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Abstract

The increasing complexity of modern System-on-Chip (SoC) designs has made macro

placement a critical yet largely manual task in the physical design �ow. This the-

sis explores a Machine Learning (ML) based Electronic Design Automation (EDA)

tool developed at Qualcomm® to automate and optimize macro placement during

the �oorplanning stage. The tool integrates a neural network engine to generate di-

verse macro placement alternatives, which are then evaluated using multi-objective

metrics such as wirelength and congestion; a Graphical user interface (GUI) was

developed to support interactive �oorplan exploration, including area shrink op-

timization. The experimental campaign involved testing eight macro placements

across four area con�gurations (0%, -1%, -2%, -3%) and analyzing their impact on

Quality of Results (QoR) metrics such as utilization, timing, power, and design rule

violations. Results show that moderate area reductions (up to -2%) can improve

or preserve design quality compared to the default con�guration, while aggressive

compaction introduces signi�cant risks. This work demonstrates the potential of

ML-driven automation to enhance early-stage design exploration and support more

informed architectural decisions in industrial Very Large-Scale Integration (VLSI)

design �ows.





Contents

Abstract i

Contents iv

List of Figures vii

List of Tables ix

Acronyms xi

Introduction 1

1 State of Art 5

1.1 Moore's Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Machine Learning in EDA Tools . . . . . . . . . . . . . . . . . . . . 7

1.3 VLSI Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Physical Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 System Partitioning . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.2 Chip Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.3 Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.4 Clock Tree Synthesis . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.5 Signal Routing . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.6 Timing Closure . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.6.1 Timing-Driven Placement . . . . . . . . . . . . . . . 26

1.4.6.2 Timing-Driven routing . . . . . . . . . . . . . . . . . 26

1.4.6.3 Physical synthesis . . . . . . . . . . . . . . . . . . . 27

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Mized Size Placers 33

2.1 Theoretical Foundations . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.1 Base Concepts of Placement . . . . . . . . . . . . . . . . . . . 34

2.1.2 Base Concepts of Global Placement . . . . . . . . . . . . . . . 35

iii



iv CONTENTS

2.1.3 Wirelength Smoothing . . . . . . . . . . . . . . . . . . . . . . 36

2.1.4 Density Penalty . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.5 Nonlinear Optimization Formulation . . . . . . . . . . . . . . 38

2.2 Challenges in Placement . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Classi�cation of Placers . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Analytical Placers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Mixed-Size Placement . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Comparative Overview: ePlace vs ePlace-MS vs DREAMPlace . . . 42

2.6.1 eDensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6.2 Deep Learning Analogy for GPU Acceleration . . . . . . . . . 46

2.7 Qualcomm® Macro Placer Tool . . . . . . . . . . . . . . . . . . . . . 48

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Experiment 53

3.1 GUI Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Test Run: Multi-Area Floorplan Exploration . . . . . . . . . . . . . 56

3.2.1 Legalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2 Quality of Results at Placement stage . . . . . . . . . . . . . 62

3.2.3 Quality of Results at Post Route Stage . . . . . . . . . . . . . 71

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Bibliography 87



List of Figures

1.1 Moore's Law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Main steps of the VLSI desgin �ow. . . . . . . . . . . . . . . . . . . . 10

1.3 Example of partitioning. . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 A module represents a collection of logic within a de�ned area. Once

it is given a speci�c shape or dimensions, it is referred to as a block. 14

1.5 Example of two possible �oorplans for the same set of blocks. . . . . 15

1.6 (a) wire bonding and (b) �ip-chip packaging. . . . . . . . . . . . . . 17

1.7 Power-ground routing in modern digital ICs typically has a mesh

topology composed of: rings, I/O pads, stripes. . . . . . . . . . . . . 18

1.8 Example of legalization process: overlaps are removedand objects are

aligned with the grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.9 Techniques for global placement. . . . . . . . . . . . . . . . . . . . . 19

1.10 Example of routing metrics. . . . . . . . . . . . . . . . . . . . . . . . 19

1.11 Example of (a) PLL and (b) DLL block schemes. . . . . . . . . . . . 21

1.12 Example of H-tree structure. . . . . . . . . . . . . . . . . . . . . . . 22

1.13 Example of: (a) a placement, (b) a global routing, and (c) a detailed

routing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.14 Hold and setup constraints. . . . . . . . . . . . . . . . . . . . . . . . 26

1.15 Example of the di�rence in internal resistance and capacitance chang-

ing the drive strength of a cell. . . . . . . . . . . . . . . . . . . . . . 27

1.16 In this example the bu�er helps to partially shield the load capacitance

seen by the NAND gate. . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.17 Example of replication, the duplicated gate helps to reduce the fanout. 28

1.18 Example of fanin tree redesign that allow to achieve a lower delay. . 29

1.19 Example of fanout tree redesign to reduce the load capacitance of the

�rst path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.20 Example of swapping commutative pins. . . . . . . . . . . . . . . . . 29

1.21 Example of gate decomposition. . . . . . . . . . . . . . . . . . . . . . 30

1.22 Example of Boolean restructuring. Using the distributive law is pos-

sible, in this case, to reduce the delay. . . . . . . . . . . . . . . . . . 30

v



vi LIST OF FIGURES

2.1 Placement instance modeled as an electrostatic system. . . . . . . . . 44

2.2 Initial and Final Charge Density in Electrostatic Placement with direct-

current (DC) component [1]. . . . . . . . . . . . . . . . . . . . . . . . 45

2.3 Initial and Final Charge Density in Electrostatic Placement after re-

moving DC component [1]. . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Conceptual analogy between neural network training and analytical

placement optimization [2]. . . . . . . . . . . . . . . . . . . . . . . . 47

2.5 Schematic representation of the tool's operations. . . . . . . . . . . . 48

2.6 Pareto curve illustrating the trade-o� between wirelength and conges-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7 Comparison of two macro placements generated using di�erent tools

and netlists. One is peripherally driven (a), while the other is focused

on wirelength (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 The GUI that enables fast �oorplan exploration. . . . . . . . . . . . 54

3.2 Example of �owchart of the Macro Placer process illustrating �oorplan

exploration under di�erent area reduction scenarios (0%, -2%, -4%),

with multiple ranked outputs. . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Default macro placement. . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Macro Placement Pre and Post legalization: Area 0% / Rank 1. . . . 59

3.5 Macro Placement Pre and Post legalization: Area 0% / Rank 2. . . . 59

3.6 Macro Placement Pre and Post legalization: Area -1% / Rank 1. . . 59

3.7 Macro Placement Pre and Post legalization: Area -1% / Rank 2. . . 60

3.8 Macro Placement Pre and Post legalization: Area -2% / Rank 1. . . 60

3.9 Macro Placement Pre and Post legalization: Area -2% / Rank 2. . . 60

3.10 Macro Placement Pre and Post legalization: Area -3% / Rank 1. . . 61

3.11 Macro Placement Pre and Post legalization: Area -3% / Rank 2. . . 61

3.12 HeatMap QoR Placement Cell Metrics. . . . . . . . . . . . . . . . . . 64

3.13 HeatMap QoR Placement Wire Metrics. . . . . . . . . . . . . . . . . 65

3.14 HeatMap QoR Placement Power Metrics. . . . . . . . . . . . . . . . 66

3.15 Timing QoR Placement Setup Worst Negative Slack. . . . . . . . . . 68

3.16 Timing QoR Placement Setup Total Negative Slack. . . . . . . . . . 69

3.17 Timing QoR Placement Setup Number Failure Point. . . . . . . . . . 70

3.18 HeatMap QoR Post Route Cell Metrics. . . . . . . . . . . . . . . . . 72

3.19 HeatMap QoR Post Route Wire Metrics. . . . . . . . . . . . . . . . . 73

3.20 HeatMap QoR Post Route Power Metrics. . . . . . . . . . . . . . . . 74

3.21 HeatMap QoR Post Route Clock Metrics. . . . . . . . . . . . . . . . 75

3.22 HeatMap QoR Post Route CLKM1_PROC Metrics. . . . . . . . . . 76

3.23 Timing QoR PostRoute Setup Worst Negative Slack. . . . . . . . . . 77

3.24 Timing QoR PostRoute Setup Total Negative Slack. . . . . . . . . . 78



List of Figures vii

3.25 Timing QoR PostRoute Setup Number Failure Point. . . . . . . . . . 79

3.26 Timing QoR PostRoute Hold Worst Negative Slack. . . . . . . . . . 81

3.27 Timing QoR PostRoute Hold Total Negative Slack. . . . . . . . . . . 82

3.28 Timing QoR PostRoute Hold Number Failure Point. . . . . . . . . . 83





List of Tables

2.1 Comparison of ePlace, ePlace-MS, and DREAMPlace . . . . . . . . . 43

3.1 E�ect of design shrink on placeable core area reduction. . . . . . . . 57

ix





Acronyms

SoC System-on-Chip

EDA Electronic Design Automation

GUI Graphical user interface

QoR Quality of Results

VLSI Very Large-Scale Integration

AI Arti�cial Intelligence

ML Machine Learning

RL Reinforcement Learning

GNNs Graph Neural Networks

CNNs Convolutional Neural Networks

BO Bayesian Optimization

IC Integrated circuit

IP Intellectual Property

RTL Register-Tranfer Level

HDLs Hardware Description Language

ESD Electrostatic Discharge

DFM Design For Manufacturability

GANs Generative Adversarial Networks

QoR Quality of Results

DRC Design Rule Checking

xi



xii 0. Acronyms

LVS Layout vs. Schematic

ERC Electrical Rule Checking

KL Kernighan-Lin

FM Fiducia-Mattheyses

PLL Phase locked loops

DLL Delay locked loops

STA Static timing analysis

AAT Actual arrival time

RAT Required arrival time

TDP Timing-driven placement

WNS Worst negative slack

TNS Total negative slack

HPWL Total half-perimeter wirelength

WA Weighted-Average

PDE Partial di�erential equation

DCT Discrete Cosine Transform

DST Discrete Sinusoidal Transform

FFT Fast Fourier Transform

LEF Library Exchange Format

DEF Design Exchange Format

DC direct-current

HM Hard Macro

PnR Place & Route

ESD Electrostatic Discharge

PMUX Power Mux

PVT Process-Voltage-Temperature



TT typical-typical

SS slow-slow

FF fast-fast

PPA Performance, Power and Area

CCI Company Con�dential Information

CTS clock tree synthesis





Introduction

The relentless growth in complexity of modern SoC designs, driven by Moore's Law

and the increasing demand for performance, integration, and energy e�ciency, has

profoundly reshaped the landscape of semiconductor development. As transistor

densities continue to rise and design sizes scale into the billions of components, the

physical design phase of VLSI circuits has emerged as a critical bottleneck in the

overall design �ow. Among the various stages of the physical implementation process,

macro placement plays a pivotal role in determining the quality and feasibility of the

�nal layout; this task involves the positioning of large, pre-designed blocks such as

memories, analog IPs, or custom logic within the chip �oorplan, and has a direct

impact on downstream stages including routing, timing closure, power distribution,

and manufacturability. Despite its importance, macro placement remains one of the

least automated and most intuition-driven stages of the physical design �ow. Unlike

standard cell placement, which is largely handled by mature commercial tools, macro

placement is still predominantly performed manually by experienced physical design

engineers; this process relies heavily on designer expertise, domain-speci�c heuristics,

and iterative trial-and-error, making it time-consuming, error-prone, and di�cult to

scale. Moreover, the lack of automation in this phase signi�cantly limits the ability

to explore alternative �oorplan con�gurations, especially in the early stages of design

when architectural decisions are most impactful.

In recent years, the rapid advancement of Arti�cial Intelligence (AI) and ML has

opened new avenues for innovation across the EDA landscape. These technologies

have demonstrated remarkable potential in addressing long-standing challenges in

digital design, o�ering data-driven alternatives to traditional heuristic-based meth-

ods. The motivation behind this thesis stems from the need to bridge the automation

gap in macro placement by leveraging ML-based techniques to support and enhance

early-stage �oorplan exploration. By introducing intelligent, data-driven strategies

into this critical phase, it becomes possible to generate diverse placement alterna-

tives, evaluate them using multi-objective metrics, and guide designers toward more

informed and e�cient decisions. This approach not only improves productivity but

also enables a more systematic exploration of the design space, ultimately contribut-

1



2 Introduzione

ing to higher-quality and more robust VLSI implementations.

Motivated by these considerations, this thesis investigates a novel approach to

macro placement that integrates machine learning and interactive user control. At

the core of this approach lies a proprietary macro placement tool developed at

Qualcomm®, which serves as the foundation for the experimental work presented

in this thesis. The tool leverages a neural network engine to generate diverse macro

placement alternatives, exploring the design space e�ciently; each candidate place-

ment is evaluated using a set of multi-objective metrics, primarily total wirelength

and routing congestion, which are critical indicators of downstream design quality.

To enhance usability and support early-stage architectural exploration, the tool

has been extended with a GUI that enables designers to con�gure and visualize

�oorplan scenarios interactively. Through the GUI, users can de�ne area shrink

parameters, specifying the degree and direction of compaction (horizontal, vertical,

bidirectional, or edge-speci�c), and set the number of placement candidates to be

generated per con�guration. This shrink-based exploration is particularly relevant in

advanced technology nodes, where silicon area is at a premium and design robustness

under tight constraints must be evaluated. Once the placements are produced, the

GUI allows users to visually inspect the generated layouts and identify the most

promising con�gurations, this enables a selective continuation of the design �ow:

high-quality placements can be promoted to subsequent implementation stages, while

suboptimal ones can be discarded early, saving time and computational resources.

For each con�guration, the tool generates a ranked set of candidate placements

using a Pareto-based framework, balancing competing objectives without privileging

a single metric. The top-ranked solutions are exported as .tcl scripts, ready to be

sourced into commercial EDA tools, ensuring seamless integration with industrial

design �ows and enabling rapid prototyping and validation. By combining ML-

driven generation, interactive con�guration, visual inspection, and multi-objective

evaluation, the proposed framework empowers designers to make more informed

decisions early in the design �ow.

This thesis is organized into three main chapters:

� Chapter 1 provides a comprehensive overview of the state of the art in phys-

ical design, with a particular focus on the placement phase and its challenges

in the context of mixed-size designs. The chapter introduces the key steps

of the VLSI design �ow, discusses the limitations of current macro placement

methodologies, and highlights the need for more scalable and automated so-

lutions. Furthermore, the chapter includes an analysis of the state of the art

in the application of machine learning within EDA tools, emphasizing how
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ML techniques are increasingly being adopted to improve design e�ciency,

tackle complex optimization problems, and support the development of next-

generation placement strategies.

� Chapter 2 presents the theoretical foundations of placement algorithms, includ-

ing global placement, wirelength smoothing, density modeling, and nonlinear

optimization. It also reviews existing analytical placers such as ePlace [1],

ePlace-MS [3], and DREAMPlace [2], and introduces the proprietary macro

placement tool developed at Qualcomm®. The chapter concludes with a de-

tailed description of the tool's architecture and its integration into a �oorplan

exploration framework.

� Chapter 3 describes the experimental contribution developed during the in-

ternship; this includes: the extension of the macro placer with a GUI, the

implementation of an area shrink optimization engine, and the execution of

a test campaign involving eight macro placements across four area con�gu-

rations. The results are analyzed using a wide range of physical and timing

metrics, providing insights into the tool's e�ectiveness and limitations. Finally,

the conclusions summarize the key �ndings of the thesis, re�ect on the impli-

cations of the proposed approach, and outline potential directions for future

work, including the integration of timing-driven placement and reinforcement

learning techniques to further enhance automation and design quality.

Through this structure, the thesis aims to highlight how the integration of ma-

chine learning techniques and interactive tools contributes to automating macro

placement, enhancing design space exploration, and supporting more informed ar-

chitectural decisions in the early stages of the physical design �ow.





Chapter 1

State of Art

As Integrated circuit (IC) become increasingly complex and performance require-

ments more stringent, the physical implementation of digital systems presents a

growing set of technical and methodological di�culties. The purpose of this chapter

is to provide a comprehensive overview of the current challenges in digital circuit

design, with a particular emphasis on the physical design phase.

The chapter begins, in section 1.1, by revisiting Moore's Law, a long-standing

prediction that has guided the semiconductor industry for decades. This section

explores the historical relevance of Moore's Law, its impact on technological progress,

and the growing concerns about its continued applicability in the modern era.

Section 1.2 then analyzes the state of the art in the application of ML within

EDA tools, highlighting recent innovations and research trends that are shaping the

future of VLSI design.

Following this, in the following paragraph 1.3, the chapter outlines the key steps

involved in the design of a VLSI circuit, o�ering a high-level view of the design

�ow from speci�cation to implementation. This provides the necessary context for

understanding the intricacies of the design process.

The �nal section 1.4 delves deeper into the physical design phase, examining

each step in detail. This includes partitioning, chip planning, placement, clock tree

synthesis, routing and timing closure, highlighting the technical challenges and trade-

o�s encountered during this critical stage of the design cycle.

