AP
’ [] []
° A‘A_ _A’A Y Politecnico
\‘ "lll:::::mi i mulllllllll 'I dl Torlno
\\ 1859 ;
\ #d
\\.‘ 40“

\

Politecnico di Torino
Master Degree in Electronic Engineering

Design Space Exploration of Integrated Circuit
Floorplans through Area Minimization and
ML-Guided Macro Placement

Candidate: Supervisors:
Daniele Di Capua Prof. Guido Masera
Eng. Afonso Moreira

Eng. Cristiano Santos

Academic Year 2024-2025

Politecnico di Torino

Dipartimento di Elettronica e Telecomunicazioni

.
o % b

/Y Politecnico
~ililiiiiiﬁ:nnu.m..Hll:ﬁii':ﬁ i ” di Torino

Politecnico di Torino

Master Degree in Electronic Engineering

Design Space Exploration of Integrated Circuit
Floorplans through Area Minimization and ML-Guided
Macro Placement

Candidate: Supervisors:
Daniele Di Capua Prof. Guido Masera
Eng. Afonso Moreira

Eng. Cristiano Santos

Academic Year 2024-2025

Abstract

The increasing complexity of modern System-on-Chip (SoC) designs has made macro
placement a critical yet largely manual tagk in the physical design flow. This the-
sis explores a Machine Learning (ML) based Electronic Design Automation (EDA)
tool developed at Qualcomm® to automate and optimize macro placement during
the floorplanning stage. The tool integrates a neural network engine to generate di-
verse macro placement alternatives, which are then evaluated using multi-objective
metrics such as wirelength and congestion; a Graphical user interface (GUI) was
developed to support interactive floorplan exploration, including area shrink op-
timization. The experimental campaign involved testing eight macro placements
across four area configurations (0%, -1%, -2%, -3%) and analyzing their impact on
Quality of Results (QoR) metrics such as utilization, timing, power, and design rule
violations. Results show that moderate area reductions (up to -2%) can improve
or preserve design quality compared to the default configuration, while aggressive
compaction introduces significant risks. This work demonstrates the potential of
ML-driven automation to enhance early-stage design exploration and support more
informed architectural decisions in industrial Very Large-Scale Integration (VLSI)

design flows.

Contents

Abstract
Contents

List of Figures
List of Tables
Acronyms
Introduction

1 State of Art

1.1 Moore’s Law
1.2 Machine Learning in EDA Tools
1.3 VLSI Design Flow
1.4 Physical Design
1.4.1 System Partitioning
1.4.2 Chip Planning
143 Placement
1.4.4 Clock Tree Synthesis
1.4.5 Signal Routing
1.4.6 Timing Closure
1.4.6.1 Timing-Driven Placement

1.4.6.2 Timing-Driven routing . .

1.4.6.3 Physical synthesis

1.5 Conclusion.

2 Mized Size Placers
2.1 Theoretical Foundations
2.1.1 Base Concepts of Placement
2.1.2 Base Concepts of Global Placement

1l

iv

vii

ix

xi

© N o O

12
12
14
18
20
22
23
26
26
27
30

w

CONTENTS

2.1.3 Wirelength Smoothing 36
2.1.4 Density Penalty 0o 37
2.1.5 Nonlinear Optimization Formulation 38
2.2 Challenges in Placement oL 38
2.3 Classification of Placers 39
2.4 Analytical Placers 40
2.5 Mixed-Size Placement 41
2.6 Comparative Overview: ePlace vs ePlace-MS vs DREAMPlace . .. 42
2.6.1 eDensily 43
2.6.2 Deep Learning Analogy for GPU Acceleration 46
2.7 Qualcomm® Macro Placer Toolo v 48
2.8 Conclusion. 20
Experiment 53
3.1 GUIIntegration 93
3.2 Test Run: Multi-Area Floorplan Exploration 56
3.2.1 Legalization L o o7
3.2.2 Quality of Results at Placement stage 62
3.2.3 Quality of Results at Post Route Stage 71
3.3 Conclusion. 84

Bibliography 87

List of Figures

1.1
1.2
1.3
14

1.5
1.6
1.7

1.8

1.9

1.10
1.11
1.12
1.13

1.14
1.15

1.16

1.17
1.18
1.19

1.20
1.21
1.22

Moore’s Law. o
Main steps of the VLSI desgin flow.
Example of partitioning.o
A module represents a collection of logic within a defined area. Once
it is given a specific shape or dimensions, it is referred to as a block.
Example of two possible floorplans for the same set of blocks.

(a) wire bonding and (b) flip-chip packaging.
Power-ground routing in modern digital ICs typically has a mesh

topology composed of: rings, I/O pads, stripes.

Example of legalization process: overlaps are removedand objects are
aligned with the grid. oo
Techniques for global placement.
Example of routing metrics. oL
Example of (a) PLL and (b) DLL block schemes.
Example of H-tree structure.
Example of: (a) a placement, (b) a global routing, and (c) a detailed
TOUBING. . . . o e e
Hold and setup constraints.
Example of the diffrence in internal resistance and capacitance chang-

ing the drive strength of acell.,
In this example the buffer helps to partially shield the load capacitance
seen by the NAND gate.

Example of replication, the duplicated gate helps to reduce the fanout.

Example of fanin tree redesign that allow to achieve a lower delay.

Example of fanout tree redesign to reduce the load capacitance of the
first path.
Example of swapping commutative pins.
Example of gate decomposition.
Example of Boolean restructuring. Using the distributive law is pos-

sible, in this case, to reduce the delay.

14
15
17

18

19
19
19
21
22

23
26

27

28
28
29

29
29
30

V1

LIST OF FIGURES

21
2.2

2.3

2.4

2.5
2.6

2.7

3.1
3.2

3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24

Placement instance modeled as an electrostatic system. 44

Initial and Final Charge Density in Electrostatic Placement with direct-

current (DC) component [1]..o Lo 45
Initial and Final Charge Density in Electrostatic Placement after re-
moving DC component [1]..o o oo 45
Conceptual analogy between neural network training and analytical
placement optimization [2]. o000 47
Schematic representation of the tool’s operations. 48

Pareto curve illustrating the trade-off between wirelength and conges-
ton. o 49
Comparison of two macro placements generated using different tools
and netlists. One is peripherally driven (a), while the other is focused
on wirelength (b)..o 50

The GUI that enables fast floorplan exploration. 54
Example of flowchart of the Macro Placer process illustrating floorplan

exploration under different area reduction scenarios (0%, -2%, -4%),

with multiple ranked outputs. 55
Default macro placement. 28
Macro Placement Pre and Post legalization: Area 0% / Rank 1. . . . 59
Macro Placement Pre and Post legalization: Area 0% / Rank 2. . . . 59
Macro Placement Pre and Post legalization: Area -1% / Rank 1. . . 59
Macro Placement Pre and Post legalization: Area -1% / Rank 2. . . 60
Macro Placement Pre and Post legalization: Area -2% / Rank 1. . . 60
Macro Placement Pre and Post legalization: Area -2% / Rank 2. . . 60
Macro Placement Pre and Post legalization: Area -3% / Rank 1. . . 61
Macro Placement Pre and Post legalization: Area -3% / Rank 2. . . 61
HeatMap QoR Placement Cell Metrics. 64
HeatMap QoR Placement Wire Metrics. 65
HeatMap QoR Placement Power Metrics. 66
Timing QoR Placement Setup Worst Negative Slack. 68
Timing QoR Placement Setup Total Negative Slack. 69
Timing QoR Placement Setup Number Failure Point. 70
HeatMap QoR Post Route Cell Metrics. 72
HeatMap QoR Post Route Wire Metrics. 73
HeatMap QoR Post Route Power Metrics. 74
HeatMap QoR Post Route Clock Metrics. 75
HeatMap QoR Post Route CLKM1 PROC Metrics. 76
Timing QoR PostRoute Setup Worst Negative Slack. 77

Timing QoR PostRoute Setup Total Negative Slack. 78

List of Figures

41

3.25 Timing QoR PostRoute Setup Number Failure Point. 79
3.26 Timing QoR PostRoute Hold Worst Negative Slack. 81
3.27 Timing QoR PostRoute Hold Total Negative Slack. 82

3.28 Timing QoR PostRoute Hold Number Failure Point. 83

List of Tables

2.1 Comparison of ePlace, ePlace-MS, and DREAMPlace . .

3.1 Effect of design shrink on placeable core area reduction.

1X

Acronyms

SoC System-on-Chip

EDA FElectronic Design Automation
GUI Graphical user interface

QoR Quality of Results

VLSI Very Large-Scale Integration

AT Artificial Intelligence

ML Machine Learning

RL Reinforcement Learning

GNNs Graph Neural Networks

CNNs Convolutional Neural Networks
BO Bayesian Optimization

IC Integrated circuit

IP Intellectual Property

RTL Register-Tranfer Level

HDLs Hardware Description Language
ESD Electrostatic Discharge

DFM Design For Manufacturability
GANSs Generative Adversarial Networks
QoR Quality of Results

DRC Design Rule Checking

xi

T

0. Acronyms

LVS Layout vs. Schematic

ERC Electrical Rule Checking
KL Kernighan-Lin

FM Fiducia-Mattheyses

PLL Phase locked loops

DLL Delay locked loops

STA Static timing analysis

AAT Actual arrival time

RAT Required arrival time
TDP Timing-driven placement
WNS Worst negative slack

TNS Total negative slack
HPWL Total half-perimeter wirelength
WA Weighted-Average

PDE Partial differential equation
DCT Discrete Cosine Transform
DST Discrete Sinusoidal Transform
FFT Fast Fourier Transform
LEF Library Exchange Format
DEF Design Exchange Format
DC direct-current

HM Hard Macro

PnR Place & Route

ESD Electrostatic Discharge
PMUX Power Mux

PVT Process-Voltage-Temperature

TT typical-typical

SS slow-slow

FF fast-fast

PPA Performance, Power and Area
CCI Company Confidential Information

CTS clock tree synthesis

Introduction

The relentless growth in complexity of modern SoC designs, driven by Moore’s Law
and the increasing demand for performance, integration, and energy efficiency, has
profoundly reshaped the landscape of semiconductor development. As transistor
densities continue to rise and design sizes scale into the billions of components, the
physical design phase of VLSI circuits has emerged as a critical bottleneck in the
overall design flow. Among the various stages of the physical implementation process,
macro placement plays a pivotal role in determining the quality and feasibility of the
final layout; this task involves the positioning of large, pre-designed blocks such as
memories, analog IPs; or custom logic within the chip floorplan, and has a direct
impact on downstream stages including routing, timing closure, power distribution,
and manufacturability. Despite its importance, macro placement remains one of the
least automated and most intuition-driven stages of the physical design flow. Unlike
standard cell placement, which is largely handled by mature commercial tools, macro
placement is still predominantly performed manually by experienced physical design
engineers; this process relies heavily on designer expertise, domain-specific heuristics,
and iterative trial-and-error, making it time-consuming, error-prone, and difficult to
scale. Moreover, the lack of automation in this phase significantly limits the ability
to explore alternative floorplan configurations, especially in the early stages of design

when architectural decisions are most impactful.

In recent years, the rapid advancement of Artificial Intelligence (AI) and ML has
opened new avenues for innovation across the EDA landscape. These technologies
have demonstrated remarkable potential in addressing long-standing challenges in
digital design, offering data-driven alternatives to traditional heuristic-based meth-
ods. The motivation behind this thesis stems from the need to bridge the automation
gap in macro placement by leveraging MIL-based techniques to support and enhance
early-stage floorplan exploration. By introducing intelligent, data-driven strategies
into this critical phase, it becomes possible to generate diverse placement alterna-
tives, evaluate them using multi-objective metrics, and guide designers toward more
informed and efficient decisions. This approach not only improves productivity but

also enables a more systematic exploration of the design space, ultimately contribut-

Introduzione

ing to higher-quality and more robust VLSI implementations.

Motivated by these considerations, this thesis investigates a novel approach to
macro placement that integrates machine learning and interactive user control. At
the core of this approach lies a proprietary macro placement tool developed at
Qualcomm®, which serves as the foundation for the experimental work presented
in this thesis. The tool leverages a neural network engine to generate diverse macro
placement alternatives, exploring the design space efficiently; each candidate place-
ment is evaluated using a set of multi-objective metrics, primarily total wirelength
and routing congestion, which are critical indicators of downstream design quality.

To enhance usability and support early-stage architectural exploration, the tool
has been extended with a GUI that enables designers to configure and visualize
floorplan scenarios interactively. Through the GUI, users can define area shrink
parameters, specifying the degree and direction of compaction (horizontal, vertical,
bidirectional, or edge-specific), and set the number of placement candidates to be
generated per configuration. This shrink-based exploration is particularly relevant in
advanced technology nodes, where silicon area is at a premium and design robustness
under tight constraints must be evaluated. Once the placements are produced, the
GUI allows users to visually inspect the generated layouts and identify the most
promising configurations, this enables a selective continuation of the design flow:
high-quality placements can be promoted to subsequent implementation stages, while
suboptimal ones can be discarded early, saving time and computational resources.

For each configuration, the tool generates a ranked set of candidate placements
using a Pareto-based framework, balancing competing objectives without privileging
a single metric. The top-ranked solutions are exported as .tcl scripts, ready to be
sourced into commercial EDA tools, ensuring seamless integration with industrial
design flows and enabling rapid prototyping and validation. By combining ML-
driven generation, interactive configuration, visual inspection, and multi-objective
evaluation, the proposed framework empowers designers to make more informed

decisions early in the design flow.

This thesis is organized into three main chapters:

e Chapter 1 provides a comprehensive overview of the state of the art in phys-
ical design, with a particular focus on the placement phase and its challenges
in the context of mixed-size designs. The chapter introduces the key steps
of the VLSI design flow, discusses the limitations of current macro placement
methodologies, and highlights the need for more scalable and automated so-
lutions. Furthermore, the chapter includes an analysis of the state of the art

in the application of machine learning within EDA tools, emphasizing how

Introduction

ML techniques are increasingly being adopted to improve design efficiency,
tackle complex optimization problems, and support the development of next-

generation placement strategies.

e Chapter 2 presents the theoretical foundations of placement algorithms, includ-
ing global placement, wirelength smoothing, density modeling, and nonlinear
optimization. It also reviews existing analytical placers such as ePlace [1],
ePlace-MS [3]|, and DREAMPIlace [2]|, and introduces the proprietary macro
placement tool developed at Qualcomm®. The chapter concludes with a de-
tailed description of the tool’s architecture and its integration into a floorplan

exploration framework.

e Chapter 3 describes the experimental contribution developed during the in-
ternship; this includes: the extension of the macro placer with a GUI, the
implementation of an area shrink optimization engine, and the execution of
a test campaign involving eight macro placements across four area configu-
rations. The results are analyzed using a wide range of physical and timing
metrics, providing insights into the tool’s effectiveness and limitations. Finally,
the conclusions summarize the key findings of the thesis, reflect on the impli-
cations of the proposed approach, and outline potential directions for future
work, including the integration of timing-driven placement and reinforcement

learning techniques to further enhance automation and design quality.

Through this structure, the thesis aims to highlight how the integration of ma-
chine learning techniques and interactive tools contributes to automating macro
placement, enhancing design space exploration, and supporting more informed ar-

chitectural decisions in the early stages of the physical design flow.

Chapter 1

State of Art

As Integrated circuit (IC) become increasingly complex and performance require-
ments more stringent, the physical implementation of digital systems presents a
growing set of technical and methodological difficulties. The purpose of this chapter
is to provide a comprehensive overview of the current challenges in digital circuit

design, with a particular emphasis on the physical design phase.

The chapter begins, in section 1.1, by revisiting Moore’s Law, a long-standing
prediction that has guided the semiconductor industry for decades. This section
explores the historical relevance of Moore’s Law, its impact on technological progress,
and the growing concerns about its continued applicability in the modern era.

Section 1.2 then analyzes the state of the art in the application of ML within
EDA tools, highlighting recent innovations and research trends that are shaping the
future of VLSI design.

Following this, in the following paragraph 1.3, the chapter outlines the key steps
involved in the design of a VLSI circuit, offering a high-level view of the design
flow from specification to implementation. This provides the necessary context for
understanding the intricacies of the design process.

The final section 1.4 delves deeper into the physical design phase, examining
each step in detail. This includes partitioning, chip planning, placement, clock tree
synthesis, routing and timing closure, highlighting the technical challenges and trade-

offs encountered during this critical stage of the design cycle.

Through this structure, the chapter aims to set the foundation for the subse-
quent discussions in the thesis by framing the technological landscape and design
methodologies that shape modern digital circuit development. In particular, it lays
the groundwork for the analysis of a specific limitation within the current physical
design flow: the difficulty of achieving innovative and efficient macro placement dur-

ing the placement phase. Despite the increasing complexity of modern SoCs, macro

5

1. State of Art

placement remains largely a manual and heuristic-driven process, heavily reliant on
designer experience and intuition. This lack of automation not only limits design
space exploration but also poses significant challenges in terms of scalability and op-
timization. By highlighting this issue early on, the chapter prepares the reader for a
deeper investigation into potential solutions and methodologies aimed at improving

macro placement strategies in the later sections of the thesis.

1.1 Moore’s Law

In his seminal 1965 article |4], Gordon E. Moore outlined a visionary perspective on
the future of integrated electronics, proposing that the number of components on a
silicon chip would continue to increase at a steady, exponential rate. Rather than
focusing on a specific numerical target, Moore emphasized the trend of rapid growth
in integration density, driven by advancements in photolithography, materials, and
manufacturing techniques. He argued that this trend would lead to significant im-
provements in cost-efficiency, reliability, and performance, enabling a wide range of
applications, from home computing to automotive automation and portable commu-

nication devices.

Moore also identified several technical challenges that could hinder this progress,
such as heat dissipation, interconnect delays, and manufacturing yields. However,
he maintained that these obstacles could be overcome primarily through engineering
innovation rather than fundamental scientific breakthroughs. His insights laid the
foundation for what would later become known as Moore’s Law: the empirical
observation that the number of transistors on an IC doubles approximately every
two years, as shown in Fig. 1.1. This principle has since become a cornerstone of the
semiconductor industry, guiding long-term planning and setting ambitious targets

for research and development.

Over the decades, Moore’s Law has driven exponential growth in computing
power, enabling the miniaturization and performance enhancements that define mod-
ern electronics. Despite growing concerns about physical and economic limitations,
such as quantum effects, power density, and the rising cost of advanced fabrication
nodes, ongoing research continues to push the boundaries of what is possible; inno-
vations in 3D integration, new materials, and design automation aim to sustain the

spirit of Moore’s prediction, even as traditional scaling slows.

1.2 Machine Learning in EDA Tools

16
15
= 14
wo 3
}—
=512
ZZ ||
YT 10
—=
=38 §
o E 8
S5 T
S ©
T S
Z 4
=
S 3
!
0

Figure 1.1: Moore’s Law.

Given the increasing complexity and scale of modern SoCs, the physical design
phase has become a critical bottleneck, particularly in tasks such as macro place-
ment, which remain largely heuristic-driven and dependent on designer expertise.
In response to these challenges, the EDA community has increasingly turned to
data-driven and machine learning approaches to enhance automation, efficiency, and

solution quality throughout the design flow.

