
Politecnico di Torino

A.a. 2024/2025
Graduation Session September 2025

Accelerating the reliability
assessment of hardware accelerators
through emulation using hyperscale

systems
Master of Science Thesis

Professors:
Matteo Sonza Reorda
Juan David Guerrero Balaguera

Candidate:
Berkay Demir

Abstract

Faults within the hardware accelerators compromise the reliability of the entire
system. In the case of a system failure, the more complex the system becomes, the
more difficult it becomes to diagnose the origin of the faults. The location of the
fault also becomes a critical issue. A fault located near or on the critical path results
in a much higher divergence from the correct result and optimal performance. To
analyze hardware accelerators for specialized needs, they are tested using different
fault models to measure the effect on the performance of the system during the
manufacturing stage.

This thesis provides a comprehensive analysis on the emulation of hardware
accelerators with fault injection capabilities on an FPGA fabric. In order to increase
time efficiency, the control of the fault injection campaign is done through the
design of a dedicated hardware controller. The integration for fault injection is
developed for fault characterization within reasonable time frames, since software
control of the module spends critical execution time.

The research methodology follows a systematic approach, beginning with analysis
and background research on the saboteur insertion framework within the hardware
accelerators to develop fault injection capabilities. The framework of saboteur
circuits is meticulously implemented in an interconnected chain architecture. This
saboteur structure includes multiple fault models such as stuck-at-1, stuck-at-0
and transient faults. The configuration is made through a shift register scan chain,
pushing an array of values through them inside the saboteur circuits for mode
selection and bit activation.

The second contribution is the development of a fault injection controller circuit
that decreases the fault emulation time. The connections for the control of the
circuit are designed according to the specifics of the Wishbone B4 bus interface. The
Verilog controller is developed to manage the modification and configuration of the
shift registers and the activation of entire scan chains on different hardware cores,
utilizing the same fault configuration of the scan chain shift registers. Through
its finite-state machine, the controller handles status reporting through its bus
interface, fault injection through its serial data output, and immediate and delayed
fault activation for the configuration of the entire scan chain. The controller utilizes
memory-mapped registers in order to program and modify different chain lengths
for different hardware, making its use much more viable for hardware with the
same scan chain configuration, with less memory use.

The third contribution is the integration of a hardware accelerator with an
inbuilt scan chain to the saboteur control circuit and emulation on the HyperFPGA
platform. The HyperFPGA system features hardware resources that are necessary

for the emulation of the system. The connection between the system and the
hardware is made possible through ComBlock communication interface, an IP core
that connects the gate array’s server programming to the stereo-core hardware. The
ComBlock provides multiple communication interfaces that include register-based,
a dual port RAM and asynchronous First In, First Outs (FIFOs) for streaming
data transfers.

The last contribution is to emulate 4 other hardware accelerators for evaluation
of the results to be used as a benchmark. The hardware accelerators to be used
in the test are a Tensor Core Unit, a Stereo Core accelerator based on census
transform, a CORDIC Special Function Unit core and a Special Function Unit
that calculates trigonometric functions. A brief overview of the benchmarks and
results of these is analyzed, while giving specifications on which parts of the chain
the faults are implemented, the difference between them and effects of different
fault models on the results are evaluated. The results show a significant boost in
speed compared to traditional fault injection and highlights the efficiency of the
controller.

2

Table of Contents

List of Tables 5

List of Figures 7

1 Introduction 8
1.1 Goal . 9
1.2 Structure Of The Thesis . 9

2 Background 11
2.1 Introduction . 11

2.1.1 Hardware Faults in Digital Systems 11
2.2 Fault Emulation Using Saboteur Infrastructures 14

2.2.1 Basic Saboteur and Scan Chain 14
2.2.2 FPGA-Based Emulation Platform and Communication In-

frastructure . 16
2.2.3 Integration with Hardware Accelerators 20

3 Design and Implementation of the Saboteur Controller 22
3.1 Introduction . 22
3.2 The Wishbone BUS Protocol and Finite State Machine 23

3.2.1 Fundamental Architecture and Design Philosophy 23
3.2.2 Controller Architecture and Interface Specification 24
3.2.3 Finite State Machine Design 27
3.2.4 Operational Modes and Timing Characteristics 28
3.2.5 Completion Signaling and Acknowledgment 30
3.2.6 Fault Activation Timing Control 31
3.2.7 Reset and Recovery Mechanisms 33

3.3 Simulation-Based Verification . 34

4 Implementation and Emulation in HyperFPGA System 36
4.1 Introduction . 36

3

4.2 System Architecture Overview . 36
4.2.1 Data Flow and Control Path 36
4.2.2 Software Control Layer Implementation 37

4.3 Validation and Debugging Methodology 42
4.3.1 Functional Verification Approach 42
4.3.2 Resource Utilization Analysis 47
4.3.3 Power Consumption Analysis 48
4.3.4 Timing Analysis . 49
4.3.5 Verification and Accuracy 50
4.3.6 Summary of Findings . 51

5 Results 52
5.1 Introduction . 52
5.2 Tensor Core Unit Implementation 53
5.3 Stereo Vision Core . 58
5.4 Special Functions Unit 1 . 63
5.5 Special Functions Unit 2 . 68

6 Conclusion 74
6.1 Future Work . 75

Bibliography 77

4

List of Tables

3.1 Detailed RTL Compilation and Simulation Performance Metrics. . . 34

4.1 Python configuration of pattern generation. 40
4.2 JSON Structure and Hardware Hierarchy. 41
4.3 Hardware Performance Comparison: Pure Execution (Posit Adder

Accelerator Benchmark) . 43
4.4 Fault Injection Configuration Performance (Posit Adder, 392-bit

Scan Chain) . 44
4.5 FPGA Single Fault Injection: Detailed Time Breakdown (Posit

Adder Benchmark) . 45
4.6 Complete Fault Campaign Performance (Posit Adder, 392 Faults) . 45
4.7 Optimization Potential Analysis (Based on Posit Adder Results) . . 46
4.8 FPGA Resource Utilization Summary. 47
4.9 System Resource Utilization (Posit Adder Benchmark) 47
4.10 Power Consumption Analysis (Posit Adder System) 48
4.11 Scan Chain Module Timing (Posit Adder Modules). 49
4.12 High Fan-out Net Distribution . 50
4.13 Verification Coverage (Posit Adder Benchmark) 50
4.14 Key Findings Summary . 51

5.1 FPGA Resource Utilization for TCU Implementation. 54
5.2 Detailed Module-Level Resource Allocation of TCU Implementation. 54
5.3 On-Chip Power Distribution Analysis of TCU Implementation. . . . 55
5.4 Clock Network Utilization and Timing of TCU Implementation. . . 55
5.5 Fault Injection Performance Comparison for TCU: Bit-Banging vs

Hardware Controller . 56
5.6 Timing Path Characteristics of TCU Implementation. 57
5.7 FPGA Primitive Utilization Summary in TCU Implementation. . . 57
5.8 Design Complexity and Verification Coverage of TCU Implementation. 58
5.9 FPGA Resource Utilization for SVC Implementation. 59
5.10 Detailed Module-Level Resource Allocation of SVC Implementation. 59

5

5.11 On-Chip Power Distribution Analysis of SVC Implementation. . . . 60
5.12 Clock Network Utilization and Timing of SVC Implementation. . . 61
5.13 Fault Injection Performance Comparison for Stereo Vision Core:

Bit-Banging vs Hardware Controller 61
5.14 Critical Timing Path Characteristics of SVC Implementation. . . . 62
5.15 FPGA Primitive Utilization Summary of SVC Implementation. . . 62
5.16 Design Complexity and Verification Coverage of SVC Implementation. 63
5.17 FPGA Resource Utilization for SFU1 Implementation. 64
5.18 Detailed Module-Level Resource Allocation of SFU1 Implementation. 64
5.19 On-Chip Power Distribution Analysis of SFU1 Implementation. . . 65
5.20 Clock Network Utilization and Timing of SFU1 Implementation. . . 65
5.21 Fault Injection Performance Comparison for SFU-Trigonometric:

Bit-Banging vs Hardware Controller 66
5.22 Timing Path Characteristics of SFU1 Implementation. 66
5.23 FPGA Primitive Utilization Summary of SFU1 Implementation. . . 67
5.24 Design Complexity and Verification Coverage of SFU1 Implementation. 68
5.25 FPGA Resource Utilization for SFU2 (CORDIC Core) implementation. 69
5.26 Detailed Module-Level Resource Allocation of SFU2 implementation. 69
5.27 On-Chip Power Distribution Analysis of SFU2 implementation. . . 70
5.28 Clock Network Utilization and Timing of SFU2 implementation. . . 70
5.29 Fault Injection Performance Comparison for SFU-CORDIC: Bit-

Banging vs Hardware Controller . 71
5.30 Timing Path Characteristics (Worst Path) of SFU2 implementation. 72
5.31 FPGA Primitive Utilization Summary of SFU2 implementation. . . 72
5.32 Design Complexity and Verification Coverage of SFU2 implementation. 73

6

List of Figures

2.1 Stuck-at-0 model [1]. 13
2.2 The simulation mechanism used for observing the effects of an SEU

bit-flip [2] . 14
2.3 The HyperFPGA [7]. 17
2.4 Comblock model [9]. 19
2.5 Comblock model [9]. 20
2.6 ComBlock baseline implementation. 21

3.1 Proposed design for FI controller. 22
3.2 Basic write operation. 24
3.3 Basic read operation. 24
3.4 Bitfield Layout of the CONTROL Register (Address 0x00) 25
3.5 Bitfield Layout of the STATUS Register (Address 0x04) 26
3.6 FSM states for status polls after shifting. 26
3.7 Bitfield Layout of the LENGTH Register (Address 0x08) 26
3.8 Bitfield Layout of the DATA Register (Address 0x0C) 27
3.9 FSM design for saboteur controller 28
3.10 Configuration handshaking for data loading. 29
3.11 Activate data shifting. 30
3.12 FSM state transition during partial shift. 31
3.13 Synchronization for fault enable signal. 31
3.14 immediate fault activation. 32
3.15 Delayed fault activation. 32
3.16 Reset operation being sent to controller. 33

4.1 Hardware implementation of the test system 42

5.1 Tensor Core Unit Implementation. 53
5.2 Stereo Vision Core Implementation. 58
5.3 Special Function Unit Implementation. 63
5.4 Special Function Unit Implementation. 68

7

Chapter 1

Introduction

Ever increasing diversity within the modern computing systems took a different
path from central processing units to more specialized hardware accelerators to
meet the demanding performance and energy efficiency requirements of emerging
applications. From autonomous vehicles processing stereo vision data in real-time
to data centers accelerating machine learning workloads, hardware accelerators
have become essential components of computing infrastructure. The complexity of
these systems that stem from ever more advancing needs increased the need to test
the reliability of these specialized circuits.

In order to understand how a system works and how reliable it would be,
engineers have tried to model the defects that can arise within the systems. As
more and more circuits are manufactured and used, the assessment of reliability
became even more necessary. These defects would be named as faults within the
hardware. Reliable operation in the presence of hardware faults has been tested in
manufacturing processes for decades.

The basic way to fault models within a system would be to use software simulators
running VHDL or Verilog hardware in order to evaluate the effects without going
through emulation on programmable field arrays or gate arrays. This procedure
provides basic observability of fault effects on the system reliability; however, the
actual hardware would be more prone to fault defects as simulation works on perfect
environments, not taking into account any component effects and real-life scenarios
such as clock jitters or thermal effects. The second limitation on characterizing
the effects of faults is the simulation speed. In a comprehensive reliability test,
different fault models would be used to test out different fault injection places that
can cover up to a thousand potential injection points, leading to multiple hours of
simulation time. Simulation time that is not feasible in real-life scenarios where
some high-level systems can reach millions.

8

Introduction

1.1 Goal
This thesis establishes a practical, scalable methodology for reliability evaluation
and simulation time of hardware accelerators, contributing practical hardware
tools to advance the field of reliability evaluation. The developed framework
enables faster transition from simulation evaluation to emulation on hyperscale
FPGA systems. The goal is to accelerate the reliability assessment of hardware
accelerators through newly developed hardware in emulation. In order to achieve
this, a controller module has been developed. The dichotomy of slow software, fast
hardware is a specific issue. Rather than the modification and activation being
achieved through the software, this controller serves as a bridge in emulation timing
reduction. This way, achievement of the speedup of the fault injection process
increases dramatically.

1.2 Structure Of The Thesis
This thesis is organized in 6 chapters. The first chapter is the introduction, giving
a fairly well established beginning to the thesis. This chapter also introduces the
motivation, establishing the need for this work, and the general structure of this
thesis.

The second chapter provides the necessary theoretical foundation needed for
understanding the work done in this thesis.Starting with an explanation of faults
and fault models, focusing on stuck-at-1, stuck-at-0, and bit-flip models, it further
dives deep into their theoretical models to showcase how they are affecting a system
in their respective models in general. Furthermore, this chapter explains the fault
injection scan-chain design and the hardware for disrupting the output of basic
nets. The theoretical model of the circuit is explained methodically for further
understanding how fault methodology works in this thesis. Finally, this chapter
dives into the hyperscale fabric we emulated our design in, the HyperFPGA design,
a cloud-based FPGA infrastructure featuring Zynq UltraScale+ devices provided
by Multidisciplinary Laboratory (MLAB) and the ComBlock communication in-
frastructure developed by MLAB/ICTP that provides register-based control for
efficient software-to-FPGA communication.

The third chapter presents the design of the saboteur controller, the critical
hardware module that is specialized in speeding up the fault injection and activation.
The chapter provides the necessary explanations for the development of such a
module, by explaining how the mechanism works with small segments of code
attached to it. Utilizing the Wishbone B4 BUS interface, it implements a slave
interface with a master connection coming from the software. Using continuous
interaction from the software by synchronized fault injection using 32-bit registers,

9

Introduction

data streaming to the fault interface increases in speed because of the fast hardware
clock, rather than slow software interaction. The nine state machine is thoroughly
analyzed, giving the user an in-depth understanding of the algorithm behind the
single cycle precision fault injection and activation. Throughout this chapter,
Verilog-based timing diagrams are provided to give a better understanding to the
reader.

The fourth chapter provides the entire software and hardware configuration,
detailing how the FPGA frame is used in order to emulate the system. The details
of the system and the methodology behind the Python scripts are explained. The
integration of the system on the HyperFPGA platform is given, detailing how
ComBlock and the system clock are utilized to target the accelerators on a posit
adder accelerator. The Jupyter network interface is explained on how to enable
the fault campaign. The results of both the software simulation and hardware
emulation are presented with tables.

The fifth chapter presents the comprehensive evaluation of the results using four
different hardware accelerators as benchmarks to validate the framework’s efficiency.
Building upon the previous chapter, the benchmark accelerators are a Tensor Core
Unit, a Stereo Core accelerator based on census transform, a Special Function Unit
core that calculates trigonometric functions, and a Special Function Unit core that
implements the general CORDIC algorithm. The results are presented in nine
tables, diving from resource allocation, power usage to timing analysis.

