POLITECNICO DI TORINO

FACULTY OF ENGINEERING
Computer Engineering LM-32

_~
= Elemento

Advanced Kubernetes provisioning, scaling and operations
through kOps library

Candidato: Relatore:
Paolo Beci Prof. Alessio Sacco
Correlatore:

Prof. Guido Marchetto

Anno Accademico 2024-2025

https://www.linkedin.com/in/paolo-beci-919a28199/

Abstract

Kubernetes has emerged as the de facto standard for deploying and managing appli-
cations that scale from a handful of users to millions, becoming a cornerstone of the
modern cloud-native ecosystem. It makes highly scalable and resilient infrastruc-
tures possible when paired with cloud computing. However, Kubernetes adoption
remains hindered by two major obstacles: a steep learning curve, particularly for
small or non-specialized teams, and the persistent issue of vendor lock-in within
cloud platforms. Vendor-specific technologies, proprietary APIs, and economic con-
straints often limit portability and complicate multi-cloud strategies, creating barri-
ers to innovation and flexibility. This thesis examines the challenges of Kubernetes
adoption and proposes solutions to simplify cluster provisioning and management.
An extensive review of the state of the art was conducted, categorizing and compar-
ing the most widely used provisioning approaches, including self-managed installers
such as Kubeadm, automation frameworks like Kubespray, Infrastructure-as-Code
(IaC) tools such as Terraform and Pulumi, and managed services offered by major
providers, including Amazon Elastic Kubernetes Service (EKS), Google Kubernetes
Engine (GKE), and Azure Kubernetes Service (AKS). Each approach was evaluated
in terms of complexity, supported environments, and trade-offs, with special focus
on open-source alternatives that promote transparency and flexibility. The core con-
tribution of this work is the development of an Elemento—kOps plug-in that extends
kOps, an open-source library widely adopted for provisioning production-grade Ku-
bernetes clusters, for the Elemento cloud platform. Elemento, an Italian deep-tech
provider, distinguishes itself through its AtomOS hypervisor, which enables hybrid
and multi-cloud deployments. By introducing this plug-in, the project delivers a
unified interface for cluster lifecycle management, offering an alternative that com-
bines portability, simplicity, and scalability. Methodologically, the research involved
analyzing the kOps codebase, adopting debugging and logging strategies to navigate
its architecture, and leveraging test-driven exploration of APIs and provider-specific
implementations. The integration was achieved through a translation layer between
kOps and the Elemento Go library, ensuring the seamless provisioning of virtual
machines, storage, and networking resources via declarative tasks. Evaluation was
performed by comparing the provisioning speed, reliability, and code complexity of
the Elemento integration with those of conventional cloud providers. The results
demonstrate the technical feasibility and potential advantages of supporting Ele-
mento within kOps. The integration not only simplifies the provisioning process but
also enables access to a distributed network of smaller cloud providers, contributing
to reduced vendor lock-in and fostering a more open, flexible ecosystem. At the
same time, limitations were observed in terms of reliability testing, as well as the
need for broader validation across diverse environments. In conclusion, this work
highlights the importance of open-source tools in shaping the future of cloud-native
infrastructure. The Elemento—kOps integration demonstrates how collaborative de-
velopment can enhance the accessibility of Kubernetes while addressing structural
challenges in the cloud landscape. Future improvements may include enhancing sys-
tem autonomy, expanding provider interoperability, and contributing further to the
open-source community to support sustainable, vendor-neutral cloud adoption.

Contents

(1 Introduction and goall 9
[LIWhat 1s Elemento? 9
(.2 Cloud freedom|. 9

[1.2.1 Vendor lock-in scenariol 10
[1.2.2 Vendor lock-in types| 10
(1.3 Simplifying Kubernetes Adoptionl 11
(1.3.1 The CNCF Landscapel 11
(1.4 The importance of open source| 13
[1.4.1 Mechanics of Open Source development|. 13
[1.4.2 Why Open Source is Crucial tor Software Development| 14

2" Background| 17
2.1 Containers as a deployment standard| 17
[2.2 Kubernetes: History and Technical Functionality|] 18
[2.3 Core Components of Kubernetes|. 19
[2.4 "The Role of SDKs in Application Development|. 21

3 State of the artl 23
[3.1 Kubernetes cluster provisioning tools and methods| 23

[3.1.1 Selt-Managed Installers| 23
-as-Code Toold 25

[3.1.3 Managed Cloud Kubernetes Services| 26

[3.2 Architecture and Core Functions of kOps| 28
[3.2.1 How kOps works|, 28
.22 Howtowuseitl 29

[4 Methodology| 32

[4.1 Mastering Large Project Architecture: Insights from kOps| 32
[4.1.1 'T'he importance of the debugger and error codes 32
[4.1.2 The approach adopted in this specific case] 33

[4.2 Systems integration| 34
[4.2.1 Handling of asynchronous operations| 35

[4.3 How the Elemento support on kOps could be very usetull 36

[5 Work development| 37
[>.1 The integration workflow for adding |

| Cloud Providers in kOps| 37

CONTENTS

[>.2 How I iterated the testing and development| 38

[5.3 Interesting workflow management of async actions by Hetzner Cloud|. 39

[>.4 Creating Cluster Manifests and Configurations|. 39

[>.5 Installation and startup of the cluster| 42

6 Work evaluationl 47
[6.1 Testing the Kubernetes provisioning

| through kOps| 47

[6.1.1 Provisioning speed comparison|. 47

[6.1.2 Complexity compared to other provisioning methods| 49

[6.1.3 Operating cost of the cluster|. 50

0.2 Howreliableis it/o 51

(7__Conclusions| 52

[.1 Outcome of the thesig. 52

[7.2 Future improvements| L0 52

(r.2.1 Fbxtend to multi-AtomOS server scenariol 52

[7.2.2 Auto-scaling| 53

[7.2.3 Observability| 53

(Bibliography| 54

List of Figures

[4.1 System integration with kOps| 34
4.2 Elemento contribution to an unbounded Cloud environment| 36
.1 FElemento create VM flowl.o 00000 37
(.2 Flemento Electros VM Iistl 42
6.3 FElemento Electros VM list detaill 42
[>.4 Elemento Electros storage list| 43
[5.5 Elemento Electros storage list detaal|. 43
[5.6 Ansible role in the systems architecture| 45
5.7 Cluster nodes Iist from external hostl 46
[5.8 Cluster pods list from external host| 46
[6.1 Cluster creation time comparison based on 2023 data - source |14] . . 48
[6.2 Cluster creation time comparison based on dimension| 48
(6.3 K8s clusters pricing comparison based on 2023 data - source [14] . . . 50

Chapter 1

Introduction and goal

1.1 What is Elemento?

Elemento [8] is an Italian deep-tech startup revolutionizing the way businesses build
and manage their cloud infrastructures. Designed with flexibility, simplicity, and
future scalability in mind, Elemento empowers organizations to deploy tailored cloud
environments that adapt seamlessly to their specific needs, whether in the public
cloud, private cloud, or both.

At the core of Elemento’s offering are two proprietary technologies: the Cloud
Gateway [10] and AtomOS [9], a next-generation hypervisor. These innovations offer
a unified and intuitive interface for orchestrating and managing computing, storage,
and networking resources across diverse environments. With Elemento, I'T teams
can monitor, scale, and operate their entire hybrid or multi-cloud stack, both public
and private, through a single and integrated platform.

Elemento enables truly seamless hybrid and multi-cloud operations. Businesses
can dynamically leverage resources from over 230 data centers across the world’s
five leading public cloud providers, while also integrating their own on-premises
or private infrastructure, all without compromising on performance, security, or
control.

By abstracting the underlying cloud complexity, Elemento makes modern cloud
infrastructure accessible, efficient, and manageable, unlocking new agility for enter-
prises and service providers alike.

1.2 Cloud freedom

Vendor lock-in is a situation in cloud computing where a customer becomes heavily
dependent on a specific cloud provider due to various reasons, such as technical
aspects, contract terms, or other factors. This dependency can result in limited
options for the customer to switch to another provider, even if the current provider
is not performing well [17].

Vendor lock-in can occur when a cloud provider uses proprietary technologies,
formats, or interfaces that are not easily interoperable with other providers, making
it difficult for the customer to migrate their applications and data. It can also
result from exclusive licensing terms, complex integration requirements, or custom

CHAPTER 1. INTRODUCTION AND GOAL

configurations that tie the customer to the specific provider’s ecosystem. This lack of
portability and flexibility can limit the customer’s ability to adapt to changing needs
or take advantage of competitive offerings, potentially impacting cost-effectiveness
and innovation.

1.2.1 Vendor lock-in scenario

Company TechWay, a rapidly growing Software as a Service (SaaS) provider, ini-
tially selected Cloud Provider XYZ to host their application and oversee their cloud
infrastructure. They were drawn by competitive rates, dependable services, and
most features aligned with their needs [17].

Over time, Tech Way integrated its application with Cloud Provider XYZ’s offer-
ings, relying on databases, serverless functions, and Al services for data processing.
However, challenges arose when their evolving needs exceeded Cloud Provider XYZ’s
AT services. They turned to Cloud Provider ABC, which offered advanced machine
learning options like natural language processing and image recognition.

At this point, the vendor lock-in issue emerged. Shifting from Cloud Provider
XYZ to Cloud Provider ABC would be intricate and time-intensive. They would
need to modify their code, adapt data formats, and restructure workflows to align
with Cloud Provider ABC. Furthermore, high data egress charges by Cloud Provider
XY7Z added to the migration expenses. TechWay also faced the hurdle of their pro-
ficient developers specializing in Cloud Provider XYZ’s tools. Adapting to Cloud
Provider ABC would require training or hiring new talent familiar with their ecosys-
tem [17].

1.2.2 Vendor lock-in types

In cloud computing, vendor lock-in can manifest in various forms: technical, data,
service, contractual, and more. These lock-in mechanisms are often the result of
providers offering proprietary technologies, tightly integrated services, or unique
configurations that are not easily transferable across platforms. As customers adopt
these specialized features, they gradually become dependent on the provider’s ecosys-
tem. This dependence significantly increases the cost and complexity of migration,
requiring substantial redevelopment efforts, retraining, and system redesign [17].

The underlying motivation for these strategies is largely economic: by creating
high switching costs, cloud providers aim to maximize revenue from each customer
over time. The harder it is for a client to leave, the more likely they are to continue
using the provider’s services, and often to expand their usage. This approach ensures
long-term customer retention and a steady, often increasing, revenue stream for the
provider.

e Technical: Occurs when a cloud provider uses proprietary technologies, APIs,
or data formats that are not easily portable. Customers relying on these unique
features face significant redevelopment when migrating.

Example: Using cloud-specific database functions that are incompatible with
other platforms.

10

CHAPTER 1. INTRODUCTION AND GOAL

e Data: Happens when providers enforce proprietary data formats and struc-
tures. Migrating data requires transformation, which increases complexity,
cost, and time.

Impact: Structured data cannot be easily transferred without reformatting.

e Service: Arises when consumers integrate deeply with provider-specific ser-
vices (e.g., analytics, serverless, machine learning). Switching providers re-
quires major application changes.

Example: AWS Lambda functions aren’t easily portable to Azure or Google
Cloud Functions.

e Certification: Found in regulated industries where providers offer specific
compliance standards. Migrating requires recertification, making the process
expensive and time-consuming.

e Contract: Results from long-term contracts with penalties or early termi-
nation fees. These financial constraints discourage switching providers mid-
agreement.

e Economic: Caused by heavy investment in a provider’s ecosystem, train-
ing, development, and tooling. Switching involves high costs and operational
disruption.

e Network: Occurs when network configurations are tightly integrated with a
provider’s infrastructure. Migration demands major reconfiguration.
Example: Custom networking (e.g., VPCs, VPNs) needs to be rebuilt on the
new platform.

1.3 Simplifying Kubernetes Adoption

The objective of this thesis is to facilitate and promote the adoption of Kubernetes
systems by enhancing the tools available for their management and deployment.
Despite its widespread use, Kubernetes adoption remains challenging due to its
steep learning curve, which often poses a significant barrier for small development
teams.