1.2 Machine Learning in EDA Tools

In recent years, the integration of ML techniques into EDA tools has emerged as a
transformative trend, aiming to address the escalating complexity, design costs, and
time-to-market pressures in IC development. ML methods are now being explored
and deployed across nearly all stages of the EDA flow, from high-level synthesis and
logic optimization to physical design, verification, and manufacturing. The motiva-
tions for this shift are multiple: ML models can learn from vast historical design
data, capture intricate dependencies that elude traditional heuristics, and provide
rapid predictions or optimizations that would otherwise require time-consuming sim-
ulations or manual intervention [5] [6].

Within the physical design domain, ML applications are particularly prominent
in tasks such as placement, routing, congestion prediction, power estimation, and

design space exploration. ML models are typically used in four main roles [5]:

1. decision making in traditional methods, where ML replaces brute-force or

empirical parameter tuning (e.g., selecting tool configurations or optimization
strategies);

1. State of Art

2. performance prediction, where supervised models (e.g., Regression, Ran-
dom Forests, Convolutional Neural Networks (CNNs), Graph Neural Networks
(GNNs)) are trained to estimate key metrics such as wirelength, congestion,

timing, or power based on features extracted from netlists or layouts;

3. black-box optimization, where ML-guided surrogate models (e.g., Gaussian
Processes, Random Forests) accelerate the search for optimal design points in

large, expensive-to-evaluate spaces;

4. automated design, where advanced techniques like deep Reinforcement Learn-
ing (RL) and GNNs are used to directly generate or refine design solutions, such

as macro and standard cell placements.

A landmark example of ML-driven automation is Google’s RL-based macro place-
ment framework, which models chip floorplanning as a sequential decision-making
problem. Using a graph convolutional neural network to encode the netlist and a
policy network trained via RL, their system can generate manufacturable floorplans
for large chips in under six hours, orders of magnitude faster than traditional manual
approaches, while achieving Performance, Power and Area (PPA) metrics compara-
ble or superior to human experts [7]. The RL agent benefits from transfer learning:
pre-training on a diverse set of chip blocks enables rapid adaptation and high-quality
results on new, unseen designs, even in "zero-shot" mode [7]. This approach has been
successfully deployed in production and has inspired a wave of research into RL and
GNN-based placement and optimization methods [5] [7].

Beyond RL, other ML paradigms are also gaining traction. For example, Bayesian
Optimization (BO) has been proposed as a sample-efficient alternative to RL and
simulated annealing for macro placement. BO uses a probabilistic surrogate model to
guide the search over combinatorial spaces (e.g., sequence pairs representing macro
orderings), balancing exploration and exploitation to minimize objectives such as
Total half-perimeter wirelength (HPWL) or congestion. BO has demonstrated com-
petitive or superior performance to simulated annealing on standard benchmarks,
with far fewer expensive evaluations, and is particularly attractive when the true
objective is costly to compute [8].

Despite these advances, several challenges remain before ML-based macro place-
ment and physical design tools can achieve widespread industrial adoption. First,
generalization is a key concern: ML models often struggle to transfer knowledge
across different technology nodes, design styles, or constraint sets, necessitating
large, high-quality datasets and careful feature engineering [5] [9]. Second, inte-
gration with existing EDA flows is non-trivial, as ML-generated placements must
be compatible with downstream tools and constraints, and must produce repeat-

able, explainable results[9]. Third, reproducibility and stability are essential for

1.8 VLSI Design Flow

industrial deployment: ML methods must deliver consistent outcomes across runs
and support incremental design changes without requiring full retraining or manual
intervention [9]. Finally, there is a growing emphasis on trusted ML, ensuring that

models are reliable, fair, and interpretable for designers [5].

In summary, ML is rapidly reshaping the landscape of EDA, offering new paradigms
for automation, prediction, and optimization in physical design. While significant
progress has been made, continued research is needed to address issues of general-
ization, integration, and trust, and to fully realize the promise of ML-powered EDA

tools in industrial practice.

To understand where these innovations are most impactful, and how they interact
with established engineering practices, it is crucial to examine the structure of the
VLSI design flow itself. The following section provides a comprehensive overview
of this flow, outlining its key stages and interdependencies, and establishing the
foundation for a more detailed discussion of the physical design phase, where both
conventional and machine learning-driven methods converge to address some of the

most significant bottlenecks in contemporary IC development.

1.3 VLSI Design Flow

Building upon the historical context and the challenges outlined earlier, it becomes
clear that a structured and methodical approach is essential to manage the complex-
ity of modern IC design. The VLSI design flow provides such a framework, guiding
the transformation of a high-level functional specification into a fully verified and
manufacturable chip. This flow is composed of several interdependent stages, each
addressing specific aspects of the design process: from initial behavioral modeling
to physical implementation and final verification. Understanding these steps is cru-
cial not only for appreciating the overall design methodology but also for identifying

where critical challenges, such as those in physical design, tend to emerge.

The design of a VLSI circuit is a highly intricate process that can be broken down
into several distinct steps. These steps range from high-level system specifications
to detailed physical design and verification before fabrication [10]. The major steps

in the VLSI design flow are illustrated in Fig. 1.2 and discussed in detail below.

10

1. State of Art

ﬂ_) System
Specification r
y , o>,

Architectural Partitioning ;
ENTITY testis Design __LEPED_
port a: in bit; +

FraENTTY s | Functional Design

Chip Planning
v and Logic Design
¥

.".I \]
PHy| [Groutpesgn |/] B
" ;r LR RN
M Physical Design Clock Tree Synthesis -‘QE .
v Physical Verification] . e
r ' A
v and %'Q"Oﬂr Signal Routing .
ERC L[] -
¥ Fabrication Y ———
4::\ N =
h v i Timing Closure .
f 1 Packaging wjE ='u
¥ and Testing
v

@ Chip

Figure 1.2: Main steps of the VLSI desgin flow.

e System Specification

The initial phase involves defining the overall goals and high-level requirements
of the system. This is a collaborative effort among chip architects, circuit
designers, product marketers, operations managers, and layout and library
designers. The goals and requirements encompass functionality, performance,

physical dimensions, and production technology.

Architectural Design

In this phase, a basic architecture is determined to meet the system speci-
fications. Key decisions include the integration of analog and mixed-signal
blocks, memory management, the number and types of computational cores,
internal and external communication protocols, and the usage of Intellectual
Property (IP) blocks.

Functional and Logic Design

Once the architecture is set, the functionality and connectivity of each module
must be defined. Functional design focuses on the high-level behavior of each
module, while logic design is performed at the Register-Tranfer Level (RTL)
using Hardware Description Language (HDLs) like Verilog and VHDL. Logic

synthesis tools then convert HDL descriptions into low-level circuit elements.

Circuit Design
For the bulk of digital logic, logic synthesis tools automatically convert Boolean
expressions into a gate-level netlist. However, critical low-level elements such as

static RAM blocks, I/O, analog circuits, high-speed functions, and Electrostatic

1.8 VLSI Design Flow

11

Discharge (ESD) protection circuits are designed at the transistor level. Circuit

simulation tools like SPICE verify the correctness of these designs.

¢ Physical Design
Physical design involves instantiating all design components with their geomet-
ric representations. This includes assigning spatial locations (placement) and
completing routing connections in metal layers. The result is a set of manufac-
turing specifications that must be verified. Physical design is performed with
respect to design rules that represent the physical limitations of the fabrication

medium.

¢ Physical Verification and Signoff
After physical design, the layout must be fully verified to ensure correct elec-

trical and logical functionality. This includes:

1. Design Rule Checking (DRC): Verifies that the layout meets all

technology-imposed constraints.

2. Layout vs. Schematic (LVS) Checking: Ensures the functionality
of the design by comparing the layout-derived netlist with the original

netlist.

3. Parasitic Extraction: Derives electrical parameters from the layout

elements to verify the circuit’s electrical characteristics.

4. Antenna Rule Checking: Prevents antenna effects that may damage

transistor gates during manufacturing.

5. Electrical Rule Checking (ERC): Verifies the correctness of power
and ground connections and ensures signal transition times, capacitive

loads, and fanouts are appropriately bounded.

Among the various stages that compose the VLSI design flow just been discussed,
the physical design phase plays a pivotal role in translating the logical representation
of a circuit into a geometrical layout that can be fabricated on silicon. While earlier
steps focus on functional correctness and architectural decisions, physical design is
where spatial, timing, and manufacturing constraints converge, making it one of the
most complex and constraint-driven parts of the flow. Given its critical importance
and the unique challenges it presents, especially in the context of modern, large-scale
systems, this phase warrants a more detailed examination. The following section
delves into each step of the physical design process, highlighting the methodologies,

tools, and design considerations involved.

12

1. State of Art

1.4 Physical Design

Physical design of integrated circuits is a crucial and complex aspect of EDA. It in-
volves the placement and routing of, nowadays, billions of transistors on a silicon chip,
ensuring that they are interconnected efficiently and meet performance requirements.
As technology advances, the number of transistors on a chip continues to grow, ne-
cessitating sophisticated algorithms to manage this complexity. One of the primary
challenges in physical design is managing the delays caused by the interconnecting
wires. In the past, achieving timing goals was largely dependent on the optimal place-
ment of devices while with modern designs, timing constraints can only be verified
after the final routing is completed, making the process more intricate. The contin-
uous increase in transistor count and the growing interdependence between physical,
timing, and logic domains require a fresh approach to the fundamental algorithms
of chip implementation. Modern physical design flows must address multi-objective
optimization, integrating various stages from design partitioning and floorplanning
to electrical rule checking. This evolving landscape demands that experts in spe-
cific areas, such as routing or Design For Manufacturability (DFM), understand the
broader implications of their work on the entire design flow. Physical design remains
a dynamic field, continually pushing the boundaries of what is possible in semicon-
ductor technology, and it plays a pivotal role in the advancement of chip design tools
and methodologies [10].

In the remainder of this chapter, the individual steps that constitute the phys-
ical design process, shown in Fig. 1.2, will be examined in detail. Each phase will
be discussed with particular attention to its functional objectives, the constraints it
must satisfy, and the methodologies and tools typically employed in its execution.
This in-depth analysis aims to provide a clearer understanding of how logical cir-
cuit descriptions are systematically transformed into manufacturable layouts, and to
highlight the critical challenges that arise throughout this phase of the VLSI design

flow.

1.4.1 System Partitioning

The complexity of modern IC designs has escalated to an unprecedented level, ren-
dering tasks such as full-chip layout increasingly challenging. A prevalent approach
involves partitioning the design into smaller segments, allowing for independent pro-
cessing and parallel execution. This divide-and-conquer methodology can be applied
by individually laying out each block and subsequently reassembling the outcomes
as geometric partitions. While this strategy was historically utilized for manual
partitioning, it has become impractical for extensive netlists. However, manual par-

titioning can still be executed within the framework of system-level modules, treating

1.4 Physical Design

13

them as singular entities when hierarchical information is accessible. Conversely, au-
tomated netlist partitioning can effectively manage large netlists and redefine the
physical hierarchy of an electronic system, encompassing everything from boards to
chips and from chips to blocks. Furthermore, traditional netlist partitioning can
be advanced to multilevel partitioning, which is applicable for managing large-scale
circuits.

A widely accepted method for reducing the design complexity of contemporary
integrated circuits involves dividing them into smaller modules. The partitioning
process separates the circuit into multiple subcircuits (partitions or blocks) while
aiming to minimize the interconnections between these partitions, adhering to design
constraints such as maximum partition sizes and allowable path delays. If each
block is developed independently, without regard for other partitions, the connections
between these blocks may adversely impact the overall design performance, leading
to increased circuit delays or diminished reliability. Additionally, a high number of
interconnections between partitions can create inter-block dependencies that hinder
design efficiency. Consequently, the main objective of partitioning is to segment the
circuit in a manner that reduces the number of connections between subcircuits, as

shown in Fig. 1.3 Each partition must also comply with all design specifications.

Cut 1 --> 2 External connection

Cut 2

Cut 2 --> 4 External connection

Figure 1.3: Example of partitioning.

Circuit partitioning is classified as NP-hard, this means that as the size of the
problem increases linearly, the resources required to identify an optimal solution esca-
late at a rate surpassing any polynomial function. Currently, there is no established
polynomial-time algorithm that guarantees a globally optimal solution for balance-
constrained partitioning. Nevertheless, several effective heuristics were introduced
during the 1970s and 1980s. These algorithms yield high-quality circuit partition-

ing results and are typically executed in low-order polynomial time, including the

14

1. State of Art

Kernighan-Lin (KL) algorithm [11] and the Fiducia-Mattheyses (FM) algorithm [12].
Furthermore, optimization through simulated annealing can be employed to tackle
particularly challenging partitioning problems. Generally, stochastic hill-climbing al-
gorithms necessitate more than polynomial time to generate high-quality solutions,
although they can be expedited at the cost of solution quality. In practice, simulated

annealing seldom proves to be competitive.

1.4.2 Chip Planning

Chip planning involves the organization of substantial components such as caches,
embedded memories, and IP cores, which possess defined areas, either fixed or vari-
able shapes, and potentially designated locations. In instances where modules are
not explicitly defined, chip planning utilizes netlist partitioning (Sec. 1.4.1) to dis-
cern these modules within extensive designs. The process of assigning shapes and
locations to circuit modules during chip planning results in the formation of blocks,
facilitating preliminary assessments of interconnect length, circuit delay, and overall

chip performance (Fig. 1.4).

{ Module A | 4 \

cm—- Block D
T Block A e
{ Module B |
{ Module C | ,
N o 4 \
e / Block B \ Block C

\ Module D | \ /
Figure 1.4: A module represents a collection of logic within a defined area. Once it
is given a specific shape or dimensions, it is referred to as a block.

This initial analysis can highlight modules that require enhancements. The chip

planning process is divided into the following phases:

1. Floorplanning
Prior to the floorplanning phase, the design is divided into separate circuit
modules. Each module is transformed into a rectangular block once it receives
specific dimensions or a defined shape. These blocks can be categorized as
either hard or soft. Hard blocks have fixed dimensions and areas, whereas
soft blocks maintain a constant area but allow for variations in aspect ratio,
which can be adjusted continuously or in discrete increments. The complete
arrangement of these blocks, along with their respective positions, is referred

to as a floorplan.

15

1.4 Physical Design
A B
D
Cc E
A B
F
Lec] [e]
o |
F
F
Cc E
A B
D

Figure 1.5: Example of two possible floorplans for the same set of blocks.

In extensive designs, individual modules may also undergo floorplanning in a
recursive top-down manner; however, it is typical to concentrate on one hi-
erarchical level of floorplanning at a time. In this context, the floorplan at
the highest level is designated as the top-level floorplan. The floorplanning
phase is crucial as it ensures that each chip module is allocated a shape and
a location to facilitate gate placement, and every pin with an external con-
nection is assigned a location to enable the routing of internal and external
nets. This stage establishes the external attributes, fixed dimensions and ex-
ternal pin locations, for each module, which are essential for the subsequent
placement and routing processes that define the internal characteristics of the
blocks. Floorplan optimization encompasses various degrees of freedom; while
it incorporates certain elements of placement and connection routing, the opti-
mization of module shapes is distinct to floorplanning. The use of hard blocks
in floorplanning is particularly significant when reusing existing blocks, includ-
ing IP. From a mathematical perspective, this issue can be interpreted as a
constrained scenario of floorplanning with soft parameters, although in prac-

tice, it may necessitate specialized computational methods.

Despite the critical role that floorplanning plays in shaping the overall qual-
ity and feasibility of a VLSI design, this phase remains, to a large extent, a
manual and experience-driven process. As a result, it is still challenging to con-

duct extensive and systematic studies aimed at exploring alternative floorplan

16

1. State of Art

configurations; particularly those that might reduce chip area or improve per-
formance by adopting non-conventional macro placements within a block. The
lack of automation and flexibility in current methodologies limits the ability
to assess whether better results could be achieved by deviating from standard
practices. To address this gap, Chapter 3 of this thesis focuses on the devel-
opment of a tool designed to facilitate floorplan exploration. This tool enables
designers to efficiently experiment with multiple area configurations and macro
placement strategies within a given block. By integrating an internal machine
learning engine, the tool can automatically generate a wide range of plausible
macro placements for each area, significantly expanding the design space that a
single engineer can explore. This approach aims to enhance productivity, sup-
port data-driven decision-making, and ultimately contribute to more optimized

and innovative floorplan solutions.

. Pin Assignement

Due to the substantial geometric dimensions of blocks in floorplanning, the po-
sitioning of terminal locations for nets that interconnect these blocks is crucial.
Typically, I/O pins are situated at the edges of a block to minimize inter-
connect length. Nevertheless, the optimal locations are contingent upon the
relative arrangement of the blocks.In the process of pin assignment, each net
is allocated to distinct pin locations to enhance the overall performance of the
design. Key optimization objectives often include maximizing routability and

minimizing electrical parasitics both within and beyond the block.

. Power Planning

The scaling of on-chip supply voltages occurs at a slower rate compared to
chip frequencies and transistor counts. Consequently, the currents delivered
to the chip progressively rise with each technological advancement. Enhanced
packaging and cooling solutions, along with market demands for increased func-
tionality, result in larger power budgets and more compact power grids. Cur-
rently, approximately 20-40% of all metal resources on the chip are allocated
for power (VDD) and ground (GND) networks. Given that floorplanning is a
precursor to place-and-route, power-ground planning has emerged as a critical
component of contemporary chip design. Chip planning not only dictates the
configuration of the power-ground distribution network but also influences the
positioning of supply I/O pads (in wire-bond packaging) or bumps (in flip-chip
packaging) (Fig. 1.6). These pads or bumps are strategically placed in or near
regions of high activity on the chip to reduce the IR voltage drop.

1.4 Physical Design 17

(a) (b)

—— e e
KIS LK SRR
@ @ @0 © @ @ ©

Figure 1.6: (a) wire bonding and (b) flip-chip packaging.

The power planning process is generally iterative, involving:

(a) initial simulations of significant power dissipation elements,

(b) preliminary assessments of chip power,

(c) evaluations of total chip power and peak power density,

(d) examinations of total chip power variations,

(e) investigations of inherent and additional fluctuations caused by clock gat-

ing,

(f) early analyses of power distribution, including average, maximum, and

multi-cycle fluctuations.

To develop an effective supply network, various design and process technology
factors must be taken into account. For instance, to accurately estimate chip

power, the designer should consider:

(a) the implementation of low-Vth devices and dynamic circuits that have

higher power consumption,

(b) the application of clock gating to reduce power usage,

(c) the quantity and strategic placement of additional decoupling capacitors

to alleviate switching noise.

18

1. State of Art

|!I!I

Figure 1.7: Power-ground routing in modern digital ICs typically has a mesh topology
composed of: rings, I/O pads, stripes.