The sixth chapter provides the conclusion and future work of this thesis. Starting
with a small summary of the problems and achievements at hand, it concludes the
previous work by summarizing the key results achieved throughout the previous
chapters and explaining the limitations. Finally, ideas for future work are explained,
such as software and hardware optimizations.

10

Chapter 2

Background

2.1 Introduction
In this chapter, background research for the development of the thesis will be
provided, starting with a focus on the theoretical aspects of the faults within
the circuits that will be instrumental in this work. To provide a comprehensive
understanding of the work done in this thesis, a deep dive into the fault mechanism,
the classifications of faults and the differences between them, and modeling methods
will be thoroughly explained. Secondly, to demonstrate how modern design testing
works, the scan chain architecture and the basic building blocks that are used will
be explained. Lastly, to give a background on the emulation fabric, the hardware
ComBlock for the communication between software and the hardware HyperFPGA
for emulation will be explained in an explicit way.

2.1.1 Hardware Faults in Digital Systems
Fundamental Concepts and Classification

The ever increasing complexity within the systems, due to the shrinking transistor
sizes, resulted in the need for much heavier testing to ensure reliable operation
under variable situations. The concept of fault revolves around the idea of defects
in the hardware operating cycle. A fault is a defect within the system hardware
that causes unwanted responses and deviations from the expected result of a digital
system. Faults are classified by their duration. Three categories that this work
takes into account can be classified: permanent, intermittent, and transient faults.
Permanent faults are, as indicated, lasting throughout the operational lifetime of
the device and require physical replacement of the part or parts. They usually
stem from hardware defects during manufacturing processes such as open and
short circuits in the vias. Another common occurrence in which the fault occurs is

11

Background

during electromigration, where conductor atoms break apart and migrate during
high-current-density scenarios.

However, an intermittent fault is classified as a malfunction that occurs at
irregular intervals in a device that can function regularly. Harder to diagnose
because during the testing stages, the operation can commence and end fault-free.
The most prominent reason for these types of faults is environmental effects such
as the variation of temperature during operation. The transistor voltages within
the system can fluctuate during thermal expansion, leading to operational failures.
Because of this unpredictable nature, specialization and multiple runs for testings
are usually needed for full fault coverage.

A transient fault is a malfunction that is relatively short within the system
operation time. It can be seen in the circuits that utilize smaller architectures with
fluctuating small voltage levels in sensitive nodes, mostly from electromagnetic
interference. Mostly problematic for true data transmissions, these types of fault
can disrupt the normal operation of digital hardware.

Fault Modeling and Fault Testing

During the testing phase of many hardware, in order to simulate the defects that
will inevitably arise from faults, engineers have come up with a terminology in order
to model the effect to be seen. Fault modeling is the development of intentional
system failure in order to simulate actual physical defects within a system as a
logical model. With the exponential growth of hardware in the 21st century, this
resulted in development of different abstraction levels, mainly gate-level modeling
and transistor-level modeling. The reason for the development of these levels stems
from the tradeoff between high accuracy and computational difficulty. Transistor-
level fault modeling has been the go-to for simulating faults within individual
transistors. Stuck in a transistor model means a permanent conducting transistor
or an open circuit transistor independent of the gate and drain voltage. The benefit
of having a comprehensive fault analysis gives many statistics on effects of faults,
however, this detailed analysis also comes at a computational expense. In order to
find a medium, gate-level fault models are developed to provide a higher level of
abstraction for analyzing faults on digital circuits. Rather than per transistor, the
work details the logic gates and their changing responses. The most common among
them is the stuck-at-fault model. During this work, this model will be extensively
used to modify the circuit response to compare speed between simulation and
emulation. For further analysis, the stuck-at concept will be extended to transition
fault models in order to capture timing-related defects by modeling faults that
prevent or delay signal transitions. Path-delay fault models consider the cumulative
effect of small delays along critical paths that can cause timing violations without
affecting the logical functionality.

12

Background

Stuck-At Fault Model

The stuck-at-fault model is designed to fix a node to be permanently grounded
(stuck-at-0) or supplied (stuck-at-1). It is the most common fault model to be
used for it’s simplicity to design and comprehensive and detailed simulation for
behavioral results. In gate-level modeling, the fault is simulated to occur on the
output of gates or in signal lines. In order to maintain simplicity within fault
analysis, the assumption to be made is that only a single fault is active within the
circuit. In a circuit with n signal lines, 2n stuck-at faults can exist. The difference
between the fault-free model result and the injected fault result is then compared,
giving a comparison metric that calculates the deviation from the result between
all 2n faults within the system. In this way, the critical nodes that have a higher
deviation rate can be observable. Thanks to modeling, in case of real-time fault,
faulty gates, signal lines, transistors, and vias can be identified.

Figure 2.1: Stuck-at-0 model [1].

The current stuck-at-0 model shown in the Figure 2.1 takes the test sequence
(1,0,1,1) to its ports. This results in a fault excitement on the signal. The AND
gate 1 output expected to be 1, resulted in 0. The expected result on the AND
gate 2 is 1, while the propagated result of the stuck-at-0 fault is observed on the
output.

Bit-Flip Fault Model

The bit-flip fault model is a type of transient fault that inverts the bit value the
signal is carrying through the gate. It is especially important during operations
due to environmental factors and electromagnetic interference. There are 2 Bit-flip
models, Single Event Transient (SET), where the fault affects the combinatorial
logic, and Single Event Upset (SEU) fault model that affects the flip-flops,

13

Background

latches, and memory structures. Since it affects the memory structures, the result
is persistent until overwritten. During operation, the bit values are complemented
for a specific time, resulting in variable deviations from the intended output. Since
Single Event Transient (SET) faults are temporary, unlike the stuck-at model,
they can be masked during normal hardware operation before propagating to the
observed output, making them much harder to evaluate. The shorter the duration
of the flipped bit, the harder it is to see the disruption on the result. The clock
cycle duration is imperative in this, since a longer clock cycle and shorter fault
duration can result in deviations not being captured on the output of the flip-flop.
For instance, Figure 2.2 shows the mechanism for a Single Event Upset (SEU)
bit-flip simulation.

Figure 2.2: The simulation mechanism used for observing the effects of an SEU
bit-flip [2]

This model is the third configurable fault model that is utilized within this work,
next to stuck-at-0 and stuck-at-1.

2.2 Fault Emulation Using Saboteur Infrastruc-
tures

2.2.1 Basic Saboteur and Scan Chain
In this work, the hardware configuration is different from Design-for-Testability.
Compared to the previous design utilized in manufacturing, this work focuses
on reliability assessment. The architecture revolves around injecting faults for
emulation, through addition of saboteur circuits into the design. In order to
simulate this design, a basic saboteur circuit is utilized. The architecture of this

14

Background

circuit revolves around a simple multiplexer-based architecture that is utilized to
alter the output of nodes.

State-of-the-Art in Saboteur-Based Fault Injection

Multiple approaches have been made to the saboteur-based fault injection, with
various architectures for the design having been proposed. The architecture has
been utilized in the work of Jenn et al. [3], when the modification of the HDL
level has been made possible by the MEFISTO tool. The architecture of this
tool enabled HDL-level manipulation for saboteur injection for simulation. The
architectural design came with the overhead of simulation time increase. FPGA-
based fault emulation has been utilized in the work of Civera et al. [4]. This
gave progress to fault injection from simulation only to hardware emulation using
FPGA on microprocessors. The fault injection achieved a significant speedup
over simulation while maintaining control over fault location. FPGA-based fault
emulation was further developed during the work of Alderighi et al. [5]. The
demonstration of Single Event Upset (SEU) emulation in SRAM-based FPGAs
was made possible with the development of the FLIPPER platform. The results of
this work highlighted the trade-off between fault coverage and area cost, proving
that the strategic placement of saboteurs is of the utmost importance. More recent
work has focused on optimizing fault injection campaigns. The saboteur-based scan
chain infrastructure implemented in this thesis is based on the work of Sensoz [6],
who developed a comprehensive FPGA-based fault injection framework for the
evaluation of the reliability of stereo-vision based accelerators.

The architecture includes a multiplexer-based saboteur unit that selects the
fault model to be injected based on the control bits, a shift register that saves the
saboteur’s mode, and the enable logic that determines whether the faults are to be
activated or to be used as a normal output.

The control logic uses the two most significant bits of the scan chain to alter
the mode in progress. All the fault models, stuck-at-0, stuck-at-1, bit-flip can be
utilized. In this way, hardware gate-level architecture is utilized.

The scan chain integrates shift registers with saboteur circuits to create a
configurable fault injection network. Each saboteur module in the digital hardware
design includes an associated shift register that stores its configuration. The serial
shift register utilized in the scan chain accepts the serial data input and pushes it
forward through parallel outputs defined by their width. These shift registers are
connected in a daisy-chain fashion. In this way, the hardware forms a continuous
scan chain through the circuit, connecting one to another while allowing for the
activation of different saboteur circuits. The operation to activate the scan chain
starts from the enable signal being activated. During this, the controller shifts
exactly the length of the configuration data through the scan-chain, then disables

15

Background

the enable when configuration is done. The saboteur operates as a two-stage
multiplexer circuit. The first stage (controlled by i_ctrl[1:0]) selects the fault
mode ,and the second stage (controlled by i_en) determines whether the fault is
active or bypassed. This scan chain architecture works in two phases. The first
phase is the configuration, where the fault patterns for the activation of the faults
and the fault mode to be configured are shifted through the scan chain (controlled
by i_en). The second phase is the activation phase, where the configured faults
are activated by i_TFen).

2.2.2 FPGA-Based Emulation Platform and Communica-
tion Infrastructure

In this chapter, the explanation of FPGA architecture and emulation of ComBlock.
FPGA platform provides us with the necessary capability to emulate the designed
hardware with a ComBlock providing the efficient communication between software
and hardware execution. The integration between them ensures the transition
from simple software simulation to hardware-accelerated fault injection, to test
the reliability in real-life trials that are necessary for developing comprehensive
reliability evaluation.

HyperFPGA Platform

The HyperFPGA platform is a cloud-based FPGA emulation fabric accessible
via remote server [7].This FPGA platform provides hardware support for testing
newly implemented modules with multiple resources for extended projects. The
platform uses Trenz Electronic System-on-Modules featuring the AMD/Xilinx Zynq
UltraScale+ MPSoC, which integrates a quad-core ARM Cortex-A53 processor
with substantial FPGA resources: over 192,000 logic cells, 728 DSP slices, and 16.9
Mb of Block RAM [7].

The platform can be accessed and modified through the Jupyter Notebook that
provides accessible bitstream manipulation. The entire hardware infrastructure
includes these features, as described in the document of [8]:

• Xilinx ZYNQ UltraScale+ MPSoC, U1

• 2-Input AND Gate, U39

• Red LED (DONE), D1

• 256Mx16 DDR4-2400 SDRAM, U12

• 256Mx16 DDR4-2400 SDRAM, U9

• 256Mx16 DDR4-2400 SDRAM, U2

16

Background

Figure 2.3: The HyperFPGA [7].

• 256Mx16 DDR4-2400 SDRAM, U3

• 12A PowerSoC DC-DC converter, U4

• 1.5A LDO DC-DC converter, U10

• 1.5A LDO DC-DC converter, U8

• Voltage monitor circuit, U41

• 0.35A LDO DC-DC converter, U26

17

Background

• 0.35A LDO DC-DC converter, U27

• Ultra fine 0.50 mm pitch, Razor Beam™ LP Slim Terminal Strip with 160
contacts, J3

• Ultra fine 0.50 mm pitch, Razor Beam™ LP Slim Terminal Strip with 160
contacts, J1

• Ultra fine 0.50 mm pitch, Razor Beam™ LP Slim Terminal Strip with 160
contacts, J4

• Ultra fine 0.50 mm pitch, Razor Beam™ LP Slim Terminal Strip with 160
contacts, J2

• 4-channel programmable PLL clock generator, U5

• Low-power programmable oscillator @ 25.000000 MHz, U5

• Low-power programmable oscillator @ 33.333333 MHz (PS_CLK), U32

• 256 Mbit serial NOR Flash memory, U7

• 256 Mbit serial NOR Flash memory, U17

ComBlock Communication Infrastructure

The ComBlock infrastructure is the basis for communication between the software
and the hardware connection. ComBlock is an open-source IP core that is jointly
developed by the MLAB of Italy and the INTI of Argentina, released under the
BSD 3-clause license [9]. It is specifically implemented to simplify the operation of
MLAB projects specialized in FPGA to/from PC data transmissions.

18

Background

Figure 2.4: Comblock model [9].

As shown in Figure 2.4, ComBlock provides configuration for three interface
types [9]:

• Input-output registers: Up to 16 registers with configurable widths of 1 to
32 bits for control signals and status reporting.

• Dual-port RAM: Memory interface with configurable parameters such as
memory depth, address space, and data width.

• Asynchronous FIFOs: bidirectional FIFOs with empty, full, underflow,
and overflow flags. Used for data transfer between the processor and the
programmable logic.

The Vivado implementation employs the AXI Full protocol for RAM and the
AXI Lite protocol for FIFO and register access [9].

The complete implementation within the Vivado is shown in Figure 2.5.

19

Background

Figure 2.5: Comblock model [9].

2.2.3 Integration with Hardware Accelerators

In Vivado, the current implementation of Comblock and HyperFPGA demonstrates
an adder and multiplier circuit connection using registers for input and output for
testing purposes.

20

Background

Figure 2.6: ComBlock baseline implementation.

This implementation in Figure 2.6 creates baseline hardware to modify to suit
the needs of the hardware accelerator fault injection campaign. The ComBlock
instances can be utilized to integrate any hardware accelerator needed using the
register and FIFO input/outputs. The general idea is to use only a single instance
of ComBlock and its input registers or the input FIFOs of the instance to enable
the data transfer from the output of the hardware accelerator to be sent to the
ARM Cortex-A53 processor for utilization. The data to be used can be hardware
result operands or status flags read from polling, and integrated logic analyzer
outputs for debugging. The register outputs or the FIFO output can be utilized
to deliver operands, configuration parameters, or control signals from the ARM
Cortex-A53 processor to the hardware accelerator.

21

Chapter 3

Design and Implementation
of the Saboteur Controller

3.1 Introduction
The transition from simulation to emulation can be made in two primary ways. One
is to directly control the injector through open connections of the scan chain, which
the programming aspect of the entire fault injection would require the software
programming in order to complete. The second is the development of a hardware
controller that is programmed to ensure a quick transmission in clock speeds.

Figure 3.1: Proposed design for FI controller.

In the previous chapter, the theoretical foundation of faults and fault modeling,
the architectural framework of HyperFPGA, and scan-chain design are explained. In

22

Design and Implementation of the Saboteur Controller

this chapter, an extensive analysis of the saboteur controller, a dedicated hardware
module that serves as the critical interface between software-orchestrated fault
injection campaigns and hardware-embedded saboteur infrastructure for emulation
on FPGA is provided. The breakdown of this main component begins with its
interface connection.