Numerous tools and plug-ins have been developed to simplify various aspects of
Kubernetes operations, including provisioning, cluster creation, management, moni-
toring, and security. This thesis will focus in particular on tools aimed at improving
the provisioning and operations management of Kubernetes environments.

1.3.1 The CNCF Landscape

The Cloud Native Computing Foundation (CNCF) aims to make cloud native com-
puting ubiquitous and sustainable by promoting applications and services natively
designed for the cloud, with a strong emphasis on open-source technologies and a
vendor-neutral ecosystem.

11

CHAPTER 1. INTRODUCTION AND GOAL

The Cloud Native Landscape [13], maintained by the CNCF, categorizes both
open-source and proprietary solutions across the cloud native ecosystem. The land-
scape is structured into several categories and subcategories, reflecting the different
layers and functionalities of cloud native architectures.

The primary categories are [13]:

Provisioning

Provisioning tools lay the foundation for cloud native platforms and applications.
This category includes:

e Infrastructure creation, configuration, and management tools;
e Container image scanning and registry solutions;
e Security tools with embedded authorization and authentication mechanisms;

e Secret management and distribution systems.

Runtime

Runtime tools support the execution of containers within a cloud native environ-
ment. They provide:

e Persistent storage capabilities;
e Networking solutions (e.g., overlay networks);

e Tools for managing container lifecycles and runtime environments.

Orchestration and Management

With a secure and operational infrastructure in place, orchestration and manage-
ment tools enable the coordination of containerized services across clusters of phys-
ical or virtual machines. This layer includes:

e Scheduling and orchestration frameworks;
e Service discovery and coordination systems;
e API gateways and service proxies;

e Service mesh architectures for inter-service communication.

Application Definition and Development

This layer encompasses tools that support developers in building cloud native ap-
plications, including;:

e Databases and messaging/streaming systems;

e Image building and application definition tools;

e Continuous Integration and Continuous Delivery (CI/CD) pipelines that en-
hance code quality and accelerate development.

12

CHAPTER 1. INTRODUCTION AND GOAL

Observability and Analysis

Observability refers to the system’s ability to be understood through its outputs,
including metrics such as CPU usage, memory consumption, disk space, latency,
and error rates. Analysis provides insight into these data points, enabling anomaly
detection and rapid incident resolution. Tools in this category include:

e Logging, monitoring, and tracing frameworks;

e Chaos engineering tools for resilience testing.

Platform

Platforms consolidate various tools into unified environments, simplifying adoption
for development teams by offering integrated solutions across the entire application
lifecycle. While some organizations build in-house platforms, those with limited
resources opt for existing solutions to ensure a sustainable cloud native strategy.
Notably, nearly all modern platforms are built upon Kubernetes, reflecting its central
role within the cloud native stack.

1.4 The importance of open source

Open source software (OSS) projects are defined by their publicly available source
code, which anyone may inspect, modify, and redistribute. This model fosters rapid
innovation and collaboration, as multiple organizations and individuals contribute
solutions to shared problems. Major studies show that leading companies leverage
OSS to improve product quality and reduce costs 1] but also customers value open
standards and the interoperability that open source enables.

1.4.1 Mechanics of Open Source development

OSS projects follow distinct mechanics of licensing, governance, contribution, and
sustainability that distinguish them from proprietary development.

Licensing

Open source licenses grant users broad rights to reuse and modify code. For example,
Kubernetes is licensed under the permissive Apache License 2.0. Under Apache 2.0,
users are explicitly permitted to use, modify, distribute, and sublicense the code with
minimal restrictions [12|. Notably, Apache 2.0 grants patent rights from contributors
to users, easing corporate adoption. Because it does not require derivative works to
remain open (unlike GPL-style licenses), it allows companies to integrate Kubernetes
into closed-source products without legal concerns. In practice, Apache’s permissive
terms have encouraged enterprise use: companies can adapt Kubernetes for internal
use or commercial offerings without fear of losing proprietary code, and the license’s
patent clause provides a safety net |12].

13

CHAPTER 1. INTRODUCTION AND GOAL

Community governance

Every open source project has some form of governance or framework for making
decisions and defining roles, even if informal. Well-defined governance helps con-
tributors understand how to participate and make the project sustainable. Many
projects use a meritocratic model: contributors earn influence by the value of their
work (“do-ocracy”), and decisions are made by those actively contributing code or
reviews |5]. Foundations like the CNCF or Apache provide a neutral umbrella to
enforce rules that level the playing field. For example, foundations often require
projects to hold trademarks and require that no single company can unilaterally
change the license. The Linux Foundation describes its role as ensuring “distributed
ownership” of code and an “open community governance” model. Kubernetes itself
operates under a charter and subproject model overseen by a Steering Committee,
where technical leads (SIGs) and maintainers guide development by consensus. In
short, community governance in OSS is about defining roles (maintainer, reviewer,
contributor, etc.) and decision processes so that contributions are fair and transpar-
ent [5]. Contributions to OSS projects are typically made via a public version-control
system (such as Git) and issue tracking. Developers fork or branch the code, make
changes, and submit pull requests (PRs). Other contributors then review and dis-
cuss these changes. Popular platforms like GitHub or GitLab facilitate this workflow,
enabling lightweight, asynchronous collaboration.

Project sustainability

Maintaining an OSS project over years requires sustainable support. Funding and
resources often come from a mix of sources. Individual developers might contribute
in their spare time, but large projects usually rely on corporate backing or commu-
nity funding. Companies with vested interests often sponsor developers or donate to
foundations (as discussed below). Non-profit organizations (e.g. Linux Foundation,
CNCF, Mozilla) offer grants or legal infrastructure. Platforms like GitHub Spon-
sors, Open Collective, and Patreon enable individuals to donate money to projects or
maintainers. Corporate sponsors also play a major role: firms often treat contribut-
ing to OSS as part of their engineering roadmap or corporate social responsibility.
Foundations organize conferences (e.g. KubeCon, Open Source Summit) and train-
ing that generate revenue to support infrastructure and staff.

1.4.2 Why Open Source is Crucial for Software Development

Open source methodology has transformed the software world in several broad ways:

Innovation and quality

Open source accelerates innovation through global collaboration. By exposing code
to wide scrutiny, projects benefit from many “eyes on the code,” leading to rapid
bug fixes and feature development |1]. Historically, projects like the Linux kernel,
Apache web server, and Python language have jumped ahead of proprietary alter-
natives by leveraging community invention. In short, open source lowers barriers

14

CHAPTER 1. INTRODUCTION AND GOAL

to experimentation, enabling companies and individuals to build on each other’s
work. An academic review notes that open standards and open source share core
values of openness and consensus, which lay the groundwork for innovation and fair
competition [1].

Cost-effectiveness

By eliminating licensing fees and allowing reuse of existing code, OSS can drastically
cut software costs. Large enterprises report saving millions by deploying open source
software. Beyond raw dollars, OSS avoids vendor lock-in: because the source code is
available, customers are not tied to a single supplier or forced into costly upgrades.
The ResearchGate [1] study notes that companies dislike “vendor lock-in” in critical
components, and thus prefer OSS solutions that allow them to switch providers or
modify code as needed. This flexibility effectively reduces the long-term cost and
risk of software adoption. Moreover, open source encourages sharing of infrastruc-
ture: containerization (enabled by open tools like Docker and Kubernetes) avoids
repeating effort in every project [1].

Standardization and industry adoption

Many open source projects become de facto industry standards precisely by virtue
of wide adoption. Open source projects often crystallize around open formats and
specifications, sometimes even influencing formal standards bodies. The CNCF and
other bodies promote common API versions (e.g. Kubernetes API Stability Guar-
antees) so that code written today runs on future versions. This standardization
reduces fragmentation: developers can write to a single Kubernetes API rather than
a dozen proprietary ones |[1].

The effect of Google open-sourcing Kubernetes was dramatic: within just a
few years, it became the most widely used container orchestration platform and
the second-largest open source project after Linux. Moreover, the project’s suc-
cess catalysed the emergence of an extensive ecosystem of complementary tools
and frameworks such as Helm, Prometheus, and Istio, further reinforcing Kuber-
netes’ central role within the cloud-native paradigm and demonstrating the critical
importance of community-driven governance in sustaining large-scale technological
adoption.

15

Chapter 2

Background

2.1 Containers as a deployment standard

According to Docker, "A container is a standard unit of software that packages up
code and all its dependencies so the application runs quickly and reliably from one
computing environment to another." [11]

A Docker container image is "a lightweight, standalone, executable package of
software that includes everything needed to run an application: code, runtime,
system tools, system libraries, and settings." [11]

At runtime, container images become containers on the Docker Engine and run
identically across Linux and Windows hosts, isolating software from infrastructure
variation.

History of Docker

Docker emerged in March 2013 when dotCloud released the first version of the
Docker Engine as an open-source project based on LXC. It quickly gained trac-
tion by simplifying Linux container management through a more developer-friendly
interface. In early 2014, Docker replaced LXC with its own ‘libcontainer‘ implemen-
tation written in Go, improving portability and maintainability. From that point
on, Docker advanced rapidly by adopting high-performance union filesystems like
OverlayFS and contributing runtimes such as ‘containerd‘ to the broader ecosys-
tem to solidify its role as the de facto standard for building, sharing, and running
container images [11].

Docker Architecture and Underlying Mechanisms

Docker uses a client—server architecture. The Docker client communicates with the
Docker daemon over a REST API via Unix sockets or TCP. The daemon handles core
tasks: building and running containers, managing images, volumes, and networks,
and orchestrating object lifecycles. Under the hood, Docker relies on key Linux
kernel mechanisms [11]:

e Namespaces: create isolated contexts for processes, filesystems, networking,

17

CHAPTER 2. BACKGROUND

process IDs, and inter-process communication (IPC), ensuring containers op-
erate independently from the host and each other.

e Control Groups (cgroups): limit and monitor resource usage (CPU, mem-
ory, I/O), preventing any container from monopolizing host resources.

e Union file systems (e.g., overlay2): support layered images where each
Dockerfile instruction adds a new layer; at runtime, a writable top layer is
added for runtime changes. This layering optimizes storage and improves
build efficiency.

Therefore, a Docker container essentially functions as an isolated process (or
group of processes) running under the host kernel yet confined by namespaces and
cgroups.

Images vs. Containers

A Docker image is an immutable, read-only template comprised of stacked layers
defined via a Dockerfile. Each layer corresponds to commands such as installing
packages or copying files. When instantiated, the image becomes a container with
an added writable layer on top, enabling runtime modifications; destroying the con-
tainer discards this layer by default [11].

Technical Benefits

Because containers share the host OS kernel instead of virtualizing hardware, they
are far more lightweight and efficient than virtual machines. Images typically occupy
tens of megabytes, and containers can start in milliseconds. Shared kernel usage
permits high-density deployment and rapid scaling.

Isolation provided by namespaces and cgroups enhances security, prevents de-
pendency conflicts, and promotes consistent behaviour across environments—from
development to production [11].

2.2 Kubernetes: History and Technical Functional-
ity
Origins and the Need for Orchestration

Before Kubernetes, Google had already developed Borg and Omega, internal systems
to manage containers at a large scale. Kubernetes was announced in June 2014 and
made open source to provide a community-driven container orchestrator inspired by
Borg’s architecture |16][6]. It filled the gap created by the lack of a standard system
for orchestration, scheduling, and cluster management across many machines.

18

CHAPTER 2. BACKGROUND

Core Concepts: Orchestration, Scheduling, Cluster Manage-
ment

A container orchestrator is software that makes multiple machines act like a sin-
gle powerful compute substrate, coordinating deployment, resource assignment, and
cluster health [16]. Kubernetes combines these responsibilities—coordinated oper-
ations, assignment of workloads to nodes (scheduling), and integrating machines
into a reliable, fault-tolerant cluster into one cohesive control plane [16]|6]. This
unified approach resolved concerns businesses had about supporting diverse runtime
environments.

