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Abstract

Advanced Persistent Threats (APTs) represent one of the most critical challenges in mod-
ern cybersecurity. Their stealthy and evolving nature makes them particularly difficult
to detect within the massive volume of system logs generated by enterprise environments.
This thesis investigates the use of machine learning for APT detection from log data,
comparing shallow classifiers, deep learning approaches, and a tactic-aware ensemble of
fine-tuned BERT heads.
The experiments demonstrate that while shallow models can achieve competitive perfor-
mance under random data splits, they fail to generalize when evaluated chronologically,
underscoring their limited ability to adapt to the evolving behaviors characteristic of
APT campaigns. Deep learning models, especially fine-tuned BERT, provide stronger
and more stable performance, benefiting from their ability to capture contextual relation-
ships within logs.
The proposed ensemble of tactic-specific BERT heads highlights the potential of special-
ization by aligning detection capabilities with MITRE ATT&CK tactics. This ensemble
achieved promising results under random splits and showed the value of tactic-aware
learning, though limitations remain in terms of recall and robustness under chronological
evaluation. Error analysis revealed that many missed malicious logs were dominated by
obfuscated or semantically weak tokens, making them difficult to distinguish from benign
activity.
Overall, this thesis contributes to the understanding of APT detection through log analy-
sis, illustrating both the strengths and limitations of current machine learning approaches.
The findings emphasize the importance of temporal evaluation for realistic assessments
and suggest that adaptive, tactic-aware methods hold promise for improving the detection
of advanced and evolving threats.
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Chapter 1

Introduction

1.1 Advanced Persistent Threat

Cybersecurity has become one of the most critical domains in the digital era, where vast
amounts of sensitive data are constantly exchanged, stored, and processed online. Among
the various cyber threats, Advanced Persistent Threats (APTs) stand out due to their so-
phistication, stealth, and long-term objectives. These attacks are typically orchestrated by
well-resourced adversaries—such as nation-states or organized cybercriminal groups—and
are designed to compromise specific targets over extended periods.

Feature Traditional Attacks APT Attacks
Attacker Type Lone individuals or small

groups
Organized, well-resourced teams

Target Random systems or users Specific organizations or institu-
tions

Goal Quick profit or fame Strategic gain or espionage
Method Fast, one-time attacks Stealthy, long-term presence
Tools Common malware Custom exploits and zero-days
Access Duration Temporary Prolonged and persistent

Table 1.1: Comparison of Traditional Attacks and APTs

According to the National Institute of Standards and Technology (NIST), APTs are dis-
tinguished by their ability to use multiple attack vectors, adapt to defensive measures,
and pursue their objectives persistently [1]. Unlike conventional attacks, which are often
opportunistic and short-lived, APTs involve methodical planning and execution aimed at
data exfiltration, espionage, or disruption of critical infrastructure. The defining charac-
teristics of APTs are embedded in the term itself:

• Advanced: These attackers utilize sophisticated tools, techniques, and procedures
(TTPs), often including zero-day vulnerabilities and multi-stage exploits.

• Persistent: APT groups aim to maintain long-term access within a target environ-
ment, using stealthy techniques to avoid detection and ensure operational longevity.

• Threat: These attacks pose a significant danger to national security, critical infras-
tructure, and enterprise data, often leading to long-term consequences even after
the attack is mitigated.
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1.2 APT life cycle

The following is a restructured explanation of the attack process employed by Advanced
Persistent Threat (APT) groups based on security literature including InfosecTrain (2024) [2].
This framework outlines five distinct stages that describe how APT attacks are typically
executed, regardless of the attackers’ ultimate objective. It also highlights how the attack
steps may be adjusted based on whether the goal is to steal information, disrupt opera-
tions, or achieve other outcomes.

Figure 1.1: APT Attack Lifecycle Overview

Stage 1: Reconnaissance Every effective cyber attack starts with gathering intelli-
gence. During this phase, attackers collect detailed information about the target, with
the belief that a deeper understanding of the target’s environment increases their chances
of success.
Stage 2: Establishing a Foothold After the reconnaissance phase, attackers work to
gain access to the target’s systems or network. This step is critical, as it provides the
entry point needed to carry out subsequent actions.
Stage 3: Lateral Movement/Remaining Undetected If the attacker’s objective
involves accessing sensitive data or compromising key components, they will maneuver
within the target’s network. During this phase, maintaining stealth is paramount, as
moving laterally helps locate valuable assets while reducing the risk of detection.
Stage 4: Exfiltration/Disruption This phase is where the attack objectives begin to
materialize. If the goal is data theft, attackers focus on retrieving and transmitting sen-
sitive information back to their command center. Alternatively, if the aim is to disrupt
operations, they may concentrate on disabling or destroying critical components of the
target’s infrastructure.
Stage 5: Post-Exfiltration/Post-Disruption In the final phase, attackers may con-
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tinue to extract additional data or further impair critical systems. They also take measures
to erase their tracks, ensuring a clean exit from the target’s network.

1.3 APT Examples

In order to give a historical importance, following several real-life case studies of Ad-
vanced Persistent Threats (APTs) that demonstrate the growing complexity and impact
of such attacks over the past decade. These case studies highlight different strategies and
techniques employed by attackers to infiltrate systems, maintain persistence, and achieve
their goals, which range from data theft to financial fraud
Titan Rain (2003–2006) Titan Rain was one of the earliest identified state-sponsored
APT campaigns, originating from China and targeting U.S. defense contractors such as
Lockheed Martin and NASA to exfiltrate sensitive but unclassified data. Although clas-
sified information was not confirmed stolen, the sustained coordination and duration of
the campaign represented a significant precedent for modern APT operations [3].
Operation Aurora / Hydraq (2009) Operation Aurora—also referred to as Hy-
draq—was an APT targeting Google and other major corporations via zero-day exploits
in Internet Explorer and Adobe Reader. Attackers deployed multi-layered malware and
installed backdoors for prolonged access and espionage, marking one of the first high-
profile attacks on commercial institutions [4].
Stuxnet (2010) Stuxnet was a sophisticated malware attack designed specifically to
disrupt Iran’s nuclear enrichment program by sabotaging industrial control systems. By
exploiting multiple Windows zero-day vulnerabilities, it caused physical damage to cen-
trifuges, demonstrating the potential for cyberattacks to translate into real-world kinetic
impact [5].
RSA SecureID Attack (2011) In 2011, RSA was targeted via spear-phishing campaigns
exploiting a zero-day Adobe Flash vulnerability. The attackers compromised credentials
related to RSA’s SecurID two-factor authentication system and exfiltrated data before the
breach was contained, illustrating how supply-chain trust can be subverted for credential
theft [6].
Carbanak (2013–2017) The Carbanak APT targeted financial institutions globally us-
ing spear-phishing emails to deliver custom malware. The attackers remained undetected
for months, manipulating bank systems, siphoning money via fraudulent transactions and
ATM controls, resulting in over €1billion in losses across dozens of countries [7].
SolarWinds (2019–2020) The SolarWinds Orion supply-chain compromise, attributed
to APT29 (also known as Nobelium or Cozy Bear), involved injecting malicious code
(“Sunburst”) into trusted software updates. The attack affected thousands of organi-
zations, including U.S. federal agencies and major corporations. The campaign demon-
strated extreme stealth, long dwell time, and the danger of targeting widely used plat-
forms [8].

1.4 Detection Challenges

The most critical issue with Advanced Persistent Threats (APTs) is that they are ex-
tremely difficult to detect in their early and stealthy stages. Many traditional security
mechanisms fall short, allowing adversaries to linger undetected and execute complex
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multi-stage campaigns. According to a recent comprehensive survey, the key obstacles in
APT detection include [9]:

• Evasion via Advanced and Living-off-the-Land Techniques: Use of custom
malware, polymorphism, and legitimate system tools to bypass signature-based de-
fenses and avoid detection.

• Low-and-Slow Behavior and Long Dwell Time: Adversaries often maintain
subtle, gradual activity over months, blending into normal operations and making
anomalies hard to spot.

• Multi-Stage Attack Chains: APTs unfold across several stages—initial compro-
mise, lateral movement, persistence, exfiltration—each individually benign, compli-
cating holistic detection.

• Encrypted Communications and Covert Channels: Use of encryption (e.g.
HTTPS, DNS tunneling) conceals command-and-control traffic and exfiltration, lim-
iting visibility.

• Alert Fatigue and Prioritization Difficulties: Behavioral detection and anomaly
systems generate high volumes of alerts with many false positives, overwhelming an-
alysts and delaying response.

• Resource and Expertise Constraints: Effective APT detection—including threat
hunting, log correlation, and machine learning methods—demands advanced tooling
and skilled analysts, which many organizations lack.
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Chapter 2

State of the Art

Advanced Persistent Threat (APT) detection has evolved into a multifaceted research
area, where detection strategies are typically classified into three major categories: signature-
based, anomaly-based, and behavior-based approaches. Each of these classes reflects a
different perspective on how malicious activity is recognized and addressed within com-
plex and often stealthy attack campaigns.
Signature-based methods rely on predefined indicators of compromise, such as known
malware hashes, byte patterns, or network signatures. These techniques are widely used
in antivirus engines and intrusion detection systems, offering high precision in identifying
known threats. However, they are inherently limited against novel, polymorphic, or zero-
day APT variants that do not match existing patterns.
In contrast, anomaly-based detection aims to identify deviations from a model of nor-
mal system, user, or network behavior. This category often leverages machine learning or
statistical profiling to detect suspicious events that do not conform to historical norms.
While effective at uncovering previously unseen attacks, these methods are typically more
prone to false positives and require robust baselining and tuning.
Lastly, behavior-based approachesfocus on detecting malicious intent by monitoring
the sequence and context of actions, often aligned with attacker tactics and techniques.
Rather than flagging individual anomalies, these systems evaluate broader behavioral
patterns—such as lateral movement, privilege escalation, or data exfiltration—often ref-
erencing frameworks like MITRE ATTCK to interpret events in a threat-centric way.
This tripartite classification is commonly adopted in recent literature, offering a useful
lens through which to evaluate the strengths, limitations, and complementary nature of
existing APT detection solutions [10, 11].
In this chapter, the most relevant and diverse solutions from each category will be ana-
lyzed and discussed in detail.