1.4.3 Placement

Placement aims to identify the positions of standard cells or logic components within
each block, while also focusing on optimization goals such as reducing the over-
all length of connections between these elements. In particular, global placement
(Fig. 1.9) designates general positions for movable objects, whereas detailed place-
ment fine-tunes these positions to conform to legal cell sites and ensures that there
are no overlaps. The precise locations obtained through detailed placement facilitate
more accurate assessments of circuit delay, which is essential for timing optimization.
Global placement frequently overlooks the specific shapes and dimensions of place-
able objects, failing to align their positions with appropriate grid rows and columns.
Some degree of overlap between placed objects is permitted, as the focus is on ef-
fective global positioning and the overall distribution of density. Legalization occurs
either prior to or during the detailed placement phase, aiming to align placeable
objects with the grid while eliminating overlaps, all the while striving to minimize
displacements from their global placement positions and reducing the effects on in-

terconnect length and circuit delay.

1.4 Physical Design

19

—

Figure 1.8: Example of legalization process: overlaps are removedand objects are
aligned with the grid.

Detailed placement enhances the positioning of each standard cell through local
adjustments, such as swapping two objects or shifting multiple objects in a row to
accommodate another object. While global and detailed placement generally exhibit
similar runtimes, global placement often demands significantly more memory and

presents greater challenges for parallelization.

bt lo
“““““““ HEE i RS

= qﬁ
——————— F e R [=]

] O JZ|

1 H o -

.+ ¢ ||Pooooooooo
Min-Cut Quadratic Force-Directed Simulated
Partitioning Placement Placement Annealing

Figure 1.9: Techniques for global placement.

The placement process must create a layout that allows for the simultaneous
routing of all design nets, ensuring that the placement is routable. Furthermore, it
is essential to consider electrical factors such as signal delay and crosstalk. Since
detailed routing information is not accessible during the placement phase, the placer
focuses on optimizing estimates of routing quality metrics, including total weighted
wirelength, cut size, wire congestion (density), and maximum signal delay. Given
that the delay of a net is directly related to its length, placers frequently aim to

reduce the overall wirelength.

#| rpo

Total Number of Wire Signal
Wirelength Cut Nets Congestion Delay

Figure 1.10: Example of routing metrics.

20

1. State of Art

The automation of standard cell placement is essential for effectively handling
the scale and complexity of contemporary VLSI designs, which encompass billions of
components. Consequently, placement tools such as Cadence Innovus and Synopsys
IC Compiler are extensively utilized within the VLSI industry. In contrast, macro
placement is predominantly performed manually by physical design engineers, who
adhere to heuristic guidelines derived from their experience. This manual process is
labor-intensive and monotonous, limiting the potential for comprehensive floorplan
exploration to identify superior solutions. Despite its significance as the foundation
for subsequent physical design processes, macro placement greatly impacts the qual-
ity of congestion and timing outcomes. Chapter 2 will provide an in-depth analysis
of different mixed-size placers, which are placement algorithms designed to handle
multiple types of cells simultaneously during the physical design phase. Specifically,
the focus will be on placers that aim to concurrently place both standard cells and
predefined macros. This simultaneous placement is a critical challenge in modern
VLSI design, as it requires balancing the flexibility of standard cells with the fixed
dimensions and constraints of macros, while optimizing for performance, area, and

routability.

1.4.4 Clock Tree Synthesis

The majority of digital designs operate synchronously, where computation advances
as the current values of internal state variables and input variables are supplied to
combinational logic networks. These networks subsequently produce outputs and
determine the next values of the state variables. A clock signal is essential for
ensuring the synchronization of all computations occurring across the chip. This
signal can be generated externally or through specialized analog circuitry, such as
Phase locked loops (PLL) or Delay locked loops (DLL).

1.4 Physical Design 21

(a) Phase-Locked Loop (PLL)
o / Clock Buffers

o Output

ol N Nl

|\\ Oscillator >—></+ o Clock
Input S) g
Clock PD L LF 4/

(b) Delay-Locked Loop (DLL)

P Clock Buffers

Input . | / =
Clock Delay Line —»L, .

™~ Qutput
g Clock

y

PD —» LF

Figure 1.11: Example of (a) PLL and (b) DLL block schemes.

Its frequency may be adjusted through division or multiplication to meet the spe-
cific requirements of individual blocks. Once the entry points and sinks for the clock
signal, such as flip-flops and latches, are established, clock tree routing is employed
to create a clock tree for each clock domain within the circuit. The unique function
of the clock signal in synchronizing all computations on the chip distinguishes clock
routing from other routing types. The fundamental challenge of clock routing lies
in the necessity to deliver the signal from the source to all destinations, or sinks,

simultaneously.

22

1. State of Art

CLK Port (e

Figure 1.12: Example of H-tree structure.

There are several architectural strategies for constructing clock trees, each with its
own trade-offs in terms of skew, power consumption, and implementation complexity.
Among the most commonly used structures are H-trees (as seen in Fig. 1.12), X-trees,
and balanced binary trees. These topologies are designed to minimize clock skew,
that is the difference in arrival times of the clock signal at different sinks, and to

ensure uniform delay distribution across the chip.

1.4.5 Signal Routing

Routing is a critical stage in the physical design flow of integrated circuits. It involves
establishing physical connections between placed standard cells, macros, and 1/0O
pins using metal layers. The goal is to create signal paths that meet design rules,
timing constraints, and congestion limits, while minimizing wirelength and delay.
Effective routing ensures both functional correctness and performance of the final
chip layout. The process of full-chip routing typically consists of three stages: global

routing, detailed routing and timing-driven routing (discussed in Sec. 1.4.6.2).

e Global routing
At this stage, the chip layout is abstracted into a coarse routing grid, typically
represented as a grid graph. Fach edge in this graph corresponds to a rout-
ing channel and is associated with a certain routing capacity, which reflects
the number of wires that can be routed through that channel without causing
congestion. During global routing, the topologies of the nets, the sets of pins
that need to be connected, are mapped onto this grid. The goal is to assign

each net to a set of routing resources (edges in the graph) in a way that mini-

1.4 Physical Design

23

mizes total wirelength, avoids over-congested regions, and respects design rules
and timing constraints. Unlike detailed routing, which defines the exact ge-
ometries and layers of the wires, global routing provides a high-level plan that
guides the subsequent routing stages. This step is essential for identifying po-
tential routing bottlenecks early in the flow and for enabling congestion-aware
optimization in later phases. It also plays a key role in estimating parasitics
and timing, which are critical for ensuring that the design meets performance

targets.

o Detailed routing
During the detailed routing phase, wire segments are allocated to specific rout-
ing tracks. This phase encompasses several intermediate tasks and decisions, in-
cluding net ordering, determining the sequence in which nets should be routed,
and pin ordering, which dictates the connection sequence of pins within a net.
These two factors present significant challenges in sequential routing, where
nets are routed individually. The order of nets and pins can significantly influ-
ence the quality of the final solution. Detailed routing aims to enhance global
routes and generally does not modify the net configurations established dur-
ing global routing. Therefore, if the global routing outcome is suboptimal, the
quality of the detailed routing result will also be adversely affected. To establish
net ordering, each net is assigned a numerical importance indicator, referred
to as net weight. Nets that are timing-critical, connect to multiple pins, or
serve specific functions, such as delivering clock signals, may be assigned high
priority. It is essential for high-priority nets to minimize unnecessary detours,

even if this requires diverting other nets.

[;g > = u
= e

Figure 1.13: Example of: (a) a placement, (b) a global routing, and (c) a detailed
routing.

1.4.6 Timing Closure

The configuration of an IC must fulfill not only geometric specifications, such as
non-overlapping cells and routability, but also adhere to the timing requirements of

the design, including setup and hold constraints. The process of optimization that

24

1. State of Art

addresses these specifications and requirements is commonly referred to as timing
closure. This process incorporates point optimizations previously discussed, such as
placement (Sec. 1.4.3) and routing (Sec. 1.4.5 and Sec. 1.4.4), along with specialized
techniques aimed at enhancing circuit performance. The main aspects of timing

closure are the following:

e Timing-driven placement (Sec. 1.4.6.1) aims to reduce signal delays by strate-

gically assigning locations to circuit components.

e Timing-driven routing (Sec. 1.4.6.2) focuses on minimizing signal delays through

the selection of routing topologies and specific paths.

e Physical synthesis (Sec. 1.4.6.3) enhances timing by modifying the netlist doing

changes such as:

1. Adjusting the sizes of transistors or gates: increasing the width-to-length

ratio of transistors to reduce delay or enhance the drive strength of a gate.
2. Adding buffers to nets to lower propagation delays.

3. Reorganizing the circuit along its critical paths.

For an extended period, the delay in signal propagation within logic gates was the
predominant factor contributing to circuit delay, while the delay caused by wiring was
considered minimal. Consequently, the placement of cells and the routing of wires
did not significantly influence circuit performance. However, beginning in the mid-
1990s, advancements in technology scaling greatly amplified the relative significance
of delays induced by wiring, thereby rendering high-quality placement and routing
essential for achieving timing closure. Timing optimization engines are required to
quickly and accurately estimate circuit delays to enhance circuit timing. Timing
optimizers modify propagation delays across circuit components, primarily aiming

to meet timing constraints, which include

e Setup constraints that dictate the duration a data input signal must remain
stable prior to the clock edge for each storage element. Setup constraints ensure

that no signal transition occurs too late.

T> teomp + 75361‘/up + tskew (1'1)

T refers to the clock period, t.omp denotes the maximum path delay through
combinational logic, tsetyp indicates the setup time of the receiving storage ele-
ment (such as a flip-flop), and tgge, represents the clock skew. To determine if
a circuit adheres to setup constraints, it is necessary to estimate the duration of

signal transitions as they propagate from one storage element to another. This

1.4 Physical Design

25

delay estimation is generally performed using Static timing analysis (STA),
which calculates Actual arrival time (AAT) and Required arrival time (RAT)
for the pins of each gate or cell. STA efficiently detects timing violations and
identifies their sources by tracing critical paths within the circuit that con-
tribute to these timing issues. Due to efficiency considerations, STA does not
take into account the functionality of the circuit or specific signal transitions.
Instead, it presumes that every cell transmits every 0-1 (1-0) transition from its
inputs to its outputs, with each propagation occurring at the maximum delay.
Consequently, the results obtained from STA are frequently overly pessimistic
for larger circuits. A crucial measure for a specific timing point is the timing
slack. This is defined as the difference between RAT and AAT, expressed as

Slack = RAT — AAT

A positive slack signifies that the timing requirements are satisfied, meaning
the signal arrives prior to the necessary time, whereas a negative slack indicates

a timing violation, where the signal arrives after the required time.

Hold-time constraints that determine the duration a data input signal must
remain stable following the clock edge at each storage element. Hold violations
may arise when a signal path is excessively short, enabling a receiving flip-flop

to capture the signal in the current cycle rather than in the subsequent cycle.

teomb > thold + tskew

teomp denotes the maximum path delay through combinational logic, thoq d is
the hold time required for the receiving storage element, and tgxe,, represents
the clock skew. Since the hold-time constraint is not affected by the clock pe-
riod, simply reducing the clock frequency does not resolve hold-time violations.
For this reason, hold-time constraints are typically addressed after the clock
network has been synthesized, when the actual delays introduced by the clock

tree are known and can be accurately analyzed.

1. State of Art

FF1 FF2
N ol »(Compinational L {p ol
Logic
-
>
CLK | —
e

CLKEE4 i"__““'-«.g

Constrain

Figure 1.14: Hold and setup constraints.

CLKep;

]
]
. C
=
o

1.4.6.1 Timing-Driven Placement

Timing-driven placement (TDP) enhances circuit delay to either meet all timing
requirements or maximize the clock frequency. It leverages the outcomes of STA to
pinpoint critical nets and seeks to reduce signal propagation delay across these nets.

Generally, TDP aims to minimize one or both of the following:

1. Worst negative slack (WNS)

WNS = grleig(slack(T)) (1.2)

2. Total negative slack (TNS)

TNS = Z slack(7)

T€T, slack(1)<0

1.4.6.2 Timing-Driven routing

In contemporary integrated circuits, interconnections significantly impact overall sig-
nal delay. Therefore, interconnect delay becomes a critical factor during the routing

phases. Timing-driven routing aims to reduce either or both of the following:

1. Mazimum sink delay, defined as the highest interconnect delay from the source

node to any sink of a specific net.

2. Total wirelength, which influences the load-dependent delay of the net’s driving
gate.

1.4 Physical Design

27

1.4.6.3 Physical synthesis

For a chip to function correctly in relation to setup constraints, it is essential that
AAT is greater than or equal to RAT at all nodes. If any nodes violate this condition,
resulting in negative slack, physical synthesis, a series of timing optimizations, will
be implemented until all slacks are non-negative. The optimization process encom-
passes two key components: timing budgeting and timing correction. In the timing
budgeting phase, target delays are assigned to arcs along timing paths to facilitate
timing closure during the placement and routing phases (Sec. 1.4.3 and Sec. 1.4.5),
as well as during timing correction. Timing correction involves modifying the netlist

to satisfy timing constraints through various operations such as:

e (Gate Sizing: in the standard-cell design approach, each logic gate is generally
available in various sizes that relate to different drive strengths. Drive strength
refers to the current that the gate can supply during its switching operation. A
larger gate size results in lower output resistance, enabling it to drive a greater
load capacitance with reduced load-dependent delay. However, a larger gate
size also incurs a higher intrinsic delay due to the parasitic output capacitance
inherent to the gate. Resizing transformations adjust the size of critical logic

gates to reduce the delay.

2X
1X [

c %R !J—c.oad

2c <R2 —\L—J_Cload

P

Figure 1.15: Example of the diffrence in internal resistance and capacitance changing
the drive strength of a cell.

e Buffering: a buffer functions as a gate, usually consisting of two inverters con-
nected in series, which regenerates a signal while preserving its original func-
tionality. Buffers can enhance timing delays by either accelerating the circuit or
acting as delay elements, and they can also adjust transition times to enhance
signal integrity and mitigate variations in coupling-induced delays. However, a
significant disadvantage of buffering techniques is their consumption of avail-
able area and the increase in power usage. Despite the careful application of

buffering in contemporary tools, the quantity of buffers has been on the rise

28

1. State of Art

in large designs due to trends in technology scaling, where interconnects are
becoming slower relative to gates. In modern high-performance designs, buffers
may account for 10-20% of all standard cell instances, and in some cases, this

figure can reach up to 44% [13].

TlCa T N
e ol
. \ cb
T * o ¥
-
TlCc _)___LTCC
3 "o

Figure 1.16: In this example the buffer helps to partially shield the load capacitance
seen by the NAND gate.

o Netlist Restructuring: the netlist can be adjusted to enhance timing perfor-
mance. These modifications should not affect the circuit’s functionality; how-
ever, they may involve the addition of extra gates or the reconfiguration of
connections between existing gates to strengthen driving capability and im-

prove signal integrity. Some of the possible methods used are:

1. Replication
The replication of gates can mitigate delay when a gate with considerable
fanout experiences slowness due to its fanout capacitance and when a
gate’s output diverges in two distinct directions, complicating optimal

placement for the gate.

? Ca jf Ca
D e

—TL Ce —TL Ce

*TL cd *‘TL cd

Figure 1.17: Example of replication, the duplicated gate helps to reduce the fanout.

2. Redesign of fanin tree
The logic design phase typically yields a circuit characterized by the least
number of logic levels. Reducing the maximum number of gates along

the path connecting sequential elements generally results in a balanced

1.4 Physical Design 29

circuit, ensuring comparable path delays from inputs to outputs. Never-
theless, since input signals can arrive at different times, the circuit with
the minimum levels may not achieve optimal timing while a new unbal-

anced network could have a shorter input/output path.

31 [51

[1 [

W] 8
. (1

[0] 01

[1 [

Figure 1.18: Example of fanin tree redesign that allow to achieve a lower delay.

3. Redesign of fanout tree
It’s possible to enhance timing by redistributing the output load capaci-

tance within a fanout tree to minimize the delay of the longest path.

o8 oo

Figure 1.19: Example of fanout tree redesign to reduce the load capacitance of the
first path.

4. Swapping commutative pins
While the input pins of a logic gate are logically equivalent, they exhibit
different delays to the output pin in the actual transistor network. A
general guideline for pin assignment is to allocate a signal that arrives
later to an equivalent input pin with a shorter input-output delay, and

vice versa.

cp] —————
af)] ——— I3
[4]
o] [
b [11 a[0]

111

Figure 1.20: Example of swapping commutative pins.

5. Gate decomposition
Gates with multiple inputs typically exhibit increased size and capaci-
tance. Decomposing these multi-input gates into smaller, more efficient
gates can reduce both delay and capacitance while preserving the same

Boolean functionality.

30

1. State of Art

Figure 1.21: Example of gate decomposition.

6. Boolean restructuring
Boolean logic can be realized in various forms within digital circuits and

some of them can be more efficient from a timing standpoint.

Y=(A*B)+(A*C) Y=A*(B+C)

Al4]
]
B[2] Y5
D Y [6] BI2]
cl
e D

Figure 1.22: Example of Boolean restructuring. Using the distributive law is possible,
in this case, to reduce the delay.

7. Reverse transformations
Timing optimizations like buffering, sizing, and cloning can increase area
and cause cell overlaps, making the design illegal. To restore legality,
either reverse these changes (unbuffer, downsize, merge) or run placement

legalization after timing fixes.

Having outlined the complete sequence of steps involved in the physical design
flow, from floorplanning through placement, clock tree synthesis, routing, and ul-
timately timing closure, it is important to recognize how this phase fits into the
broader VLSI design process; once physical design is complete and the layout has
been finalized, the flow proceeds to design sign-off, which includes checks such as
LVS, DRC, and final timing and power verification. These steps ensure that the
design is manufacturable and meets all functional and performance specifications

before tape-out.

1.5 Conclusion

In this chapter, the fundamental principles and stages of the physical design process
have been presented, providing the necessary foundation for understanding the more

advanced and specialized topics addressed in the remainder of this thesis. Each phase,

1.5 Conclusion

31

from floorplanning to placement, clock tree synthesis, and routing, plays a critical
role in shaping the final layout of a VLSI circuit and ensuring that performance,
area, and manufacturability constraints are met.

Among these stages, placement represents one of the most computationally in-
tensive and impactful steps, particularly in the context of mixed-size designs, where
standard cells must coexist with large macros and pre-designed IP blocks. The pres-
ence of these heterogeneous elements introduces significant complexity in terms of
optimization, congestion management, and timing closure. To address these chal-
lenges, modern placement tools increasingly rely on advanced heuristics and machine

learning-based algorithms to explore the vast solution space more effectively.

One notable example is a proprietary mixed-size placer developed by Qualcomm®
which integrates machine learning techniques to improve placement quality and ef-
ficiency. This placer has been incorporated into the tool developed as part of this
thesis, which is specifically designed to support floorplan exploration. The tool
enables designers to experiment with multiple area configurations and macro place-
ments in a flexible and automated manner. By leveraging the internal ML engine,
it can generate a wide range of valid macro placements for each area, significantly
expanding the design space that a single engineer can explore and analyze.

The next chapter delves into the role and functioning of mixed-size placers, ex-
amining their algorithmic foundations and their integration into the floorplan explo-
ration tool. This sets the stage for the experimental analysis presented in Chapter 3,
where the tool’s capabilities are demonstrated and evaluated in the context of real-

world design scenarios.