Through this structure, the chapter aims to set the foundation for the subse-

quent discussions in the thesis by framing the technological landscape and design

methodologies that shape modern digital circuit development. In particular, it lays

the groundwork for the analysis of a speci�c limitation within the current physical

design �ow: the di�culty of achieving innovative and e�cient macro placement dur-

ing the placement phase. Despite the increasing complexity of modern SoCs, macro

5



6 1. State of Art

placement remains largely a manual and heuristic-driven process, heavily reliant on

designer experience and intuition. This lack of automation not only limits design

space exploration but also poses signi�cant challenges in terms of scalability and op-

timization. By highlighting this issue early on, the chapter prepares the reader for a

deeper investigation into potential solutions and methodologies aimed at improving

macro placement strategies in the later sections of the thesis.

1.1 Moore's Law

In his seminal 1965 article [4], Gordon E. Moore outlined a visionary perspective on

the future of integrated electronics, proposing that the number of components on a

silicon chip would continue to increase at a steady, exponential rate. Rather than

focusing on a speci�c numerical target, Moore emphasized the trend of rapid growth

in integration density, driven by advancements in photolithography, materials, and

manufacturing techniques. He argued that this trend would lead to signi�cant im-

provements in cost-e�ciency, reliability, and performance, enabling a wide range of

applications, from home computing to automotive automation and portable commu-

nication devices.

Moore also identi�ed several technical challenges that could hinder this progress,

such as heat dissipation, interconnect delays, and manufacturing yields. However,

he maintained that these obstacles could be overcome primarily through engineering

innovation rather than fundamental scienti�c breakthroughs. His insights laid the

foundation for what would later become known as Moore's Law: the empirical

observation that the number of transistors on an IC doubles approximately every

two years, as shown in Fig. 1.1. This principle has since become a cornerstone of the

semiconductor industry, guiding long-term planning and setting ambitious targets

for research and development.

Over the decades, Moore's Law has driven exponential growth in computing

power, enabling the miniaturization and performance enhancements that de�ne mod-

ern electronics. Despite growing concerns about physical and economic limitations,

such as quantum e�ects, power density, and the rising cost of advanced fabrication

nodes, ongoing research continues to push the boundaries of what is possible; inno-

vations in 3D integration, new materials, and design automation aim to sustain the

spirit of Moore's prediction, even as traditional scaling slows.
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Figure 1.1: Moore's Law.

Given the increasing complexity and scale of modern SoCs, the physical design

phase has become a critical bottleneck, particularly in tasks such as macro place-

ment, which remain largely heuristic-driven and dependent on designer expertise.

In response to these challenges, the EDA community has increasingly turned to

data-driven and machine learning approaches to enhance automation, e�ciency, and

solution quality throughout the design �ow.

1.2 Machine Learning in EDA Tools

In recent years, the integration of ML techniques into EDA tools has emerged as a

transformative trend, aiming to address the escalating complexity, design costs, and

time-to-market pressures in IC development. ML methods are now being explored

and deployed across nearly all stages of the EDA �ow, from high-level synthesis and

logic optimization to physical design, veri�cation, and manufacturing. The motiva-

tions for this shift are multiple: ML models can learn from vast historical design

data, capture intricate dependencies that elude traditional heuristics, and provide

rapid predictions or optimizations that would otherwise require time-consuming sim-

ulations or manual intervention [5] [6].

Within the physical design domain, ML applications are particularly prominent

in tasks such as placement, routing, congestion prediction, power estimation, and

design space exploration. ML models are typically used in four main roles [5]:

1. decision making in traditional methods, where ML replaces brute-force or

empirical parameter tuning (e.g., selecting tool con�gurations or optimization

strategies);
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2. performance prediction, where supervised models (e.g., Regression, Ran-

dom Forests, Convolutional Neural Networks (CNNs), Graph Neural Networks

(GNNs)) are trained to estimate key metrics such as wirelength, congestion,

timing, or power based on features extracted from netlists or layouts;

3. black-box optimization, where ML-guided surrogate models (e.g., Gaussian

Processes, Random Forests) accelerate the search for optimal design points in

large, expensive-to-evaluate spaces;

4. automated design, where advanced techniques like deep Reinforcement Learn-

ing (RL) and GNNs are used to directly generate or re�ne design solutions, such

as macro and standard cell placements.

A landmark example of ML-driven automation is Google's RL-based macro place-

ment framework, which models chip �oorplanning as a sequential decision-making

problem. Using a graph convolutional neural network to encode the netlist and a

policy network trained via RL, their system can generate manufacturable �oorplans

for large chips in under six hours, orders of magnitude faster than traditional manual

approaches, while achieving Performance, Power and Area (PPA) metrics compara-

ble or superior to human experts [7]. The RL agent bene�ts from transfer learning:

pre-training on a diverse set of chip blocks enables rapid adaptation and high-quality

results on new, unseen designs, even in "zero-shot" mode [7]. This approach has been

successfully deployed in production and has inspired a wave of research into RL and

GNN-based placement and optimization methods [5] [7].

Beyond RL, other ML paradigms are also gaining traction. For example, Bayesian

Optimization (BO) has been proposed as a sample-e�cient alternative to RL and

simulated annealing for macro placement. BO uses a probabilistic surrogate model to

guide the search over combinatorial spaces (e.g., sequence pairs representing macro

orderings), balancing exploration and exploitation to minimize objectives such as

Total half-perimeter wirelength (HPWL) or congestion. BO has demonstrated com-

petitive or superior performance to simulated annealing on standard benchmarks,

with far fewer expensive evaluations, and is particularly attractive when the true

objective is costly to compute [8].

Despite these advances, several challenges remain before ML-based macro place-

ment and physical design tools can achieve widespread industrial adoption. First,

generalization is a key concern: ML models often struggle to transfer knowledge

across di�erent technology nodes, design styles, or constraint sets, necessitating

large, high-quality datasets and careful feature engineering [5] [9]. Second, inte-

gration with existing EDA �ows is non-trivial, as ML-generated placements must

be compatible with downstream tools and constraints, and must produce repeat-

able, explainable results[9]. Third, reproducibility and stability are essential for
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industrial deployment: ML methods must deliver consistent outcomes across runs

and support incremental design changes without requiring full retraining or manual

intervention [9]. Finally, there is a growing emphasis on trusted ML, ensuring that

models are reliable, fair, and interpretable for designers [5].

In summary, ML is rapidly reshaping the landscape of EDA, o�ering new paradigms

for automation, prediction, and optimization in physical design. While signi�cant

progress has been made, continued research is needed to address issues of general-

ization, integration, and trust, and to fully realize the promise of ML-powered EDA

tools in industrial practice.

To understand where these innovations are most impactful, and how they interact

with established engineering practices, it is crucial to examine the structure of the

VLSI design �ow itself. The following section provides a comprehensive overview

of this �ow, outlining its key stages and interdependencies, and establishing the

foundation for a more detailed discussion of the physical design phase, where both

conventional and machine learning-driven methods converge to address some of the

most signi�cant bottlenecks in contemporary IC development.

1.3 VLSI Design Flow

Building upon the historical context and the challenges outlined earlier, it becomes

clear that a structured and methodical approach is essential to manage the complex-

ity of modern IC design. The VLSI design �ow provides such a framework, guiding

the transformation of a high-level functional speci�cation into a fully veri�ed and

manufacturable chip. This �ow is composed of several interdependent stages, each

addressing speci�c aspects of the design process: from initial behavioral modeling

to physical implementation and �nal veri�cation. Understanding these steps is cru-

cial not only for appreciating the overall design methodology but also for identifying

where critical challenges, such as those in physical design, tend to emerge.

The design of a VLSI circuit is a highly intricate process that can be broken down

into several distinct steps. These steps range from high-level system speci�cations

to detailed physical design and veri�cation before fabrication [10]. The major steps

in the VLSI design �ow are illustrated in Fig. 1.2 and discussed in detail below.
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Figure 1.2: Main steps of the VLSI desgin �ow.

� System Speci�cation

The initial phase involves de�ning the overall goals and high-level requirements

of the system. This is a collaborative e�ort among chip architects, circuit

designers, product marketers, operations managers, and layout and library

designers. The goals and requirements encompass functionality, performance,

physical dimensions, and production technology.

� Architectural Design

In this phase, a basic architecture is determined to meet the system speci-

�cations. Key decisions include the integration of analog and mixed-signal

blocks, memory management, the number and types of computational cores,

internal and external communication protocols, and the usage of Intellectual

Property (IP) blocks.

� Functional and Logic Design

Once the architecture is set, the functionality and connectivity of each module

must be de�ned. Functional design focuses on the high-level behavior of each

module, while logic design is performed at the Register-Tranfer Level (RTL)

using Hardware Description Language (HDLs) like Verilog and VHDL. Logic

synthesis tools then convert HDL descriptions into low-level circuit elements.

� Circuit Design

For the bulk of digital logic, logic synthesis tools automatically convert Boolean

expressions into a gate-level netlist. However, critical low-level elements such as

static RAM blocks, I/O, analog circuits, high-speed functions, and Electrostatic
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Discharge (ESD) protection circuits are designed at the transistor level. Circuit

simulation tools like SPICE verify the correctness of these designs.

� Physical Design

Physical design involves instantiating all design components with their geomet-

ric representations. This includes assigning spatial locations (placement) and

completing routing connections in metal layers. The result is a set of manufac-

turing speci�cations that must be veri�ed. Physical design is performed with

respect to design rules that represent the physical limitations of the fabrication

medium.

� Physical Veri�cation and Signo�

After physical design, the layout must be fully veri�ed to ensure correct elec-

trical and logical functionality. This includes:

1. Design Rule Checking (DRC): Veri�es that the layout meets all

technology-imposed constraints.

2. Layout vs. Schematic (LVS) Checking: Ensures the functionality

of the design by comparing the layout-derived netlist with the original

netlist.

3. Parasitic Extraction: Derives electrical parameters from the layout

elements to verify the circuit's electrical characteristics.

4. Antenna Rule Checking: Prevents antenna e�ects that may damage

transistor gates during manufacturing.

5. Electrical Rule Checking (ERC): Veri�es the correctness of power

and ground connections and ensures signal transition times, capacitive

loads, and fanouts are appropriately bounded.

Among the various stages that compose the VLSI design �ow just been discussed,

the physical design phase plays a pivotal role in translating the logical representation

of a circuit into a geometrical layout that can be fabricated on silicon. While earlier

steps focus on functional correctness and architectural decisions, physical design is

where spatial, timing, and manufacturing constraints converge, making it one of the

most complex and constraint-driven parts of the �ow. Given its critical importance

and the unique challenges it presents, especially in the context of modern, large-scale

systems, this phase warrants a more detailed examination. The following section

delves into each step of the physical design process, highlighting the methodologies,

tools, and design considerations involved.
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1.4 Physical Design

Physical design of integrated circuits is a crucial and complex aspect of EDA. It in-

volves the placement and routing of, nowadays, billions of transistors on a silicon chip,

ensuring that they are interconnected e�ciently and meet performance requirements.

As technology advances, the number of transistors on a chip continues to grow, ne-

cessitating sophisticated algorithms to manage this complexity. One of the primary

challenges in physical design is managing the delays caused by the interconnecting

wires. In the past, achieving timing goals was largely dependent on the optimal place-

ment of devices while with modern designs, timing constraints can only be veri�ed

after the �nal routing is completed, making the process more intricate. The contin-

uous increase in transistor count and the growing interdependence between physical,

timing, and logic domains require a fresh approach to the fundamental algorithms

of chip implementation. Modern physical design �ows must address multi-objective

optimization, integrating various stages from design partitioning and �oorplanning

to electrical rule checking. This evolving landscape demands that experts in spe-

ci�c areas, such as routing or Design For Manufacturability (DFM), understand the

broader implications of their work on the entire design �ow. Physical design remains

a dynamic �eld, continually pushing the boundaries of what is possible in semicon-

ductor technology, and it plays a pivotal role in the advancement of chip design tools

and methodologies [10].

In the remainder of this chapter, the individual steps that constitute the phys-

ical design process, shown in Fig. 1.2, will be examined in detail. Each phase will

be discussed with particular attention to its functional objectives, the constraints it

must satisfy, and the methodologies and tools typically employed in its execution.

This in-depth analysis aims to provide a clearer understanding of how logical cir-

cuit descriptions are systematically transformed into manufacturable layouts, and to

highlight the critical challenges that arise throughout this phase of the VLSI design

�ow.

1.4.1 System Partitioning

The complexity of modern IC designs has escalated to an unprecedented level, ren-

dering tasks such as full-chip layout increasingly challenging. A prevalent approach

involves partitioning the design into smaller segments, allowing for independent pro-

cessing and parallel execution. This divide-and-conquer methodology can be applied

by individually laying out each block and subsequently reassembling the outcomes

as geometric partitions. While this strategy was historically utilized for manual

partitioning, it has become impractical for extensive netlists. However, manual par-

titioning can still be executed within the framework of system-level modules, treating
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them as singular entities when hierarchical information is accessible. Conversely, au-

tomated netlist partitioning can e�ectively manage large netlists and rede�ne the

physical hierarchy of an electronic system, encompassing everything from boards to

chips and from chips to blocks. Furthermore, traditional netlist partitioning can

be advanced to multilevel partitioning, which is applicable for managing large-scale

circuits.

A widely accepted method for reducing the design complexity of contemporary

integrated circuits involves dividing them into smaller modules. The partitioning

process separates the circuit into multiple subcircuits (partitions or blocks) while

aiming to minimize the interconnections between these partitions, adhering to design

constraints such as maximum partition sizes and allowable path delays. If each

block is developed independently, without regard for other partitions, the connections

between these blocks may adversely impact the overall design performance, leading

to increased circuit delays or diminished reliability. Additionally, a high number of

interconnections between partitions can create inter-block dependencies that hinder

design e�ciency. Consequently, the main objective of partitioning is to segment the

circuit in a manner that reduces the number of connections between subcircuits, as

shown in Fig. 1.3 Each partition must also comply with all design speci�cations.

Figure 1.3: Example of partitioning.

Circuit partitioning is classi�ed as NP-hard, this means that as the size of the

problem increases linearly, the resources required to identify an optimal solution esca-

late at a rate surpassing any polynomial function. Currently, there is no established

polynomial-time algorithm that guarantees a globally optimal solution for balance-

constrained partitioning. Nevertheless, several e�ective heuristics were introduced

during the 1970s and 1980s. These algorithms yield high-quality circuit partition-

ing results and are typically executed in low-order polynomial time, including the
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Kernighan-Lin (KL) algorithm [11] and the Fiducia-Mattheyses (FM) algorithm [12].

Furthermore, optimization through simulated annealing can be employed to tackle

particularly challenging partitioning problems. Generally, stochastic hill-climbing al-

gorithms necessitate more than polynomial time to generate high-quality solutions,

although they can be expedited at the cost of solution quality. In practice, simulated

annealing seldom proves to be competitive.

1.4.2 Chip Planning

Chip planning involves the organization of substantial components such as caches,

embedded memories, and IP cores, which possess de�ned areas, either �xed or vari-

able shapes, and potentially designated locations. In instances where modules are

not explicitly de�ned, chip planning utilizes netlist partitioning (Sec. 1.4.1) to dis-

cern these modules within extensive designs. The process of assigning shapes and

locations to circuit modules during chip planning results in the formation of blocks,

facilitating preliminary assessments of interconnect length, circuit delay, and overall

chip performance (Fig. 1.4).

Figure 1.4: A module represents a collection of logic within a de�ned area. Once it
is given a speci�c shape or dimensions, it is referred to as a block.

This initial analysis can highlight modules that require enhancements. The chip

planning process is divided into the following phases:

1. Floorplanning

Prior to the �oorplanning phase, the design is divided into separate circuit

modules. Each module is transformed into a rectangular block once it receives

speci�c dimensions or a de�ned shape. These blocks can be categorized as

either hard or soft. Hard blocks have �xed dimensions and areas, whereas

soft blocks maintain a constant area but allow for variations in aspect ratio,

which can be adjusted continuously or in discrete increments. The complete

arrangement of these blocks, along with their respective positions, is referred

to as a �oorplan.
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Figure 1.5: Example of two possible �oorplans for the same set of blocks.

In extensive designs, individual modules may also undergo �oorplanning in a

recursive top-down manner; however, it is typical to concentrate on one hi-

erarchical level of �oorplanning at a time. In this context, the �oorplan at

the highest level is designated as the top-level �oorplan. The �oorplanning

phase is crucial as it ensures that each chip module is allocated a shape and

a location to facilitate gate placement, and every pin with an external con-

nection is assigned a location to enable the routing of internal and external

nets. This stage establishes the external attributes, �xed dimensions and ex-

ternal pin locations, for each module, which are essential for the subsequent

placement and routing processes that de�ne the internal characteristics of the

blocks. Floorplan optimization encompasses various degrees of freedom; while

it incorporates certain elements of placement and connection routing, the opti-

mization of module shapes is distinct to �oorplanning. The use of hard blocks

in �oorplanning is particularly signi�cant when reusing existing blocks, includ-

ing IP. From a mathematical perspective, this issue can be interpreted as a

constrained scenario of �oorplanning with soft parameters, although in prac-

tice, it may necessitate specialized computational methods.