2.1 Signature-based SOTA

Signature-based APT detection methods rely on predefined rules, indicators of compro-
mise, or specific patterns to recognize malicious activity. A representative example is
SR2APT [12], which applies a rule- and signature-based approach to detect multistage
APT campaigns. By monitoring system logs for file operations such as rename, copy, or
move, SR2APT employs string-matching techniques to flag suspicious activities associated
with known attack stages. Another relevant work is APTSHIELD [13], a real-time host-
based detection framework for Linux systems. It leverages kernel audit logs and matches
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observed events against MITRE ATT&CK signatures to efficiently recognize malicious
behaviors. Both frameworks are strong representatives of the signature-based family, as
they demonstrate the core idea of detecting APTs through predefined and well-established
patterns rather than adaptive anomaly or behavior modeling.

2.1.1 SR2APT

SR2APT is a host-based detection and response framework specifically designed to counter
multistage advanced persistent threats (APTs). Its architecture is structured around two
key components: a Graph Convolutional Network (GCN)-based detection engine and a
Deep Reinforcement Learning (DRL)-driven decision engine [12].
The detection engine processes system logs that are modeled as provenance graphs. In-
stead of analyzing raw event sequences, SR2APT constructs subgraphs around nodes of
interest (e.g., specific processes or commands) to capture contextual relationships. These
subgraphs are then classified by a GCN into one of seven categories—six corresponding
to distinct APT stages (reconnaissance, discovery, persistence, privilege escalation, asset
discovery, and exfiltration) plus a benign class. By leveraging structural properties of
graphs rather than isolated log entries, the system improves its ability to distinguish sub-
tle attack behaviors that may span multiple system interactions. Experimental evaluation
demonstrated that this approach achieves 94% classification accuracy, outperforming
traditional models such as SVM, CNN, and LSTM.
Once an alert is raised by the detection engine, it is passed to the decision engine, which
determines the most suitable defensive response action. This module formulates the re-
sponse strategy as a sequential decision-making problem under uncertainty, solved using a
deep Q-network (DQN) algorithm. The engine considers not only the detected stage but
also historical context, interdependencies among APT stages, and the trade-off between
the cost of defense actions and potential attack damage. For instance, while aggressive
defenses can halt intrusions, they risk disrupting benign activities; conversely, passive
responses may allow attacks to progress. By modeling these dynamics, the DQN learns
an adaptive policy that maximizes cumulative security benefits while minimizing unnec-
essary interventions.
The innovative contributions of SR2APT are twofold. First, it is the first framework to
apply GCNs for classifying provenance subgraphs of system logs, enabling fine-grained de-
tection of different APT stages rather than binary malicious/benign judgments. Second,
it integrates strategic alert response through reinforcement learning, allowing defenses to
be optimized dynamically based on attack progression and system state. This joint design
ensures that APTs are often intercepted in earlier stages while reducing false alarms and
costly mistaken responses to benign activity.
Overall, SR2APT represents a step forward from purely signature-based or anomaly-based
methods by coupling structural graph learning for detection with adaptive reinforcement
learning for response, thus offering a more agile and cost-effective defense against sophis-
ticated, multistage intrusions.

2.1.2 APTSHIELD

APTSHIELD is a detection system specifically designed for Linux hosts, aiming to provide
stable, efficient, and real-time defense against advanced persistent threats (APTs) [13].
The framework addresses several shortcomings of existing endpoint detection and response

9



solutions, such as the difficulty of selecting reliable data sources, the heavy computational
burden caused by long-term monitoring, and the challenge of producing accurate real-time
alerts. To tackle these issues, APTSHIELD adopts a three-stage architecture that inte-
grates data collection, log compaction, and rule-based detection. For data collection,
the authors performed an extensive evaluation of different kernel-level logging tools and
concluded that auditd provides the most suitable balance of stability, performance, and
semantic richness. Auditd records kernel audit logs that cannot easily be tampered with,
ensuring that critical events such as file operations, process activities, and system calls
are captured comprehensively. Since APT campaigns often last for weeks or months,
raw system logs quickly become too large to handle efficiently. To address this, APT-
SHIELD introduces two compaction techniques: redundant semantics skipping, which
eliminates repeated events that do not change the state of entities, and non-viable entity
pruning, which removes terminated processes or inactive files that no longer influence the
attack chain. These techniques maintain the semantic integrity of the provenance graph
while significantly reducing storage and memory consumption, enabling real-time oper-
ation without sacrificing detection accuracy. The core detection engine of APTSHIELD
is built upon the MITRE ATT&CK framework, where suspicious behaviors are defined
through a system of labels assigned to processes and files. Labels reflect properties such
as whether a process executed a sensitive command or whether a file contains untrusted
data, and they are propagated across the dependency graph through well-defined transfer
rules. By aggregating these labels, the system reconstructs the entire context of an at-
tack and produces alerts when certain combinations match predefined adversarial tactics,
techniques, and procedures. This approach allows APTSHIELD to recognize sophisti-
cated threats including webshell intrusions, fileless attacks, and remote access trojans,
while maintaining low false positive rates. The main contributions of the framework are
its rigorous evaluation of Linux data sources for APT monitoring, its real-time semantics-
aware data reduction methods that ensure constant memory overhead during long-term
monitoring, and its integration of an ATT&CK-driven labeling system that provides in-
terpretable whole-chain detection of complex campaigns. Despite its efficiency and ro-
bustness, APTSHIELD remains a signature-based system because it relies on predefined
ATT&CK rules and expert-specified transfer mechanisms to identify malicious activity.
Rather than adapting dynamically to unknown threats, it detects attacks by matching
system events against established signatures of adversarial behavior, which firmly places
it in the category of signature-driven APT detection methods.

2.2 Anomaly-based SOTA

Anomaly-based APT detection approaches identify suspicious activities by modeling nor-
mal behavior and flagging deviations. One representative framework is UNICORN [14],
which uses provenance graph sketching and runtime analysis to capture long-term system
behavior. By building compact representations of provenance data, UNICORN is able to
efficiently detect stealthy and low-and-slow APT campaigns that evade traditional meth-
ods. More recently, APT-LLM [15] has explored the use of large language models and
autoencoders to embed provenance traces into semantic representations, enabling the de-
tection of subtle anomalies even in scenarios with extreme data imbalance. These two
frameworks are strong representatives of the anomaly-based family, as they demonstrate
how modeling deviations from normal system activity can effectively uncover sophisticated
and previously unseen APTs.
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2.2.1 UNICORN

UNICORN is a provenance-based intrusion detection framework that targets the unique
challenges of advanced persistent threats (APTs) [14]. Unlike signature-driven systems,
UNICORN adopts an anomaly-based approach: instead of relying on predefined attack
rules, it learns models of normal system execution and flags deviations as potential intru-
sions. Its design specifically addresses the “low-and-slow” nature of APTs, which unfold
gradually and often mimic benign activities to evade conventional detectors.
At its core, UNICORN leverages whole-system provenance, representing system execution
as a directed acyclic graph that captures causal relationships among processes, files, and
network connections. This provenance-centric view allows the system to reason about
events that are temporally distant but causally related, a key advantage in tracking long-
term attack chains. Since raw provenance graphs grow continuously and can become
prohibitively large, UNICORN introduces a graph sketching mechanism. This technique
incrementally summarizes streaming provenance data into fixed-size structures that pre-
serve essential graph properties while keeping computation and storage overhead man-
ageable.
Building on this sketching layer, UNICORN constructs graph histograms that describe
recurring structural patterns in the provenance graph. By iteratively propagating labels
across multiple hops in the graph, the system encodes contextual and temporal informa-
tion about entities and their interactions. To account for evolving system states over time,
UNICORN employs a “gradual forgetting” mechanism, discounting outdated behaviors
while retaining causally relevant context. This ensures that models remain representative
of legitimate system dynamics without being poisoned by long-running intrusions.
During training, UNICORN clusters graph sketches to build an evolutionary model of
normal execution. This model captures different meta-states of a system (e.g., initial-
ization, steady workload, failure recovery) and the valid transitions between them. At
runtime, new sketches derived from streaming provenance data are compared against this
evolutionary model. Anomalies are flagged either when sketches fail to fit any known
cluster or when transitions deviate from the learned evolution of system behavior.
The key innovations of UNICORN include: (i) the introduction of sketch-based, time-
weighted provenance encoding that can efficiently summarize long-running system exe-
cutions, (ii) an evolutionary modeling strategy that captures system dynamics without
updating models during deployment, thus preventing attacker-driven poisoning, and (iii) a
scalable streaming architecture that processes provenance graphs in real time without re-
quiring full in-memory graph storage. Evaluation results show that UNICORN achieves
significant improvements in accuracy and precision compared to previous provenance-
based detectors, while maintaining low computational and memory overheads.
UNICORN is clearly an anomaly-based method, since it does not depend on predefined
signatures or ATT&CK-style rules to identify threats. Instead, it builds a baseline of
benign behavior and treats deviations from this baseline as suspicious, which makes it
well-suited to detect zero-day exploits and previously unseen APT strategies. Its ability
to identify intrusions arises not from rule matching, but from recognizing when the causal
structure of system execution diverges from established normal patterns.

