testing datasets. Horizontal line detection also achieved very good
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performances with same percentage of currently identified samples for both
training and test sets, each representing 25.0% of their respective datasets
and demonstrating the robustness of the adaptive thresholding mechanism for
these fundamental concepts.

• Diagonal line detection has created different results with 1,693 detections out
of 10,000 samples or 16.9% of the test dataset, and 10,868 training samples
out the total 60,000 total or 18% of the training dataset. This drop from the
target detection rate of 25% reflects how selective the algorithm related to the
detection of diagonal lines can be, while it presumably rejected curved edges
that might appear diagonal lines to the human eye.

• The most significant failure was presented in the curve detection, which
produced zero positive detections across the training and testing datasets.
This is mainly related to the saturation of the algorithm rather than the
absence of any curved features in the dataset. We can blatantly notice that
both training and test dataset failed to receive any positive curve annotations.

The success of Adaptive thresholding

The first three concepts have presented perfect thresholding performance. In fact,
the loop, vertical line and horizontal line detection systems all achieved detection
rates of exactly 25.0% across both training and testing datasets. The fact that
these three algorithms were able to comply with the 25% target shows the ability
of adaptive thresholding and the detection algorithms to create important score
distributions that allow for correct classification between when a concept is present
and absent within a sample.

Diagonal Line Limitations

The diagonal line detection algorithm did achieve a lower detection rate of 18.1%
for training and 16.9% for testing, without being able to reach the intended 25%
target. This limitation happened because the Hough Line Transform algorithm
specifically detects straight diagonal line segments within a defined angle (20-70°
and 110-160°), while many of the MNIST dataset samples that appear diagonal to
the human eye have a curved edge rather than straight diagonal segments. Digits
like “2” and “7” may have diagonal-appearing elements, but the “2”, for example,
consists more of curved elements that fail to activate the straight-line detection
algorithm, while “7”, for example contains a true straight diagonal line. This
result showcases how the algorithm is being able to distinguish between curved
diagonal-like shapes and actual straight diagonal lines.
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Curve Detection Algorithm Failure

The curve detection algorithm could not present the proper theoretical idea behind
the algorithm as it failed to detect any sort of curvatures with the images that
clearly present curved edges. This was due to a saturation of the algorithm that
was represented by an attribution of a maximum score of 1.0 to nearly all the
images of the dataset, which produced a uniform score distribution transmitting
that all samples present an ideal case of curvatures. When we try to identify the
75th percentile of a uniform distribution of values equal to 1.0, this means that the
method obviously selected was 1.0, and since no sample was able to score higher
than 1.0 (being the maximum value), no sample did satisfy the requirements for
positive concept annotation, resulting in the 0.0% detection rate observed in both
the training and testing sets.

Diving deep in the analysis of this saturation issue, the discriminative strength
for the curve identification was lost because the algorithm was connotated with
high sensitivity, although technically it was successfully identifying curved parts as
we can see from the high scores. The mathematical curvature formula used and
the normalizing technique which allows results to be maximized to 1.0, let even
slightly curved elements produce maximum responses. This is a common issue in
the design of computer vision algorithms, where mathematical representations need
to be well calibrated to produce meaningful scores rather than saturating at some
value.

Consequences on subsequent stages of the pipeline

These results have had important consequences on training the concept bottleneck
model and the subsequent stages of evolutionary algorithms. The evolutionary
algorithm’s capacity to find new refined concepts linked to curves may be extremely
difficult because the system only uses four functional concepts rather than the five
that were expected. Nevertheless, the three efficient concepts – loops, horizontal
and vertical lines – provide a great foundation that is great at demonstrating
the evolutionary concept methodology. Although the diagonal detection could
not perform as well, it still provides valuable idea annotations for a subset of the
sample. Even though the curve detection did not satisfy the expectations that
was perceived from it, it still presents an opportunity to show that the pipeline is
robust against technical problems with specific components.

3.1.8 Final Output
Each MNIST image receives four meaningful binary concept annotations:

• Loop: 1 if strong circular/oval structure detected, 0 otherwise (25% of dataset)
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• Vertical line: 1 if a strong vertical edge is found, 0 otherwise (25% of dataset)

• Horizontal line: 1 if strong horizontal edge is present, 0 otherwise (25% of
dataset)

• Diagonal line: 1 if angled stroke detected, 0 otherwise (18.1% of dataset)

• Curves: Consistently 0 due to algorithm saturation (requires future refine-
ment)

These binary annotations, despite the curve detection limitation, provide a
meaningful foundation for the concept bottleneck architecture and evolutionary
refinement processes that follow in the pipeline.

3.1.9 Concept Bottleneck Model
The pipeline central component that represents the neural-symbolic representation
of this framework is the Concept Bottleneck Model. This model implements a clear
interpretable bottleneck architecture in which learned concepts are the only means
by which all digit classification decisions can be made. This is performed mainly
because the model cannot rely on obscure, incomprehensible features to make its
predictions. In fact, this design makes sure that each classification decision to be
explained using the predetermined visual concepts computed above.

Structure of the Architecture

In order for this architecture to be uniquely represented with respect to pseudo-
bottleneck architectures that might allow information to leak around the concept
layer, the model employs what is known as direct concept bottleneck. In this
implementation, the classification of the digits is only dependent on concept
predictions, and for that reason the presence of a bottleneck that redirects the
visual data to be encoded using the interpretable concept representation is extremely
crucial. This “wall” in the architecture makes sure that the decision-making of the
model is always explicable. This architecture is defined by different stages with its
own properties and functionalities:

• Stage 1 - Image Encoder for Concept Prediction: The architecture
begins with a deep neural encoder that transforms raw pixel data into rich
representational embeddings specifically designed for concept detection. The
encoder employs a progressive dimensionality reduction strategy, starting with
a dense layer that maps the 784-dimensional input (28×28 flattened MNIST
images) to a 512-dimensional hidden representation using ReLU activation.
This initial expansion allows the network to capture complex pixel interaction
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patterns that are essential for visual concept detection. The architecture
then applies generalization capabilities, followed by a second dense layer that
compresses the representation to 256 dimensions while maintaining ReLU
activation for non-linear feature learning. A second dropout layer provides
additional regularization before the final encoding stage.