Despite the critical role that �oorplanning plays in shaping the overall qual-

ity and feasibility of a VLSI design, this phase remains, to a large extent, a

manual and experience-driven process. As a result, it is still challenging to con-

duct extensive and systematic studies aimed at exploring alternative �oorplan
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con�gurations; particularly those that might reduce chip area or improve per-

formance by adopting non-conventional macro placements within a block. The

lack of automation and �exibility in current methodologies limits the ability

to assess whether better results could be achieved by deviating from standard

practices. To address this gap, Chapter 3 of this thesis focuses on the devel-

opment of a tool designed to facilitate �oorplan exploration. This tool enables

designers to e�ciently experiment with multiple area con�gurations and macro

placement strategies within a given block. By integrating an internal machine

learning engine, the tool can automatically generate a wide range of plausible

macro placements for each area, signi�cantly expanding the design space that a

single engineer can explore. This approach aims to enhance productivity, sup-

port data-driven decision-making, and ultimately contribute to more optimized

and innovative �oorplan solutions.

2. Pin Assignement

Due to the substantial geometric dimensions of blocks in �oorplanning, the po-

sitioning of terminal locations for nets that interconnect these blocks is crucial.

Typically, I/O pins are situated at the edges of a block to minimize inter-

connect length. Nevertheless, the optimal locations are contingent upon the

relative arrangement of the blocks.In the process of pin assignment, each net

is allocated to distinct pin locations to enhance the overall performance of the

design. Key optimization objectives often include maximizing routability and

minimizing electrical parasitics both within and beyond the block.

3. Power Planning

The scaling of on-chip supply voltages occurs at a slower rate compared to

chip frequencies and transistor counts. Consequently, the currents delivered

to the chip progressively rise with each technological advancement. Enhanced

packaging and cooling solutions, along with market demands for increased func-

tionality, result in larger power budgets and more compact power grids. Cur-

rently, approximately 20-40% of all metal resources on the chip are allocated

for power (VDD) and ground (GND) networks. Given that �oorplanning is a

precursor to place-and-route, power-ground planning has emerged as a critical

component of contemporary chip design. Chip planning not only dictates the

con�guration of the power-ground distribution network but also in�uences the

positioning of supply I/O pads (in wire-bond packaging) or bumps (in �ip-chip

packaging) (Fig. 1.6). These pads or bumps are strategically placed in or near

regions of high activity on the chip to reduce the IR voltage drop.
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Figure 1.6: (a) wire bonding and (b) �ip-chip packaging.

The power planning process is generally iterative, involving:

(a) initial simulations of signi�cant power dissipation elements,

(b) preliminary assessments of chip power,

(c) evaluations of total chip power and peak power density,

(d) examinations of total chip power variations,

(e) investigations of inherent and additional �uctuations caused by clock gat-

ing,

(f) early analyses of power distribution, including average, maximum, and

multi-cycle �uctuations.

To develop an e�ective supply network, various design and process technology

factors must be taken into account. For instance, to accurately estimate chip

power, the designer should consider:

(a) the implementation of low-Vth devices and dynamic circuits that have

higher power consumption,

(b) the application of clock gating to reduce power usage,

(c) the quantity and strategic placement of additional decoupling capacitors

to alleviate switching noise.
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Figure 1.7: Power-ground routing in modern digital ICs typically has a mesh topology
composed of: rings, I/O pads, stripes.

1.4.3 Placement

Placement aims to identify the positions of standard cells or logic components within

each block, while also focusing on optimization goals such as reducing the over-

all length of connections between these elements. In particular, global placement

(Fig. 1.9) designates general positions for movable objects, whereas detailed place-

ment �ne-tunes these positions to conform to legal cell sites and ensures that there

are no overlaps. The precise locations obtained through detailed placement facilitate

more accurate assessments of circuit delay, which is essential for timing optimization.

Global placement frequently overlooks the speci�c shapes and dimensions of place-

able objects, failing to align their positions with appropriate grid rows and columns.

Some degree of overlap between placed objects is permitted, as the focus is on ef-

fective global positioning and the overall distribution of density. Legalization occurs

either prior to or during the detailed placement phase, aiming to align placeable

objects with the grid while eliminating overlaps, all the while striving to minimize

displacements from their global placement positions and reducing the e�ects on in-

terconnect length and circuit delay.
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Figure 1.8: Example of legalization process: overlaps are removedand objects are
aligned with the grid.

Detailed placement enhances the positioning of each standard cell through local

adjustments, such as swapping two objects or shifting multiple objects in a row to

accommodate another object. While global and detailed placement generally exhibit

similar runtimes, global placement often demands signi�cantly more memory and

presents greater challenges for parallelization.

Figure 1.9: Techniques for global placement.

The placement process must create a layout that allows for the simultaneous

routing of all design nets, ensuring that the placement is routable. Furthermore, it

is essential to consider electrical factors such as signal delay and crosstalk. Since

detailed routing information is not accessible during the placement phase, the placer

focuses on optimizing estimates of routing quality metrics, including total weighted

wirelength, cut size, wire congestion (density), and maximum signal delay. Given

that the delay of a net is directly related to its length, placers frequently aim to

reduce the overall wirelength.

Figure 1.10: Example of routing metrics.
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The automation of standard cell placement is essential for e�ectively handling

the scale and complexity of contemporary VLSI designs, which encompass billions of

components. Consequently, placement tools such as Cadence Innovus and Synopsys

IC Compiler are extensively utilized within the VLSI industry. In contrast, macro

placement is predominantly performed manually by physical design engineers, who

adhere to heuristic guidelines derived from their experience. This manual process is

labor-intensive and monotonous, limiting the potential for comprehensive �oorplan

exploration to identify superior solutions. Despite its signi�cance as the foundation

for subsequent physical design processes, macro placement greatly impacts the qual-

ity of congestion and timing outcomes. Chapter 2 will provide an in-depth analysis

of di�erent mixed-size placers, which are placement algorithms designed to handle

multiple types of cells simultaneously during the physical design phase. Speci�cally,

the focus will be on placers that aim to concurrently place both standard cells and

prede�ned macros. This simultaneous placement is a critical challenge in modern

VLSI design, as it requires balancing the �exibility of standard cells with the �xed

dimensions and constraints of macros, while optimizing for performance, area, and

routability.

1.4.4 Clock Tree Synthesis

The majority of digital designs operate synchronously, where computation advances

as the current values of internal state variables and input variables are supplied to

combinational logic networks. These networks subsequently produce outputs and

determine the next values of the state variables. A clock signal is essential for

ensuring the synchronization of all computations occurring across the chip. This

signal can be generated externally or through specialized analog circuitry, such as

Phase locked loops (PLL) or Delay locked loops (DLL).



1.4 Physical Design 21

Figure 1.11: Example of (a) PLL and (b) DLL block schemes.

Its frequency may be adjusted through division or multiplication to meet the spe-

ci�c requirements of individual blocks. Once the entry points and sinks for the clock

signal, such as �ip-�ops and latches, are established, clock tree routing is employed

to create a clock tree for each clock domain within the circuit. The unique function

of the clock signal in synchronizing all computations on the chip distinguishes clock

routing from other routing types. The fundamental challenge of clock routing lies

in the necessity to deliver the signal from the source to all destinations, or sinks,

simultaneously.
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Figure 1.12: Example of H-tree structure.

There are several architectural strategies for constructing clock trees, each with its

own trade-o�s in terms of skew, power consumption, and implementation complexity.

Among the most commonly used structures are H-trees (as seen in Fig. 1.12), X-trees,

and balanced binary trees. These topologies are designed to minimize clock skew,

that is the di�erence in arrival times of the clock signal at di�erent sinks, and to

ensure uniform delay distribution across the chip.

1.4.5 Signal Routing

Routing is a critical stage in the physical design �ow of integrated circuits. It involves

establishing physical connections between placed standard cells, macros, and I/O

pins using metal layers. The goal is to create signal paths that meet design rules,

timing constraints, and congestion limits, while minimizing wirelength and delay.

E�ective routing ensures both functional correctness and performance of the �nal

chip layout. The process of full-chip routing typically consists of three stages: global

routing, detailed routing and timing-driven routing (discussed in Sec. 1.4.6.2).

� Global routing

At this stage, the chip layout is abstracted into a coarse routing grid, typically

represented as a grid graph. Each edge in this graph corresponds to a rout-

ing channel and is associated with a certain routing capacity, which re�ects

the number of wires that can be routed through that channel without causing

congestion. During global routing, the topologies of the nets, the sets of pins

that need to be connected, are mapped onto this grid. The goal is to assign

each net to a set of routing resources (edges in the graph) in a way that mini-
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mizes total wirelength, avoids over-congested regions, and respects design rules

and timing constraints. Unlike detailed routing, which de�nes the exact ge-

ometries and layers of the wires, global routing provides a high-level plan that

guides the subsequent routing stages. This step is essential for identifying po-

tential routing bottlenecks early in the �ow and for enabling congestion-aware

optimization in later phases. It also plays a key role in estimating parasitics

and timing, which are critical for ensuring that the design meets performance

targets.

� Detailed routing

During the detailed routing phase, wire segments are allocated to speci�c rout-

ing tracks. This phase encompasses several intermediate tasks and decisions, in-

cluding net ordering, determining the sequence in which nets should be routed,

and pin ordering, which dictates the connection sequence of pins within a net.

These two factors present signi�cant challenges in sequential routing, where

nets are routed individually. The order of nets and pins can signi�cantly in�u-

ence the quality of the �nal solution. Detailed routing aims to enhance global

routes and generally does not modify the net con�gurations established dur-

ing global routing. Therefore, if the global routing outcome is suboptimal, the

quality of the detailed routing result will also be adversely a�ected. To establish

net ordering, each net is assigned a numerical importance indicator, referred

to as net weight. Nets that are timing-critical, connect to multiple pins, or

serve speci�c functions, such as delivering clock signals, may be assigned high

priority. It is essential for high-priority nets to minimize unnecessary detours,

even if this requires diverting other nets.

Figure 1.13: Example of: (a) a placement, (b) a global routing, and (c) a detailed
routing.

1.4.6 Timing Closure

The con�guration of an IC must ful�ll not only geometric speci�cations, such as

non-overlapping cells and routability, but also adhere to the timing requirements of

the design, including setup and hold constraints. The process of optimization that
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addresses these speci�cations and requirements is commonly referred to as timing

closure. This process incorporates point optimizations previously discussed, such as

placement (Sec. 1.4.3) and routing (Sec. 1.4.5 and Sec. 1.4.4), along with specialized

techniques aimed at enhancing circuit performance. The main aspects of timing

closure are the following:

� Timing-driven placement (Sec. 1.4.6.1) aims to reduce signal delays by strate-

gically assigning locations to circuit components.

� Timing-driven routing (Sec. 1.4.6.2) focuses on minimizing signal delays through

the selection of routing topologies and speci�c paths.

� Physical synthesis (Sec. 1.4.6.3) enhances timing by modifying the netlist doing

changes such as:

1. Adjusting the sizes of transistors or gates: increasing the width-to-length

ratio of transistors to reduce delay or enhance the drive strength of a gate.

2. Adding bu�ers to nets to lower propagation delays.

3. Reorganizing the circuit along its critical paths.

For an extended period, the delay in signal propagation within logic gates was the

predominant factor contributing to circuit delay, while the delay caused by wiring was

considered minimal. Consequently, the placement of cells and the routing of wires

did not signi�cantly in�uence circuit performance. However, beginning in the mid-

1990s, advancements in technology scaling greatly ampli�ed the relative signi�cance

of delays induced by wiring, thereby rendering high-quality placement and routing

essential for achieving timing closure. Timing optimization engines are required to

quickly and accurately estimate circuit delays to enhance circuit timing. Timing

optimizers modify propagation delays across circuit components, primarily aiming

to meet timing constraints, which include

� Setup constraints that dictate the duration a data input signal must remain

stable prior to the clock edge for each storage element. Setup constraints ensure

that no signal transition occurs too late.

T ≥ tcomb + tsetup + tskew (1.1)

T refers to the clock period, tcomb denotes the maximum path delay through

combinational logic, tsetup indicates the setup time of the receiving storage ele-

ment (such as a �ip-�op), and tskew represents the clock skew. To determine if

a circuit adheres to setup constraints, it is necessary to estimate the duration of

signal transitions as they propagate from one storage element to another. This
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delay estimation is generally performed using Static timing analysis (STA),

which calculates Actual arrival time (AAT) and Required arrival time (RAT)

for the pins of each gate or cell. STA e�ciently detects timing violations and

identi�es their sources by tracing critical paths within the circuit that con-

tribute to these timing issues. Due to e�ciency considerations, STA does not

take into account the functionality of the circuit or speci�c signal transitions.

Instead, it presumes that every cell transmits every 0-1 (1-0) transition from its

inputs to its outputs, with each propagation occurring at the maximum delay.

Consequently, the results obtained from STA are frequently overly pessimistic

for larger circuits. A crucial measure for a speci�c timing point is the timing

slack. This is de�ned as the di�erence between RAT and AAT, expressed as

Slack = RAT −AAT

A positive slack signi�es that the timing requirements are satis�ed, meaning

the signal arrives prior to the necessary time, whereas a negative slack indicates

a timing violation, where the signal arrives after the required time.

� Hold-time constraints that determine the duration a data input signal must

remain stable following the clock edge at each storage element. Hold violations

may arise when a signal path is excessively short, enabling a receiving �ip-�op

to capture the signal in the current cycle rather than in the subsequent cycle.

tcomb ≥ thold + tskew

tcomb denotes the maximum path delay through combinational logic, thold d is

the hold time required for the receiving storage element, and tskew represents

the clock skew. Since the hold-time constraint is not a�ected by the clock pe-

riod, simply reducing the clock frequency does not resolve hold-time violations.

For this reason, hold-time constraints are typically addressed after the clock

network has been synthesized, when the actual delays introduced by the clock

tree are known and can be accurately analyzed.



26 1. State of Art

Figure 1.14: Hold and setup constraints.

1.4.6.1 Timing-Driven Placement

Timing-driven placement (TDP) enhances circuit delay to either meet all timing

requirements or maximize the clock frequency. It leverages the outcomes of STA to

pinpoint critical nets and seeks to reduce signal propagation delay across these nets.

Generally, TDP aims to minimize one or both of the following:

1. Worst negative slack (WNS)

WNS = min
τ∈T

(slack(τ)) (1.2)

2. Total negative slack (TNS)

TNS =
∑

τ∈T, slack(τ)<0

slack(τ)

1.4.6.2 Timing-Driven routing

In contemporary integrated circuits, interconnections signi�cantly impact overall sig-

nal delay. Therefore, interconnect delay becomes a critical factor during the routing

phases. Timing-driven routing aims to reduce either or both of the following:

1. Maximum sink delay, de�ned as the highest interconnect delay from the source

node to any sink of a speci�c net.

2. Total wirelength, which in�uences the load-dependent delay of the net's driving

gate.
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1.4.6.3 Physical synthesis

For a chip to function correctly in relation to setup constraints, it is essential that

AAT is greater than or equal to RAT at all nodes. If any nodes violate this condition,

resulting in negative slack, physical synthesis, a series of timing optimizations, will

be implemented until all slacks are non-negative. The optimization process encom-

passes two key components: timing budgeting and timing correction. In the timing

budgeting phase, target delays are assigned to arcs along timing paths to facilitate

timing closure during the placement and routing phases (Sec. 1.4.3 and Sec. 1.4.5),

as well as during timing correction. Timing correction involves modifying the netlist

to satisfy timing constraints through various operations such as:

� Gate Sizing : in the standard-cell design approach, each logic gate is generally

available in various sizes that relate to di�erent drive strengths. Drive strength

refers to the current that the gate can supply during its switching operation. A

larger gate size results in lower output resistance, enabling it to drive a greater

load capacitance with reduced load-dependent delay. However, a larger gate

size also incurs a higher intrinsic delay due to the parasitic output capacitance

inherent to the gate. Resizing transformations adjust the size of critical logic

gates to reduce the delay.

Figure 1.15: Example of the di�rence in internal resistance and capacitance changing
the drive strength of a cell.

� Bu�ering : a bu�er functions as a gate, usually consisting of two inverters con-

nected in series, which regenerates a signal while preserving its original func-

tionality. Bu�ers can enhance timing delays by either accelerating the circuit or

acting as delay elements, and they can also adjust transition times to enhance

signal integrity and mitigate variations in coupling-induced delays. However, a

signi�cant disadvantage of bu�ering techniques is their consumption of avail-

able area and the increase in power usage. Despite the careful application of

bu�ering in contemporary tools, the quantity of bu�ers has been on the rise
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in large designs due to trends in technology scaling, where interconnects are

becoming slower relative to gates. In modern high-performance designs, bu�ers

may account for 10-20% of all standard cell instances, and in some cases, this

�gure can reach up to 44% [13].

Figure 1.16: In this example the bu�er helps to partially shield the load capacitance
seen by the NAND gate.

� Netlist Restructuring : the netlist can be adjusted to enhance timing perfor-

mance. These modi�cations should not a�ect the circuit's functionality; how-

ever, they may involve the addition of extra gates or the recon�guration of

connections between existing gates to strengthen driving capability and im-

prove signal integrity. Some of the possible methods used are:

1. Replication

The replication of gates can mitigate delay when a gate with considerable

fanout experiences slowness due to its fanout capacitance and when a

gate's output diverges in two distinct directions, complicating optimal

placement for the gate.