2.2.2 APT-LLM

APT-LLM is a recent anomaly detection framework designed to tackle the difficulties of
identifying advanced persistent threats (APTs) in highly imbalanced datasets [15]. Unlike
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classical rule-based or handcrafted-feature systems, APT-LLM builds on pre-trained large
language models (LLMs) to transform raw provenance traces into semantically meaning-
ful embeddings. These embeddings are then modeled using autoencoders to establish a
baseline of normal system behavior and detect deviations that suggest malicious activity.
The framework starts by converting low-level system events—such as process execution,
file operations, or network activity—into descriptive textual sentences. Pre-trained LLMs
including BERT, ALBERT, RoBERTa, DistilBERT, and MiniLM are used to generate
dense vector representations of these sentences, thereby capturing the contextual and se-
mantic relationships between process actions. These high-dimensional embeddings act as
rich behavioral signatures of system activity, allowing the detection system to pick up on
subtle irregularities that might otherwise blend into benign background noise.
For anomaly detection, APT-LLM employs different types of autoencoders: a standard
autoencoder for deterministic reconstruction, a variational autoencoder (VAE) that in-
troduces a probabilistic latent space to generalize beyond training data, and a denoising
autoencoder (DAE) that improves robustness by reconstructing clean embeddings from
noisy inputs. Self-attention mechanisms are incorporated into the encoder to highlight
dependencies between features, enhancing the model’s ability to discriminate between nor-
mal and anomalous behaviors. At runtime, embeddings derived from new system traces
are reconstructed by the trained autoencoder. Records with reconstruction errors above
a threshold are flagged as potential APT activity.
APT-LLM’s main contributions lie in: (i) reframing provenance traces as textual descrip-
tions that can be effectively encoded with LLMs, (ii) combining multiple autoencoder
architectures with attention mechanisms to capture different aspects of normal process
behavior, and (iii) demonstrating strong performance on real-world DARPA Transpar-
ent Computing datasets, where malicious traces account for as little as 0.004% of the
data. Experimental results show that the framework significantly outperforms traditional
anomaly detectors such as OC-SVM, Isolation Forest, and DBSCAN, particularly in ex-
treme class imbalance scenarios.
APT-LLM is firmly situated within the anomaly-based paradigm. It does not rely on
fixed signatures or handcrafted attack rules; instead, it models typical system dynamics
through embeddings and reconstruction, treating departures from this learned baseline
as evidence of suspicious activity. This design makes it particularly adept at surfacing
stealthy, previously unseen APT campaigns that elude conventional detection strategies.

2.3 Behavior-based SOTA

Behavior-based APT detection frameworks focus on monitoring the sequence and con-
text of actions to identify malicious intent. LogShield [16] is a state-of-the-art framework
that leverages transformer-based models with self-attention to analyze event sequences
derived from provenance graphs. By capturing temporal and contextual dependencies,
LogShield can detect complex APT attack patterns with high accuracy, outperforming
traditional LSTM-based approaches. Similarly, SHIELD [17] integrates anomaly detec-
tion, graph-based analysis, and large language model-driven reasoning to uncover hidden
attack behaviors while providing interpretable explanations. Both frameworks exemplify
the behavior-based family, as they evaluate patterns of attacker actions over time rather
than relying solely on individual anomalies or static signatures, making them particularly
effective against sophisticated and stealthy APT campaigns.
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2.3.1 LogShield

LogShield is a transformer-based detection framework that leverages self-attention mech-
anisms to identify advanced persistent threats (APTs) from system logs [16]. Unlike
earlier provenance-driven or LSTM-based approaches, LogShield reframes the problem as
a sequence modeling task, where system logs and provenance traces are treated as event
sequences analogous to natural language. This design allows the model to capture both
local and global dependencies among events, which is critical for detecting stealthy “low-
and-slow” APT behaviors.
The framework begins with the construction of provenance graphs from raw system logs.
These graphs are then decomposed into event traces, which represent causally linked activ-
ities across processes, files, and network operations. To prepare these traces for learning,
LogShield introduces two specialized embedding strategies. The first is a log embedding,
which encodes object-action pairs (e.g., “File Read”, “Process Create”) as tokens that
can be processed by the transformer encoder. The second is a temporal embedding, which
captures timing differences between parent and child events, thereby reflecting the slow,
staged nature of APT campaigns. By integrating temporal context, the system is able
to distinguish benign sequences from malicious ones that deliberately unfold over long
periods.
At the modeling stage, LogShield employs a transformer architecture, where multi-head
self-attention layers learn contextual relationships across log sequences. To optimize learn-
ing, a customized objective function—the log key cross-entropy loss—is applied. By ran-
domly masking parts of the input and requiring the model to reconstruct them, the system
learns to encode benign sequence patterns while improving its ability to isolate deviations
caused by intrusions. This training strategy ensures that LogShield generalizes well even
on large and imbalanced datasets.
The key innovations of LogShield include: (i) the introduction of temporal embeddings
to capture the timing-sensitive characteristics of APT activity, (ii) the integration of
provenance-informed log embeddings with a transformer architecture, enabling richer con-
textual modeling than RNN-based methods, and (iii) the use of a self-supervised objective
function tailored to log data, which enhances separation between benign and malicious
sequences. Experimental results on DARPA OpTC and TC E3 datasets confirm its ef-
fectiveness, with LogShield achieving F1-scores above 95%, consistently outperforming
LSTM and other transformer baselines.
LogShield is best described as a behavioral-based detection method. Rather than rely-
ing on static rules or predefined attack signatures, it learns the normal temporal and
structural patterns of system execution, and flags traces that deviate from these learned
baselines. Its detection power arises from recognizing abnormal causal and temporal
dynamics in system behavior, making it well-suited to uncovering subtle, stealthy, and
previously unseen APT campaigns.

2.3.2 SHIELD

SHIELD is a provenance-based detection and investigation framework that integrates
anomaly detection, graph analysis, and large language model (LLM) reasoning to un-
cover advanced persistent threats (APTs) [17]. Traditional provenance-based methods
often struggle with high false positive rates or limited interpretability, while purely ML-
driven approaches face challenges with concept drift and lack of explainability. SHIELD
addresses these limitations by combining statistical anomaly detection with graph-based
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event correlation and contextual reasoning powered by LLMs. This design not only de-
tects intrusions but also provides human-readable attack narratives aligned with the cyber
kill chain, significantly reducing analyst workload.
The pipeline begins with a deviation analyzer that uses statistical outlier detection (e.g.,
Local Outlier Factor) to flag unusual system events. These anomalies are then expanded
into local provenance graphs capturing both the suspicious processes and their immedi-
ate lineage. A graph analyzer module refines these graphs by identifying infection entry
points, propagating suspicious tags through causally related entities, pruning benign sub-
graphs, and clustering malicious nodes into dense communities using community detection
algorithms such as Louvain. This ensures that only behaviorally meaningful clusters of
suspicious activity are retained for deeper analysis.
At this stage, the LLM analyzer takes over, applying a multi-stage reasoning process to
interpret suspicious communities. It examines event sequences for abnormal behaviors,
analyzes temporal dependencies among processes, and synthesizes these into structured
attack summaries. To improve trustworthiness, the system attaches dynamic confidence
scores to its findings: benign patterns gradually decrease in confidence through a decay
mechanism, while recurring suspicious behaviors are reinforced. These scores determine
whether alerts are raised immediately or kept under observation. Finally, a temporal corre-
lation engine integrates alerts across time windows, maintaining a long-term perspective
on evolving attacks while efficiently managing memory through rolling provenance up-
dates.
SHIELD introduces several innovations: (i) the integration of LLM-driven reasoning into
provenance-based APT detection, enabling both high detection accuracy and interpretable
explanations, (ii) a dynamic confidence scoring mechanism with reinforcement and decay,
which balances real-time detection with long-term monitoring of stealthy intrusions, (iii)
the use of graph pruning and community detection to reduce noise while retaining essen-
tial attack traces, and (iv) a framework capable of producing detailed attack summaries
with indicators of compromise and explicit mapping to kill chain stages. Evaluations on
DARPA CADETS, THEIA, Public Arena, and Blind Eagle datasets show that SHIELD
consistently achieves high recall and precision, with perfect precision in several cases,
while reducing false positives by orders of magnitude compared to baseline methods.
SHIELD exemplifies a behavioral-based detection approach. Instead of relying on pre-
defined signatures or static rules, it models normal system activities and searches for
deviations that indicate malicious intent. By combining statistical anomaly detection
with causal graph analysis and LLM reasoning, SHIELD captures the behavioral essence
of APT campaigns—slow progression, abnormal causal chains, and coordinated malicious
communities—making it highly effective at surfacing stealthy, long-lived, and previously
unseen attacks.
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Chapter 3

Methodologies

3.1 Datasets

In the domain of Advanced Persistent Threat (APT) detection, the availability of compre-
hensive and realistic datasets is crucial for the development and evaluation of detection
methodologies. Two of the most widely referenced datasets in this field are the CICAPT-
IIoT and the DARPA Operationally Transparent Cyber (OpTC) datasets.
The CICAPT-IIoT dataset was developed by the Canadian Institute for Cybersecurity
and is specifically tailored to reflect attacks in Industrial Internet of Things (IIoT) envi-
ronments. It contains labeled network traffic capturing multi-stage APT scenarios across
different phases of the cyber kill chain [18].
The DARPA OpTC dataset, released by the Defense Advanced Research Projects Agency,
offers a rich collection of system and network telemetry captured from real enterprise-like
environments. It is particularly valuable due to its detailed host-level logs and its focus
on transparency and reproducibility in cyber defense research [19].
These datasets are widely used due to their realistic attack simulations, structured multi-
stage threats, and comprehensive logging capabilities, which make them well-suited for
training and evaluating APT detection models.
For the purposes of this thesis, the Linux APT 2024 Dataset has been selected as the
main dataset for experimentation. This dataset is designed to simulate realistic APT sce-
narios targeting Linux-based systems, with a strong focus on capturing full attack chains
including reconnaissance, privilege escalation, lateral movement, and data exfiltration.
One of the primary reasons for choosing this dataset is its emphasis on modern threat
behaviors within Unix-like environments, which are often underrepresented in traditional
cybersecurity datasets. Given the prevalence of Linux systems in both enterprise and
cloud infrastructures, analyzing APT activity in such contexts is highly relevant for real-
world applications.
Furthermore, the Linux APT 2024 Dataset provides detailed, labeled logs from multi-
ple data sources, including shell command histories, system logs, and process monitoring
tools. This diversity in telemetry makes it particularly suitable for developing and evalu-
ating behavioral-based and anomaly-based detection strategies.
Its clear structure, ground truth labeling, and focus on advanced persistent behaviors
make it a valuable resource for research aimed at detecting complex, multi-stage threats
in modern computing environments [20].
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3.2 Linux APT 2024 Dataset

The Linux APT 2024 Dataset is a recently developed benchmark specifically focused on
evaluating intrusion detection systems and analyzing advanced persistent threats within
Linux environments [20]. Unlike earlier datasets that are mostly Windows-based or
network-centric, this dataset provides an in-depth view of Linux-specific threats and sys-
tem behaviors.