• Stage 2 - Concept Embedding Layer: At the end of the encoder is a
concept embedding layer that generates 64-dimensional embeddings that are
especially tailored for concept representation. This dimensionality was selected
to maintain computational efficiency for later processing stages while offering
enough representational capacity to capture the subtleties of visual concepts.
These embeddings are important elements that must keep the balance between
interpretability and explaining concepts since they provide the basis for both
concept prediction and the later evolutionary refinement process.

• Stage 3 - Concept Prediction Layer: The concept embeddings are passed
directly into a concept prediction layer, which generates separate binary
predictions for each of the five visual concepts using sigmoid activation. Given
that visual concepts can co-occur within single digits (for example, both
vertical and horizontal lines in a "4"), the sigmoid activation is essential
because it enables each concept to be predicted independently. All visual data
must be transformed into understandable concept representations in this layer,
which serves as the explicit bottleneck.

• Stage 4 - True Bottleneck Digit Classification: By only accepting
concept predictions as input and denying direct access to the original image
data or intermediate representations, the final classification stage carries out
the true bottleneck constraint. A 10-way Softmax output layer for digit
classification comes after a tiny hidden layer with 32 neurons and ReLU
activation. The model is directly encouraged to learn comprehensive and
meaningful concept encodings by this minimal architecture, which guarantees
that digit classification performance is solely dependent on the caliber and
completeness of the concept representations.

Multi-Objective Training Strategy

The model uses a progressive multi-objective training method that aims at maxi-
mizing both digit classification and concept prediction at the same time. Because
concept detection is multi-label and each concept is handled as a separate binary
classification problem, the concept prediction task employs binary cross-entropy
loss, while the digit classification task employs categorical cross-entropy loss, suit-
able for single-label multi-class classification. In order to make sure that balanced
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optimization across both tasks without favoring either concept learning or digit clas-
sification, both loss functions are given equal weight (1.0) in the combined objective.

In addition to dual supervision that are the binary concept annotations obtained
from the visual concept annotator and the ground-truth digit labels, the model is
trained using flattened MNIST images. The concept prediction layer is directly
supervised by the concept annotations, which are arranged as a matrix with each
row representing an image and each column representing a concept. Due to the
bottleneck constraint created by this dual supervision, the model must learn to
encode visual information in a way that supports both accurate concept detection
and efficient digit classification, which creates a different training dynamic from
traditional neural networks.

Concept Embedding Extraction

The model’s capability to extract learned concept embeddings, which are used as
input to the evolutionary algorithm is important after training. The 64-dimensional
representations that encode visual information in the feature space that are relevant
to the specific concept are obtained through a “sub-model” in the extraction process,
which gives us the output of the concept embedding layer. The training and the
testing datasets are extracted in this way, which guarantees that the evolutionary
algorithm utilizes detailed embedding data in order to evaluate and optimize new
concepts.

The embeddings related to specific concepts are created by organizing the ex-
tracted embeddings based on the concept annotations. The system creates a dataset
that shows the learned encoding of particular visual concepts by identifying all
images that received positive concept annotations for each concept and then we
extract the associated embeddings. It is important to note that index mappings
are always in sync with the evolutionary algorithm so that it can exactly refine con-
cepts by tracking embeddings back to their original images and concept annotations.

The embeddings related to each concept, as well as their source image indices
and references to the entire training and testing embedding sets are all present in a
structured data container. In this way, we can satisfy the requirements presented by
the evolutionary algorithm to examine concept-specific patterns while also keeping
track of the larger dataset structure.
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Interpretability of the model

The bottleneck architecture provides a strong assurance towards the model in-
terpretability. In fact, every classification choice is explicable in terms of the
visual concept related to it because the digit predictions can only access concept
predictions and not the original raw image or any intermediate representations.
The whole classification process can be interpreted thanks to this architecture of
the bottleneck, as it prevents the model from creating hidden decisions that do not
come from the interpretable concept layer.

We can also consider it as a trade-off between classification accuracy and inter-
pretability as the model will focus more on satisfying the condition of the latter one.
This clearly allows us to understand the model behavior, increase the confidence in
automated systems and comprehend the premises of classification errors. We can
also rely on the model to evaluate the concept representation of the annotator, as
it will give us a great direction if the automated concepts are a reliable metric to
use or not.

3.1.10 Evolutionary Algorithm for concept generation and
refinement

The pipeline’s main innovation is the Evolutionary Algorithm (EA), which uses a
complex optimization framework to automatically find the best concept granularities
through clustering refinement. In order to improve interpretability and classification
performance, this phase refines the learned concept embedding from the bottleneck
model into concept subdivisions. The EA works on the principle that the initial
broad concepts can be divided into more discriminative, specific “sub-concepts”
that preserve interpretability while capturing finer-grained visual patterns.

Evolutionary Representation and Genetic Encoding

A complete clustering configuration that explains how to split all visual concepts at
once is represented by each individual in the evolutionary population. Each gene
that is used by the genetic representation of the individual correlates to a clustering
parameter for one of the five concepts. Now in order to balance interpretability
and granularity, each gene in the K-Means clustering, for example specifies the
number of clusters to be formed for that concept, and the values limited to gene
are between two and eight. On the other hand, each gene in DBSCAN determines
the minimum sample of parameters which range from 5 to 15 and regulates the
density to form a cluster. Every individual is guaranteed to define a new concept
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that can be applied directly to the embedding space, thanks to this representation.