Key Functional Capabilities

Kubernetes automates deployment, scaling, and lifecycle management of container-
ized applications through declarative specifications. Service discovery and load bal-
ancing are native; they can automatically expose containers via DNS names or IPs
and distribute traffic across Pod replicas. Automated rollouts and rollbacks maintain
application availability without downtime.

Self-healing ensures failed containers are restarted and unhealthy nodes are re-
placed. Auto scaling enables horizontal scaling of Pods based on metrics like CPU
usage, and cluster auto scaling adjusts node counts as needed [6]. Declarative APIs
enable advanced deployment patterns such as blue-green or canary releases, facili-
tating continuous deployment workflows |16].

Kubernetes abstracts infrastructure differences: by mapping Service definitions
to cloud-provider-specific resources like load-balancers, it remains provider-agnostic
while still leveraging native features [16].

Impact on Cloud-Native Infrastructure

Just as Docker standardized the packaging of applications, Kubernetes established
a uniform platform for running containerized workloads. By abstracting orches-
tration, scheduling, networking, storage, and scaling, it underpins modern CI/CD
pipelines, microservices architectures, and cloud-native deployments with resilient,
reproducible, and efficient infrastructure.

2.3 Core Components of Kubernetes

The fundamental architecture of Kubernetes is divided into two principal categories:
the Control Plane and the Worker Nodes. These elements collaborate to ensure that
the desired application state is consistently realized and upheld [4].

1. Control Plane (Master Node)

The Control Plane, often referred to as the Master Node, serves as the central coor-
dinator of the Kubernetes cluster. It governs the cluster’s overall status, orchestrates

19

CHAPTER 2. BACKGROUND

scheduling, and oversees the integrity and operation of the system. It includes sev-
eral key components that determine what should be executed and on which node
6]

Primary Control Plane components:

e API Server: Acts as the front-end for the Kubernetes control plane, exposing the
Kubernetes API. It handles REST operations, performs validation, and updates
the cluster’s state accordingly.

e Scheduler: Selects the appropriate worker node for deploying pods, based on
resource availability and defined constraints.

e Controller Manager: Continuously monitors and enforces the desired cluster
state, such as ensuring the correct number of pod replicas are running.

e etcd: A distributed key-value store that maintains configuration details and the
overall state of the cluster, including data about nodes, pods, and services.

e Cloud Controller Manager (when using cloud providers): integrates node,
routing, and load-balancer state with the hosting environment.

2. Worker Nodes (Node Pool)

Worker Nodes, sometimes referred to as the Node Pool, are tasked with executing
the application workloads. Each node includes essential services required to manage
and run pods, such as a container runtime, kubelet, and networking proxy [6].
Core components on Worker Nodes:

e Kubelet: A daemon that runs on every worker node, ensuring containers in a
pod are running as expected. It interfaces with the API server to provide updates
on node health and status.

e Container Runtime: The engine used to run containers (e.g., Docker engine,
containerd, or CRI-O). It handles container lifecycle and execution.

e Kube-Proxy: Manages the networking for pods, enabling communication across
nodes and ensuring traffic is correctly routed to the appropriate pods.

3. Pods

Pods are the most basic deployable units in Kubernetes. They encapsulate one or
more containers and represent a single instance of a running application within the
cluster. Pods offer an abstraction over containers, allowing Kubernetes to orches-
trate them uniformly [6].

Notable Pod characteristics:

e Multi-container Pods: A single pod can house multiple containers that share
the same network space and storage. This setup is useful for tightly coupled
components, such as a main app and a logging sidecar.

20

CHAPTER 2. BACKGROUND

e Pod IP: Each pod is assigned a unique local IP address, facilitating inter-
container communication using localhost.

e Ephemeral Nature: Pods are inherently transient. If a pod crashes or is deleted,
Kubernetes automatically provisions a replacement to maintain the specified ap-
plication state.

¢ Resource Requests and Limits: Pods can define their CPU and memory re-
quirements, and Kubernetes schedules them on nodes that can fulfil these resource
needs.

2.4 The Role of SDKs in Application Development

SDK (Software Development Kit) help software developers create applications for
a specific platform, system, or programming language. Typically, a basic SDK
will include a compiler, debugger, and application programming interfaces (APIs)
but also documentation, libraries and drivers. Some examples of popular software
development kits are the Java development kit (JDK), the Windows 7 SDK, the
MacOS X SDK, the Android SDK, and the iOS SDK. As a specific example, the
Kubernetes operator SDK can help you develop your own Kubernetes operator. It
contains high-level APIs, tools for scaffolding and code generation, and extensions
to cover common operator use cases [15]. There are a lot of benefits using SDKs,
some of them:

e Simpler integrations: SDKs reduce the complexity of integrations by simplify-
ing processes and providing standardized interfaces, such as those used to access
device hardware or external services.

e Abstraction: SDK often use APIs in order to let your product or service com-
municate with other products and services without having to know how they’re
implemented.

e Documentation and instructions: SDKs provide built-in support and exper-
tise with written code and support documentation, tutorials, and more, removing
the need to search for answers or outsource.

e Cost savings: SDKs built within apps offer cost savings because they eliminate
the need to rebuild common features, cutting development time and accelerating
delivery. The integrations also don’t require specialized technical skills, allowing
your team to perform in-house integrations.

Cloud SDKs simplify how you interact with a cloud provider’s infrastructure services
such as storage, compute, and databases. They are often used to:

e Manage resources like storage buckets, databases, or virtual machines.
e Automate provisioning, scaling, and deployment workflows.

e Monitor system performance and usage.

21

CHAPTER 2. BACKGROUND

Like many areas in I'T, Cloud Computing relies heavily on SDKs, especially those
designed to interact with and manage cloud provider resources. Go is the preferred
language in this space, thanks to its speed, efficiency, built-in concurrency support,
and strong tooling. Some of the most popular include: AWS Go SDK, Google Cloud
Client Libraries SDK for Go, Azure Go SDK.

22

Chapter 3

State of the art

3.1 Kubernetes cluster provisioning tools and meth-
ods

Kubernetes clusters can be provisioned in many ways, depending on the environment
(cloud, on-prem, edge) and desired automation. Broadly, we can classify approaches
into self-managed installers, infrastructure-as-code (IaC) tools, Kubernetes-style
cluster management (Cluster API), and managed cloud services. Each has different
supported environments, use cases, and trade-offs.

3.1.1 Self-Managed Installers
Kubeadm

The official Kubernetes bootstrap tool. It only initializes a cluster on existing ma-
chines (does not provision VMs). Kubeadm is very lightweight and portable: it can
run on bare metal, VMs, laptops, or even a Raspberry Pi. It is ideal for quickly
getting a “minimum viable” cluster up for testing or development |[2].

e Use cases: simple single-cluster installs, custom setups, development environ-
ments, or as a building block for higher-level automation.

e Pros: Fast and minimal; no vendor lock-in; runs almost anywhere (cloud or
bare-metal); produces best-practice control-plane setup.

e Cons: Requires manual steps: you must pre-provision nodes (with your own
scripts or cloud console). It does not manage networking, add-ons, or node
lifecycle. Itself doesn’t build “production-ready” clusters.

kOps

An open-source tool (by the Kubernetes SIGs) that can create and manage clusters
as long as the underlying cloud infrastructure. It acts as “Kubectl for clusters”.
kOps automates the entire cluster lifecycle: it provisions AWS (and other cloud)
resources for control plane and node groups, configures Kubernetes (including HA
masters, etc.), and supports upgrades. Officially, kOps supports AWS and GCP

23

CHAPTER 3. STATE OF THE ART

(Google Cloud) out of the box with Azure in alpha and community support for
DigitalOcean, OpenStack, and Hetzner [19].

e Use cases: Production-grade Kubernetes on supported cloud providers. Good
when you want more control over cluster config than managed services provide.

e Pros: Creates “production-ready” clusters with HA master nodes, VPCs, load
balancers, networking and so on. Integrates with cloud features (IAM, ELB,
Auto-scaling). Supports cluster upgrades and add-ons. Widely used for AWS
Kubernetes.

e Cons: Limited to supported providers (primarily AWS/GCP). Has more mov-
ing parts than Kubeadm (config state). Upgrades can be complex. Some
manual steps (e.g., kubeconfig management) remain.

Kubespray

A community Ansible-based installer (also a CNCF project) that deploys Kuber-
netes clusters on many platforms. Kubespray uses Ansible playbooks (under the
hood using Kubeadm) to configure a cluster, and supports virtually all major envi-
ronments: AWS, GCP, Azure, OpenStack, vSphere, Equinix, and generic bare-metal
servers. It can create highly available clusters (multiple master nodes), and is highly
configurable (choice of CNI plug-ins, OS distributions, etc.) [20].

e Use cases: Deploying clusters across diverse on-prem or cloud platforms, when
you need maximum flexibility. Good for heterogeneous environments or when
a custom configuration is needed.

e Pros: Multi-cloud and bare-metal support. Built-in support for HA, choice of
OS (Ubuntu, CentOS, etc.), and network plug-ins. Active development and
Cl-tested releases. Uses familiar Ansible, so you can customize easily.

e Cons: Does not provision machines or networks itself. You must supply in-
ventory of hosts (manually or via another tool like Terraform). More complex
setup (SSH keys, inventory files). Longer bootstrap time (Ansible runs many
tasks).

Rancher RKE/RKE2

Rancher’s Kubernetes Engine for on-prem or cloud. They can install Kubernetes
on any set of existing nodes (bare-metal or cloud VMs) or provision new nodes via
supported providers. RKE2 (also called RKE “Government”) is fully conformant
and can even be provisioned via Rancher’s UI or Terraform (it uses Cluster API
under the hood) [24].

e Use cases: Organizations using Rancher for multi-cluster management. Hybrid
or on-prem deployments where Rancher is the management plane. Deploying
clusters in private data centers or across clouds with a unified interface.

24

CHAPTER 3. STATE OF THE ART

e Pros: Vendor-agnostic (any infrastructure via Rancher node drivers). Inte-
grated lifecycle: Rancher can auto-scale node pools, replace failed nodes, and
handle upgrades. RKE2’s tight coupling with Cluster API simplifies multi-
cloud provisioning.

e Cons: Requires running Rancher server. Tied to Rancher ecosystem. Steep
learning curve to set up Rancher.

3.1.2 Infrastructure-as-Code Tools
Terraform

A popular declarative IaC tool. Terraform can’t directly install Kubernetes software
on a set of nodes, but it can fully provision managed Kubernetes clusters and all
their associated infrastructure from cloud providers. For example, Terraform’s AWS
provider can create VPCs, EC2 instances, and an EKS cluster resource; similarly for
Azure AKS or Google Cloud GKE. Terraform has providers for most environments
(AWS, Azure, GCP, VMware, OpenStack, etc.), and many community “modules”
for cluster resources [23].

e Use cases: Integrate Kubernetes cluster creation into existing IaC workflows or
pipelines. Automate cloud resource setup (networks, load balancers, compute)
in a reproducible way. Manage cluster state alongside other infrastructure.

e Pros: Broad provider support on multi-cloud or on-prem. Mature ecosys-
tem, state management, Terraform Registry modules. Good for auditing and
rollbacks.

e Cons: Not usable on every VM but only into the defined ones on a single vendor
at a time, creating vendor lock-in. Cluster lifecycle beyond creation (e.g.,
upgrades, node scaling) often requires separate steps or external tools. HCL
(Terraform’s domain-specific language) is less flexible than general-purpose
languages, and secret handling requires extra configurations.

Pulumi

An open-source [aC platform where infrastructure is defined in general-purpose lan-
guages (TypeScript, Python, Go, etc.). Pulumi can call the same cloud APIs (via
providers) as Terraform, and also supports Kubernetes-specific logic. For example,
Pulumi has templates for deploying EKS/GKE/AKS clusters on AWS, GCP, or
Azure. It also lets you use Helm charts or Kubernetes YAML directly as part of
your program [23].

e Use cases: Teams who prefer real programming languages and IDE support for
[aC. Complex orchestration or dynamic logic (e.g., loops, conditions) in cluster
provisioning. Integrating Kubernetes and cloud resources in one codebase.

e Pros: Use rich language features (loops, packages, modules) for infrastructure
logic; built-in secret encryption; strong multi-cloud support. Immediate access
to new cloud features via native SDKs.