Figure 1.17: Example of replication, the duplicated gate helps to reduce the fanout.

2. Redesign of fanin tree

The logic design phase typically yields a circuit characterized by the least

number of logic levels. Reducing the maximum number of gates along

the path connecting sequential elements generally results in a balanced
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circuit, ensuring comparable path delays from inputs to outputs. Never-

theless, since input signals can arrive at di�erent times, the circuit with

the minimum levels may not achieve optimal timing while a new unbal-

anced network could have a shorter input/output path.

Figure 1.18: Example of fanin tree redesign that allow to achieve a lower delay.

3. Redesign of fanout tree

It's possible to enhance timing by redistributing the output load capaci-

tance within a fanout tree to minimize the delay of the longest path.

Figure 1.19: Example of fanout tree redesign to reduce the load capacitance of the
�rst path.

4. Swapping commutative pins

While the input pins of a logic gate are logically equivalent, they exhibit

di�erent delays to the output pin in the actual transistor network. A

general guideline for pin assignment is to allocate a signal that arrives

later to an equivalent input pin with a shorter input-output delay, and

vice versa.

Figure 1.20: Example of swapping commutative pins.

5. Gate decomposition

Gates with multiple inputs typically exhibit increased size and capaci-

tance. Decomposing these multi-input gates into smaller, more e�cient

gates can reduce both delay and capacitance while preserving the same

Boolean functionality.
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Figure 1.21: Example of gate decomposition.

6. Boolean restructuring

Boolean logic can be realized in various forms within digital circuits and

some of them can be more e�cient from a timing standpoint.

Figure 1.22: Example of Boolean restructuring. Using the distributive law is possible,
in this case, to reduce the delay.

7. Reverse transformations

Timing optimizations like bu�ering, sizing, and cloning can increase area

and cause cell overlaps, making the design illegal. To restore legality,

either reverse these changes (unbu�er, downsize, merge) or run placement

legalization after timing �xes.

Having outlined the complete sequence of steps involved in the physical design

�ow, from �oorplanning through placement, clock tree synthesis, routing, and ul-

timately timing closure, it is important to recognize how this phase �ts into the

broader VLSI design process; once physical design is complete and the layout has

been �nalized, the �ow proceeds to design sign-o�, which includes checks such as

LVS, DRC, and �nal timing and power veri�cation. These steps ensure that the

design is manufacturable and meets all functional and performance speci�cations

before tape-out.

1.5 Conclusion

In this chapter, the fundamental principles and stages of the physical design process

have been presented, providing the necessary foundation for understanding the more

advanced and specialized topics addressed in the remainder of this thesis. Each phase,
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from �oorplanning to placement, clock tree synthesis, and routing, plays a critical

role in shaping the �nal layout of a VLSI circuit and ensuring that performance,

area, and manufacturability constraints are met.

Among these stages, placement represents one of the most computationally in-

tensive and impactful steps, particularly in the context of mixed-size designs, where

standard cells must coexist with large macros and pre-designed IP blocks. The pres-

ence of these heterogeneous elements introduces signi�cant complexity in terms of

optimization, congestion management, and timing closure. To address these chal-

lenges, modern placement tools increasingly rely on advanced heuristics and machine

learning-based algorithms to explore the vast solution space more e�ectively.

One notable example is a proprietary mixed-size placer developed by Qualcomm®,

which integrates machine learning techniques to improve placement quality and ef-

�ciency. This placer has been incorporated into the tool developed as part of this

thesis, which is speci�cally designed to support �oorplan exploration. The tool

enables designers to experiment with multiple area con�gurations and macro place-

ments in a �exible and automated manner. By leveraging the internal ML engine,

it can generate a wide range of valid macro placements for each area, signi�cantly

expanding the design space that a single engineer can explore and analyze.

The next chapter delves into the role and functioning of mixed-size placers, ex-

amining their algorithmic foundations and their integration into the �oorplan explo-

ration tool. This sets the stage for the experimental analysis presented in Chapter 3,

where the tool's capabilities are demonstrated and evaluated in the context of real-

world design scenarios.





Chapter 2

Mized Size Placers

Placement is a critical phase in the physical design �ow of VLSI circuits; its primary

objective is to determine the optimal positions of logic components such as standard

cells, macro blocks, and memory units within the chip area, while minimizing key

design metrics such as total wirelength, congestion, and power consumption. The

quality of placement has a direct impact on downstream stages like clock tree syn-

thesis, routing, and timing closure, and it also enables early estimation of physical

constraints that can guide earlier design decisions.

In modern integrated circuits, the placement problem becomes signi�cantly more

complex due to the mixed-size nature of designs, where small standard cells must co-

exist with large, pre-designed macros and IP blocks. These heterogeneous elements

introduce unique challenges in terms of optimization, spatial constraints, and scala-

bility. Traditional placement algorithms often fall short in e�ectively handling this

complexity, motivating the development of more advanced and specialized mixed-size

placers.

This chapter begins by introducing the theoretical foundations of placement,

including the basic principles of global placement, wirelength smoothing, density

control, and nonlinear optimization. These concepts provide the mathematical and

algorithmic basis for understanding how modern placers operate.

Next, the chapter discusses the main challenges in placement, particularly in

the context of large-scale, mixed-size designs. This is followed by a classi�cation

of placers, distinguishing between analytical, partitioning-based, and stochastic ap-

proaches, and a focused discussion on analytical placers, which form the backbone

of many state-of-the-art tools.

The chapter then delves into the speci�cs of mixed-size placement, exploring

how the coexistence of macros and standard cells a�ects placement strategies and

tool design. This leads into a comparative overview of three placers: ePlace [1],

ePlace-MS [3], and DREAMPlace [2]; highlighting their core algorithms, optimization

33
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techniques, and performance characteristics. Special attention is given to concepts

such as eDensity, a density penalty and gradient function based on electrostatic

principles and an analogy with deep learning to enable GPU acceleration.

Finally, the chapter presents the Qualcomm® macro placer tool, a proprietary

solution that integrates machine learning to enhance macro placement quality. This

tool has been incorporated into the �oorplan exploration framework developed as

part of this thesis, enabling the generation of diverse macro placement alternatives

and signi�cantly expanding the design space available to engineers. The practical

application and evaluation of this tool will be the focus of Chapter 3.

2.1 Theoretical Foundations

Before diving into the practical aspects of mixed-size placement, it is useful to �rst

build a solid understanding of the theoretical principles that underpin modern place-

ment algorithms. This section introduces the key concepts that form the basis of

placement strategies, starting from the fundamental goals and constraints of the

problem, and moving through the mathematical models used to guide optimization.

By exploring topics such as global placement, wirelength smoothing, density control,

and nonlinear optimization, we can better appreciate how these techniques contribute

to the development of scalable and e�cient placers. These foundations will serve as

a reference point for the more advanced and specialized approaches discussed in the

rest of the chapter.

2.1.1 Base Concepts of Placement

At the heart of the placement problem lies the task of determining where each logic

component should be positioned within the chip area to achieve optimal performance

and manufacturability. This process must account for a variety of constraints, includ-

ing physical space limitations, connectivity requirements, and timing considerations.

To formalize this problem, placement is typically modeled using mathematical ab-

stractions that allow for e�cient algorithmic treatment.

A placement instance is formulated as a hyper-graph G = (V,E,R), where V

denotes the set of vertices (cells), E denotes the set of hyper-edges (nets) and R

denotes the placement region, respectively. A legal solution satis�es the following

three requirements:

1. Every cell is accommodated using enough free sites in the placement region.

2. Every cell is horizontally aligned with the boundaries of one placement row.

3. There is no overlap between cells or macros.



2.1 Theoretical Foundations 35

Based on the legality constraint, a placer targets minimizing the total HPWL of

all the nets. Let v = (x, y) denote a placement solution, where x = {xi|i ∈ Vm} and

y = {yi|i ∈ Vm} are the x- and y-coordinates of the cells, respectively. The HPWL

of each net e is de�ned as:

HPWLe(v) = max
i,j∈e

|xi − xj |+max
i,j∈e

|yi − yj | (2.1)

The total HPWL is then computed as:

HPWL(v) =
∑

e∈E

HPWLe(v) (2.2)

This metric provides a simple yet e�ective way to evaluate the quality of a place-

ment.

While the fundamental goal of placement is to minimize wirelength while ensur-

ing legality, addressing this objective in large and complex designs requires a more

structured and hierarchical approach. This is where global placement becomes es-

sential. By operating at a higher level of abstraction, global placement provides an

initial distribution of cells across the chip area, balancing density and connectivity

before moving on to more detailed and �ne-grained optimization. The next sec-

tion introduces the key concepts and mathematical formulations that underpin this

critical phase of the placement process.

2.1.2 Base Concepts of Global Placement

Global placement represents a crucial sub-phase within the overall placement process,

where the goal is to determine approximate positions for all cells and macros across

the chip area before proceeding to detailed placement. Unlike detailed placement,

which focuses on legalizing and re�ning positions, global placement operates at a

coarser level of granularity, aiming to optimize global objectives such as wirelength

and cell density distribution.

This phase is typically formulated as a constrained optimization problem, where

the placer seeks to minimize a cost function, usually the total wirelength, while

satisfying spatial constraints to avoid excessive cell overlap and routing congestion; to

facilitate this, the placement region is uniformly partitioned into a grid of rectangular

bins,denoted as B, which serve as the basic units for estimating and controlling cell

density.

Based on a placement solution v, let ρb(v) denote the density of each grid b as

shown in Eq. 2.3.
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ρb(v) =
∑

i∈V

lx(b, i) ly(b, i) (2.3)

Here, lx(b, i) and ly(b, i) denote the horizontal and vertical overlaps between the

grid b and the cell i. Both lx(b, i) and ly(b, i) exhibit a rectangular shape, which is

not di�erentiable at boundary points. As Eq. 2.4 shows, a global placement problem

targets a solution v with minimum total HPWL subject to the constraint that the

density ρb(v) of all the grids is equal to or below a predetermined target placement

density ρt.

min
v

HPWL(v) s.t. ρb(v) ≤ ρt, ∀b ∈ B (2.4)

This formulation ensures that the placement not only minimizes wirelength but

also maintains a balanced distribution of cells across the chip, which is essential for

routability and timing closure in later stages.

To e�ectively solve the global placement problem, it is necessary to rely on opti-

mization techniques that can handle both the objective function and the associated

constraints in a computationally e�cient manner. However, one of the main chal-

lenges in this context is the non-di�erentiability of the wirelength cost function,

which complicates the use of gradient-based optimization methods. To address this,

various smoothing techniques have been introduced to approximate the wirelength

in a di�erentiable form, enabling faster and more stable convergence during opti-

mization. The next section explores one of the most widely used smoothing models

in placement algorithms.

2.1.3 Wirelength Smoothing

In global placement, the total wirelength, typically measured using the HPWL, serves

as a key objective to minimize. However, the HPWL function is not di�erentiable.

This lack of smoothness poses a signi�cant obstacle for optimization algorithms that

rely on gradient information, such as those based on nonlinear programming or ma-

chine learning.

To overcome this limitation, several smoothing techniques have been developed

to approximate the HPWL with di�erentiable functions, these approximations allow

for the use of e�cient gradient-based solvers, improving both the convergence rate

and the quality of the �nal placement. One widely adopted model is theWeighted-

Average (WA) wirelength model, which provides a smooth approximation of the

bounding box of a net by using exponential weighting. The horizontal component of

the WA model for a net e is de�ned as:
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We(v) =

(
∑

i∈e xi exp(xi/γ)
∑

i∈e exp(xi/γ)
−

∑

i∈e xi exp(−xi/γ)
∑

i∈e exp(−xi/γ)

)

(2.5)

Where γ is the smoothing parameter, which can be used to control the modeling

accuracy; smaller values of γ yield to a closer approximation to the true HPWL,

while larger values improve di�erentiability and numerical stability.

While smoothing techniques address the di�erentiability of the wirelength objec-

tive, they do not resolve another critical aspect of global placement: the need to

control cell density across the layout. Without proper density management, cells

may cluster in certain regions, leading to routing congestion and timing violations;

to tackle this, placement algorithms introduce a density penalty mechanism, which

is discussed in the following section.

2.1.4 Density Penalty

In addition to minimizing wirelength, a legal and routable placement must ensure

that no region of the chip becomes overly congested. This is particularly important

in modern IC designs, where the number of bins |B| used to discretize the placement

region can be millions. Enforcing individual density constraints for each bin would be

computationally infeasible in practice, to address this, all the constraints are typically

aggregated into a single density penalty function N(v), as shown in Eq. 2.6. This

function penalizes placements that exceed the target density ρt, and by construction,

N(v) = 0 if and only if all density constraints are satis�ed.

ρb(v) ≤ ρt, ∀b ∈ B ⇐⇒ N(v) = 0 (2.6)

Quadratic placement approaches usually model the density penalty as a linear

or quadratic function, which can be easily integrated into their objective function.

Nonlinear placers have no constraints on the order of modeling functions thus are

able to design the penalty in more �exible ways. In all three discussed papers, the

placement instance is modeled as an electrostatic system, where the density penalty

function N(v) is interpreted as the system's potential energy, This analogy allows

for smooth and continuous modeling of repulsive forces that naturally spread cells

across the layout.

Once both the wirelength and density components have been modeled in di�er-

entiable form, they can be combined into a uni�ed objective function. This leads to

the nonlinear optimization formulation adopted by many modern global placers, as

described in the next section.
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2.1.5 Nonlinear Optimization Formulation

Modern global placement algorithms often rely on nonlinear optimization to simul-

taneously minimize wirelength and enforce density constraints. By combining the

smoothed wirelength function W (v) with the density penalty function N(v), the

overall objective function becomes:

min
v

f(v) =W (v) + λN(v) (2.7)

The penalty factor λ is used to control the trade-o� between wirelength and

density; a higher value of λ places more emphasis on satisfying density constraints,

potentially at the cost of increased wirelength, while a lower value prioritizes wire-

length minimization. Tuning this parameter is essential for achieving high-quality

placement results, and many placers adopt adaptive strategies to adjust λ dynami-

cally during optimization.

While the mathematical formulation of placement provides a solid foundation for

optimization, real-world designs introduce additional layers of complexity. Scalability

to millions of components, the coexistence of heterogeneous elements such as macros

and standard cells, strict physical constraints, and the need to optimize multiple

objectives simultaneously all pose signi�cant challenges. The next section explores

these issues in detail, highlighting the practical di�culties that modern placers must

overcome.

2.2 Challenges in Placement

As integrated circuits continue to grow in complexity and scale, the placement stage

of physical design has become increasingly critical and challenging. The task of

determining optimal positions for millions of standard cells and macros within a

chip layout must account for a wide range of constraints and objectives, all while

maintaining computational e�ciency; this complexity is further exacerbated by the

heterogeneity of modern designs, which often include a mix of small, densely packed

standard cells and large, irregularly shaped macros.

Modern placement faces several challenges, including:

� Scalability: Designs today may contain millions of cells and thousands of

macros.

� Heterogeneity: The coexistence of objects with vastly di�erent sizes (stan-

dard cells vs. macros) complicates optimization.

� Physical constraints: Such as reserved regions, �xed orientations, density

targets, and routability requirements.
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� Multi-objective optimization: Including wirelength minimization, density

balancing, timing, and power optimization.

To address these challenges, a wide variety of placement algorithms have been

developed over the years, each with di�erent strategies and trade-o�s, they can

be broadly categorized into three main classes: stochastic, partitioning-based, and

analytical approaches. The next section provides an overview of these categories,

highlighting their core principles and how they tackle the inherent complexity of the

placement problem.

2.3 Classi�cation of Placers

Over the years, a wide range of placement algorithms have been proposed to ad-

dress the increasing complexity of VLSI designs; each approach re�ects a di�erent

philosophy in tackling the placement problem, balancing trade-o�s between solution

quality, computational e�ciency, and scalability. While the ultimate goal remains

the same, �nding an optimal or near-optimal placement that satis�es physical and

performance constraints, di�erent algorithms adopt distinct strategies to navigate

the vast solution space.

Placement algorithms can be broadly categorized into three main classes:

� Stochastic Placers: typically rely on simulated annealing techniques (e.g.,

Timberwolf [14]). Probabilistic acceptance of uphill climbing is employed to

help the placer escape from local optima. Although stochastic placement

achieves high solution quality, it su�ers from signi�cant complexity and a low

convergence rate, resulting in limited scalability for large circuits.

� Partitioning-Based Placers: systematically reduce the complexity of the

problem by dividing the instance (netlist and placement area) into smaller sub-

instances (e.g., Capo [15]). Nevertheless, inadequate partitioning during the

initial phases may lead to irreversible quality degradation in the �nal solution.

� Analytical Placers: Formulate the problem as a continuous optimization

task, often nonlinear, and represent the current state of the art.