3.2.1 Dataset Construction and Environment

The Linux APT 2024 dataset was created in a controlled and realistic laboratory environ-
ment. This environment was composed of three Linux-based computers organized across
different internal networks to simulate how real systems communicate in an organiza-
tion. To monitor and record all activities during the experiments, the researchers used
a centralized logging platform called WAZUH, which is a security information and event
management (SIEM) system. This system collects logs (i.e., detailed records of events)
from all machines involved, including logs from an antivirus solution (Kaspersky Security
Center) installed on one of the endpoints.
The antivirus plays an important role in this setup. It allows the researchers to capture
how a typical endpoint protection system responds to various attack attempts. By for-
warding its logs to the SIEM, it helps to track whether the malicious activity is detected,
blocked, or allowed to proceed.
To build the dataset, the researchers executed various cyberattacks designed to mimic
the behavior of real-world hacker groups known as Advanced Persistent Threats (APTs).
These groups, such as APT28, APT29, APT41, and Turla, are known for carrying out
long-term, stealthy attacks against high-value targets. The simulated attacks included
techniques such as stealing administrator privileges (privilege escalation), hiding activity,
logging keystrokes (keylogging), and exploiting known software vulnerabilities.
In the simulated environment, one of the three Linux machines was designated as the
attack source, while the other two acted as normal, legitimate endpoints. The attacker
machine was configured to mimic real-world intrusion scenarios, launching targeted oper-
ations against the other systems. Although the attacks were carried out internally within
the lab environment, several of the simulated threat vectors reflected attacks that typi-
cally originate from the internet.
Importantly, each attack in the dataset was documented and categorized using the MITRE
ATT&CK framework. This framework, developed by the MITRE Corporation, is a glob-
ally recognized knowledge base that systematically organizes known adversarial behaviors
observed in real-world cyberattacks. Instead of focusing on specific tools or malware, it
classifies attacks according to the goals (tactics) and the specific methods (techniques)
used by threat actors to achieve them. For example, common tactics include ”Initial
Access,” ”Privilege Escalation,” or ”Data Exfiltration,” and each is associated with vari-
ous techniques such as exploiting a vulnerability or using stolen credentials. By mapping
attacks to this structure, the dataset becomes more interpretable, enabling researchers
to analyze and compare threat behaviors in a standardized way. It also facilitates the
development of detection strategies aligned with industry practices and threat modeling.
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Figure 3.1: Linux APT 2024 Dataset building enviroment

3.2.2 Captured Data and Format

The logs are stored in structured CSV files, with a processed version also available in
XLSX format. The data spans from October 1, 2023, to January 7, 2024, and contains
over 125,000 entries. Each record includes detailed metadata such as timestamps, com-
mand logs, file hashes, source logs, and MITRE-aligned tags. A configuration XML file
(local rules.xml) defines detection rules and system-specific logging policies.

3.2.3 Labeling Strategy

The dataset includes both benign and malicious logs, which are essential for supervised
machine learning tasks such as classification. The labeling process was based on a com-
bination of rule-based detection and anomaly detection techniques. Specifically, the
researchers used custom-defined detection rules within the WAZUH SIEM, as well as
pattern-matching tools like YARA, to flag suspicious activity. These rules were designed
to detect specific commands, known malware behaviors, exploit signatures, and unusual
deviations from normal system activity.
Although the labeling was not done manually, it benefits from a multi-layered detection
pipeline. The combination of static rules, dynamic behavioral analysis, and correlation
with known indicators of compromise (IoCs) helps ensure a relatively high degree of con-
fidence in the accuracy of the labels. For example, activity matching a known APT
technique (such as privilege escalation through a specific CVE exploit) would be flagged
as malicious, whereas regular system operations like file browsing or benign shell com-
mands would be labeled as normal.
Furthermore, the logs are linked with MITRE ATT&CK identifiers, reinforcing the se-
mantic meaning behind each labeled instance. This structured approach reduces the risk
of arbitrary or noisy labeling and makes the dataset suitable for training machine learning
models that require clear distinctions between classes. In the final version of the dataset,
approximately 24,852 records are labeled as malicious and 101,046 as benign, offering
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a substantial and balanced base for experimentation with both anomaly detection and
supervised learning techniques.

3.2.4 Advantages and Limitations

Advantages:

• Realistic simulation of APT activity targeting Linux systems, including modern
attack payloads and methods.

• Comprehensive logging from both system and network layers, integrating 33 different
Linux log resources.

• Strong alignment with the MITRE ATT&CK framework facilitates standardization
and cross-study comparisons.

• Dual availability of raw and processed formats supports a range of analytical ap-
proaches.

Limitations:

• The dataset is Linux-specific, which may limit its applicability to Windows or hybrid
environments.

• Some of the simulations, while realistic, may not fully capture the unpredictability
and stealthiness of real-world APT actors.

• The reliance on a preconfigured SIEM (WAZUH) and custom rules might introduce
a detection bias in labeling.

3.3 Dataset Analysis

The Linux APT 2024 dataset provides a rich foundation for studying intrusion attempts
and advanced persistent threats in Linux environments.

3.3.1 Dataset Composition

The dataset is composed of more than 125,000 log entries gathered over a three-month
period (October 2023 to January 2024). To handle storage constraints, the logs were
distributed across 17 CSV files, each containing up to 10,000 records, in addition to a
merged file that consolidates all records. A processed version in XLSX format is also
provided for structured analysis.
Each record contains a diverse set of attributes: timestamps, agent identifiers, raw com-
mand logs, rule descriptions, file hashes (MD5, SHA-256), system paths, IP addresses, and
mappings to MITRE ATT&CK tactics and techniques. This multidimensional structure
enables researchers to analyze both low-level technical details and high-level adversarial
strategies.
The dataset distinguishes between benign and malicious activity, a critical feature for
supervised learning tasks. Out of the total 125,898 records, 101,046 are categorized as
benign, while 24,852 are flagged as malicious or suspicious.
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Figure 3.2: Linux APT 2024 Dataset labels cronological distribution

3.3.2 MITRE ATT&CK Tactics and Techniques

By aligning records with the MITRE ATT&CK framework, the dataset provides a stan-
dardized view of adversarial behavior. Among the tactics, the most frequent are Defense
Evasion (18,124 records), Initial Access (16,624), and Privilege Escalation (17,164), fol-
lowed by Discovery (14,058). This distribution highlights how attackers prioritize stealth,
entry vectors, and privilege abuse in Linux environments.

Figure 3.3: Linux APT 2024 Dataset tatics distribution

At the technique level, the most common include exploitation of public-facing applica-
tions (14,919 instances), file and directory discovery (13,999), and the use of valid accounts
(6,820). Other techniques, such as privilege escalation exploits and process discovery, are
also represented, though less frequently. This mapping illustrates the persistence of classic
intrusion vectors while also capturing the evolution of more recent exploitation methods.
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3.3.3 Attack Scenarios and Simulated Threats

The dataset incorporates multiple APT groups and real-world attack emulations. Well-
known groups such as APT28, APT29, APT41, and Turla were simulated, alongside
targeted exploits like the Apache Struts vulnerability, keyloggers, and Linux privilege es-
calation payloads. Each scenario was designed to reflect realistic adversarial objectives,
such as credential theft, lateral movement, and data exfiltration. The combination of
APT-specific behaviors with general intrusion attempts ensures a varied and representa-
tive sample of modern threats.

3.4 Data Cleaning

Before conducting any machine learning or anomaly detection experiments, it is essential
to preprocess the raw logs in order to avoid misleading results. The Linux APT 2024
dataset, in its original form, contains a large amount of metadata that, if left untreated,
could artificially inflate the performance of detection models without actually improving
their ability to generalize.
The cleaning process is implemented through a custom function (clean log), which sys-
tematically removes elements that might introduce bias or data leakage. In particular:

• Email and IP addresses: These values are unique identifiers that trivially differ-
entiate benign from malicious activity, but they do not reflect generalizable attack
patterns. Keeping them would risk models simply memorizing addresses rather than
learning behavioral signatures.

• Hexadecimal strings and numeric values: Log entries often contain hashes,
inode IDs, user IDs, ports, or timestamps. These are not meaningful features for
APT detection, since they vary from one environment to another and cannot be
relied upon as discriminative indicators across different contexts.

• File paths, system tokens, and libraries: Paths such as /usr/bin/ or ref-
erences to drivers, modules, or tmp folders may be environment-specific. If not
removed, models might incorrectly associate these with malicious activity due to
their frequency in simulated attacks, resulting in overfitting.

• Usernames and architecture-specific tokens: Usernames (e.g., root, admin) or
architecture labels (e.g., x86 64, arm64) are again too specific to the experimental
setup. Their presence may cause models to learn dataset artifacts rather than
attacker behavior.

• Formatting and punctuation: Removing non-alphanumeric characters and col-
lapsing whitespace ensures textual uniformity, facilitating tokenization and vector-
ization in later steps.

The cleaned logs are stored in a new column (full log clean), which provides a stan-
dardized textual representation of each event. This process helps ensure that models
trained on the dataset are not biased by spurious identifiers but instead learn to detect
attack patterns that are semantically meaningful and transferable to other environments.
Without this cleaning phase, the accuracy of APT detection models would be unreal-
istically high. In other words, models might appear to perform extremely well simply
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because they exploit low-level artifacts unique to the dataset (e.g., a specific IP address
always linked to malicious traffic), rather than learning generalizable adversarial behav-
iors. By enforcing this preprocessing step, the experiments are made more robust and the
evaluation results better reflect real-world applicability.