25

CHAPTER 3. STATE OF THE ART

e Cons: Newer ecosystem than Terraform and requires coding skills. Slightly
higher overhead vs. simple declarative configs. Not all organizations accept
running code in pipelines.

Kubernetes Cluster API

The Cluster API (CAPI) is a Kubernetes SIG project that brings “Kubernetes-style”
declarative management to clusters themselves. With CAPI, you run a management
cluster that includes the Cluster API controllers. You then define Cluster custom
resources (and related Machine/VM resources) in YAML. The controllers will pro-
vision and manage entire clusters on the target infrastructure, just like any other
Kubernetes resource [25].

Key points:

e Declarative & Multi-Cloud: You specify cluster size, machine templates, and
networking in Kubernetes manifests, and CAPI handles the provisioning of
VMs, load balancers, etc. in the target environment. Because CAPI is
provider-neutral, it can be extended to any infrastructure (AWS, Azure, vSphere,
OpenStack, bare-metal, Equinix Metal, etc.). There are official /integrated
providers like CAPA on AWS, CAPZ on Azure, CAPV on vSphere, and com-
munity ones (GCP, Docker, Metal3 for bare-metal, etc.).

e Built for Scale: CAPI is production-ready and aimed at large-scale operations.
It is upstream in tools like Rancher and Mirantis Kubernetes Engine. It en-
ables managing hundreds or thousands of clusters (e.g., edge sites, multi-cloud
clusters) using a unified API.

e How it Works: A bootstrap cluster creates a management cluster, which runs
the CAPI controllers. You run clusterctl or YAML manifests to generate a
cluster specification. The controllers create Machine resources that spin up
VMs (via the infrastructure provider) and join them into a new “workload”
cluster. You can later upgrade or scale clusters by updating the manifests.

e Use cases: Multi-cluster management, GitOps-style cluster creation, hybrid /-
cloud consistency. Ideal when you need uniform automation across clouds,
on-prem, and edge.

e Pros: Declarative, consistent cluster lifecycle; reusable across environments;
rich ecosystem of providers; integrates with Kubernetes toolchain.

e Cons: Higher complexity and learning curve. Requires an initial management

cluster. Less straightforward for one-off single clusters.

3.1.3 Managed Cloud Kubernetes Services

Cloud providers offer “managed” Kubernetes with control planes handled for you.
These simplify cluster provisioning but have trade-offs:

26

CHAPTER 3. STATE OF THE ART

Amazon EKS

AWS’s managed Kubernetes. Amazon runs the control plane across multiple avail-
ability zones (for HA), and you pay a nominal hourly fee (around $0.10/hr per
cluster). According to CNCF surveys, EKS is the most widely used managed K8s
service [22].

e Key features: Control plane is fully managed (auto-replaced on failure), in-
tegrated with AWS TAM, ALB, and other services. Supports serverless and
outposts.

Use cases: AWS-centric environments needing managed K8s. Existing AWS
automation (CloudFormation, Terraform) can provision EKS easily.

Pros: High reliability (99.95% SLA); deep AWS ecosystem integration; RBAC
with TAM.

Cons: Fewer out-of-the-box conveniences than GKE (more manual upgrades).
There is an extra per-cluster charge. Some setup (VPC networking, node CNI)
requires manual steps.

Google GKE

Google’s managed Kubernetes (inherited from Borg experience). GKE is known for
its advanced features and automation [22].

e Key features: Auto-managed control plane and node upgrades; release chan-
nels (Rapid, Regular, Stable) for version control; GKE Autopilot (hands-off
mode) and GKE Edge options.

Use cases: Multi-cloud or Google-centric use; when you want the smoothest
management experience. Good for easily staying on the latest K8s versions.

Pros: Automatic upgrades for control plane and nodes; quick access to new K8s
versions; free zonal control plane. Excellent dashboard and Cloud Operations
integration.

Cons: Google Cloud dependency; regional clusters cost around $0.10/hr to
match EKS SLA. No dedicated government cloud.

Azure AKS

Microsoft’s managed Kubernetes. AKS integrates tightly with the Azure platform
(AD, Azure Monitor, Policies). It historically offered fast availability of new K8s
versions. The control plane is offered free, and you pay only for nodes [22].

o Key features: Integrated Azure AD and Azure Policy; automatic node re-

pair; Azure Monitor /Log Analytics integration; Azure Dev Spaces and DevOps
tools.

27

CHAPTER 3. STATE OF THE ART

e Use cases: Enterprises invested in Azure/Microsoft stack. For example, Azure
AD or Active Directory integration for multi-tenant identity.

e Pros: Free control plane makes it cost-effective; first to roll out new Kubernetes
versions; good Windows container support.

e Cons: Historically, cluster upgrades were semi-manual, though Microsoft is
automating more. Some features, such as network policies, must be enabled
at creation. Limited to the Azure environment.

3.2 Architecture and Core Functions of kOps

I selected kOps over other available projects primarily because it is open source,
scalable, and offers a high level of completeness and complexity. Its approach, which
relies on cloud provider APIs and Kubernetes APIs, is more robust and maintainable
compared to solutions based on Ansible scripts or proprietary tools. One of the
most significant advantages of kOps is that it allows users to manage not only the
creation and deployment of production-grade Kubernetes clusters but also their
ongoing operations. This distinguishes it from tools that are limited to setting up
minimal viable products.

3.2.1 How kOps works

kOps is a command-line tool that enables creation, management, upgrading, and
maintenance of production-grade Kubernetes clusters by provisioning the required
cloud infrastructure in an automated and declarative fashion |19]. The following
paragraphs provide a detailed examination of the subsystems involved. Each section
will describe the purpose, internal mechanisms, and interactions of the components
involved in the lifecycle of a Kubernetes cluster managed by kOps.

Command-Line Interface (CLI)

The entire operation of kOps is driven by its CLI, implemented using the Cobra
library in Go. Each command, such as kops create cluster, is defined in the
/cmd/kops directory. The primary entry point for cluster creation is the function
RunCreateCluster() located in create_cluster.go. This function orchestrates
the workflow to build the cluster according to user inputs [19].

State Store and Storage Abstraction

kOps stores cluster configuration state in a remote backend, often referred to as the
state store. Access to this storage is abstracted through a clientset interface, ob-
tained via a factory object. Common functions include Get (), Create(), Update(),
and List () for managing cluster resources. Importantly, kOps does not store infor-
mation in the state store that can be inferred directly from the actual cloud state.
Usually, the state store is stored in a remote S3 bucket |19).

28

CHAPTER 3. STATE OF THE ART

API Layer

At the core of kOps lies its API, defined with Go structs and coupled with Kuber-
netes API machinery for version control. The principal structure is api.Cluster{},
whose configuration is held in cluster.Spec. This specification defines cluster-level
attributes such as networking, Kubernetes version, and add-ons. Cluster nodes and
roles are defined via Instance Groups, which are represented as a slice of pointers
to kops . InstanceGroup objects. Each group specifies parameters such as machine
type, disk volume, and instance count [19].

Cloudup Engine

Once a valid cluster specification and instance groups are defined, kOps constructs
an ApplyClusterCmd object. This object encapsulates the cluster, clientset, selected
cloud provider, output directory, instance group definitions, and run settings such
as dry-run flags or task timeouts. Invoking its Run() method launches the core
orchestration sequence, which includes the following stages [19]:

e Input sanitisation and validation to ensure consistency and correctness.

e Construction of a provider-specific cloud object based on the cluster’s cloud
provider setting.

e Model building phase, which translates the high-level cluster specification into
discrete tasks. Each task represents an atomic cloud API operation (for ex-
ample, creating a VPC or launching an instance).

e Task execution phase, in which each task is inspected (via a Find () method)
and then rendered (via Render()) to call the actual cloud API.

Node Bootstrapping (Nodeup)

Nodeup is a separate binary executed during node initialization. It is invoked
through cloud-init scripts when new instances launch. Nodeup installs and con-
figures necessary dependencies on each node, ensuring that it joins the Kubernetes
control plane and becomes fully operational as part of the cluster [19].

Operator Reconciliation (kops-controller)

In addition to provisioning logic, kOps includes a runtime controller that runs as
a DaemonSet on master node(s). This controller performs reconciliation, such as
applying needed labels on Kubernetes Node objects. For example, it can map a
Node to its Instance Group by querying provider APIs and applying metadata tags
accordingly [19].

3.2.2 How to use it

kOps provides a suite of command-line operations that support the complete lifecycle
management of a Kubernetes cluster. These operations include registering a cluster,

29

CHAPTER 3. STATE OF THE ART

applying or updating infrastructure, rolling updates, querying state, and cleanup
[18].
Cluster Creation and Registration

The command kops create registers a cluster. There are two possible approaches.
One involves using a cluster specification YAML file, for example:

kops create -f <cluster_spec_file>

Once the cluster has been registered in the state store, the following command
applies the specification and creates the necessary cloud infrastructure:

kops update cluster --yes

Alternatively, the command

kops create cluster <clustername>

Example:

kops create cluster --cloud=elemento --name=test.k8s
--state=s3://test-kops --kubernetes-version=1.32.4

--zones=europe --node-count=3 --node-volume-size=64
--control-plane-volume-size=64 --network-cidr 10.0.0.0/24

constructs the cloud specification directly, using flags such as zones, node count,
image, and topology. In most cases, the cluster specification is edited manually via
kops edit cluster.

Applying or Updating Infrastructure

The command kops update cluster <clustername> reconciles the actual cloud
infrastructure to match the desired cluster specification. Before finalizing changes,
it is advisable to preview the planned operations using:

kops update cluster --name <clustername>

Once the preview matches expectations, applying changes is performed by including
the -yes flag:

kops update cluster --name <clustername> --yes

Cluster Rollout
To deploy changes that require restarting or replacing nodes,
kops rolling-update cluster <clustername>

is used. It is again possible to preview the actions before execution, and then to
proceed securely using the -yes flag. Both when applying or updating the config-
uration, kOps executes all necessary modifications in sequence so that the actual
cluster state aligns as closely as possible with the desired specification, following the
same declarative and reconciliation-driven approach used by Kubernetes.

30

CHAPTER 3. STATE OF THE ART

Querying Registered Clusters

The command kops get clusters lists all clusters currently registered in the state
store. This command is useful for auditing and overview purposes.

Deleting a Cluster

To delete all cloud resources associated with a cluster—including DNS records, load
balancers, volumes, instances, and network elements—and to remove the cluster
from the registry, use:

kops delete cluster --name <clustername>

As with other operations, a preview is recommended, followed by confirmation using
the -yes flag:

kops delete cluster --name <clustername> --yes

Other Utility Commands

kops toolbox template generates reusable cluster specification templates using
Go templating, which is particularly useful for managing multiple clusters with
consistent configurations. The command kops version reports the version of the
kOps binary currently in use [18].

31

Chapter 4

Methodology

4.1 Mastering Large Project Architecture: Insights
from kOps

To effectively navigate and comprehend a large, pre-existing codebase, a structured
approach is essential since it is much more difficult than starting a project from
scratch. The initial and fundamental step involves successfully getting the code to
run in a local development environment. This action is critical because it isolates
potential issues related to the local setup from those inherent in the codebase itself,
providing a stable foundation for subsequent work.

Once the environment is functional, a deep understanding of the product’s func-
tionality is essential. This can be achieved through various methods, such as study-
ing documentation and trying to execute the code itself. Open-source projects, like
the one discussed in this thesis, are often thoroughly documented from a usage per-
spective but tend to lack equally detailed documentation on their internal structure
and functioning, making it hard for new developers to jump in.