Chapter 2

Mized Size Placers

Placement is a critical phase in the physical design flow of VLSI circuits; its primary
objective is to determine the optimal positions of logic components such as standard
cells, macro blocks, and memory units within the chip area, while minimizing key
design metrics such as total wirelength, congestion, and power consumption. The
quality of placement has a direct impact on downstream stages like clock tree syn-
thesis, routing, and timing closure, and it also enables early estimation of physical
constraints that can guide earlier design decisions.

In modern integrated circuits, the placement problem becomes significantly more
complex due to the mixed-size nature of designs, where small standard cells must co-
exist with large, pre-designed macros and IP blocks. These heterogeneous elements
introduce unique challenges in terms of optimization, spatial constraints, and scala-
bility. Traditional placement algorithms often fall short in effectively handling this
complexity, motivating the development of more advanced and specialized mixed-size

placers.

This chapter begins by introducing the theoretical foundations of placement,
including the basic principles of global placement, wirelength smoothing, density
control, and nonlinear optimization. These concepts provide the mathematical and
algorithmic basis for understanding how modern placers operate.

Next, the chapter discusses the main challenges in placement, particularly in
the context of large-scale, mixed-size designs. This is followed by a classification
of placers, distinguishing between analytical, partitioning-based, and stochastic ap-
proaches, and a focused discussion on analytical placers, which form the backbone
of many state-of-the-art tools.

The chapter then delves into the specifics of mixed-size placement, exploring
how the coexistence of macros and standard cells affects placement strategies and
tool design. This leads into a comparative overview of three placers: ePlace [1],
ePlace-MS [3]|, and DREAMPlace |2]; highlighting their core algorithms, optimization

33

34

2. Mized Size Placers

techniques, and performance characteristics. Special attention is given to concepts
such as eDensity, a density penalty and gradient function based on electrostatic
principles and an analogy with deep learning to enable GPU acceleration.

Finally, the chapter presents the Qualcomm® macro placer tool, a proprietary
solution that integrates machine learning to enhance macro placement quality. This
tool has been incorporated into the floorplan exploration framework developed as
part of this thesis, enabling the generation of diverse macro placement alternatives
and significantly expanding the design space available to engineers. The practical

application and evaluation of this tool will be the focus of Chapter 3.

2.1 Theoretical Foundations

Before diving into the practical aspects of mixed-size placement, it is useful to first
build a solid understanding of the theoretical principles that underpin modern place-
ment algorithms. This section introduces the key concepts that form the basis of
placement strategies, starting from the fundamental goals and constraints of the
problem, and moving through the mathematical models used to guide optimization.
By exploring topics such as global placement, wirelength smoothing, density control,
and nonlinear optimization, we can better appreciate how these techniques contribute
to the development of scalable and efficient placers. These foundations will serve as
a reference point for the more advanced and specialized approaches discussed in the

rest of the chapter.

2.1.1 Base Concepts of Placement

At the heart of the placement problem lies the task of determining where each logic
component should be positioned within the chip area to achieve optimal performance
and manufacturability. This process must account for a variety of constraints, includ-
ing physical space limitations, connectivity requirements, and timing considerations.
To formalize this problem, placement is typically modeled using mathematical ab-

stractions that allow for efficient algorithmic treatment.

A placement instance is formulated as a hyper-graph G = (V,E,R), where V
denotes the set of vertices (cells), E denotes the set of hyper-edges (nets) and R
denotes the placement region, respectively. A legal solution satisfies the following

three requirements:
1. Every cell is accommodated using enough free sites in the placement region.
2. Every cell is horizontally aligned with the boundaries of one placement row.

3. There is no overlap between cells or macros.

2.1 Theoretical Foundations

35

Based on the legality constraint, a placer targets minimizing the total HPWL of
all the nets. Let v = (x, y) denote a placement solution, where x = {x;|i € V,,} and
y = {yili € Vi, } are the x- and y-coordinates of the cells, respectively. The HPWL

of each net e is defined as:

HPWL,(v) = max |z; — z;| + max |y; — yj]| (2.1)
1,)€€ 1,]€€

The total HPWL is then computed as:

HPWL(v) =Y HPWL(v) (2.2)
eckE
This metric provides a simple yet effective way to evaluate the quality of a place-

ment.

While the fundamental goal of placement is to minimize wirelength while ensur-
ing legality, addressing this objective in large and complex designs requires a more
structured and hierarchical approach. This is where global placement becomes es-
sential. By operating at a higher level of abstraction, global placement provides an
initial distribution of cells across the chip area, balancing density and connectivity
before moving on to more detailed and fine-grained optimization. The next sec-
tion introduces the key concepts and mathematical formulations that underpin this

critical phase of the placement process.

2.1.2 Base Concepts of Global Placement

Global placement represents a crucial sub-phase within the overall placement process,
where the goal is to determine approximate positions for all cells and macros across
the chip area before proceeding to detailed placement. Unlike detailed placement,
which focuses on legalizing and refining positions, global placement operates at a
coarser level of granularity, aiming to optimize global objectives such as wirelength

and cell density distribution.

This phase is typically formulated as a constrained optimization problem, where
the placer seeks to minimize a cost function, usually the total wirelength, while
satisfying spatial constraints to avoid excessive cell overlap and routing congestion; to
facilitate this, the placement region is uniformly partitioned into a grid of rectangular
bins,denoted as B, which serve as the basic units for estimating and controlling cell
density.

Based on a placement solution v, let py(v) denote the density of each grid b as

shown in Eq. 2.3.

36

2. Mized Size Placers

po(v) = 1a(b, 1) 1y (b, 1) (2.3)

i€V
Here, 1,(b, i) and 1,,(b,7) denote the horizontal and vertical overlaps between the
grid b and the cell i. Both [, (b,4) and [,(b,) exhibit a rectangular shape, which is
not differentiable at boundary points. As Eq. 2.4 shows, a global placement problem
targets a solution v with minimum total HPWL subject to the constraint that the
density pp(v) of all the grids is equal to or below a predetermined target placement

density p;.

min HPWL(v) st. pp(v)<p, VbEB (2.4)

This formulation ensures that the placement not only minimizes wirelength but
also maintains a balanced distribution of cells across the chip, which is essential for

routability and timing closure in later stages.

To effectively solve the global placement problem, it is necessary to rely on opti-
mization techniques that can handle both the objective function and the associated
constraints in a computationally efficient manner. However, one of the main chal-
lenges in this context is the non-differentiability of the wirelength cost function,
which complicates the use of gradient-based optimization methods. To address this,
various smoothing techniques have been introduced to approximate the wirelength
in a differentiable form, enabling faster and more stable convergence during opti-
mization. The next section explores one of the most widely used smoothing models

in placement algorithms.

2.1.3 Wirelength Smoothing

In global placement, the total wirelength, typically measured using the HPWL, serves
as a key objective to minimize. However, the HPWL function is not differentiable.
This lack of smoothness poses a significant obstacle for optimization algorithms that
rely on gradient information, such as those based on nonlinear programming or ma-

chine learning.

To overcome this limitation, several smoothing techniques have been developed
to approximate the HPWL with differentiable functions, these approximations allow
for the use of efficient gradient-based solvers, improving both the convergence rate
and the quality of the final placement. One widely adopted model is the Weighted-
Average (WA) wirelength model, which provides a smooth approximation of the
bounding box of a net by using exponential weighting. The horizontal component of
the WA model for a net e is defined as:

2.1 Theoretical Foundations

37

> ice €XD(Ti/7) > ice exXp(—xi/7)

Where ~ is the smoothing parameter, which can be used to control the modeling

W.(v) = <Zi€e z;exp(Ti/y) Die. i eXP(-M/W)) 2.5)

accuracy; smaller values of v yield to a closer approximation to the true HPWL,

while larger values improve differentiability and numerical stability.

While smoothing techniques address the differentiability of the wirelength objec-
tive, they do not resolve another critical aspect of global placement: the need to
control cell density across the layout. Without proper density management, cells
may cluster in certain regions, leading to routing congestion and timing violations;
to tackle this, placement algorithms introduce a density penalty mechanism, which

is discussed in the following section.

2.1.4 Density Penalty

In addition to minimizing wirelength, a legal and routable placement must ensure
that no region of the chip becomes overly congested. This is particularly important
in modern IC designs, where the number of bins | B| used to discretize the placement
region can be millions. Enforcing individual density constraints for each bin would be
computationally infeasible in practice, to address this, all the constraints are typically
aggregated into a single density penalty function N(v), as shown in Eq. 2.6. This
function penalizes placements that exceed the target density p¢, and by construction,

N(v) =0 if and only if all density constraints are satisfied.

po(V) < pi, VbEB < N(v)=0 (2.6)

Quadratic placement approaches usually model the density penalty as a linear
or quadratic function, which can be easily integrated into their objective function.
Nonlinear placers have no constraints on the order of modeling functions thus are
able to design the penalty in more flexible ways. In all three discussed papers, the
placement instance is modeled as an electrostatic system, where the density penalty
function N(v) is interpreted as the system’s potential energy, This analogy allows
for smooth and continuous modeling of repulsive forces that naturally spread cells

across the layout.

Once both the wirelength and density components have been modeled in differ-
entiable form, they can be combined into a unified objective function. This leads to
the nonlinear optimization formulation adopted by many modern global placers, as

described in the next section.

38

2. Mized Size Placers

2.1.5 Nonlinear Optimization Formulation

Modern global placement algorithms often rely on nonlinear optimization to simul-
taneously minimize wirelength and enforce density constraints. By combining the
smoothed wirelength function W (v) with the density penalty function N(v), the

overall objective function becomes:

min f(v)=W(v)+AN(v) (2.7)

The penalty factor A is used to control the trade-off between wirelength and
density; a higher value of A\ places more emphasis on satisfying density constraints,
potentially at the cost of increased wirelength, while a lower value prioritizes wire-
length minimization. Tuning this parameter is essential for achieving high-quality
placement results, and many placers adopt adaptive strategies to adjust A dynami-
cally during optimization.

While the mathematical formulation of placement provides a solid foundation for
optimization, real-world designs introduce additional layers of complexity. Scalability
to millions of components, the coexistence of heterogeneous elements such as macros
and standard cells, strict physical constraints, and the need to optimize multiple
objectives simultaneously all pose significant challenges. The next section explores
these issues in detail, highlighting the practical difficulties that modern placers must

overcome.

2.2 Challenges in Placement

As integrated circuits continue to grow in complexity and scale, the placement stage
of physical design has become increasingly critical and challenging. The task of
determining optimal positions for millions of standard cells and macros within a
chip layout must account for a wide range of constraints and objectives, all while
maintaining computational efficiency; this complexity is further exacerbated by the
heterogeneity of modern designs, which often include a mix of small, densely packed
standard cells and large, irregularly shaped macros.

Modern placement faces several challenges, including:

e Scalability: Designs today may contain millions of cells and thousands of

macros.

e Heterogeneity: The coexistence of objects with vastly different sizes (stan-

dard cells vs. macros) complicates optimization.

e Physical constraints: Such as reserved regions, fixed orientations, density

targets, and routability requirements.

2.8 Classification of Placers

39

e Multi-objective optimization: Including wirelength minimization, density

balancing, timing, and power optimization.

To address these challenges, a wide variety of placement algorithms have been
developed over the years, each with different strategies and trade-offs, they can
be broadly categorized into three main classes: stochastic, partitioning-based, and
analytical approaches. The next section provides an overview of these categories,
highlighting their core principles and how they tackle the inherent complexity of the

placement problem.

2.3 Classification of Placers

Over the years, a wide range of placement algorithms have been proposed to ad-
dress the increasing complexity of VLSI designs; each approach reflects a different
philosophy in tackling the placement problem, balancing trade-offs between solution
quality, computational efficiency, and scalability. While the ultimate goal remains
the same, finding an optimal or near-optimal placement that satisfies physical and
performance constraints, different algorithms adopt distinct strategies to navigate
the vast solution space.

Placement algorithms can be broadly categorized into three main classes:

e Stochastic Placers: typically rely on simulated annealing techniques (e.g.,
Timberwolf [14]). Probabilistic acceptance of uphill climbing is employed to
help the placer escape from local optima. Although stochastic placement
achieves high solution quality, it suffers from significant complexity and a low

convergence rate, resulting in limited scalability for large circuits.

e Partitioning-Based Placers: systematically reduce the complexity of the
problem by dividing the instance (netlist and placement area) into smaller sub-
instances (e.g., Capo [15]). Nevertheless, inadequate partitioning during the

initial phases may lead to irreversible quality degradation in the final solution.

e Analytical Placers: Formulate the problem as a continuous optimization

task, often nonlinear, and represent the current state of the art.

Among these categories, analytical placers have gained particular prominence in
recent years due to their ability to scale with design complexity and deliver high-
quality results. The next section delves deeper into the principles of analytical place-
ment, highlighting why it has become the dominant approach in modern physical

design flows.

40

2. Mized Size Placers

2.4 Analytical Placers

Among the various placement strategies, analytical placers have emerged as the most
prominent and widely adopted in modern VLSI design flows. Their strength lies in
the ability to model placement as a continuous optimization problem, enabling the
use of powerful mathematical techniques to efficiently explore the solution space; un-
like stochastic or partitioning-based methods, analytical placers can simultaneously
consider global wirelength minimization and local density constraints, making them
particularly effective for large-scale and high-performance designs.

Despite their advantages, analytical placers are not without limitations; the op-
timization problems they solve are often nonlinear and computationally intensive,
which can lead to longer runtimes compared to heuristic-based approaches. Never-
theless, their superior solution quality and scalability have made them the foundation
of many state-of-the-art placement tools.

Analytical placement techniques can be broadly divided into two main categories:

quadratic placement and nonlinear placement.

e Quadratic Placers: use quadratic models for wirelength (e.g., FastPlace [16],
SimPL [17]). This category of placers approaches the issue by alternating be-
tween an unconstrained wirelength minimization phase and a rough legalization
(LG) or spreading phase. The wirelength minimization phase typically employs
a quadratic wirelength model and aims to minimize the overall wirelength with-
out regard to overlaps among cells. The rough LG phase eliminates overlaps
using heuristic methods without explicitly factoring in the wirelength cost.
Through the iterative process of these two phases, cells can be progressively

spread apart while simultaneously minimizing the wirelength cost.

e Nonlinear Placers: addresses the placement challenge using nonlinear opti-
mization methods (e.g., ePlace [1], ePlaceMS [3], RePlAce [18] and DREAM-
Place [2]). It establishes a nonlinear optimization problem with a wirelength
objective that is subject to a density constraint. By incorporating the density
constraint into the objective, gradient descent-based methods can be utilized

to seek a high-quality solution.

While analytical placers have demonstrated remarkable performance in standard-
cell placement, their effectiveness is further tested in more complex scenarios in-
volving both standard cells and macros. The next section explores the challenges
and strategies associated with mixed-size placement, where the coexistence of het-
erogeneous components introduces new dimensions of complexity to the placement

problem.

2.5 Mized-Size Placement

41

2.5 Mixed-Size Placement

As modern integrated circuits increasingly integrate heterogeneous components, the
placement problem evolves from a standard-cell-centric task to a more complex sce-
nario involving both standard cells and large macro blocks. This paradigm, known
as mized-size placement, introduces a new set of challenges due to the significant
disparity in size, constraints, and behavior between the two object types.

Unlike standard cells, which are small, numerous, and highly regular, macros are
large, sparse, and often subject to strict placement and orientation constraints. These
differences complicate the optimization landscape and demand more sophisticated
placement strategies.

Mixed-size placers must overcome several technical complications, including gra-
dient imbalance during optimization, slow convergence due to the presence of large
movable objects, and difficulties in achieving legal placements without sacrificing

quality. Despite these challenges, mixed-size placement offers several advantages:

1. Generality: A unified treatment of standard cells and macros avoids reliance

on ad hoc heuristics.

2. Scalability: Advanced techniques such as FFT-based density modeling, precon-

ditioning, and GPU acceleration enable efficient handling of large designs.

3. Quality: High-quality solutions can be achieved even in the presence of large

macros, with reduced wirelength and congestion.

4. Extensibility: The framework can be extended to incorporate additional objec-

tives such as timing, power, and routability.

Historically, mixed-size placement algorithms have been developed following three

main paradigms:

e Two-stage methods involve two distinct phases: floorplanning and placement.
Initially, the location and orientation of macros are established and fixed, fol-
lowed by placement that focuses on optimizing only standard cells on a global
scale. However, the limited data regarding standard cell distribution misleads
the floorplanner during the early stages, resulting in a suboptimal floorplan

solution that diminishes overall quality.

e Constructive (floorplan-guided) approaches leverage the benefits of both floor-
plan and placement, the floorplanner concurrently optimizes both macros and
soft blocks (clusters of standard cells). An incremental placement then dis-
tributes standard cells on a local scale, subsequently incremental global and

detailed placement further disperses and legalizes the standard cells within

42

2. Mized Size Placers

the local scale. Nevertheless, the inherent limitations of partitioning and clus-
tering often lead to suboptimal solutions from a placement perspective. The
optimization space for standard cell placement can be significantly reduced,

with quality loss that is challenging to recover.

¢ One-stage solutions continue to be favored by most contemporary placement
algorithms. By jointly optimizing all components, these methods avoid the
limitations of earlier paradigms and offer better integration with modern ana-

lytical placement engines.

Several state-of-the-art analytical placers have been extended to support mixed-
size placement, each adopting different strategies to address the associated challenges.
The next section presents a comparative analysis of three engines, ePlace [1], ePlace-
MS [3] and DREAMPlace [2], highlighting their core methodologies, strengths, and

limitations.

2.6 Comparative Overview: ePlace vs ePlace-MS vs DREA M-

Place

In recent years, the evolution of analytical placement has led to the development
of several high-performance engines, each pushing the boundaries of scalability, ac-
curacy, and runtime efficiency. Among this there are ePlace [1], ePlace-MS [3] and
DREAMPIlace [2], three tools that share a common foundation in electrostatics-based
modeling but diverge significantly in their implementation strategies, optimization

techniques, and hardware acceleration capabilities.

These engines exemplify different stages in the progression of analytical place-
ment: from CPU-based optimization with strong mathematical foundations, to mixed-
size support with enhanced preconditioning, and finally to GPU-accelerated frame-
works that leverage modern deep learning infrastructures. Understanding their sim-
ilarities and differences provides valuable insight into the trade-offs involved in de-

signing placement tools for increasingly complex VLSI circuits.

The following table summarizes the core characteristics of each engine, comparing

their conceptual models, optimization strategies, and architectural choices:

2.6 Comparative Overview: ePlace vs ePlace-MS vs DREAMPlace

43

ePlace

ePlace-MS

DREAMPlace

Core Concept

Electrostatics-based
placement using FFT

and Nesterov’s method

Extension of ePlace

for mixed-size circuits

GPU-accelerated
analytical placement
using deep learning
toolkits (PyTorch)

Density Model

Electrostatic analogy
with Poisson’s equation
solved via DCT/DST

Same as ePlace,
extended to handle macros

with nonlinear preconditioning

Same electrostatic model,
implemented with
GPU-accelerated DCT/IDCT

Nesterov’s method

Nesterov’s method

Multiple solvers via PyTorch

Optimization with Lipschitz-based with Lipschitz prediction (Nesterov, Adam, SGD);
step prediction and backtracking. automatic differentiation
GPU-based (CUDA kernels
Acceleration CPU (OpenMP) CPU . ased (el%le °
for wirelength and density)
Two-phase:

Fully integrated with PyTorch;
supports multi-GPU; flat netlist

Placement Flow | Flat netlist, no clustering macro legalization (SA)

+ standard cell refinement

Table 2.1: Comparison of ePlace, ePlace-MS, and DREAMPlace

While the comparative overview highlights the architectural and algorithmic dis-
tinctions among these tools, a key unifying element lies in their shared use of an
electrostatics-inspired density model, known as eDensity. This model plays a cen-
tral role in guiding the placement process by simulating the physical behavior of
charged particles in an electric field. The next section delves into the theoretical
foundations and practical implementation of the eDensity model, illustrating how it

enables efficient and physically meaningful placement optimization.

