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Abstract

Subgraph isomorphism is a fundamental NP-hard problem in graph theory and is
important for applications like social network analysis and bioinformatics, and it is
a significant computational challenge when processing very large and non-uniform
datasets. While field-programmable gate arrays (FPGAs) provide energy-efficient
platforms for creating specialized hardware to accelerate graph workloads, the
performance of graph accelerators is often constrained by the memory subsystem’s
bandwidth. Worst-Case Optimal Join (WCOJ) algorithms have the property of
bounding the size of intermediate results compared to traditional exploration-based
methods and this shifts the primary performance bottleneck to memory access.
This thesis addresses the memory bottleneck for this problem by studying the
feasibility of architecturally expanding an existing low-power and high-performance
WCOJ based subgraph isomorphism accelerator originally designed for embedded
FPGAs with a 128-bit memory interface for deployment on modern data center
FPGA platforms equipped with High Bandwidth Memory (HBM).

The motivation for this architectural redesign is justified by a preliminary
benchmark study on memory subsystems of AMD Alveo™ platforms, specifically
HBM2 on the Alveo™ U55C and DDR4 on the Alveo™ U250. The benchmark study
showed that HBM provides an approximate 6.5x aggregate sequential bandwidth
improvement (~382 GB/s) over traditional DDR4 (~59 GB/s), comparable read
latency and significant reduction in write latency. These findings confirm that the
original kernel’s 128-bit interface would severely underutilize the target platform’s
capabilities and a wider datapath would be necessary for achieving maximum
performance.

The primary contribution of this work is the comprehensive architectural redesign
of the kernel’s complete datapath to natively support a 512-bit physical memory
bus to allow full utilization of the target platform’s memory subsystem. This
redesign is performed by maintaining the original graph data structures and using
128-bit logical instructions for graph primitives (vertices and edges) while packing
four such instructions into a single 512-bit memory word. This packing/unpacking
methodology is developed and applied to the complete datapath of the accelerator,
from host-side data preparation to on-chip processing modules, and it required
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significant modifications to the kernel’s two major phases, preprocessing and the
multiway join pipelines. The preprocessing stage is redesigned to unpack logical
128-bit data graph instructions from incoming 512-bit words before sorting and
scattering them into the final hash table structures and the pipelined multiway
join is redesigned to consume these wider data structures.

The proposed implementation is a fully-pipelined 512-bit native WCOJ accel-
erator developed in C++ using Vitis™ High-Level Synthesis and optimizes data
movement to utilize the full memory bandwidth of data center FPGA platforms
by architecturally aligning the kernel’s datapath with the physical memory in-
terface. The thesis also demonstrates a reproducible methodology for migrating
and optimizing other memory-bound HLS designs for high-performance computing
environments.
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Chapter 1

Introduction

1.1 Graph Processing

A graph, in basic terms, is a collection of vertices and edges which connect them.
Graphs are capable of modeling a large variety of complex real-world systems,
and in the context of computing they provide a powerful and useful model for
representing complex relationships and interactions between data and have become
important for a lot of domains like mapping interactions in digital social networks,
modeling protein-to-protein interactions in bioinformatics, detecting fraudulent
transactions in financial systems, and optimizing logistics and supply chains.

The recent growth of digital services and widespread IoT sensor networks
has created a huge growth in the size of graph datasets, where modern graphs
that represent objects like the World Wide Web or large social media platforms
can now consist of billions of vertices and trillions of edges, and the size and
structural complexity of this data has created a challenge for traditional computing
architectures [1].

The structure of real-world graphs is usually highly irregular, sparse, and follows
a power-law distribution as compared to the dense, regular dense data structures
in domains like linear algebra or scientific computing. This inherent irregularity
creates random memory access patterns that fundamentally reduce performance of
conventional CPU and GPU architectures, which include deep cache hierarchies
and prefetching mechanisms and they rely on the properties of spatial and temporal
locality of data to hide memory latency. These strategies mostly become ineffective
when processing graph data structures and as a consequence, graph processing
algorithms are usually memory-bound as they spend a large majority of execution
time to fetch data from the main memory rather than performing computation.
This bottleneck is usually referred to as “memory wall” in computing and it is the
primary bottleneck for achieving high-performance graph processing. Therefore,
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Introduction

the development of specialized and energy-efficient hardware solutions which are
capable of reducing this memory bottleneck is an important and active area of
research in high-performance computing.

1.2 Subgraph Isomorphism Problem
Subgraph isomorphism is a fundamental and computationally intensive problem
among different graph processing problems. Formally, given a small query graph
Q = (Vq, Eq, Lq) and a large data graph G = (Vg, Eg, Lg), the subgraph isomorphism
problem consists of finding all injective mappings f : Vq → Vg such that for every
vertex v ∈ Vq, the label Lq(v) equals Lg(f(v)), and for every edge (u, v) ∈ Eq, a
corresponding edge (f(u), f(v)) exists in Eg. All these mappings, also known as
embeddings, represent an occurrence of the query pattern within the larger data
graph.

Figure 1.1: The highlighted subgraph {G1, G2, G3} within the Data Graph (right)
represents a valid embedding of the Query Graph (left). The mapping preserves
both the vertex labels (represented by colors) and the directed edge structure.

The highlighted subgraph in Figure 1.1 demonstrates a valid embedding by
satisfying all constraints of the formal definition. The injective mapping f can be
defined as:

• f(Q1) = G1
• f(Q2) = G3
• f(Q3) = G2

This mapping is verified based on the formal definition and it holds true against
the verification of all constraints:

1. Vertex Label Constraint: ∀ v ∈ Vq, Lq(v) = Lg(f(v))
The label of each query vertex, represented by its color, matches the label of
its corresponding data vertex. Lq(Q1) matches Lg(G1) (pink), Lq(Q2) matches
Lg(G3) (green), and Lq(Q3) matches Lg(G2) (blue).
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2. Edge Structure Constraint: ∀ (u, v) ∈ Eg, (f(u), f(v)) ∈ Eg

All directed edges in the query graph are preserved in the mapping. The edge
(Q1, Q2) ∈ Eq correctly maps to the edge (f(Q1), f(Q2)) = (G1, G3) which
exists in Eg, and similarly, the edge (Q3, Q2) ∈ Eq maps to the existing edge
(f(Q3), f(Q2)) = (G2, G3) in the data graph.

3. Injective Mapping: The function is injective, as each of the three distinct
query vertices Q1, Q2, and Q3 maps to a unique vertex (G1, G3, G2) in the
data graph.

Since all constraints are satisfied, the subgraph induced by the vertex set
{G1, G2, G3} is a valid isomorphic instance of the query graph.

This computational problem is classified as NP-hard, which means that there
is no known algorithm that can find a solution in polynomial time with respect to
the input size, and this is a direct consequence of the combinatorial explosion of
the potential solution space. A brute-force approach which would test all possible
injective mappings from query vertices to data vertices becomes computationally
unmanageable for graphs of even moderate size, and the number of mappings grows
factorially, making the runtime of an exhaustive search to increase at a rate that is
much larger than polynomial complexity.

The exponential growth characteristic becomes the primary barrier to scalable
analysis because, although an algorithm can perform acceptably on a data graph
with thousands of vertices, its runtime can increase from seconds to hours or even
years as the graph scales to millions or billions of vertices, and this property makes
standard approaches impractical for real-world graph datasets which are targeted
by this thesis. This challenge has driven the development of two primary families of
algorithms [2]. The first family of algorithms is exploration-based methods that
usually use a backtracking search to recursively extend partial solutions by mapping
one query vertex at a time. These algorithms are effective, but they can generate
a large number of intermediate results, and their performance is fundamentally
limited by the bottlenecks of memory bandwidth and latency because of irregular
memory access patterns which are inherent in traversing graph data structures.
Therefore, the problem of scalable subgraph isomorphism requires the development
of optimized algorithms to effectively prune the large search space combined with
specialized hardware accelerators which are designed to efficiently execute core
operations of these optimized methods [2].

The alternative approach is to reframe the problem from a relational database
perspective, in which each edge in the query graph is treated as a relation and
the vertices are treated as attributes, which transforms the subgraph isomorphism
problem into a multi-way join operation over these relations. This formulation of
the problem allows different algorithms to utilize an extensive amount of research in
query optimization. The most notable algorithms in this space that are of relevance
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are Worst-Case Optimal Join (WCOJ) algorithms which have the very useful
theoretical property of bounding the size of intermediate join results. This property
is necessary for managing the computational and memory footprint of the algorithm,
and by effectively managing the exponential growth of intermediate results, WCOJ
algorithms shift the primary performance bottleneck away from computation and
completely onto memory bandwidth. This is possible because in these algorithms,
the dominant cost of enumerating the data graph becomes the repeated scanning of
relations from main memory, and consequently, the performance of a WCOJ-based
accelerator is fundamentally coupled to the efficiency of its data movement and
the throughput of its memory subsystem [2].

1.3 High-Bandwidth Graph Acceleration using
Data Center FPGAs

To overcome the “memory wall” problem in graph processing discussed in the
previous section, research has increasingly focused on specialized hardware solutions
and reconfigurable computing architectures like Field Programmable Gate Arrays
(FPGAs) have become an attractive platform which offer a third framework of
computing in the form of domain-specific accelerators alongside traditional CPU and
GPU computing architectures. An FPGA is an integrated circuit whose architecture
consists of a reconfigurable fabric of logic blocks (CLBs), on-chip memories (BRAMs
and URAMs), and programmable interconnects, and this structure allows for the
creation of custom digital circuits designed precisely for the computational and
data movement patterns of a target algorithm using different digital design flows.
The primary advantages of this approach are massive fine-grained parallelism, the
ability to design custom datapaths, and superior energy efficiency (performance
per watt), all of which are achieved by removing the overhead of general-purpose
instruction processing.