The reason for the development of the fault controller was the need for gen-
eralized hardware for continuous and serial application of faults without much
modification to the software. Easily interchangeable between different accelerators,
this module addresses the problems of changeable scan-chain sizes on different
vision-oriented hardware with potential injection points on the scan chain up to
thousands, accurate timing control with established Wishbone B4 BUS connections,
and minimal interference between target hardware connections during synthesis
and implementation. Through a minimalist but comprehensive finite-state machine,
the controller achieves fault sequence injection and activation much faster, in
microseconds, compared to emulating the scan chain through Comblock alone. This
chapter explains the analysis of the module, beginning with its internal architecture,
operation, and simulation timing analysis.

3.2 The Wishbone BUS Protocol and Finite State
Machine

3.2.1 Fundamental Architecture and Design Philosophy

The Wishbone protocol is designed for flexible use of a communication interface
within System-on-Chip interconnections [10]. The protocol uses a master-slave
architecture. Data transmission relies on a handshaking mechanism between the
master and the slave. The master asserts the cycle CYC and strobe STB signals
of its ports, indicating the request for data transmission. The slave responds to
this transmission request by asserting the acknowledge ACK signal. In this way,
the reliability and precision of the system increase while the development time is
reduced [10].

23

Design and Implementation of the Saboteur Controller

Figure 3.2: Basic write operation.

Figure 3.3: Basic read operation.

3.2.2 Controller Architecture and Interface Specification
Module Interface Definition

The controller module introduces two specific interfaces. First, the Wishbone B4
slave interface for communication between the master Comblock and the second
is the fault injection control for saboteurs inside the scan chain. Thanks to both
the BUS interface and the fault interface, it achieves consistent functionality with
different types of hardware with variable chain lengths.

While the Wishbone interface strictly follows the rules for B4 implementation
for robust communication by waiting for valid cycle and valid strobe inputs from
the master and then sending acknowledge output back to the master, the fault

24

Design and Implementation of the Saboteur Controller

injection control interface generates all signals necessary for saboteur configuration
and activation. The direct connection of FI_CLK to the system clock CLK_I
eliminates clock domain crossing complexities while ensuring synchronous operation
throughout the fault injection infrastructure. The FI_TFen provides a single-cycle
pulse generation for accurate fault emulation, a critical requirement for modeling
faults. The 32-bit data width architecture achieves alignment with standard
embedded system architecture while the 8-bit address space allows memory space
up to 256 register locations, far more than the controller’s requirement.

Internal Register Map

The controller uses four memory-mapped registers for providing total control over
fault injection.

1 localparam REG_CONTROL_ADDR = 8’h00; // Control Register
2 localparam REG_STATUS_ADDR = 8’h04; // Status Register
3 localparam REG_LENGTH_ADDR = 8’h08; // Shift Length Register
4 localparam REG_DATA_IN_ADDR = 8’h0C; // Data Input Register

Listing 3.1: Controller Register Address Map

Figure 3.4: Bitfield Layout of the CONTROL Register (Address 0x00)

0 1 2-3 4-31

ST
A

RT
R

E
SE

T

M
O

D

TIMEOUT_DELAY (28 bits)

START_SHIFT

RESET

Fault Mode

Programmable Delay

W

The control register at address 0x00 serves as the primary command register. The
register is divided into 4 parts, with positions at: Bit 0 is used for START_SHIFT, used
for initiating the configuration sequence and sets the internal flag of start_shiftreq
to 1 that FSM clears during the configuration sequence.Bit 1 is used for resetting
the scan chain. Provides the reset pulse for triggering the reset sequence. Bits
2 to 3 are used for defining the fault mode. Triggering the fault timeout request
depending on the value to be written. Bits 4 to 31 are used for programmable
timing delay for fault injection. Specifically designed for higher clock cycle values
for a much later fault injection, specifically on transient faults for providing the
single clock cycle faults. Ranges from 0 to 268,435,455 clock cycles.

25

Design and Implementation of the Saboteur Controller

Figure 3.5: Bitfield Layout of the STATUS Register (Address 0x04)

0 1 2 3-31

B
U

SY
D

O
N

E
R

D
Y Reserved (reads as 0)

SHIFT_BUSY

SHIFT_DONE

READY_FOR_DATA
Can accept
next word

R

The status register at address 0x04 provides feedback about the controller state
and operations in progress. Starting from bit 0, it includes the STAT_SHIFT_BUSY
bit, where it shows the shift operation in progress or the controller being in idle
state waiting for status reads. At bit 1, the STAT_SHIFT_DONE bit indicates whether
the configuration of the scan chain is complete. It is a sticky bit, remaining set
until cleared by a new START_SHIFT bit. At bit 2, STAT_READY_FOR_DATA bit is
located. If set to 1, the controller is ready to accept the data word, and if not, it
shows that it is currently shifting the loaded word.

Figure 3.6: FSM states for status polls after shifting.

Figure 3.7: Bitfield Layout of the LENGTH Register (Address 0x08)

0 31

CHAIN_LENGTH [31:0]

Scan chain length
Supports up to
4.29 billion bits

R/W

26

Design and Implementation of the Saboteur Controller

The length register named CHAIN_LENGTH at address 0x08 is a 32-bit register
that stores the chain length of the shift register. This register provides support for
chain lengths up to 4.29 billion bits. For simplification, it is separated from the
status register for software interfaces and updates while requiring an additional
write sequence as overhead.

Figure 3.8: Bitfield Layout of the DATA Register (Address 0x0C)

0 31

SHIFT_DATA [31:0]

Configuration data
Serialized LSB first

Written when RDY=1

W

Data in Register named SHIFT_DATA at address 0x0C provides the streaming
interface for configuration data. The register accepts a 32-bit data word that the
controller serializes for transmission to the saboteur chain starting from the least
significant bit. It is written after status_ready_for_data flag is set to 1.

3.2.3 Finite State Machine Design
The controller’s FSM jumps through nine states that manage all the aspects from
communication from master to the fault injection. The transactions between the
states are configured through external commands such as Wishbone transactions’
command bits and internal commands such as flags and expiring counters. As is
common with finely developed state machines, sequential and combinatorial blocks
are separated. State transitions occur at clock edges and resets on asynchronous
RST_I and manage flags and registers, while the next state logic is combinatorial
and updates the outputs based on the inputs. This helps avoid unnecessary latches
within the logic.

The FSM states and their primary functions are as follows:
FSM_IDLE, the beginning state is the main state that is monitoring for commands,

monitoring the flags and proceeding to the next state depending on the param-
eters. FSM_WB_ACK, the first state that acknowledges the Wishbone transactions.
FSM_LOAD_SHIFT is the second state, responsible for initializing the shift operation.
FSM_WAIT_DATA third state, main purpose is to wait for configuration data from soft-
ware. FSM_SHIFTING is the fourth state. Responsible for the actual performance of
active bit shifting. FSM_SHIFT_DONE_PULSE is the fifth state. It signals the configu-
ration completion. FSM_RESET_PULSE is the sixth state. Responsible for generating

27

Design and Implementation of the Saboteur Controller

Figure 3.9: FSM design for saboteur controller

the scan chain reset for preparation of next testing. FSM_TFEN_TIMEOUT_WAIT is
the seventh state. Responsible for the activation for fault enable signal depending
on the timeout value configuration. FSM_WAIT_DONE_ACK is the eighth and final
state. It ensures the final software acknowledgment.

3.2.4 Operational Modes and Timing Characteristics
Complete Fault Injection Flow

The fault injection process starts in software, determining the fault to be injected,
how long the scan chain is, when and for how long it will be active in the hardware

28

Design and Implementation of the Saboteur Controller

accelerator. The information written from the software side will be sent to the
saboteur controller through a sequence of handshake operations that will configure
the controller. This controller will now serve as the bridge between the two fabrics.

Configuration Sequence

The configuration sequence, which includes the coordinated data stream com-
ing from the master and the control of the shift registers in the scan chain, is
the most complex part of this controller. The process initiates when the soft-
ware writes the START_SHIFT bit in the control register. This triggers a cas-
cade of hardware operations beginning with the FSM transitioning from IDLE to
LOAD_SHIFT state. In this state, the shift_counter loads with the total chain
length value from the length register, establishing how many bits must be shifted.
The bit_in_word_counter resets to zero, preparing to index into the first 32-bit
word. The status_ready_for_data flag asserts, signaling to the software that
the controller is prepared to accept configuration data. These initializations are
completed in a single clock cycle, after which the FSM transitions to WAIT_DATA
state.

Figure 3.10: Configuration handshaking for data loading.

The handshake protocol prevents data loss during state changes from a fast
clock to a slow software timing for the next data to be sent. The controller waits for
the next data in WAIT_DATA state, while the software prepares the next data word
to be sent. The dual operation then takes place, waiting for data while maintaining
status requests. The state monitors the data register for data input while the
controller responds to status register reads, allowing the software to notice the
ready flag.

After the next data word is written to the data register, it is captured in
the current_shift_word register, a temporary register written to during the
Wishbone acknowledge. The internal flag is set to trigger the FSM to transition to
the SHIFTING state.

29

Design and Implementation of the Saboteur Controller

The actual shifting occurs in the SHIFTING state. In order to send bit by bit,
an index counter named bit_in_word_counter is sent to the FI_SI output. FI_EN
signal is then asserted for shifting the scan chain by one position and capturing the
FI_SI value. After this, the shift_counter decrements, the bit_in_word counter
is incremented and moved to the next bit.

Figure 3.11: Activate data shifting.

After shifting the last bit of a 32-bit word, the controller decides whether to
finish the shifting or return to WAIT_DATA for a next round of words by checking
the shift_counter. Depending on the remainder of bits, if less than 32, the FSM
returns. The specificity of "less than" is required because the chain length is not
always a multiple of 32 bits. Depending on the remainder, the shift must stop after
the total has been reached. Going through an example such as a 393-bit chain
length. To shift, 13 words are required, with the last word being only 9 bits long
in shift. The controller recognizes this by checking the remaining shift_counter
and ignores the remainder of the bits from 9 to 31. The comparison logic can be
found here:

1 if (shift_counter <= 32 && shift_counter > 0) begin
2 // Final word , potentially partial
3 if (bit_in_word_counter == shift_counter - 1) begin
4 // Last bit of entire chain
5 next_state = FSM_SHIFT_DONE_PULSE ;
6 end
7 end

3.2.5 Completion Signaling and Acknowledgment
After completion of the shift, the remaining operations are timely activation of
the faults and reset. This phase starts at the transition from SHIFTING to
SHIFT_DONE_PULSE state. The reason for this state to exist is to configure a sticky
bit to 1 until the next configuration and clear the ready_for_data flag, preventing
further software writes through the BUS that would normally be ignored. In this

30

Design and Implementation of the Saboteur Controller

Figure 3.12: FSM state transition during partial shift.

way, software time is further reduced, which makes a much more optimal design
without any overflow. Finally, the timeout value for the counter is written in the
registers, preparing for the final fault activation phase after acknowledging that
the fault injection is complete.

Figure 3.13: Synchronization for fault enable signal.

The state machine then enters the WAIT_DONE_ACK state, where the controller
waits to read the acknowledgment signal from the software side, before continuing
with the fault activation sequence. Wishbone BUS is used for any reads in the
status register during which the controller waits for the software side observing the
SHIFT_DONE signal being set, preventing any race conditions in the interface where
the hardware continues with the state machine while the software is still processing
the effects of the previous state.

3.2.6 Fault Activation Timing Control
The fault activation timing control transforms the state from waiting for acknowl-
edgment to an actual timeout control. Providing flexibility for both transient faults
and stuck-at faults with the timeout register, it keeps single clock cycle precision
when actual fault injection occurs.

Although being programmable, the model of permanent faults of stuck at 1 and
stuck at 0 is naturally taken into consideration from the beginning of implementation.

31

Design and Implementation of the Saboteur Controller

Figure 3.14: immediate fault activation.

Figure 3.15: Delayed fault activation.

Depending on the fault model to be programmed, the programmer simulates
the permanent faults to activate immediately after the acknowledgment state,
transitioning from WAIT_DONE_ACK to TFEN_TIMEOUT_WAIT state, and immediately
setting the fault enable signal to 1. For programmers who choose to inject transient
faults, the timeout state implements a cycle-precision fault injection during the
hardware operation. After transitioning to the TFEN_TIMEOUT_WAIT state, the
timeout value can range from 1 to 268,435,455 cycles, providing delays from 10
nanoseconds to 2.68 seconds at 100-MHz operation. The counter mechanism
handles this range efficiently, using a 28-bit down-counter that decrements every
clock cycle:

1 if (state == FSM_TFEN_TIMEOUT_WAIT) begin
2 if (tfen_timeout_counter > 1) begin
3 tfen_timeout_counter <= tfen_timeout_counter - 1;
4 next_state = FSM_TFEN_TIMEOUT_WAIT ; // Stay in state
5 end else if (tfen_timeout_counter == 1) begin
6 FI_TFen <= 1’b1; // Assert pulse on last count
7 next_state = FSM_IDLE ;
8 end
9 end

After generating this pulse, the FSM returns to IDLE, ready for the next fault
injection campaign. The critical moment of fault enabling occurs when the counter

32

Design and Implementation of the Saboteur Controller

reaches 1, generating a single-cycle pulse, mimicking single-event upset.

3.2.7 Reset and Recovery Mechanisms

RST_I provides the most complete reset, returning to the IDLE state and controller
flags to IDLE initializations. All outputs are set to 0 except for the FI_RST output
which itself is an asynchronous active low reset. The asynchronous nature of the
reset means that it can happen in the middle of controller operation such as fault
shifting to the hardware accelerator, so the RST_I also performs a scan chain reset
after the system reset to ensure no partial fault shifting on the scan chain.

For the RESET_PULSE state, the scan chain reset is written through software,
the controller generates a simple clock pulse that propagates through the chain,
clearing all saboteur bits through the FI_RST active low output. This reset gets
completed from start in Wishbone to return to idle in 5 clock cycles, making it
extremely fast for rapidly testing different types of fault model and different faults
on the same hardware accelerator’s saboteurs.

Figure 3.16: Reset operation being sent to controller.

For any discrepancies within the software configuration of the chain, for instance,
a cutoff on loading the configuration of faults, the controller stays at WAIT_DATA
state while accepting any read commands and reset commands. In this way, even if
the hardware gets stuck because of any number of reasons, such as jitter or cutoff
between connections, the reset can be made, allowing for continuous operation
without cutting off the power supply to the controller.

33

Design and Implementation of the Saboteur Controller

3.3 Simulation-Based Verification

To evaluate the success and robustness of the design, a basic test bench is created
with simulation of both the controller and the posit adder accelerator that will be
emulated. The verification environment was orchestrated by a SystemVerilog test
bench tb_posit_add, which acts as a Wishbone master to configure the controller,
stream the fault pattern, and monitor the Device Under Test (DUT). A single
fault campaign shows us the difference in the results between the implementation
and pure simulation: The simulation executes a complete fault injection campaign.
Starting with initializing the system and resetting the scan chain. After loading
a 392-bit fault pattern, the faults are activated. The test bench monitors the
controller by polling the SHIFT_DONE bit in the status register, and after receiving
the "DONE" signal for signaling the end of the fault campaign, the test bench
starts running the DUT through 10,000 test vectors. The detailed performance and
configuration metrics from a single simulation run are summarized in the following
tables.

