POLITECNICO DI TORINO

MASTER’s Degree in ELECTRONIC ENGINEERING

MASTER’s Degree Thesis

Open Hardware, Hidden Risks:
Mitigating passive power side-channel
leakage in RISC-V microcontrollers

Supervisors Candidate
Prof. GUIDO MASERA LORENZO CAPOBIANCO
PhD. MATTIA MIRIGALDI

Academic Year 2024 /2025

Summary

Today’s digital infrastructure is based on secure telecommunications which is
crucial in all kinds of applications, from electronic payments and transaction to
smart homes. In such a context, data security and confidentiality are fundamental
requirements. Encryption algorithms ensure these objectives by transforming
sensitive data into unintelligible information, decipherable only with the correct
secret key. While these algorithms are mathematically secure, their hardware
implementations remain vulnerable to side-channel attacks (SCAs), which exploit
physical leakages such as timing or power consumption rather than algorithmic
weaknesses. Correlations between power traces and the internal state of a device
can reveal secret information, undermining cryptographic protections.

This thesis investigates the vulnerability of standard encryption schemes to
SCAs, with a focus on resource-constrained embedded systems based on the
royalty-free RISC-V architecture. A RISC-V microcontroller was ported to the
ChipWhisperer platform, an open-source suite for hardware security evaluation, to
experimentally assess leakage. The study targets two algorithms: the Advanced
Encryption Standard (AES) and ASCON, a lightweight cipher explicitly designed
for constrained devices with resistance against physical attacks in mind.

To deepen the analysis, the impact of substitution box (S-Box) design on side-
channel resistance was examined. The original S-Boxes of AES and ASCON were
compared with modified versions that enhance resistance to SCAs at the expense
of certain mathematical properties, revealing a fundamental trade-off between
resistance to classical cryptanalysis and physical attack resilience. The effectiveness
of these design choices was validated through experimental evaluation on the
RISC-V microcontroller.

11

Acknowledgements

I would like to thank Professor Guido Masera for giving me the opportunity to
work on this thesis, whose topics kept me engaged until the very end. I am also
deeply grateful to my supervisor, Mattia, for his support and guidance throughout
the process, as well as to everyone at the VLSI Lab.

My sincere thanks go to all my friends for their constant encouragement during this
journey, especially to my university friends, whose presence made this experience
both easier and more meaningful.

Finally, a heartfelt thank you goes to my family, who have always supported me
and gave me the freedom to pursue my interests.

To all of you, my deepest and most sincere gratitude.

“It always seems impossible until it’s done.”
Nelson Mandela

II1

Table of Contents

List of Tables
List of Figures
Acronyms

1 Introduction to Cryptography and Side-Channel Attacks
1.1 Side-channel attacks

2 Background
2.1 Chipwhisperer
2.2 CW305 Overview
2.2.1 USB-to-Registers Interface
2.2.2 Clock Domains
2.2.3 Register Interfaceo
2.3 RISC-V . .
2.4 OBI Protocol
2.4.1 OBItransaction,
2.5 X-HEEP Overview

3 Bridge 2 Xheep
3.1 Software model
3.2 Hardware implementation
3.3 Synthesison FPGA
3.4 On-board test

4 Power Analysis Side Channel Attack
4.1 Introduction
4.2 Simple Power Analysis (SPA)
4.3 Differential Power Analysis (DPA)
4.4 Correlation Power Analysis (CPA).

\Y%

VII

VIII

XI

11
12
12
13
15
15
17

20
23
27
30
31

4.5 Countermeasures
4.5.1 Refactoring the algorithm
4.5.2 Eliminate the information
4.5.3 Suppress the side channel L.

5 Advanced Encryption Standard (AES)
5.1 AES Robustness against Side-Channel Attacks
5.2 Measurement Setup
53 CPA Attack
5.4 Considerations

6 ASCON
6.1 Internal structure
6.2 Sensitivity to side-channel attacks
6.3 Measurement setup
6.4 CPA attack
6.5 Considerations e