The flexible, programmable hardware structure of FPGAs is especially well suited
to challenges of the WCOJ-based subgraph isomorphism algorithm. The algorithm’s
structure consists of a sequence of dependent stages (Propose, Intersect, Verify)
and these stages naturally map to a deeply pipelined dataflow architecture,
which is describable in HLS, and this model allows for high-throughput processing
where new data can enter the pipeline on every clock cycle, allowing to maximize
computational efficiency. More importantly, FPGAs provide a direct solution to the
memory bottleneck problem as data center FPGAs are often equipped with high
bandwidth memory technologies such as High Bandwidth Memory (HBM),
which provides much higher throughput than traditional DDR memory through
a wider physical interface (typically 512-bits per HBM channel or more), and
unlike traditional fixed computing architectures (CPUs and GPUs) with fixed data
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bus widths, an FPGA allows for the design of custom memory controllers and
datapaths that can precisely match the physical width of the attached memory
subsystem, enabling a domain-specific accelerator to fetch significantly more data
per memory transaction and maximize memory throughput. Furthermore, the
on-chip BRAMs and URAMs are also very useful for implementing low-latency
caches and high-throughput FIFOs which are used to buffer partial embeddings
between the pipeline stages in WCOJ-based algorithms, effectively hiding the
latency of off-chip memory accesses.

The baseline LESS accelerator upon which this thesis is built [3], successfully
demonstrated the viability of implementing the WCOJ algorithm on an FPGA and
its design effectively translated the relational join operations into a high-performance
HLS dataflow. However, as the LESS kernel was designed for an embedded platform,
its performance was constrained by a 128-bit memory interface, and while
it proved the algorithmic approach to be sound, when the design is deployed
on a modern data center FPGA which provides a 512-bit physical memory bus,
the kernel’s datapath can only utilize a quarter of the available capacity. This
underutilization of the platform’s memory bandwidth, also the primary requirement
of the algorithm, creates a critical performance gap by failing to utilize the 75% of
the available bandwidth offered by platform hardware and creating an artificial
bottleneck in the accelerator’s datapath.

Therefore, the research presented in this thesis focuses on directly addressing
this architectural performance gap by utilizing the reconfigurability of FPGAs and
adapting the proven baseline design through a datapath redesign to fully saturate
the 512-bit HBM systems of modern data center FPGAs.

1.4 Thesis Motivation and Problem Statement
The previous sections have established that the performance of graph processing,
especially for memory-bound algorithms like the WCOJ, is fundamentally limited by
the throughput of the memory subsystem, and that FPGAs provide an architectural
model which is capable of addressing this bottleneck through development of a
domain specific accelerator with a custom data path design. The baseline “LESS”
accelerator successfully demonstrated the viability of mapping the WCOJ algorithm
to a pipelined HLS architecture, which was achieved through a new design that
integrated a complete on-chip preprocessing phase and eliminated the need for
an energy expensive host CPU to build the required data structures for graph
processing. The architecture of the accelerator was based on a flexible two-level hash
table and custom caching mechanisms to mitigate off-chip memory latency and the
original research showed that this approach was viable and the accelerator delivers
a good balance of performance and power consumption compared to state-of-the-art
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high-performance solutions on both CPUs and GPUs. Experimental results from
the study showed that the LESS accelerator has a good advantage in performance-
per-watt for complex memory-bound graph operations [3], and this demonstrated
efficiency validates the feasibility of WCOJ on FPGA methodology as a reliable and
powerful foundation for graph processing accelerators. However, the development
context for embedded platforms imposed a 128-bit memory interface, creating
an architectural limitation that prevents its effective scaling on contemporary
high-performance hardware.

The motivation for this thesis comes from the major technological gap between
the high memory throughput capabilities of modern data center FPGAs and the
baseline accelerator’s architectural datapath limitation of 128-bit as it was designed
for an embedded FPGA platform. High Bandwidth Memory (HBM) technology
presents a good opportunity for improving the performance of memory-bound
workloads, and a performance study conducted in this thesis, which is detailed
in Chapter 4, was performed to quantify this opportunity. The results revealed
that the 512-bit HBM interface provides an approximate 6.5x aggregate sequential
bandwidth advantage over a traditional 512-bit DDR4 interface, providing the
opportunity for substantial performance gains. This empirical evidence makes it
clear that deploying the 128-bit baseline kernel on a data center accelerator with
a 512-bit physical HBM interface would create a severe architectural bottleneck,
leaving 75% of the available memory bandwidth unutilized and negating the primary
advantage of the target hardware.

Therefore, this thesis addresses the problem of this architectural mismatch. The
core problem statement of the thesis is the sub-optimal performance of a proven
WCOJ graph accelerator on high-performance data center FPGAs due to the
mismatch of its datapath with the wide-bus memory subsystem that leads to severe
underutilization of the available memory bandwidth, and the objective of this work is
to resolve this bottleneck through architectural redesign and implementation of the
accelerator, with the goal to evolve the kernel to natively support a 512-bit datapath
and enable it to fully saturate the available memory bandwidth on the target FPGA.
This will be achieved through a packed-instruction methodology that maintains
logical 128-bit data structures while maximizing the physical memory bus utilization,
all using a High-Level Synthesis design flow, and the final implementation will
validate this approach and provide a high-performance solution for subgraph
isomorphism enumeration on data center platforms.

1.5 Key Contributions
This thesis presents the adaptation, redesigning, implementation, and evaluation
of a high-performance subgraph isomorphism accelerator based on an embedded
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FPGA platform for HBM equipped data center FPGAs. The main contributions
of the work are as follows:

1. Performance Characterization of Data Center FPGA Memory Sys-
tems: A detailed benchmark study was performed on AMD ALveo platforms
to quantitatively analyze and compare the aggregate bandwidth and average
access latency of HBM2 and DDR4 memory subsystems. The analysis provides
the experimental data which justifies the necessity of a wide datapath and
parallel architecture for memory-bound algorithms, which can be implemented
using HBM memory platforms.

2. Architectural Migration and Data Path Widening: The baseline 128-bit
LESS accelerator was successfully adapted from an embedded FPGA platform
to the Vitis data center design flow, and the memory interface of the accelerator
was updated to support a 512-bit wide physical memory bus with the help of
HLS compiler directives, allowing the accelerator to utilize the full physical
memory bus and higher bandwidth of the target platform.

3. Implementation and Validation: A complete, functionally verified 512-bit
subgraph isomorphism accelerator was implemented on an AMD Alveo U55C
HBM-based data center FPGA, and an XRT-based host application and a
linker configuration for the multi-bank HBM subsystem were developed as the
main components of this implementation.

4. Experimental Performance Analysis: A detailed performance analysis
was performed which compared the final 512-bit HBM accelerator to the 128-
bit DDR4 baseline. The analysis shows a significant performance improvement
due to the wider physical memory bus and higher throughput on the data
center platform, and this research also explores the limitations of having a
wider physical bus with a serial or less parallel architecture when processing
large and complex graph datasets.

1.6 Thesis Structure
The research presented in this thesis is organized in the following manner:

• Chapter 2 provides a review of the background concepts and related work,
and it covers the theoretical foundations of subgraph isomorphism algorithms
including exploration-based methods, join-based methods, and it discusses the
architectural characteristics of High Bandwidth Memory.

• Chapter 3 details the architecture of the baseline LESS accelerator and
describes the two-phase execution model of the design, the main WCOJ-
based multiway join pipeline, and the main data structures and hardware
optimizations.
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• Chapter 4 presents the methodology and results of the detailed performance
analysis of different data center FPGA memory subsystems, and it describes the
bandwidth and latency microbenchmark kernels and provides a quantitative
comparison between HBM and DDR4, establishing the motivation for the
accelerator’s adaptation and redesign.

• Chapter 5 explains the implementation of the high-bandwidth accelerator and
details the migration to the Vitis data center design flow, the methodology for
data path widening, and the final experimental evaluation, such as functional
verification and a detailed performance analysis.

• Chapter 6 concludes the thesis by summarizing the key findings and contri-
butions, and it outlines the promising directions for future research, including
detailed datapath redesign, optimization and multi-kernel scaling.
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Chapter 2

Background

The subgraph isomorphism problem is NP-hard so it doesn’t have any universally
optimal algorithm, this is why there are different families of algorithms with different
computational models and performance properties. There are comprehensive
surveys like the book by Sun and Luo, which suggests that these algorithms can
be broadly categorize into three major types which include exploration-based
backtracking, constraint programming and relational join-based approaches [2].
Although this thesis focuses on the last one, it is important to review all three in
order to have a full picture of the problem space.

2.1 Exploration based Algorithms
The exploration-based framework is the classic and best studied model of subgraph
isomorphism that organizes the problem in state-space search terms. These al-
gorithms use a backtracking approach to recursively extend a partial match, one
query vertex at a time, until a complete embedding has been discovered or a conflict
is observed, and these types of algorithms have started with the original Ullmann
algorithm which has later been optimized with many state-of-the-art algorithms
including VF2, its successor VF2++, and RI [2].

The implementation of such exploration based algorithms can be broken down
into a three phase process and is abstracted by the generic framework given by Sun
and Luo [2].

2.1.1 Filtering and Pruning
The first step is to aggressively prune the search space and produce a candidate
set C(u) of each query vertex u ∈ Vq, where a data vertex v ∈ Vg only lies in C(u)
in the case that it may be used in a valid mapping of u, and this approach is
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usually achieved by a series of increasingly advanced filters. A baseline Label and
Degree Filter (LDF) is used to make sure that a mapping is possible, in which case
the label of v has to be equal to that of u and the degree of v must be at least
equal to the degree of u. There are also more sophisticated techniques that exist
like the Neighbor Label Frequency (NLF) filter which is used in algorithms like
CFL and DP-iso, and this filter further prunes candidates by making sure that the
neighborhood of v has as many vertices of the same label as the neighborhood of u.

2.1.2 Matching Order Selection
The sequence in which query vertices are mapped, called the mapping order or
Query Vertex Order (QVO), has a major impact on the performance, because an
effective ordering gives higher priority to more selective vertices (e.g., vertices with
smaller sets of candidates or higher degrees), which can help the backtracking
search to find failures earlier and therefore prune large branches of the search tree
from the search space, and different heuristic techniques are used like static analysis
of the query graph structure or dynamic ordering based on the state of intermediate
results, etc., are used to find a more efficient Query Vertex Order for this purpose.

2.1.3 Enumeration
The enumeration phase starts after candidate sets and an optimum matching
order is determined, and during enumeration the algorithm recursively traverses
the search space, and for the current query vertex u, it computes a set of local
candidates from C(u) that maintain connectivity with the data vertices which are
already part of the partial embedding.