3.5 Feature Representation

In order to transform raw log data into numerical representations suitable for machine
learning, two different embedding approaches were tested: a traditional Term Frequency–Inverse
Document Frequency (TF–IDF) representation and contextual embeddings obtained with
a transformer-based language model (BERT).

3.5.1 TF–IDF Representation

The TF–IDF approach is a classical method in text mining that assigns weights to terms
according to their importance within a corpus [21]. The weight increases proportionally
with the frequency of a word in a document but is offset by the frequency of that word
across all documents, thus reducing the impact of very common tokens.
In this work, TF–IDF vectors were extracted using scikit-learn’s TfidfVectorizer,
configured with a maximum of 100 features, bi-grams, and English stop-word removal:

vectorizer = TfidfVectorizer(

max_features=100,

ngram_range=(1, 2),

stop_words=’english’)

X_train_vec = vectorizer.fit_transform(X_train)

X_test_vec = vectorizer.transform(X_test)

This representation produces sparse vectors that capture surface-level lexical information,
but it does not account for semantic similarity between different words or contexts.

3.5.2 BERT Embeddings

To capture richer contextual information, we also employed embeddings derived from
a pre-trained transformer model, namely BERT (Bidirectional Encoder Representations
from Transformers) [22]. Unlike TF–IDF, BERT generates dense, contextualized embed-
dings where the meaning of each token depends on its surrounding words. This property
is particularly useful in the analysis of log data, where the same token (e.g., a command)
may have different implications depending on its context.
The embedding process was implemented by extracting the hidden state of the special
[CLS] token, which is commonly used as a representation of the entire sequence:

def get_bert_embeddings(text_list, tokenizer, model, batch_size=32):

embeddings = []

model.eval()

with torch.no_grad():

for i in tqdm(range(0, len(text_list), batch_size), desc="Embedding logs"):

batch = text_list[i:i+batch_size]
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inputs = tokenizer(batch, return_tensors=’pt’,

padding=True, truncation=True,

max_length=64)

outputs = model(**inputs)

cls_embeddings = outputs.last_hidden_state[:, 0, :]

embeddings.append(cls_embeddings)

return torch.cat(embeddings).numpy()

The resulting embeddings are dense vectors that encode semantic and syntactic relation-
ships in the log messages.

3.5.3 Comparison and Selection

While both approaches produced viable features for classification tasks, the results of pre-
liminary experiments indicated that BERT embeddings significantly outperformed TF–
IDF vectors in terms of classification accuracy and generalization. This performance gap
can be attributed to BERT’s ability to model contextual meaning rather than relying
solely on token frequency statistics.
For this reason, subsequent experiments and deep learning models in this work will pri-
marily rely on BERT-based embeddings.

3.6 Shallow Learning Baseline

All three models were trained on preprocessed log data represented by both TF–IDF
vectors and BERT embeddings. Two different train-test split strategies were applied
throughout the project to ensure robustness of the evaluation: (i) a random 80/20 split,
and (ii) a chronological 80/20 split, where the training set consists of earlier records and
the test set of later ones. The chronological split was introduced to better mimic real-
world deployment scenarios, where models are trained on past events and then applied to
future unseen activity. It was not possible to isolate a completely unknown APT scenario
as the test set, since the attacks in the dataset were conducted in parallel and interleaved
within the same time window. Both split strategies were therefore used consistently across
all experiments in this work. Evaluation metrics included accuracy, precision, recall, F1-
score, and ROC AUC, providing a comprehensive view of classifier performance. Class
imbalance was addressed by computing balanced class weights, ensuring that the models
did not become biased toward the majority class.
To establish a benchmark for intrusion detection on the Linux APT 2024 dataset, a set
of shallow learning models was implemented. These baseline models serve two purposes:
first, to provide an initial reference point against which more advanced deep learning ar-
chitectures can later be compared; and second, to test whether traditional classifiers, when
combined with different feature representations, are sufficient to capture the behavioral
patterns of malicious activity.

3.6.1 Logistic Regression

Logistic Regression is a widely used linear model for binary classification tasks [23]. It
estimates the probability of a class by applying a logistic (sigmoid) function to a linear
combination of input features. Despite its simplicity, logistic regression often provides
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competitive results in text classification tasks, especially when combined with TF–IDF
embeddings. In this work, the model was trained with balanced class weights to account
for class imbalance in the dataset and was optimized with up to 1000 iterations to ensure
convergence.

3.6.2 Support Vector Machine

Support Vector Machines (SVM) are powerful discriminative classifiers that aim to find
the optimal hyperplane separating data points from different classes with the maximum
margin [24]. In this study, a linear SVM was used via the LinearSVC implementation,
which is particularly suitable for high-dimensional feature spaces such as those generated
by TF–IDF. Class weights were also adjusted to mitigate the effects of class imbalance.
SVMs are robust to overfitting in sparse representations, making them a strong candidate
for text-based anomaly detection tasks.

3.6.3 Random Forest

Random Forest is an ensemble learning technique that builds multiple decision trees during
training and outputs the majority vote of the individual trees [25]. Each tree is trained
on a random subset of the data and features, which helps reduce overfitting and improve
generalization. Although Random Forests are not typically the first choice for high-
dimensional text embeddings, they provide an interpretable and diverse baseline, capable
of capturing non-linear decision boundaries that linear models may miss.

3.7 Deep Learning Models

This section documents the modeling choices implemented for building deeplearning/SOTA
solutions for the APT identification task. We focus on the learning algorithms, training
procedures, inference strategies, and evaluation logic applied to log-level APT detection.

3.7.1 Transformer-Based Log Classification

Recent advances in Natural Language Processing (NLP) have been driven by Transformer
architectures [26].. Unlike recurrent or convolutional networks, Transformers rely on a
self-attention mechanism that allows each token in the input to dynamically focus on all
other tokens in the sequence. This property makes Transformers particularly effective at
capturing both short- and long-range dependencies, while also enabling efficient parallel
training.

Bidirectional Encoder Representations from Transformers (BERT)

BERT [22] is one of the most influential Transformer-based models. Its novelty lies
in its bidirectional encoding: when representing a word or subword, the model takes
into account both its left and right context simultaneously. This is achieved through
self-attention, which computes contextualized embeddings where the meaning of a token
adapts to its surroundings. BERT is pre-trained on two tasks: Masked Language Mod-
eling (predicting randomly masked tokens from context) and Next Sentence Prediction
(predicting if two sentences follow each other). These pretraining objectives provide the
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model with a strong general understanding of language. For classification tasks, a special
token [CLS] is added at the beginning of each sequence, and its final representation is fed
into a classification head.

DistilBERT

While BERT is powerful, its large size makes it computationally demanding. DistilBERT
(Sanh et al., 2019) is a compressed version obtained through knowledge distillation, where
a smaller model (the student) is trained to reproduce the behavior of the original BERT
(the teacher). DistilBERT retains about 97% of BERT’s performance while being signif-
icantly faster and smaller. This trade-off makes it highly suitable for log analysis, where
large volumes of data must be processed efficiently without sacrificing too much accuracy.
In this work, DistilBERT is fine-tuned for binary classification of log entries (benign vs.
malicious). The implementation uses Hugging Face’s
DistilBertForSequenceClassification with num labels=2. Tokenization is performed
with DistilBertTokenizerFast, which applies WordPiece subword segmentation and
maps text to integer IDs. Sequences are padded or truncated to a maximum length of 64
tokens to ensure consistent batch sizes. Fine-tuning is carried out using the cross-entropy
loss, with Hugging Face’s Trainer API managing batching, GPU acceleration, and op-
timizer scheduling. Both the classification head and the underlying transformer layers
are updated during training, enabling the model to adapt pre-trained knowledge to the
domain of Linux system logs.

SecBERT

General-purpose models like BERT and DistilBERT are trained on corpora such as
Wikipedia and BookCorpus. Although powerful, these sources do not capture the highly
technical and domain-specific vocabulary typical of system logs and cybersecurity text.
To address this limitation, SecBERT was introduced as a variant of BERT pre-trained
specifically on cybersecurity-related data, including log files, threat reports, and technical
documents. This domain adaptation allows the model to better capture the semantics of
command-line arguments, system calls, and malware signatures, which are rarely seen in
general text but are crucial for intrusion detection.
SecBERT is fine-tuned for the same binary classification task as DistilBERT. It is ini-
tialized via Hugging Face’s AutoTokenizer and AutoModelForSequenceClassification,
with a maximum sequence length of 512 tokens to accommodate longer log entries. Train-
ing is performed with explicitly defined hyperparameters: a learning rate of 5e-6, 10
epochs, batch sizes of 32 (training) and 64 (evaluation), and weight decay of 0.01 for
regularization. These values are chosen to balance convergence speed and stability while
minimizing the risk of overfitting or catastrophic forgetting of the cybersecurity-specific
pretraining. Evaluation is done using trainer.predict, where model logits are converted
into probabilities via softmax and mapped to class labels with argmax.

Why Using Transformers?