Some interesting constraints that consider the real-world limitations of concept
subdivision are added into the evolutionary representation. Additionally, to keep
the algorithm from going back to the initial state of having only 5 concepts, there
is a constraint that obliges to subdivide the embeddings for each cluster into new
concepts. And in order to avoid overfitting or loss of interpretability, we mitigate
this issue by adding another upper bound constraint on the number of clusters
in K-Means and DBSCAN (8 clusters for K-Means and 15 minimum samples per
cluster for DBSCAN).

K-Means Clustering Integration

The concept embeddings can be divided into clusters of approximately equal size
using the K-Means clustering technique, which is basically centroid based. The
way K-Means clustering works in this algorithm is represented by a subdivision of
the embeddings of all the samples annotated with a concept into regions, when the
individual gives a certain cluster count for that concept. Each cluster becomes a
separate sub-concept on its own and as a result we generate new binary features
through these cluster assignments. This method gives us reliable and repeatable
clustering results and allow the algorithm to optimize them using the evolutionary
algorithm.

DBSCAN Clustering Integration

A radically different clustering paradigm is offered by the DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) integration, which finds clusters
based on local density as opposed to global centroids. Cluster shapes are auto-
matically determined by the algorithm, which can also detect noise points that
don’t belong to any cluster and identify clusters of any shape. To ensure adaptive
sensitivity to the real data distribution, the epsilon parameter is automatically
estimated using percentile-based thresholds and k-distance analysis. This method
can handle concepts with irregular or non-spherical distributions and is particularly
30 Experimentation good at finding natural cluster boundaries in embedding spaces.

Both DBSCAN and K-Means use advanced parameter estimation techniques
that can be optimized based on the embedding distribution of each concept and
the properties each of its own. In order to determine the local density variation
for DBSCAN, the epsilon parameter examines the nearest neighbors based on a
percentile scale which guarantees that the determination of cluster is based on the
specific embeddings. The K-Means algorithm, on the other hand, makes sure to
consider minimum cluster size constraints in order to avoid inadequate solutions
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and also uses multiple random initializations to guarantee convergence to global
optima.

Fitness Evaluation

The fitness evaluation procedure is an advanced machine learning pipeline that
uses downstream classification performance in order to assess the quality of refined
evolved concepts. To produce a complete set of refined sub-concepts, the evaluation
starts by applying the clustering configuration that each individual specifies to all
concept embeddings. After that, these sub-concepts are transformed into binary
feature matrices, which are fed into a classification algorithm created especially for
quick assessment throughout evolutionary optimization.

Because of its exceptional performance characteristics for binary feature data
and its computational efficiency during evolutionary search, Random Forest clas-
sification is used as the assessment mechanism in the fitness evaluation. With
50 estimators and a maximum depth of 8, the Random Forest classifier gives a
balance between computational speed and predictive accuracy, allowing for the
effective assessment of thousands of individuals over several generations. There is a
direct correlation between the quality of concept refinement and the improvement
in performance since the classifier uses the evolved concept features as input and
then outputs digit classification accuracy as the fitness metric.

Several computational optimization techniques are used for the evaluation frame-
work to allow the evolutionary search performed to be real taking into consideration
an acceptable time for running the algorithm. By restricting evaluation to 5,000
randomly chosen samples, training subset selection reduces computational load
while delivering statistically significant evaluation. 2,000 samples are used for test
subset evaluation in order to keep the balance between evaluation speed and accu-
racy. These subset sizes were established empirically to allow for population-based
search across several generations to obtain an accurate estimation of the fitness
function.

Evolutionary Operators

The mutation operator uses a flexible approach that abides by the limitations
presented while leveraging the features of every clustering algorithm. Mutation
applies small perturbations (±1 cluster) to K-Means clusters, with bounds checking
to make sure all values stay within the acceptable range of 2–8 clusters. Larger
perturbations (±2 min samples) are used for mutation for DBSCAN individuals,
considering the different sensitivity properties of density-based clustering related
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to the DBSCAN technique. Throughout the running process of the algorithm,
the 30% mutation probability preserves population diversity while allowing for
balanced exploration.

The crossover operator uses uniform crossover, which modifies clustering
parameters gene-by-gene between parent individuals with a 50% chance of coming
from either parent. Each gene produces children that combine the clustering prop-
erty of a specified concept coming from both parents. By using this method, the
evolutionary algorithm can find hybrid solutions that may use different subdivision
techniques for various concepts, such as a straight-forward clustering representation
for simpler concepts and a more detailed technique for complex ones.

Using tournament selection with a tournament size of three, the selection
considers the balance between not letting populations become similar and keep
selection pressure, so the algorithm doesn’t end up with weak individuals. This
process avoids premature convergence to weakly optimized solutions while also
guaranteeing that high-fit individuals have a higher chance of reproducing through
the operator stated above. A compromise that preserves the genetic diversity re-
quired for further research while retaining enough selection pressure for convergence
is the tournament size of three.

3.1.11 Test Mapping and generalization

The evolutionary algorithm’s method for mapping identified clusters from training
embeddings to test embeddings while preserving concept coherence is among its
most advanced features. To ensure that evolutionary refinement respects the
original concept annotations, the mapping process works under the restriction
that test samples can only be assigned to clusters of concepts that they initially
possessed. This restriction stops the algorithm from reassigning samples to incorrect
concept categories in order to artificially improve performance.

K-Means Mapping Strategy

Using the trained cluster centroids result from training, test mapping assigns
directly the test embeddings to its appropriate cluster that corresponds to samples
with a specific concept annotation. Test samples are only allocated to clusters that
fall under their annotated concept categories thanks to this method, which also
offers deterministic, repeatable test mappings that represent the cluster boundaries
discovered during the training phase.
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DBSCAN Mapping Strategy

Because the algorithm is density-based and lacks explicit cluster centroids, DBSCAN
test mapping is more complex. By using spatial proximity analysis, the mapping
strategy assigns test embeddings to clusters according to the distances between them
and cluster centroids calculated from training data. Based on the greatest distance
between training samples and their cluster centroid, the algorithm determines a
cluster radius. Test samples that fall inside this radius are then assigned to the
appropriate cluster. This method offers significant generalization to test data while
preserving the spatial coherence of density-based clusters.