On one hand, exploration-based methods are highly optimized, but on the
other hand, their weakness is in their memory access patterns. This is because
the recursive, depth-first traversal of the search space results in irregular or true
random (pointer-chasing) memory accesses, which have bad spatial and temporal
locality and this memory access pattern is not optimized for modern CPU and GPU
architectures whose execution depends on deep cache hierarchies and prefetching
mechanisms for memory access, leading to the situation called “memory wall” where
the algorithm is constantly stalled waiting for memory.

2.2 Join-Based Algorithm
The other type of algorithms redefine the subgraph isomorphism problem from a
graph traversal problem to a relational database query. In this model of solving for
subgraph isomorphism, each edge (u, v) of the query graph Q is associated with a
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relation R(u, v) and these relations include all the edges in the data graph G which
connect vertices with the correct label, and the vertices u and v are considered as
attributes of the relation. This transformation changes the problem of locating all
the embeddings to be the same as performing a multi-way join across all relations
which are derived from the query graph.

This general approach can be further divided into two different subgraph iso-
morphism solving strategies:

2.2.1 Pair Wise Join

This approach is a conventional database technique in which relations are joined
in a binary tree manner. Although it is good for most types of queries, pair-wise
joins are highly inefficient for cyclic queries, which are typically common in graph
structures, and this approach leads to the problem where an intermediate result of
a pair-wise join may be asymptotically larger than the final result and can cause
an large waste of computation and memory bandwidth.

2.2.2 Worst-Case Optimal Join (WCOJ)

In order to resolve the problem of intermediate result explosion, state-of-the-art
join-based graph algorithms use WCOJ theory. The WCOJ algorithms (e.g.,
Generic-Join, Leapfrog Triejoin) depend on the AGM inequality bound and they
are known to have a provable dependence on the largest possible output size of
the query for their running time, and these algorithms work by generating sets
“at-a-time” and iteratively compute the candidates for a new vertex by performing
intersection operations on all relevant relations simultaneously.

WCOJ algorithms provide an effective solution to the main performance limi-
tation of pair-wise joins by limiting the size of the intermediate results, but this
computational efficiency has some constraints, such as the in this case the dominant
operation then becomes repeated scanning of relations from the main memory and
their intersection. Consequently, the performance of a WCOJ-based algorithm
can no longer be limited by computational complexity, but rather it becomes
directly memory bound, which means that the execution speed of the algorithm
directly depends on the bandwidth available in memory. This characteristic makes
the WCOJ-based algorithms a good choice for hardware acceleration on compute
hardware that contains high-throughput memory systems.
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2.3 Constraint Programming
A third approach also exists which defines the subgraph isomorphism problem as a
Constraint Satisfaction Problem (CSP), in which, the query vertices are considered
as variables, the set of data vertices form the domain for the variables so they
provide the possible values for the variables, and query edges are defined as the
structural constraints on any valid assignment, and by defining the problem like
this, there are algorithms like Glasgow [2] which use advanced solvers that use
backtracking and inference to find every valid assignment. However, while CSP
is a powerful and general approach, in the specific case of subgraph isomorphism,
specialized exploration-based or join-based algorithms usually demonstrate better
performance than such methods.

2.4 High Bandwidth Memory (HBM)
The increase of computational density in FPGAs and GPUs has further increased
the “memory wall” problem, where performance is not constrained by on-chip
processing power but rather by the rate at which data can be transferred to and
from external memory. Conventional Double Data rate (DDR) SDRAM, although
developing, has inherent physical limitations in scaling its interface width due
to pin count constraints, signal integrity considerations, and power consumption,
and due to these factors, High Bandwidth Memory (HBM) has been developed as
an architectural improvement in memory systems, a topic explored in depth by
microbenchmark studies such as the work by Lu et al. [4], because it is specifically
designed to provide orders of magnitude of improvement in memory bandwidth
within a limited power budget.

2.4.1 HBM Architecture
HBM utilizes an alternative die-stacking process which is either 2.5D or 3D, which
is different from the traditional planar, two-dimensional layout of DDR modules
on a printed circuit board, and in HBM multiple DRAM dies are vertically stacked
at a time and connected using through-silicon vias (TSVs), and this stack is then
placed alongside the processor (FPGA or GPU) on a standard silicon interposer
substrate. This physical layout allows for the primary benefits of HBM:

• Ultra-Wide Interface: The short dense connections on the interposer
substrate in HBM provide a very wide memory interface. For example, a
single HBM2 stack can offer up to 1024 bits, which is a great difference from
the 64-bit wide channel that exists within a single DDR4 DIMM. This wide
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bus is the main cause of the huge bandwidth advantage of HBM as it allows
to transfer a lot more data per clock cycle [4].

• Independent Channels and Pseudo-Channels: The physical interface of
an HBM2 stack is not a single bus but rather it is logically partitioned into
four or eight separate channels of 128-bits each, and then all these channels are
further subdivided into two completely independent 64-bit pseudo-channels.
This fine-grained partitioning is an important architectural feature which
enables parallel access of concurrent memory requests so that they can be
serviced simultaneously with lesser interference, reducing bank conflicts and
improving effective bandwidth, especially when the memory workload has
random or semi-random access patterns.

• Power Efficiency: The electrical signaling paths are significantly reduced by
physically reducing the distance between the memory dies and the processing
logic, which allows reduced signaling voltages and allows the memory I/O driver
power to be reduced, resulting in much more energy efficient (performance-per-
watt) interfaces compared to the relatively longer signal distances for DDR
memory interfaces.

2.4.2 Architectural Comparison with DDR
The architectural differences of HBM from traditional DDR4 memory subsystem
highlight some important differences which should be considered. The main differ-
ence in an HBM2 system is the aggregate bandwidth, which is also demonstrated
in the benchmark study conducted for this thesis (detailed in Chapter 4). An
HBM2 memory subsystem with a 512-bit wide physical bus can deliver an aggregate
sequential throughput of approximately 382 GB/s, whereas a multi-channel DDR4
system on a comparable platform is limited to around 59 GB/s. This is ∼6.5x
increase in throughput which is also the primary motivation for targeting HBM for
memory-bound workloads.

This high bandwidth is possible in HBM due to its highly parallel architecture
rather than just clock speed, and HBM clock frequencies are typically lower
than those of high-performance DDR4. Consequently, since HBM achieves higher
throughput using parallelism, the absolute latency for a single, random memory
access can be comparable to, or in some cases slightly lower than DDR4. This is a
drawback of HBM memory subsystems, however the higher degree of parallelism
from the pseudo-channel architecture allows HBM memories to service a much
larger number of concurrent memory access requests, effectively hiding this latency
and achieving superior system-level throughput.

The main trade-offs for HBM are capacity and cost as the complex manufac-
turing process that involves TSVs and silicon interposer substrates makes HBM
more expensive per gigabyte. Furthermore, another drawback is that since the
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HBM architecture is fixed and on-package, it means that its capacity is not user-
expandable and it can typically offer a lower maximum capacity compared to
computing systems with multiple DDR4 DIMMs.

2.4.3 Implications for Subgraph Isomorphism Acceleration
The work of this thesis is focused on a WCOJ subgraph isomorphism algorithm
that is known to have a memory-bound problem, therefore the architectural charac-
teristics of HBM memory subsystems are very important for this specific problem.
The performance of the WCOJ algorithm is directly correlated to the rate at which
candidate sets and edge data can be read from external memory, and HBM provides
a huge bandwidth advantage which is a clear opportunity for an order-of-magnitude
performance improvement if the accelerator’s data path is able to utilize the wider
physical bus and therefore an architectural adaptation to a 512-bit data path is
necessary to utilize the maximum HBM bandwidth with the objective of designing
a kernel that is capable of issuing memory requests at a sufficient rate to saturate
the high-bandwidth interface.
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Chapter 3

Baseline LESS Accelerator
Architecture

The research presented in this thesis develops an established and high-performance
subgraph isomorphism accelerator called LESS (Low-power Energy-efficient Sub-
graph Isomorphism). The LESS kernel uses a Worst-Case Optimal Join (WCOJ)
algorithm that is entirely implemented on the FPGA using HLS, and this design
choice shifts the main performance bottleneck to memory bandwidth. The LESS
kernel’s performance is used as the baseline for the work in this thesis and its
architecture is described in this chapter, which was initially designed for a 128-
bit memory interface on an embedded FPGA platform. The significance of the
architectural redesign of the LESS accelerator to adapt it for high-bandwidth data
center FPGAs requires an understanding of the kernel’s two-phase execution model
and key data structures, which is the main contribution of this thesis.

3.1 Architectural Overview
LESS kernel is designed to operate in two distinct and non-overlapping phases,
both of which are executed entirely on-chip, where the first is a Preprocessing
Phase and then the second is a Multiway Join (Enumeration) Phase. The
decision to run both the preprocessing and the enumeration phase on the FPGA is
an architectural design choice [3] where the host CPU is not required to do the
initial graph data structuring to make the acceleration energy efficient, which is a
common requirement in many other FPGA-based graph accelerators.

The whole kernel is designed and implemented as a streaming architecture where
data is passed between modules through hls::stream FIFOs. The top-level kernel is
interfaced with the host and off-chip memory through multiple AXI master ports
which allow parallel access to the different data structures that are needed by the
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algorithm such as the hash tables, Bloom filters, and the dynamic FIFO buffer.
The basic architectural limitation of this baseline design is that each one of these
memory transactions is limited to a width of 128 bits, which is due to the original
embedded platform target.

3.2 Preprocessing Phase
The Preprocessing Stage is an important aspect of the kernel’s all-FPGA design
and it is responsible for converting the raw and unstructured data graph into a set
of highly optimized data structures in memory which are optimized for the WCOJ
algorithm. The preprocessing phase is implemented as a complete pipelined design
with dataflow functions that implements a two-pass algorithm on the input graph
data to correctly size and sort the final data structures to optimize efficiency of
the subsequent Multiway Join Phase. The output of this preprocessing stage is a
set of two-level hash tables and the associated Bloom filters, one for each relation
(i.e. each type of edge) which are described by the query graph and stored in the
off-chip DRAM of the embedded FPGA[3].