2.6.1 eDensity

A fundamental component shared by the analytical placers ePlace [1], ePlace-MS [3]
and DREAMPIlace [2] is the electrostatics-inspired density model known as eDensity.
This model provides a physically intuitive and computationally efficient framework
for modeling placement density, by treating the entire placement instance as a two-
dimensional electrostatic system where each movable object, a standard cell or a
macro, is modeled as a positively charged particle, and the interactions among these
particles are governed by classical physical laws such as Coulomb’s and Lorentz’s.

This analogy transforms the density balancing problem into the search for an
electrostatic equilibrium: cells in overfilled regions experience repulsive forces and are
pushed toward underutilized areas, while those in less dense regions remain relatively
stationary. The result is a natural and smooth redistribution of cells that promotes
uniform density and minimizes overlaps, all within a continuous and differentiable
optimization framework.

Each node i (a cell or a macro block) in the netlist is transformed to a positively
charged particle. The electric quantity ¢; of the particle is set to be the node area

A;. The motion of a movable cell i is driven by the electric force

44 2. Mized Size Placers

F; = q;&

formulated by Lorentz force law, where &; is the local electric field. Similarly, the

cell potential energy N; is calculated as

N; = q;1;

where 1); is the electric potential at cell 5. By Coulomb’s law, the electric field and
potential at cell ¢ are the superposition of the contribution from all the remaining

cells in the system.

Placement Instance Electrostatic System
™ 2 R
Cell Instance Cell Instance
;"«

N A A 4
d Cell Density h (Charge Density h
plz,y) <I::> plax,y)

A A A W

S R - :
Potential Energy
Density Penalty '::> Niv) = Z g
el
.5 . A\ W,
é B (Electric Field
Density Gradient |:‘I> £lp y) = _n_“ _i
e’y
b 4 e V.

Figure 2.1: Placement instance modeled as an electrostatic system.

An electrostatic system with only positive charges will introduce only repulsion
forces. The corresponding equilibrium state would place all cells along the chip
boundaries, thereby violating the global placement constraint. To address this, all
three considered works remove the DC component (i.e., the zero-frequency compo-
nent) from the density distribution p(z,y), introducing negative charges and ensuring

that the integral of the density function over the placement region becomes zero.

2.6 Comparative Overview: ePlace vs ePlace-MS vs DREAMPlace

45

density density

boundary boundary

=

®@ -~ @
® @ O |
8 R " ® ® ® 6 o
0 x 0 X
(a) Initial Charge Density with DC Com- (b) Final Charge Density with DC Com-

ponent. ponent.

Figure 2.2: Initial and Final Charge Density in Electrostatic Placement with DC
component [1].

Since the density function transforms all objects into positive charges, the re-
sulting charge density distribution is initially positive. However, after removing the
DC component, under-filled placement regions, those with electric quantity below
the original DC level, become negatively charged. Over-filled regions remain posi-
tively charged but with reduced electric quantity due to the subtraction of the DC
component.

Cells located in positively charged (i.e., highly over-filled) regions are attracted to
negatively charged regions, leading to mutual neutralization of positive and negative
charges. Meanwhile, cells in negatively charged regions tend to remain stationary.
Ultimately, the system reaches an electrostatic equilibrium state characterized by
zero net charge density across the entire placement region and a total potential

energy reduced to zero.

density boundary density boundary
©9 @)\ =
DC® - ® ®®® - DC
‘ N X N 9 x LDl Gis X
R AL
0 bmmmommm e mm e —m e ——————————— T —————————— > 0 EEsssTmesssE s s S s S e s S e S i >
0 0
(a) Initial Charge Density without DC (b) Final Charge Density after Removing
Component. DC Component.

Figure 2.3: Initial and Final Charge Density in Electrostatic Placement after remov-
ing DC component [1].

Accordingly, all three papers model the placement density penalty and gradient
using the system’s potential energy and electric field, respectively.

By Gauss’ law, the electric potential distribution ¢ (x,y) can be coupled with
the density function p(x,y) using Poisson’s equation. A numerical solution based
on spectral methods is proposed in all three considered works to effectively and
efficiently solve Poisson’s equation. Spectral methods express the solution to a Partial
differential equation (PDE) as a summation of basis functions (e.g., sinusoidal and

cosine waveforms), with coefficients chosen to satisfy the PDE and its boundary

46

2. Mized Size Placers

conditions.

A sinusoidal function, being odd and periodic, naturally satisfies the Neumann
boundary condition by diminishing to zero at the boundary of each period. Conse-
quently, sinusoidal wave functions are used as basis functions to represent the electric
field. Since the density and potential functions correspond to the derivative and inte-
gral of the field function, cosine waveforms are employed as basis functions to express
them.

Based on this frequency-domain decomposition (obtained using Discrete Cosine
Transform (DCT) and Discrete Sinusoidal Transform (DST), efficiently computed via
the Fast Fourier Transform (FFT)), spectral methods are applied to solve Poisson’s

equation in the placement modeling framework.

The adoption of the eDensity model has been instrumental in enabling scal-
able and high-quality placement, particularly in mixed-size and large-scale designs.
However, as circuit complexity continues to grow, there is an increasing need for
placement engines that can leverage modern hardware acceleration to further reduce
runtime without compromising quality.

This need has led to the development of DREAMPlace |2|, which reimagines the
placement problem through the lens of deep learning. The next section explores the
conceptual analogy between analytical placement and neural network training, and
how this analogy enables the use of GPU-accelerated deep learning frameworks to

solve placement problems efficiently.

2.6.2 Deep Learning Analogy for GPU Acceleration

As the scale and complexity of modern VLSI designs continue to grow, traditional
CPU-based placement engines face increasing limitations in terms of runtime and
scalability; to address these challenges, recent research has explored the use of GPU
acceleration and machine learning frameworks to enhance placement performance.
An innovative contribution in this direction is DREAMPIlace [2], which reinterprets
the analytical placement problem through the lens of deep learning.

At the core of this approach lies a fascinating analogy: both analytical placement
and neural network training can be formulated as large-scale nonlinear optimization
problems. This structural similarity enables the reuse of deep learning toolkits, orig-
inally developed for training neural networks, to solve placement problems efficiently
on GPU architectures. In particular, DREAMPlace [2] leverages PyTorch to imple-
ment forward and backward propagation routines, treating cell locations as trainable

parameters and using automatic differentiation to compute gradients.

e the wirelength cost in placement corresponds to the prediction error in neural

networks,

2.6 Comparative Overview: ePlace vs ePlace-MS vs DREAMPlace

47

e the density cost plays a role analogous to the regularization term.

In neural network training, each data instance with a feature vector x; and label y;
is processed by the network to produce a prediction ¢(x;; w). The training objective
is to minimize the total loss over the weights w, which includes both the prediction
error and a regularization term R(w) [19].

In the placement analogy, the cell locations (z,y) are collectively represented
as w. Each data instance is replaced by a net instance with a feature vector e;
and a target label of zero. The network computes a wirelength cost WL(e;;w),
and using an absolute error function f(¢,y) = |§ — y|, the total prediction error
becomes), WL(e;; w). The density cost D(w), independent of the net instances,

corresponds to the regularization term.

i n
min Z flo(ziiw), yi) + AR(w) minZWL(ei; w) + AD(w)
w w :
1 i
Forward Propagation Forward Propagation
(Compute obj) . (Compute obj)
Data Neural Error Net Neural Error
Instance o Network oy Function Instance o Network - Function
(@iyi) 7| olsw) o [Tf(o(isw), yi) (e,0) 7| WL(;w) ["WL(ei; w)
" Backward Propagation Backward Propagation
(Compute Gradient % (Compute Gradient %)
(a) Train a network for weights. (b) Solve a placement for cell locations.

Figure 2.4: Conceptual analogy between neural network training and analytical
placement optimization [2].

This one-to-one mapping between components in analytical placement and neural
network training enables the use of deep learning toolkits for placement implemen-
tation. Consequently, the placement problem can be solved using a neural network
training procedure, involving forward propagation to compute the objective and
backward propagation to compute gradients.

This reinterpretation of placement as a differentiable optimization problem has
not only enabled significant runtime improvements through GPU acceleration, but
also laid the groundwork for hybrid approaches that combine analytical rigor with
data-driven intelligence. Building on this foundation, Qualcomm® has developed a
proprietary macro placement tool that integrates machine learning techniques and
incorporates features from the open-source, GPU-accelerated framework DREAM-

Place [2]. The next section introduces this tool, highlighting its unique capabilities

48

2. Mized Size Placers

for macro placement exploration and its role in enabling interactive, user-guided

design prototyping.

2.7 Qualcomm® Macro Placer Tool

In addition to academic research, industrial efforts have also contributed significantly
to advancing placement methodologies, particularly in the context of mixed-size and
macro-dominated designs. One such contribution comes from Qualcomm® where I
carried out my internship as part of this thesis project; during this experience, I had
the opportunity to work directly with a proprietary macro placement tool developed
by the company, which integrates machine learning techniques and incorporates fea-
tures from the open-source, GPU-accelerated placement framework DREAMPlace
[2], this tool is designed to enhance the early stages of physical design by enabling
rapid exploration of macro placement alternatives, with the goal of improving both
design quality and engineering productivity.

Unlike traditional placers that often rely on fixed heuristics or rigid optimization
flows, the Qualcomm® tool introduces a more flexible and exploratory approach: it
leverages neural networks to generate a diverse set of macro placement candidates,
which are then evaluated and ranked based on key physical metrics. This capability
is particularly valuable in production environments, where early macro placement
decisions can have a profound impact on routability, timing closure, and overall
design convergence.

This tool takes as input a set of macro cells and their corresponding placement

constraints in the form of two files:

e LEFlist: contains a compilation of paths leading to the Library Exchange
Format (LEF) files associated with all the cells within the design.

e Design FEzchange Format (DEF) file: includes details about the design netlist,

the coordinates of the HM, the macros, and the locations of the pins.

Leflist {:>
Standard
M -50 N 1 ~10000) ~100
N Placer = Natei = IR — PE!L, = §
Def !::>

Figure 2.5: Schematic representation of the tool’s operations.

In the figure, a schematic representation of the tool’s workflow is illustrated. Ini-

tially, a macro placer determines the positions of the macrocells using the information

2.7 Qualcomm® Macro Placer Tool

49

extracted from the input LEF and DEF files. A neural network is then employed to
substantially increase the number of possible macro placements, generating a wide
variety of layout candidates. This expanded set is subsequently refined through a
filtering stage that eliminates unpromising or redundant placements. To simulate
realistic design conditions, standard cells are added, enabling accurate estimation of
key physical metrics such as congestion and HPWL. Finally, the remaining macro
placements are classified based on these metrics to identify the most viable configu-
rations. The outputs of the tool are provided in the form of .tcl scripts, which can
be sourced and directly used within commercial EDA tools.

To rank the generated macro placements, a Pareto curve is employed; this curve
is a standard tool in multi-objective optimization used to evaluate trade-offs between
competing objectives and, in this context, the two conflicting goals are wirelength
and congestion. The Pareto curve highlights the set of Pareto-optimal solutions,
where no placement can be improved in one objective without degrading the other,
so the placements that lie on this frontier are considered optimal trade-offs, while
those inside the curve are suboptimal, as at least one metric could be improved
without negatively affecting the other. This approach allows for a more balanced

and insightful evaluation of placement quality.

Rank 4

80 ——

Rank 3

uonsabuo)

Rank 2

20 —— O

| | | | |

20 40 60 80 100

Wirelength

Figure 2.6: Pareto curve illustrating the trade-off between wirelength and congestion.

The macro placer under evaluation has been specifically tailored to produce more

50

2. Mized Size Placers

human-like, peripherally driven placements, aiming to mimic the intuition and strate-
gies often employed by experienced physical designers. This design choice is moti-
vated by the observation that such placements tend to enhance routability and lead
to better power-performance trade-offs, particularly in designs where ultra-high per-
formance is not the primary objective. Compared to conventional placers, which
often prioritize metrics like wirelength above all else, this tool emphasizes a more

peripheral distribution of macrocells, aligning with practical design heuristics.

pIpTs [T
T JUE
]

(a) (b)

Figure 2.7: Comparison of two macro placements generated using different tools and
netlists. One is peripherally driven (a), while the other is focused on wirelength (b).

The Qualcomm® macro placer thus represents a concrete application of the the-
oretical and algorithmic principles discussed throughout this chapter; by combining
analytical placement foundations, GPU acceleration, and machine learning-driven
exploration, it exemplifies how modern tools can bridge the gap between academic
research and industrial needs. Its ability to generate diverse, human-like macro
placements and evaluate them through multi-objective metrics such as wirelength
and congestion reflects a broader shift toward more adaptive and designer-aware
placement strategies.

The next and final section of this chapter offers a summary of the key insights
presented so far, highlighting the evolution of placement techniques, the challenges of
mixed-size design, and the emerging role of hybrid, ML-based approaches in shaping

the future of physical design automation.

2.8 Conclusion

This chapter has provided a comprehensive overview of the theoretical and practical
aspects of mixed-size placement in VLSI physical design. It began by introducing
the fundamental concepts of placement and global placement, followed by a detailed

discussion of wirelength smoothing, density modeling, and the formulation of the

2.8 Conclusion

51

placement problem as a nonlinear optimization task; these foundations set the stage
for understanding the complexity of modern placement, which must balance mul-
tiple objectives, such as wirelength, congestion, timing, and power, while handling
heterogeneous components like standard cells and macros.

The chapter then examined the main classes of placement algorithms, stochastic,
partitioning-based, and analytical, highlighting their respective strengths and lim-
itations. Particular attention was given to analytical placers, which represent the
current state of the art due to their scalability and ability to integrate multiple ob-
jectives into a unified optimization framework. Within this context, we explored the
challenges of mixed-size placement and reviewed how modern engines such as ePlace
[1], ePlace-MS [3]|, and DREAMPlace [2| address these challenges using electrostatics-
inspired density models and GPU-accelerated computation.

The discussion culminated in the presentation of Qualcomm®’s proprietary macro
placer, developed in an industrial setting and designed to support early-stage floor-
plan exploration through machine learning and designer-aware heuristics; this tool
not only exemplifies the practical application of the concepts discussed throughout
the chapter but also introduces a more interactive and exploratory approach to macro

placement.

Building on these foundations, the next chapter introduces the experimental con-
tribution developed during my internship at Qualcomm®. It presents an enhanced
version of the macro placer, extended with a graphical interface and integrated with
an area shrink optimization engine. This combined solution enables efficient floor-
plan exploration and supports early design decisions through a user-guided, multi-

objective approach.

Chapter 3
Experiment

Building upon the theoretical foundations and placement strategies discussed in the
previous chapter, this section presents the experimental contribution developed dur-
ing my internship at Qualcomm®. The work focuses on extending a proprietary
macro placement tool by integrating it with an area shrink optimization engine and
a graphical user interface GUI, resulting in a more complete and adaptable solution
for floorplan exploration.

This enhanced framework addresses a critical need in physical design: the ability
to rapidly explore a wide range of macro placement configurations under varying area
constraints, while maintaining control over key physical metrics such as wirelength
and congestion. By combining analytical placement principles, GPU acceleration,
and machine learning-based exploration, the tool enables designers to evaluate mul-
tiple floorplan alternatives early in the design flow, when decisions are most impactful

and least costly to revise.

The chapter begins with a detailed description of the GUI and its integration into
the existing floorplan flow; particular attention is given to the various configuration
options available to the user, which allow for fine-grained control over the exploration
process. Following this, a real-world test run is presented to demonstrate the tool’s
capabilities in an industrial context. In this experiment, a single engineer with limited
prior experience was able to generate and analyze eight distinct macro placements
across four different area configurations in parallel, showcasing the tool’s potential

for accelerating early-stage design exploration.

3.1 GUI Integration

The enhanced macro placement tool is now accessible through an intuitive and mod-
ular graphical user interface GUI, designed to support fast and flexible floorplan

exploration. As shown in Fig. 3.1, the GUI is organized into three main sections,

23

94

3. FEzperiment

each corresponding to a specific stage of the configuration and execution process.

Area Shrink GUI][
Shrink Configuration 1
vertoes:]] —
 — e —
L — L —
e —
‘ Direction v‘

Horizontal
Vertical
Both

Spectfic Edge

Floorplan Generator Configuration

ON/OFF Number of Ranks < Visual Check - l Additional Configurations =

1 Yes

2 No

10

Shrinked Shrinked Polygon

Preview Polygon
A
Run
A

Figure 3.1: The GUI that enables fast floorplan exploration.

The first section, labeled Shrink Configuration, allows users to define the
geometric and physical context in which the exploration will take place. The process
begins by specifying the coordinates of the Hard Macro (HM) to be analyzed, followed
by the manual placement of the pins. Once the macro and its interface are defined,
the user can configure the area shrink parameters, this is done by specifying the
initial and final area percentages (relative to the original macro area) and the step
size to be used for the shrink iterations. To maximize flexibility, the GUI offers four
shrink direction options: horizontal, vertical, bidirectional, or edge-specific, in this

last case, the GUI displays a preview of the macro with all edges numbered, allowing

3.1 GUI Integration

56

the user to select a specific edge to shrink. This feature is particularly useful for
fine-tuning the floorplan in constrained or asymmetric design contexts.

The second section, named Floorplan Generator Configuration, is dedicated
to configuring the proprietary macro placement engine. Users can choose whether to
activate the engine or bypass it, this is useful in cases where macro placements are
already available and the focus is solely on area variation. When enabled, the user
can specify the number of ranks to generate for each area configuration; as discussed
in Secion 2.7, the macro placer classifies its outputs using a Pareto-based ranking
system that balances wirelength and congestion. Additionally, the GUI provides
an option to enable a visual check: once the macro placements are generated, a
preview window opens automatically for each area, allowing the user to inspect all
candidate placements; this interactive step helps identify promising configurations
to carry forward into the full physical design flow, while discarding less viable ones
early on.

The final section provides a summary of all shrinked macro versions and includes
a button to launch the full exploration flow. Once the user initiates the run, the tool
automatically generates a structured flow within the industrial EDA environment, as
illustrated in Fig. 3.2. The flow is organized as a tree of nodes and branches, where
each area configuration corresponds to a parent node responsible for dumping the
necessary input files (DEF and LEFlist) and invoking the macro placement engine.
For each rank within a given area, a separate branch is created; these branches wait
for the macro placement outputs to become available and then automatically source
the corresponding .tcl scripts, allowing the flow to proceed seamlessly through the

standard physical design stages.