Among these categories, analytical placers have gained particular prominence in

recent years due to their ability to scale with design complexity and deliver high-

quality results. The next section delves deeper into the principles of analytical place-

ment, highlighting why it has become the dominant approach in modern physical

design �ows.
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2.4 Analytical Placers

Among the various placement strategies, analytical placers have emerged as the most

prominent and widely adopted in modern VLSI design �ows. Their strength lies in

the ability to model placement as a continuous optimization problem, enabling the

use of powerful mathematical techniques to e�ciently explore the solution space; un-

like stochastic or partitioning-based methods, analytical placers can simultaneously

consider global wirelength minimization and local density constraints, making them

particularly e�ective for large-scale and high-performance designs.

Despite their advantages, analytical placers are not without limitations; the op-

timization problems they solve are often nonlinear and computationally intensive,

which can lead to longer runtimes compared to heuristic-based approaches. Never-

theless, their superior solution quality and scalability have made them the foundation

of many state-of-the-art placement tools.

Analytical placement techniques can be broadly divided into two main categories:

quadratic placement and nonlinear placement.

� Quadratic Placers: use quadratic models for wirelength (e.g., FastPlace [16],

SimPL [17]). This category of placers approaches the issue by alternating be-

tween an unconstrained wirelength minimization phase and a rough legalization

(LG) or spreading phase. The wirelength minimization phase typically employs

a quadratic wirelength model and aims to minimize the overall wirelength with-

out regard to overlaps among cells. The rough LG phase eliminates overlaps

using heuristic methods without explicitly factoring in the wirelength cost.

Through the iterative process of these two phases, cells can be progressively

spread apart while simultaneously minimizing the wirelength cost.

� Nonlinear Placers: addresses the placement challenge using nonlinear opti-

mization methods (e.g., ePlace [1], ePlaceMS [3], RePlAce [18] and DREAM-

Place [2]). It establishes a nonlinear optimization problem with a wirelength

objective that is subject to a density constraint. By incorporating the density

constraint into the objective, gradient descent-based methods can be utilized

to seek a high-quality solution.

While analytical placers have demonstrated remarkable performance in standard-

cell placement, their e�ectiveness is further tested in more complex scenarios in-

volving both standard cells and macros. The next section explores the challenges

and strategies associated with mixed-size placement, where the coexistence of het-

erogeneous components introduces new dimensions of complexity to the placement

problem.
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2.5 Mixed-Size Placement

As modern integrated circuits increasingly integrate heterogeneous components, the

placement problem evolves from a standard-cell-centric task to a more complex sce-

nario involving both standard cells and large macro blocks. This paradigm, known

as mixed-size placement, introduces a new set of challenges due to the signi�cant

disparity in size, constraints, and behavior between the two object types.

Unlike standard cells, which are small, numerous, and highly regular, macros are

large, sparse, and often subject to strict placement and orientation constraints. These

di�erences complicate the optimization landscape and demand more sophisticated

placement strategies.

Mixed-size placers must overcome several technical complications, including gra-

dient imbalance during optimization, slow convergence due to the presence of large

movable objects, and di�culties in achieving legal placements without sacri�cing

quality. Despite these challenges, mixed-size placement o�ers several advantages:

1. Generality : A uni�ed treatment of standard cells and macros avoids reliance

on ad hoc heuristics.

2. Scalability : Advanced techniques such as FFT-based density modeling, precon-

ditioning, and GPU acceleration enable e�cient handling of large designs.

3. Quality : High-quality solutions can be achieved even in the presence of large

macros, with reduced wirelength and congestion.

4. Extensibility : The framework can be extended to incorporate additional objec-

tives such as timing, power, and routability.

Historically, mixed-size placement algorithms have been developed following three

main paradigms:

� Two-stage methods involve two distinct phases: �oorplanning and placement.

Initially, the location and orientation of macros are established and �xed, fol-

lowed by placement that focuses on optimizing only standard cells on a global

scale. However, the limited data regarding standard cell distribution misleads

the �oorplanner during the early stages, resulting in a suboptimal �oorplan

solution that diminishes overall quality.

� Constructive (�oorplan-guided) approaches leverage the bene�ts of both �oor-

plan and placement, the �oorplanner concurrently optimizes both macros and

soft blocks (clusters of standard cells). An incremental placement then dis-

tributes standard cells on a local scale, subsequently incremental global and

detailed placement further disperses and legalizes the standard cells within
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the local scale. Nevertheless, the inherent limitations of partitioning and clus-

tering often lead to suboptimal solutions from a placement perspective. The

optimization space for standard cell placement can be signi�cantly reduced,

with quality loss that is challenging to recover.

� One-stage solutions continue to be favored by most contemporary placement

algorithms. By jointly optimizing all components, these methods avoid the

limitations of earlier paradigms and o�er better integration with modern ana-

lytical placement engines.

Several state-of-the-art analytical placers have been extended to support mixed-

size placement, each adopting di�erent strategies to address the associated challenges.

The next section presents a comparative analysis of three engines, ePlace [1], ePlace-

MS [3] and DREAMPlace [2], highlighting their core methodologies, strengths, and

limitations.

2.6 Comparative Overview: ePlace vs ePlace-MS vs DREAM-

Place

In recent years, the evolution of analytical placement has led to the development

of several high-performance engines, each pushing the boundaries of scalability, ac-

curacy, and runtime e�ciency. Among this there are ePlace [1], ePlace-MS [3] and

DREAMPlace [2], three tools that share a common foundation in electrostatics-based

modeling but diverge signi�cantly in their implementation strategies, optimization

techniques, and hardware acceleration capabilities.

These engines exemplify di�erent stages in the progression of analytical place-

ment: from CPU-based optimization with strong mathematical foundations, to mixed-

size support with enhanced preconditioning, and �nally to GPU-accelerated frame-

works that leverage modern deep learning infrastructures. Understanding their sim-

ilarities and di�erences provides valuable insight into the trade-o�s involved in de-

signing placement tools for increasingly complex VLSI circuits.

The following table summarizes the core characteristics of each engine, comparing

their conceptual models, optimization strategies, and architectural choices:
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ePlace ePlace-MS DREAMPlace

Core Concept

Electrostatics-based

placement using FFT

and Nesterov's method

Extension of ePlace

for mixed-size circuits

GPU-accelerated

analytical placement

using deep learning

toolkits (PyTorch)

Density Model

Electrostatic analogy

with Poisson's equation

solved via DCT/DST

Same as ePlace,

extended to handle macros

with nonlinear preconditioning

Same electrostatic model,

implemented with

GPU-accelerated DCT/IDCT

Optimization

Nesterov's method

with Lipschitz-based

step prediction

Nesterov's method

with Lipschitz prediction

and backtracking.

Multiple solvers via PyTorch

(Nesterov, Adam, SGD);

automatic di�erentiation

Acceleration CPU (OpenMP) CPU
GPU-based (CUDA kernels

for wirelength and density)

Placement Flow Flat netlist, no clustering

Two-phase:

macro legalization (SA)

+ standard cell re�nement

Fully integrated with PyTorch;

supports multi-GPU; �at netlist

Table 2.1: Comparison of ePlace, ePlace-MS, and DREAMPlace

While the comparative overview highlights the architectural and algorithmic dis-

tinctions among these tools, a key unifying element lies in their shared use of an

electrostatics-inspired density model, known as eDensity. This model plays a cen-

tral role in guiding the placement process by simulating the physical behavior of

charged particles in an electric �eld. The next section delves into the theoretical

foundations and practical implementation of the eDensity model, illustrating how it

enables e�cient and physically meaningful placement optimization.

2.6.1 eDensity

A fundamental component shared by the analytical placers ePlace [1], ePlace-MS [3]

and DREAMPlace [2] is the electrostatics-inspired density model known as eDensity.

This model provides a physically intuitive and computationally e�cient framework

for modeling placement density, by treating the entire placement instance as a two-

dimensional electrostatic system where each movable object, a standard cell or a

macro, is modeled as a positively charged particle, and the interactions among these

particles are governed by classical physical laws such as Coulomb's and Lorentz's.

This analogy transforms the density balancing problem into the search for an

electrostatic equilibrium: cells in over�lled regions experience repulsive forces and are

pushed toward underutilized areas, while those in less dense regions remain relatively

stationary. The result is a natural and smooth redistribution of cells that promotes

uniform density and minimizes overlaps, all within a continuous and di�erentiable

optimization framework.

Each node i (a cell or a macro block) in the netlist is transformed to a positively

charged particle. The electric quantity qi of the particle is set to be the node area

Ai. The motion of a movable cell i is driven by the electric force
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Fi = qiξi

formulated by Lorentz force law, where ξi is the local electric �eld. Similarly, the

cell potential energy Ni is calculated as

Ni = qiψi

where ψi is the electric potential at cell i. By Coulomb's law, the electric �eld and

potential at cell i are the superposition of the contribution from all the remaining

cells in the system.

Figure 2.1: Placement instance modeled as an electrostatic system.

An electrostatic system with only positive charges will introduce only repulsion

forces. The corresponding equilibrium state would place all cells along the chip

boundaries, thereby violating the global placement constraint. To address this, all

three considered works remove the DC component (i.e., the zero-frequency compo-

nent) from the density distribution ρ(x, y), introducing negative charges and ensuring

that the integral of the density function over the placement region becomes zero.
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(a) Initial Charge Density with DC Com-
ponent.

(b) Final Charge Density with DC Com-
ponent.

Figure 2.2: Initial and Final Charge Density in Electrostatic Placement with DC
component [1].

Since the density function transforms all objects into positive charges, the re-

sulting charge density distribution is initially positive. However, after removing the

DC component, under-�lled placement regions, those with electric quantity below

the original DC level, become negatively charged. Over-�lled regions remain posi-

tively charged but with reduced electric quantity due to the subtraction of the DC

component.

Cells located in positively charged (i.e., highly over-�lled) regions are attracted to

negatively charged regions, leading to mutual neutralization of positive and negative

charges. Meanwhile, cells in negatively charged regions tend to remain stationary.

Ultimately, the system reaches an electrostatic equilibrium state characterized by

zero net charge density across the entire placement region and a total potential

energy reduced to zero.

(a) Initial Charge Density without DC
Component.

(b) Final Charge Density after Removing
DC Component.

Figure 2.3: Initial and Final Charge Density in Electrostatic Placement after remov-
ing DC component [1].

Accordingly, all three papers model the placement density penalty and gradient

using the system's potential energy and electric �eld, respectively.

By Gauss' law, the electric potential distribution ψ(x, y) can be coupled with

the density function ρ(x, y) using Poisson's equation. A numerical solution based

on spectral methods is proposed in all three considered works to e�ectively and

e�ciently solve Poisson's equation. Spectral methods express the solution to a Partial

di�erential equation (PDE) as a summation of basis functions (e.g., sinusoidal and

cosine waveforms), with coe�cients chosen to satisfy the PDE and its boundary



46 2. Mized Size Placers

conditions.

A sinusoidal function, being odd and periodic, naturally satis�es the Neumann

boundary condition by diminishing to zero at the boundary of each period. Conse-

quently, sinusoidal wave functions are used as basis functions to represent the electric

�eld. Since the density and potential functions correspond to the derivative and inte-

gral of the �eld function, cosine waveforms are employed as basis functions to express

them.

Based on this frequency-domain decomposition (obtained using Discrete Cosine

Transform (DCT) and Discrete Sinusoidal Transform (DST), e�ciently computed via

the Fast Fourier Transform (FFT)), spectral methods are applied to solve Poisson's

equation in the placement modeling framework.

The adoption of the eDensity model has been instrumental in enabling scal-

able and high-quality placement, particularly in mixed-size and large-scale designs.

However, as circuit complexity continues to grow, there is an increasing need for

placement engines that can leverage modern hardware acceleration to further reduce

runtime without compromising quality.

This need has led to the development of DREAMPlace [2], which reimagines the

placement problem through the lens of deep learning. The next section explores the

conceptual analogy between analytical placement and neural network training, and

how this analogy enables the use of GPU-accelerated deep learning frameworks to

solve placement problems e�ciently.

2.6.2 Deep Learning Analogy for GPU Acceleration

As the scale and complexity of modern VLSI designs continue to grow, traditional

CPU-based placement engines face increasing limitations in terms of runtime and

scalability; to address these challenges, recent research has explored the use of GPU

acceleration and machine learning frameworks to enhance placement performance.

An innovative contribution in this direction is DREAMPlace [2], which reinterprets

the analytical placement problem through the lens of deep learning.

At the core of this approach lies a fascinating analogy: both analytical placement

and neural network training can be formulated as large-scale nonlinear optimization

problems. This structural similarity enables the reuse of deep learning toolkits, orig-

inally developed for training neural networks, to solve placement problems e�ciently

on GPU architectures. In particular, DREAMPlace [2] leverages PyTorch to imple-

ment forward and backward propagation routines, treating cell locations as trainable

parameters and using automatic di�erentiation to compute gradients.

� the wirelength cost in placement corresponds to the prediction error in neural

networks,
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� the density cost plays a role analogous to the regularization term.

In neural network training, each data instance with a feature vector xi and label yi

is processed by the network to produce a prediction φ(xi;w). The training objective

is to minimize the total loss over the weights w, which includes both the prediction

error and a regularization term R(w) [19].

In the placement analogy, the cell locations (x, y) are collectively represented

as w. Each data instance is replaced by a net instance with a feature vector ei

and a target label of zero. The network computes a wirelength cost WL(ei;w),

and using an absolute error function f(ŷ, y) = |ŷ − y|, the total prediction error

becomes
∑

iWL(ei;w). The density cost D(w), independent of the net instances,

corresponds to the regularization term.

(a) Train a network for weights. (b) Solve a placement for cell locations.

Figure 2.4: Conceptual analogy between neural network training and analytical
placement optimization [2].

This one-to-one mapping between components in analytical placement and neural

network training enables the use of deep learning toolkits for placement implemen-

tation. Consequently, the placement problem can be solved using a neural network

training procedure, involving forward propagation to compute the objective and

backward propagation to compute gradients.

This reinterpretation of placement as a di�erentiable optimization problem has

not only enabled signi�cant runtime improvements through GPU acceleration, but

also laid the groundwork for hybrid approaches that combine analytical rigor with

data-driven intelligence. Building on this foundation, Qualcomm® has developed a

proprietary macro placement tool that integrates machine learning techniques and

incorporates features from the open-source, GPU-accelerated framework DREAM-

Place [2]. The next section introduces this tool, highlighting its unique capabilities
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for macro placement exploration and its role in enabling interactive, user-guided

design prototyping.

2.7 Qualcomm® Macro Placer Tool

In addition to academic research, industrial e�orts have also contributed signi�cantly

to advancing placement methodologies, particularly in the context of mixed-size and

macro-dominated designs. One such contribution comes from Qualcomm®, where I

carried out my internship as part of this thesis project; during this experience, I had

the opportunity to work directly with a proprietary macro placement tool developed

by the company, which integrates machine learning techniques and incorporates fea-

tures from the open-source, GPU-accelerated placement framework DREAMPlace

[2], this tool is designed to enhance the early stages of physical design by enabling

rapid exploration of macro placement alternatives, with the goal of improving both

design quality and engineering productivity.

Unlike traditional placers that often rely on �xed heuristics or rigid optimization

�ows, the Qualcomm® tool introduces a more �exible and exploratory approach: it

leverages neural networks to generate a diverse set of macro placement candidates,

which are then evaluated and ranked based on key physical metrics. This capability

is particularly valuable in production environments, where early macro placement

decisions can have a profound impact on routability, timing closure, and overall

design convergence.

This tool takes as input a set of macro cells and their corresponding placement

constraints in the form of two �les:

� LEFlist : contains a compilation of paths leading to the Library Exchange

Format (LEF) �les associated with all the cells within the design.

� Design Exchange Format (DEF) �le: includes details about the design netlist,

the coordinates of the HM, the macros, and the locations of the pins.

Figure 2.5: Schematic representation of the tool's operations.

In the �gure, a schematic representation of the tool's work�ow is illustrated. Ini-

tially, a macro placer determines the positions of the macrocells using the information
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extracted from the input LEF and DEF �les. A neural network is then employed to

substantially increase the number of possible macro placements, generating a wide

variety of layout candidates. This expanded set is subsequently re�ned through a

�ltering stage that eliminates unpromising or redundant placements. To simulate

realistic design conditions, standard cells are added, enabling accurate estimation of

key physical metrics such as congestion and HPWL. Finally, the remaining macro

placements are classi�ed based on these metrics to identify the most viable con�gu-

rations. The outputs of the tool are provided in the form of .tcl scripts, which can

be sourced and directly used within commercial EDA tools.

To rank the generated macro placements, a Pareto curve is employed; this curve

is a standard tool in multi-objective optimization used to evaluate trade-o�s between

competing objectives and, in this context, the two con�icting goals are wirelength

and congestion. The Pareto curve highlights the set of Pareto-optimal solutions,

where no placement can be improved in one objective without degrading the other,

so the placements that lie on this frontier are considered optimal trade-o�s, while

those inside the curve are suboptimal, as at least one metric could be improved

without negatively a�ecting the other. This approach allows for a more balanced

and insightful evaluation of placement quality.
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Figure 2.6: Pareto curve illustrating the trade-o� between wirelength and congestion.