3.2.1 Two-Pass Algorithm
Pre-allocating space for the hash tables according to the worst-case scenario would
be inefficient in case of power-law graphs, therefore the preprocessing pipeline
executes a two-pass algorithm similar to a counting sort [3] which is detailed as:

1. Pass 1: Collision Counting: In the first pass, the kernel traverses every
edge of the data graph and it computes the hash values of the source and
destination vertices of every edge. These hashes are used to identify which
cell in the two-level hash table the edge belongs to, which allows the kernel
to simply increment a counter associated with that cell instead of storing the
edge. The pass basically constructs a histogram of edge distribution across all
hash buckets for all relations, and at the end of this pass the kernel has an
exact count of the number of edges that will exist in each bucket.

2. Pass 2: Offset Calculation and Edge Storage: Pass 2 starts by computing
a prefix sum on the number of collision counts generated in Pass 1, and this
calculation converts the raw counts into a table of memory offsets such that
each entry now points to the starting address of a pre-allocated and efficiently
sized memory region for its corresponding edge bucket. The accelerator then
runs a second time and streams through the data graph edges again, and for
each edge it re-computes the hash values, retrieves the current write offset of
that bucket, stores the edge at that memory offset in off-chip memory, and
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then it finally increments the offset. This process scatters all the relevant
edges of the graph to their final and sorted positions in memory.

3.2.2 Core Data Structures
The output of the preprocessing phase is a set of data structures which are designed
to allow near-constant time access during the next join phase.

• Two-Level Hash Table: The primary data structure is a two-level hash
table that is characterized by two hash width parameters h1 and h2. For a
given relation R(u1, u2), an edge (v1, v2) from the data graph is mapped by
using two hash functions, H1(v1) and H2(v2), where v1 is the indexing vertex.
The first-level hash, H1 partitions the relation into roughly organized hash
buckets, and then the second-level hash H2 divides each of the hash buckets
into sorted and organized cells. The hash table is a matrix-like data structure
that is stored in off-ship and it contains the memory offsets of Pass 2 and it
allows the kernel to access the range of edges that correspond to a specific
hash pair (H1(vi), H2(vj)) using two memory accesses only.

• Bloom Filters: The kernel also generates an associated Bloom filter for each
of the first-level hash buckets (i.e. for each row in the hash table) in parallel
with the second pass. A Bloom filter is a probabilistic data structure that
allows for a space-efficient set representation and it supports the testing of
approximate set membership with the property that false positives are possible
but false negatives are not. In the LESS kernel’s architecture, the Bloom
filter for a given bucket stores a compact representation of all indexed vertices
that are contained within that bucket, and these filters are then used in the
Multiway Join Phase to perform a fast, approximate set intersection which
allows the kernel to eliminate a significant portion of the search space before
performing the more time consuming full edge data access from memory.

3.3 Multiway Join Pipeline
The Multiway Join Phase is the main execution component of the subgraph
isomorphism kernel which executes the main subgraph matching algorithm, and it
performs an iterative and vertex at-a-time enumeration of all the valid embeddings.
This phase is designed as a deeply pipelined and looping dataflow architecture
where partial solutions are continuously read from the dynamic FIFO, extended
by the pipeline and then written back to the FIFO, and this iterative process is
repeated until either all the query vertices have been successfully mapped to create
a complete embedding, or the FIFO of partial solutions becomes empty which
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means that no further matches can be found. The actual pipeline consists of four
main functional stages which include Propose, Intersect, Extract, and Verify.

1. Propose Stage: The multiway join pipeline starts with the Propose stage
which is responsible for identifying the most constrained set of candidate
vertices for the next query vertex that is being matched. For a given partial
solution p, this step first determines the next vertex u in the matching order,
and then it identifies all the relations R that u is a part of. The main operation
in this step is to find the smallest candidate set among all these relations, and
this is done by computing the size of each candidate set by either reading
the pre-computed size of an indexing set or by comparing two offsets in the
hash table to determine the size of an indexed set, and once the smallest
set (the minimum set) is identified, the Propose stage loads its component
vertices from off-chip memory and then streams them to the next stage. The
Propose stage implements a type of find-smallest-first rule which is the basis
of the WCOJ algorithm because it ensures that the complexity of the later
intersection and verification steps is proportional to the size of the smallest
set [2].

2. Intersect Stage: The Intersect stage performs a quick and approximate set
intersection to eliminate the candidate vertices that are sent by the Propose
stage, and for each candidate vertex v from the minimum set, the Intersect
stage checks whether or not it is contained in all other relevant relations.
This check is not performed by reading complete sets of edge lists but by
querying the pre-computed Bloom filters, and a candidate v is discarded
if the Bloom filter for any of the other required sets shows that v is not
present, and since Bloom filters can produce false positives, this intersection is
only approximate such that it ensures that no valid candidates are discarded
but it may allow some invalid candidates to pass through. This trade-off
is necessary for performance as it replaces a large number of costly random
memory accesses with few and very efficient sequential Bloom filter reads [3].

3. Extract Stage: The candidates which are remaining after the approximate
intersection are then sent to the Extract stage, and the main function of this
stage is to perform the conversion from the hash values back into the vertex
IDs and to filter out duplicates that might occur due to hash collisions, and
then convert the incoming vertices into a proper set.

4. Verify Stage: The last main functional stage of the multiway join is the
Verify stage which identifies the uncertainty created by hash collisions and
the false positives from the Bloom filter intersection, and on every candidate
vertex v which has already passed the previous filters, this stage performs the
final correctness checks:
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• Homomorphism Check: The Verify stage first verifies that the candi-
date vertex v is not already present in the current partial solution p and
by doing so it enforces the injectivity constraint of isomorphism.

• Edge Verification: It then performs a complete check to confirm that the
vertex v is connected to all the necessary vertices in the partial solution,
and this is done by accessing the two-level hash tables to read the small,
final edge lists and searching to find the exact edges that are required for
connectivity.

Candidates that pass both of these checks are then considered valid extensions,
and for each valid extension a new and larger partial solution is generated and
written back to the dynamic FIFO so that it can either be processed in the
next iteration of the multiway join, or it can be written to the output in the
case when a complete embedding is identified.

3.4 Core Data Structures and Optimizations
The optimized and complete mapping of the memory-bound WCOJ algorithm
to an FPGA architecture is performed based on the combination of a series of
well optimized data structures and hardware optimizations which are designed
and implemented to utilize properties of data locality, hide the high latency of
off-chip memory and manage large size of intermediate results generated during
the join process. The main architectural contributors in the baseline design are
the AdjHT struct, a custom multi-level cache and a dynamic FIFO for managing
partial solutions.

3.4.1 Adjacency Hash Table Descriptor
The two-level hash table and its associated edge lists are saved in off-chip memory,
but all metadata that is required to access them is stored on-chip in a small
structure called AdjHT (Adjacency Hash Table), where for each relation this
structure contains the necessary pointers and counts that are needed by the
pipeline to access them. The structure mainly includes:

• start_offset: The base address in memory where the two-level hash table
(the array of offsets) of this relation starts.

• start_edges: The base address in memory where the compressed and sorted
array of edges of this relation starts.

• n_edges: The total number of edges which have been stored for this relation.

By storing this metadata on-chip the kernel is able to perform the calculation
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for the exact address for any hash table lookup or edge list access without any
additional memory access latency.

3.4.2 Custom Cache Implementation
The baseline architecture’s performance is fundamentally limited by memory latency
and bandwidth, and to optimize this a custom two-level parameterized cache is
implemented into the architecture [3] in order to mitigate the performance gap
between off-chip memory and on-chip logic and optimize the memory access pattern
of the WCOJ algorithm.

• Exploiting Spatial Locality: The preprocessing phase creates a large
amount of spatial locality into the final data structures by sorting edges based
on their vertex hash values, and after that when a step of the multiway join
phase, Verify for example, might need to verify the existence of a set of multiple
edges present inside the same hash bucket, these edges now exist physically
closer in memory and the cache takes advantage of it by fetching a complete
cache line (composed of a series of multiple 128-bit words in the baseline
design) when the first miss occurs. Now, multiple data requests within that
same line can be served to the kernel directly from the low-latency on-chip
BRAMs which have low latency, helping the kernel to avoid performing off-chip
memory accesses which have high latency.

• Multi-Instance Configuration: The baseline kernel design instantiates a
set of multiple independent cache objects where each cached is customized
according to a specific access pattern for the multiway join pipeline. For
example, the cache that is used for reading the minimum set can be configured
differently from the one that is used for offset table lookups and final edge
verification. This parametric cache design allows for small optimizations
so that different aspects of the algorithm can be optimized with different
parameters of the independent caches such as size, associativity or storage
type depending on the cache size (BRAM or URAM).

3.4.3 Dynamic FIFO for Partial Solution Management
The WCOJ algorithm expands in breadth-first style as it processes vertices one at a
time, and this property can cause combinatorial explosion in the size of intermediate
partial solutions, which can result in a very large set of solutions and storing them
is an important architectural challenge. An on-chip FIFO would fill up very quickly
and result in stalling the whole pipeline whereas only using off-chip memory would
add latency to the main feedback loop of the algorithm.

The baseline accelerator solves this with a dynamic FIFO which is a solution
that smartly handles incomplete solutions in on-chip and off-chip memory [3]. The
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FIFO is dynamic because its effective capacity is not a fixed, compile-time constant,
and it is different from a standard hls::stream that synthesizes to a fixed-depth
FIFO using on-chip BRAMs, because the effective size of the FIFO can dynamically
grow to accommodate a large number of intermediate solutions, limited by size of
the results buffer in off chip memory. Under normal operation when the number of
partial solutions is low, the dynamic FIFO is used in the same way as a conventional,
low-latency on-chip hls::stream which have single-cycle throughput and partial
solutions are written to and read from the FIFO to make sure that the multiway
join pipeline runs at full speed.