Concept Feature Extraction

The final result that is issued from the evolutionary algorithm consists of a binary
feature matrix that represent the evolved concepts. Each generated cluster becomes
an independent binary feature, creating a feature space that typically contains
10-30 refined concepts compared to the original 5 concepts that were perceived
by the annotator. The binary nature of these features maintains interpretability
while providing the discrimination necessary for improved classification performance.

The algorithm is able to generates concept descriptions that maintain the rela-
tionship between original concepts and their refined subdivisions. Each evolved
concept receives a descriptive name that indicates its original concept, cluster-
ing algorithm, and cluster identifier such as “has_loop_kmeans_cluster_2” or
"has_vertical_line_dbscan_cluster_0". This naming convention allows the re-
searchers to understand the relationship between original concepts and their evolu-
tionary refinements while supporting detailed analysis of the discovered patterns.

The extraction procedure includes a strategy that ensures the system can produce
useful results even if the evolutionary optimization runs into problems. The system
automatically returns to the initial concept annotations while preserving the same
data structures if the clustering process is unable to generate enough refined
concepts. This fallback method guarantees that the system remains reliable while
clearly identifying optimization issues that might call for changing parameters or
the algorithm itself.
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Chapter 4

Experimental Results and
Performance Analysis

In this section, we present the experimental results obtained by both the Concept
Bottleneck Model, concerning the classification of the digit or concept prediction.
Furthermore, we will discuss the results gathered by the Evolutionary Algorithm
using K-Means clustering from one part and DBSCAN clustering as an alternative
to the previous technique. A thorough analysis on the successful performances that
we were able to obtain and the critical obstacles that were perceived across the
experimentation’s final predictions will also be discussed using table and visuals
graphs when necessary to better describe the analytical performance of the obtained
results.

4.1 Concept Bottleneck Model Results and Anal-
ysis

The model was executed for 15 epochs in both the training and validation phase,
and it was able to reveal some interesting dynamics that provide crucial insights
into the effectiveness of the concept bottleneck architecture. The training process
successfully presented two distinctive learning trajectories for the concept prediction
and the digit classification tasks that highlight both the challenges and successes of
the bottleneck approach, without taking into consideration the strong similarities
in the convergence of both tasks. The results of the training and evaluation phase
(considering both concept and classification accuracy in decimal values as well as
concept and classification loss) are presented within Table 4.1 and Table 4.2

The training begins with significant challenges in the first epoch, showing con-
cept prediction accuracy of only 50.38% and digit prediction accuracy of 37.24%,
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Table 4.1: Concept Bottleneck Model Training Results for 15 Epochs

Epoch Concept Acc. Concept Loss Digit Acc. Digit Loss Total Loss

1 0.5038 0.3552 0.3724 1.9937 2.3489
2 0.4380 0.4141 0.9016 0.5830 0.9971
3 0.4355 0.3705 0.9590 0.2293 0.5998
4 0.4432 0.3369 0.9692 0.1527 0.4897
5 0.4516 0.3122 0.9757 0.1187 0.4309
6 0.4641 0.2975 0.9784 0.1017 0.3992
7 0.4647 0.2892 0.9806 0.0892 0.3784
8 0.4735 0.2806 0.9821 0.0794 0.3600
9 0.4709 0.2724 0.9839 0.0743 0.3467
10 0.4844 0.2671 0.9843 0.0670 0.3341
11 0.4787 0.2590 0.9851 0.0632 0.3223
12 0.4825 0.2613 0.9841 0.0647 0.3260
13 0.4806 0.2541 0.9869 0.0536 0.3077
14 0.4827 0.2503 0.9865 0.0550 0.3053
15 0.4859 0.2488 0.9877 0.0519 0.3008

Table 4.2: Concept Bottleneck Model Evaluation Results for 15 Epochs

Epoch Concept Acc. Concept Loss Digit Acc. Digit Loss Total Loss

1 0.4376 0.4014 0.8564 0.7362 1.1374
2 0.4360 0.3596 0.9604 0.2427 0.6023
3 0.4747 0.3228 0.9706 0.1545 0.4773
4 0.4474 0.3011 0.9719 0.1322 0.4333
5 0.4705 0.2880 0.9719 0.1281 0.4161
6 0.4823 0.2812 0.9748 0.1117 0.3928
7 0.4597 0.2657 0.9751 0.1093 0.3750
8 0.4708 0.2634 0.9724 0.1168 0.3803
9 0.4823 0.2549 0.9779 0.1043 0.3591
10 0.4798 0.2494 0.9775 0.1065 0.3558
11 0.4931 0.2472 0.9763 0.1160 0.3631
12 0.5027 0.2438 0.9782 0.1100 0.3537
13 0.5141 0.2397 0.9779 0.1043 0.3439
14 0.4927 0.2355 0.9788 0.1042 0.3396
15 0.4847 0.2367 0.9803 0.1026 0.3392
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indicating that the model initially struggles to learn meaningful concept repre-
sentations from the visual features. However, one of the most striking patterns
emerges in the dramatic improvement in digit classification performance. By epoch
2, digit accuracy jumps from 37.24% to 90.16% on training data, while validation
digit accuracy reaches an impressive 96.04%. This significant increase is noticeable
throughout the early stages of training, with the digit accuracy reaching around
98% by the fifth epoch and then maintaining this performance for the remainder
of the training period. The final epoch reaches the highest digit accuracy in
training with 98.77% and 97.88% in validation accuracy. These impressive
results in the classification task show that the bottleneck constraint does not limit
the classification prediction of a digit once the concepts are learned.