The motivation for using Transformer-based models is their ability to integrate both lo-
cal and global information from log entries. Shallow models such as TF–IDF combined
with Logistic Regression can only capture surface-level word frequencies, while Trans-
formers generate contextualized embeddings that adapt token meaning depending on the
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surrounding context. This is especially important in cybersecurity, where the same com-
mand may be benign in one context but malicious in another. By fine-tuning both a
general-purpose (DistilBERT) and a domain-specific (SecBERT) model, we explore the
trade-off between broad linguistic understanding and specialized domain knowledge in
detecting Advanced Persistent T

3.7.2 Sequence-Aware Classifier: DeepLog-Inspired LSTM

Many security-relevant behaviors only emerge when analyzing sequences of logs over time.
For example, a single command may appear benign in isolation, but when repeated in a
certain temporal pattern it can indicate malicious activity. To address this, we experi-
ment with a recurrent neural model inspired by DeepLog [27], which was one of the first
approaches to apply sequence learning for log anomaly detection.
Recurrent Neural Networks (RNNs) are designed to process sequential data by main-
taining a hidden state that evolves over time. However, classical RNNs suffer from the
vanishing gradient problem, which makes it difficult for them to learn long-range depen-
dencies. Long Short-Term Memory (LSTM) networks mitigate this issue by introducing
gating mechanisms — the input gate, forget gate, and output gate — that control the
flow of information through a memory cell. This architecture allows the network to decide
which information to retain, which to update, and which to discard at each time step.
As a result, LSTMs can capture both short-term fluctuations and longer-term temporal
patterns, making them particularly suitable for modeling log sequences.

DeepLog Framework

DeepLog [27] proposed to model system logs as natural language sequences and to learn
their temporal structure using LSTMs. By observing normal execution logs, the LSTM
learns to predict the next log entry given a history window. Anomalies — such as malicious
activity — are then detected when the observed log diverges from the expected prediction.
This approach highlights the importance of sequence modeling in intrusion detection, as it
enables the identification of suspicious behaviors that cannot be recognized by analyzing
isolated log entries.

Practical Implementation

In our implementation, we adopt the general principle of DeepLog but adapt it for binary
classification of log windows (benign vs. malicious). The pipeline is as follows:

Token Vocabulary. A custom Vocab class maps each distinct log token to an integer
ID, producing compact numerical sequences. This ensures that the LSTM can process
logs as discrete time-series rather than free text.

Sliding-Window Encoding. Log streams are segmented into overlapping windows of
fixed size w = 10. Each training sample thus consists of a short sequence of 10 consecutive
log tokens. The associated label indicates whether the last log in the window is benign
or malicious. This encoding allows the model to learn temporal correlations between
neighboring logs.

25



Dataset and Batching. Sequences and labels are wrapped into a PyTorch Dataset

and fed into DataLoaders with batch size=128. Training batches are shuffled to promote
generalization, while evaluation batches preserve chronological order for consistency.

Model Architecture. The DeepLogClassifier is a lightweight sequence model:

• Embedding Layer: nn.Embedding(vocab size, 64) maps discrete token IDs
into dense 64-dimensional vectors.

• LSTM Encoder: a 2-layer LSTM with hidden size 64 processes the window of
embeddings. Only the final hidden state is retained as a representation of the entire
window.

• Classification Head: a linear layer maps the hidden state to a scalar, followed by
a Sigmoid activation that outputs the probability of the sequence being malicious.

Training Setup. The model is trained for 20 epochs using Adam optimization with a
learning rate of 1 × 10−4. The objective function is binary cross-entropy (nn.BCELoss),
which penalizes the divergence between predicted probabilities and true binary labels.
Each training iteration consists of moving a batch to the GPU (if available), performing a
forward pass, computing the loss, backpropagating gradients, and updating parameters.
Average loss per epoch is monitored to track convergence.

Per-Log Inference. At test time, the same sliding window is applied to the log stream.
Each window yields a probability score, which is thresholded at 0.5 to classify the final log
of the window as benign or malicious. Predictions are aligned with ground-truth labels by
shifting indices by w − 1, enabling accurate per-log evaluation of detection performance.

3.8 Proposed Solution: Ensemble of Tactic-Specific

BERT Classifiers

3.8.1 General Idea

A key observation from the Linux APT 2024 dataset is that malicious activity is not homo-
geneous: attacks are structured into distinct tactics according to the MITRE ATT&CK
framework, such as Initial Access, Privilege Escalation, Defense Evasion, or Command
and Control. Each tactic exhibits characteristic log patterns that may differ significantly
from one another. A single global classifier, trained to cover all tactics at once, risks
underfitting rare tactics or being dominated by high-frequency ones.
To address this, we propose an ensemble of fine-tuned BERT classifiers, each trained
on log entries associated with a specific MITRE tactic. This modular design allows each
model to specialize in the linguistic and structural features that are most discriminative
for its assigned tactic, while the ensemble as a whole provides robust coverage of the
complete APT lifecycle. At inference time, predictions from the tactic-specific models are
aggregated to decide whether a log should be considered malicious.
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3.8.2 Why an Ensemble is Suitable

The ensemble approach brings several advantages:

• Specialization: Different attack stages leave very different traces in logs. For
example, privilege escalation often involves suspicious system calls, while command
and control may involve repeated outbound connections. By training one model per
tactic, each classifier can focus on its domain-specific patterns.

• Improved Recall: Rare tactics are less likely to be overshadowed by frequent ones,
since they are handled by dedicated models. This reduces the risk of missing subtle
but important malicious behaviors.

• Flexibility: The modular structure allows easy retraining or replacement of specific
tactic models if new data becomes available, without affecting the rest of the system.

• Parallelization: Since each classifier is trained independently on its corresponding
tactic, the training process can be parallelized across multiple GPUs or computing
nodes. This not only reduces total training time but also makes the approach
scalable when extending the ensemble with new tactic-specific models.

3.8.3 Implementation Details

The ensemble is built around DistilBERT, a lighter version of BERT that retains most
of its representational power while being computationally more efficient. The pipeline
proceeds as follows:

Data Partitioning by Tactic. The malicious subset of the dataset is grouped accord-
ing to its associated MITRE tactic. High-volume tactics (e.g., Defense Evasion, Initial
Access, Privilege Escalation, Discovery) are allocated their own dedicated classifiers. Less
frequent tactics are either combined into a group model or omitted if data is too scarce.
Benign logs are mixed into each tactic dataset to provide balanced positive/negative
training examples.

Model Training. For each tactic dataset, the following setup is applied:

• Tokenization via DistilBertTokenizerFast, with padding and truncation to a
maximum sequence length of 64 tokens.

• A DistilBertForSequenceClassification model with two output labels (be-
nign/malicious).

• Training parameters: batch size of 32 (training) and 64 (evaluation), three epochs
of fine-tuning, and standard cross-entropy loss. Models are trained independently,
one per tactic.

This results in a collection of tactic-specific classifiers, each stored and reloaded for eval-
uation.
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Hyperparameter Configuration. Each tactic-specific classifier was fine-tuned with
a set of carefully chosen hyperparameters to balance efficiency and performance. The
sequence length was capped at 64 tokens, which is sufficient to cover the majority of
log entries while avoiding excessive padding. Training was performed for 3 epochs, a
standard compromise that allows the model to adapt to the log domain without overfitting
on the relatively small per-tactic datasets. Batch sizes were set to 32 for training and
64 for evaluation, making effective use of GPU memory while ensuring stable gradient
updates. The optimizer and learning rate scheduling were handled automatically by
the Hugging Face Trainer, with the default AdamW optimizer and weight decay for
regularization. The loss function was binary cross-entropy implemented via the standard
cross-entropy objective for two classes. These hyperparameters provide a lightweight yet
robust setup, enabling multiple tactic-specific models to be trained in parallel without
prohibitive computational costs.

Ensemble Inference. During testing, every log entry is passed through all tactic-
specific models. Each model outputs both a class prediction and a probability score.
Predictions are aggregated with a max-pooling strategy: the ensemble assigns a ma-
licious label if any tactic model strongly flags the log as malicious. This conservative
approach prioritizes recall, ensuring that an attack is not missed simply because it falls
outside the focus of a single classifier.

3.9 Evaluation Metrics

To assess the performance of the proposed ensemble of fine-tuned BERT models for Ad-
vanced Persistent Threat (APT) detection, two complementary metrics are used: Re-
ceiver Operating Characteristic (ROC) Curve and the Classification Report
(precision, recall, F1-score). Both provide different but valuable insights into the detec-
tion capability of the models.

3.9.1 ROC Curve

The ROC curve is a graphical representation of the trade-off between the True Pos-
itive Rate (TPR, or recall) and the False Positive Rate (FPR) across different
classification thresholds. The Area Under the Curve (AUC) is often used as a sum-
mary statistic, where a value closer to 1 indicates a strong ability to distinguish between
malicious and benign logs.

For APT detection, the ROC curve is particularly useful because:

• It evaluates performance independently of any single decision threshold.

• It highlights how well the system can rank malicious events higher than benign ones.

• Since APT attacks are rare but critical, the ability to reduce false negatives (missed
attacks) without excessively increasing false positives is crucial, and this trade-off
is visible in the ROC curve.
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3.9.2 Classification Report

The classification report provides a breakdown of precision, recall, and F1-score per
class:

• Precision: Of the logs predicted as malicious, how many were truly malicious.
High precision means fewer false alarms.

• Recall: Of all truly malicious logs, how many were correctly identified. High recall
means fewer missed attacks.

• F1-score: The harmonic mean of precision and recall, balancing the trade-off.

For APT detection, the classification report is essential because it directly quantifies
the impact of misclassifications. A missed detection (false negative) can mean failing
to stop a breach, while too many false positives (low precision) can overwhelm analysts
with alerts.

3.9.3 Which to Focus On

While both metrics are valuable, the classification report should be emphasized
more in the context of APT detection. This is because operational security teams
need actionable insight into:

• How often the system misses malicious logs (recall).

• How trustworthy the alerts are (precision).

The ROC curve remains useful to compare models and evaluate overall discriminative
ability, but the classification report better reflects the practical requirements of intrusion
detection, where recall is usually prioritized to ensure threats are not overlooked, even
at the cost of some false positives.
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Chapter 4

Results and Discussion

4.1 Results on Shallow Models

4.1.1 Experimental Setup

Three classical machine learning classifiers were evaluated as shallow baselines: Logistic
Regression (LR), Linear SVM (LinearSVC), and Random Forest (RF). Models
were trained under two different feature representations:

• TF–IDF features: unigram and bigram representation (max features = 100, En-
glish stopword removal).

• BERT embeddings: dense vector representations computed from the log text.