When documentation is scarce, one of the best ways to understand the flow and
logic of an application is by examining its tests. Tests often serve as an implicit
form of documentation, and when well written, they can reveal everything needed
to know about the codebase’s underlying logic. Finally, reading the code itself can
reveal the specific logic of a function or API call. However, since it is more time-
consuming, it is usually considered a last resort. Ideally, well-written code should
‘explain itself” [21].

4.1.1 The importance of the debugger and error codes

When fixing errors or implementing new functionalities, programmers often en-
counter multiple bugs and logical errors. Identifying the root cause can be complex,
and following a systematic approach helps speed up the process. Typically, the
debugging process consists of the following steps:

e Error Identification: Developers, testers, and end users report bugs encoun-
tered during software testing or usage. Developers then locate the exact line
of code or module responsible for the bug. This process can be tedious and

32

CHAPTER 4. METHODOLOGY

time-consuming; this step can be streamlined using Al tools or detailed error
outputs in order to reduce the waste.

e Error Analysis: Programmers analyse the bug by recording all program state
changes and data values. They also prioritize bug fixes based on the severity
of impact on software functionality.

e Correction and Validation: Developers fix the bug and perform tests to
ensure that the software continues to function as expected. They may also
write new tests to prevent the bug from recurring in the future.

Errors can take various forms, depending on their origin: syntax errors, semantic
errors, logical errors, or runtime errors caused by edge cases not anticipated during
the programming phase. One widely used approach to solving bugs is incremental
development, where programs are built in manageable sections that can be frequently
tested. This allows programmers to detect bugs early and address them one at a
time, rather than confronting multiple errors after completing large portions of code.
Similarly, the divide-and-conquer method encourages breaking the code into smaller,
focused areas, making it easier to isolate and resolve specific issues.

Another traditional technique is backtracking, particularly effective for smaller
programs. Developers work backward from the point where an error manifests to
identify its origin in the code. While this method becomes more challenging as the
codebase grows, it remains a valuable tool for tracing the root cause of problems. In
modern contexts, remote debugging is often necessary, allowing developers to analyse
applications running in separate environments, such as servers or cloud platforms.
Alongside this, logging plays a key role: programs frequently record internal data,
execution times, and system states in log files, which developers can examine to
track down errors and understand program behaviour.

Practical techniques also include strategic use of print statements to observe
variable values at critical points, systematic testing of edge cases to uncover hidden
bugs, and careful use of version control systems like Git to track changes and identify
when and where a bug was introduced [3].

4.1.2 The approach adopted in this specific case

The debugger used in this project is Delve [7], a tool built specifically for Go. Since
the kOps codebase is very large and complex, I first experimented with its basic
functionalities before turning to the documentation to gain a deeper understanding
of its logic. However, because the implementation details were not extensively doc-
umented, I adopted a black-box approach: I provided specific inputs, analysed the
corresponding outputs, and traced variable values using the debugger to uncover the
chain of function calls.

As my task was to introduce support for a new cloud provider into kOps, I be-
gan by studying the existing implementations already integrated into the project.
I selected the Hetzner Cloud implementation as the reference model, both for its
relative simplicity and for the balance it offered between ease of understanding and
the range of features it supported, which made it well aligned with the requirements

33

CHAPTER 4. METHODOLOGY

of Elemento. The most useful debugging method I relied on throughout the imple-
mentation was the extensive use of logs. Both the logs already present in kOps and
those I added in my implementation proved invaluable in tracing the root causes of
bugs.

4.2 Systems integration

The system is made up of three main components that work closely together: the
kOps library, the Elemento library, and the AtomOS instance.

The kOps library is the entry point of the process. It receives the commands
required to create the cluster configuration and to trigger the provisioning phase.
It is being extended to support Elemento as a new cloud provider, ensuring that
it can integrate seamlessly with the rest of the infrastructure. The Elemento Go
library acts as an adapter between kOps and the Elemento platform. Its role is to
translate function calls from kOps into API calls that can be understood by Elemento
systems. This translation layer allows kOps to remain agnostic of provider-specific
APIs and instead rely on standardized functions, making it easier to support multiple
cloud providers with minimal changes. Finally, the AtomOS instance represents the
underlying execution environment. It is Elemento’s Linux-based KVM hypervisor,
responsible for actually provisioning the requested resources, such as storage, virtual
machines, and networking, based on the API calls it receives.

AtomOS instance .
VM creation

Storage creation

API server Cloud-init Network creation
execution

Koge Elemento Go

API library

Storage
provisioning

VMs provisioning

Resource Elemento Cloud-init Network
provisioning account login configuration configuration

Y
CLI create K8S cluster Provider API Cluster deplo Tests
command creation execution ploy

Figure 4.1: System integration with kOps

34

CHAPTER 4. METHODOLOGY

4.2.1 Handling of asynchronous operations

In the kOps codebase, the fi package provides the abstraction layer through which
cloud infrastructure is defined and reconciled, and at the heart of this system are
the so-called tasks. An fi task is a Go struct that models a specific resource, such as
a server group, a subnet, or an IAM role, and encapsulates both the configuration
values that describe the resource and the behaviour required to manage its lifecycle.
Rather than invoking cloud provider APIs directly in an imperative manner, kOps
expresses desired state as a graph of interdependent tasks, with each task respon-
sible for representing one unit of infrastructure. The task graph is then traversed
and executed by the fi engine, which applies the necessary changes in a determin-
istic order, ensuring that dependencies are respected and the resulting cluster state
matches the declared specification in a typical k8s logic fashion. The execution relies
on around 40 fi tasks that execute all the necessary actions needed to provision the
desired cluster configuration.

This approach makes tasks both declarative and idempotent: they provide a
high-level description of resources, while the fi runtime determines whether they
need to be created, updated, or left unchanged. By relying on generated boiler-
plate code from the fitask tool, tasks implement a common set of interfaces such as
name resolution, lifecycle management, and string formatting that allows them to
integrate seamlessly into the provisioning engine and be handled uniformly across
different cloud providers’ Go SDKs. Tasks that can be executed in parallel, such as
provisioning resources for different nodes, are often carried out in this way, thereby
further reducing overall provisioning time.

35

CHAPTER 4. METHODOLOGY

4.3 How the Elemento support on kOps could be
very useful

By integrating Elemento into the list of cloud providers supported by kOps, I'm not
merely adding a single provider but enabling access to an entire network of small
cloud providers that stand to benefit significantly from this integration. The sys-
tem leverages a unified architecture in which all Elemento hypervisors communicate
with each other and function as a single abstract cloud system. This design allows
for the provisioning of nodes across multiple cloud environments. Future enhance-
ments could further enable the system to autonomously heal itself by allowing the
kOps controller APIs to manage AtomOS provisioning capabilities across multiple
instances hosted on different cloud providers.

AtomOS server
Host (on-premise

JN
(W AtomOS server

on provider X
Elemento Go N Local Elemento :
KEipsicommand APl library client deamons

AtomOS server
on provider Y

____ AtomOS server
on provider Z

Figure 4.2: Elemento contribution to an unbounded Cloud environment

36

Chapter 5

Work development

5.1 The integration workflow for adding
Cloud Providers in kOps

Unfortunately, there is no single standardized procedure for integrating a new cloud
provider into the kOps project. While the project defines a set of common interfaces
and shared logic, each provider must still be integrated in a slightly different manner.
This results in greater complexity, both in terms of understanding the overall system
and in ensuring its long-term maintainability. A key challenge arises from the fact
that cloud providers often implement equivalent resources in significantly different
ways, owing to proprietary technologies, patents, and distinct architectural choices.
The kOps code has been forked by Elemento, where the specific implementation
for its platform is maintained. This fork is not fully compliant with the guidelines
of the main kOps project, largely due to the architectural differences between large-
scale cloud providers and Elemento’s infrastructure. To bridge this gap, another
critical component is the Elemento Go plug-in, which serves as a translation layer:
it maps the standardized kOps interfaces onto Elemento’s proprietary abstractions,
thereby enabling functional interoperability despite the underlying heterogeneity.

kops/cloudup/servergroup task ecloud-go/server ecloud-go/api-call Elemento APIs
Resource objects ' object ServerGroup \ object Server
l
Request structs ServerCreateOpts CreateComputeRequest
! !
Functions \ > Create ———> CreateCompute _'—> POST /apilv1 .0/clientvmiregister
— l
Response structs I : ServerCi L CreateComputeResponse

Figure 5.1: Elemento create VM flow

In Figure [5.1, we can see a schema illustrating the interaction between the
different system components concerning the Virtual Machine (or Server) object.
The execution begins on the left, where the ServerGroup task invokes the func-

37

CHAPTER 5. WORK DEVELOPMENT

tion RenderElemento within a task (as explained in Section [£.2.1). This func-
tion takes as input the ServerGroup object and converts the relevant fields into a
ServerCreateQpts structure, making them compatible with the Elemento Go plug-
in (highlighted in yellow). The Elemento Go plug-in then receives the call to the
Create function and maps the values from the ServerCreateOpts fields into the
Server object. A request is subsequently issued to the Elemento Go API gateway,
where the CreateCompute function is called. At this stage, the request payload
is constructed according to the documented struct definitions and forwarded to
the Elemento client API, which authenticates the request and transmits it to the
AtomOS server. Once a response is returned to the API gateway, it is validated
and marshalled into a CreateComputeResponse, which is then passed back to the
Create function. This function elaborates the response into a ServerCreateResult
(compatible with kOps) and returns it to the RenderElemento function. All these
steps and conversions are supported by Go’s strict type and struct checks, which
significantly reduce the likelihood of errors.

5.2 How I iterated the testing and development

After analysing all the required resources and the overall architecture, I proceeded
with the implementation of one resource area at a time, beginning with virtual
machines, then moving on to storage, networking, and finally SSH keys, from kOps
through to the API gateway. Once each component was implemented, I validated
the functionality of the endpoints by executing tests starting from the Elemento
Go API gateway toward the AtomOS instance, and then gradually integrating the
subsequent layers of the system until i reached kOps. This incremental approach,
called Test Driven Development, facilitated more effective debugging and allowed
errors to be isolated and resolved step by step.

Test-Driven Development (TDD) is a software development methodology that
applies an iterative and incremental approach to programming, driven by a tight
feedback loop of writing tests before the corresponding production code. The pro-
cess, often summarized as Red-Green-Refactor, begins with the developer writing a
failing automated test case for a new, small piece of functionality (Red phase). This
failure validates the test’s purpose and confirms the feature’s absence. Next, the de-
veloper writes the minimal amount of code necessary to make the test pass (Green
phase), ensuring the new code directly addresses the requirement without introduc-
ing extraneous functionality. Finally, the developer refactors the code to improve
its design and maintainability while ensuring all tests continue to pass (Refactor
phase). This cycle, supported by a comprehensive test suite, results in a robust and
reliable codebase with high test coverage, serving both as living documentation and
as a safety net for future changes. By prioritizing automated testing, TDD shifts the
focus from writing large blocks of code followed by testing, to a continuous cycle of
verification and refinement, reducing debugging time and promoting cleaner, more
modular designs.

38

CHAPTER 5. WORK DEVELOPMENT

5.3 Interesting workflow management of async ac-
tions by Hetzner Cloud

While designing the Elemento Go plug-in, I took inspiration from the architecture
of the Hetzner Cloud Go library, where I observed a particularly interesting logic
for managing asynchronous operations. The Hetzner Cloud Go library provides an
elegant mechanism for handling asynchronous operations through its Action sys-
tem, which functions as a high-level abstraction for long-running cloud tasks that
cannot complete immediately. When operations such as server creation, configu-
ration changes, or network management are initiated, the API returns an Action
object encapsulating the entire lifecycle of the operation. Each Action includes a
unique identifier, current status (e.g., running, success, or error), progress percent-
age, timing information, and references to affected resources. This design ensures
complete visibility into the state of the operation and facilitates robust tracking of
cloud resource modifications.