On the other hand, the concept prediction task shows a markedly different
and more challenging learning trajectory, with much more gradual improvement
throughout the entire training process as its training begins with an accuracy
of 50.38% and then slowly to reach a stable accuracy of 48.59% by the fifteenth
epoch after a notable drop in accuracy that started from the second epoch. The
descriptive information about the concept accuracy details how actually learning
meaningful concept representations is more challenging than classification of digits.
Furthermore, the validation concept accuracy follows a similar pattern as it starts
at 43.76% and then reaches 48.47% by the end epoch 15. This slow improvement
in the validation accuracy does not negate the fact that the rate of improvement
is really slow and thus, concept detection presents the most important bottleneck
in the architecture and mitigating its limitations may necessitate architectural
modifications or different learning strategies.

The loss that resulted from the model reveals the optimization challenge faced by
the model during training for both concept detection and digit classification. The
total loss decreases from 2.34 in Epoch 1 to 0.3 in the final epoch, which
ensures that the optimization of both objectives is successful overall. However,
while we examine the loss metric provided, it actually presents deeper insights into
the learning dynamics. The digit prediction loss drops dramatically from
1.99 to 0.05, representing a reduction of over 97%, while concept prediction
loss decreases less from 0.35 to 0.24, representing approximately a 30%
reduction. This significant disparity suggests that once the model learns basic
concept representations, the digit classification task becomes relatively straight-
forward due to the bottleneck architecture’s effectiveness, but refining concept
detection accuracy remains challenging throughout the entire training process.

These results provide great validation that the bottleneck architecture is clearly
effective and present a strong theoretical foundation. Despite forcing all digit
classification decisions to flow exclusively through only 5 concept predictions, the
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model was capable to achieve nearly 98% accuracy, demonstrating that the learned
concept annotations contain enough discriminative information for a significant clas-
sification performance. This exactly coincides with our the fundamental hypothesis
that visual concepts can be effective and also complete intermediate representation
for digit recognition tasks. The architecture successfully maintains interpretability
without sacrificing classification performance, achieving the dual objectives of ex-
plainability and effectiveness that were previously detailed as an important target
to find the balance between both purposes.

Additionally, the training process maintained an impressive stability and great
improvement rates across all metrics without significant oscillations or convergence
difficulties even though the convergence rates that were obtained by the concept
layer were modest to the say the least. The learning curves demonstrated through
the results shown in Table 4.1 and 4.2 a clear and steady increase in accuracy
without signs of overfitting, training instability, or premature convergence. The
balanced loss weighting (1.0 for both objectives) has in fact shown its reliability
when optimizing both target objective functions while preventing either task from
dominating the learning process. The consistent improvement in both training and
validation phases throughout the 15-epoch period suggests that further training
of the model, for that matter, could potentially provide even more improvements,
particularly in concept prediction accuracy.

The training results provide us with an optimal foundation for the evolutionary
algorithm phase that follows while simultaneously presenting significant oppor-
tunities for improvement. The average at best concept prediction accuracy of
approximately 48-51% suggests that there is plenty of room for improvement in
concept representation quality, making this an ideal objective for evolutionary re-
finement methods. The evolutionary algorithm will operate on concept embeddings
that have been trained to support high-quality digit classification with accuracy
that dabbles between 97% and 98%, providing a robust basis for discovering newly
refined concept subdivisions. The gap between the digit classification success and
concept prediction challenges provides us with the insight that the learned embed-
dings contain rich representational information that may not be fully captured by
the original concept detection algorithms represented by the five original concepts,
which also suggests that evolutionary refinement could unlock additional discrimi-
native power within the embedding space of the concepts. That, itself, significantly
renders the expected results from the evolutionary algorithm for concept refinement
to be quite exciting to analyze.

Hence, we can clearly see that the concept bottleneck model serves as the
crucial foundation for the evolutionary algorithm phase as it provides both great
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representative concept embeddings (each within its specific space) that will be
refined and a robust evaluation technique for measuring the refinement quality of
these concepts. The learned embeddings capture the model’s representation of
visual concepts in a 64-dimensional space that supports clustering and refinement of
these concepts. The training results demonstrate that although the current concepts
demonstrate reasonable performance, significant optimization potential remains
present and feasible, making this an ideal target for evolutionary improvement. This
dual role of digit classification and concept detection makes the concept bottleneck
model an important bridge between the initial concept detection phase and the
evolutionary optimization phase that will proceed.

4.2 Evolutionary Algorithm Results and Analysis
on K-Means Clustering

In Figure 4.1 , we can detect that the evolutionary algorithm was able to successfully
discover an optimal clustering configuration that equates between the granularity
of the emerged concepts and the discriminative influence of each cluster. The
best individual that was found within our framework presents the following
configuration: [7, 9, 6, 8, 0] representing 7 refined loop clusters, 9 emerging
vertical line clusters, 6 new horizontal line clusters, 8 diagonal line clusters, and
0 curve clusters (due to the curve detection failure discussed previously). This
configuration showed that the algorithm is able to determine new granularities
within a specific concept, which verifies the correctness of the hypothesis that
presents different visual concepts to require different levels of subdivision in order
to maximize their effectiveness.

4.2.1 Cluster representation and Embedding Space struc-
ture

• Loop Concept Clustering Analysis: The PCA visualization reveals notable
clustering quality for loop concepts, with seven distinct clusters showing clear
spatial separation and minimal overlap. The clustering structure demonstrates
a sophisticated understanding of loop variations within the embedding space,
with clusters arranged in a roughly circular pattern that likely corresponds
to different loop sizes, or orientations, or completeness levels. The clean
separation between clusters validates the evolutionary algorithm’s decision to
employ seven subdivisions for this concept, suggesting that loop embeddings
contain rich structural information that benefits from fine-grained clustering.

• Vertical Line Concept Clustering Analysis: The vertical line concept
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Figure 4.1: Concept Clustering using K-Means

shows the highest granularity out of all the other concepts with nine different
clusters arranged in a complex configuration space. The PCA visualization
shows clusters distributed across diverse regions with the vertical line concept
as its unique characteristics. Some clusters appear in an elongated formations
while others form compact groups, this presents several types of vertical
structures (thick and thin lines or straight and slightly curved). The selection
of nine clusters by the algorithm seems to connect embedding visualization to
separate spaces within the embedding space.