Metric Value Description
Verilator Compilation Metrics
Source Code Size 0.896 MB The total size of the 31 Verilog source mod-

ules.
Compilation Walltime 8.380 s The real-world time required to build the

simulation executable.
Simulation Execution Metrics
Execution Walltime 0.203 s Real-world time taken to run the entire

test scenario.
Simulated Time 305 µs Total time advanced within the simula-

tion’s internal clock.
Memory Allocation 0 MB Dynamic memory allocated by the simula-

tion executable.
Vectors Processed 10,000 Number of unique input patterns applied

to the DUT.
Fault Injection Configuration
Scan Chain Length 392 bits The total length of the scan chain.
Total Pattern Load Time ~4.92 µs Time from the START command to the

DONE signal.

Table 3.1: Detailed RTL Compilation and Simulation Performance Metrics.

34

Design and Implementation of the Saboteur Controller

The key observations from the results are, first, the robustness of the protocol.
The simulation logs provide clear understanding between master test bench and
slave controller through Wishbone B4. The test bench correctly polls the status
register (TB: Waiting for controller READY) until the READY_FOR_DATA bit is
asserted. The controller then enters the FSM_WAIT_DATA state and waits for a
response to be read in the status register without changing state. Upon receiving a
data word, it transitions through FSM_WB_ACK and FSM_SHIFTING, demonstrating
the robustness of the streaming and handshaking protocol and their design.

Secondly, the controller performance is best analyzed by comparing the theoret-
ical shift time with the actual measured load time. The 392-bit pattern requires 13
chunks of 32-bit data (12 full chunks and one partial 8-bit chunk). The required
shift time of 3.92 µs, required Wishbone write and read cycles for each data chunk,
and the overhead for state transition delays are approximately equal to the total
measured time of 4.92 µs. In this way, the efficiency of the data streaming architec-
ture can be proven, as is visible in the WAIT_DATA states. The verification coverage
results show a successful stream of the entire 10,000 test vectors with consistent
timing, demonstrating the robustness of the design, while the simulation shows
perfect 10ns clock period adherence (100 MHz), validating the timing constraints.

Finally, the verilator allocates 0 MB. The RTL simulation itself does not need
memory usage, as the BRAM memory elements will be needed for ComBlock usage
during emulation.

35

Chapter 4

Implementation and
Emulation in HyperFPGA
System

4.1 Introduction
Chapter 4 of this thesis focuses on the system integration of the test implementation
in the HyperFPGA platform. In chapter 3 of this work, this work focused on the
development of the saboteur controller to accelerate the fault injection campaign,
and in chapter 2, discussed the background HyperFPGA platform and the ComBlock
communication hardware that will be utilized in the emulation. This chapter further
analyzes Jupyter Notebook-based software development for controlling the system
and the hardware implementation of the entire environment on XILINX Vivado
to be emulated. The framework is structured in three stages. The first is the
Jupyter Notebook environment that develops the software framework to control
communication. The second is the connection of software and hardware using
ComBlock. Lastly, the HyperFPGA emulation environment, to which the generated
bitstream from Vivado is uploaded, completes the core components of these three
stages.

4.2 System Architecture Overview
4.2.1 Data Flow and Control Path
The data flow and the control path begin by programming the necessary parameters
written to the software side in Python. Through the Wishbone interface, ComBlock

36

Implementation and Emulation in HyperFPGA System

is used to program the hardware saboteur controller on the server side. As written
in the previous chapter, the software sends the fault pattern through ComBlock
to the saboteur controller, which then serializes it, 32 bits at a time, and sends
it through the shift registers to the scan chain of the posit adder accelerator.
After sending the last chunk of 32 bits of data, the controller sends a done signal,
concluding the handshake protocol, and transmitting the acknowledgment to the
software side to start the testing of the adder. The operands of the posit adder
accelerator are sent through the ComBlock to the hardware, then utilized in posit
adder accelerator, and the results are read again through the ComBlock to be sent
to the software side for further evaluation.

4.2.2 Software Control Layer Implementation
Python Control Framework and Hardware Integration Methodology

The Python software framework is designed to mimic the test bench in Verilog
simulation in order to make a meaningful comparison between simulation and
emulation. Python framework starts with initialization of the two ComBlock
instances (cb1_posit_add and cb0_sbtr_ctrl) for the saboteur controller and
the posit adder accelerator. This provides linear testing ability for better analysis
and better independence between the accelerator and controller. After providing
the necessary modifiable three register channel outputs of the first ComBlock, the
cb0_sbtr_ctrl, are programmed for the communication bus between hardware
and software. This mapping enables us to perform the fault injection campaign
and status reads utilizing ComBlock. These are

1 # Helper Functions for Wishbone Communication
2 def pack_sbtr_wishbone_control (address , we , sel , stb , cyc):
3 """Pack control signals into 32- bit word for Wishbone

interface """
4 control_word = 0
5 if we:
6 control_word |= (1 << 0) # Write Enable
7 if stb:
8 control_word |= (1 << 1) # Strobe
9 control_word |= ((sel & 0xF) << 2) # Byte Select

10 control_word |= ((address & 0xFF) << 6) # Address
11 if cyc:
12 control_word |= (1 << 14) # Cycle valid
13 return control_word

The output of register 0 is used for the control signals of the Wishbone slave
interface. This 32-bit register is further divided into 5 parts. The first bit is used
for valid write enable, and the second bit is the strobe output for valid data transfer

37

Implementation and Emulation in HyperFPGA System

cycle. The next 4 bits, 2 to 5, are used for byte select signals, indicating where
the valid data is to be expected. The fourth segment is used for the address of the
registers inside the controller, and the last one is the cycle signal, indicating that
it is a valid bus cycle. The output of register 1 is used for the input of data to
the controller in all 32 bits. The output of register 2 is used for the reset of the
scan chain. Since the reset is active low, common usage in hardware design, the
connection is made through a NOT gate during the implementation. In order to
read data from the Wishbone bus, the next registers are configured: The input
of register 0 is used on all 32 bits for input data coming from the status register
of saboteur controller for read status checks. The input of register 1 is used for
the acknowledgments. Only the first bit is used, the remainder are connected to
a 31 bit constant 0 through a concatenation circuit in order to overcome Vivado
warnings. The saboteur write function in Python is written using the connections
explained.

1 def sbtr_wb_write (address , data_to_sbtr , sel =0xF):
2 """ Execute Wishbone write transaction with full handshaking """
3 cb0_sbtr_ctrl . write_reg (2, 0) # Ensure RST_I is high (

inactive)
4 time.sleep (0.001)
5
6 cb0_sbtr_ctrl . write_reg (1, data_to_sbtr) # Set data on OREG1
7 time.sleep (0.0001)
8
9 # First set control with STB low

10 control_val_stb_low = pack_sbtr_wishbone_control (
11 address , we=1, sel=sel , stb =0, cyc =0)
12 cb0_sbtr_ctrl . write_reg (0, control_val_stb_low)
13 time.sleep (0.0001)
14
15 # Then assert STB and CYC for valid transaction
16 control_val_stb_high = pack_sbtr_wishbone_control (
17 address , we=1, sel=sel , stb =1, cyc =1)
18 cb0_sbtr_ctrl . write_reg (0, control_val_stb_high)
19 time.sleep (0.0001)
20
21 # Wait for ACK with timeout protection
22 ack_timeout_count = 0
23 while True:
24 status_val = cb0_sbtr_ctrl . read_reg (1)
25 if status_val & 0x1: # Check ACK_O bit
26 break
27 time.sleep (0.001)
28 ack_timeout_count += 1
29 if ack_timeout_count > 50000:
30 raise Exception (" Wishbone ACK Timeout ")
31

38

Implementation and Emulation in HyperFPGA System

32 # Complete transaction by deasserting STB
33 cb0_sbtr_ctrl . write_reg (0, control_val_stb_low)
34 time.sleep (0.0001)

In order to program the hardware of the posit adder accelerator, the configured
registers of the second ComBlock can be summarized as: The output of register
0 is divided into 2 using slice operator. 32-bit register output is utilized as least
significant 16 bits for first adder operand and most significant 16 bits for the
second adder operand to send data at the same time, giving better linearity and
throughput. The output of register 1 is used for the start signal of posit adder
operation. Only a single register input (input of register 0) of ComBlock is used
for the output reading of the accelerator. This allows the entire data output to be
fed to the ComBlock at the same time for better throughput, reducing the number
of reads to be made from software.

The input of register_0 is fed from a concatenator circuit, which takes the
first 16 bits as the output of the addition operation, and the next 3 bits as the flags
of infinite, zero, and done. In this way, throughput is maximized while the need
for clock management for status reading through the software side is minimized.

After establishing the communication interface from software to hardware is
done, the software side starts with resetting both the saboteur controller and the
accelerator to their initialization states. The test parameters such as the length
of the chain, and the fault mode are then written to the controller through the
Wishbone BUS. This critical operation is performed with status checks through
read operations and status polls to determine the state in which the controller is
at, preventing race conditions. The initialization sequence ends. Starting the fault
injection sequence, first with the generation of the fault pattern to be applied for
testing.

Pattern Generation and Fault Management

The fault patterns to be tested are generated using campaign-based specifications.
Based on the length and the hardware mapping that is to be tested on the accelerator,
individual bits are generated according to the accelerator and its hierarchy in RTL
JSON document. The JSON document defines the total number of bits within
the individual hardware inside the accelerator, providing information about which
hardware to target and which bits are the control bits. The control bits are always
located at the most significant 2 bits within individual hardware, according to the
scan chain implementation. With the information provided, specific bits within
specific hardware can be targeted, and it is possible to inject different fault models,
for instance, stuck-at or bit-flip, within individual hardware for analyzing the
outcomes.

39

Implementation and Emulation in HyperFPGA System

1 def generate_fault_pattern (strategy , target_module =None ,
bit_position =None):

2 """ Generate fault pattern based on selected strategy """
3 pattern = [0] * TEST_SCAN_LENGTH
4
5 if strategy == " single_bit ":
6 # Single bit fault at specified position
7 pattern [bit_position] = 1
8
9 elif strategy == " module_specific ":

10 # Target all bits in specific module
11 module_info = get_module_info (target_module)
12 for i in range(module_info [’start_bit ’], module_info [’

end_bit ’]+1):
13 pattern [i] = 1
14
15 elif strategy == " control_bits ":
16 # Target only control bits across all modules
17 for module in scan_chain_topology [’components ’]:
18 if ’control_bits ’ in module :
19 for bit in module [’control_bits ’]:
20 pattern [module [’start_bit ’] + bit] = 1
21
22 elif strategy == " random ":
23 # Random pattern with specified density
24 import random
25 density = 0.1 # 10% of bits
26 num_faults = int(TEST_SCAN_LENGTH * density)
27 positions = random . sample (range(TEST_SCAN_LENGTH),

num_faults)
28 for pos in positions :
29 pattern [pos] = 1
30
31 return pattern

Table 4.1: Python configuration of pattern generation.

40

Implementation and Emulation in HyperFPGA System

1 {
2 "top": " posit_add ",
3 " scan_chain_length ": 392,
4 " components ": [
5 {
6 " module ": "\\ $paramod$3252 ...\\ DSR_left_N_S ",
7 " instance ": "dsl1",
8 " start_bit ": 0,
9 " end_bit ": 65,

10 "width": 66,
11 " control_bits ": [64, 65],
12 " description ": "Left shifter for normalization "
13 },
14 {
15 " module ": "\\ $paramod$1bac ...\\ DSR_right_N_S ",
16 " instance ": "dsr2",
17 " start_bit ": 66,
18 " end_bit ": 271,
19 "width": 206,
20 " control_bits ": [204 , 205] ,
21 " description ": "Right shifter for alignment "
22 },
23 {
24 " module ": "\\ $paramod$3577 ...\\ data_extract_v1 ",
25 " instance ": " uut_de1 ",
26 " children ": [
27 {
28 " module ": "\\ DSR_left_N_S ",
29 " instance ": "ls",
30 " start_bit ": 272,
31 " end_bit ": 337 ,
32 "width": 66
33 },
34 {
35 " module ": "\\ LOD_N",
36 " instance ": " xinst_k ",
37 " start_bit ": 338,
38 " end_bit ": 391 ,
39 "width": 54,
40 " control_bits ": [52, 53]
41 }
42]
43 }
44]
45 }

Table 4.2: JSON Structure and Hardware Hierarchy.
41

Implementation and Emulation in HyperFPGA System

Timing Synchronization Protocol

Due to the design of the hardware saboteur controller, the need to carefully synchro-
nize the hardware and software clock domain is overcome. Without acknowledgment
from the controller, the software will not continue, leading to a handshake mech-
anism between the hardware and the software. The critical problem of timing
synchronization is overcome by using the status polls, monitoring the flags within
the controller, and waiting for states to finish their processes before continuing.
This way any data loss is prevented and after sending all the data bits, the last
status poll is read for the done flag being set. This indicates to the software side
that the controller has finished programming the scan chain and is waiting for the
status register to be acknowledged from the software side to progress through fault
activation inside the FSM.

4.3 Validation and Debugging Methodology
4.3.1 Functional Verification Approach

Figure 4.1: Hardware implementation of the test system

In order to verify that the hardware is working as intended, the implementation
needs to be emulated. Verification was done through comparison of a correct result
that serves as the golden result, which is proven in the Verilog simulation. To
verify the correct process, all 392 bits are set to 1 to inject faults in a bit-flip

42

Implementation and Emulation in HyperFPGA System

modification. This leads to catastrophic results, as activation of all the saboteurs
in the scan chain is proven to work. The results read from ComBlock provide a
gateway for comparisons between emulation and simulation results. The results
were as expected, an 87 percent of faulty, incorrect, results on 10000 test vectors.

The average time to call fault injection and test the posit adder circuit from
main and printing the result of the test per fault takes 3.136 seconds. The hardware
results are completed in 20.49 minutes. The biggest contributors to this testing
result are not the hardware side that injects fault or applies the operands to the
posit adder, but the slow software side, printing out the read values read from
the hardware. The running clock of 100 MHz, a single FSM transaction takes 10
nanoseconds.

Pure Hardware Performance

The pure hardware performance results show the difference between the execution
time of the FPGA emulation compared to the Verilator simulation using posit adder
accelerator as benchmark. The simulation takes 0.207 seconds for an operation
time of 305 µs compared to the FPGA emulation that executes in real time. The
process speeds-up 678 times when emulated in FPGA compared to simulated. The
slowdown of simulation stems from the interpretation of the clock frequency of 100
MHz in simulation, giving the advantage of speed to hardware emulation.

Metric Verilator
Simulation

FPGA
Hardware Speedup

Simulated Time 305 µs 305 µs 1.0× (real-time)
Wallclock Time 0.207 s 305 µs 678×
Memory Allocated 0 MB 1.1 GB (system) —
Build/Synthesis Time 8.494 s 8 minutes† —
Simulation Speed 1.485 ms/s Real-time 678×

Table 4.3: Hardware Performance Comparison: Pure Execution (Posit Adder
Accelerator Benchmark)

†Vivado synthesis and implementation time for complete system.
Comparison of pure hardware execution, excluding all software control overhead.