7 S-Box metrics: State of the Art
7.1 Classical cryptanalysis resistance metrics

7.2 Side channel attack resistance metrics
721 AES SoA S-Boxes
7.2.2 ASCON SoA S-Boxes

8 Conclusion

Bibliography

VI

List of Tables

2.1
2.2
2.3

3.1
3.2

5.1

5.2

6.1

6.2

6.3

6.4

RISC-V register definitions
OBIsignals
Boot mode summary L

Firmware file instruction endianness
Status Register bits function o000

Trade-off between the cryptanalytic properties and PGE threshold
in AES
Cryptographic properties of the S-boxes in exam for AES. NL:
Non-Linearity. DU : Differential Uniformity. CCV : Confusion
Coefficient Variance. MCC : Minimum Confusion Coefficient. TO :
Transparency Order

Tested S-Boxes for the analysis on ASCON with the number of
collected traces
Trade-off between power analysis resistance and cryptanalytic prop-
erties for ASCON S-Box
Cryptographic properties for the S-boxes in exam for ASCON. NL:
nonlinearity. DU: differential uniformity. CCV: confusion coefficient
variance. MCC: minimum confusion coefficient. TO: transparency
order
ASCON standard S-Box: attacked bits, ordered according to their
SNR . .

VII

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
4.4

It is possible to notice the peak in current absorption halfway through

the transition 5
CW305 target boardo 9
CW305 hardware setup 10
CW305 verilog wrapper 11
Register interface read/write timings 11
RISC-Vlogo o 13
The modular instruction set of the RV32IMAC variant 14
OBI writing transaction 16
OBI reading transaction 16
X-HEEP architecture overview. 17
Bridge overview 20
Bridge control unit FSM 21
FSM for the handshake control unit 23
Bridge internal structureo 23
C++ software model for the Bridge2Xheep module. 25
Firmware File - Example of not contiguous memory areas 26
Software model simulation 26
SystemVerilog description of the status register reset mechanism. . . 28
CW305 Simulation - USB communication 29
CW305 Simulation - OBI transaction 30
CW305 Simulation - Exit Boot Loop Flag 30
CW305 Simulation - LED blinking 31
Visualization of the short-circuit current for a logic inverter. 32
Implementation of the shunt resistor as current sensor. 34
SPA trace showing an entire DES operation [8]. 35
Possible power traces for totally correct, partially correct and incor-

rect passwords. 36

4.5
4.6
4.7

4.8

5.1
5.2
5.3
5.4
9.5
0.6
5.7
5.8
2.9
5.10
5.11
5.12
5.13

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

6.11

Python code example for the DPA algorithm.
Difference between aligned and unaligned power traces
Visual representation of the correlation factor for different relation-
ship between the x and y variables.
Schematic of the measurement setup for the CPA attack

Visualization of the AES algorithm. [32]
Measurement setup for the CPA attack on AES
Power traces for the first round of AES.
Partial Guessing Entropy for the standard AES S-Box.
Partial Guessing Entropy for the S-Box Freyre 2.
Success rate for the standard AES S-Box.
Success rate for the S-Box Freyres.
Partial Guessing Entropy for the S-Box Freyre 1.
Partial Guessing Entropy for the S-Box Freyre 3.
Partial Guessing Entropy for the S-Box Hussain.
Partial Guessing Entropy for the S-Box Ozkaynak.
SNR for the Rijandael S-Box.
SNR for the Freyre 2 S-Box.

Ascon-AEADI128 encryption [33]
Display of the 3 steps of a single round [27]
Measurement setup for the CPA attack on ASCON
Plot of 40 captured power traces.
Leakage model used for the analysis on ASCON.
Correlation values for the bit 33
Correlation values for the bit 48
SNR value for the bit 33
SNR value for the bit 48
Correlation plot as function of traces for bit 48 - Standard S-Box.

SNR = 0.003856
Correlation plot as function of traces for bit 48 - Bilgin S-Box. SRN