Whenever the number of items stored in the FIFO exceeds the predefined
FIFO depth, the FIFO memory management unit packs partial solutions into wide
memory words and burst writes them to a pre-allocated circular buffer in off-chip
memory and the pipeline is simultaneously fed from the on-chip data of the FIFO.
After the on-chip buffer has been filled up, the kernel will then start re-filling it by
burst reading the buffer from off-chip memory, and this helps the kernel to use a
high-performance buffer to hide the memory access latency in this process.

The primary limitation of this dynamic FIFO is its fixed, compile-time defined
capacity for the off-chip buffer, and although the space is large (hundreds of
megabytes) it is still limited and for complex query graphs that result in a very
large intermediate result set, it is possible to overflow this space which would
lead to the kernel failing. However, for a wide range of practical workloads, this
mechanism provides a reliable working solution to the management of memory for
the WCOJ algorithm.
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Chapter 4

Memory Subsystem
Performance Analysis

4.1 Performance Characterization of WCOJ on
FPGAs

The baseline accelerator architecture, as described in the previous chapter, success-
fully implements the Worst-Case Optimal Join (WCOJ) algorithm onto a deeply
pipelined FPGA architecture. An important characteristic of the WCOJ paradigm
is its algorithmic efficiency, which in theory bounds the size of intermediate results
to limit computational complexity of combinatorial complexity and it moves the
main computational burden to data movement to and from memory, because all
the main operations of the multiway join pipeline like scanning the minimum set,
checking Bloom filters and verifying edge connectivity are all series of accesses to
the different data structures which exist in off-chip memory.

As a consequence, it is hypothesized that the overall throughput of the accelerator
is not limited by the available on-chip computational resources but rather the
accelerator is memory-bound and the bottleneck is now shifted to memory, and
the rate at which the kernel can process embeddings is now directly dependent on
the available bandwidth and latency of the external memory subsystem. In such a
memory-bound system, the physical width of the memory interface and the memory
technology (e.g., DDR4 or HBM) become the main factors which bottleneck the
performance that can be achieved by the accelerator.

This hypothesis serves as the motivation for the work that is presented in this
chapter, because before any architectural modifications are made to the kernel, it is
important to quantitatively define the achievable performance of the target memory
systems and a detailed analysis of the available memory bandwidth and latency
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is required to establish an empirical upper limit on the memory’s performance,
and also to justify the modifications to the datapath of the kernel. The following
sections detail the methodology and the results of a detailed benchmark study
which is performed to profile the memory subsystems of modern data center FPGAs
to provide data and guide the architectural modifications for the accelerator to
adapt it to data center FPGAs and improve its performance.

4.2 Benchmark Methodology
To qualitatively test the memory-bound kernel hypothesis and to establish a
performance baseline for, two different microbenchmark kernels were developed
using Vitis HLS, namely a bandwidth profiler and a latency profiler, adopting
the methodology proposed by Lu et al. [4]. These kernels were designed to isolate
and measure the two main properties of the memory subsystem using different
access patterns to provide a detailed understanding of performance of the memory
subsystems of target data center platforms, and both kernels were designed to run
on a 512-bit wide data path (axi_word) to utilize the complete physical interface
of the Alveo platforms.

4.2.1 Bandwidth Profiling Kernel

The objective of the bandwidth profiling kernel is to measure the maximum
achievable data transfer rate by saturating all the parallel memory channels of the
target FPGA.

Kernel Architecture

The kernel was designed as a high-throughput data movement kernel which is
capable of parallel execution. To measure the aggregate bandwidth of the target
FPGA, multiple Compute Units (CUs) were instantiated, and each CU’s AXI
master ports were mapped to a unique HBM pseudo-channel or DDR channel using
Vitis linker directives. This configuration is demonstrated by [4] to be effective
for saturating parallel memory channels as it ensures that the CUs are able to
run in parallel without contesting for the same physical memory resources and it
allows the benchmark to correctly measure the actual per channel throughput and
aggregate throughput of the target FPGA.

The kernel also has outstanding read and write request FIFOs with a depth of
16 elements, and it is divided between two Super Logic Regions (SLRs) to manage
routing congestion.
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Operational Modes

The kernel supports three major operational modes OP_READ, OP_WRITE,
and OP_COPY for evaluating both unidirectional and bidirectional data move-
ment, as well as two major access patterns to model the different types of memory
accesses that exist in the WCOJ algorithm.

• Sequential Access: The sequential mode allows the kernel to access a large,
contiguous block of memory sequentially and perform memory word wide
burst transfers. This pattern is expected to measure the ideal, peak sequential
throughput of the memory system, which is representative of workloads that
have high spatial locality, which also exists in the LESS kernel WCOJ algorithm
such as scanning Bloom filters or large candidate lists.

• Random Strided Access: This mode allows the kernel to perform a series of
non-contiguous memory accesses and step through memory at a configurable
stride. This pattern emulates the less predictable access patterns of WCOJ
algorithm that occurs during the Verify stage when the accelerator might
require accessing different hash table entries.

Measurement

The performance of the kernel is measured by the host by timing the total execution
duration of the kernel for a large number of iterations and the overall throughput
is then obtained by dividing the sum total of the bytes transferred (Data Size ×
Iterations × Number of CUs) by the elapsed time.

4.2.2 Latency Profiling Kernel
The objective of the latency profiling kernel is to accurately measure the round
trip time for a single memory access from the perspective of the kernel logic, by
isolating it from external software overhead.

Kernel Architecture

This kernel architecture is made up of a dataflow architecture, similar to the work
done in other microbenchmark kernel studies [4], and the kernel has three different
concurrently executing modules to separate the measurement logic from the memory
access logic, and the kernel is designed with read and write outstanding FIFOs
with a depth of just 1 to disable bursting of memory accesses so that the latency
of a single memory access can be isolated. The three modules communicate using
hls::stream FIFOs, and they are:
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• Accessor Module: This module holds the main memory access loop, and it
is responsible for sending a start signal on a stream just before it starts its
first memory operation and then it sends a stop signal after its final operation
is completed.

• Timer Module: This module contains a basic, free-running cycle counter
which begins counting when it receives the start signal from the accessor
module and it stops counting when it receives the stop signal.

• Collector Module: The collector module is the final module that reads the
final cycle count from the timer and the total number of accessess performed
by the accessor module, and then it writes these values to AXI-Lite registers
for the host.

This dataflow-based design separation and use of different modules helps make
sure that the latency measurement only includes the execution time of the memory
operations and removes software overheads.

Calibration Mode

An important feature in this kernel is a calibration mode, which when enabled,
causes the Accessor module to execute the same loop structure and signaling
protocol but it doesn’t include the physical memory access instructions. The
resulting cycle count in this mode gives us the overhead of loop control and inter-
module stream communication, and to obtain the actual memory access latency
this overhead cycle count is then subtracted from the total measured cycles during
a memory test run, and then the result is divided by the number of accesses. of
the total cycles measured are divided by this number.

Measurement

The latency profiling kernel also includes the same operational modes as the
bandwidth profiling kernel and this benchmarking design provides a clock-accurate
measurement for the average latency of a single memory access, and it separates
the memory benchmark from non-deterministic host-side timing and operating
system scheduling overheads because by using this technique, the benchmark can
easily determine latency based on the result from the Timer module and the
kernel’s operating clock frequency by directly reading the cycle count and number
of memory accesses from the AXI-Lite registers in the kernel.

4.3 Experimental Setup
In order to perform a detailed comparison between the HBM and DDR4 memory
technologies, the benchmark kernels were built and tested on two different AMD
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Alveo data center accelerator cards, the development was done on Vitis HLS and
the host applications were built using the Xilinx Runtime (XRT) library.

4.3.1 Hardware Platforms
HBM Platform (AMD Alveo U55C)

The HBM performance was profiled using an Alveo U55C accelerator card, which
has a single FPGA die and 16GB of HBM2 memory, which is connected with the
FPGA as 32 independent 512 MB pseudo-channels, each of which have a 512-bit
wide AXI interface per memory bank. The bandwidth benchmark was configured
to instantiate 16 Compute Units (CUs) and the two memory ports of one CU
were connected to two different banks of the 32 HBM banks available so that the
memory subsystem could be fully saturated.

DDR4 Platform (AMD Alveo U250)

The DDR4 performance was benchmarked on an Alveo U250 accelerator card which
has 64 GB of DDR4 memory spread across four independent memory channels
(banks), and the bandwidth benchmark was configured similar to the HBM setup
by using two CUs and the memory ports of each CU were assigned to a different
pair of the four available DDR banks.

The kernel frequency of both platforms was configured to a target frequency of
300 MHz for both the bandwidth and latency tests, which is the highest available
clock frequency for HLS kernels on the tested Alveo platforms to utilize the memory
subsystems at maximum capacity.

4.3.2 Benchmark Parameters
The profiler kernels were executed with different parameters to characterize perfor-
mance, and the main parameters are:

Data Sizes

In bandwidth testing, the size of the total data transfer for sequential and random
stride access patterns (64B stride) was set at 256 MB across all 16 control units and
the test was run for 1000 iterations, both of which were large enough to ensure that
the measured performance results represent steady-state throughput, minimizing
the impact of kernel startup and shutdown and other control overheads.

The total processed data for sequential and 64-byte random strided tests was
250 GB, while the data size for random stride access tests for a larger stride of
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2 MB was 512 MB with 10,000,000 iterations with a total processed data size of
152.58 GB for each test.

The latency benchmark data size was set at 256 MB for both sequential and
random stride access tests.

Access Patterns

The bandwidth and latency benchmarks evaluated both sequential and random-
strided access patterns with different strides (64 Bytes, which is a single cache line)
and very large strides (2 MB) to test memory performance with different levels of
memory access locality.

AXI Interface Configuration

The m_axi interface pragmas in the HLS kernels were configured with different
depths for outstanding read and write request FIFOs for the bandwidth and latency
profiling kernels according to the nature of the benchmark, because the bandwidth
benchmarks require high depth FIFOs for maximum performance while the latency
benchmarks require FIFOs with depth 1 to evaluate true memory latency so that
the FIFOs don’t hide memory latency.

The XRT host application for both kernels allocate the device buffers for the
connected memory banks, manage the execution of the kernels and timing the
kernel operations to calculate the final throughput and latency metrics.