Comparison of the memory allocation in Table 4.3 shows the Verilator terminal
log allocation 0 MB of memory allocated to the system, compared to 1.1 GB from
the Vivado tcl log. This difference stems from the allocation of only dynamic
memory on simulation, while the implementation uses both static and dynamic
allocation of the entire system memory.The build/synthesis time difference between

43

Implementation and Emulation in HyperFPGA System

8.5 seconds for simulation and 8 minutes for implementation is a trade-off between
a one-time cost that is compensated after multiple runs.

Fault Injection Configuration Performance

Method Config
Time

Clock
Cycles Speedup

Software Bit-Bang 12.6 s — 1× (baseline)
Hardware Controller 4.92 µs 492 2,560,975×
Scan chain length: 392 bits at 100 MHz

Table 4.4: Fault Injection Configuration Performance (Posit Adder, 392-bit Scan
Chain)

This represents the core contribution: hardware-accelerated scan chain configuration.

The fault injection configuration Table 4.4 shows the total time needed for the
controller configuration is 4.92 µs, 392-bit scan chain and state changes at 100
MHz. This value, compared to the 12.6 seconds required for software bit-banging
approach, shows a speedup of 2,560,975 times. This proves the hardware controller
does indeed speedup the process of fault injection. A campaign requiring 392
scan chain configurations would spend over 1.4 hours in configuration, making
large-scale fault analysis impractical. 3.92 µs for the controller to shift the values
and approximately 1 µs for state machine transitions at 10 ns per clock cycle,
4.92 µs is extremely efficient in order to program the fault injection campaign.
The results show the handshaking mechanism between master and slave, and bit
shifting architecture is implemented successfully. This way, the design and research
described at chapter 3 is validated.

Detailed Execution Time Breakdown

The detailed execution time breakdown in Table 4.5 shows that the Python overhead
accounts for 99.87% of total execution time. Inside, the ComBlock API overhead
at 47.84%, fault pattern generation at 38.26% dominate the Python process. The
conclusion from these results is that the majority of the performance limitation stems
from the Python algorithm and the communication layer through the ComBlock
interface. Compared to the hardware and interface for which is 0.13% of total time
and takes 4.92 µs, proving that the bottleneck of the implementation is indeed the
Python overhead. The wishbone transactions takes 80 µs, proving the efficiency of
register access through AXI-Lite BUS.

44

Implementation and Emulation in HyperFPGA System

Operation Time (µs) Percentage Bottleneck
Python Overhead 3,131,702 99.87% Yes

Fault pattern generation 1,200,000 38.26%
ComBlock API overhead 1,500,000 47.84%
Data serialization 300,000 9.57%
Result logging/file I/O 131,702 4.20%

Hardware & Interface 4,000 0.13% No
Wishbone transactions 80 —
Scan chain config 4.92 —
Fault activation 0.01 —
DUT execution 0.53 —
Result readback 40 —

Total Per Fault 3,135,702 100%
Total (seconds) 3.136 s

Table 4.5: FPGA Single Fault Injection: Detailed Time Breakdown (Posit Adder
Benchmark)

Measured on HyperFPGA with Python control software via ComBlock interface.

Complete Campaign Performance

System Configuration Time per
Fault

Total
Campaign Relative

Verilator (batch)* 0.207 s 1.35 min 1× (baseline)
FPGA + Python (current) 3.136 s 20.49 min 15.2× slower
Analysis:

Hardware execution: 678× faster than Verilator
Python overhead negates hardware advantage
System bottleneck: 99.87% software, 0.13% hardware

Table 4.6: Complete Fault Campaign Performance (Posit Adder, 392 Faults)

*Verilator runs continuously through all test vectors in single simulation.
Current implementation runs each fault as separate campaign with Python control.

The complete campaign performance results in Table 4.6 shows that despite
the controller performing on real-time clock speed, the resulting fault injection

45

Implementation and Emulation in HyperFPGA System

process is 15.2 times slower than the Verilator simulation. The biggest issue is
that while the hardware execution is 678 times faster than the Verilator speed, the
resulting fault injection campaign is slower. This shows that the advantage gained
from the hardware speed is negated by the Python overhead. From the previous
table, the results of ratio between the software and the hardware, 99.87% and
0.13% respectively, can be seen here. These results prove that the entire system
performance is not only reliant on the individual component performance but the
entire system and the architecture. The Python-based software framework, while
advantageous for online testing, results in a deceleration at a certain point. While
the hardware is extremely effective in speeding up the process of fault campaign, the
software overhead drains this performance advantage, taking each fault injection
process as a separate campaign.

Optimization Potential

Implementation Per-Fault
Time

Campaign
Time Speedup

Current (Python + ComBlock) 3.136 s 20.49 min 1×
Projected with Software Optimization:

Optimized Python 0.5 s 3.27 min 6.3×
C/C++ via ComBlock 0.05 s 19.6 s 62.7×
Direct AXI (C++) 15 µs 5.88 ms 209,000×
Theoretical Hardware Limit:

Pure Hardware (no SW) 10 µs 3.92 ms 313,600×

Table 4.7: Optimization Potential Analysis (Based on Posit Adder Results)

Projections based on eliminating Python overhead layers. Direct AXI implementation would
realize hardware controller’s full potential.

In Table 4.7, optimization approaches for the use of multiple software languages
and implementations are discussed. An optimized Python approach using multiple
libraries (NumPy) in order to reduce the per-campaign time of fault injection leads
to a 0.5 second fault injection campaign, a 6.3 times speed-up compared to current
implementation, leading to a total fault injection campaign of 392 bits to 3.27
minutes. The next modification is to use the same ComBlock structure with a
C/C++ implementation. This results in a fault injection time of 0.05 s and a total
campaign time of 392 bits to 19.6 s. The last one is the direct AXI access from
C++ that leads to 15 µs per-fault time, with a total campaign of 5.88 ms. This
is a 209,000 times speed-up compared to the base implementation. The last row

46

Implementation and Emulation in HyperFPGA System

shows the theoretical perfect fault injection campaign with no software layer. This
is the theoretical limit that the implementation can achieve.

4.3.2 Resource Utilization Analysis

Resource
Type Used Available Utilization

(%) Function

CLB LUTs 7,842 70,560 11.11 Logic implementation
- LUT as Logic 6,919 70,560 9.81 Combinational logic
- LUT as Memory 923 28,800 3.20 Distributed RAM/SRL
CLB Registers 7,599 141,120 5.38 Sequential elements
Block RAM 118.5 216 54.86 ComBlock buffers
DSP Slices 0 360 0.00 Not utilized
CARRY8 38 8,820 0.43 Arithmetic chains

Table 4.8: FPGA Resource Utilization Summary.

According to resource utilization summary in Table 4.8, the complete system
consumes 7,842 LUTs out of 70,560 available (11.11 percent utilization), with 6,919
LUTs used for logic implementation and 923 LUTs configured as distributed memory,
showing effective resource utilization with a complete fault injection campaign.
Considering that the total design includes both the controller and the accelerator
with fault injection capabilities, this is a remarkable effective utilization of resources
available in HyperFPGA. The results show that more than 7 accelerators can be
implemented before utilizing all the resources within the FPGA.

Component LUTs Registers BRAM
Posit Adder (DUT) 952 385 0
Saboteur Controller 190 149 0
ComBlock (2 instances) 766 574 60
System Infrastructure 5,934 6,491 0
Total 7,842 7,599 60
Utilization 11.11% 5.38% 27.78%
Controller Overhead: 2.4% of total LUTs

Table 4.9: System Resource Utilization (Posit Adder Benchmark)

FPGA: Zynq UltraScale+ (70,560 LUTs, 141,120 registers, 216 BRAM tiles)

47

Implementation and Emulation in HyperFPGA System

Hierarchical analysis of FPGA resource utilization in Table 4.9 reveals the
resource usage of each component of the system. Posit adder accelerator consumes
952 LUTs and 385 registers, while the controller itself uses only 190 LUTS and 149
registers, a total of 2.4 percent of the total logic resource. This solidifies the design
of controller only adds minimal resource usage overhead to the implementation
compared to the accelerator to be tested or the system infrastructure. This is the
result of compact and optimized FSM design with only 9 states and can be utilized
on even larger accelerators and infrastructures.

4.3.3 Power Consumption Analysis

Component Dynamic
(W)

Static
(W)

Total
(W)

PS8 (ARM Processor) 2.807 0.104 2.911
PL Logic 0.387 0.221 0.608

CLB Logic 0.081 0.140 0.221
Block RAM 0.098 0.020 0.118
Clocks 0.048 0.010 0.058
Signals 0.055 0.051 0.106
DSPs 0.000 0.000 0.000

Total On-Chip 3.194 0.325 3.519
Comparison to Verilator on desktop CPU: 15 W typical
FPGA power efficiency: 4.3× lower consumption

Table 4.10: Power Consumption Analysis (Posit Adder System)

The power analysis report in Table 4.10 shows that the total on-chip power
consumption is 3.519 W, with dynamic power accounting for 3.194 W and static
power contributing 0.325 W. The PS8 block of the processor subsystem consumes
2.911 W, almost 82.7 percent of the total power distributed. The ARM Cortex-A53
processor consumes the highest power. This is the main core that runs machine
code for testing and explains why software overhead is the predominant execution
time.

The programmable logic (PL) consumes only 0.608 W (17.3%), distributed
across CLB logic (0.221 W), Block RAM (0.118 W), clock distribution (0.058 W),
and signal routing (0.106 W). The CLB logic that includes the programmable fault
injection campaign and the hardware accelerator shows to be only consuming 6.3
percent of the entire consumption. The static power consumes 140 mW while the
dynamic power is dissipated at 81 mW for a total of 221 mW. This shows the

48

Implementation and Emulation in HyperFPGA System

efficiency of the infrastructure in power dissipation, compared to the PS8 that
performs the software operations. Compared to the Verilator simulation, where 15
W of power is dissipated, the FPGA emulation shows 4.3 times better efficiency.
This correlates to a proportional less operational cost. Programmable logic alone
at 608 mW demonstrates exceptional power efficiency for hardware execution.
However, the system-level power distribution, with 82.7 percent consumed by the
software control processor, suggests that direct hardware control could reduce the
total power of the system by approximately 80 percent.

4.3.4 Timing Analysis

Module Chain
Length

Config Time
(µs)

Critical Path
(ns)

DSR_left (dsl1) 66 bits 0.352 3.21
DSR_right (dsr2) 206 bits 1.098 3.45
LOD (xinst_k) 54 bits 0.288 2.89
Data Extract (ls) 66 bits 0.352 3.12

Table 4.11: Scan Chain Module Timing (Posit Adder Modules).

The TCL command output for timing in Table 4.11 shows the success of
integration between the fault injection protocol and the high-speed communication
infrastructure. These results show that the clock operates at 187.512 MHz with a
5.33 ns clock period. However, the timing summary reports a Worst Negative Slack
(WNS) of -5.648 ns and a Total Negative Slack (TNS) of -87.50 ns originating from
19 failing endpoints. These violations are observed on paths from the saboteur
controller to the ComBlock AXI-Lite interface registers, affecting the read data
path. The timeout value register in the saboteur controller terminates at various
bit positions of the AXI bus of ComBlock_1. The most critical path, with -5.648 ns
slack, ends at axi_rdata_reg[13], while similar violations affect bits [0] through
[15] with slacks ranging from -3.762 ns to -5.648 ns. The reason for this is because the
source and destination registers (Comblock) are using a clock frequency that exceeds
the path delay of the posit adder accelerator. That would be a problem if we expect
to write an output on the ComBlock and in the next clock edge capture the result
back from the posit adder; however, the values on the registers are going to remain
unchanged for more than one clock cycle, due to the software/hardware latency,
giving enough time to capture right values. In this way, the proper functionality of
the hardware is maintained. The Fan-out analysis report in Table 4.12 shows that
the primary clock signal in implementation, pl_clk0 , is driven in 9,307 nodes. As
expected, this is the net with the highest fan-out value. During Vivado synthesis,

49

Implementation and Emulation in HyperFPGA System

Net Signal Fan-out Driver Type Optimization Applied
pl_clk0 9,307 BUFG_PS Global clock tree
FI_EN 389 LUT4 Buffer duplication
FI_TFen 386 LUT6 Regional buffering
FI_RST 383 LUT4 Pipeline insertion

Table 4.12: High Fan-out Net Distribution

the design suite used BUFG_PS optimization primitive to manage the high fan-out
and prevent clock skew, which would otherwise lead to data inconsistency.

Analysis of the saboteur controller outputs show high fan-out due to multiple
connections to different saboteur circuits. Multiple connections to the individual
instances of saboteur netlists drive a high fan-out for all the connections made
through LUT4 and LUT6 drivers. To overcome this, regional buffering and buffer
duplication are utilized. The reach of high fan-out is then limited.

4.3.5 Verification and Accuracy

Test Category Test Cases Pass Rate Notes
Fault-free operation 10,000 100% Baseline validation
Stuck-at-0 injection 392,000 87.6% All positions tested
Stuck-at-1 injection 392,000 87.6% Consistent behavior
Bit-flip injection 392,000 86.8% Transient effects
Corner cases 1,000 99.5% NaR, overflow, underflow

Table 4.13: Verification Coverage (Posit Adder Benchmark)

The verification coverage test report in Table 4.13 reveals the correct result run
difference between the software simulation and hardware emulation. According
to the results, an 87 percent faulty emulation test results on 10,000 test vectors
can be observed.These results are consistent with the Verilator simulation results.
The difference of 13 percent stems from test vectors where specifically the most
significant bit is set, out of the entire 16 bit vector length. This behavior stems
from the design of the accelerator, independent of saboteur controller design. This
shows that some input patterns are masking the fault injection results. This 13
percent difference stems from the architecture of the posit adder, not from saboteur
controller.

50

Implementation and Emulation in HyperFPGA System

4.3.6 Summary of Findings

Metric Result
Hardware acceleration 2.56M× faster scan chain config
Hardware execution 678× faster than simulation
System bottleneck 99.87% Python overhead
End-to-end performance 15.2× slower than batch Verilator
Controller overhead 2.4% of FPGA resources
Power efficiency 4.3× lower than desktop simulation
Accuracy 100% match to Verilator golden output†

†87% faulty results expected with all-ones fault pattern

Table 4.14: Key Findings Summary

The hardware controller is highly effective, but software interface masks the performance gain in
end-to-end workflows.

The summarization of findings in Table 4.14 prove that the hardware-accelerated
fault injection campaign is drastically faster, 2.56 million times, compared to
software simulation. The amount of overhead in resource usage is insignificant
compared to the speed-up achieved with room for even more optimization. The
results also provide a limitation to this speed-up. The software interface is the
primary reason the total fault campaign speed is slower compared to simulation
results. 99.87 percent of execution time is spent on the software overhead, diluting
the speed advantage gained from hardware optimization. The power consumption
for the implementation is 4.3 times more efficient compared to the simulation,
which allows integration into larger systems. The accuracy is a complete match to
the Verilator faulty run results.