• Horizontal Line Concept Analysis: The Horizontal line clustering was
able to demonstrate a moderate subdivision with six clusters that show
good separation and balanced population distributions. The clusters are to
form distinct spatial regions as seen in the PCA space, with some clusters
forming compact groups and others showing more elongated distributions.
This suggests that horizontal line variations are somewhat less complex than
vertical lines but still can be represented in meaningful subdivision that
overlook simple binary classification.

• Diagonal Line Concept Analysis: The diagonal line concept shows the
most fragmented clustering pattern, with eight clusters distributed across the
embedding space as it presents a scatter representation of the embeddings.
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This division likely shows that diagonal patterns within the MNIST dataset
are complex in their general form, as they seem to appear in fewer digit types
with a great number of variable ways to see the diagonals. This distributed
representation of the embeddings over the eight clusters shows that diagonal
lines are more complex to cluster than other concepts, especially when the
diagonal line present within the dataset samples are also limited by default.

4.2.2 Evolutionary Algorithm Convergence Analysis

Figure 4.2: Evolutionary Algorithm fitness accuracy with K-Means as the clus-
tering technique.

Using the graph in Figure 4.2, we can notice that the evolutionary algorithm
demonstrates excellent convergence characteristics over 15 generations, achieving a
total improvement of +0.0245 (2.45 percentage points) from approximately 59.7%
initial accuracy to 62.3% final accuracy. The convergence pattern shows three
distinct phases: an initial exploration phase (generations 0-3) with moderate fitness
improvements, a rapid improvement phase (generation 3-4) where best fitness jumps
from approximately 59.8% to 62.0%, and a final convergence phase (generations
4-15) with gradual refinement and population convergence.

The algorithm maintains healthy population dynamics throughout the evolu-
tionary process, with average fitness steadily improving from approximately 54.0%
to 59.7% while best fitness stabilizes around 62.3%. The gap between average and
best fitness in the early stages shows that the average fitness is slowly converging
towards the best fitness as the algorithm is able to detect good solutions throughout
the population. The convergence in the final phase, where the average and best
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fitness are close together, was able to detect a high-quality clustering configuration
with a good convergence rate.

The consistency in the improvement found in Figure 4.2 for both the best
and average fitness demonstrates that the algorithms have reached a certain
level of stability without any oscillating deviations or premature convergence.
This stability has also great significance to the evolutionary operators (selection,
crossover and mutation) as this means that they are well-calibrated and provide
enough exploration while maintaining selective pressure for improvement.

4.2.3 T-SNE Embedding Space Visualization

Figure 4.3: Concept Embeddings Visualization using TSNE.

The t-SNE visualizations, present in Figure 4.3, reveal a complex structure
within the concept of embedding spaces. Loop embeddings show multiple distinct
clusters arranged in various configurations, suggesting that the 64-dimensional
embedding space captures meaningful variations in the characteristics of the loop.
The clear spatial separation between different regions indicates that similar loop
types cluster together while different loop variations occupy distinct regions of the
embedding space.

The projection showcased in Figure 4.3 present that the concept bottleneck model

45



Experimental Results and Performance Analysis

successfully learned to encode meaningful visual patterns into the 64-dimensional
embedding space. Each concept has different clustering patterns that show the
implicit similarities in structure, with similar samples clustering together and
different patterns showing clear separation. This actually shows how effective the
concept bottleneck is in learning discriminative embeddings that are valuable to
clustering techniques.

The cluster structures in the t-SNE plots in Figure 4.3 verify the decisions that
the evolutionary algorithm has taken when it comes to clustering. The obvious
separation between different regions suggests that K-Means clustering is able to
identify meaningful subdivisions within each concept’s embedding space, which
resonates well with the selection of cluster counts that was taken by the algorithm.

4.2.4 Classification Performance Analysis

Figure 4.4: Classification Accuracy comparison.

The classification accuracy comparison, that is visualized in Figure 4.4, demon-
strates the significant impact of evolutionary concept refinement across multiple
evaluation frameworks. Original concepts alone achieve 31.4% accuracy, providing
a baseline that reflects the limitations of broad, undifferentiated concept categories.
The concept bottleneck model achieves an impressive 97.8% accuracy, validating
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the effectiveness of the neural bottleneck architecture for digit classification through
concept mediated predictions.

The evolved concepts were able to achieve an impressive 64.3% accuracy,
which actually represents a +32.9-percentage increase over the original five concepts
alone. This improvement shows the importance of concept refinement through
evolutionary optimization as well as its effectiveness. The combination of evolved
and original concepts achieved an identical 64.3% accuracy, which implies that
the evolved concept captures and extends the power of the original concepts in
discriminating digits, without the literal need of them being present.

The raw images reference achieves 91.2% accuracy using traditional pixel-based
classification, providing context for the evolved concept performance. While the
evolved concepts (64.3%) do not reach the performance of raw pixel analysis, they
provide the crucial advantage of complete interpretability while achieving reason-
able classification accuracy. The significant improvement over original concepts
(31.4% → 64.3%) demonstrate the evolutionary algorithm’s success in discovering
more discriminative concept subdivisions.

The result demonstrates the trade-off between interpretability and performance.
As the concept bottleneck model achieves an optimal accuracy in 97.8% by learning
optimal feature representations during what is transmitted as the “black box”
approach, while the evolved concepts with 64.3% were able to achieve a good per-
formance using only the predefined visual concept framework. The jump between
the evolved concept prediction accuracy and the traditional ones is significant
and it represents a step towards reducing the gap between interpretability and
performance.