4.4 Benchmark Results and Analysis
The bandwidth and latency profiling kernels were executed on the AMD Alveo U55C
(HBM) and U250 (DDR4) platforms to quantitatively evaluate the performance of
the memory subsystems. In this section, the results have been summarized and
they provide a clear and experimental basis for the architectural adaptation of the
subgraph isomorphism accelerator. The analysis focuses on aggregate throughput
and average latency of a single memory operation under both sequential and random
memory access patterns.

4.4.1 Aggregate Bandwidth Analysis
The aggregate bandwidth tests were configured to utilize all the available memory
on each platform (32 HBM pseudo-channels on the U55C and 4 DDR4 channels on
the U250) to measure the theoretical maximum data transfer rate of the platforms.
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Sequential Throughput

The WCOJ algorithm has a number of important operations such as scanning the
minimum candidate set during the Propose stage and reading Bloom filters during
the Intersect stage, all of which have sequential memory access pattern.

Figure 4.1: Aggregate Sequential Bandwidth (HBM vs. DDR4)

The HBM platform has a major advantage as seen in Figure 4.1, and for
sequential copy operations, the Alveo U55C achieved an aggregate throughput
of approximately 382 GB/s while the Alveo U250 platform under the same
conditions provided a maximum throughput of ~59 GB/s, and this represents a
~6.5x improvement in peak memory bandwidth for the HBM-based platform
over the DDR-based platform.

The individual throughput values for read, write and copy operations are
detailed in Table 4.1 which were tested with the same bandwidth profiling kernel
and the same parameters, which confirms that the advantage of higher bandwidth
is dependent on the type of memory subsystem and is consistent across different
memory access patterns.

Table 4.1: Sequential Aggregate Bandwidth Benchmark Results.

Operation Type HBM BW
(GB/s)

DDR4 BW
(GB/s)

Performance Ratio
(HBM/DDR4)

Read 192.05 33.54 5.73x
Write 191.50 29.65 6.46x
Copy 382.73 59.30 6.45x
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A more detailed analysis also involves looking at the per-channel bandwidth
of both memories to get more information about the capabilities of the memory
subsystem. This metric provides the efficiency of a single memory interface and
allows for a more direct comparison of throughput for each independent channel
without considering the overall number of channels, and the per-channel throughput
is calculated by dividing the measured aggregate throughput with the number of
active memory channels used by the benchmark (32 channels in HBM on U55C
and 4 channels in DDR4 on U250).

Table 4.2: Per-Channel Sequential Aggregate Bandwidth Analysis.

Operation Memory Aggregate Number of Per-Channel
Type Type Throughput (GB/s) Channels Throughput (GB/s)

Read HBM 192.05 16 12.00
DDR4 33.54 2 16.77

Write HBM 191.50 16 11.97
DDR4 29.65 2 14.82

Copy HBM 382.73 32 11.96
DDR4 59.30 4 14.83

Table 4.2 shows the result of this analysis, which shows the interesting finding
that for sequential operations a single DDR4 channel provides more throughput
than a single HBM2 pseudo-channel, for example, in the copy operation a single
DDR4 channel had a sustained throughput of approximately 14.83 GB/s while
the HBM pseudo-channel achieved a throughput of 11.96 GB/s. These results
are also consistent with the characterization work performed in other studies [4].

The architectural differences in the memory interfaces and their connection
with the FPGA explain these results. The four DDR4 memory banks of the Alveo
U250 and the 32 HBM pseudo-channels of the Alveo U55C all connect to the
FPGA through a wide 512-bit AXI interface, allowing both interfaces to perform
burst transfers during sequential memory access operations, but the higher clock
frequency of the DDR4 interface allows it to transfer more data per cycle on a
single channel than the interface for a single HBM pseudo-channel, resulting in
slightly worse per-channel throughput for the HBM memory interface.

However, this result does not reduce the overall superiority of HBM for high-
performance computing, but rather highlights the fact that the architectural
advantage of HBM isn’t in the speed or throughput of a single channel, but in the
massive parallelism that exists in the HBM interface, and by providing eight times
the number of independent memory channels, the HBM subsystem can service
a much greater number of parallel memory requests and provide significantly
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better aggregate throughput. This performance result also validates the multi-
CU benchmark methodology because it shows that the aggregate performance
advantage of the HBM interface is proportional to the number of channels and
it also supports the main hypothesis that a memory-bound accelerator needs to
be designed with a large number of parallel memory ports and a wide internal
datapath to effectively take advantage of the massive parallelism that the HBM
memory interface provides.

Random-Stride Throughput

The random-stride access pattern is arguably more important for the WCOJ
algorithm, since it mirrors the memory access behavior of the Verify stage where
the kernel needs to perform lookups into the hash tables to determine whether
an edge is connected or not, and the performance in these conditions shows the
capability of the memory subsystem to handle computations which have poor
spatial locality in memory. To measure this, the bandwidth profiling kernel tests
the memory’s performance with a small 64-byte stride which represents frequent
jumps between nearby cache-line sized data, as well as with a relatively larger 2
MB stride, which is a worse case scenario of accessing farther memory regions.

Figure 4.2: Aggregate Random Access 64B Stride Bandwidth (HBM vs. DDR4)

Figure 4.2 visualizes the performance of random read, write and copy operations
using a 64 bytes stride. In terms of random copy operation, the HBM platform
had a overall throughput of approximately 117 GB/s compared to the DDR4
platform that had a maximum of approximately 17 GB/s, which represents a
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~6.9x performance gain in case of HBM. This result shows that even when
memory access is not sequential or possible to be executed in memory bursts, the
parallel architecture of HBM interface still provides a much higher throughput
than DDR4 in the case of non-contiguous access patterns because of the parallel
architecture.

Figure 4.3: Aggregate Random Access 2-MB Stride Bandwidth (HBM vs. DDR4)

The random-stride access benchmark was repeated with a relatively larger 2
MB stride to further reduce memory spatial locality, minimize data reuse and avoid
prefetching and caching optimizations, and HBM still demonstrated significantly
higher throughput where in the random copy operation, the HBM platform main-
tained an approximate throughput of 19 GB/s whereas the throughput of the
DDR4 platform reduced to about 3 GB/s, which is a performance ratio of about
6.1x. The results of this second test are visualized in Figure 4.3, and the detailed
benchmark results are given in Table 4.3.

The main insight from this analysis is that although both memory technologies
suffer from performance with a reduction in spatial locality (as the stride size
increases), HBM’s throughput still significantly outperforms DDR4 due to its
parallelism from 32 independent pseudo-channels, which makes it more well-suited
for handling a large number of random memory requests. This high performance
benefit on a wide range of access patterns validates HBM as the better memory
technology for implementing memory-bound graph algorithms, and it also justifies
the need to have an accelerator architecture that is designed to be able to take full
advantage of the parallelism provided by HBM.

31



Memory Subsystem Performance Analysis

Table 4.3: Comparison of Aggregate Random-Stride Memory Bandwidth.

Operation Stride HBM BW DDR4 BW Performance Ratio
Type Size (GB/s) (GB/s) (HBM/DDR4)

Read 64 Bytes 58.66 8.61 6.81x
2 MB 11.74 2.15 5.46x

Write 64 Bytes 95.31 11.17 8.53x
2 MB 27.73 1.61 16.91x

Copy 64 Bytes 117.32 17.23 6.81x
2 MB 19.00 3.12 6.09x

4.4.2 Latency Analysis

The average access latency is another important measure that characterizes the re-
sponsiveness of the memory subsytem to individual, non-contiguous access requests.
In the case of memory-bound algorithms with random memory access patterns
such as the WCOJ algorithm, low latency is necessary to avoid pipeline stalls and
to achieve high throughput. The latency profiling kernel was used to perform a
clock-accurate measurement of the round-trip latency of one 512-bit access with
the help of the dataflow-based timer and accessor modules.

The results for the benchmark are presented across Figures 4.4, 4.5, 4.6, and
all the results are also summarized in Table 4.4, and they show the detailed
performance differences between HBM and DDR4 interfaces in terms of latency.

Sequential Access Latency

The sequential access pattern results shown in 4.4 measure HBM sequential read
latency of 195.02 ns, which is almost identical to its random-access latency, and
is also similar to DDR4 latency of 206.80 ns. This is not the total latency of a
continuous burst, which would be so very low, but instead it is the measurement of
average latency for the round-trip time of single, non-overlapping memory requests
over multiple iterations of memory requests, where each memory operation is
initiated independently even in this case where the targeted memory addresses
are contiguous. This is done by having outstanding read and write FIFOs of
size 1, and therefore the benchmark measures the latency of a single access. The
write performance is one of the more important findings of this benchmark, as a
sequential write latency was found to be 96.66 ns in the HBM subsystem, which
is much lower than the 162.48 ns of DDR4, showing that HBM write speeds
are 1.68x faster, even with single-access.
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Figure 4.4: Comparison of Average Sequential Access Latency (HBM vs. DDR4)

Random-Stride (64B) Access Latency Test

The 64-byte stride test, shown in Figure 4.5 is the most representative test for the
comparing performance of both technologies for frequent, non-contiguous, memory
lookups in the WCOJ algorithm.

In terms of read performance, the HBM platform provided a read latency of
195.02 ns while the DDR4 platform provided 206.80 ns, this confirms that for
isolated random reads, both memories are competitive in performance and HBM
shows a negligible advantage, supporting the conclusion that the main architectural
advantage of HBM is its massive parallelism to achieve high bandwidth rather than
a high single request read speed.

The write latency advantage of HBM is is again highlighted in this test, where
HBM achieved a write latency of 109.99 ns which compared to 177.26 ns for DDR4
provides a 1.61x performance improvement. This can be a key advantage
for various parts of the subgraph isomorphism kernel such as the dynamic FIFO,
which has to write contents to off-chip memory in a series of write operations when
there is a large number of intermediate partial solutions, and having a lower write
latency provides HBM the advantage to lower the performance cost of such critical
functions.
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Figure 4.5: Comparison of Average Random Access Latency at 64B Stride (HBM
vs. DDR4)

Random-Stride (2MB) Access Latency Test

The results for the average random latency test with 2 MB stride are seen in Figure
4.6, and the test models a random access pattern with minimum spatial locatily of
data to force the memory controller to access farther memory regions, and it tests
the performance of the memory in cases which cause DRAM page misses.