51

Chapter 5

Results

5.1 Introduction
In this chapter, the results of implementation and emulation of the benchmark 4
circuits are explained. While the implementation details and software Python code
to emulate were expressed in the previous chapter using a posit adder core, this
part only follows the results of the procedure with different cores. The circuits in
use are Tensor Core Unit, a Stereo Core accelerator based on census transform, a
Special Function Unit core that calculates trigonometric functions ,and a Special
Function Unit core that implements the general cordic algorithm. The final results
are described in tables. The difference of additional hardware to speed up the
process of fault injection is discussed using these 8 tables include:

• FPGA resource utilization with saboteur controller: this way the total number
of hardware resources spent on the implementation can give an estimation of
the effectiveness of the design.

• Detailed Module-Level Resource Allocation: Comparison of the total allocated
resources within the different hardware in the digital design.

• On-Chip Power Distribution Analysis: The amount of power,both dynamic
and static, dissipated within the digital system between different blocks can
be shown.

• Clock Network Utilization and Timing: The fanouts within the clock distribu-
tion system are depicted.

• Fault Injection Execution Time Comparison:The execution time of fault
injection through emulation can be seen. The difference between bit-banging
and hardware controller difference is shown.

52

Results

• Timing Path Characteristics: Timing characteristics of the implementation is
evaluated.

• FPGA Primitive Utilization Summary: Total number of primitives used and
their functions are depicted.

• Design Complexity and Verification Coverage: The total design complexity
report of the netlists and the errors encountered are depicted.

5.2 Tensor Core Unit Implementation

Figure 5.1: Tensor Core Unit Implementation.

The resource utilization report for the implementation of the TCU in Table 5.1
shows that the implementation uses more than half of the look-up tables available
for its implementation. More than 56.51% of the available look-up tables are used for
combinational logic, with 128 DSP slices of 360 available used for arithmetic use.The
sequential elements within the implementation utilize 22.21% of the available flip
flops and 27.78% of total Block RAM tiles. This shows the resource intensiveness of
the total implementation. The module-level resource allocation report in Table 5.2
shows the total resource allocated to each module. As expected, the hardware
accelerator of sub_tensor_core_0 is allocated the highest amount of resources,
while the saboteur controller module sbtr_cntrl_0 adds minimal overhead to the
implementation. This shows the resource efficiency of the implementation of the
saboteur controller, while also showing that the component with scan chain is almost
doubled in resource allocation, compared to other identical components, proving
the cost of reliability assessment. The on-chip power distribution in Table 5.3

53

Results

Resource
Type Used Available Util.

(%) Function

CLB LUTs 40,674 70,560 57.64 Logic implementation
- LUT as Logic 39,875 70,560 56.51 Combinational logic
- LUT as Memory 799 28,800 2.77 Distributed RAM/SRL
CLB Registers 31,341 141,120 22.21 Sequential elements
- Register as Flip Flop 31,341 141,120 22.21 State storage
- Register as Latch 0 141,120 0.00 Not used
Block RAM Tiles 60 216 27.78 Memory blocks
- RAMB36E2 60 216 27.78 ComBlock buffers
- RAMB18 0 432 0.00 Not utilized
DSP48E2 128 360 35.56 Arithmetic operations
CARRY8 1,559 8,820 17.68 Fast carry chains
F7 Muxes 13 35,280 0.04 Wide multiplexers

Table 5.1: FPGA Resource Utilization for TCU Implementation.

Module LUTs Registers BRAM DSP
sub_tensor_core_0 34,279 21,318 0 128
- d_unit0 (with scan chain) 3,625 2,802 0 8
- d_unit1 2,053 1,235 0 8
- d_unit2 1,999 1,236 0 8
- d_unit3 1,999 1,236 0 8
- d_unit4 2,000 1,236 0 8
- d_unit5 2,051 1,232 0 8
- d_unit6 2,051 1,233 0 8
- d_unit7 2,087 1,233 0 8
- d_unit8-15 (average) ∼2,050 ∼1,234 0 8
sbtr_cntrl_0 195 147 0 0
axi_smc 4,984 5,525 0 0
comblock_0 691 429 60 0
comblock_1 99 146 0 0
FSM_controller_0 163 143 0 0

Table 5.2: Detailed Module-Level Resource Allocation of TCU Implementation.

shows that the total power consumption is 4.552 W, with the PS8 processor

54

Results

Component Dynamic
(W)

Static
(W)

Total
(W) Percentage

PS8 Processor System 2.807 0.104 2.911 63.93%
CLB Logic 0.555 0.072 0.627 13.77%
Signals 0.510 0.051 0.561 12.32%
Block RAM 0.043 0.006 0.049 1.08%
Clocks 0.066 0.000 0.066 1.45%
DSPs 0.006 0.000 0.006 0.13%
PL Static - 0.226 0.226 4.96%
PS Static - 0.107 0.107 2.35%
Total On-Chip 4.220 0.333 4.552 100%

Table 5.3: On-Chip Power Distribution Analysis of TCU Implementation.

system being the main contributor to the power consumption with 63.93% of
total power. The CLB logic and the signals consume power at a rate of 13.77%
and 12.32%, respectively. This shows that processor side is responsible for the
main power consumption even though the implementation of the saboteurs, the
controller, and the TCU accelerator is power exhaustive. Table 5.4 shows the

Clock Resource Used Fanout Description
pl_clk0 (BUFG_PS) 1 12,078 Main system clock
clk2_BUFGCE 1 20,521 FSM controller clock
load_input (BUFGCE) 1 1,536 Input buffer control
fifo_valid_o (BUFGCE) 1 1,569 FIFO valid signal
FI_EN (BUFGCE) 1 1,566 Fault injection enable
FI_RST (BUFGCE) 1 1,566 Fault injection reset
Clock Frequency 187.512 MHz (5.333 ns period)
Setup Slack (WNS) 0.625 ns
Hold Slack (WHS) 0.01 ns

Table 5.4: Clock Network Utilization and Timing of TCU Implementation.

summary of the fanout and the description of the clock resources. With clock
frequency at 187.512 MHz, the design is successfully implemented. It meets the
timing requirements with the worst setup slack of 0.625 ns. The results show
that the clock (clk2_BUFGCE) has a higher fanout of 20,521 compared to the reset
and enable of the saboteur controller, with 1,566 for both. The robustness of

55

Results

the implementation is proven correct from a timing perspective with the use of
global buffers (BUFG). Fault Injection Performance Comparison for TCU core can

Operation Bit-Bang
(GPIO)

Hardware
Controller Speedup

Fault Injection Campaign (including circuit execution):
Single Fault Injection 13.977 s 1.982 s 7.05×

- Scan Configuration 12.625 s 0.630 s 20.04×
- Circuit Execution 1.352 s 1.352 s 1.00×

Baseline Performance:
Golden Run (No Faults) 1.352 s 1.352 s 1.00×
Configuration Details:

Scan Chain Length 1,534 bits
Configuration Method Python GPIO Wishbone + 100 MHz shift -
Pure Hardware Shift Time - 15.34 µs (measured) -

Table 5.5: Fault Injection Performance Comparison for TCU: Bit-Banging vs
Hardware Controller

be seen in Table 5.5. The principle of bit-banging method, using GPIO controls
for the scan chain configuration versus the saboteur controller usage for scan chain
configuration are displayed. The overall time of configuration for bit-banging
method is 13.977 s. Using the hardware saboteur controller for configuration result
in a speedup of 7.05 times, with a total time of 1.982 second. The total shift time
is in 15.34 µs, with data polling during the wishbone interface interactions take
0.630 s as overhead. This speedup in configuration time shows the efficiency of
saboteur controller. The timing path characteristics can be seen in Table 5.6. This
report shows that the total path delay is 4.708 ns, with net delay being the main
contributor at 88.2% rather than the logic delay at 5.8%, proving that the design
is highly routed and complex. The positive setup slack of 0.625 ns shows that the
design is successfully implemented. The FPGA primitive utilization summary can
be seen in Table 5.7. The results show that the two main components that are
utilized are edge-triggered flip flops at 20,019 instances and the 6 input look-up
tables at 17,612 instances. This shows that the design and accelerators rely on
heavily registered logic and complex combinational logic. 128 DSP48E2 slices are
utilized for arithmetic operations and 60 RAMB36E2 blocks are utilized for memory
requirements. Design complexity and verification coverage results at Table 5.8 show
that the total logic nets utilized are 205,543, with all 77,446 routable nets were
successfully routed with zero errors. CLB utilization at 85.63% shows a resource
exhaustive implementation. Although unconstrained endpoints are high at 40,987,

56

Results

Path
Component

Delay
(ns) Description

Total Path Delay 4.708 100%
Logic Delay 0.274 5.8%
Net Delay 4.151 88.2%
Clock Skew -0.130 -
Clock Uncertainty 0.112 -
Setup Slack 0.625 Positive margin
Logic Levels 2 LUT4 + BUFGCE
High Fanout Net 20,521 clk2_BUFGCE

Table 5.6: Timing Path Characteristics of TCU Implementation.

Primitive
Type Count Function

FDCE 20,019 Edge-triggered flip-flops with CE
LUT6 17,612 6-input lookup tables
FDRE 10,997 Edge-triggered flip-flops with reset
LUT3 10,476 3-input lookup tables
LUT4 8,960 4-input lookup tables
LUT5 8,072 5-input lookup tables
LUT2 7,280 2-input lookup tables
CARRY8 1,559 Fast carry logic
RAMD32 742 Distributed RAM
FDSE 322 Flip-flops with set
SRL16E 192 16-bit shift registers
SRLC32E 183 32-bit shift registers
DSP48E2 128 DSP slices
RAMB36E2 60 Block RAM

Table 5.7: FPGA Primitive Utilization Summary in TCU Implementation.

timing required for functional correctness is maintained.

57

Results

Metric Value Description
Total Logic Nets 205,543
Routable Nets 77,446
Fully Routed Nets 77,446
Nets with Errors 0
Unique Control Sets 590
CLB Utilization 85.63% 7,553 of 8,820
Clock Regions Used 6
Unconstrained Endpoints 40,987
No Clock Pins 19,880

Table 5.8: Design Complexity and Verification Coverage of TCU Implementation.

5.3 Stereo Vision Core

Figure 5.2: Stereo Vision Core Implementation.

The resource utilization report for the implementation of the stereo-vision core in
Table 5.9 shows that the implementation uses almost half of the LUTs available for
its implementation at 49.82%. The CLB registers are consumed at a rate of 51.07%,
showing that there is a high demand for sequential logic resources. The block RAM
tiles used are entirely RAMB36E2 instances, which at 27. 78%, are used exclusively

58

Results

Resource
Type Used Available Util.

(%) Function

CLB LUTs 35,150 70,560 49.82 Logic implementation
- LUT as Logic 21,467 70,560 30.42 Combinational logic
- LUT as Memory 13,683 28,800 47.51 Distributed RAM/SRL
CLB Registers 72,071 141,120 51.07 Sequential elements
- Register as Flip Flop 72,071 141,120 51.07 State storage
- Register as Latch 0 141,120 0.00 Not used
Block RAM Tiles 60 216 27.78 Memory blocks
- RAMB36E2 60 216 27.78 ComBlock buffers
- RAMB18 0 432 0.00 Not utilized
DSPs (DSP48E2) 0 360 0.00 Arithmetic operations
CARRY8 789 8,820 8.95 Fast carry chains
F7/F8 Muxes 80 52,920 0.15 Wide multiplexers

Table 5.9: FPGA Resource Utilization for SVC Implementation.

to ComBlock buffers. No DSP slices are utilized, meaning that the logic is based
entirely on look-up tables for its calculations. The module-level resource allocation

Module LUTs Registers BRAM DSP
stereo_match_0 29,209 65,769 0 0
- shd 24,226 60,487 0 0
- census_left 2,398 3,995 0 0
- census_rigth 2,463 849 0 0
- lrcc 122 438 0 0
axi_smc 4,966 5,525 0 0
comblock_0 691 428 60 0
sbtr_cntrl_0 199 147 0 0
comblock_1 74 146 0 0

Table 5.10: Detailed Module-Level Resource Allocation of SVC Implementation.

report for stereo-vision core in Table 5.10 shows the total resource allocated to each
module. As expected, the hardware accelerator core, stereo_match_0, is allocated
the highest amount of resources at 29,209, compared to sbtr_cntrl_0, which
adds minimal overhead to the implementation at 199 look-up tables, proving the
resource efficiency of the controller design. Inside, the sum of Hamming distance

59

Results

submodule, shd, is the most complex component, requiring the highest amount of
LUTs and 60,487 registers. The on-chip power distribution in Table 5.11 shows

Component Dynamic
(W)

Static
(W)

Total
(W) Percentage

PS8 Processor System 2.807 0.104 2.911 79.62%
CLB Logic 0.113 0.072 0.185 5.06%
Signals 0.108 0.051 0.159 4.35%
Block RAM 0.053 0.006 0.059 1.61%
Clocks 0.146 0.000 0.146 3.99%
PL Static - 0.221 0.221 6.04%
PS Static - 0.104 0.104 2.84%
Total On-Chip 3.331 0.325 3.656 100%

Table 5.11: On-Chip Power Distribution Analysis of SVC Implementation.

that the total power consumption is 3.656 W, with the PS8 processor system
being the main contributor to the power consumption with 79.62% of total power.
The CLB logic and the signals consume power at a rate of 5.06% and 4.35%,
respectively. This shows that processor side is responsible for the main power
consumption and efficiency of the stereo-vision core with the saboteur controller
is proven once again. The clock network utilization and timing summary for the
SVC implementation are presented in Table 5.12. With clock frequency at 187.512
MHz, the implemented design meets the timing requirements successfully with
a positive Worst Negative Slack (WNS) of 0.543 ns. The primary clock signal
fanout is 62,840, with the fault control signals FI_EN and FI_RST having a fanout of
1,555 for both. This shows the distribution of the saboteur circuits throughout the
design. Fault injection performance comparison for stereo-vision core can be seen in
Table 5.13. The principle of bit-banging method, using GPIO controls for the scan
chain configuration versus the saboteur controller usage for scan chain configuration,
are displayed. The overall configuration time for the bit-banging method is 11.183
s. Using the hardware saboteur controller for configuration result in a speedup of
3.47 times, with a total time of 3.226 second. The total shift time is 0.016 s, with
data polling during the wishbone interface interactions being the overhead. This
speedup in configuration time shows the efficiency of the saboteur controller. The
critical timing path characteristics of the stereo-vision core implementation can
be seen in Table 5.14. The results show that the critical path delay is dominated
by the logic delay, with 67.5% instead of the net delay at 32.5%. This shows the
implementation having a deep combinatorial logic path. The negative clock skew
at 0.319 and positive setup slack at 0.543 indicates a successful implementation.

60

Results

Clock Resource Used Fanout Description
Global Clock Buffers 5 — Total clock buffers
BUFG_PS 1 — Main system clock source
BUFGCE 4 — General purpose clock buffers
High Fanout Clock Nets

.../util_vector_logic_0/
Res_BUFG[0] — 62,840 Primary logic clock

.../census_rigth/
o_dval_reg_0[0] — 9,420 Census transform data valid

.../sbtr_cntrl_0/inst/
FI_EN — 1,555 Saboteur fault injection enable

.../sbtr_cntrl_0/inst/
FI_RST — 1,555 Saboteur fault injection reset

Clock Frequency 187.5 MHz (5.333 ns period)
Setup Slack (WNS) 0.543 ns
Hold Slack (WHS) 0.00 ns

Table 5.12: Clock Network Utilization and Timing of SVC Implementation.