All models were trained with class weight=balanced (or equivalent) to mitigate class
imbalance. Two evaluation protocols were used:

1. Random 80/20 split: stratified hold-out (positives ≈ 20% in the test set).

2. Temporal split: first 80% of data for training, last 20% for testing (positives
≈ 1.9% in the test set).

The random split simulates in-distribution performance, while the temporal split is a
closer approximation of real deployment, where distribution shift and label imbalance are
prominent.

4.1.2 Random 80/20 Split

Under random sampling, all models performed strongly, with very similar outcomes across
classifiers. The feature representation was more influential than the choice of classifier.

TF–IDF features. Logistic Regression, SVM, and Random Forest all achieved a ROC–
AUC of ∼ 0.915. Accuracy was approximately 0.76, with macro–F1 scores around 0.72.
The models exhibited a strong preference for recall of the positive class (∼ 0.99), at the
expense of precision (∼ 0.45).
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BERT embeddings. BERT-based features consistently improved ROC–AUC to ∼
0.935, representing a gain of ≈ 0.02 compared to TF–IDF. Accuracy was 0.77, and macro–
F1 increased slightly to 0.73. The positive class maintained very high recall (0.98–0.99)
with modest precision (0.46–0.47).

Summary. In the random split, all three classifiers were essentially tied in performance.
Feature representation dominated: BERT embeddings consistently outperformed TF–IDF
by ∼ 0.02 ROC–AUC. The weighting scheme yielded recall-oriented models, which may
be desirable in domains where missing positives is costlier than false alarms.

4.1.3 Temporal Split

Performance degraded substantially when models were trained on early data and tested
on later data, reflecting temporal drift and stronger imbalance.

TF–IDF features. All three models collapsed to near-chance performance with ROC–
AUC scores between 0.551 and 0.555. Accuracy (∼ 0.74) was dominated by the majority
class. Positive recall fell to ∼ 0.36, with very poor precision (∼ 0.03).

BERT embeddings.

• Logistic Regression was the most robust, reaching ROC–AUC = 0.666, with accu-
racy 0.75 and positive recall 0.36.

• Linear SVM degraded more severely (ROC–AUC = 0.588).

• Random Forest collapsed almost entirely, producing near-trivial predictions: accu-
racy 0.98 (by predicting almost all samples as negative), but positive recall only
0.02.

Summary. Under temporal evaluation, all models degraded, but Logistic Regression
with BERT embeddings was comparatively the least affected. Random Forest was par-
ticularly brittle, effectively reducing to a majority-class predictor.

4.1.4 Comparative Analysis

The results highlight three main findings:

1. Feature representation outweighs model choice in-distribution. BERT em-
beddings consistently improve ROC–AUC compared to TF–IDF.

2. Temporal generalization is the key challenge. AUC drops from ∼ 0.935
(random split) to as low as 0.59 (temporal split). This indicates substantial covariate
and label shift in the dataset.

3. Accuracy is misleading under imbalance. In the temporal split, an “always
negative” baseline already achieves 98.1% accuracy, underscoring the importance of
ROC–AUC and precision–recall metrics.
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4.1.5 Cumulative Tables

Table 4.1: Performance on the random 80/20 split (in-distribution).

Model + Features ROC–AUC Accuracy Macro-F1 Pos. Recall
LR + TF–IDF 0.915 0.76 0.72 0.99
SVM + TF–IDF 0.915 0.76 0.72 0.99
RF + TF–IDF 0.916 0.76 0.72 0.99
LR + BERT 0.935 0.77 0.73 0.98
SVM + BERT 0.933 0.77 0.73 0.99
RF + BERT 0.934 0.77 0.73 0.98

Table 4.2: Performance on the temporal split (out-of-distribution).

Model + Features ROC–AUC Accuracy Macro-F1 Pos. Recall
LR + TF–IDF 0.555 0.74 0.45 0.36
SVM + TF–IDF 0.551 0.74 0.45 0.33
RF + TF–IDF 0.552 0.74 0.45 0.36
LR + BERT 0.666 0.75 0.45 0.36
SVM + BERT 0.588 0.75 0.45 0.33
RF + BERT 0.614 0.98 0.45 0.02

Key Numbers. The best in-distribution result was achieved by LR + BERT (ROC–
AUC = 0.935), while the best temporal performance was also obtained by LR + BERT
(ROC–AUC = 0.666). Random Forest, in particular, exhibited extreme sensitivity to
temporal drift, despite appearing competitive under random splits.

4.2 Results on Deep Learning Models

4.2.1 Experimental Setup

Three deep learning models were evaluated on the Lunex APT 2024 dataset: fine-tuned
BERT, fine-tuned SecBERT, and DeepLog (LSTM-based sequence model). As with
shallow baselines, two evaluation protocols were applied:

1. Random 80/20 split: stratified hold-out, positives ≈ 20% of the test set.

2. Temporal 80/20 split: first 80% of the logs for training, last 20% for testing,
positives ≈ 1.9% of the test set.

The random split reflects in-distribution performance, while the temporal split better
approximates real-world deployment where class imbalance and drift are present.

4.2.2 Random 80/20 Split

All three models performed strongly under random sampling, surpassing the shallow base-
lines in recall-precision balance and macro–F1.
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BERT fine-tuned. Fine-tuned BERT achieved the highest overall ROC–AUC (0.935),
matching the shallow baselines in AUC but offering stronger per-class performance. The
positive class was identified with high precision (1.00) but recall was moderate (0.56),
resulting in an F1 of 0.72. Accuracy was 0.91, and macro–F1 averaged 0.83.

SecBERT fine-tuned. The domain-adapted SecBERT model reached ROC–AUC 0.783.
Precision was high (0.99) for positives, though recall remained similar to BERT (0.57).
Overall accuracy (0.91) and macro–F1 (0.83) were nearly identical to BERT, suggesting
that in-distribution performance is less sensitive to pretraining domain differences.

DeepLog. The sequence-based DeepLog model achieved ROC–AUC 0.831, lower than
fine-tuned BERT but still outperforming shallow models. Positive recall (0.67) exceeded
that of BERT and SecBERT, though precision (0.96) was slightly lower. Macro–F1
reached 0.87, the highest among deep learning models under random splits.

Summary. On random splits, deep learning methods achieved strong results, with fine-
tuned BERT leading in ROC–AUC and DeepLog providing the best recall and macro–
F1. Compared to shallow baselines, deep models demonstrated a more balanced tradeoff
between recall and precision.

4.2.3 Temporal Split

When evaluated under temporal drift, all models degraded significantly, though differences
emerged in robustness.

BERT fine-tuned. Performance dropped to ROC–AUC 0.680. While overall accuracy
remained high (0.98), this was due to strong majority-class prediction. Positive recall
collapsed to 0.02, producing an F1 of only 0.03. This highlights severe brittleness to
temporal distribution shift.

SecBERT fine-tuned. SecBERT was even more affected, with ROC–AUC 0.515. Pos-
itive recall fell to 0.03, yielding trivial F1 scores despite accuracy of 0.98. The model
effectively reduced to a negative-class predictor under drift.

DeepLog. DeepLog retained somewhat better robustness, with ROC–AUC 0.528. Pos-
itive recall was 0.06, slightly above BERT and SecBERT, though still insufficient for
deployment. As with other models, accuracy (0.98) was inflated by class imbalance.

Summary. All deep learning models struggled with temporal generalization. Despite
strong random-split performance, their ability to detect positives in chronologically shifted
data collapsed. DeepLog retained marginally better recall than BERT or SecBERT, but
overall performance was unsatisfactory.
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4.2.4 Comparative Analysis

Three main findings emerge from the deep learning evaluation:

1. Deep models improve in-distribution balance. Fine-tuned BERT, SecBERT,
and DeepLog achieve higher precision–recall tradeoffs than shallow baselines in ran-
dom splits.

2. Temporal robustness is severely lacking. ROC–AUC plummets from 0.935
(BERT, random split) to 0.680 (BERT, temporal split), and as low as 0.515 (SecBERT).
DeepLog also drops to 0.528, underscoring the difficulty of detecting APT events
under temporal drift.

3. Accuracy alone is misleading. All models maintained ∼ 0.98 accuracy in the
temporal split by predicting almost all samples as negative, emphasizing the impor-
tance of AUC and recall metrics in imbalanced, real-world settings.

4.2.5 Cumulative Tables

Table 4.3: Performance of deep learning models on the random 80/20 split (in-
distribution).

Model ROC–AUC Accuracy Macro-F1 Pos. Recall
BERT (fine-tuned) 0.935 0.91 0.83 0.56
SecBERT (fine-tuned) 0.783 0.91 0.83 0.57
DeepLog (LSTM) 0.831 0.93 0.87 0.67

Table 4.4: Performance of deep learning models on the temporal split (out-of-distribution).

Model ROC–AUC Accuracy Macro-F1 Pos. Recall
BERT (fine-tuned) 0.680 0.98 0.51 0.02
SecBERT (fine-tuned) 0.515 0.98 0.52 0.03
DeepLog (LSTM) 0.528 0.98 0.54 0.06

Key Numbers. The strongest in-distribution performance was obtained by fine-tuned
BERT (ROC–AUC = 0.935), while DeepLog achieved the best recall (0.67) and macro–F1
(0.87). In temporal evaluation, all models deteriorated severely, with fine-tuned BERT
scoring highest (ROC–AUC = 0.680), though recall dropped to 0.02.

4.3 Proposed solution: BERT Ensamble

4.3.1 Experimental Setup

In addition to individual deep learning classifiers, we evaluated an ensemble of fine-
tuned BERT heads, where each head was trained to specialize on a subset of ATT&CK
tactics (e.g., Defense Evasion, Initial Access, Persistence, Execution, Privilege Escalation).
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During inference, the ensemble aggregates predictions across these specialized heads, en-
abling tactic-aware detection. To ensure that each ensemble component was properly
optimized, we monitored the per-tactic training loss curves. All heads exhibited smooth
convergence without signs of oscillation or divergence. Importantly, the loss curves de-
cayed steadily and flattened toward the later epochs, without evidence of overfitting (no
sudden increase in loss or instability). This indicates that the ensemble models were
trained sufficiently and reached a stable minimum, making their results reliable for eval-
uation.