Libary and DB
Preparation

Area 0%
Macro Placer

Area -2%
Macro Placer

Area -4%
Macro Placer

Floorplan Step 1
Area 0% Rank 1

Floorplan Step 2
Area 0% Rank 1

Floorplan Step 1
Area -2% Rank N Area -4% Rank 1 Area -4% Rank N

Floorplan Step 2 Floorplan Step 2 Floorplan Step 2
Area -2% Rank N Area -4% Rank 1 Area -4% Rank N

[Floorplan Step 1 } {Floorplan Step 1 } . Floorplan Step 1 Floorplan Step 1

Area 0% Rank N Area -2% Rank 1

v v

Floorplan Step 2 Floorplan Step 2
Area 0% Rank N Area -2% Rank 1

Floorplan Step K Floorplan Step K Floorplan Step K Floorplan Step K Floorplan Step K Floorplan Step K
Area 0% Rank 1 Area 0% Rank N Area -2% Rank 1 Area -2% Rank N Area -4% Rank 1 Area -4% Rank N

Figure 3.2: Example of flowchart of the Macro Placer process illustrating floorplan
exploration under different area reduction scenarios (0%, -2%, -4%), with multiple
ranked outputs.

56

3. FEzperiment

This approach not only simplifies the configuration and execution of complex
floorplan exploration tasks, but also ensures that the tool remains accessible and
adaptable to a wide range of design scenarios. By abstracting away much of the
manual setup typically required in physical design flows, the interface empowers
engineers to focus on evaluating design trade-offs and making informed architectural
decisions. The seamless integration with commercial EDA environments further
enhances its practicality, enabling rapid deployment and efficient iteration within
real-world workflows.

To assess the effectiveness of the tool in a realistic industrial context, the next
section presents the results of a test run. This experiment demonstrates how the tool
can be used to explore multiple macro placement configurations across different area
shrink scenarios, highlighting its potential to accelerate early-stage design exploration
and support decision-making even in the hands of a single engineer with limited prior

experience.

3.2 Test Run: Multi-Area Floorplan Exploration

To evaluate the practical utility of the developed tool, a test run was conducted on
a real design scenario involving multiple area configurations. The objective was to
assess how the tool performs in generating and managing diverse macro placements
under varying area constraints, and to demonstrate its effectiveness in supporting
early-stage floorplan exploration.

In this experiment, four distinct area configurations were selected, corresponding
to area shrink levels of 0%, -1%, -2%), and -3% applied in both horizontal and vertical
directions. For each configuration the tool automatically generated multiple macro
placements but to streamline the downstream stages of the physical design flow and
minimize the need for manual legalization, given that the macro placer is not yet
capable of producing fully legalized outputs, two top-ranked placements per area
were selected. This resulted in a total of eight macro placements.

It is important to note that the shrink percentage defined in the GUI refers to
the total bounding area of the HM. However, since the macro itself remains fixed
in size, the effective area available for standard cell placement, referred to as the

placeable core area, is reduced more significantly.

Aom’ginal _ Ashrinked
Placeable Core Area Shrink = —“—— A -100 (3.1)
Acore™

where A%79Mal io the initial area available for standard cell placement (i.e., total

shrinked
Acore

area minus macro area), and is the reduced area after applying the shrink.

The following table shows the computed values of placeable core area shrink for each

8.2 Test Run: Multi-Area Floorplan Ezploration

57

of the four tested configurations:

Shrink 0% -1% 2% -3%
Placeable Core Area Shrink | 0% | 3.25% | 7.26% | 10.84%

Table 3.1: Effect of design shrink on placeable core area reduction.

From the table can be seen that even modest reductions in the total design area
result in a significantly larger decrease in the placeable core area. For instance, a
global shrink of 2% leads to a 7.26% reduction in the area available for standard cell
placement. This highlights the importance of carefully evaluating macro placement
strategies under different area constraints, as the available routing and placement
resources can be impacted more severely than the shrink percentage might suggest.

To better understand how these area reductions influence macro placement qual-
ity and feasibility, the next section presents a visual comparison of the generated
macro placements across the different shrink configurations. For each case, the place-
ments are shown both before and after manual legalization, allowing for a qualitative

assessment of the tool’s output and its adaptability to real-world design constraints.

3.2.1 Legalization

While the macro placement engine integrated into the tool is capable of generating
high-quality and diverse placement candidates, it currently does not guarantee that
the outputs are fully legal (i.e., free from overlaps and aligned to placement grids) and
as a result, a manual legalization step is still required to ensure that the generated
macro placements can be used in downstream stages of the physical design flow.

This limitation is expected to be addressed in future versions of the tool, in this
way once automatic legalization will be supported, the GUI will allow users to choose
whether to enable or disable overlap constraints during placement generation. This
flexibility will be particularly useful in early design stages, where allowing a limited
degree of overlap can lead to more exploratory and unconstrained macro placements.
In contrast, during later stages of the flow, users will be able to enforce strict legality
to ensure that the outputs are immediately usable for Place & Route (PnR) and
signoff.

Figure 3.3 shows the default macro placement used as a baseline in this exper-
iment. This placement was generated using a less recent version of Qualcomm®s
proprietary machine learning-based macro placer. Its origin is evident from certain
unconventional placement decisions that would likely not be made by a human de-
signer. For instance, the tall orange macros at the bottom are split into two banks:
one placed unusually close to the corner of the layout, and the other more centrally

located, this creates a dent between the two banks, a configuration typically avoided

58

3. FEzperiment

in manual placements due to its potential to cause routability issues. Additionally,
the four blue macros in the upper-right region are positioned closer to the center of
the core, forming a bump that a human designer would likely smooth out to maintain
a more regular and congestion-aware layout. Another clear indication of automated
placement is the incomplete preservation of hierarchical grouping: macros belonging
to the same logical block or hierarchy are not consistently placed in proximity, which
contrasts with common manual floorplanning practices aimed at improving locality

and simplifying routing.

1]
o i

Figure 3.3: Default macro placement.

One notable issue observed in earlier versions was the incorrect handling of fixed
cells, such as ESD cells, which are typically required to be placed at specific loca-
tions within the design. In the default placement shown above, two ESD cells are
correctly positioned in the top-left corner of the layout, this result was achieved by
manually adjusting the positions of nearby macros to create sufficient space for the
ESD insertion. Since the same adjustment has not yet been applied to the new
placements, the ESD cells appear incorrectly placed and overlapping at coordinate
(0,0), the bottom-left corner, due to the lack of fixed-cell awareness in the placement
engine. Therefore, a similar macro rearrangement will be required for each of the
newly generated placements to ensure proper ESD integration.

To address this, a new feature has been added to the GUI that allows users to
fix the position of specific cells prior to placement; this includes not only ESD cells,
but also other critical components such as Power Mux (PMUX) and other macros
with strict placement requirements. This enhancement ensures that future macro

placements respect these constraints, improving both the realism and usability of

8.2 Test Run: Multi-Area Floorplan Ezploration

59

the generated layouts.
The following figures present the macro placements generated for each area shrink

configuration, both before and after manual legalization. These visualizations pro-
vide insight into the quality of the raw outputs, the nature of the required ad-
justments, and the overall effectiveness of the tool in producing viable floorplan

candidates under varying design constraints.

ET SR [Tooco [AN —

HU(H H}WW
! [l

‘
\
g ||l HIINIIE

Figure 3.4: Macro Placement Pre and Post legalization: Area 0% / Rank 1.

I

L
M HHM

FI
y
il]
g || T [T TR

Figure 3.5: Macro Placement Pre and Post legalization: Area 0% / Rank 2.

o

:

A il

i T
il [T

| T[]

Figure 3.6: Macro Placement Pre and Post legalization: Area -1% / Rank 1.

60 3. FEzperiment

[T _T [[[Ny —

L
.
o 1L

Figure 3.7: Macro Placement Pre and Post legalization: Area -1% / Rank 2.

13 {ILDHW R I

I uu \
]EUU

Figure 3.8: Macro Placement Pre and Post legalization: Area -2% / Rank 1.

|
—T

[
-

* 1

e —

Figure 3.9: Macro Placement Pre and Post legalization: Area -2% / Rank 2.

8.2 Test Run: Multi-Area Floorplan Ezploration

61

i 1
Il] (I

| EsD EsD |

_—‘l“ —

Figure 3.10: Macro Placement Pre and Post legalization: Area -3% / Rank 1.

I D L
u1] il

Esp -~

Figure 3.11: Macro Placement Pre and Post legalization: Area -3% / Rank 2.

During the manual legalization process, a deliberate effort was made to minimize
modifications to the original macro placements generated by the tool; this choice was
motivated by the desire to evaluate the tool’s performance as objectively as possible,
preserving the spatial intent of the machine learning-based engine and avoiding the
introduction of human bias in the layout.

In typical design flows, it is common practice to introduce channels between
memory banks to facilitate routing and reduce stacking depth. However, in this
experiment, such adjustments were applied only when it was straightforward, on the
other hand in several cases, small overlaps between macros were intentionally left
unresolved, as eliminating them would have required significant repositioning of the
cells, potentially distorting the original output and undermining the purpose of the
evaluation.

This conservative approach ensures that the results presented in the following
sections reflect the tool’s actual capabilities and limitations, providing a more accu-
rate basis for assessing its effectiveness in generating viable macro placements under
varying area constraints.

From the visual inspection of the generated macro placements, similarly to what

62

3. FEzperiment

was observed in the default case, it becomes evident that these layouts were not
produced by human designers since several characteristics, easily recognizable across
the different configurations, point to the algorithmic nature of the placements.

Notably, the presence of notches (irregular indentations in the floorplan), bumps
(isolated macros protruding from otherwise aligned rows), and the lack of clear hi-
erarchical grouping are all signs of a placement strategy driven by optimization
objectives rather than design intuition. These features, while potentially accept-
able from a purely physical standpoint, often conflict with common human design
practices that prioritize symmetry, alignment, and logical grouping for readability,
maintainability, and routability.

Such patterns reinforce the idea that the tool operates with a different set of pri-
orities compared to a human designer, focusing on global metrics like wirelength and
congestion rather than visual or structural regularity; this distinction is important
when interpreting the results, as it highlights both the strengths and the current

limitations of machine-generated macro placements in real-world design contexts.

While the visual characteristics of the generated macro placements offer valuable
insights into the algorithmic nature of the tool’s output, a comprehensive evaluation
requires a quantitative analysis of the design metrics that ultimately determine the
viability of a physical implementation. To this end, the following section presents the
QoR obtained after completing the placement stage for each configuration; metrics
such as total wirelength, congestion, timing slack, and utilization serve as objective
indicators of the tool’s effectiveness in producing layouts that are not only physically
realizable but also competitive in terms of performance and efficiency. By comparing
these results across different area constraints and placement strategies, we aim to
assess the practical impact of the tool’s decisions and identify potential areas for

improvement in future iterations.

3.2.2 Quality of Results at Placement stage

Following the qualitative assessment of the macro placements, this section presents a
detailed quantitative evaluation aimed at measuring the practical implications of the
generated layouts. The analysis focuses on the QoR obtained immediately after the
placement stage, offering a comprehensive view of how each configuration performs
in terms of physical feasibility, routing complexity, and timing robustness.

To structure the evaluation, three main categories of metrics are considered: cell
metrics, wire metrics, and power metrics; these dimensions capture different as-
pects of the design’s physical characteristics and are visualized through a series of
heatmaps. The cell metrics heatmap highlights areas of high cell density and po-

tential congestion, which are critical for understanding placement compactness and

8.2 Test Run: Multi-Area Floorplan Ezploration

63

routability. The wire metrics heatmap provides insight into wirelength distribu-
tion and routing pressure, helping to identify regions where excessive interconnect
complexity may arise. Finally, the power metrics heatmap reveals the spatial dis-
tribution of dynamic and leakage power, which is essential for early-stage thermal
and power integrity analysis.

In addition to these physical indicators, the section also includes a set of plots il-
lustrating the setup timing margins across multiple Process-Voltage-Temperature
(PVT) corners. These results are particularly important for evaluating the timing
resilience of each placement under realistic operating conditions. By analyzing the
slack distribution across corners such as typical-typical (TT), slow-slow (SS), and
fast-fast (FF), we can assess how well the placement supports timing closure and
identify configurations that may introduce critical path violations or require further
optimization in later stages.

Together, these visual and numerical analyses provide a multi-faceted perspective
on the quality of the placement solutions. They not only highlight the strengths
and limitations of the machine-generated layouts but also serve as a foundation for
understanding how early placement decisions propagate through the design flow,

ultimately affecting PPA outcomes.

Cell Metrics Analysis

The heatmap in Fig. 3.12 presents a comparative overview of key cell-related metrics
across different area constraint scenarios; these metrics include buffer and inverter
area and count, sequential and standard cell area, total standard cell count, and
overall cell utilization. All values are normalized with respect to the default config-
uration, allowing for a direct comparison of how each metric evolves as the available
placement area is progressively reduced.

A first observation concerns the stability of the metrics associated with buffers,
inverters, and standard cells. Across all configurations, the values for Buff area,
Buff count, Inv_area, and Inv_count remain consistently close to 1, this indicates
that the tool’s placement strategy does not significantly alter the number or area
of these fundamental components, regardless of the area constraints. Similarly, the
total standard cell count and area (Stdcell count, Stdcell area) exhibit only minor
fluctuations, suggesting that the synthesis and placement stages maintain a compa-
rable logic footprint across all scenarios.

The most notable variations are observed in the Utilization metric; in the con-
figurations where the total area is equal to that of the default case (0% reduction,
rank 1 and 2), utilization is slightly lower, this may be attributed to differences in
macro organization introduced by the tool, which can affect the distribution and

compactness of standard cells. Interestingly, in the case of a 1% total area reduction,

b4

3. FEzperiment

corresponding to a 3.25% decrease in placeable area as reported in Table 3.1, the
utilization remains nearly identical to the default, indicating that the tool is capable
of adapting to moderate area constraints without compromising placement density.

As expected, in the more aggressive scenarios with 2% and 3% area reductions
(corresponding to 7.26% and 10.84% reductions in placeable area, respectively), uti-
lization increases progressively. This trend reflects the natural consequence of fitting
the same logic content into a smaller footprint, leading to higher cell density and

potentially greater routing complexity in subsequent stages.

Buff_count 0.994 1.016 0.993 0.999 1.005 0.985 Al fonlil 0.985 - 1.06
inv_area{ 0.993 1.004 0.976 n 0.998 0.985 1.012 0.969 L 1.04
Inv_count - 0.991 0.999 0.988 0.988 0.986 0.989 0.992 0.984 £1.02
Seq_area - 1.004 1.004 1.003 1.004 1.003 1.004 1.003 1.003 t1.00
Stdcell_area - 0.997 0.997 0.991 0.990 0.992 0.990 0.992 0.985 L0.98
Stdcell_count 0.996 0.997 0.993 0.997 0.994 0.992 0.996 0.993 L 0.96
Util 4 0.971 0.974 1.005 1.006 1.046 1.046 _ I 0.94

(‘"(Q | @(Q’ | G’(&\ | @69(| @60 | ("60 | ("(§D ("&L

o° o° K K £ £ 5 5

Figure 3.12: HeatMap QoR Placement Cell Metrics.

Overall, this analysis confirms that while the tool maintains consistent behavior
in terms of cell instantiation, the utilization metric is sensitive to area constraints
and provides an early indicator of the pressure imposed on the layout by tighter

design envelopes.

Wire Metrics Analysis

The heatmap in Fig. 3.13 illustrates the behavior of key wire-related metrics across
different area constraint scenarios; The metrics considered include the total number
of nets (Net_count), the estimated total wirelength (Wirelength), and the routing
overflow (Overflow). All values are normalized with respect to the default configu-
ration, enabling a direct comparison of how these parameters evolve as the available
placement area is progressively reduced.

As shown in the heatmap, the Net count remains remarkably stable across all
configurations, with values consistently close to 1, this confirms that the logical
connectivity of the design is preserved regardless of the macro placement strategy or

area constraints, as expected in a flow where synthesis is held constant.

8.2 Test Run: Multi-Area Floorplan Ezploration

65

The Wirelength metric also remains close to 1 in all scenarios, but a slight down-
ward trend can be observed as the area decreases. This behavior is consistent with
expectations: as the total layout area shrinks, the average distance between macros
and standard cells is reduced, leading to a modest decrease in the total interconnect

length required to maintain connectivity.

The most significant variations are observed in the Overflow metric, which serves
as an early indicator of routing congestion. In the configurations with 0%, 1%, and
2% area reductions, overflow values remain close to or below the baseline, with several
cases showing improvements of up to 20% compared to the default. This suggests
that the tool is capable of producing placements that are not only compact but also

more routable under moderate area constraints.

However, this trend is sharply reversed in the most aggressive scenario, with a
3% area reduction. In this case, the overflow metric increases dramatically, approx-
imately tripling relative to the default configuration. This abrupt degradation indi-
cates that the design has reached a critical threshold where the reduced placement
area can no longer accommodate the routing demand without significant conges-
tion, potentially leading to violations or the need for costly design iterations in later

stages.

3.0
Net_count

r2.5
Overflow

2.0

r15

Wirelength

1.0

N
S

&
N
& & & & & & & &

> o > o > 2
& & & & S &

o

S oo oo

S oy oo

) oo

5 oo

> o\

e 0

el

Figure 3.13: HeatMap QoR Placement Wire Metrics.

In summary, while the wire metrics remain largely stable under moderate area
reductions, the overflow behavior highlights a clear limit beyond which the placement
quality, and consequently the routability, deteriorates rapidly. This insight is crucial

for defining practical area constraints in future design iterations.

66

3. FEzperiment

Power Metrics Analysis

Figure 3.14 presents the normalized power metrics across various area constraint
scenarios, including internal power, switching power, leakage power, and total power.
These metrics provide insight into the energy profile of the design immediately after
placement, allowing for an early evaluation of power integrity and efficiency.

As shown in the heatmap, the values for internal power, switching power, and
total power remain remarkably stable across all configurations. These metrics con-
sistently hover around a normalized value of 1, indicating that the dynamic power
components; driven by capacitive loading and switching activity, are largely unaf-
fected by the changes in macro placement and area constraints; this stability suggests
that the tool’s placement decisions do not introduce significant variations in logic ac-
tivity or cell selection that would impact dynamic power.

In contrast, the leakage power metric exhibits a modest but consistent increase
across several configurations, with values exceeding the baseline by a few percentage
points. This behavior may be attributed to the increased cell density and tighter
packing in more compact layouts, which can lead to higher leakage due to proximity
effects, increased gate count, or shifts in threshold voltage distributions. Although
the variation is relatively small, it highlights the sensitivity of static power to layout
conditions and reinforces the importance of monitoring leakage even in early design

stages.

1.06

Internal
1.05
r1.04

Leakage

r1.03

Switching r1.02

1.01

Total_pwr

1.00

>
&

g
@ & @ & & @ & @

> o > o > o
N & & N & N

o

S o

S o

~ oo

o oo

5 o

5 oo

5 o

e

Figure 3.14: HeatMap QoR Placement Power Metrics.