The read operations in both HBM and DDR4 platforms suffered an increase in
latency compared to the 64B stride test, with average latency values increasing to
232.32 ns in HBM and 234.82 ns in DDR4. This increase can be explained by
the fact that there is a high probablity of a row-buffer miss (or page miss) in the
DRAM, in which case the memory controller will need to close the currently active
memory row and activate a new one, resulting in higher latency.

However even in this scenario of a higher stride for random access, the write
latency of HBM was still significantly lower at 111.47 ns than that of DDR4 at
179.57 ns, resulting in a 1.61x performance increase for HBM writes, showing
that the HBM interface has superior write performance even in the case of random
access patterns with poor data spatial locality and farther memory regions.

The detailed results of the latency benchmark are provided in Table 4.4, and these
findings empirically prove the hypothesis of the thesis. The memory performance
characterization tests show that while the single-access read latency of HBM is the
same as DDR4, its write latency is much superior in both sequential and random
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Figure 4.6: Comparison of Random Access Latency at 2MB Stride (HBM vs.
DDR4)

memory access patterns, which is a significant benefit for memory-bound algorithms.
Most importantly, once the latency benchmark results are considered along with
the bandwidth analysis, it becomes clear that to improve the performance of the
LESS kernel built for an embedded FPGA platform and adapt it for a data center
FPGA, its datapath needs to be adapted for the wider physical bus and the kernel
needs to be designed to maximize the number of parallel memory requests and
fully utilize the massive parallelism that is offered by the HBM interface.

Table 4.4: Comparison of Average Access Latency for 512-bit Operations.

Operation Access HBM Latency DDR4 Latency
Type Pattern (ns) (ns)

Read
Sequential 195.02 206.80

Random (64B Stride) 195.02 206.80
Random (2MB Stride) 232.32 234.82

Write
Sequential 96.66 162.48

Random (64B Stride) 109.99 177.26
Random (2MB Stride) 111.47 179.57

Copy
Sequential 195.01 210.79

Random (64B Stride) 195.01 210.79
Random (2MB Stride) 233.93 237.97
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Chapter 5

High-Bandwidth Kernel
Implementation and
Performance Evaluation

The performance analysis in the previous chapter empirically established that
HBM data center FPGAs provide much higher throughput capability than con-
ventional DDR4 memory subsystems, and this capability can potentially provide
improvement for the primary memory bandwidth bottleneck of the WCOJ-based
subgraph isomorphism algorithm. This chapter describes the architectural and
implementation work to utilize this potential by migrating the baseline 128-bit
accelerator to a 512-bit, HBM-based implementation to be used on the AMD Alveo
platform. The main methodology for this adaptation involves an experimental
HLS-based approach for datapath widening, and a detailed evaluation to validate
the performance improvements from this adaptation.

5.1 Migration from Embedded to Data Center
Design Flow

The initial and most important step in this work was the process of adapting
the baseline accelerator from the embedded design flow to the Vitis data center
development flow using Xilinx Vitis HLS 2024.1, which involves redesigning the
host-kernel interaction model and a different management of hardware resources.
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5.1.1 Vitis Flow and XRT Host Integration
The original embedded design depended on a different software environment and
migrating to a PCIe-based data center accelerator card required the development of
a new host application, which is done using the Xilinx Runtime (XRT) library. The
XRT API is now used by the host application to explicitly control the target device,
load the FPGA binary (.xclbin), and get a handle to the subgraph isomorphism
kernel. The XRT API also provides buffer management functionality to perform
all memory allocations on the FPGA’s off-chip HBM through XRT Buffer Objects
(xrt::bo), and the host is responsible for creating these buffers for all the kernel’s
memory spaces, including the main hash table buffer (htb_buf), the bloom filter
buffer, and the large dynamic FIFO space (res_buf), providing a standardized
way for allocating memory in specific HBM banks and for managing data transfers
between the host and the device.

Another difference that needs to be considered is that the embedded platform has
a shared-memory design, whereas the data center flow requires data synchronization,
and the XRT host application is created with this consideration which uses sync()
API calls for transfering input graph data from the host memory to the device’s
HBM before kernel execution starts.The host then configures and launches the
kernel using an xrt::run object, which is a high level XRT API for managing kernels
and it abstracts away handing of lower level control registers. The host passes all
scalar parameters such as graph dimensions and hash configuration values (h1, h2)
to the kernel via the AXI-Lite control interface, and then upon completion of the
kernel the host reads back the final results and debug counters from the kernel’s
AXI-Lite registers.

An important aspect of this integration is the Vitis linker configuration. The top
level kernel is designed with multiple m_axi interfaces to provide parallel memory
access and maximize bandwidth. The Vitis linker configuration file (.cfg) is used
to explicitly map each of these logical interfaces into a separate physical HBM
bank on the FPGA, and by assigning different bundles (e.g., cache, fifo, etc.) to
different m_axi interfaces, the Vitis linker instantiates separate, parallel memory
controllers, preventing conflict between different memory access needs and patterns
for different parts of the multiway join pipeline like cache lookups and dynamic
FIFO requests, and this is a key technique used for achieving high throughput
multi-banked memory systems like HBM.

5.1.2 Data Path Widening using HLS Compiler Directives
The main challenge in adapting the kernel for the high-bandwidth platform was
to upgrade the datapath to support a 512 bits physical bus instead of 128 bits.
Although a complete redesign of the internal logic of the kernel to natively process
512-bit vectors was initially considered, a more feasible and immediate approach was
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adopted for this thesis, and the primary methodology used was to take advantage of
powerful optimization capabilities of the Vitis HLS compiler through effective use
of the max_widen_bitwidth HLS pragma. This approach was considered because
it allows for a quick assessment of the impact of a wider memory bus without
significant redesign of the entire kernel’s internal logic and it allows to test the
hypothesis that the baseline kernel’s algorithm is actually memory-bound.

Specifically, the max_widen_bitwidth=512 directive was applied to all the
m_axi interface pragmas in the top-level kernel function, which tells the HLS
compiler to perform automatic bus widening. The compiler uses this directive
to automatically instantiate 512-bit wide AXI interfaces and synthesizes additional
hardware logic for data width converters that are placed between the kernel’s
internal logic and the wide AXI ports. The additional automatically generated
logic of the converter performs both data buffering and coalescing, where in case the
internal kernel logic issues a sequence of smaller, contiguous memory requests (e.g.,
four consecutive requests for 128-bit Bloom filters), the converter automatically
buffers these requests and once enough data is accumulated for a 512-bit word, it
issues a single, wide transaction on the physical AXI bus. This whole process is
transparent to the core algorithm logic but it is critical for performance because it
ensures to efficiently utilize the physical memory bus and perform a lower number
of memory access requests.

This is also a key advantage of this methodology, because it keeps the internal
logic of the kernel unchanged and the kernel still operates using its native data
types (e.g., 64-bit edges, 128-bit Bloom filters, 32-bit offsets), and it preserves the
accuracy and structure of the original and validated algorithm, while the HLS tool
manages complexity of the transformation of these narrow logical accesses to the
wide physical bus.

This approach produces a hardware architecture where the kernel’s core algorithm
performs logical memory accesses as it would using a 128-bit memory system, but
the synthesized AXI interface intelligently buffers and widens these logical memory
transactions to 512 bits. This practical implementation of HLS compiler directives
allowed for a rapid and effective migration from an embedded design flow and to
directly test the performance impact of utilizing the higher throughput of the HBM
subsystem.

The migration from an embedded flow to the Vitis data center flow and creation
of an XRT host provides the necessary software and creates a framework for
executing and evaluating the accelerator on a high-performance, HBM data center
platform.
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5.2 Implementation and Performance Evaluation
The effectiveness and accuracy of the architectural migration was validated and
the performance impact of the 512-bit datapath was quantified by implementing
the the adapted accelerator on a data center FPGA and it was tested using a series
of subgraph isomorphism queries. This section details the experimental setup, the
methodology used for functional verification, and the final performance results.

5.2.1 Experimental Setup
The accelerator was implemented and tested on an AMD Alveo U55C data
center accelerator card. This platform was selected because of its 16GB of HBM2
memory, which is available with 32 independent pseudo-channels, providing the
high-bandwidth environment that is targeted by the work in this thesis. The entire
project is developed using the Vitis Unified Software Platform (2024.1), with
the accelerator logic written in C++ using High-Level Synthesis (HLS) and the
host application is developed using the Xilinx Runtime (XRT) library. The kernel
is synthesized with a target clock frequency of 300 MHz to maintain consistency
with the previous memory benchmark analysis.

The performance of the accelerator is evaluated using five different real-world
graph datasets, enron, github, gowalla, dblp, and wikitalk, and 30 different
subgraph isomorphism queries, all of which are the same that were used to validate
and benchmark the baseline design, ensuring a direct comparison between the
128-bit and 512-bit architectures.

5.2.2 Functional Verification
The modified kernel was functionally verified before performing the performance
analysis to ensure that the adaptation of the kernel did not introduce any errors
into the accelerator’s core algorithm. Functional verification was performed by
using the subgraph isomorphism enumeration results of the original 128-bit baseline
accelerator as a golden reference, and test queries were executed using the enron
dataset on both implementation.

For every query in the test set, the final match count produced by the 512-bit
HBM accelerator was compared with the counts from the 128-bit baseline kernel
golden reference, and in all test cases the 512-bit kernel produced an identical
match count, confirming that the adaptation to the Vitis flow and the automated
datapath widening performed by the HLS compiler did not affect the functional
correctness of the algorithm, and the performance analysis was performed after
this successful functional verification test.
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5.2.3 Performance Evaluation and Discussion
The performance of the 512-bit HBM accelerator was compared against the 128-
bit DDR4 baseline accelerator using the complete set of 30 queries on all the 5
datasets, and the results summarized in Figure 5.1 show that there is a measurable
performance improvement that varies depending on the properties of the dataset.

An important initial observation of the experiment was that all query-dataset
combinations couldn’t be executed successfully on either the baseline or the re-
designed accelerator, specifically query 14 on gowalla, queries 28, 29 on dblp and a
significant portion of queries on the largest dataset wikitalk (queries 9-29). The
main cause of these failures isn’t a logic error, but rather it is an architectural
limitation of the dynamic FIFO design.