The efficiency of the evolutionary algorithm are represented in these experimental
results that further validates the link between initial concepts and improved
interpretable ones. The improvement in performance present that is approach
is greatly reliable when it comes to the interpretable machine learning realm,
while on the other hand the identified clustering configurations show an important
understanding around the subdivisions of the concepts. The visuals demonstrate
that the evolutionary algorithm effectively finds significant structure in the learned
embedding spaces, allowing for the automatic identification of emerging concept
subdivisions that improve interpretability while keeping great performances.
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4.3 Evolutionary Algorithm Results and Analysis
on DBSCAN Clustering

4.3.1 Clustering Configuration of DBSCAN technique
In Figure 4.5 , we can see that the DBSCAN evolutionary algorithm discovered a dra-
matically different optimal configuration that reflects the density-based clustering
paradigm’s unique characteristics. The algorithm was able to select a configuration
of 12 new loop clusters, 16 generated vertical line clusters, 45 horizontal lines
clusters and 8 diagonal lines clusters, meaning that the subdivision of the original
concept was higher than the one that we have gotten from K-Means clustering.
This increase in clustering is mainly due to the fact that DBSCAN determines
clusters count based on data density rather than predetermined numbers, leading
to more fine-grained subdivisions of the embeddings.

Figure 4.5: Concept Clustering based on DBSCAN technique.

• Loop Concept DBSCAN Analysis: The PCA graph present in Figure 4.5
present a completely different clustering structure with respect to K-Means,
as it was able to identify 12 distinct density regions within the embedding
space of the loop concept. The clustering pattern shows primarily linear-based
regions as a lot of clusters extend diagonally across the embedding space, with
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a significant number of noise points that are marked with the x symbols, that
represent samples that don’t fit into well-defined density clusters. This pattern
demonstrates that loop embeddings contain very complex density variations
that DBSCAN captures through its density-based technique, however the
significant noise indicates that not all loop samples abide by these clusters.

• Vertical Line Concept DBSCAN Analysis: The vertical line concept
presents the most complex structure with 16 clusters distributed across multiple
regions of the embedding space. The graph in the Figure above shows that the
clusters can have multiple sizes, as some form compact groups while others
appear elongated. The distribution of noise marked by a black x shows that
the embeddings are heterogeneous which defies the concept of density-based
clustering. We can deduce that DBSCAN is sensitive to local density variations
within the vertical line embedding distributions due to the large number of
clusters.

• Horizontal Line Concept DBSCAN Analysis: The graph showcases a
highly fragmented embedding space as the clustering granularity of the hori-
zontal line concept presents 45 distinct clusters, which means the subdivision
of the embedding space is really detailed. The visualization displays several
different small clusters scattered across the embedding space with a lot of
noise data points. This extreme division of the original concept demonstrates
that the DBSCAN clustering technique identifies small and local density re-
gions rather than large-scale ones, which may lead to overfitting or excessive
fragmentation.

• Diagonal Line Concept DBSCAN Analysis: The diagonal line concept
shows more positive results considering it was able to find 8 clusters arranged
in different regions. The graph details a less fragmented representation of the
embedding space compared to other concepts, with clearly fewer noise points.
This result implies that the embeddings of this concept are more coherent
in terms of density and consequently suit well the DBSCAN approach, even
though the frequency of diagonal lines found in the dataset was lower than
the threshold, as presented in the annotator.

4.3.2 Evolutionary Algorithm Performance for DBSCAN
Clustering

Using the fitness visualization presented in Figure 4.6, we can realize that the
DBSCAN evolutionary algorithm demonstrates more volatile convergence charac-
teristics compared to K-Means, with best fitness oscillating between approximately
36.8% and 39.3% over 15 generations while achieving a total improvement of
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Figure 4.6: Evolutionary Algorithm Performance for DBSCAN

+0.0140 (1.4 percentage points). The convergence pattern shows less stability
than K-Means, with multiple local peaks and valleys that suggest a more complex
optimization landscape. The best fitness reaches a maximum around generation
13-14 before declining slightly in the final generation, indicating potential overfitting
or instability in the density-based clustering approach.

In fact, the average fitness shows a limited improvement, remaining stable around
35 – 36% throughout most of the generations of the evolutionary algorithm while
also presenting more oscillation than the K-Means approach. We can detect that
the smaller gap between the best and the average fitness, compared to K-Means
suggests a more limited optimization where DBSCAN parameters have less effect
on performance. We witness that the population finds it difficult to improve with
consistency, showing a few periodic setbacks that demonstrate how challenging it
is to optimize density-based clustering.

The DBSCAN technique was able to achieve a smaller improvement (+1.4
percentage points) compared to the K-Means improvement that was analyzed
before, and we can strongly interpret that the density-based clustering may be less
effective for this specific task. And thus, we can strongly confirm that DBSCAN’s
density-based technique may not align well with the embedding space learned by
the concept bottleneck model.

4.3.3 T-SNE Embedding Visualization
We can see through the t-SNE visualizations presented in Figure 4.7 that DBSCAN
identifies different patterns to the ones that were displayed in K-Means clustering.
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Figure 4.7: Concept Embedding Visualization using TSNE

For example, the horizontal embeddings show multiple isolated cluster regiones
separated by great space, this comes as an advantage to DBSCAN clustering
techniques as it bases its algorithm on density accumulation. However, the con-
siderable amount of noise that is present in all concept visualizations shows that
many embeddings do not fit well density clusters which limits the effectiveness
of DBSCAN. Although there is an advantage in excluding the outliers from the
clusters that do not fit them, this may also be counter efficient as it may reduce
the total number of samples that have meaningful concept refinement, which may
consequently limit the evolutionary optimization process.

4.3.4 Classification Performance Analysis
The DBSCAN approach demonstrates major difference in terms of performance
compared to K-Means clustering. From Figure 4.8, we can notice that the classifica-
tion accuracy comparison reveals that original concepts achieve 31.4% accuracy
as the baseline, while the concept bottleneck model maintains its impressive
97.9% performance (+66.6 percentage point improvement), which confirms that
the neural network architecture is consistent across different clustering approaches.
However, the evolved concepts using DBSCAN achieve 36.2% accuracy,
representing a more modest +4.9 percentage point improvement over the original
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Figure 4.8: Classification accuracy based on the DBSCAN clustering embeddings

concepts baseline. The combined approach (original + evolved) achieves
36.9% accuracy with a +5.6-percentage point improvement, showing minimal
additional benefit from combining original and evolved concepts. The raw images
reference maintains 91.2% accuracy (+59.9 percentage points), providing
consistent performance context across both clustering methodologies, same as the
concept bottleneck model.