The macro placer under evaluation has been speci�cally tailored to produce more
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human-like, peripherally driven placements, aiming to mimic the intuition and strate-

gies often employed by experienced physical designers. This design choice is moti-

vated by the observation that such placements tend to enhance routability and lead

to better power-performance trade-o�s, particularly in designs where ultra-high per-

formance is not the primary objective. Compared to conventional placers, which

often prioritize metrics like wirelength above all else, this tool emphasizes a more

peripheral distribution of macrocells, aligning with practical design heuristics.

Figure 2.7: Comparison of two macro placements generated using di�erent tools and
netlists. One is peripherally driven (a), while the other is focused on wirelength (b).

The Qualcomm® macro placer thus represents a concrete application of the the-

oretical and algorithmic principles discussed throughout this chapter; by combining

analytical placement foundations, GPU acceleration, and machine learning-driven

exploration, it exempli�es how modern tools can bridge the gap between academic

research and industrial needs. Its ability to generate diverse, human-like macro

placements and evaluate them through multi-objective metrics such as wirelength

and congestion re�ects a broader shift toward more adaptive and designer-aware

placement strategies.

The next and �nal section of this chapter o�ers a summary of the key insights

presented so far, highlighting the evolution of placement techniques, the challenges of

mixed-size design, and the emerging role of hybrid, ML-based approaches in shaping

the future of physical design automation.

2.8 Conclusion

This chapter has provided a comprehensive overview of the theoretical and practical

aspects of mixed-size placement in VLSI physical design. It began by introducing

the fundamental concepts of placement and global placement, followed by a detailed

discussion of wirelength smoothing, density modeling, and the formulation of the



2.8 Conclusion 51

placement problem as a nonlinear optimization task; these foundations set the stage

for understanding the complexity of modern placement, which must balance mul-

tiple objectives, such as wirelength, congestion, timing, and power, while handling

heterogeneous components like standard cells and macros.

The chapter then examined the main classes of placement algorithms, stochastic,

partitioning-based, and analytical, highlighting their respective strengths and lim-

itations. Particular attention was given to analytical placers, which represent the

current state of the art due to their scalability and ability to integrate multiple ob-

jectives into a uni�ed optimization framework. Within this context, we explored the

challenges of mixed-size placement and reviewed how modern engines such as ePlace

[1], ePlace-MS [3], and DREAMPlace [2] address these challenges using electrostatics-

inspired density models and GPU-accelerated computation.

The discussion culminated in the presentation of Qualcomm®'s proprietary macro

placer, developed in an industrial setting and designed to support early-stage �oor-

plan exploration through machine learning and designer-aware heuristics; this tool

not only exempli�es the practical application of the concepts discussed throughout

the chapter but also introduces a more interactive and exploratory approach to macro

placement.

Building on these foundations, the next chapter introduces the experimental con-

tribution developed during my internship at Qualcomm®. It presents an enhanced

version of the macro placer, extended with a graphical interface and integrated with

an area shrink optimization engine. This combined solution enables e�cient �oor-

plan exploration and supports early design decisions through a user-guided, multi-

objective approach.





Chapter 3

Experiment

Building upon the theoretical foundations and placement strategies discussed in the

previous chapter, this section presents the experimental contribution developed dur-

ing my internship at Qualcomm®. The work focuses on extending a proprietary

macro placement tool by integrating it with an area shrink optimization engine and

a graphical user interface GUI, resulting in a more complete and adaptable solution

for �oorplan exploration.

This enhanced framework addresses a critical need in physical design: the ability

to rapidly explore a wide range of macro placement con�gurations under varying area

constraints, while maintaining control over key physical metrics such as wirelength

and congestion. By combining analytical placement principles, GPU acceleration,

and machine learning-based exploration, the tool enables designers to evaluate mul-

tiple �oorplan alternatives early in the design �ow, when decisions are most impactful

and least costly to revise.

The chapter begins with a detailed description of the GUI and its integration into

the existing �oorplan �ow; particular attention is given to the various con�guration

options available to the user, which allow for �ne-grained control over the exploration

process. Following this, a real-world test run is presented to demonstrate the tool's

capabilities in an industrial context. In this experiment, a single engineer with limited

prior experience was able to generate and analyze eight distinct macro placements

across four di�erent area con�gurations in parallel, showcasing the tool's potential

for accelerating early-stage design exploration.

3.1 GUI Integration

The enhanced macro placement tool is now accessible through an intuitive and mod-

ular graphical user interface GUI, designed to support fast and �exible �oorplan

exploration. As shown in Fig. 3.1, the GUI is organized into three main sections,

53
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each corresponding to a speci�c stage of the con�guration and execution process.

Figure 3.1: The GUI that enables fast �oorplan exploration.

The �rst section, labeled Shrink Con�guration, allows users to de�ne the

geometric and physical context in which the exploration will take place. The process

begins by specifying the coordinates of the Hard Macro (HM) to be analyzed, followed

by the manual placement of the pins. Once the macro and its interface are de�ned,

the user can con�gure the area shrink parameters, this is done by specifying the

initial and �nal area percentages (relative to the original macro area) and the step

size to be used for the shrink iterations. To maximize �exibility, the GUI o�ers four

shrink direction options: horizontal, vertical, bidirectional, or edge-speci�c, in this

last case, the GUI displays a preview of the macro with all edges numbered, allowing
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the user to select a speci�c edge to shrink. This feature is particularly useful for

�ne-tuning the �oorplan in constrained or asymmetric design contexts.

The second section, named Floorplan Generator Con�guration, is dedicated

to con�guring the proprietary macro placement engine. Users can choose whether to

activate the engine or bypass it, this is useful in cases where macro placements are

already available and the focus is solely on area variation. When enabled, the user

can specify the number of ranks to generate for each area con�guration; as discussed

in Secion 2.7, the macro placer classi�es its outputs using a Pareto-based ranking

system that balances wirelength and congestion. Additionally, the GUI provides

an option to enable a visual check: once the macro placements are generated, a

preview window opens automatically for each area, allowing the user to inspect all

candidate placements; this interactive step helps identify promising con�gurations

to carry forward into the full physical design �ow, while discarding less viable ones

early on.

The �nal section provides a summary of all shrinked macro versions and includes

a button to launch the full exploration �ow. Once the user initiates the run, the tool

automatically generates a structured �ow within the industrial EDA environment, as

illustrated in Fig. 3.2. The �ow is organized as a tree of nodes and branches, where

each area con�guration corresponds to a parent node responsible for dumping the

necessary input �les (DEF and LEFlist) and invoking the macro placement engine.

For each rank within a given area, a separate branch is created; these branches wait

for the macro placement outputs to become available and then automatically source

the corresponding .tcl scripts, allowing the �ow to proceed seamlessly through the

standard physical design stages.
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Macro Placer
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Figure 3.2: Example of �owchart of the Macro Placer process illustrating �oorplan
exploration under di�erent area reduction scenarios (0%, -2%, -4%), with multiple
ranked outputs.
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This approach not only simpli�es the con�guration and execution of complex

�oorplan exploration tasks, but also ensures that the tool remains accessible and

adaptable to a wide range of design scenarios. By abstracting away much of the

manual setup typically required in physical design �ows, the interface empowers

engineers to focus on evaluating design trade-o�s and making informed architectural

decisions. The seamless integration with commercial EDA environments further

enhances its practicality, enabling rapid deployment and e�cient iteration within

real-world work�ows.

To assess the e�ectiveness of the tool in a realistic industrial context, the next

section presents the results of a test run. This experiment demonstrates how the tool

can be used to explore multiple macro placement con�gurations across di�erent area

shrink scenarios, highlighting its potential to accelerate early-stage design exploration

and support decision-making even in the hands of a single engineer with limited prior

experience.

3.2 Test Run: Multi-Area Floorplan Exploration

To evaluate the practical utility of the developed tool, a test run was conducted on

a real design scenario involving multiple area con�gurations. The objective was to

assess how the tool performs in generating and managing diverse macro placements

under varying area constraints, and to demonstrate its e�ectiveness in supporting

early-stage �oorplan exploration.

In this experiment, four distinct area con�gurations were selected, corresponding

to area shrink levels of 0%, -1%, -2%, and -3% applied in both horizontal and vertical

directions. For each con�guration the tool automatically generated multiple macro

placements but to streamline the downstream stages of the physical design �ow and

minimize the need for manual legalization, given that the macro placer is not yet

capable of producing fully legalized outputs, two top-ranked placements per area

were selected. This resulted in a total of eight macro placements.

It is important to note that the shrink percentage de�ned in the GUI refers to

the total bounding area of the HM. However, since the macro itself remains �xed

in size, the e�ective area available for standard cell placement, referred to as the

placeable core area, is reduced more signi�cantly.

Placeable Core Area Shrink =
Aoriginal

core −Ashrinked
core

Aoriginal
core

· 100 (3.1)

where Aoriginal
core is the initial area available for standard cell placement (i.e., total

area minus macro area), and Ashrinked
core is the reduced area after applying the shrink.

The following table shows the computed values of placeable core area shrink for each
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of the four tested con�gurations:

Shrink 0% -1% -2% -3%

Placeable Core Area Shrink 0% 3.25% 7.26% 10.84%

Table 3.1: E�ect of design shrink on placeable core area reduction.

From the table can be seen that even modest reductions in the total design area

result in a signi�cantly larger decrease in the placeable core area. For instance, a

global shrink of 2% leads to a 7.26% reduction in the area available for standard cell

placement. This highlights the importance of carefully evaluating macro placement

strategies under di�erent area constraints, as the available routing and placement

resources can be impacted more severely than the shrink percentage might suggest.

To better understand how these area reductions in�uence macro placement qual-

ity and feasibility, the next section presents a visual comparison of the generated

macro placements across the di�erent shrink con�gurations. For each case, the place-

ments are shown both before and after manual legalization, allowing for a qualitative

assessment of the tool's output and its adaptability to real-world design constraints.

3.2.1 Legalization

While the macro placement engine integrated into the tool is capable of generating

high-quality and diverse placement candidates, it currently does not guarantee that

the outputs are fully legal (i.e., free from overlaps and aligned to placement grids) and

as a result, a manual legalization step is still required to ensure that the generated

macro placements can be used in downstream stages of the physical design �ow.

This limitation is expected to be addressed in future versions of the tool, in this

way once automatic legalization will be supported, the GUI will allow users to choose

whether to enable or disable overlap constraints during placement generation. This

�exibility will be particularly useful in early design stages, where allowing a limited

degree of overlap can lead to more exploratory and unconstrained macro placements.

In contrast, during later stages of the �ow, users will be able to enforce strict legality

to ensure that the outputs are immediately usable for Place & Route (PnR) and

signo�.

Figure 3.3 shows the default macro placement used as a baseline in this exper-

iment. This placement was generated using a less recent version of Qualcomm®'s

proprietary machine learning-based macro placer. Its origin is evident from certain

unconventional placement decisions that would likely not be made by a human de-

signer. For instance, the tall orange macros at the bottom are split into two banks:

one placed unusually close to the corner of the layout, and the other more centrally

located, this creates a dent between the two banks, a con�guration typically avoided
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in manual placements due to its potential to cause routability issues. Additionally,

the four blue macros in the upper-right region are positioned closer to the center of

the core, forming a bump that a human designer would likely smooth out to maintain

a more regular and congestion-aware layout. Another clear indication of automated

placement is the incomplete preservation of hierarchical grouping: macros belonging

to the same logical block or hierarchy are not consistently placed in proximity, which

contrasts with common manual �oorplanning practices aimed at improving locality

and simplifying routing.

Figure 3.3: Default macro placement.

One notable issue observed in earlier versions was the incorrect handling of �xed

cells, such as ESD cells, which are typically required to be placed at speci�c loca-

tions within the design. In the default placement shown above, two ESD cells are

correctly positioned in the top-left corner of the layout, this result was achieved by

manually adjusting the positions of nearby macros to create su�cient space for the

ESD insertion. Since the same adjustment has not yet been applied to the new

placements, the ESD cells appear incorrectly placed and overlapping at coordinate

(0,0), the bottom-left corner, due to the lack of �xed-cell awareness in the placement

engine. Therefore, a similar macro rearrangement will be required for each of the

newly generated placements to ensure proper ESD integration.

To address this, a new feature has been added to the GUI that allows users to

�x the position of speci�c cells prior to placement; this includes not only ESD cells,

but also other critical components such as Power Mux (PMUX) and other macros

with strict placement requirements. This enhancement ensures that future macro

placements respect these constraints, improving both the realism and usability of
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the generated layouts.

The following �gures present the macro placements generated for each area shrink

con�guration, both before and after manual legalization. These visualizations pro-

vide insight into the quality of the raw outputs, the nature of the required ad-

justments, and the overall e�ectiveness of the tool in producing viable �oorplan

candidates under varying design constraints.

Figure 3.4: Macro Placement Pre and Post legalization: Area 0% / Rank 1.

Figure 3.5: Macro Placement Pre and Post legalization: Area 0% / Rank 2.

Figure 3.6: Macro Placement Pre and Post legalization: Area -1% / Rank 1.
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Figure 3.7: Macro Placement Pre and Post legalization: Area -1% / Rank 2.

Figure 3.8: Macro Placement Pre and Post legalization: Area -2% / Rank 1.

Figure 3.9: Macro Placement Pre and Post legalization: Area -2% / Rank 2.
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Figure 3.10: Macro Placement Pre and Post legalization: Area -3% / Rank 1.

Figure 3.11: Macro Placement Pre and Post legalization: Area -3% / Rank 2.

During the manual legalization process, a deliberate e�ort was made to minimize

modi�cations to the original macro placements generated by the tool; this choice was

motivated by the desire to evaluate the tool's performance as objectively as possible,

preserving the spatial intent of the machine learning-based engine and avoiding the

introduction of human bias in the layout.

In typical design �ows, it is common practice to introduce channels between

memory banks to facilitate routing and reduce stacking depth. However, in this

experiment, such adjustments were applied only when it was straightforward, on the

other hand in several cases, small overlaps between macros were intentionally left

unresolved, as eliminating them would have required signi�cant repositioning of the

cells, potentially distorting the original output and undermining the purpose of the

evaluation.

This conservative approach ensures that the results presented in the following

sections re�ect the tool's actual capabilities and limitations, providing a more accu-

rate basis for assessing its e�ectiveness in generating viable macro placements under

varying area constraints.

From the visual inspection of the generated macro placements, similarly to what
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was observed in the default case, it becomes evident that these layouts were not

produced by human designers since several characteristics, easily recognizable across

the di�erent con�gurations, point to the algorithmic nature of the placements.

Notably, the presence of notches (irregular indentations in the �oorplan), bumps

(isolated macros protruding from otherwise aligned rows), and the lack of clear hi-

erarchical grouping are all signs of a placement strategy driven by optimization

objectives rather than design intuition. These features, while potentially accept-

able from a purely physical standpoint, often con�ict with common human design

practices that prioritize symmetry, alignment, and logical grouping for readability,

maintainability, and routability.

Such patterns reinforce the idea that the tool operates with a di�erent set of pri-

orities compared to a human designer, focusing on global metrics like wirelength and

congestion rather than visual or structural regularity; this distinction is important

when interpreting the results, as it highlights both the strengths and the current

limitations of machine-generated macro placements in real-world design contexts.

While the visual characteristics of the generated macro placements o�er valuable

insights into the algorithmic nature of the tool's output, a comprehensive evaluation

requires a quantitative analysis of the design metrics that ultimately determine the

viability of a physical implementation. To this end, the following section presents the

QoR obtained after completing the placement stage for each con�guration; metrics

such as total wirelength, congestion, timing slack, and utilization serve as objective

indicators of the tool's e�ectiveness in producing layouts that are not only physically

realizable but also competitive in terms of performance and e�ciency. By comparing

these results across di�erent area constraints and placement strategies, we aim to

assess the practical impact of the tool's decisions and identify potential areas for

improvement in future iterations.

3.2.2 Quality of Results at Placement stage

Following the qualitative assessment of the macro placements, this section presents a

detailed quantitative evaluation aimed at measuring the practical implications of the

generated layouts. The analysis focuses on the QoR obtained immediately after the

placement stage, o�ering a comprehensive view of how each con�guration performs

in terms of physical feasibility, routing complexity, and timing robustness.

To structure the evaluation, three main categories of metrics are considered: cell

metrics, wire metrics, and power metrics; these dimensions capture di�erent as-

pects of the design's physical characteristics and are visualized through a series of

heatmaps. The cell metrics heatmap highlights areas of high cell density and po-

tential congestion, which are critical for understanding placement compactness and
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routability. The wire metrics heatmap provides insight into wirelength distribu-

tion and routing pressure, helping to identify regions where excessive interconnect

complexity may arise. Finally, the power metrics heatmap reveals the spatial dis-

tribution of dynamic and leakage power, which is essential for early-stage thermal

and power integrity analysis.

In addition to these physical indicators, the section also includes a set of plots il-

lustrating the setup timing margins across multiple Process-Voltage-Temperature

(PVT) corners. These results are particularly important for evaluating the timing

resilience of each placement under realistic operating conditions. By analyzing the

slack distribution across corners such as typical-typical (TT), slow-slow (SS), and

fast-fast (FF), we can assess how well the placement supports timing closure and

identify con�gurations that may introduce critical path violations or require further

optimization in later stages.