A central feature of this system is the library’s polling mechanism, implemented
via the WaitForFunc method. This method adopts an efficient strategy for moni-
toring action completion: instead of issuing individual API calls for each action, it
batches requests for up to 25 actions at once, polling at configurable intervals (with a
default of 500 milliseconds). It further supports real-time updates through callback
functions, reducing API overhead while preserving responsiveness. Additionally, the
method integrates with Go’s context system, enabling timeout management and
graceful cancellation of long-running operations. What distinguishes this system
is its flexibility and comprehensive error-handling capabilities. The WaitForFunc
method allows developers to define custom update handlers capable of processing
progress information, logging status changes, or embedding domain-specific business
logic into the lifecycle of an operation. In cases of failure, the library enriches error
reporting by returning ActionError objects containing both machine-readable error
codes and human-readable descriptions, together with references to the associated
Action. This design not only simplifies debugging but also enhances resilience by
providing insights into the causes of failed operations.

5.4 Creating Cluster Manifests and Configurations

The first step to create a cluster is set the environment variables required by kOps.
In the Elemento configuration, the variables are:

export S3_REGION=eu-south-1

export S3_ENDPOINT=https://s3.eu-south-1.wasabisys.com
export S3_ACCESS_KEY_ID=...

export S3_SECRET_ACCESS_KEY=...

export PROVIDER=elemento

These variables are required to authenticate against the S3 bucket hosted by Wasabi,
which is used as the state store where kOps maintains its configuration and version-
ing data.

39

CHAPTER 5. WORK DEVELOPMENT

Now we need to start the Elemento Electros app that is needed for authentication
and gateway into the Elemento ecosystem. Then we can run the create cluster
command to kOps CLI.

kops create cluster --cloud=elemento --name=test.k8s
--state=s3://test-kops --kubernetes-version=1.32.4
--zones=europe --node-count=2 --node-volume-size=64
--control-plane-volume-size=64 --network-cidr 192.168.100.0/24

This command generates the configuration for both the cluster control plane
and the worker nodes and stores it in the S3 bucket. It generates also manifests
for the internal add-ons such as coredns, kops-controller, kubelet-api and cilium
CNI. Although kOps supports a wide range of customizations, in this thesis the
specification has been limited to a few key elements: the cluster name, the state
store bucket, the Kubernetes version, the availability zone, the number of worker
nodes, the size of their volumes, the size of the control plane node (which defaults
to a single node), and the network address with its netmask. The result of the
configuration leads, among others, to the following manifests.

Configuration of the control plane generated by kOps:

apiVersion: kops.k8s.io/vlialpha2
kind: InstanceGroup
metadata:
creationTimestamp: "2025-09-15T08:32:29Z"
name: control-plane-europe
spec:
image: ubuntu-24-04
machineType: argon
maxSize: 1
minSize: 1
role: Master
rootVolumeSize: 64
subnets:
- europe

Configuration of the nodes generated by kOps:

apiVersion: kops.k8s.io/vlalpha2
kind: InstanceGroup
metadata:
creationTimestamp: "2025-09-15T08:32:30Z"
name: nodes-europe
spec:
image: ubuntu-24-04
machineType: neon
maxSize: 2
minSize: 2
role: Node

40

CHAPTER 5. WORK DEVELOPMENT

rootVolumeSize: 64
subnets:
- europe

The parameter machineType defines the virtual machine flavour, which similarly to
other cloud providers, represents a standardized specification of resources.
In Elemento, five flavours are available:

e Helium — 1 vCPU, 0.5 GB RAM
e Neon — 2 vCPU, 2 GB RAM

e Argon2 — 4 vCPU, 4 GB RAM
e Argon — 6 vCPU, 4 GB RAM

e Kripton — 8 vCPU, 8 GB RAM

For the control plane, the Argon flavour was selected as the default, since it
must handle significant load while being particularly sensitive to latency and network
performance. Conversely, the worker nodes were configured with the Neon flavour,
which allows for finer-grained scalability in response to workload variations. Scaling
strategies will be further discussed in the final chapter.

41

CHAPTER 5. WORK DEVELOPMENT

5.5 Installation and startup of the cluster

Once i completed the implementation and fixed all the bugs regarding the CloudUp
phase that corresponds to kops create command i started debugging the NodeUp
side by spawning clusters with kops update and seeing the log output of the kOps
script. Command executed into kOps CLI:

kops update cluster test.k8s --yes --admin --state=s3://test-kops

This command provisions the resources required to translate the previously de-
fined specifications into actual infrastructure for running the cluster. The process
includes the creation of all necessary virtual machines, storage volumes, and net-
working components. It is executed autonomously by kOps through the Elemento

Go plug-in that I developed. The result can be seen from the Elemento Electros
dashboard on Fig. 5.2 and Fig. [5.4

. : beci@elemento.cloud

Virtual Machines ° o B ©

Electros
+
+ -
1 Dashboard Basic Advanced
Total VMs Available templates otal CPU Cores

& Storage
08 Virtual Machines [.
P lies From Template Total Memory Total Storage Total GPUS
© AtomOS Servers a(@®e 2@2 <
& Settings Name $ OSType & uuD ¢ CPUCores® RAM & GPUs® StorageVolumes & IPAddress ¢ Uptime & ServerlP & Viewers Tunneling Actions

control-plane-europe-.
control-plane-europe-.) Linux Ubuntu 725baf4d-b95c-48d. 4 4GB - control-plane-europe-. - 0d Oh 8m += o
control-plane-europe-.

nodes-europe-63aceb.

nodes-europe-63aceb. € Linux Ubuntu 607ba%a2-acc4-452b. 2 2GB b nodes-europe-63aceb. & 0d Oh 8m += o
nodes-europe-63aceb.
nodes-europe-3cfb32
nodes-europe-3cfb32. € Linux Ubuntu 125¢374b-1052-4dc2. 2 2GB » nodes-europe-3cfb32. 5 0d Oh 8m = o
nodes-europe-3cfb32
System Services Status
Compute °
Estorage °
@ Authentication °
Figure 5.2: Elemento Electros VM list
Name s OSType & uuD ¢ CPUCores® RAM ¢ GPUs® StorageVolumes ¢ IPAddress ¢ Uptime ¢ ServerlP ¢ Viewers Tunneling Actions
control-plane-europe-..
control-plane-europe-. <0 Linux Ubuntu 725baf4d-b95c-4f8d... 4 4GB - control-plane-europe-.. - 0d Oh 8m +i= o
control-plane-europe-..
nodes-europe-63aceb.
nodes-europe-63aceb. < Linux Ubuntu 607ba9a2-acc4-452b. 2 2GB - nodes-europe-63aceb. = 0d Oh 8m = [}
nodes-europe-63aceb.
nodes-europe-3cfb32.
nodes-europe-3cfb32 <0 Linux Ubuntu 125¢374b-1052-4dc2... 2 2GB - nodes-europe-3cfb32.. - 0d Oh 8m +i= o

nodes-europe-3cfb32.

Figure 5.3: Elemento Electros VM list detail

42

CHAPTER 5. WORK DEVELOPMENT

Storage pbeci@elemento. fl::i ?Q} 0))
Electros N
-]
[= Dashboard Create
Total Volumes Preferred Storage Type Available Storage
& Storage
©8 Virtual Machines :H_‘
© AtomOS Servers e(@e 208 <
% Settings Name s uuID s Size ¢ Type = Format & Driver % CreatorD ¢ Own %+ Boota.® Sharea.s Read-..% Server Actions
nodes-europe-63acebife. ©€84329bb44c4farafles.. 47GB STANDARD. ‘acowz {virTio) fd1c0aBf75FbSeel.. (-] (-} @
0GB STANDARD 150 (SATA £d1c0a8f75bSe0l... (-] (] (-] o o
pl P . fff6efago9dclfasics.. 0GB STANDARD 150 SATA Fd1c0a8f75fbSe0l.. o o (-] o o
I Pl e 797. 60GB STANDARD. o {VirTiO } £d1c0aBF75bSe0l... (] (] o
P - '7b82b8... 60GB STANDARD D {VirTio} fd1c0a8f75fb5e01.. (-] (-] (]
nodes-europe-3cfb32ba. c669c0c731647F3941be. 47GB STANDARD. ‘acowz {VirTiO} £d1c0aBF75bSe0l... (] (] o
pe-3cfb32b4. o 0GB STANDARD 150 SATA fd1c0a8f75fbSe0l.. (-] o (-] o o
nodes-europe-3cfb32ba. 8488b3a47752467d8763d. 60GB STANDARD. (Raw} {VirTio £d1c0a8F75bSe0l... (] (] o
pl e c91dazd3af! L 47GB STANDARD ‘acowz {VirTio} £d1c0a8f75FbSe01.. (-] (] o

System Services Status

Compute °

Estorage °

@ Authenication °

Figure 5.4: Elemento Electros storage list
Name s uuID s Size Type & Format = Driver Creatord> & Own ¢ Boota.® Sharea.? Read-.® Server Actions

nodes-europe-63acebifc.. c84329bfbadcaf8fafles.. 47GB STANDARD ‘acowz fd1c@a8f757b5e0l... (-] © o
nodes-europe-63acebifc. 04fcfa6153294cab83981... 0GB STANDARD 150 ‘SATA fd1c0a8f75fbSe0l... o (] (-] (-] (]
control-plane-europe-669. 89fff6efa8994clfaslca. 0GB 'STANDARD 150 SATA fd1c0a8f75fbSe0L. (<] o (<] (<] o
control-pl pe-669... £4b8997797... 60GB STANDARD @D fd1c0a8f75b5e0l... (-] (-} o
nodes-europe-63acebifc.. 363e32dc981b4477b82b8.. 60GB STANDARD (rav) fd1c@a8f757b5e0L... (-] © o
nodes-europe-3cfb32b4. 66f9c0c731647F3941be... 47GB STANDARD ‘acowz fd1c0aBf75fb5e0l... (-] (-} o
nodes-europe-3cfb32b4. 4ba24a578e4040a29a93d. 0GB STANDARD 10 SATA fd1c@a8f75fb5e0l.. o (] (] o o
nodes-europe-3cfb32b4. 8488b3a47752467d8763d... 60GB STANDARD (Raw) fd1c0a8f75fbSe0l... (-] (-] o
control-plane-europe-669.. c91da2d3af51401a85035.. 47GB STANDARD ‘acowz fd1c@a8f757b5e0L... (-] (-] o

Figure 5.5: Elemento Electros storage list detail

Each virtual machine is provisioned with three volumes: one containing the
operating system boot image, one containing the cloud-init manifest, and one for
general storage defined through the kOps CLI.

Cloud-init is the industry-standard, cross-distribution tool for automating the
initial configuration of virtual machines (VMs) in cloud environments. Its primary
purpose is to transform a generic, pre-built VM image into a customized instance
that meets a user’s specific requirements during the very first boot. By automat-
ing these early-stage configuration tasks, cloud-init eliminates the need for manual
intervention, ensuring both consistency and efficiency in large-scale deployments.

Since all the kOps virtual machines must be initialized and execute a startup
script, cloud-init is the ideal tool for the task. Below is the configuration used in
Elemento VMs to set up SSH keys, users, networking, and the kOps bootstrap script
to be executed at startup.

43

CHAPTER 5. WORK DEVELOPMENT

#cloud-config
1. Create a user, set password, and add to the 'sudo' group
users:
- name: root
sudo: ALL=(ALL) NOPASSWD:ALL
shell: /bin/bash
lock_passwd: false
ssh_authorized_keys:
- ssh-rsa ...
- ssh-ed25519 ...
ssh_pwauth: true
chpasswd:
list: |
root:password
expire: false

2. Configure the network settings
hostname: myhost
network:
version: 2
ethernets:
ens3:
dhcp4: true’

3. Define the bash script content
write_files:
- path: /home/root/kopsscript.sh
permissions: "0755"
owner: root:root
content: |
<kOps UserData script>

4. Run the bash script
runcmd:
- [bash, /home/root/kopsscript.sh]ﬂ

Once provisioning is completed, the next step is the actual creation of the clus-
ter. Initially, I encountered several issues because of the cloud-init UserData script
executed on each virtual machine. This script includes a hash-based authentica-
tion mechanism between itself and the NodeUp binary downloaded from the official
kOps release. Since the official release does not include the Elemento modifications,
which exist only in a dedicated fork, the authentication process failed. To resolve
this, I created a release within the Elemento fork and removed the hash verification
from the cloud-init bash script. The code downloaded from this custom release is
a binary build of kOps NodeUp, which is responsible for bootstrapping the cluster
based on the configuration retrieved from the S3 bucket created earlier. Because the
entire startup logic is embedded within the NodeUp binary, no additional external

44

CHAPTER 5. WORK DEVELOPMENT

dependencies or commands are required. This self-contained design represents a
significant advantage over other cluster creation systems.