= 0.007813

IX

Acronyms

SCA
Side-Channel Attack

RISC

Reduced Instruction Set Computer

ISA

Instruction Set Architecture

OBI

Open Bus Interface

X-HEEP
eXtendable Heterogeneous Energy-Efficient Platform

P
Inellectual Property

HAL

Hardware Abstraction Layer

SDK

Software Development Kit

FMS
Finite State Machine

GPIO
General Purpose Input/Output

XI

SPA

Simple Power Analysis

CPA

Correlation Power Analysis

DPA

Differential Power Analysis

HW
Hamming Weight

HD

Hamming Distance

S-Box
Substitution Box

AES
Advanced Encryption Standard

API

Application Programming Interface

AEAD
Authenticated Encryption with Associated Data

XOF
eXtandable Output Functions

NIST
National Institute of Standards and Technology

SNR

Signal-to-Noise ratio

NL
Non-linearity

XII

DU
Differential Uniformity

CC

Confusion Coeflicient

CCV

Confusion Coefficient Variance

MCC

Minimum Confusion Coefficient

TO

Transparency Order

VTO

improVed Transparency Order

XIII

Chapter 1

Introduction to
Cryptography and
Side-Channel Attacks

The security of modern e-commerce, chip-based payment cards and digital com-
munications is ensured by data encryption and cryptographic algorithms, so that
only the sender and the corresponding receiver can actually read the content of the
message, preventing others from accessing this information.

The idea behind encryption is to transform ordinary information (called plaintext)
into an unintelligible form (called ciphertezt), by means of an encryption algorithm
(cipher). A fundamental role in these kind of algorithms is played by the key, the
secret value (ideally known only to the dialoguers) that allows to encrypt, and
more importantly, decrypt the concealed message [1].

The need for secure communication is actually a much more ancient problem.
Examples can already be identified among ancient civilisations all over the world,
from the Mediterranean basin to China, via the Arab and Indian worlds. In classical
times, the prime example is represented by Caesar’s cipher, named after the Roman
leader who invented it according to the Roman historian Suetonius [2]. In this case,
the encryption algorithm consists of replacing each letter of the plaintext message
with another that is three positions further down the alphabet. Although it is a
very basic method of encryption, it was very effective at the time due to the very
low level of education of ancient populations.

Further improvements to encryption algorithms have followed over the centuries,
making use of more complex keys or more intricate encryption mechanisms, but a
common aspect of all these techniques is the use of symmetric-key cryptography.

Symmetric-key cryptography refers to an algorithm in which both the sender
1

Introduction to Cryptography and Side-Channel Attacks

and the receiver share the same secret key, which is used to both encrypt and
decrypt the message [3].
This technique, although very simple, has several drawbacks:

o The secret key has to be exchanged between the two interlocutors, so there is
at least one moment when a possible malicious attacker can intercept the key.

e Once the key is obtained, the attacker is able to both decrypt any commu-
nication and generate false messages with the receiver not being aware of
it.

o If the communication network consists of several nodes, it is necessary to have
a key for each possible pair of interlocutors, so the number of keys to manage
becomes very large and any key update results impractical.

Symmetric-key cryptography was the only known type of cryptography until the
mid-1970s. In fact, in 1977 Ron Rivest, Adi Shamir and Leonard Adleman proposed
an idea for a new cryptographic algorithm based on the notion of asymmetric-key,
also known as RSA by the names of the three inventors.

The asymmetric-key cryptography [4] relies on two different but mathemat-
ically related keys, a public key and a private key, to securely transmit information.
The message is encrypted using the public key, which can be distributed to anyone,
and is decrypted using the private key, known only to the two communicants. The
success of this implementation is linked to the way in which the two keys are
generated. The RSA algorithm is in fact based on the difficulty of decomposing a
very large number into two prime numbers. Therefore, even if someone has access
to the encrypted information and the public key, it is very difficult for them to
discover the private key needed to decrypt the message. This characteristic makes
the RSA algorithm very secure, which is why it is the main type of cryptographic
algorithm used in today’s communications.

However, asymmetric key cryptography is inherently slow; therefore, when a
large amount of data needs to be transferred, asymmetric key cryptography is only
used at the beginning of the communication to exchange a common key that can
be securely used for a faster and simpler symmetric key-based communication.

Although these algorithms are theoretically vulnerable to brute force attacks
[5], their effectiveness is ensured by the fact that it is impossible to decrypt the
message in an acceptable time if the length of the encryption key is sufficiently
large, due to the computational load required.

However, other techniques, not based on mathematical analysis, can be used
to extract information from encrypted data or encryption algorithms. These are
commonly called side-channel attacks.

Introduction to Cryptography and Side-Channel Attacks

1.1 Side-channel attacks

For Side Channel Attack is intended any type of attack which has the aim of
gathering extra information about the encrypted data by exploiting the way a
protocol or algorithm is implemented.