Overall, the power metrics confirm that the tool maintains a stable dynamic
power profile across all scenarios, while the observed increase in leakage power under
tighter area constraints suggests a potential trade-off between compactness and static

power efficiency.

8.2 Test Run: Multi-Area Floorplan Ezploration

67

In conclusion, the heatmap-based evaluation of cell, wire, and power metrics
provides a comprehensive overview of the physical characteristics of the design im-
mediately after placement. The analysis confirms that the tool maintains consistent
behavior across most configurations, with buffer, inverter, and standard cell metrics
remaining stable and comparable to the default case. Wire-related metrics show a
slight reduction in wirelength with decreasing area, as expected, while routing over-
flow remains well-controlled up to moderate area reductions, but increases sharply in
the most compact scenario. Power metrics reveal stable internal and switching power
across all configurations, with a modest increase in leakage power under tighter area
constraints.

These results suggest that the machine learning-based placement tool is capable
of generating physically viable layouts even under constrained conditions, with pre-
dictable trade-offs in density, routability, and power dissipation. However, physical
metrics alone do not fully capture the viability of a design. To assess whether these
placements support timing closure and meet performance requirements, it is essential
to analyze the timing margins across a range of operating conditions.

In the following section, we shift our focus to the timing analysis, examining the
behavior of each configuration across multiple PVT corners. Metrics such as WNS,
TNS, and the number of failing points will be used to evaluate the timing robustness

of the placements and identify configurations that may require further optimization.

Timing Margin Analysis Across Corners

Figure 3.15 presents the Setup WNS measured across five distinct PVT corners.
Due to Company Confidential Information (CCI), the specific definitions of these
corners are omitted; however, based on their relative operating conditions, qualitative
classifications can be inferred.

Corner 1, characterized by high-speed process, voltage, and temperature condi-
tions, can be classified as a FF corner. In this scenario, all configurations exhibit
positive slack, indicating successful timing closure. The worst-performing runs are
those with -1% area reduction (rank 1) and -2% area reduction (rank 2), which show
slightly lower slack values. Interestingly, the best-performing configurations in this
corner are -1% rank 2 and -3% rank 2, which outperform even the default placement,
despite the reduced area.

Corner 2, representing a Slow corner, also shows positive slack across all config-
urations, though the values are generally lower than those observed in corner 1. The
default configuration maintains the highest slack, with the two alternative place-
ments at the same area level showing slightly reduced but comparable performance
whie all the other configurations with reduced area perform better then the ones

with the original area suggesting that certain compact placements may offer timing

68

3. FEzperiment

advantages under fast operating conditions.

Corners 8 and 4, both classified as SS corners, present a different behavior with
respect to the previous ones. In these scenarios, all configurations—including the
default—exhibit zero slack, indicating that the design is operating at the edge of
timing closure, the only exception is the -3% area reduction (rank 1) configuration,
which shows a small but negative slack, suggesting a timing violation introduced by
aggressive compaction.

Corner 5, which can be considered an extra SS corner, is the most critical in
terms of timing. Here, most configurations exhibit negative slack, although the
violations are generally small. Once again, the -3% rank 1 configuration stands out
as the worst-performing case, with a significantly more negative slack compared to
the others.

Setup Worst Negative Slack

Figure 3.15: Timing QoR Placement Setup Worst Negative Slack.

In summary, the WNS analysis reveals that while most configurations remain
timing-clean under typical and fast corners, aggressive area reductions can lead to
violations in slower corners. The results underscore the importance of evaluating
placement strategies across a diverse set of PVT conditions to ensure robust timing
behavior.

In addition to the WNS, Fig. 3.16 reports the TINS across the same five PVT
corners. This metric captures the cumulative sum of all negative slack values in the
design, offering a broader view of timing robustness by accounting for the number
and severity of failing paths.

As anticipated from the WNS analysis, the first four corners, corner 1 (FF),

8.2 Test Run: Multi-Area Floorplan Ezploration

69

corner 2 (Slow), and corners & and 4 (SS), exhibit zero TNS across all placement
configurations. This confirms that, in these scenarios, the designs either meet timing
entirely or have only isolated violations that do not accumulate across multiple paths.

The situation changes in corner 5, identified as the most critical (extra SS), where
several configurations begin to accumulate negative slack, indicating the presence of
multiple failing paths. Among them, the -3% area reduction (rank 2) configuration
stands out as the worst-performing case, with the highest TNS value. This result is
consistent with the WNS analysis and reinforces the conclusion that aggressive area

compaction can significantly degrade timing under extreme operating conditions.

Setup Total Negative Slack

Figure 3.16: Timing QoR Placement Setup Total Negative Slack.

These findings highlight the importance of evaluating not only the worst-case
path but also the overall timing distribution, especially when pushing the design
toward tighter area constraints.

Finally, Fig. 3.17 reports the number of failing points, i.e., the number of end-
points in the design that violate setup timing constraints; this metric complements
the WNS and TNS analyses by quantifying the extent of timing violations in terms
of affected paths.

As expected, the trend closely mirrors that observed in the TNS plot. In the
less critical corners no negative slack is observed, and consequently, the number of
failing points remains zero across all configurations. Similarly, in corners 3 and 4, the
number of failing points is also zero, except for the -3% area reduction configurations,
which introduce a small number of violations.

The most critical behavior is again observed in corner 5 (extra SS). Here, several
configurations exhibit non-zero failing points, with the -3% rank 1 configuration

standing out as the worst-performing case. This result is consistent with both the

70

3. FEzperiment

WNS and TNS analyses, confirming that this specific macro placement leads to

widespread timing violations under the most pessimistic operating conditions.

In contrast, the remaining configurations in corner 5 maintain a number of failing
points comparable to the default case, demonstrating that moderate area reductions

can still preserve timing integrity.

Setup Number of Failure Points

up Number

Figure 3.17: Timing QoR Placement Setup Number Failure Point.

In conclusion, the timing analysis across multiple PVT corners reveals a consis-
tent pattern: while most configurations maintain robust timing margins under typical
and moderately constrained conditions, aggressive area reductions, particularly the -
3% rank 2 configuration, tend to introduce violations in the most pessimistic corners.
The WNS, TNS, and number of failing points all confirm that corner 5, classified as
extra Slow-Slow, is the most timing-critical scenario. Nevertheless, several configu-
rations, including some with reduced area, demonstrate timing behavior comparable
to or even better than the default, highlighting the potential of machine-generated

placements to balance compactness and performance when carefully selected.

These results provide a comprehensive view of the placement stage’s impact on
timing closure and establish a solid baseline for evaluating the downstream effects
of routing. In the following section, we extend this analysis by examining the QoR
obtained after the routing stage, where additional physical effects such as wire resis-
tance, coupling capacitance, and detailed congestion come into play. This will allow
us to assess how well the placement strategies translate into fully implementable

designs and whether the observed trends persist or evolve in the final layout.

8.2 Test Run: Multi-Area Floorplan Ezploration

71

3.2.3 Quality of Results at Post Route Stage

This section presents the QoR obtained after the routing stage, where additional
physical effects such as wire resistance, coupling capacitance, and detailed congestion
are taken into account. These factors can influence both the physical and timing
characteristics of the design, making this stage critical for validating the viability of

the placement strategies.

It is important to note that the run corresponding to the -1% area reduction
rank 1 did not converge during the routing process and this may be attributed to
a combination of increased placement density and suboptimal macro organization,
which likely led to excessive routing congestion or violations that the tool was unable
to resolve within the allowed iteration or runtime limits. As a result, this configura-
tion is excluded from the post-route heatmaps and from the timing plots related to

setup and hold analysis.

Cell Metrics Analysis

Figure 3.18 shows the post-route cell metrics for the various placement configurations.
Overall, the values are very similar to those observed after placement (Fig. 3.12),
confirming the stability of the cell-level characteristics throughout the flow. However,

some subtle differences can be observed:

Buf area values are slightly higher than in the placement stage.

e Buf count is generally lower than in the placement stage for all configurations,

except for -3% rank 2, which shows a slight increase.

e Inv_area and Inv_count remain virtually unchanged.

e Seq area is identical to the placement values.

o Stdcell area and Stdcell count are very close to the previous stage, with neg-

ligible variation.

e Ulilization values are slightly lower (by a few percentage points) in most config-

urations, except for the two -3% area runs, where a small increase is observed.

72

3. FEzperiment

Buff_area q 0.972 0.985 0.953 0.900 - 0.934 0.992

1.050
Buff_count 0.984 0.996 0.991 0.944 0.914 0.986 -

r1.025

Inv_area - 0.956 0.980 0.949 0.950 0.914 0.955 0.925
r 1.000

Inv_count 0.962 0.973 0.955 0.959 0.958 0.963 0.957
r0.975

Seq_area - 1.004 1.004 1.004 1.003 1.004 1.003 1.003
r 0.950

Stdcell_area 0.994 0.997 0.990 0.978 0.966 0.978 0.977
- F0.925

Stdcell_count 4 0.992 0.994 0.991 0.982 0.976 0.991 1.004
- - 0.900

Util 4 0.968 0.973 1.006 1.031 1.020
0.875
> o > o o o > o
O N O N O N A N
& & & & & & & &
o° o* RS K £ £ 5 5

Figure 3.18: HeatMap QoR Post Route Cell Metrics.

In general, and consistent with the placement-stage results, all cell metrics remain
close to the normalized value of the default configuration, indicating that the routing

stage does not significantly alter the overall cell distribution or density.

Wire Metrics Analysis

Figure 3.19 presents the wire-related metrics collected after the routing stage for
each placement configuration. The metrics include Net count, Wirelength, DRC
violations, and Shorts, providing a comprehensive view of the routing quality and
physical feasibility of each layout.

As observed in the placement stage, the Net count remains consistently close to
1 across all configurations, confirming that the logical connectivity of the design is
preserved throughout the flow. Similarly, the Wirelength metric stays very close to
the normalized baseline, with a slight downward trend as the area is reduced; this
behavior mirrors the trend seen post-placement and is expected, as more compact
layouts naturally reduce the average interconnect distance. Notably, post-route wire-
length values are slightly lower than those observed after placement, likely due to
more accurate modeling of routing paths and detours during detailed routing.

An addition in the post-route analysis is the inclusion of DRC violations and
Shorts, which provide direct insight into the physical correctness of the routed design.
The most striking observation is the sharp increase in DRC violations for the most
compact configurations; while moderate area reductions maintain DRC counts within
acceptable limits, the -3% area reduction, particularly in rank 2, results in a dramatic
spike in violations, over 100x higher than the default case. This trend is further
confirmed by the Shorts metric, which also shows a substantial increase in the same

configurations.

8.2 Test Run: Multi-Area Floorplan Ezploration

73

DRC 102.429 300

250

Net_count
200

r 150
Shorts

- 100

Wirelength 50

g
&

&
& & & G & & & &

> o > o > &
S N S S & N

oo

S e

$)

K)

~ o\

5 N

5 oo

5 oo

2

Figure 3.19: HeatMap QoR Post Route Wire Metrics.

These results highlight the limitations of aggressive area compaction: while wire-
length and connectivity remain stable, the physical feasibility of the routing degrades
significantly, leading to a high number of rule violations and shorts. This underscores
the importance of balancing area optimization with routability and manufacturabil-

ity constraints in advanced physical design flows.

Power Metrics Analysis

Figure 3.20 presents the post-route power metrics across the various placement con-
figurations. The metrics include internal power, leakage power, switching power, and
total power, all normalized with respect to the default configuration.

As observed in the placement stage, the internal power remains remarkably sta-
ble, with values consistently close to 1 across all runs; this confirms that the internal
power component, primarily driven by cell activity and capacitance, is largely unaf-
fected by the routing stage.

The leakage power, on the other hand, shows a uniform increase across all con-
figurations, ranging from approximately 2% to 6% above the default; this behavior
is expected, as routing compaction and increased cell proximity can lead to higher
leakage due to layout-dependent effects such as threshold voltage shifts and increased
gate density.

The switching power, which was previously identical to the default across all con-
figurations in the post-placement heatmap (Fig. 3.14), now exhibits slight variations.
While some runs, such as 0% rank 1 and -3% rank 2, maintain the same switching
power as before, others show a modest increase. The most notable case is 0% rank
2, which registers a 4.7% increase in switching power, possibly due to changes in net

routing or increased coupling activity introduced during detailed routing.

74

3. FEzperiment

Internal

r1.06
Leakage

r1.04

Switching

r1.02

Total

1.00

/)f)

o
b(* o < o o o o
< < < < < < <

hY Y & o > o
& S & & & &

0

o

S° o° K o

~) oo

5 oo

5 oo

5 oo

2

Figure 3.20: HeatMap QoR Post Route Power Metrics.

Despite these localized variations, the total power remains effectively unchanged
across all configurations, mirroring the trend observed after placement and this in-
dicates that the combined effects of internal, leakage, and switching power remain
balanced, and that the routing stage does not introduce significant deviations in

overall power consumption.

Clock Metrics Analysis

Clock-related metrics weren’t available after the placement stage since the clock
tree synthesis (CTS) is performed subsequently. Figures 3.21 and 3.22 present two
complementary heatmaps that provide insight into the quality and efficiency of the

clock network across the various placement configurations.

In the first heatmap (Figure 3.21), we observe that the total clock area remains
very close to the default value across all configurations; a similar trend is seen in
the clock wirelength, which also remains close to 1. The only notable deviation is
observed in the 0% rank 2 configuration, which shows a 7.5% increase in wirelength,

suggesting a less efficient clock routing in that specific case.

8.2 Test Run: Multi-Area Floorplan Ezploration

1.06

Total_clock_area

F1.04

F1.02

r1.00

Wirelength

0.98

/)fi

o
b(* o o o o o o
K < K < & < K

> & > o > o
& & & S N &

©

o

<° K. o

~ oo

5 oo

5 o

5 oo

>

Figure 3.21: HeatMap QoR Post Route Clock Metrics.

The second heatmap (Figure 3.22) provides a more detailed breakdown of the

clock tree structure and performance. Several observations can be made:

e Buffer area and buffer count remain very close to 1 in most configurations,
indicating stable buffering requirements. The only exception is -3% rank 1,
which shows a significant increase of nearly 50%, likely due to the need for

additional buffering to compensate for increased congestion or skew.

o Inverter area and inverter count are also generally close to the default value,
with the exception of 0% rank 1, which shows a 15% reduction. This is partic-
ularly interesting given that this same configuration performs worse in terms of
total clock area and wirelength, suggesting a possible trade-off between inverter

usage and routing complexity.

o (Clock skew values are consistently higher than the default across all configura-
tions, ranging from 12% up to 40% in the case of 11% rank 2. This indicates
that tighter area constraints may introduce more variability in clock arrival

times, requiring careful balancing.

e The number of logic levels remains very close to 1, though there is a slight
upward trend as the area is reduced, suggesting a marginal increase in clock
tree depth.

o The mazimum insertion delay, which represents the longest delay from the
clock source to any endpoint in the design, also remains close to the default
across all configurations. This metric is critical for ensuring that the clock

signal reaches all parts of the design within acceptable timing bounds.

76

3. FEzperiment

Buff_area 1.073 1.006 1.109 1.019

1.077 1.029 1.119 1.024

fI%185)

Buff_count

Gskew

Inv_area

Inv_count 1.133

Levels 1.053 1.000 1.105

Max_insertion_delay 1.086 1.082 1.040 1.050 al(ofilz) 20 0.9

o > o > o > o
& & & & & & &

O
&
& & & & & G G &

oo

oo ??\e S

o° o° K o

~) oo

4° b

Figure 3.22: HeatMap QoR Post Route CLKM1 PROC Metrics.

In summary, the clock metrics confirm that the CTS process is generally robust
across different placement strategies. While some configurations, particularly those
with aggressive area reductions, require more buffering and exhibit higher skew, the

overall structure and timing of the clock tree remain well-controlled.

Timing Margin Analysis Across Corners

After completing the routing stage, a more comprehensive timing analysis is per-
formed to evaluate the robustness of each configuration under a wider range of op-
erating conditions. Compared to the placement-stage analysis, this post-route eval-
uation includes a larger set of PVT corners, capturing more realistic and extreme
scenarios. Moreover, in addition to the setup timing analysis, we now also consider
hold timing, providing a complete picture of the design’s temporal behavior.

Fig. 3.23 presents the WNS for setup timing across seven corners. Several trends

can be observed:

e Corners 1 and 2 are clearly the least critical, as all configurations exhibit
positive slack, however, there is notable variability among the different runs,
suggesting that while timing closure is achieved, the margin can vary signifi-

cantly depending on the placement strategy.

e Corners 8 to 6 show small slack values, both positive and negative, but the dif-
ferences between configurations are minimal. This indicates that these corners
are moderately critical, but the placement strategies do not drastically affect

timing in these conditions.

8.2 Test Run: Multi-Area Floorplan Ezploration 77

e Corners 7 and 8 represent the most pessimistic scenarios, and all configurations
exhibit negative slack; interestingly, the default configuration shows the highest
WNS, while it tends to decrease as the area is reduced. However, this trend

reverses slightly at the -3% area configurations, where WNS increases again,

though it remains lower than the default.

Setup Worst Negative Slack

—e— corner_1

e
i
n}

Setup Worst Negative Slack

corner_8
corner_7
corner_6

corner 5

corner_4

corner_3

corner 2

corner_1

o
&
&

o
5

Figure 3.23: Timing QoR PostRoute Setup Worst Negative Slack.

Overall, the results suggest that there exists a sweet spot in area reduction where
timing performance is optimized. Identifying and targeting this region is crucial for
balancing area efficiency with timing robustness, especially in advanced design flows

where aggressive compaction must be weighed against the risk of timing violations

under worst-case conditions.

Complementing the WNS analysis, Fig. 3.24 illustrates the TNS across the same
set of eight corners and placement configurations; as expected, the first six corners,
characterized by either positive slack or values very close to zero, exhibit negligi-
ble TNS across all runs. This confirms that timing violations are either absent or
extremely limited in these operating conditions, regardless of the placement strategy.

However, the behavior changes significantly in Corners 7 and 8, which represent

78

3. FEzperiment

the most pessimistic scenarios in terms of process, voltage, and temperature. Here,
the TNS increases markedly, revealing a more substantial accumulation of violating
paths; the trend observed in the WNS analysis is largely preserved: the default
configuration consistently performs worse than the optimized runs with 0% area
reduction (both rankl and rank2), as well as those with -1% and -2% area reduction.

Interestingly, a key divergence emerges when examining the -3% area configu-
rations. Unlike the WNS case, where the -3% runs showed a slight degradation
compared to -2%, yet still outperformed the default, the TNS values for -3% area
are higher than those of the default configuration in both rankl and rank2. This
suggests that while the most aggressive area reduction may still improve the worst-
case path, it introduces a larger number of violating paths overall, potentially due

to increased congestion or suboptimal path distribution.

Setup Total Negative Slack

corner_8
corner_7

o— comner_6
—e— comner_5
—s— corner 4
—e— comner_3
—e— comner_2
—e— comner_1

Setup Total Negative Slack

comer_8
corner_7
comer_6

comer_5

comer_4

comer 3

comner_2

corner_1

1
o
I

Figure 3.24: Timing QoR PostRoute Setup Total Negative Slack.