During debugging, I encountered persistent networking issues that prevented the
correct initialization of cluster components. To simplify the testing process, I im-
plemented a lightweight demonstration. Instead of relying on the complex kOps
NodeUp script to bootstrap the cluster, I developed an Ansible playbook that exe-
cutes from the AtomOS host machine via SSH commands triggered by kOps.

AtomOS instance .
VM creation
Cloud-init -
API server execution Network creation
Storage creation

Kops Elemento Go \ 2 \ 2
ALz VMs provisioning Stgr_a 9e
provisioning

Network
configuration

Cloud-init
configuration

Elemento
account login

Resource
provisioning

Ansible

—)‘ Cluster deploy

.
- 0
- I
I
'

Provider API

CLI create
execution

command

AtomOS instance

: SSH » Control-plane VM
i S
—)
Ansible playbook N
on AtonOS instance > Worker VM
> Worker VM

Figure 5.6: Ansible role in the systems architecture

45

CHAPTER 5. WORK DEVELOPMENT

This playbook configures the cluster on all nodes listed in the inventory file and re-
turns the kubeconfig to the kOps client. To connect to the cluster through kubectl,
SSH access to the AtomOS host must be enabled, as it is required to establish a
tunnel on port 6443 in order to reach the Kubernetes API of the cluster.

6443:192.168.100.73:6443 (ssh)
~ ssh -nNT -L 6443:192.168.100.73:6443 root@51.159.157.254

~/Downloads (-zsh)

» Downloads kubectl get nodes

NAME STATUS ROLES AGE VERSION
control-plane-europe-6691495f38d@ec83 Ready control-plane 41m v1.28.15
nodes-europe-3cfb32b44d00cf96 Ready worker 41m v1.28.15
nodes-europe-63aceblfc2774fa4 Ready worker 41m v1.28.15

Figure 5.7: Cluster nodes list from external host

P> Downloads kubectl get pod; -n kube-system -o wide

NAME STATUS RESTARTS AGE IpP NODE
coredns-5dd5756b68-bvq7w / Running @ 34m 10.244.0.3 control-plane-europe-6691495f38ddec83
coredns-5dd5756b68-x8njb Running @ 34m 10.244.0.2 control-plane-europe-6691495f38ddec83
etcd-control-plane-europe-6691495f38d0dec83 / Running @ 34m 192.168.100.73 control-plane-europe-6691495f38ddec83
kube-apiserver-control-plane-europe-6691495f38ddecs3 Running 0 34m 192.168.100.73 control-plane-europe-66 F38d0ec83
r-manager-control-plane-europe-6691495f38ddec83 Running 34m 100.73 control-plane-europe-6691495f38ddec83
5C / Running 34m . .100.5 nodes-europe-3cfb32b44d0acfI6
kube-proxy 8 Running ’ 34m 192.168.100.125 nodes-europe-63aceblfc2774fa4
kube-proxy-m2tpp Running 34m 192.168.100.73 control-plane-europe-6691495f38d0ec83

kube-scheduler-control-plane-europe-6691495f38ddec83 / Running 34m 192.168.100.73 control-plane-europe-6691495f38ddec83

Figure 5.8: Cluster pods list from external host

Where the command:

ssh -nNT -L 6443:192.168.100.73:6443 root@51.159.157.254

establishes a secure tunnel that forwards any connection made to port 6443 on the
local machine through an SSH connection to the remote server at 51.159.157.254.
From there, the traffic is transparently redirected to the private address
192.168.100.73 on port 6443. This mechanism is commonly employed to access ser-
vices running within a private network that are not directly reachable from the public
internet. In this context, the public-facing AtomOS server at 51.159.157.254 func-
tions as a secure jump host or gateway, enabling controlled access to the Kubernetes
API endpoint.

46

Chapter 6

Work evaluation

6.1 Testing the Kubernetes provisioning
through kOps

In this section, I will evaluate the performance of the kOps library in comparison
with other cloud providers offering the same or similar services. The evaluation
focuses on three key aspects: provisioning speed, ease of setup, and cost. The data
used for this comparison is drawn from an article which, although not very recent,
provides exactly the information required for this analysis [14].

6.1.1 Provisioning speed comparison

All the provisioning benchmarks presented in the article [14] were carried out using
Terraform. For this thesis, I compare those results with the provisioning process
performed through kOps integrated with AtomOS. It is important to note, however,
that Elemento does not currently support a high-availability (HA) control plane,
which may slightly affect the accuracy of the comparison.

The measurements in Figl6.1] highlight the efficient provisioning speed achieved
by the Elemento-kOps system. Most of the total time is consumed by the installation
of the Kubernetes cluster on the virtual machines and the subsequent reboot steps
required to apply the installed packages. Further research could identify opportuni-
ties to streamline or optimize these phases, thereby reducing the overall provisioning
time.

Provisioning speed across various cluster sizes

I conducted several tests to measure the time required to provision clusters of varying
sizes, with the goal of identifying potential scalability trends. The experiments were
performed on clusters ranging from 3 to 10 nodes, as hardware limitations prevented
testing larger configurations. The test was conducted on an AtomOS host machine
equipped with 16 CPU cores, 64 GB of RAM, and 1 TB of storage capacity.

The results shown in Figl6.2] indicate that the increase in provisioning time re-
mains minimal as the number of nodes grows. This behaviour is largely due to
the parallel execution model adopted by both kOps and Ansible, which allows the

47

CHAPTER 6. WORK EVALUATION

Cluster Creation Time Comparison

—=- Average: 726s 54:39

3000

2500

N
=3
S
=3

Time (Seconds)
I
8

1000 4

500 1

<
& S S &
{b\“

Cloud Providers

Figure 6.1: Cluster creation time comparison based on 2023 data - source \|

Node Size Performance Impact

600
90% Confidence Interval
== Trend (slope: +9.0s/node)

500 A
-
8 4001
5 ;

=====0)

g R O
2
-~
Q
£ 300
E
c
]
-
©
E 2004
o

100 -

0 T T T T T T T T
3 4 5 6 7 8 9 10

Node Size

Figure 6.2: Cluster creation time comparison based on dimension

provisioning tasks to run concurrently across multiple nodes. Consequently, the to-
tal execution time is primarily influenced by hardware performance and available
network bandwidth, rather than the cluster size itself. The only component that
operates in a single-threaded manner is the Elemento API server, which accounts
for the slight increase in provisioning time observed when adding individual nodes.

48

CHAPTER 6. WORK EVALUATION

6.1.2 Complexity compared to other provisioning methods

In any case, creating a cluster in the cloud requires first setting up an account with
the chosen cloud provider. Since the user experience and perceived complexity of
this process can vary significantly and are often subjective, this factor will not be
considered in the evaluation.

There are several approaches to provisioning a Kubernetes cluster across different
cloud providers. The most common methods include using the provider’s dashboard,
public APIs, Terraform, or external tools such as kOps (which itself operates through
public APIs). While all these approaches provide a degree of automation, each
requires a learning curve to be used effectively.

Among these, the most challenging is undoubtedly the direct use of public APIs,
due to their inherent complexity and the often limited clarity of the documentation.
Terraform offers a more structured approach but introduces its own domain-specific
syntax that must be learned. Provider dashboards are generally simpler to use, but
their functionality and user experience vary significantly between providers, making
them highly subjective.

External tools like kOps, by contrast, provide a higher level of abstraction com-
pared to the aforementioned solutions. They typically generate an optimized con-
figuration that adheres to both security standards and industry best practices. This
enables the creation of production-grade clusters that include all essential compo-
nents without requiring developers to directly manipulate Kubernetes configuration
files or deployment manifests.

A distinctive feature of the Elemento system is its ability to operate seamlessly
in both cloud and on-premise environments. This dual capability makes it partic-
ularly valuable for organizations that maintain hybrid infrastructures or prefer to
keep sensitive workloads on-premise. Compared to the traditional manual startup
process that requires extensive configuration files, Elemento provides a significant
simplification. By leveraging kOps, the complexity for developers is reduced dra-
matically: instead of writing and maintaining hundreds of lines of configuration,
they can achieve the same result with just two commands on the terminal.

This not only accelerates the provisioning process but also minimizes the risk of
human error, ultimately improving reliability and lowering the entry barrier to Ku-
bernetes adoption, which is often driven by ease of use and is particularly important
for smaller teams with limited operational expertise.

49

CHAPTER 6. WORK EVALUATION

6.1.3 Operating cost of the cluster

Cost is a crucial factor to consider when managing Kubernetes clusters, as it can
vary significantly across providers. Some providers apply fixed pricing models, others
charge specifically for the managed control plane, and a few offer the control plane
free of charge. For the purpose of a fair comparison, we consider a cluster composed
of 10 virtual machines, each with 2 vCPUs, 8 GB of RAM, and 100 GB of storage.
These machines represent the worker and control plane nodes of the cluster. The
monthly cost under a 12-month commitment is illustrated in Fig[6.3 The 12-month
commitment is highlighted since many providers offer substantial discounts for long-
term usage.

Monthly price comparison on 12-month commitment

IBMCloud K8s $790

GCloud GKE $789
DigitalOcean DOKS $770

Azure AKS

Linode LKS

Cloud Providers

Elemento K8s $547
Scaleway K8s $530

AWS EKS $502

OVHCloud K8s

0 100 200 300 400 500 600 700 800
Price ($USD)

Figure 6.3: K8s clusters pricing comparison based on 2023 data - source \\

The Elemento option price is calculated based on a managed cloud configura-
tion. A significant portion of the cost is attributable to the “managed” component,
which reflects the inclusion of monthly man-hours required for system maintenance,
upgrades, and client support. This service element ensures that the infrastructure
remains up to date and operational, while also reducing the operational burden on
the client.

The Elemento pricing model can be further optimized through economies of
scale. By aggregating multiple client orders, the system can take advantage of bulk
discounts offered by cloud providers, which are typically unavailable to individual
clients.

For an on-premise solution, the cost structure would differ, as it involves a one-
time payment. In this case, the estimated price would be approximately €5,543 for
a Dell PowerEdge R6615 server that matches the required specifications.

50

CHAPTER 6. WORK EVALUATION

6.2 How reliable is it?

Reliability is one of the most important aspects to consider when working with
infrastructure. Ensuring compatibility in the cloud ecosystem is often challenging
due to the variety of standards, distributions, and proprietary implementation logics.

To address operating system distribution issues, I chose a default image for the
scope of this thesis: Ubuntu 22.04 LTS. The translation of implementation logic
was carried out to make the kOps system compatible with the Elemento framework,
although some aspects, such as SSH key management, are still mocked, since they are
not yet supported by Elemento. Regarding Kubernetes, I tested version 1.32.4, one
of the most recent releases available at the time of writing. Due to time constraints,
the system has not undergone extensive testing across different VM flavors and
specification combinations. This limitation is acknowledged and highlighted as part
of the future development work required to evolve the solution into a production-
ready system.

o1

Chapter 7

Conclusions

7.1 Outcome of the thesis

This thesis presents a proof of concept that serves as a solid foundation for the devel-
opment of a future product. It demonstrates both the potential and the challenges
involved in creating and managing a fully functional Kubernetes cluster. The com-
pany intends to further extend and refine the kOps codebase, integrating it into its
service offerings. In addition, several promising future improvements and features
have been identified, which could enhance the system and contribute unique value to
the Elemento implementation. This work highlights a concrete path toward simpli-
fying Kubernetes adoption and enabling more accessible hybrid cloud management
for a broader range of organizations.