It is typically assumed that the implementations of cryptographic computations
are ideal “black-boxes” whose internals can neither be observed nor interfered with
by any malicious entity. This assumption is necessary to enable rigorous theoretical
analysis and design of cryptosystems and security protocols, but it is not realistic.

Actually, cryptographic algorithms are always implemented in software or hard-
ware on physical devices which interact with and are influenced by their environ-
ments. These physical interactions can be instigated and monitored by adversaries
and may result in information useful in cryptanalysis [6]. The effectiveness of these
attacks lies in the fact that there is a correlation between the physical measure-
ments taken at different points during the computation and the internal state of the
processing device, which is itself related to the secret key. So, it is quite unlikely
that an attacker would try to break the encryption algorithm by decrypting the
secret key, knowing that the implementation of the algorithm has vulnerabilities
that are easier to exploit.

These weaknesses can completely bypass or otherwise reduce the theoretical
robustness of these algorithms.

The foundations on SCA attacks in the public cryptography research community
are all due to Paul Kocher [7] [8] [9].

Side channel attacks are typically classified into three main categories [10]:

o Control over the computation process: it is possible to distinguish between
passive attacks and active attacks on the basis of the influence carried
out by the attacker on the target device. In the case of passive attacks, the
attacker merely collects information on the operations of the target system
while the system behaves as if there no attack occurs. In the case of active
attacks, the attacker manipulates the behaviour of the target system.

o The way the device is accessed: it refers to the physical level of intrusiveness
required by the type of attack. A distinction can be made between various cases:
invasive attack, when it involves removing the package of a cryptographic
module in order to access internal components (e.g. inserting a probe on a
data bus); semi-invasive attack, when it is necessary to physically access the
device but without damaging its passivation layer (e.g. ionising a device with a
laser beam in order to modify the content of a memory); non-invasive attack,
when the attack is limited to the mere observation of the device’s operation.
Attacks of the latter type exploit information unintentionally leaked by the

3

Introduction to Cryptography and Side-Channel Attacks

system. One important characteristic of non-invasive attacks is that they are
completely undetectable.

o The method used for data analysis: SCA can be divided into simple side-
channel attack and differential side-channel attack, depending on the
methods used in the process of analyzing the sampled data.

Power consumption, timing analysis and electromagnetic emission are examples
of Side Channel Attacks in digital electronic circuits, but are not the only ones.
Sound, for example, is a possible method for side-channel attacks, which has been
used mainly, but not only, in the past, when cryptography and communications
relied on predominantly mechanical or electromechanical systems. Famous is the
case of the operation ENGULF [11] conducted by the British MI5, which led to the
decryption of secret Egyptian communications by monitoring the sound produced
by the Hagelin encryption machines, or the research published in 2004 by Dmitri
Asonov and Rakesh Agrawal of the IBM Almaden Research Center, which showed
that the sound produced by different keys on telephones or ATM keyboards could
be exploited to trace the text of the data entered [12].

For what concerns modern digital systems, side-channel attacks relies mainly
on:

o Time analysis: attacks based on measuring the algorithm’s computation time.
By analysing the execution time of a cryptographic algorithm, it is possible
to extract information about the input data. In fact, every logical operation
performed by a computer takes a certain amount of time to complete and
the computation time is closely related to the input data. By measuring
the computation time, it is possible to trace the input data. Examples of
these kind of attacks are the well known Meltdown and Spectre vulnerabilities
discovered in 2018 [13] [14]. These vulnerabilities allow a process to access
unauthorised memory areas by exploiting memory access time and CPUs
speculative execution combined with cache side-channel attacks, thereby
revealing sensitive information.

o Power analysis: attacks that exploit the variation in power consumption
of the device during the execution of the cryptographic algorithm to gather
information about the secret key. For example, different instructions performed
by a microprocessor will have differing power consumption profiles. This kind
of SCA relies on the physical properties of the electronic devices. A data bus
on a PCB, for instance, consists of a metal line lying on top of a dielectric
layer underneath which is a ground plane. This structure acts like a capacitor.
During communication, the line is brought to logic 1 by charging the capacitor

4

Introduction to Cryptography and Side-Channel Attacks

and to logic zero by discharging it. On a physical level, commutations on the
line occur through a change in the voltage at the terminals of this capacitor,
which in turn is due to a shift in electrical charges. Thus, by measuring the
electric current flowing on the supply line, it is possible to obtain information
on the data available on the bus. This type of attack is also non-invasive, as
it does not require access to the internal contents of the chip. It is sufficient
to measure the current flowing through the supply line, by means of a shunt
resistor.