These findings underscore the importance of evaluating both WNS and TNS
when assessing timing robustness. While WNS highlights the single most critical
path, TNS provides insight into the cumulative impact of timing violations, which
can be more indicative of the overall design health. In this context, moderate area

reductions (up to -2%) appear to strike a better balance between compaction and

timing integrity.

Finally, Fig. 3.25 reports the number of failure points observed across the seven

corners and placement configurations. As anticipated from previous results, the first

8.2 Test Run: Multi-Area Floorplan Ezploration

79

six corners do not exhibit any significant timing violations, resulting in a failure point
count that is effectively zero across all runs.

The situation changes notably in Corners 7 and 8, which correspond to the most
pessimistic operating conditions; these corners show a substantial increase in the
number of failure points, in line with the elevated TNS values previously discussed.
In particular, Corner 8§ emerges as the most critical, with the number of failure
points ranging from approximately 500 in the 0% area reduction rankl configuration
to over 1000 in the -3% area reduction rankl case.

Interestingly, while the default configuration exhibits a higher TNS than the -
2% area configurations, it actually results in a lower number of failure points; this
suggests that although the default placement may have more severe violations in
terms of cumulative slack, the violations are concentrated in fewer paths. In contrast,
the -2% area configurations, despite having a lower TNS, show a broader distribution
of violations across the design. On the other hand, the configurations with 0% area
reduction and the single rank with -1% area consistently achieve both lower TNS

and fewer failure points, confirming their superior timing robustness.

Setup Number of Failure Points

corner_8
corner_7
comer_6
—— comer.5
—— comer 4
—e— comer_3
—e— comer 2
—e— comer_1

Tloﬂo

1800
|~ €00

[~ 400

Setup Number of Failure Points

[~ 200

corner_8
comer_7
cormer 6

corner_5

comer_4

cormer_2
comer_1

Figure 3.25: Timing QoR PostRoute Setup Number Failure Point.

This behavior highlights the importance of jointly analyzing TNS and failure
point count: while TNS captures the total slack deficit, the number of failure points
reveals how widespread the violations are. A configuration with fewer but deeper
violations may be easier to fix than one with many shallow violations, which could

require more extensive design changes.

80

3. FEzperiment

While setup timing violations are typically the primary focus during timing clo-
sure, since they directly impact the maximum achievable clock frequency, hold tim-
ing must also be carefully evaluated to ensure functional correctness across all op-
erating conditions. Unlike setup violations, which occur when data arrives too late,
hold violations arise when data arrives too early, potentially leading to incorrect

latching of values.

These violations are particularly critical under fast process, high voltage, and
low temperature conditions, where signal propagation is accelerated and clock skew
may be reduced. As a result, even short paths that are otherwise harmless under
typical conditions can become problematic. Moreover, hold timing issues are often
more difficult to fix post-route, as they may require the insertion of delay buffers
or changes to the clock tree, which can disrupt previously optimized portions of the

design.

Hold timing is typically evaluated only after the routing stage because hold anal-
ysis is highly sensitive to actual wire delays and parasitics, which are not accurately
modeled during placement. Unlike setup timing, which can be reasonably estimated
using idealized wire models, hold timing requires precise information about intercon-
nect geometry and load capacitance, details that become available only after detailed

routing.

Figure 3.26 illustrates the WNS for hold timing across eight PV'T' corners, ordered
from the least to the most critical based on their speed characteristics. Corners with
slow process (SS or TT), high temperature, and low voltage are less prone to hold
violations, while corners with fast process (FF), low temperature, and high voltage

represent the most challenging scenarios due to accelerated signal propagation.

Analyzing the general trend across all corners, it is evident that the default
configuration consistently exhibits higher WNS values. This suggests that the default

placement strategy is less effective in mitigating early data arrival issues.

The two configurations with -3% area reduction (rankl and rank2) also show
elevated WNS values, generally higher than those of the other runs. However, in
many cases, their performance remains comparable to the default, indicating that
the degradation introduced by aggressive area compaction is not excessively severe.
Notably, -3% rank2 performs better than both -2% rank2 and -3% rankl, indicating
that even within aggressive compaction strategies, specific placement variants can
yield more favorable timing outcomes.

The -2% area rank2, which in some corners achieves the highest WNS among
all runs, highlighting a potential weakness in this specific placement strategy. In
contrast, rank1 -2% area remains more competitive, with WNS values closer to those

of the -1% and 0% area reduction configurations.

8.2 Test Run: Multi-Area Floorplan Ezploration

81

Hold Worst Negative Slack

corner_8
corner_7
—8— Comer_6

e

o

5
lack

Hold Worst Negative s,

corner_8

-
A
& aQ

o &
2 @
. < o>
o & corner_1
Ha b{o O
5 &

‘,,:F'

corner_2

Figure 3.26: Timing QoR PostRoute Hold Worst Negative Slack.

The most robust results are observed in the 0% area reduction runs and the rank1
configuration at -1% area. These configurations consistently outperform the default,
achieving lower WNS values across most corners; This confirms that even with slight

area reductions, such as 0% or -1%, it is still possible to achieve excellent hold timing

results, often outperforming the default configuration.

Figure 3.27 shows the TNS for hold timing. A striking observation is that the last
corner, corresponding to the fastest and most critical operating conditions, exhibits
a TNS significantly higher than all others; this suggests a widespread presence of
hold violations in that scenario and anticipates a correspondingly high number of
failure points.

Beyond this extreme case, the general trend reveals several interesting patterns.
Despite often showing higher WNS values, the default configuration maintains TINS
values that are largely comparable to those of the 0% and -1% area reduction runs.
This mirrors the behavior observed in the setup timing analysis, where the default
also concentrated violations in fewer but deeper paths.

The -3% rankl configuration clearly performs the worst, with consistently high

TNS values across multiple corners; this aligns with its poor WNS performance and

82

3. FEzperiment

confirms that aggressive area reduction in this case leads to a widespread degradation
in hold timing.

Surprisingly, the -3% rank2 configuration performs better than expected; while
it still shows degradation in some corners, in the most critical ones it achieves TNS
values comparable to the default configuration. This partially confirms the trend
already hinted at in the WNS analysis and suggests that, under certain conditions,

even aggressive compaction can be mitigated by a more favorable placement strategy.

Hold Total Negative Slack

comer_8

corner_7
o~ comer_6
—&— comner_5
—e— corner_4
—s— corner 3
—e— corner_2
—e— corner_1

20

Hold Total Negative Slack

corner_8
comer_7
corner_6

corner_5

corner_4

corner_3

corner_2

comer_1

Figure 3.27: Timing QoR PostRoute Hold Total Negative Slack.

The analysis confirms that moderate area reductions (0% and -1%) offer a good

trade-off, while more aggressive reductions require careful tuning to avoid widespread

hold failures.

Figure 3.28 presents the number of failure points for hold timing across and,
as expected, the overall trends closely mirror those observed in the TNS analysis,
confirming the correlation between the extent of slack violations and the number of
affected paths.

However, a notable exception emerges in corner 6, which, despite not being the
worst in terms of TNS, shows by far the highest number of failure points across
all configurations. This indicates that, in this specific corner, violations are more
widespread but individually less severe, resulting in a high number of failure points
but relatively moderate TNS. Such behavior highlights the importance of analyzing

both metrics in tandem, as they capture complementary aspects of timing robustness.

8.2 Test Run: Multi-Area Floorplan Ezploration

83

Hold Number of Failure Points

Figure 3.28: Timing QoR PostRoute Hold Number Failure Point.

The post-route stage represents a critical checkpoint in the physical design flow,
where the impact of detailed routing, parasitics, and congestion becomes fully visible.
Through a comprehensive analysis of cell, wire, power, clock, and timing metrics, this
section has highlighted the strengths and limitations of various placement strategies
under realistic operating conditions.

From a physical standpoint, moderate area reductions (up to -2%) maintain sta-
ble cell distributions and wirelengths, while avoiding the severe DRC violations and
shorts observed in the most compact configurations; power metrics remain largely
consistent across all runs, with only minor variations in leakage and switching com-
ponents, finally, clock metrics confirm the robustness of the CTS process, though

tighter area constraints tend to increase skew and buffering requirements.

The timing margin analysis across multiple PVT corners has revealed distinct
trade-offs between setup and hold robustness. For setup timing, configurations
with 0% to -2% area reduction consistently outperform the default, achieving better
slack and fewer violations. For hold timing, the behavior is more complex: while
the default often shows higher WNS, its TNS and failure point counts remain com-
petitive, suggesting concentrated but less widespread violations. Notably, the -3%
rankl configuration performs poorly across all timing metrics, whereas -3% rank2

shows surprisingly resilient behavior in critical corners.

84

3. FEzperiment

Overall, Moderate area reductions offer the best balance between physical feasi-
bility and timing integrity while aggressive compaction may yield benefits in specific

scenarios but introduces significant risks that must be carefully managed

3.3 Conclusion

The increasing complexity of modern integrated circuits, driven by the relentless pace
of Moore’s Law, has placed unprecedented demands on the physical design phase
of the VLSI flow. Among the most critical and challenging tasks in this domain
is macro placement, a process that remains largely manual and heuristic-driven
despite its significant impact on downstream stages such as routing, timing closure,
and manufacturability; as highlighted in Chapter 1, this lack of automation limits
the ability to explore alternative floorplan configurations and obstruct the scalability

of design methodologies in the face of growing SoC complexity.

To address this gap, this thesis has investigated the integration of machine
learning techniques into the macro placement process, with the goal of enabling
fast, flexible, and automated floorplan exploration. Chapter 2 provided a theoret-
ical and algorithmic foundation for this effort, reviewing the evolution of placement
strategies from stochastic and partitioning-based methods to modern analytical plac-
ers; particular attention was given to mixed-size placement, where the coexistence
of standard cells and large macros introduces unique optimization challenges. Within
this context, the thesis explored the capabilities of state-of-the-art engines such as
ePlace [1], ePlace-MS [3], and DREAMPlace [2], all of which leverage electrostatics-
inspired density models and, in the case of DREAMPlace, GPU-accelerated deep

learning frameworks.

Building on these foundations, the experimental contribution presented in Chap-

ter 3 focused on extending a proprietary macro placement tool developed at Qualcomm®;

this tool, originally designed to generate diverse macro placements using a machine
learning engine, was enhanced with a GUI and integrated with an area shrink op-
timization engine. The resulting framework enables designers to explore multiple
floorplan configurations under varying area constraints, while maintaining control

over key physical and timing metrics.

The test campaign demonstrated the tool’s ability to generate and evaluate eight
distinct macro placements across four area configurations (0%, -1%, -2%, -3%) in
parallel; notably, the entire exploration process was conducted by a single engineer

with limited prior experience, highlighting the accessibility and efficiency of the pro-

3.3 Conclusion

85

posed framework. The analysis covered both qualitative and quantitative aspects,
including cell utilization, wirelength, congestion, power consumption, and timing

margins across multiple PVT corners. The results revealed several key insights:

e Moderate area reductions (up to -2% of total area shrink that corresponds
to a 7.26% reduction in placeable core area, as seen in Tab. 3.1) consistently
yielded better or comparable QoR than the default configuration, both in terms

of physical feasibility and timing robustness.

e Aggressive compaction (-3% that coincide with a placeable core area ahrink of
10.84%, as seen in Tab. 3.1) introduced significant risks, including increased
DRC violations, higher congestion, and degraded timing, particularly in the

most pessimistic corners.

These results not only validate the effectiveness of the proposed toolchain but
also reinforce the broader thesis that machine learning-driven automation can signif-
icantly enhance early-stage design exploration, particularly in the context of macro
placement. By enabling the generation and evaluation of multiple floorplan alterna-
tives in parallel, the tool empowers designers to make more informed architectural
decisions, reduce iteration cycles, and ultimately improve the overall quality of the
final layout.

At the same time, the study has highlighted some limitations and areas for fu-
ture improvement, for instance, the current version of the macro placer does not
guarantee legal placements, requiring manual intervention in the legalization phase.
Additionally, while the tool supports area shrink exploration, it does not yet incor-
porate timing-driven placement during macro generation. Addressing these aspects

could further enhance the tool’s applicability in industrial flows.

Looking ahead, several promising directions emerge:

e Automatic legalization: Integrating legality checks and fixed-cell awareness di-
rectly into the placement engine would reduce manual effort and improve flow

automation.

o Timing-driven macro placement: Incorporating timing feedback during macro
generation could help avoid configurations that are physically feasible but

timing-critical.

o Multi-objective optimization beyond wirelength and congestion: Expanding the
Pareto evaluation to include power, thermal, and manufacturability metrics

would provide a more comprehensive view of design trade-offs.

86 3. FEzperiment

o Reinforcement learning: Leveraging reinforcement learning could enable the

tool to learn from past placements and improve its decision-making over time.

In conclusion, this thesis has focused on the development and evaluation of a
framework for macro placement exploration, integrating a machine learning-
based placer with area shrink capabilities and a graphical interface. The proposed
solution was tested across multiple area configurations and evaluated using a com-
prehensive set of physical and timing metrics. The results confirm that moderate
area reductions can improve or preserve design quality compared to the default con-
figuration, while aggressive compaction introduces significant risks. The tool has
demonstrated its effectiveness in supporting early-stage floorplan exploration, en-
abling the generation of diverse and viable macro placements with minimal manual
effort.

Bibliography

[1]

3]

7]

Jingwei Lu, P. Chen, Chin-Chih Chang, Lu Sha, Dennis Huang, Chin-Chi Teng,
and Chung-Kuan Cheng. eplace: Electrostatics-based placement using fast
fourier transform and nesterov’s method. ACM Transactions on Design Au-
tomation of Electronic Systems, 20, 02 2015.

Yibo Lin, Zixuan Jiang, Jiaqi Gu, Wuxi Li, Shounak Dhar, Haoxing Ren, Brucek
Khailany, and David Z. Pan. Dreamplace: Deep learning toolkit-enabled gpu
acceleration for modern vlsi placement. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 40(4):748-761, 2021.

Jingwei Lu, Hao Zhuang, Pengwen Chen, Hongliang Chang, Chin-Chih Chang,
Yiu-Chung Wong, Lu Sha, Dennis Huang, Yufeng Luo, Chin-Chi Teng, and
Chung-Kuan Cheng. eplace-ms: Electrostatics-based placement for mixed-size
circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 34(5):685-698, 2015.

G.E. Moore. Cramming more components onto integrated circuits. Proceedings
of the IEEE, 86(1):82-85, 1998.

Guyue Huang, Jingbo Hu, Yifan He, Jialong Liu, Ma Mingyuan, Zhaoyang
Shen, Juejian Wu, Yuanfan Xu, Hengrui Zhang, Xuefei Ning, Yuzhe Ma, H.Y.
Yang, Bei Yu, Huazhong Yang, and Yu Wang. Machine learning for electronic
design automation: A survey. 01 2021.

Andrew B. Kahng. Machine learning applications in physical design: Recent
results and directions. In Proceedings of the 2018 International Symposium on
Physical Design, ISPD ’18, page 68-73, New York, NY, USA, 2018. Association
for Computing Machinery.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim
Songhori, Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade
Nova, Jiwoo Pak, Andy Tong, Kavya Srinivasa, William Hang, Emre Tuncer,
Quoc V. Le, James Laudon, Richard Ho, Roger Carpenter, and Jeff Dean. A

87

88

BIBLIOGRAPHY

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

graph placement methodology for fast chipdesign. Nature, 594(7862):207-212,
Jun 2021.

Changyong Oh, Roberto Bondesan, Dana Kianfar, Rehan Ahmed, Rishubh
Khurana, Payal Agarwal, Romain Lepert, Mysore Sriram, and Max Welling.

Bayesian optimization for macro placement, 2022.

Sivaramakrishnan Harihara Subramanian, Khris M Valencia Chacon, and
Venkatesh R S. An industrial perspective on ml-macro placement methods:
Challenges and recommendations. In Proceedings of the Great Lakes Sympo-
stum on VLSI 2025, GLSVLSI 25, page 527-533, New York, NY, USA, 2025.

Association for Computing Machinery.

Andrew B. Kahng, Jens Lienig, Igor L. Markov, and Jin Hu. VLSI Physical
Design: From Graph Partitioning to Timing Closure. Springer Dordrecht, 2011.

G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph
partitioning: applications in vlsi domain. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 7(1):69-79, 1999.

C.M. Fiduccia and R.M. Mattheyses. A linear-time heuristic for improving
network partitions. In 19th Design Automation Conference, pages 175-181,
1982.

Rupesh S. Shelar and Marek Patyra. Impact of local interconnects on timing
and power in a high performance microprocessor. In Proceedings of the 19th
International Symposium on Physical Design, ISPD 10, page 145-152, New
York, NY, USA, 2010. Association for Computing Machinery.

C. Sechen and A. Sangiovanni-Vincentelli. Timberwolf3.2: A new standard cell
placement and global routing package. In 23rd ACM/IEEE Design Automation
Conference, pages 432-439, 1986.

J.A. Roy, S.N. Adya, D.A. Papa, and [.L. Markov. Min-cut floorplacement.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 25(7):1313-1326, 2006.

Natarajan Viswanathan, Min Pan, and Chris Chu. FastPlace: An Efficient
Multilevel Force-Directed Placement Algorithm, pages 193-228. Springer US,
Boston, MA, 2007.

Myung-Chul Kim, Dong-Jin Lee, and Igor L. Markov. Simpl: An effective place-
ment algorithm. In 2010 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 649-656, 2010.

BIBLIOGRAPHY

89

[18] Chung-Kuan Cheng, Andrew B. Kahng, Ilgweon Kang, and Lutong Wang. Re-
place: Advancing solution quality and routability validation in global placement.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 38(9):1717-1730, 2019.

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

	Abstract
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	1 State of Art
	1.1 Moore's Law
	1.2 Machine Learning in EDA Tools
	1.3 VLSI Design Flow
	1.4 Physical Design
	1.4.1 System Partitioning
	1.4.2 Chip Planning
	1.4.3 Placement
	1.4.4 Clock Tree Synthesis
	1.4.5 Signal Routing
	1.4.6 Timing Closure
	1.4.6.1 Timing-Driven Placement
	1.4.6.2 Timing-Driven routing
	1.4.6.3 Physical synthesis

	1.5 Conclusion

	2 Mized Size Placers
	2.1 Theoretical Foundations
	2.1.1 Base Concepts of Placement
	2.1.2 Base Concepts of Global Placement
	2.1.3 Wirelength Smoothing
	2.1.4 Density Penalty
	2.1.5 Nonlinear Optimization Formulation

	2.2 Challenges in Placement
	2.3 Classification of Placers
	2.4 Analytical Placers
	2.5 Mixed-Size Placement
	2.6 Comparative Overview: ePlace vs ePlace-MS vs DREAMPlace
	2.6.1 eDensity
	2.6.2 Deep Learning Analogy for GPU Acceleration

	2.7 Qualcomm® Macro Placer Tool
	2.8 Conclusion

	3 Experiment
	3.1 GUI Integration
	3.2 Test Run: Multi-Area Floorplan Exploration
	3.2.1 Legalization
	3.2.2 Quality of Results at Placement stage
	3.2.3 Quality of Results at Post Route Stage

	3.3 Conclusion

	Bibliography