The source code developed for this thesis is publicly available in the following GitHub
repositories:

Elemento kOps fork:

https://github.com/Elemento-Modular-Cloud/kops

Elemento Go plug-in library:
https://github.com/Elemento-Modular-Cloud/tesi-paolobeci

7.2 Future improvements

7.2.1 Extend to multi-AtomOS server scenario

As of now, the system has been created and tested on a single AtomOS server, both
in cloud and on-premise environments. A valuable future expansion would be the
implementation of a multi-server architecture, which would enhance redundancy and
increase resilience against service disruptions in a specific region or provider. Such
an extension could allow the system to provision and manage multiple control planes,
with each AtomOS node hosting its own control plane. These control planes would
then be interconnected through encrypted VPN tunnels, ensuring both security and
reliability of inter-node communication. The main challenge in this scenario would
likely be the latency and stability of the inter-server connections, since Kubernetes
is highly sensitive to network performance.

52

https://github.com/Elemento-Modular-Cloud/kops
https://github.com/Elemento-Modular-Cloud/tesi-paolobeci

CHAPTER 7. CONCLUSIONS

7.2.2 Auto-scaling

Another possible future improvement is the implementation of virtual machine auto-
scaling based on workload. By establishing a direct integration between the Ku-
bernetes APIs and the AtomOS APIs, it would be possible to allow Kubernetes
controllers to dynamically manage the underlying infrastructure. In this way, the
cluster could automatically scale out by provisioning additional VMs when work-
loads increase, and scale in by releasing resources during low demand periods. Such
functionality would not only improve resource utilization and cost efficiency, but
also bring the Elemento system closer to the level of automation offered by large-
scale cloud providers. It would enable organizations to react more effectively to
fluctuating workloads while maintaining high availability and performance.

7.2.3 Observability

To further simplify system administration, the integration of an observability tool
should be considered as part of the Elemento system. A common choice would be a
Grafana dashboard, which could provide real-time telemetry on VM resource usage,
network activity, and overall cluster health. Such a dashboard would not only give
administrators greater visibility into the system but could also work in conjunction
with the auto-scaling mechanism. The same measurement points used to trigger
scaling events could also serve as monitoring indicators, thereby reducing duplica-
tion of effort and ensuring consistency between monitoring and scaling logic. This
integration would allow sysadmins to both oversee system performance and trust
that the infrastructure can automatically adapt to workload changes, improving
operational efficiency and reducing the risk of undetected bottlenecks.

93

Bibliography

1]

2
3]
)
5]
6]
7
8]
9]

[20]

11)

12]

13)

[14]

Fernando Almeida, Oliveira José, and Cruz José. Open Standards And Open
Source: Enabling Interoperability. 2011. URL: https://www.researchgate.

net/publication/49612109_Open_Standards_And_Open_Source_Enabling_
Interoperability (visited on 09/18/2025).

Kubernetes authors. Docs: Installing kubeadm. 2025. URL: https://kubernetes.
io/docs/reference/setup-tools/kubeadm/ (visited on 07/30/2025).

AWS. What is debugging? 2025. URL: https://aws . amazon . com/ what -
is/debugging/| (visited on 09/06/2025).

Kelsey Hightower Bredan Burns Joe Beda. Kubernetes up & running: Dive
into the Future of Infrastructure. Oreilly, 2019, pp. 1-100.

CNCEF. Governance overview. 2025. URL: https://contribute . cncf.io/
maintainers/governance/overview/ (visited on 09/18/2025).

Community. Kubernetes Documentation. 2024. URL: https://kubernetes.
io/docs/home/ (visited on 06/25/2025).

Delve community. GitHub repository. 2025. URL: https://github.com/go-
delve/delve (visited on 09/06,/2025).

Company. Elemento. 2025. URL: https://www.elemento.cloud/en (visited
on 06/11/2025).

Company. Elemento AtomOS. 2025. URL: https://www.elemento.cloud/
en/technology/atomos| (visited on 06/11,/2025).

Company. Elemento Cloud Netowrk. 2025. URL: https://www . elemento .
cloud/en/technology/cloud-network (visited on 06/11/2025).

Docker Company. What is docker? 2025. URL: https://www.docker.com/
resources/what-container/| (visited on 06/25/2025).

Apache Software Foundation. Apache License Version 2.0. 2025. URL: https:
//www .apache.org/licenses/LICENSE-2.0 (visited on 09/18/2025).

The Linux Foundation. CNCF landscape. 2025. URL: https://landscape.
cncf . io (visited on 06/28,/2025).

Elliot Graebert. Comparing the Top FEight Managed Kubernetes Providers.
2023. URL: https : //medium . com/ Q@elliotgraebert / comparing - the -
top - eight - managed - kubernetes - providers - 2ae39662391b (visited on
09/22/2025).

o4

https://www.researchgate.net/publication/49612109_Open_Standards_And_Open_Source_Enabling_Interoperability
https://www.researchgate.net/publication/49612109_Open_Standards_And_Open_Source_Enabling_Interoperability
https://www.researchgate.net/publication/49612109_Open_Standards_And_Open_Source_Enabling_Interoperability
https://kubernetes.io/docs/reference/setup-tools/kubeadm/
https://kubernetes.io/docs/reference/setup-tools/kubeadm/
https://aws.amazon.com/what-is/debugging/
https://aws.amazon.com/what-is/debugging/
https://contribute.cncf.io/maintainers/governance/overview/
https://contribute.cncf.io/maintainers/governance/overview/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://github.com/go-delve/delve
https://github.com/go-delve/delve
https://www.elemento.cloud/en
https://www.elemento.cloud/en/technology/atomos
https://www.elemento.cloud/en/technology/atomos
https://www.elemento.cloud/en/technology/cloud-network
https://www.elemento.cloud/en/technology/cloud-network
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://landscape.cncf.io
https://landscape.cncf.io
https://medium.com/@elliotgraebert/comparing-the-top-eight-managed-kubernetes-providers-2ae39662391b
https://medium.com/@elliotgraebert/comparing-the-top-eight-managed-kubernetes-providers-2ae39662391b

BIBLIOGRAPHY

[15]

[16]

[17]
[18]
[19]
[20]

21

22]

23

[24]

[25]

Red Hat. What is an SDK? 2020. URL: https://www . redhat . com/en/
topics/cloud-native-apps/what-1is-SDK (visited on 06,/28/2025).

John Arundel Justin Domingus. Cloud Native DevOps with Kubernetes: Build-
ing, Deploying and Scaling Modern Applications in the Cloud. Oreilly, 2022,
pp. 1-100.

Alhosban A.; Pesingu S.; Kalyanam K. “CVL: A Cloud Vendor Lock-In Pre-
diction Framework”. In: Mathematics 12.387 (2024), pp. 1-10.

kOps. Docs: Commands and arguments. 2025. URL: https://kops . sigs.
k8s.io/getting_started/commands/ (visited on 07/31/2025).

kOps. Docs: How it works. 2025. URL: https : //kops . sigs . k8s . io/
contributing/how_it_works/ (visited on 06/28/2025).

Kubespray. Repository: How it works. 2025. URL: https://github . com/
kubernetes-sigs/kubespray (visited on 07/30/2025).

Mateo Mojica. Navigating large codebases. Tips and Tricks. 2022. URL: https:
//mateo-mojica.medium.com/navigating-large-codebases-tips-and-
tricks-153901231093 (visited on 09/06/2025).

Alexander Potasnick. AKS vs FKS vs GKE: Managed Kubernetes services
compared. 2023. URL: https://www.pluralsight . com/resources/blog/
cloud/aks-vs-eks-vs-gke-managed-kubernetes-services-compared#:
~:text=GKE),20has%20the%20most%20available, 31| (visited on 07/30/2025).

Pulumi. Docs: Terraform vs pulumi? 2025. URL: https : //www . pulumi .
com/docs/iac/concepts/vs/terraform/#:~ :text=Terraform (visited on

07/30/2025).

Rancher. Docs: What is Rancher? 2025. URL: https://ranchermanager .
docs.rancher.com (visited on 07/30/2025).

Kubernetes SIGs. Docs: What is Kubernetes Cluster API. 2025. URL: https:
//cluster-api.sigs.k8s.io/#: 7 :text=Cluster’20API7%20is/20a%

20Kubernetes, and’20operating/20multiple’20Kubernetes’20clusters
(visited on 07/30/2025).

%)

https://www.redhat.com/en/topics/cloud-native-apps/what-is-SDK
https://www.redhat.com/en/topics/cloud-native-apps/what-is-SDK
https://kops.sigs.k8s.io/getting_started/commands/
https://kops.sigs.k8s.io/getting_started/commands/
https://kops.sigs.k8s.io/contributing/how_it_works/
https://kops.sigs.k8s.io/contributing/how_it_works/
https://github.com/kubernetes-sigs/kubespray
https://github.com/kubernetes-sigs/kubespray
https://mateo-mojica.medium.com/navigating-large-codebases-tips-and-tricks-153901231093
https://mateo-mojica.medium.com/navigating-large-codebases-tips-and-tricks-153901231093
https://mateo-mojica.medium.com/navigating-large-codebases-tips-and-tricks-153901231093
https://www.pluralsight.com/resources/blog/cloud/aks-vs-eks-vs-gke-managed-kubernetes-services-compared#:~:text=GKE%20has%20the%20most%20available,31
https://www.pluralsight.com/resources/blog/cloud/aks-vs-eks-vs-gke-managed-kubernetes-services-compared#:~:text=GKE%20has%20the%20most%20available,31
https://www.pluralsight.com/resources/blog/cloud/aks-vs-eks-vs-gke-managed-kubernetes-services-compared#:~:text=GKE%20has%20the%20most%20available,31
https://www.pulumi.com/docs/iac/concepts/vs/terraform/#:~:text=Terraform
https://www.pulumi.com/docs/iac/concepts/vs/terraform/#:~:text=Terraform
https://ranchermanager.docs.rancher.com
https://ranchermanager.docs.rancher.com
https://cluster-api.sigs.k8s.io/#:~:text=Cluster%20API%20is%20a%20Kubernetes,and%20operating%20multiple%20Kubernetes%20clusters
https://cluster-api.sigs.k8s.io/#:~:text=Cluster%20API%20is%20a%20Kubernetes,and%20operating%20multiple%20Kubernetes%20clusters
https://cluster-api.sigs.k8s.io/#:~:text=Cluster%20API%20is%20a%20Kubernetes,and%20operating%20multiple%20Kubernetes%20clusters

	Introduction and goal
	What is Elemento?
	Cloud freedom
	Vendor lock-in scenario
	Vendor lock-in types

	Simplifying Kubernetes Adoption
	The CNCF Landscape

	The importance of open source
	Mechanics of Open Source development
	Why Open Source is Crucial for Software Development

	Background
	Containers as a deployment standard
	Kubernetes: History and Technical Functionality
	Core Components of Kubernetes
	The Role of SDKs in Application Development

	State of the art
	Kubernetes cluster provisioning tools and methods
	Self-Managed Installers
	Infrastructure-as-Code Tools
	Managed Cloud Kubernetes Services

	Architecture and Core Functions of kOps
	How kOps works
	How to use it

	Methodology
	Mastering Large Project Architecture: Insights from kOps
	The importance of the debugger and error codes
	The approach adopted in this specific case

	Systems integration
	Handling of asynchronous operations

	How the Elemento support on kOps could be very useful

	Work development
	The integration workflow for addingCloud Providers in kOps
	How I iterated the testing and development
	Interesting workflow management of async actions by Hetzner Cloud
	Creating Cluster Manifests and Configurations
	Installation and startup of the cluster

	Work evaluation
	Testing the Kubernetes provisioningthrough kOps
	Provisioning speed comparison
	Complexity compared to other provisioning methods
	Operating cost of the cluster

	How reliable is it?

	Conclusions
	Outcome of the thesis
	Future improvements
	Extend to multi-AtomOS server scenario
	Auto-scaling
	Observability

	Bibliography