o Electromagnetic analysis: attacks based on the measurement of the electro-
magnetic radiation emitted by the device, from which the secret key can be
obtained directly. This type of attack has the great advantage of being totally
non-invasive. Unlike power side-channel attacks, which require a shunt resistor
to be inserted into the power supply, in this case, all that is needed is to place
an EM probe next to the crypto processor without making any changes to the
circuit. As in the previous case, power consumption P is measured indirectly
by measuring current consumption according to the formula p(t) =V - i(t),
since the supply voltage is constant. The key principle that enables this type
of attack lies in the behaviour of logic gates during switching. In fact, the
transistors used in CMOS logic pass through various conduction zones during
switching, each of which corresponds to a different current level. In particular,
halfway through switching, both the pull-up pMOS and the pull-down nMOS
are in the active region, generating a short circuit between the power supply
and ground. This phenomenon causes a peak in current consumption, known
as short-circuit current, as show in Figure 1.1. Since the current flowing in a
wire generates a magnetic field, this current peak in turn generates a strong
variation in the magnetic field that can be measured using an EM probe. Once
the power consumption has been measured in this way, the rest of the attack
proceeds as for power side channel attacks.

Figure 1.1: It is possible to notice the peak in current absorption halfway through the transition

Since side-channel attacks are based on the existence of correlation between the
leaked information and the encrypted data, possible countermeasures mainly fall
into two categories:

Introduction to Cryptography and Side-Channel Attacks

o Eliminate or reduce such leaked information. Possible examples of this type
of countermeasure are shielding against electromagnetic emissions, so that the
signal received by the attacker is weakened and the susceptibility of the chip
is reduced, or physical encapsulation of the system, which reduces acoustic
emissions and the possibility of probing the circuit.

o Eliminate the relation between the leaked information and the encrypted data,
by using blinding techniques [6]. The effectiveness of side-channel attacks is
due to the attacker knowing the characteristics of the encryption algorithm
in the presence of some particular input. Thus, the idea behind blinding
techniques is to partially alter the input data so the algorithm is brought into
an unpredictable state.

Most of the countermeasures that fall into the second category are implemented
at software level, since in most cases hardware manufacturers do not provide doc-
umentation on the chip’s internal architecture or design choices, for commercial
reasons, so that circuit-level countermeasures cannot be implemented. Unfortu-
nately, software implementations typically have a significant timing and code size
overhead as well as a substantially long development time because hands-on testing
the result is crucial [15].

A further obstacle to the development of hardware countermeasures against
side-channel attacks is the absence of open source tools that allow low-cost research
in this area. In recent years, the rapid development and global adoption of the
RISC-V platform has opened up new possibilities for security researchers.

The aim of this thesis is therefore to show that it is possible to carry out security
research using completely open-source tools, such as the toolchain provided by
Chipwhisperer and the RISC-V platform. The idea is to perform side-channel
attacks on a RISC-V based microcontroller running encryption algorithms, measur-
ing its power consumption in order to identify the most critical areas and develop
possible hardware countermeasures.

For example, in the case of CPUs, power consumption is effectively linked to the
microinstruction being executed, as this will use different elements of the chip. This
phenomenon is a further source of side-channel attacks, as it allows instructions
to be mapped based on their power consumption. Microarchitectural leakage can
be eliminated by developing a specific instruction set (ISA) [16][17], thus working
at the hardware design stage, or by adapting the code to take microarchitectural
leakage into account. The second option is certainly more flexible, as it does not
need physical changes to the chip, but it does require a deep understanding of the
CPU’s microarchitecture [18], which usually only hardware manufacturers have.

The use of a RISC-V platform allows for in-depth analysis of ISA-related
microarchitectural leaks, as the analysis is set up in a complete white-box scenario
where the CPU is known down to the gate-level description.

6

Introduction to Cryptography and Side-Channel Attacks

The microcontroller used for these analysis is the X-HEEP platform (eXtendable
Heterogeneous Energy-Efficient Platform) [19], a 32-bit RISC-V microcontroller
developed by the Embedded Systems Laboratory (ESL) at Ecole Polytechnique
Fédérale de Lausanne (EPFL), while the power measurements have been performed
by using the Chipwhisperer framework !, an open source toolchain dedicated to
hardware security research.