Together, these visual and numerical analyses provide a multi-faceted perspective

on the quality of the placement solutions. They not only highlight the strengths

and limitations of the machine-generated layouts but also serve as a foundation for

understanding how early placement decisions propagate through the design �ow,

ultimately a�ecting PPA outcomes.

Cell Metrics Analysis

The heatmap in Fig. 3.12 presents a comparative overview of key cell-related metrics

across di�erent area constraint scenarios; these metrics include bu�er and inverter

area and count, sequential and standard cell area, total standard cell count, and

overall cell utilization. All values are normalized with respect to the default con�g-

uration, allowing for a direct comparison of how each metric evolves as the available

placement area is progressively reduced.

A �rst observation concerns the stability of the metrics associated with bu�ers,

inverters, and standard cells. Across all con�gurations, the values for Bu�_area,

Bu�_count, Inv_area, and Inv_count remain consistently close to 1, this indicates

that the tool's placement strategy does not signi�cantly alter the number or area

of these fundamental components, regardless of the area constraints. Similarly, the

total standard cell count and area (Stdcell_count, Stdcell_area) exhibit only minor

�uctuations, suggesting that the synthesis and placement stages maintain a compa-

rable logic footprint across all scenarios.

The most notable variations are observed in the Utilization metric; in the con-

�gurations where the total area is equal to that of the default case (0% reduction,

rank 1 and 2), utilization is slightly lower, this may be attributed to di�erences in

macro organization introduced by the tool, which can a�ect the distribution and

compactness of standard cells. Interestingly, in the case of a 1% total area reduction,
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corresponding to a 3.25% decrease in placeable area as reported in Table 3.1, the

utilization remains nearly identical to the default, indicating that the tool is capable

of adapting to moderate area constraints without compromising placement density.

As expected, in the more aggressive scenarios with 2% and 3% area reductions

(corresponding to 7.26% and 10.84% reductions in placeable area, respectively), uti-

lization increases progressively. This trend re�ects the natural consequence of �tting

the same logic content into a smaller footprint, leading to higher cell density and

potentially greater routing complexity in subsequent stages.

Figure 3.12: HeatMap QoR Placement Cell Metrics.

Overall, this analysis con�rms that while the tool maintains consistent behavior

in terms of cell instantiation, the utilization metric is sensitive to area constraints

and provides an early indicator of the pressure imposed on the layout by tighter

design envelopes.

Wire Metrics Analysis

The heatmap in Fig. 3.13 illustrates the behavior of key wire-related metrics across

di�erent area constraint scenarios; The metrics considered include the total number

of nets (Net_count), the estimated total wirelength (Wirelength), and the routing

over�ow (Over�ow). All values are normalized with respect to the default con�gu-

ration, enabling a direct comparison of how these parameters evolve as the available

placement area is progressively reduced.

As shown in the heatmap, the Net count remains remarkably stable across all

con�gurations, with values consistently close to 1, this con�rms that the logical

connectivity of the design is preserved regardless of the macro placement strategy or

area constraints, as expected in a �ow where synthesis is held constant.
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The Wirelength metric also remains close to 1 in all scenarios, but a slight down-

ward trend can be observed as the area decreases. This behavior is consistent with

expectations: as the total layout area shrinks, the average distance between macros

and standard cells is reduced, leading to a modest decrease in the total interconnect

length required to maintain connectivity.

The most signi�cant variations are observed in the Over�ow metric, which serves

as an early indicator of routing congestion. In the con�gurations with 0%, 1%, and

2% area reductions, over�ow values remain close to or below the baseline, with several

cases showing improvements of up to 20% compared to the default. This suggests

that the tool is capable of producing placements that are not only compact but also

more routable under moderate area constraints.

However, this trend is sharply reversed in the most aggressive scenario, with a

3% area reduction. In this case, the over�ow metric increases dramatically, approx-

imately tripling relative to the default con�guration. This abrupt degradation indi-

cates that the design has reached a critical threshold where the reduced placement

area can no longer accommodate the routing demand without signi�cant conges-

tion, potentially leading to violations or the need for costly design iterations in later

stages.

Figure 3.13: HeatMap QoR Placement Wire Metrics.

In summary, while the wire metrics remain largely stable under moderate area

reductions, the over�ow behavior highlights a clear limit beyond which the placement

quality, and consequently the routability, deteriorates rapidly. This insight is crucial

for de�ning practical area constraints in future design iterations.
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Power Metrics Analysis

Figure 3.14 presents the normalized power metrics across various area constraint

scenarios, including internal power, switching power, leakage power, and total power.

These metrics provide insight into the energy pro�le of the design immediately after

placement, allowing for an early evaluation of power integrity and e�ciency.

As shown in the heatmap, the values for internal power, switching power, and

total power remain remarkably stable across all con�gurations. These metrics con-

sistently hover around a normalized value of 1, indicating that the dynamic power

components, driven by capacitive loading and switching activity, are largely unaf-

fected by the changes in macro placement and area constraints; this stability suggests

that the tool's placement decisions do not introduce signi�cant variations in logic ac-

tivity or cell selection that would impact dynamic power.

In contrast, the leakage power metric exhibits a modest but consistent increase

across several con�gurations, with values exceeding the baseline by a few percentage

points. This behavior may be attributed to the increased cell density and tighter

packing in more compact layouts, which can lead to higher leakage due to proximity

e�ects, increased gate count, or shifts in threshold voltage distributions. Although

the variation is relatively small, it highlights the sensitivity of static power to layout

conditions and reinforces the importance of monitoring leakage even in early design

stages.

Figure 3.14: HeatMap QoR Placement Power Metrics.

Overall, the power metrics con�rm that the tool maintains a stable dynamic

power pro�le across all scenarios, while the observed increase in leakage power under

tighter area constraints suggests a potential trade-o� between compactness and static

power e�ciency.
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In conclusion, the heatmap-based evaluation of cell, wire, and power metrics

provides a comprehensive overview of the physical characteristics of the design im-

mediately after placement. The analysis con�rms that the tool maintains consistent

behavior across most con�gurations, with bu�er, inverter, and standard cell metrics

remaining stable and comparable to the default case. Wire-related metrics show a

slight reduction in wirelength with decreasing area, as expected, while routing over-

�ow remains well-controlled up to moderate area reductions, but increases sharply in

the most compact scenario. Power metrics reveal stable internal and switching power

across all con�gurations, with a modest increase in leakage power under tighter area

constraints.

These results suggest that the machine learning-based placement tool is capable

of generating physically viable layouts even under constrained conditions, with pre-

dictable trade-o�s in density, routability, and power dissipation. However, physical

metrics alone do not fully capture the viability of a design. To assess whether these

placements support timing closure and meet performance requirements, it is essential

to analyze the timing margins across a range of operating conditions.

In the following section, we shift our focus to the timing analysis, examining the

behavior of each con�guration across multiple PVT corners. Metrics such as WNS,

TNS, and the number of failing points will be used to evaluate the timing robustness

of the placements and identify con�gurations that may require further optimization.

Timing Margin Analysis Across Corners

Figure 3.15 presents the Setup WNS measured across �ve distinct PVT corners.

Due to Company Con�dential Information (CCI), the speci�c de�nitions of these

corners are omitted; however, based on their relative operating conditions, qualitative

classi�cations can be inferred.

Corner 1, characterized by high-speed process, voltage, and temperature condi-

tions, can be classi�ed as a FF corner. In this scenario, all con�gurations exhibit

positive slack, indicating successful timing closure. The worst-performing runs are

those with -1% area reduction (rank 1) and -2% area reduction (rank 2), which show

slightly lower slack values. Interestingly, the best-performing con�gurations in this

corner are -1% rank 2 and -3% rank 2, which outperform even the default placement,

despite the reduced area.

Corner 2, representing a Slow corner, also shows positive slack across all con�g-

urations, though the values are generally lower than those observed in corner 1. The

default con�guration maintains the highest slack, with the two alternative place-

ments at the same area level showing slightly reduced but comparable performance

whie all the other con�gurations with reduced area perform better then the ones

with the original area suggesting that certain compact placements may o�er timing
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advantages under fast operating conditions.

Corners 3 and 4, both classi�ed as SS corners, present a di�erent behavior with

respect to the previous ones. In these scenarios, all con�gurations�including the

default�exhibit zero slack, indicating that the design is operating at the edge of

timing closure, the only exception is the -3% area reduction (rank 1) con�guration,

which shows a small but negative slack, suggesting a timing violation introduced by

aggressive compaction.

Corner 5, which can be considered an extra SS corner, is the most critical in

terms of timing. Here, most con�gurations exhibit negative slack, although the

violations are generally small. Once again, the -3% rank 1 con�guration stands out

as the worst-performing case, with a signi�cantly more negative slack compared to

the others.

Figure 3.15: Timing QoR Placement Setup Worst Negative Slack.

In summary, the WNS analysis reveals that while most con�gurations remain

timing-clean under typical and fast corners, aggressive area reductions can lead to

violations in slower corners. The results underscore the importance of evaluating

placement strategies across a diverse set of PVT conditions to ensure robust timing

behavior.

In addition to the WNS, Fig. 3.16 reports the TNS across the same �ve PVT

corners. This metric captures the cumulative sum of all negative slack values in the

design, o�ering a broader view of timing robustness by accounting for the number

and severity of failing paths.

As anticipated from the WNS analysis, the �rst four corners, corner 1 (FF),
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corner 2 (Slow), and corners 3 and 4 (SS), exhibit zero TNS across all placement

con�gurations. This con�rms that, in these scenarios, the designs either meet timing

entirely or have only isolated violations that do not accumulate across multiple paths.

The situation changes in corner 5, identi�ed as the most critical (extra SS), where

several con�gurations begin to accumulate negative slack, indicating the presence of

multiple failing paths. Among them, the -3% area reduction (rank 2) con�guration

stands out as the worst-performing case, with the highest TNS value. This result is

consistent with the WNS analysis and reinforces the conclusion that aggressive area

compaction can signi�cantly degrade timing under extreme operating conditions.

Figure 3.16: Timing QoR Placement Setup Total Negative Slack.

These �ndings highlight the importance of evaluating not only the worst-case

path but also the overall timing distribution, especially when pushing the design

toward tighter area constraints.

Finally, Fig. 3.17 reports the number of failing points, i.e., the number of end-

points in the design that violate setup timing constraints; this metric complements

the WNS and TNS analyses by quantifying the extent of timing violations in terms

of a�ected paths.

As expected, the trend closely mirrors that observed in the TNS plot. In the

less critical corners no negative slack is observed, and consequently, the number of

failing points remains zero across all con�gurations. Similarly, in corners 3 and 4, the

number of failing points is also zero, except for the -3% area reduction con�gurations,

which introduce a small number of violations.

The most critical behavior is again observed in corner 5 (extra SS). Here, several

con�gurations exhibit non-zero failing points, with the -3% rank 1 con�guration

standing out as the worst-performing case. This result is consistent with both the
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WNS and TNS analyses, con�rming that this speci�c macro placement leads to

widespread timing violations under the most pessimistic operating conditions.

In contrast, the remaining con�gurations in corner 5 maintain a number of failing

points comparable to the default case, demonstrating that moderate area reductions

can still preserve timing integrity.

Figure 3.17: Timing QoR Placement Setup Number Failure Point.

In conclusion, the timing analysis across multiple PVT corners reveals a consis-

tent pattern: while most con�gurations maintain robust timing margins under typical

and moderately constrained conditions, aggressive area reductions, particularly the -

3% rank 2 con�guration, tend to introduce violations in the most pessimistic corners.

The WNS, TNS, and number of failing points all con�rm that corner 5, classi�ed as

extra Slow-Slow, is the most timing-critical scenario. Nevertheless, several con�gu-

rations, including some with reduced area, demonstrate timing behavior comparable

to or even better than the default, highlighting the potential of machine-generated

placements to balance compactness and performance when carefully selected.

These results provide a comprehensive view of the placement stage's impact on

timing closure and establish a solid baseline for evaluating the downstream e�ects

of routing. In the following section, we extend this analysis by examining the QoR

obtained after the routing stage, where additional physical e�ects such as wire resis-

tance, coupling capacitance, and detailed congestion come into play. This will allow

us to assess how well the placement strategies translate into fully implementable

designs and whether the observed trends persist or evolve in the �nal layout.
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3.2.3 Quality of Results at Post Route Stage

This section presents the QoR obtained after the routing stage, where additional

physical e�ects such as wire resistance, coupling capacitance, and detailed congestion

are taken into account. These factors can in�uence both the physical and timing

characteristics of the design, making this stage critical for validating the viability of

the placement strategies.

It is important to note that the run corresponding to the -1% area reduction

rank 1 did not converge during the routing process and this may be attributed to

a combination of increased placement density and suboptimal macro organization,

which likely led to excessive routing congestion or violations that the tool was unable

to resolve within the allowed iteration or runtime limits. As a result, this con�gura-

tion is excluded from the post-route heatmaps and from the timing plots related to

setup and hold analysis.

Cell Metrics Analysis

Figure 3.18 shows the post-route cell metrics for the various placement con�gurations.

Overall, the values are very similar to those observed after placement (Fig. 3.12),

con�rming the stability of the cell-level characteristics throughout the �ow. However,

some subtle di�erences can be observed:

� Buf_area values are slightly higher than in the placement stage.

� Buf_count is generally lower than in the placement stage for all con�gurations,

except for -3% rank 2, which shows a slight increase.

� Inv_area and Inv_count remain virtually unchanged.

� Seq_area is identical to the placement values.

� Stdcell_area and Stdcell_count are very close to the previous stage, with neg-

ligible variation.

� Utilization values are slightly lower (by a few percentage points) in most con�g-

urations, except for the two -3% area runs, where a small increase is observed.
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Figure 3.18: HeatMap QoR Post Route Cell Metrics.

In general, and consistent with the placement-stage results, all cell metrics remain

close to the normalized value of the default con�guration, indicating that the routing

stage does not signi�cantly alter the overall cell distribution or density.

Wire Metrics Analysis

Figure 3.19 presents the wire-related metrics collected after the routing stage for

each placement con�guration. The metrics include Net count, Wirelength, DRC

violations, and Shorts, providing a comprehensive view of the routing quality and

physical feasibility of each layout.

As observed in the placement stage, the Net count remains consistently close to

1 across all con�gurations, con�rming that the logical connectivity of the design is

preserved throughout the �ow. Similarly, the Wirelength metric stays very close to

the normalized baseline, with a slight downward trend as the area is reduced; this

behavior mirrors the trend seen post-placement and is expected, as more compact

layouts naturally reduce the average interconnect distance. Notably, post-route wire-

length values are slightly lower than those observed after placement, likely due to

more accurate modeling of routing paths and detours during detailed routing.

An addition in the post-route analysis is the inclusion of DRC violations and

Shorts, which provide direct insight into the physical correctness of the routed design.

The most striking observation is the sharp increase in DRC violations for the most

compact con�gurations; while moderate area reductions maintain DRC counts within

acceptable limits, the -3% area reduction, particularly in rank 2, results in a dramatic

spike in violations, over 100x higher than the default case. This trend is further

con�rmed by the Shorts metric, which also shows a substantial increase in the same

con�gurations.
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Figure 3.19: HeatMap QoR Post Route Wire Metrics.

These results highlight the limitations of aggressive area compaction: while wire-

length and connectivity remain stable, the physical feasibility of the routing degrades

signi�cantly, leading to a high number of rule violations and shorts. This underscores

the importance of balancing area optimization with routability and manufacturabil-

ity constraints in advanced physical design �ows.

Power Metrics Analysis

Figure 3.20 presents the post-route power metrics across the various placement con-

�gurations. The metrics include internal power, leakage power, switching power, and

total power, all normalized with respect to the default con�guration.

As observed in the placement stage, the internal power remains remarkably sta-

ble, with values consistently close to 1 across all runs; this con�rms that the internal

power component, primarily driven by cell activity and capacitance, is largely unaf-

fected by the routing stage.

The leakage power, on the other hand, shows a uniform increase across all con-

�gurations, ranging from approximately 2% to 6% above the default; this behavior

is expected, as routing compaction and increased cell proximity can lead to higher

leakage due to layout-dependent e�ects such as threshold voltage shifts and increased

gate density.

The switching power, which was previously identical to the default across all con-

�gurations in the post-placement heatmap (Fig. 3.14), now exhibits slight variations.

While some runs, such as 0% rank 1 and -3% rank 2, maintain the same switching

power as before, others show a modest increase. The most notable case is 0% rank

2, which registers a 4.7% increase in switching power, possibly due to changes in net

routing or increased coupling activity introduced during detailed routing.
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Figure 3.20: HeatMap QoR Post Route Power Metrics.

Despite these localized variations, the total power remains e�ectively unchanged

across all con�gurations, mirroring the trend observed after placement and this in-

dicates that the combined e�ects of internal, leakage, and switching power remain

balanced, and that the routing stage does not introduce signi�cant deviations in

overall power consumption.

Clock Metrics Analysis

Clock-related metrics weren't available after the placement stage since the clock

tree synthesis (CTS) is performed subsequently. Figures 3.21 and 3.22 present two

complementary heatmaps that provide insight into the quality and e�ciency of the

clock network across the various placement con�gurations.