Figure 4.1: Training loss convergence for the BERT ensemble models across tactics. The
consistent downward trends without overfitting confirm that the tactic-specific heads are
well-trained and stable.

As with previous experiments, two evaluation protocols were applied:

1. Random 80/20 split: stratified hold-out with ≈ 20% positives.

2. Temporal 80/20 split: first 80% of logs for training, last 20% for testing, with
positives ≈ 1.9%.

4.3.2 Random 80/20 Split

The ensemble achieved the strongest in-distribution performance across all tested meth-
ods.

Performance. ROC–AUC reached 0.955, the highest among all evaluated models. Ac-
curacy was 0.97, and macro–F1 reached 0.82. The ensemble achieved high precision on
the positive class (0.99) but recall was moderate (0.49), leading to an F1 of 0.66. Com-
pared to single BERT models, the ensemble improved ROC–AUC by approximately 0.02,
though recall remained similar.

Why better? The gain can be attributed to task specialization: by training separate
heads on tactic-specific subsets, the ensemble captured finer-grained attack patterns that a
single model might overlook. This specialization improves discrimination in-distribution,
particularly for subtle tactic signals, leading to higher AUC and precision.
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Figure 4.2: Comparison of ROC–AUC, Precision, and Recall for deep learning models
and the BERT ensemble under the random 80/20 split.

Summary. By leveraging tactic-specific heads, the ensemble produced a strong precision-
oriented model with superior ROC–AUC and balanced macro–F1. Its high accuracy and
robust detection under random splits make it the best-performing in-distribution method.

4.3.3 Temporal Split

Under temporal drift, ensemble performance degraded sharply, similar to other deep mod-
els.

Figure 4.3: Comparison of ROC–AUC, Precision, and Recall for deep learning models
and the BERT ensemble under the temporal split.
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Performance. ROC–AUC dropped to 0.584, close to chance level. Accuracy remained
artificially high (0.98) due to majority-class dominance. Positive recall collapsed to 0.03,
producing an F1 of only 0.05, despite precision remaining high (0.86). This indicates that
the ensemble overfit to training distribution and struggled with temporal generalization.

Why worse? The same specialization that boosted in-distribution performance became
a liability under drift: tactic-specific heads overfit to the temporal characteristics of their
training window. As the log distribution shifted, these specialized detectors failed to
generalize, collapsing to majority-class predictions.

Summary. Despite strong in-distribution results, the ensemble was not robust under
chronological testing. Like fine-tuned BERT and SecBERT, it reduced to a majority-class
predictor with very limited recall.

4.3.4 Comparative Analysis

The ensemble results yield three main insights:

1. Best in-distribution performance. With ROC–AUC 0.955, the ensemble out-
performed both shallow and deep single-model baselines under random splits.

2. Limited temporal robustness. Temporal AUC dropped to 0.584, with recall as
low as 0.03, showing no advantage over single BERT models under drift.

3. Specialization improves static performance, but harms robustness. Tactic-
specific heads enhance feature sensitivity and precision in-distribution, but this
comes at the cost of adaptability. When attack behavior evolves, specialized models
fail more severely than general ones.

4.3.5 Cumulative Tables

Table 4.5: Performance of ensemble models on the random 80/20 split (in-distribution).

Model ROC–AUC Accuracy Macro-F1 Pos. Recall
BERT Ensemble (tactic heads) 0.955 0.97 0.82 0.49

Table 4.6: Performance of ensemble models on the temporal split (out-of-distribution).

Model ROC–AUC Accuracy Macro-F1 Pos. Recall
BERT Ensemble (tactic heads) 0.584 0.98 0.52 0.03

Key Numbers. The ensemble achieved the best in-distribution score (ROC–AUC =
0.955) but collapsed under temporal testing (ROC–AUC = 0.584, recall 0.03). In other
words: the ensemble was better in static evaluation due to tactic specialization, but
worse in realistic temporal evaluation because over-specialization reduced adapt-
ability.
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4.3.6 Analysis of Missed Malicious Records

Although the ensemble of BERT heads achieved strong performance overall, a detailed er-
ror analysis was conducted to better understand the nature of the missed malicious records
(false negatives). Two complementary perspectives were used: a linguistic inspection of
the missed logs and a statistical view of the prediction probabilities.

Lexical signal weakness. Figure 4.4 compares the word clouds of detected malicious
logs against the ones that were missed. It is evident that the missed malicious logs lack
distinctive attacker-related tokens or semantic cues. Instead, they are dominated by sparse
and generic tokens (e.g., identifiers, placeholders, or system-generated strings), which do
not provide sufficient discriminative signal for the BERT heads. By contrast, the detected
malicious logs are enriched with security-relevant terms (cmd, java, memberaccess, etc.),
making them easier for the models to classify. This indicates that the false negatives
correspond to attacks expressed in subtle or obfuscated forms, where the malicious intent
is not strongly reflected in the text.

Figure 4.4: Comparison between missed malicious logs (left) and detected malicious logs
(right). Missed records are lexically sparse and dominated by generic identifiers, while
detected records include richer attacker-related patterns.

Confidence distribution. Figure 4.5 presents the probability distribution of the model’s
predictions for malicious samples. Here, we clearly see that missed malicious records con-
centrate at very low confidence levels (close to 0), meaning that the ensemble was not
uncertain but rather confidently misclassified them as benign. This suggests that the
missed cases do not only lack strong attacker signals but may also overlap lexically or
structurally with benign log patterns, causing the classifier to treat them as normal be-
havior.

Conclusion. The error analysis demonstrates that the false negatives stem from a com-
bination of (i) weak lexical or semantic cues in the missed logs, and (ii) structural similar-
ity to benign behavior. This highlights the need for complementary detection strategies
(e.g., context-aware features or sequence-level correlations) to reduce the blind spots of
text-only classifiers.
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Figure 4.5: Probability distribution of malicious records. Missed malicious logs (orange)
cluster near zero, indicating confident misclassification, while detected logs (blue) concen-
trate near one.

39



Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis explored shallow models, deep learning classifiers, and a tactic-aware BERT
ensemble for malicious log detection. The results reveal both the potential and the limi-
tations of these approaches, shaped strongly by the evaluation protocol.
Shallow models, although efficient and simple, captured mostly surface-level patterns.
With BERT embeddings they reached competitive results under random splits, but their
generalization collapsed once data was ordered chronologically, showing their limited abil-
ity to adapt to new and unseen attack traces.
Deep learning classifiers provided a stronger foundation. Among them, fine-tuned
BERT stood out as the most robust, maintaining reasonable performance even under
chronological evaluation, while other architectures such as DeepLog or SecBERT proved
less reliable. These results confirm that deep contextual representations are better suited
to handle the complexity of log data than shallow statistical methods.
The ensemble of tactic-specific BERT heads added an interesting layer of specializa-
tion. By dividing the detection task across tactics, the ensemble showed strong ranking
ability in the random split, confirming that tactic-aware decomposition helps the model
capture certain nuanced behaviors. At the same time, its limitations became clear: recall
was lower than in some individual models, and chronological evaluation exposed weak-
nesses similar to those of other approaches. This shows that while the ensemble is not a
universal solution, it is a promising strategy to enrich detection pipelines by complement-
ing single-model approaches.
A deeper look at the missed malicious logs helps explain these results. The word
cloud analysis highlighted that many false negatives were dominated by obfuscated to-
kens, identifiers, or strings with little semantic content. These features offer the models
almost no discriminative signal, making the logs appear deceptively similar to benign
activity. The probability distribution analysis further confirmed that such logs were of-
ten assigned very low malicious probabilities — the models were not merely uncertain,
but confidently wrong. This suggests that the hardest cases are not random errors, but
systematic blind spots caused by the nature of adversarial obfuscation.
The central lesson of this work is the dramatic gap between random and chronological
evaluations. While random splits can paint an overly optimistic picture of model per-
formance, chronological splits reveal the real challenge: adapting to temporal drift and
evolving attack techniques. Accuracy alone, inflated by the majority class, is misleading;
recall and ROC-based metrics give a more faithful view of robustness.
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In conclusion, the ensemble demonstrates the promise of tactic-aware learning, but also
underscores that the hardest part of malicious log detection lies in coping with evolving,
obfuscated patterns that deliberately mimic benign activity. Future progress will depend
not only on building stronger models, but also on designing systems that can adapt contin-
uously and remain effective against the ever-changing landscape of adversarial behavior.

5.2 Future Work

The findings of this thesis suggest several directions for future research.
First, the significant performance drop observed under the chronological split highlights
the need for models that can adapt to temporal drift. Future work should therefore in-
vestigate incremental or continual learning strategies, where models are updated
regularly as new data becomes available, reducing the risk of concept drift over time.
Second, the error analysis revealed that many missed malicious logs are characterized by
obfuscation, identifiers, or strings with little semantic content. Addressing this limitation
will likely require richer feature representations that go beyond token semantics, for
example by incorporating structural properties of logs, execution context, or frequency-
based signals.
Third, the ensemble of tactic-specific heads demonstrated the value of specialization but
also showed limitations in recall. A natural extension would be to explore hybrid ensem-
bles, where tactic-specific models are combined with strong general-purpose classifiers.
This could allow the system to balance specialization with broader coverage, reducing
systematic blind spots.
Finally, while this work focused on supervised learning, future research could explore
semi-supervised or unsupervised methods, which may leverage large amounts of
unlabeled log data. This would be especially relevant in security contexts, where obtain-
ing reliable labels is difficult and attackers constantly introduce novel behaviors.
Overall, future work should continue to pursue models that are both specialized and
adaptive, combining the strengths of tactic-aware learning with mechanisms to remain
robust against the evolving nature of adversarial activity.
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