The thesis is divided into 2 main parts:

— The first part is about porting the X-HEEP microcontroller to the CW305
target board developed by Chipwhisperer, a FPGA based evaluation board
specifically designed to ease the process of side channel power analysis.

— The second part is about the actual side-channel power analysis. More
specifically, an investigation is conducted into the construction of S-boxes
that exploit mathematical properties aimed at reducing leakage, and their
effectiveness is evaluated as lightweight countermeasures against passive side-
channel attacks for the AES and ASCON algorithms.

'https://github.com/newaetech/chipwhisperer

7

https://github.com/newaetech/chipwhisperer

Chapter 2

Background

2.1 Chipwhisperer

Chipwhisperer [20] is a complete open-source toolchain developed by NewAE
Technology, devoted to side-channel attacks on embedded devices, with a particular
focus on power analysis. This includes monitoring device’s power consumption and
voltage and also clock glitching attacks, which have the aim of briefly disrupting a
device’s power or clock to cause unintended behaviour.

The toolchain consist of three different layers:

o« Hardware: Chipwhisperer provides boards specifically developed for SCA.
This includes scope boards, which are used to mount the side-channel attacks,
and target boards, which works as a device under test (DUT). As far as
scope boards are concerned, they can measure power consumption, allowing
an encryption key to be retrieved, or voltage glitches to wreak havoc on an
embedded device. Target boards include all the necessary tools (e.g. shunt
resistor on the supply line etc) to test the resistance of the developed hardware
against side channel attacks. Among these there is the CW305 board, which
is analysed in more detail in the Section 2.2.

o Firmware: Chipwhisperer provides firmware for all their evaluation boards,
which means C code for the MCU used as the USB controller and Verilog HDL
for FPGA applications. An example is the Verilog wrapper used to facilitate
the insertion of a proprietary core on the CW305 board’s FPGA.

o Software: Chipwhisperer software includes a Python API for talking to
ChipWhisperer hardware (ChipWhisperer Capture), via the USB controller,
and a Python API for processing power traces from ChipWhisperer hardware
(ChipWhisperer Analyzer).

Background

One unique strength of Chipwhisperer scope boards is that the sampling clock
used for the power consumption measurements is derived directly from the device
clock, ensuring a degree of synchronism on measurements that would be impossible
to achieve with an external oscilloscope. With a real-time oscilloscope, in fact, the
internal sample clock of the oscilloscope will be running at all times, and the sample
occurs at the next clock edge after the trigger. Thus even though the oscilloscope
is triggered at a repeatable time, there will be some random jitter between when
the first sample occurs relative to this trigger for unsynchronized (free-running)
sample clocks. This approach relaxes the sample rate requirements.

2.2 CW305 Overview

The CW305 is a FPGA target board developed by Chipwhisperer to ease the
process of power side channel attack analysis. The board consist of an Artix A100
FPGA, that implements a template structure in which it is easy to insert an IP
design, and a SAM3U microcontroller, which manages the USB communication
with the host PC. An overview of the board is shown in Figure 2.1:

)

Figure 2.1: CW305 target board

The custom USB interface, managed by the SAM3U microcontroller, allows
data to be sent and received from the FPGA directly from the host PC used to
process the measurement data. At the physical level, the CW305 provides an
address/data bus between the microcontroller with USB interface and the FPGA.
This address/data bus allows arbitrary data to be read/written from/to the FPGA
by simply selecting the appropriate register address. This solution also allows

9

Background

the board’s configuration parameters, such as the PLL output frequency, to be
adjusted via the Python API to meet design requirements. Some parameters, such
as the clock source or the FPGA bitstream loading method, can also be set via
the on-board DIP switches. The measurement set-up schematic is shown in the
Figure 2.2. The capture board in the schematic can also be replaced by an external

oscilloscope.