In conclusion, these results reveal important trade-offs between the two clus-
tering approaches. K-Means achieves superior performance improvement (+32.9
percentage points vs +4.9 percentage points for evolved concepts) and demonstrates
more stable evolutionary convergence, suggesting better alignment with the embed-
ding space characteristics. DBSCAN provides more ambiguous cluster discovery
with automatic granularity determination and noise detection but achieves slight
performance improvements and shows greater optimization volatility. This implies
that the concept embeddings learned by the model may have some characteris-
tics that are more suitable to a centroid-based clustering technique rather than a
density-based one. Since the performance of K-Means was extremely superior to the
one of DBSCAN, we can also deduce that the concept embeddings are a compact
with a spherical distribution and that a density-based method for clustering can
present restrictions for the embedding space structure, leading to our findings of
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abundant noise points.
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Conclusion

The research conducted in thesis was able to demonstrate the potential that evo-
lutionary algorithms have when it comes to discovering newly emerged concepts,
where these new concepts can enhance both interpretability and classification
performance in deep neural networks. Abiding by a detailed three-stage pipeline
that contains visual concept annotator, the concept bottleneck model and evolu-
tionary concept algorithm, this work presented the fundamental obstacle related to
balancing interpretability while weighing on discriminative power in explainable
artificial intelligence.

The research approach progressed using a systematic approach related to in-
terconnected phases within a pipeline. The visual concept annotator was able to
successfully transform raw MNIST digit images into binary concept annotations
by picking five fundamental visual concepts, while achieving 25% detection rates
for loops, vertical lines and horizontal ones using adaptive thresholding. Then the
concept bottleneck was able to achieve a remarkable accuracy of 97.8% for digit
classification and an average accuracy of 48.6% for the concept prediction accuracy.
The bottleneck was able to demonstrate that its constraints preserve classification
performance while ensuring complete interpretability.

Next, with the execution of the evolutionary algorithm, we were able to discover
optimal emerged concepts through clustering refinement, this phase constituted
the most innovative section in our research. The K-Means clustering technique was
able to find an optimal configuration for the five original concepts that resulted in
a substantial increase in the classification accuracy of the digits arriving at 64.3%
compared to the baseline of 31.4%. While, on the other hand, DBSCAN achieved
a more modest improvement of +4.9 percentage points due to fragmentation and
noise in the embedding space.
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Speaking of the contributions made within this project, it is important to in-
clude the integration of evolutionary algorithms with concept bottleneck to discover
concepts automatically. Additionally, the implementation of a bottleneck con-
straint that ensures complete interpretability all while demonstrating significant
performance improvements and preserving explainability. We can also consider the
development of a robust pipeline that focuses on evolutionary concept optimization
as a significant contribution made by this work.

In the end, we can confidently assert that this project was able to establish
evolutionary concept optimization as a promising direction for interpretable machine
learning, while providing an automated approach that is independent from manual
concept specification. The notable performances that were detailed concerning
what was achieved with K-Means clustering show the credibility around the usage
of evolutionary approaches for reducing the gap between interpretability and the
strength of neural networks. Although the evolved concepts did not achieve “black
box” level of accuracy, they provided nevertheless great improvements over the
baseline representation while keeping the interpretability and establishing a great
foundation for future research in discovering concepts automatically and optimizing
concepts through evolutionary algorithms for explainable artificial intelligence.
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Future Research

Moving forward, further research directions should address several challenges and
limitations that were encountered during the diverse implementations of this project.
However, we need to also consider the plethora of opportunities that can be lever-
aged as well in order to improve on the conducted research in order to obtain more
optimal results that certainly improve the confidence in our initial hypothesis and
our developed solution as a whole.

Essentially, the curve detection algorithm needs to be redesigned in order to
address the saturation that was encountered and to provide an important asset
that was missing which is a meaning discriminative power. This can be done by
finding alternative curvature calculations methods or normalization techniques that
capture detailed variations of the curves without reaching any saturation of the
algorithm.

After the modest results that were found using DBSCAN as a clustering tech-
nique, it is also important to investigate alternative approaches such as Gaussian
Mixture Model, spectral clustering or hierarchical clustering methods that may
provide us with improved results in terms of refined concepts, as these techniques
may be better aligned with our embedding space characteristics.

One of the most important targets that need to be considered in any further
research is expanding the concepts beyond the structural explainable results that we
have found. In fact, it is extremely important to emphasize on how semantic-level
representations could improve interpretability and applicability to more complex
visual domains outside of the restrictions of handwritten digits.

In order to provide our three-stage pipeline to become more generalized and
scalable, it is crucial to broaden the scope of which the pipeline is applicable by
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testing it on larger and more complex datasets such CIFAR-10 or CUB-200-2011
as it would add more validation and credibility to our experimentation and thus
our pipeline implemented.

Instead of finding one optimal solution that maximizes the performance of the
evolutionary algorithm based on classification accuracy, we could consider finding
multiple optimal solutions that offer different balance between being accurate with
comprehensive meanings, letting users to choose what is more important for their
specific application and by that a multi-objective evolutionary algorithm would
be useful to find a better balance in the trade-off between interpretability and
performance.

Finally, rather than letting the algorithm to blindly discover concepts based only
on mathematical calculation that represent the core principle of the evolutionary
algorithm itself, an expert user could be shown the discovered concepts in order to
distinguish what align with its logical interpretation of what the result should or
should not be. This ensures that the final concepts are not just mathematically
optimal but also correlated with how human naturally think and categorize visual
patterns. Thus, the implementation of a human feedback mechanism, although time
consuming, could make the emerged concepts more meaningful and purposeful.
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