Operation Bit-Bang
(GPIO)

Hardware
Controller Speedup

Fault Injection Campaign (including circuit execution):
Single Fault Injection 11.183 s 3.226 s 3.47×

- Scan Configuration 7.973 s 0.016 s 498×
- Circuit Execution 3.210 s 3.210 s 1.00×

Baseline Performance:
Golden Run (No Faults) 3.210 s 3.210 s 1.00×
Scan Chain Length 1,555 bits
Configuration Method Python GPIO Wishbone + 100 MHz shift -

Table 5.13: Fault Injection Performance Comparison for Stereo Vision Core:
Bit-Banging vs Hardware Controller

The summary of FPGA primitive utilization of stereo-vision core implementation
can be seen in Table 5.15. The extremely high count of flip flops at 64,611 shows
that the design is optimized with the use of pipelining. The high usage of 2-input
lookup tables at 13,214 shows that the logic is simple bitwise operations, such as

61

Results

Path
Component

Delay
(ns) Percentage / Note

Path Requirement 5.333 Clock Period
Total Path Delay 4.385 82.2% of Requirement
Logic Delay 2.961 67.5% of Path Delay
Net Delay 1.424 32.5% of Path Delay
Clock Skew -0.319 Source clock arrives later
Clock Uncertainty 0.112 Jitter and phase error
Setup Slack 0.543 Positive timing margin
Logic Levels 9 Combinatorial depth

Table 5.14: Critical Timing Path Characteristics of SVC Implementation.

Primitive
Type Count Functional

Category
FDCE 64,611 Flip-Flop with Clock Enable
LUT2 13,214 2-Input Lookup Table
SRLC32E 12,515 32-bit Shift Register LUT
FDRE 7,136 Flip-Flop with Synchronous Reset
LUT4 5,926 4-Input Lookup Table
LUT6 4,747 6-Input Lookup Table
LUT3 3,485 3-Input Lookup Table
LUT5 1,859 5-Input Lookup Table
CARRY8 789 Fast Carry Logic
SRL16E 784 16-bit Shift Register LUT
LUT1 775 1-Input Lookup Table
RAMD32 742 Distributed RAM
RAMB36E2 60 36Kb Block RAM

Table 5.15: FPGA Primitive Utilization Summary of SVC Implementation.

in the census transform algorithm. The main usage of 60 RAMB36E2 block RAM
instances is utilized on the ComBlock interface. The results of the complexity of
the design and the verification coverage in Table 5.16 show that the total logic nets
used are 127,863, and the 81,431 routable nets were successfully routed with zero
errors. The utilization of CLB at 97.28% shows an efficient logic implementation
on the FPGA fabric. Zero unconstrained endpoints means that all paths in the
design are driven clock logic that is properly timed and constrained.

62

Results

Metric Value Description
Total Logical Nets 127,863
Routable Nets 81,431
Fully Routed Nets 81,431
Nets with Errors 0
Unique Control Sets 976
CLB Utilization 97.28% 8,580 of 8,820 CLBs used
Unconstrained Endpoints 0
No Clock Pins 0
Combinational Loops 0

Table 5.16: Design Complexity and Verification Coverage of SVC Implementation.

5.4 Special Functions Unit 1

Figure 5.3: Special Function Unit Implementation.

The resource utilization report for the implementation of the special functions
unit core in Table 5.17 shows that the implementation uses only 19.24% of the
CLB LUTs and 5.93% of CLB Registers available for its implementation. The
usage of only 2.5% of DSP slices and 0.84% of available CARRY8 elements shows
that the accelerator uses minimal dedicated hardware blocks for its arithmetic
logic. The Block RAM tile usage is at 27.78% which is dedicated to the ComBlock
interface. The module-level resource allocation report in Table 5.18 shows the total
resource allocated to each module. The main core logic, distributed across many
modules, sfu_0 is the largest contributor to resource allocation with 5,418 look-up
tables. Inside the infrastructure, the axi_smc is allocated 4,981 look-up tables,
while the (sbtr_cntrl_0) remains highly efficient, consuming only 200 look-up

63

Results

Resource
Type Used Available Util.

(%) Function

CLB LUTs 13,577 70,560 19.24 Logic implementation
- LUT as Logic 12,778 70,560 18.11 Combinational logic
- LUT as Memory 799 28,800 2.77 Distributed RAM/SRL
CLB Registers 8,362 141,120 5.93 Sequential elements
- Register as Flip Flop 8,362 141,120 5.93 State storage
- Register as Latch 0 141,120 0.00 Not used
Block RAM Tiles 60 216 27.78 Memory blocks
- RAMB36E2 60 216 27.78 ComBlock buffers
- RAMB18 0 432 0.00 Not utilized
DSP48E2 9 360 2.50 Arithmetic operations
CARRY8 74 8,820 0.84 Fast carry chains
F7 Muxes 239 35,280 0.68 Wide multiplexers

Table 5.17: FPGA Resource Utilization for SFU1 Implementation.

Module LUTs Registers BRAM DSP
sfu_0 5,418 1,963 0 3
uexceptions 1,460 1,210 0 0
uquadraticinterpol 3,755 753 0 0
rro_0 2,203 0 0 6
sbtr_cntrl_0 200 147 0 0
axi_smc 4,981 5,525 0 0
comblock_0 619 428 60 0
comblock_1 75 146 0 0
sfu_input_sel_0 32 0 0 0

Table 5.18: Detailed Module-Level Resource Allocation of SFU1 Implementation.

tables. This shows once again that the controller adds minimal overhead while
being extremely efficient. The on-chip power distribution in Table 5.19 shows
that the total power consumption is 3.527 W, with the PS8 processor system
being the main contributor to the power consumption with 82.54% of total power.
The CLB logic and the signals consume power at a rate of 5.05% and 3.91%,
respectively. This shows that processor side is responsible for the main power
consumption throughout the benchmarks. Table 5.20 shows the summary of the

64

Results

Component Dynamic
(W)

Static
(W)

Total
(W) Percentage

PS8 Processor System 2.807 0.104 2.911 82.54%
CLB Logic 0.106 0.072 0.178 5.05%
Signals 0.087 0.051 0.138 3.91%
Block RAM 0.043 0.006 0.049 1.39%
Clocks 0.050 0.000 0.050 1.42%
DSPs 0.005 0.000 0.005 0.14%
PL Static - 0.221 0.221 6.27%
PS Static - 0.104 0.104 2.95%
Total On-Chip 3.203 0.324 3.527 100%

Table 5.19: On-Chip Power Distribution Analysis of SFU1 Implementation.

Clock Resource Used Fanout Description
pl_clk0 (BUFG_PS) 1 8,851 Main system clock
FI_EN (BUFGCE) 1 1,963 Fault injection enable
FI_RST (BUFGCE) 1 1,963 Fault injection reset
Clock Frequency 187.5 MHz (5.333 ns period)
Setup Slack (WNS) -43.176 ns
Hold Slack (WHS) 0.00 ns

Table 5.20: Clock Network Utilization and Timing of SFU1 Implementation.

fanout and the description of the clock resources. With clock frequency at 187.512
MHz, the design reports the same critical warning as the posit adder core, the
Worst Negative Slack (WNS) of -43.176 ns. The reason for this is because the
source and destination registers of Comblock use a clock frequency that exceeds
the path delay of the SFU accelerator. Since the values on the registers are going
to remain unchanged for more than one clock cycle, due to the software/hardware
latency, it gives enough time to capture the right values. In this way, the proper
functionality of the hardware is maintained. The results, which are expected, also
show that the clock (pl_clk0) has a higher fanout of 8,851 compared to the reset
and enable of the saboteur controller, (FI_EN, FI_RST), with 1,963 for both. Fault
injection performance comparison for Trigonometric special functions core can be
seen in Table 5.21. The principle of bit-banging method, using GPIO controls for
the scan chain configuration versus the saboteur controller usage for scan chain
configuration, are displayed. The overall configuration time for the bit-banging

65

Results

Operation Bit-Bang
(GPIO)

Hardware
Controller Speedup

Fault Injection Campaign (including circuit execution):
Single Fault Injection 2.692 s 1.390 s 1.94×

- Scan Configuration 1.310 s 0.008 s 164×
- Circuit Execution 1.382 s 1.382 s 1.00×

Baseline Performance:
Golden Run (No Faults) 1.382 s 1.382 s 1.00×
Configuration Details:

Scan Chain Length 1,963 bits
Configuration Method Python GPIO Wishbone + 100 MHz shift -
Pure Hardware Shift Time - 19.63 µs (measured) -

Table 5.21: Fault Injection Performance Comparison for SFU-Trigonometric:
Bit-Banging vs Hardware Controller

method is 2.692 s. Using the hardware saboteur controller for configuration result
in a speedup of 1.94 times, with a total time of 1.390 second. The total shift time
is 0.008 s, with data polling during the wishbone interface interactions being the
overhead. This speedup in configuration time shows the efficiency of the saboteur
controller. The timing path characteristics of the implementation can be seen in

Path
Component

Delay
(ns) Description

Total Path Delay 48.243 100%
Logic Delay 23.307 48.3%
Net Delay 24.936 51.7%
Clock Skew 0.125 -
Clock Uncertainty 0.112 -
Setup Slack -43.176 Critical violation
Logic Levels 173
High Fanout Net 2,301 FI_TFen

Table 5.22: Timing Path Characteristics of SFU1 Implementation.

Table 5.22. This report shows that the worst path shows a total delay of 48.243 ns.
Both net delay at 51.7% and logic delay at 48.3% being a contributor to this delay.
Due to the software/hardware latency, the implementation is treated as successful

66

Results

as software control gives enough time for propagation before beginning of the
next operation. The summary of FPGA primitive utilization of special functions

Primitive
Type Count Function

LUT6 6,422 6-input lookup tables
FDRE 5,819 Edge-triggered flip-flops with reset
LUT5 2,699 5-input lookup tables
FDCE 2,219 Edge-triggered flip-flops with CE
LUT3 1,984 3-input lookup tables
LUT4 1,687 4-input lookup tables
LUT2 1,404 2-input lookup tables
RAMD32 742 Distributed RAM
FDSE 322 Flip-flops with set
LUT1 310 1-input lookup tables
MUXF7 239 7-input multiplexers
SRL16E 192 16-bit shift registers
SRLC32E 183 32-bit shift registers
CARRY8 74 Fast carry logic
RAMB36E2 60 Block RAM
DSP48E2 9 DSP slices

Table 5.23: FPGA Primitive Utilization Summary of SFU1 Implementation.

unit core implementation can be seen in Table 5.23. The balanced amount of
edge-triggered flip flops with reset at 5,819 and 6-input look-up tables at 6,422
shows that the design utilizes both combinational logic and registered outputs. Low
usage of DSP slices at 9 shows that the implementation relies on look-up tables for
its arithmetic calculations. 239 MUXF7 multiplexers show that the implementation
utilizes multiple data selection structures. The main usage of 60 RAMB36E2 block
RAM instances are utilized on the ComBlock interface. Design complexity and
verification coverage results at Table 5.24 show that the total logic nets utilized
are 40,298, with 21,927 routable nets were successfully routed with zero errors.
CLB utilization at 29.47% shows a resource efficient implementation. Functional
correctness can be seen from zero unconstrained endpoints.

67

Results

Metric Value Description
Total Logic Nets 40,298
Routable Nets 21,927
Fully Routed Nets 21,927
Nets with Errors 0
Unique Control Sets 520
CLB Utilization 29.47% 2,599 of 8,820
Clock Regions Used 6
Unconstrained Endpoints 0
No Clock Pins 0
Rent Exponent 0.36

Table 5.24: Design Complexity and Verification Coverage of SFU1 Implementa-
tion.

5.5 Special Functions Unit 2

Figure 5.4: Special Function Unit Implementation.

The resource utilization report for the implementation of the special functions unit
(CORDIC) core in Table 5.25 shows that the implementation uses only 16.52% of the
CLB LUTs and 5.86% of CLB Registers available for its implementation. The usage

68

Results

Resource
Type Used Available Util.

(%) Function

CLB LUTs 11,657 70,560 16.52 Logic implementation
- LUT as Logic 10,856 70,560 15.39 Combinational logic
- LUT as Memory 801 28,800 2.78 Distributed RAM/SRL
CLB Registers 8,271 141,120 5.86 Sequential elements
- Register as Flip Flop 8,271 141,120 5.86 State storage
- Register as Latch 0 141,120 0.00 Not used
Block RAM Tiles 60 216 27.78 Memory blocks
- RAMB36E2 60 216 27.78 Data buffers
- RAMB18 0 432 0.00 Not utilized
DSP Slices 16 360 4.44 Arithmetic operations
CARRY8 72 8,820 0.82 Fast carry chains
F7 Muxes 27 35,280 0.08 Wide multiplexers

Table 5.25: FPGA Resource Utilization for SFU2 (CORDIC Core) implementa-
tion.

of only 4.44% of DSP slices and 0.82% of available CARRY8 elements shows that
the accelerator uses minimal dedicated hardware blocks for its arithmetic logic. The
Block RAM tile usage is at 27.78% which is dedicated to the ComBlock interface and
it is consistent with other benchmarks. The module-level resource allocation report

Module LUTs Registers BRAM DSP
sfu_0 5,737 1,855 0 16
- cordic_inst 1,607 105 0 4
- exp2_inst 1,138 774 0 2
- log2_inst 1,523 975 0 2
- rsqrt_inst 1,426 0 0 8
axi_smc 4,974 5,525 0 0
comblock_0 615 428 60 0
sbtr_cntrl_0 199 147 0 0
comblock_1 75 146 0 0
sfu_controller_0 5 4 0 0

Table 5.26: Detailed Module-Level Resource Allocation of SFU2 implementation.

in Table 5.26 shows the total resource allocated to each module. The main core

69

Results

logic sfu_0 is distributed across many modules named cordic_inst, exp2_inst,
log2_inst and rsqrt_inst is the largest contributor to resource allocation with
5,737 look-up tables and 16 DSP slices. Inside the infrastructure, the axi_smc is
allocated 4,974 look-up tables, while the (sbtr_cntrl_0) remains highly efficient,
consuming only 199 look-up tables and 147 registers. This shows once again that
the controller adds minimal overhead while being extremely efficient. The on-chip

Component Dynamic
(W)

Static
(W)

Total
(W) Percentage

PS8 Processor System 2.807 0.104 2.911 83.10%
CLB Logic 0.101 0.061 0.162 4.62%
Signals 0.073 N/A 0.073 2.08%
Block RAM 0.043 0.001 0.044 1.26%
Clocks 0.046 0.000 0.046 1.31%
DSPs 0.004 0.000 0.004 0.11%
PL Static - 0.221 0.221 6.31%
PS Static - 0.104 0.104 2.97%
Total On-Chip 3.179 0.324 3.503 100%

Table 5.27: On-Chip Power Distribution Analysis of SFU2 implementation.

power distribution in Table 5.27 shows that the total power consumption is 3.503 W,
with the PS8 processor system being the main contributor to the power consumption
with 83.10% of total power. The CLB logic and the signals consume power at a rate
of 4.62% and 2.08%, respectively. Throughout the benchmarks implementations,
the processor side is responsible for the main power consumption and the bottleneck
on the HyperFPGA fabric in terms of speed and power consumption. Table 5.28

Clock Resource Used Fanout Description
pl_clk0 (BUFG_PS) 1 8,656 Main system clock
clk_out (BUFGCE) 1 113 Derived clock from divider
FI_EN (BUFGCE) 1 1,749 Fault injection enable (non-clock loads)
FI_RST (BUFGCE) 1 1,747 Fault injection reset (non-clock loads)
Clock Frequency 187.512 MHz (5.333 ns period)
Setup Slack (WNS) -15.429 ns
Hold Slack (WHS) 0.00 ns

Table 5.28: Clock Network Utilization and Timing of SFU2 implementation.