In the �rst heatmap (Figure 3.21), we observe that the total clock area remains

very close to the default value across all con�gurations; a similar trend is seen in

the clock wirelength, which also remains close to 1. The only notable deviation is

observed in the 0% rank 2 con�guration, which shows a 7.5% increase in wirelength,

suggesting a less e�cient clock routing in that speci�c case.
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Figure 3.21: HeatMap QoR Post Route Clock Metrics.

The second heatmap (Figure 3.22) provides a more detailed breakdown of the

clock tree structure and performance. Several observations can be made:

� Bu�er area and bu�er count remain very close to 1 in most con�gurations,

indicating stable bu�ering requirements. The only exception is -3% rank 1,

which shows a signi�cant increase of nearly 50%, likely due to the need for

additional bu�ering to compensate for increased congestion or skew.

� Inverter area and inverter count are also generally close to the default value,

with the exception of 0% rank 1, which shows a 15% reduction. This is partic-

ularly interesting given that this same con�guration performs worse in terms of

total clock area and wirelength, suggesting a possible trade-o� between inverter

usage and routing complexity.

� Clock skew values are consistently higher than the default across all con�gura-

tions, ranging from 12% up to 40% in the case of 11% rank 2. This indicates

that tighter area constraints may introduce more variability in clock arrival

times, requiring careful balancing.

� The number of logic levels remains very close to 1, though there is a slight

upward trend as the area is reduced, suggesting a marginal increase in clock

tree depth.

� The maximum insertion delay, which represents the longest delay from the

clock source to any endpoint in the design, also remains close to the default

across all con�gurations. This metric is critical for ensuring that the clock

signal reaches all parts of the design within acceptable timing bounds.



76 3. Experiment

Figure 3.22: HeatMap QoR Post Route CLKM1_PROC Metrics.

In summary, the clock metrics con�rm that the CTS process is generally robust

across di�erent placement strategies. While some con�gurations, particularly those

with aggressive area reductions, require more bu�ering and exhibit higher skew, the

overall structure and timing of the clock tree remain well-controlled.

Timing Margin Analysis Across Corners

After completing the routing stage, a more comprehensive timing analysis is per-

formed to evaluate the robustness of each con�guration under a wider range of op-

erating conditions. Compared to the placement-stage analysis, this post-route eval-

uation includes a larger set of PVT corners, capturing more realistic and extreme

scenarios. Moreover, in addition to the setup timing analysis, we now also consider

hold timing, providing a complete picture of the design's temporal behavior.

Fig. 3.23 presents the WNS for setup timing across seven corners. Several trends

can be observed:

� Corners 1 and 2 are clearly the least critical, as all con�gurations exhibit

positive slack, however, there is notable variability among the di�erent runs,

suggesting that while timing closure is achieved, the margin can vary signi�-

cantly depending on the placement strategy.

� Corners 3 to 6 show small slack values, both positive and negative, but the dif-

ferences between con�gurations are minimal. This indicates that these corners

are moderately critical, but the placement strategies do not drastically a�ect

timing in these conditions.
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� Corners 7 and 8 represent the most pessimistic scenarios, and all con�gurations

exhibit negative slack; interestingly, the default con�guration shows the highest

WNS, while it tends to decrease as the area is reduced. However, this trend

reverses slightly at the -3% area con�gurations, where WNS increases again,

though it remains lower than the default.

Figure 3.23: Timing QoR PostRoute Setup Worst Negative Slack.

Overall, the results suggest that there exists a sweet spot in area reduction where

timing performance is optimized. Identifying and targeting this region is crucial for

balancing area e�ciency with timing robustness, especially in advanced design �ows

where aggressive compaction must be weighed against the risk of timing violations

under worst-case conditions.

Complementing the WNS analysis, Fig. 3.24 illustrates the TNS across the same

set of eight corners and placement con�gurations; as expected, the �rst six corners,

characterized by either positive slack or values very close to zero, exhibit negligi-

ble TNS across all runs. This con�rms that timing violations are either absent or

extremely limited in these operating conditions, regardless of the placement strategy.

However, the behavior changes signi�cantly in Corners 7 and 8, which represent
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the most pessimistic scenarios in terms of process, voltage, and temperature. Here,

the TNS increases markedly, revealing a more substantial accumulation of violating

paths; the trend observed in the WNS analysis is largely preserved: the default

con�guration consistently performs worse than the optimized runs with 0% area

reduction (both rank1 and rank2), as well as those with -1% and -2% area reduction.

Interestingly, a key divergence emerges when examining the -3% area con�gu-

rations. Unlike the WNS case, where the -3% runs showed a slight degradation

compared to -2%, yet still outperformed the default, the TNS values for -3% area

are higher than those of the default con�guration in both rank1 and rank2. This

suggests that while the most aggressive area reduction may still improve the worst-

case path, it introduces a larger number of violating paths overall, potentially due

to increased congestion or suboptimal path distribution.

Figure 3.24: Timing QoR PostRoute Setup Total Negative Slack.

These �ndings underscore the importance of evaluating both WNS and TNS

when assessing timing robustness. While WNS highlights the single most critical

path, TNS provides insight into the cumulative impact of timing violations, which

can be more indicative of the overall design health. In this context, moderate area

reductions (up to -2%) appear to strike a better balance between compaction and

timing integrity.

Finally, Fig. 3.25 reports the number of failure points observed across the seven

corners and placement con�gurations. As anticipated from previous results, the �rst
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six corners do not exhibit any signi�cant timing violations, resulting in a failure point

count that is e�ectively zero across all runs.

The situation changes notably in Corners 7 and 8, which correspond to the most

pessimistic operating conditions; these corners show a substantial increase in the

number of failure points, in line with the elevated TNS values previously discussed.

In particular, Corner 8 emerges as the most critical, with the number of failure

points ranging from approximately 500 in the 0% area reduction rank1 con�guration

to over 1000 in the -3% area reduction rank1 case.

Interestingly, while the default con�guration exhibits a higher TNS than the -

2% area con�gurations, it actually results in a lower number of failure points; this

suggests that although the default placement may have more severe violations in

terms of cumulative slack, the violations are concentrated in fewer paths. In contrast,

the -2% area con�gurations, despite having a lower TNS, show a broader distribution

of violations across the design. On the other hand, the con�gurations with 0% area

reduction and the single rank with -1% area consistently achieve both lower TNS

and fewer failure points, con�rming their superior timing robustness.

Figure 3.25: Timing QoR PostRoute Setup Number Failure Point.

This behavior highlights the importance of jointly analyzing TNS and failure

point count: while TNS captures the total slack de�cit, the number of failure points

reveals how widespread the violations are. A con�guration with fewer but deeper

violations may be easier to �x than one with many shallow violations, which could

require more extensive design changes.
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While setup timing violations are typically the primary focus during timing clo-

sure, since they directly impact the maximum achievable clock frequency, hold tim-

ing must also be carefully evaluated to ensure functional correctness across all op-

erating conditions. Unlike setup violations, which occur when data arrives too late,

hold violations arise when data arrives too early, potentially leading to incorrect

latching of values.

These violations are particularly critical under fast process, high voltage, and

low temperature conditions, where signal propagation is accelerated and clock skew

may be reduced. As a result, even short paths that are otherwise harmless under

typical conditions can become problematic. Moreover, hold timing issues are often

more di�cult to �x post-route, as they may require the insertion of delay bu�ers

or changes to the clock tree, which can disrupt previously optimized portions of the

design.

Hold timing is typically evaluated only after the routing stage because hold anal-

ysis is highly sensitive to actual wire delays and parasitics, which are not accurately

modeled during placement. Unlike setup timing, which can be reasonably estimated

using idealized wire models, hold timing requires precise information about intercon-

nect geometry and load capacitance, details that become available only after detailed

routing.

Figure 3.26 illustrates the WNS for hold timing across eight PVT corners, ordered

from the least to the most critical based on their speed characteristics. Corners with

slow process (SS or TT), high temperature, and low voltage are less prone to hold

violations, while corners with fast process (FF), low temperature, and high voltage

represent the most challenging scenarios due to accelerated signal propagation.

Analyzing the general trend across all corners, it is evident that the default

con�guration consistently exhibits higher WNS values. This suggests that the default

placement strategy is less e�ective in mitigating early data arrival issues.

The two con�gurations with -3% area reduction (rank1 and rank2) also show

elevated WNS values, generally higher than those of the other runs. However, in

many cases, their performance remains comparable to the default, indicating that

the degradation introduced by aggressive area compaction is not excessively severe.

Notably, -3% rank2 performs better than both -2% rank2 and -3% rank1, indicating

that even within aggressive compaction strategies, speci�c placement variants can

yield more favorable timing outcomes.

The -2% area rank2, which in some corners achieves the highest WNS among

all runs, highlighting a potential weakness in this speci�c placement strategy. In

contrast, rank1 -2% area remains more competitive, with WNS values closer to those

of the -1% and 0% area reduction con�gurations.
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Figure 3.26: Timing QoR PostRoute Hold Worst Negative Slack.

The most robust results are observed in the 0% area reduction runs and the rank1

con�guration at -1% area. These con�gurations consistently outperform the default,

achieving lower WNS values across most corners; This con�rms that even with slight

area reductions, such as 0% or -1%, it is still possible to achieve excellent hold timing

results, often outperforming the default con�guration.

Figure 3.27 shows the TNS for hold timing. A striking observation is that the last

corner, corresponding to the fastest and most critical operating conditions, exhibits

a TNS signi�cantly higher than all others; this suggests a widespread presence of

hold violations in that scenario and anticipates a correspondingly high number of

failure points.

Beyond this extreme case, the general trend reveals several interesting patterns.

Despite often showing higher WNS values, the default con�guration maintains TNS

values that are largely comparable to those of the 0% and -1% area reduction runs.

This mirrors the behavior observed in the setup timing analysis, where the default

also concentrated violations in fewer but deeper paths.

The -3% rank1 con�guration clearly performs the worst, with consistently high

TNS values across multiple corners; this aligns with its poor WNS performance and
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con�rms that aggressive area reduction in this case leads to a widespread degradation

in hold timing.

Surprisingly, the -3% rank2 con�guration performs better than expected; while

it still shows degradation in some corners, in the most critical ones it achieves TNS

values comparable to the default con�guration. This partially con�rms the trend

already hinted at in the WNS analysis and suggests that, under certain conditions,

even aggressive compaction can be mitigated by a more favorable placement strategy.

Figure 3.27: Timing QoR PostRoute Hold Total Negative Slack.

The analysis con�rms that moderate area reductions (0% and -1%) o�er a good

trade-o�, while more aggressive reductions require careful tuning to avoid widespread

hold failures.

Figure 3.28 presents the number of failure points for hold timing across and,

as expected, the overall trends closely mirror those observed in the TNS analysis,

con�rming the correlation between the extent of slack violations and the number of

a�ected paths.

However, a notable exception emerges in corner 6, which, despite not being the

worst in terms of TNS, shows by far the highest number of failure points across

all con�gurations. This indicates that, in this speci�c corner, violations are more

widespread but individually less severe, resulting in a high number of failure points

but relatively moderate TNS. Such behavior highlights the importance of analyzing

both metrics in tandem, as they capture complementary aspects of timing robustness.
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Figure 3.28: Timing QoR PostRoute Hold Number Failure Point.

The post-route stage represents a critical checkpoint in the physical design �ow,

where the impact of detailed routing, parasitics, and congestion becomes fully visible.

Through a comprehensive analysis of cell, wire, power, clock, and timing metrics, this

section has highlighted the strengths and limitations of various placement strategies

under realistic operating conditions.

From a physical standpoint, moderate area reductions (up to -2%) maintain sta-

ble cell distributions and wirelengths, while avoiding the severe DRC violations and

shorts observed in the most compact con�gurations; power metrics remain largely

consistent across all runs, with only minor variations in leakage and switching com-

ponents, �nally, clock metrics con�rm the robustness of the CTS process, though

tighter area constraints tend to increase skew and bu�ering requirements.

The timing margin analysis across multiple PVT corners has revealed distinct

trade-o�s between setup and hold robustness. For setup timing, con�gurations

with 0% to -2% area reduction consistently outperform the default, achieving better

slack and fewer violations. For hold timing, the behavior is more complex: while

the default often shows higher WNS, its TNS and failure point counts remain com-

petitive, suggesting concentrated but less widespread violations. Notably, the -3%

rank1 con�guration performs poorly across all timing metrics, whereas -3% rank2

shows surprisingly resilient behavior in critical corners.
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Overall, Moderate area reductions o�er the best balance between physical feasi-

bility and timing integrity while aggressive compaction may yield bene�ts in speci�c

scenarios but introduces signi�cant risks that must be carefully managed

3.3 Conclusion

The increasing complexity of modern integrated circuits, driven by the relentless pace

of Moore's Law, has placed unprecedented demands on the physical design phase

of the VLSI �ow. Among the most critical and challenging tasks in this domain

is macro placement, a process that remains largely manual and heuristic-driven

despite its signi�cant impact on downstream stages such as routing, timing closure,

and manufacturability; as highlighted in Chapter 1, this lack of automation limits

the ability to explore alternative �oorplan con�gurations and obstruct the scalability

of design methodologies in the face of growing SoC complexity.

To address this gap, this thesis has investigated the integration of machine

learning techniques into the macro placement process, with the goal of enabling

fast, �exible, and automated �oorplan exploration. Chapter 2 provided a theoret-

ical and algorithmic foundation for this e�ort, reviewing the evolution of placement

strategies from stochastic and partitioning-based methods to modern analytical plac-

ers; particular attention was given tomixed-size placement, where the coexistence

of standard cells and large macros introduces unique optimization challenges. Within

this context, the thesis explored the capabilities of state-of-the-art engines such as

ePlace [1], ePlace-MS [3], and DREAMPlace [2], all of which leverage electrostatics-

inspired density models and, in the case of DREAMPlace, GPU-accelerated deep

learning frameworks.

Building on these foundations, the experimental contribution presented in Chap-

ter 3 focused on extending a proprietary macro placement tool developed atQualcomm®;

this tool, originally designed to generate diverse macro placements using a machine

learning engine, was enhanced with a GUI and integrated with an area shrink op-

timization engine. The resulting framework enables designers to explore multiple

�oorplan con�gurations under varying area constraints, while maintaining control

over key physical and timing metrics.

The test campaign demonstrated the tool's ability to generate and evaluate eight

distinct macro placements across four area con�gurations (0%, -1%, -2%, -3%) in

parallel; notably, the entire exploration process was conducted by a single engineer

with limited prior experience, highlighting the accessibility and e�ciency of the pro-
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posed framework. The analysis covered both qualitative and quantitative aspects,

including cell utilization, wirelength, congestion, power consumption, and timing

margins across multiple PVT corners. The results revealed several key insights:

� Moderate area reductions (up to -2% of total area shrink that corresponds

to a 7.26% reduction in placeable core area, as seen in Tab. 3.1) consistently

yielded better or comparable QoR than the default con�guration, both in terms

of physical feasibility and timing robustness.

� Aggressive compaction (-3% that coincide with a placeable core area ahrink of

10.84%, as seen in Tab. 3.1) introduced signi�cant risks, including increased

DRC violations, higher congestion, and degraded timing, particularly in the

most pessimistic corners.

These results not only validate the e�ectiveness of the proposed toolchain but

also reinforce the broader thesis that machine learning-driven automation can signif-

icantly enhance early-stage design exploration, particularly in the context of macro

placement. By enabling the generation and evaluation of multiple �oorplan alterna-

tives in parallel, the tool empowers designers to make more informed architectural

decisions, reduce iteration cycles, and ultimately improve the overall quality of the

�nal layout.

At the same time, the study has highlighted some limitations and areas for fu-

ture improvement, for instance, the current version of the macro placer does not

guarantee legal placements, requiring manual intervention in the legalization phase.

Additionally, while the tool supports area shrink exploration, it does not yet incor-

porate timing-driven placement during macro generation. Addressing these aspects

could further enhance the tool's applicability in industrial �ows.

Looking ahead, several promising directions emerge:

� Automatic legalization: Integrating legality checks and �xed-cell awareness di-

rectly into the placement engine would reduce manual e�ort and improve �ow

automation.

� Timing-driven macro placement : Incorporating timing feedback during macro

generation could help avoid con�gurations that are physically feasible but

timing-critical.

� Multi-objective optimization beyond wirelength and congestion: Expanding the

Pareto evaluation to include power, thermal, and manufacturability metrics

would provide a more comprehensive view of design trade-o�s.
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� Reinforcement learning : Leveraging reinforcement learning could enable the

tool to learn from past placements and improve its decision-making over time.

In conclusion, this thesis has focused on the development and evaluation of a

framework for macro placement exploration, integrating a machine learning-

based placer with area shrink capabilities and a graphical interface. The proposed

solution was tested across multiple area con�gurations and evaluated using a com-

prehensive set of physical and timing metrics. The results con�rm that moderate

area reductions can improve or preserve design quality compared to the default con-

�guration, while aggressive compaction introduces signi�cant risks. The tool has

demonstrated its e�ectiveness in supporting early-stage �oorplan exploration, en-

abling the generation of diverse and viable macro placements with minimal manual

e�ort.
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