As described in Chapter 3, the dynamic FIFO is designed to manage the
large number of intermediate partial solutions which are generated by the WCOJ
algorithm which are read from and written to a large pre-allocated buffer in off-chip
memory (RESULTS_SPACE). However, the buffer is still limited in size and when
the above queries are executed on their large and densely connected graphs, they
produce a combinatorial explosion of intermediate results that exceed the capacity
of the buffer, leading to FIFO overflow and an incomplete enumeration. Since
this limitation is tied to the fixed-size buffer and the constraint is present in both
kernels, these specific queries are excluded from the performance comparison, and
the subsequent analysis focuses on the set of successfully executed queries on both
platforms to provide a direct comparison of the architectural impact of the wider
physical bus and high bandwidth HBM memory.

Figure 5.1: Performance improvement distribution of 512-bit HBM accelerator
over 128-bit DDR4 baseline for each dataset.
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Figure 5.1 shows the distribution of performance improvement (speedup) for
each dataset, where on the smaller and sparser enron and github datasets the
HBM accelerator with a 512-bit data rate is found to achieve a significant median
performance improvement of ~21.9% and ~36.3%, respectively. This finding
proves that the widening of the datapath and the use of HBM provide large benefits
when working with workloads that are constrained due to memory bandwidth.

However, as the graph size and complexity increase, the performance improve-
ment is seen to decline, and with the increasingly bigger datasets like gowalla and
dblp datasets, the median improvement drops to ~11.2% and ~8.2%, respectively
and on the largest and most complex dataset, wikitalk, the performance is very
similar to the baseline accelerator with a median improvement of just ~5.7%. This
trend of diminishing performance improvement as the dataset complexity increases
shows that while sequential bandwidth is an important factor, it is not the only
bottleneck and the experimental results show that the speedup just from widening
the physical memory bus doesn’t directly correlate with the ~6.5x theoretical
bandwidth advantage, which can be explained by a number of factors.

The max_widen_bitwidth pragma depends on the ability of the compiler to
detect contiguous memory access patterns in order to create optimal 512-bit bursts,
but this automatic inferring of bursts can be prevented by any complex or data-
dependent addressing logic in the kernel and that leads to generation of less-efficient,
narrower bus transactions and a reduction in effective bandwidth utilization. This
is the most likely cause of the modified kernel underperforming compared to the
benchmark results, because although the pragma allows the kernel to utilize the
wider physical bus, the kernel is still not utilizing the full parallelism that HBM
provides, which would require a major redesign of the kernel to achieve even higher
throughput and completely saturate the HBM interface subsystem.

Another possible reason for not achieving the high improvement seen in the
benchmarks could be due to random access latency impact, since the benchmark
shows that the single-access random read latency of HBM is similar to that of
DDR4. The Verify stage of the WCOJ algorithm consists of many random-access
lookups into the hash tables, and for complex queries on large graphs like dblp and
wikitalk, the execution time might be dominated by these latency-bound accesses
rather than sequential bandwidth, which causes the kernel to spend more time
waiting for individual data to return from memory, negating most of the benefits
of a wider physical bus and making the performance bottlenecked due to memory
latency.

Figure 5.2 provides a more detailed comparison of execution time for each query
for the 512-bit HBM accelerator and the 128-bit DDR4 baseline. The visualization
shows that in most queries and datasets, especially enron and github, the Alveo
platform kernel has a consistent, query-level performance improvement, which
is a result of the adaptation and redesign, while on complex datasets such as
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Figure 5.2: Comparison of execution time for each query for all datasets between
512-bit HBM accelerator and 128-bit DDR4 baseline accelerator.

dblp, the query markers for both accelerators are clustered closely together, and
this convergence represents the diminishing returns discussed earlier where the
performance bottleneck shifts from a narrow physical bus to a lack of parallelism
inside the kernel and random access latency.

Figure 5.3: Performance improvement (Baseline Time/Alveo Time) for each query
for all datasets.

Figure 5.3 visualizes the absolute execution times of Figure 5.2 into a direct
representation of the performance improvement for each individual query, and it
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helps to understand the distributions of performance gains which are summarized
by Figure 5.1. The plot shows that although the median speedup can be small on
some datasets, a significant number of individual queries still achieve a substantial
performance improvement as seen in the case of the github dataset, indicating
that the benefit of having a wider datapath are highly dependent on the specific
structure of a datagraph and querygraph. The visualization also helps to recognize
that the queries with a high speedup factor are most likely to be bandwidth-bound
while the ones with a speedup factor close to 1 are likely latency-bound, where
the execution time is dominated by random accesses and the wider bus offers
minimal advantage. However, in both cases, the kernel can still provide a significant
improvement in performance if it is highly parallelized.

In conclusion, the experimental results validate the main hypothesis of this thesis.
Adapting the baseline accelerator to a high-bandwidth data center platform and
utilizing a wider physical bus provides a significant and measurable performance
improvement, particularly on datasets where sequential memory bandwidth is the
dominant bottleneck. However, the analysis also provides a more detailed insight
that just a wider physical bus is not enough even for high-bandwidth platforms
and for more complex graph queries where the random access latency bottleneck
is more dominant, a complete redesign of the kernel is required to parallelize the
datapath to improve performance. This finding motivates the direction for future
work, which is outlined in detail in the final chapter.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis looked at the feasibility of adapting and optimizing memory-bound
algorithms in high-performance graph processing, specifically in the context of
subgraph isomorphism acceleration on data center FPGAs. The research was
informed by the hypothesis that the performance of memory-bound algorithms,
such as the ones based on the Worst-Case Optimal Join (WCOJ) algorithm, could
be significantly improved, and this hypothesis was validated by migrating a WCOJ
subgraph isomorphism accelerator from an embedded FPGA platform with DDR4
memory to a modern data center accelerator platform with HBM. The primary
goal of the thesis was to adapt a validated 128-bit WCOJ accelerator to fully utilize
the 512-bit wide HBM memory subsytem on the AMD Alveo platform.

To support the motivation behind this redesign, a detailed benchmark study
was first carried out to quantitatively characterize the performance of HBM and
DDR4, which experimentally established that HBM provided ~6.5x higher aggregate
sequential bandwidth and a ~1.6x lower random write latency.

Based on the results from the benchmark study, the baseline accelerator was then
successfully migrated to the Vitis design flow and its memory interface was widened
to 512 bits by using HLS compiler directives, a technique that allowed for a quick
and effective architectural adaptation. The final 512-bit HBM implementation was
functionally verified and evaluated against the 128-bit baseline accelerator, and
the results demonstrated measurable performance improvement with a median
performance gain of upto 36.3%. The analysis also showed that on more complex
and larger graphs, the performance gains were relatively lower due to a lack
of parallel architecture and other possible bottlenecks, and the experimentation
highlighted that while a wide physical bus is necessary, it’s not sufficient for utilizing
maximum performance from the platform.
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In conclusion, this thesis successfully demonstrated that adapting a memory-
bound graph accelerator from an embedded platform to a data center platform
provides significant and measurable performance gains and the research includes
work on migration to the data center design flow, benchmarking of memory sub-
systems and final implementation of the upgraded accelerator design. It validates
the importance of redesigning the accelerator’s datapath to match the physical
capabilities of the memory system and provides a clear motivation for future work
focused on utilizing the parallelism that is available on data center HBM platforms.

6.2 Future Work
The research and implementation detailed in this thesis validate the performance
benefits of migrating a memory-bound WCOJ accelerator to a high-bandwidth,
HBM-equipped data center FPGA, and the performance analysis also revealed
architectural bottlenecks and limitations, providing a clear roadmap for future
research and optimization.

6.2.1 Datapath Redesign with a Packed-Instruction Archi-
tecture

The max_widen_bitwidth pragma experimentation proved to be an effective
first step, however, the experimental results show that this automated approach
doesn’t completely utilize the HBM interface, especially in latency-bound scenarios.
The most significant future work would be the complete implementation of a
packed-instruction architecture that was initially evaluated in this research. This
architecture is based on the principle of maintaining a 128-bit logical instruction
for graph data structures while managing the packing and unpacking of four such
instructions into a 512-bit physical memory word, providing the main benefit of
reducing memory access requests, because unlike the HLS compiler which relies on
inferring and burst-transfering contiguous access requests, this architecture would
ensure that every read and write to the HBM is a full 512-bit access request by
design.

More importantly, this architecture would enable the on-chip pipeline to be
redesigned to operate on wider, 512-bit data vectors, for example, the Verify
stage can then be redesigned to process four candidate vertices in parallel, and
mwj_findmin stage can process four Bloom filters simultaneously. This architecture
would increase the computational density of the kernel and reduce the overall number
of required memory transactions, possibly helping to reduce the random access
latency bottleneck, providing further performance improvements.
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6.2.2 Kernel Replication and Data Partitioning for Paral-
lelism

The current implementation utilizes a single, highly-pipelined accelerator kernel (a
single Compute Unit), and the logical next step to this work is to take advantage of
the large number of available logic resources of data center FPGAs by instantiating
multiple parallel CUs. Two major approaches could be explored, Task-Level
Parallelism and Data-Level Parallelism.

A task-level parallelism model uses multiple CUs to process independent queries
concurrently, with each CU assigned to a different query. This would significantly
increase the overall query throughput of the system. In data-level parallelism,
for a single, complex query the graph data could be partitioned across multiple
HBM banks and multiple CUs could be instantiated with each CU responsible
for processing a specific partition. This would require developing an inter-kernel
communication mechanism to merge partial results from different CUs and keeping
track of partitions through a separate piece of logic. This implementation is
relatively complex but it provides the most potential to significantly reduce the
execution time of a single, large and complex query.

6.2.3 Application to Other Memory-Bound Algorithms
The core methodology developed in this thesis, of profiling the memory subsystem,
identifying the bandwidth or latency bottlenecks, and designing a datapath to match
the physical memory interface is not just limited to subgraph isomorphism, but
rather this approach provides a useful template that can be applied to accelerate
a wide range of other memory-bound algorithms, even from other fields using
high-bandwidth FPGA platforms.
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