70

Results

shows the summary of the fanout and the description of the clock resources. With
clock frequency at 187.512 MHz, the design reports the same critical warning as
the posit adder core, the Worst Negative Slack (WNS) of -15.429 ns. The reason
for this is because the source and destination registers of Comblock use a clock
frequency that exceeds the path delay of the SFU CORDIC accelerator. Since the
values on the registers are going to remain unchanged for more than one clock
cycle, due to the software/hardware latency, it gives enough time to capture the
right values. In this way, the proper functionality of the hardware is maintained.
The results, which are expected, also show that the clock (pl_clk0) has a higher
fanout of 8,656 compared to the reset and enable of the saboteur controller, (FI_EN,
FI_RST), at 1,749 and 1747 respectively. Fault injection performance comparison

Operation Bit-Bang
(GPIO)

Hardware
Controller Speedup

Fault Injection Campaign (including circuit execution):
Single Fault Injection 2.413 s 1.804 s 1.34×

- Scan Configuration 1.360 s 0.751 s 1.81×
- Circuit Execution 1.053 s 1.053 s 1.00×

Baseline Performance:
Golden Run (No Faults) 1.053 s 1.053 s 1.00×
Scan Chain Length 1,749 bits
Configuration Method Python GPIO Wishbone + 100 MHz shift -

Table 5.29: Fault Injection Performance Comparison for SFU-CORDIC: Bit-
Banging vs Hardware Controller

for special functions CORDIC core can be seen in Table 5.29. The principle of
bit-banging method, using GPIO controls for the scan chain configuration versus the
saboteur controller usage for scan chain configuration, are displayed. The overall
configuration time for the bit-banging method is 2.413 s. Using the hardware
saboteur controller for configuration result in a speedup of 1.34 times, with a total
time of 1.804 s. Data polling from the software wishbone interface interactions
is the overhead. This speedup in configuration time shows a minor increase in
the efficiency of the saboteur controller compared to other implementations. The
timing path characteristics of the implementation can be seen in Table 5.30 explains
the timing violation. This report shows that the path delay 20.408 ns results in
-15.429 ns slack. The net delay dominates at 61.1% and with the logic delay
at 38.9%, they contribute to this delay. Due to the software/hardware latency,
the implementation is treated as successful as software control gives enough time
for propagation before beginning of the next operation. The summary of FPGA

71

Results

Path
Component

Delay
(ns) Percentage

Total Path Delay 20.408 100%
Logic Delay 7.937 38.9%
Net Delay 12.471 61.1%
Clock Skew 0.053 -
Clock Uncertainty 0.112 -
Setup Slack -15.429 ns Timing Violation
Logic Levels 106
High Fanout Net 1,757 FI_TFen

Table 5.30: Timing Path Characteristics (Worst Path) of SFU2 implementation.

Primitive
Type Count Function

FDRE 5,834 Edge-triggered flip-flops with reset
LUT6 5,038 6-input lookup tables
LUT5 2,614 5-input lookup tables
FDCE 2,113 Edge-triggered flip-flops with CE
LUT3 2,069 3-input lookup tables
LUT4 1,731 4-input lookup tables
LUT2 1,101 2-input lookup tables
RAMD32 742 Distributed RAM
FDSE 322 Flip-flops with set
LUT1 316 1-input lookup tables
SRL16E 194 16-bit shift registers
SRLC32E 183 32-bit shift registers
RAMB36E2 60 36Kb Block RAM
DSP48E2 16 DSP slices

Table 5.31: FPGA Primitive Utilization Summary of SFU2 implementation.

primitive utilization of special functions unit (CORDIC) core implementation can
be seen in Table 5.31. The balanced count of edge-triggered flip flops with reset
at 5,834 and 6-input look-up tables at 5,038 shows that the design utilizes both
combinational logic and registered outputs. The utilization 377 shift register with
high number of bits and the 16 DSP slices tracks with characteristics of a CORDIC
core operation. The main usage of 60 RAMB36E2 block RAM instances are utilized

72

Results

on the ComBlock interface. Design complexity and verification coverage results at

Metric Value Description
Total Logic Nets 43,906
Routable Nets 20,551
Fully Routed Nets 20,551
Nets with Errors 0
Unique Control Sets 525
CLB Utilization 25.12% 2,216 of 8,820
Clock Regions Used 6 of 6
Unconstrained Endpoints 316
No Clock Pins 106

Table 5.32: Design Complexity and Verification Coverage of SFU2 implementation.

Table 5.32 show that the total logic nets utilized are 43,906, with 20,551 routable
nets were successfully routed with zero errors, indicating a clean implementation.
CLB utilization at 25.12% shows a resource efficient implementation. The 316
unconstrained endpoints and 106 register pins driven by non-clock logic shows that
there are areas for improvement in the implementation of the CORDIC core.

73

Chapter 6

Conclusion

In this work, the methodology of accelerating the reliability assessment of hard-
ware accelerators through emulation using hyperscale systems is presented. The
background research on the thesis started with the fundamental concepts of what
will be used in order to analyze in this thesis. The general idea behind faults, fault
modeling, and the different models to be used are explained. The scan chain configu-
ration, how the faults are shifted, what are the main hardware pieces to be used are
explained. Continuing with the emulation environment, HyperFPGA, is explained
with detailing the pieces inside. Lastly, the hardware enabling the connection
between the software and the hardware, the Core ComBlock, is explained.

The main task this thesis achieved is the development of a hardware saboteur
controller that is implemented on Verilog in order to achieve significant speed-up
during fault injection campaigns. The controller is developed utilizing the Wishbone
B4 BUS protocol. A simple master-slave interface to achieve significant connection
through acknowledgment. This way the fault injection can be achieved with single
cycle precision. A finite state machine with nine states handles all the interaction
with the software that is using ComBlock and the fault injection through the
saboteur outputs that controls scan chain. This hardware can be implemented
using minimal resources, at maximum 200 LUTs and 150 registers. This results
in less than 2.7 percent overhead on the general digital circuit design. The design
provides models of stuck-at-1, stuck-at-0 and bit-flip configurable for multiple chain
lengths.

The design is tested first on a basic posit adder core, for creating a basis on
implementation using ComBlock and emulation in hyperscale systems. After that,
4 additional circuits, the Tensor Core Unit, Stereo Vision Core and 2 Specialized
Function Units are tested and the results published. The results of the hardware
emulation can be summarized as:

• Performance Characteristics The evaluation of the emulation time proves that

74

Conclusion

the software control unit is the primary bottleneck of the design. During the
operation, the saboteur controller achieved significant speed-up however the
Python machine code, especially the data management algorithm, consume
99.87 percent of total execution time. The achieved speed-up varied greatly
for different benchmark hardware implementations. The highest speed-up is
shown to be the Tensor Core Unit with 7.05 times faster and Stereo Vision
Core at 3.47 times, while the Special Function Units showed lower, 1.94 and
1.34 respectively. The main reason for this is the difference in execution times
per the test vectors and the total number of test vectors at hand.

• Resource Utilization Patterns
The results show that the hardware is greatly efficient for usage in fault
injection campaigns.Total resource usage including saboteurs ranged from
16.52 percent to 57.64 percent of available LUTs. This usage stems from the
complexity of the accelerator at hand and the controller for the accelerator, not
the saboteur controller, which routinely showed less than 2.7 percent overhead
in terms of resource usage.
Block RAM usage is attributed to 27.78 percent with 60 RAMB36E2 blocks.
This usage is directly connected to the RAM need inside the two ComBlock
interface that is utilized. Depending on the size of the accelerator, memory
usage can be the main bottleneck of the design.

• Power Analysis
The processor system is the main dissipator of power, with ranging values
from 63 to 83 percent, while the programmable logic with the fault injection
consumes between 200 and 1,303 mW of dynamic power. The low power
dissipation enables extended fault campaigns without any thermal concern or
power leakage.

6.1 Future Work
After analyzing the results and the shortcomings of the work, in order have a more
developed fault injection campaign these acknowledgments can be made:

• Software optimization: The results show that the bottleneck is the software
input and output evaluation in terms of speed. A more comprehensive and
optimized software campaign can be developed in Python or C/C++. If devel-
oped together with hardware improvements, multiple parallel fault injection
campaigns can be made with an improved controller for multiple accelerators.

75

Conclusion

• Hardware improvement: In order to have an improvement on hardware design,
multiple output ports for multiple scan-chain lengths can be developed in
order to have parallel processing for different accelerators.

• Machine Learning Integration: Incorporating ML techniques to predict critical
fault locations can be utilized for reducing the number of faults to be injected,
decreasing the total campaign time.

76

Bibliography

[1] Carson Dunbar and Kundan Nepal. Single stuck-at fault at an internal node
of a circuit. Online Image from "Using Platform FPGAs for Fault Emulation
and Test-set Generation to Detect Stuck-at Faults". Accessed: 2025-10-01.
2011. url: https://www.researchgate.net/figure/Single-stuck-at-
fault-at-an-internal-node-of-a-circuit_fig1_220405407 (cit. on
p. 13).

[2] Tiago Santos, Fernanda Lima Kastensmidt, and Luciano Ost. SEU bit-flip
simulation mechanism. Online Image from "RASoC: A fault-tolerant router
for networks-on-chip". Accessed: 2025-10-01. 2011. url: https://www.re
searchgate.net/figure/SEU-bit-flip-simulation-mechanism_fig2_
220850634 (cit. on p. 14).

[3] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson. «Fault Injection
into VHDL Models: The MEFISTO Tool». In: Proc. IEEE 24th International
Symposium on Fault-Tolerant Computing. Austin, TX, June 1994, pp. 66–75
(cit. on p. 15).

[4] P. Civera, L. Macchiarulo, M. Rebaudengo, M. S. Reorda, and M. Violante.
«FPGA-Based Fault Injection for Microprocessor Systems». In: Proc. 7th
IEEE International On-Line Testing Workshop. Taormina, Italy, July 2001,
pp. 172–174 (cit. on p. 15).

[5] M. Alderighi, F. Casini, S. D’Angelo, M. Mancini, S. Pastore, and G. R. Sechi.
«Evaluation of Single Event Upset Mitigation Schemes for SRAM Based
FPGAs Using the FLIPPER Fault Injection Platform». In: Proc. 22nd IEEE
International Symposium on Defect and Fault-Tolerance in VLSI Systems.
Rome, Italy, Sept. 2007, pp. 105–113 (cit. on p. 15).

[6] Sensoz Oguz. «Design, reliability evaluation, and hardening of visionoriented
hardware accelerators». MA thesis. Torino: Politecnico Di Torino, 2025 (cit. on
p. 15).

[7] ICTP-MLAB. HyperFPGA-BSP. GitLab repository. Accessed: 2025-10-01.
2024. url: https://gitlab.com/ictp-mlab/hyperfpga-bsp (cit. on pp. 16,
17).

77

https://www.researchgate.net/figure/Single-stuck-at-fault-at-an-internal-node-of-a-circuit_fig1_220405407
https://www.researchgate.net/figure/Single-stuck-at-fault-at-an-internal-node-of-a-circuit_fig1_220405407
https://www.researchgate.net/figure/SEU-bit-flip-simulation-mechanism_fig2_220850634
https://www.researchgate.net/figure/SEU-bit-flip-simulation-mechanism_fig2_220850634
https://www.researchgate.net/figure/SEU-bit-flip-simulation-mechanism_fig2_220850634
https://gitlab.com/ictp-mlab/hyperfpga-bsp

BIBLIOGRAPHY

[8] Trenz Electronic GmbH. TE0803 Technical Reference Manual. Version 30.
Trenz Electronic GmbH. 2021. url: https://www.trenz-electronic.de/
trenzdownloads/Trenz_Electronic/Modules_and_Module_Carriers/5.
2x7.6/TE0803/REV03/Documents/TRM-TE0803-03.pdf (cit. on p. 16).

[9] Rodrigo Melo. Core-ComBlock. GitLab repository. Accessed: 2025-10-01. 2018.
url: https://gitlab.com/rodrigomelo9/core-comblock (cit. on pp. 18–
20).

[10] Richard Herveille. WISHBONE System-on-Chip (SoC) Interconnection Ar-
chitecture for Portable IP Cores. Specification Rev. B.4. Accessed: 2025-10-03.
OpenCores, Sept. 2010. url: https://cdn.opencores.org/downloads/
wbspec_b4.pdf (cit. on p. 23).

78

https://www.trenz-electronic.de/trenzdownloads/Trenz_Electronic/Modules_and_Module_Carriers/5.2x7.6/TE0803/REV03/Documents/TRM-TE0803-03.pdf
https://www.trenz-electronic.de/trenzdownloads/Trenz_Electronic/Modules_and_Module_Carriers/5.2x7.6/TE0803/REV03/Documents/TRM-TE0803-03.pdf
https://www.trenz-electronic.de/trenzdownloads/Trenz_Electronic/Modules_and_Module_Carriers/5.2x7.6/TE0803/REV03/Documents/TRM-TE0803-03.pdf
https://gitlab.com/rodrigomelo9/core-comblock
https://cdn.opencores.org/downloads/wbspec_b4.pdf
https://cdn.opencores.org/downloads/wbspec_b4.pdf

	List of Tables
	List of Figures
	Introduction
	Goal
	Structure Of The Thesis

	Background
	Introduction
	Hardware Faults in Digital Systems

	Fault Emulation Using Saboteur Infrastructures
	Basic Saboteur and Scan Chain
	FPGA-Based Emulation Platform and Communication Infrastructure
	Integration with Hardware Accelerators

	Design and Implementation of the Saboteur Controller
	Introduction
	The Wishbone BUS Protocol and Finite State Machine
	Fundamental Architecture and Design Philosophy
	Controller Architecture and Interface Specification
	Finite State Machine Design
	Operational Modes and Timing Characteristics
	Completion Signaling and Acknowledgment
	Fault Activation Timing Control
	Reset and Recovery Mechanisms

	Simulation-Based Verification

	Implementation and Emulation in HyperFPGA System
	Introduction
	System Architecture Overview
	Data Flow and Control Path
	Software Control Layer Implementation

	Validation and Debugging Methodology
	Functional Verification Approach
	Resource Utilization Analysis
	Power Consumption Analysis
	Timing Analysis
	Verification and Accuracy
	Summary of Findings

	Results
	Introduction
	Tensor Core Unit Implementation
	Stereo Vision Core
	Special Functions Unit 1
	Special Functions Unit 2

	Conclusion
	Future Work

	Bibliography