VCC-INT

888

Shunt

Supply %

On Board DMM

Bus |
usB i
Interface Register

Clock

KEY

BIPUT

OUTPUT

H . TametFPGA ‘ _

AdtieosDam]

| Algorithm

Under Test | !

l (SAMsU) K== >intertdce

Sythesis

| Clock

Management
lSampIﬁ Clock

Control Computer,

*. Sampliing || apc

| Clock

3 Amalap

Buffer

Trigger Logic

ChipWhisperer Capture (CW-Lite/CW-Pro)

Figure 2.2: CW305 hardware setup

The implementation of proprietary cores on the FPGA is facilitated by the
presence of a Verilog wrapper, whose purpose is to decouple the design of the core
module from the hardware infrastructure needed to communicate with the control

computer.

The top-level cw305__top.v wrapper consists of 3 Verilog sub-modules, as

shown in Figure 2.3:

10

| Tigper

Background

/ cw305_top.v \

<target> cw305_reg_aes.v
N J I J
clocks.v cw305_usb_reg_fe.v

_ ~/

Figure 2.3: CW305 verilog wrapper

e cw305__usb_reg fe.v: Front-end to the SAM3U USB interface. This
module contains all the logic needed to correctly interface the register block
on the FPGA with the SAM3U microcontroller, which manages the USB
communication with the PC.

o clocks.v: controls the routing of the internal and external clock signals.

e cw305_reg crypto.v: register block. This module includes all the control
and status registers that the ChipWhisperer software interacts with in order to
control the target. For instance, Figure 2.3 shows the term cw305 reg aes.v
since a AES cryptographic core is instantiated.

2.2.1 USB-to-Registers Interface

This module (cw305 usb_reg fe.v) manages the USB communication between
the SAM3U microcontroller and the FPGA registers block. It defines the timing
requirements for the registers read and write operations, as shown in Figure 2.4:

usb_clk //

reg_addr_valid / _/u \—

reg_address 7 Al m(A2 2.

reg_bytecnt m 0 X 1 U, 0 X 1 %
reg_write /_\ /_\ //

wite_data 77701 __X___ 02 Y A 7
i /2 N A

reg_read

read_data 72 7 2 7 777 K D Y7727 02 YO,

Figure 2.4: Register interface read/write timings

The interface between the microcontroller and the USB-to-Registers module is
based on an 8-bit data bus and a 21-bit address bus. The first 14 MSBs of the

11

Background

address are used to address a physical register, while the remaining 7 bits are used
to address the byte within the same register. In this way, each register can store
up to 128 bytes.

The read and write operations are managed by 3 control signals in the CW305
top level:

o CE#: active low chip enable
o RD#: active low read signal

o WR#: active low write signal

At the positive edge of the usb_clk signal, if CE = 0 and WR = 0 the data on
the usb__data bus is sampled and stored in the corresponding register pointed by
the usb addr value.

On the contrary, if CE = 0 and RD = 0 at the positive edge of the usb_ clk
signal, the data on the usb_data bus is available and can be sampled by the host
PC.

2.2.2 Clock Domains

The CW305 FPGA board supports 2 different clock domains: the USB clock
domain, used for all the control and status register the ChipWhisperer software
interacts with directly, and the cryptography clock domain, for the target logic.

This structure has 2 main benefits: first of all, the USB clock can be disabled
when performing power measurements, ensuring that the captured traces are not
affected by USB-clock related noise; secondly, the USB clock is fixed at the frequency
of 96 MHz, while the cryptography clock can be changed according to the target
needs and the on-board PLL specifications.

Clocks routing is defined in the clocks.v module.

2.2.3 Register Interface

This module (cw305_reg_crypto.v) interfaces with both the target module and the
USB-to-register module. It contains all the control and status registers used by the
ChipWhisperer software to interact with the board, allowing the direct control of
the target module from the external PC.

Register address definitions are located in a separate file, called cw305_ defines.v.
This allows to easily change the names and the behaviour of the registers according
to the design needs. When connecting to the target board using the Python APIs,
this Verilog defines file is automatically parsed so that registers may be referred to

12

Background

by their Verilog name. The contents of the registers can be passed to the device
under test according to the project specifications.

2.3 RISC-V

Since power consumption measurements are performed on a RISC-V-based micro-
controller, it is worth analysing this architecture in a deeper level of detail.

RISC-V is an open standard instruction set architecture (ISA) based on the
principle of Reduced Instruction Set Computer (RISC). The project began in May
2010 at the University of California, Berkeley, when prof. Krste Asanovi¢ and
graduate students Yunsup Lee and Andrew Waterman [21] started it as part of
the Parallel Computing Laboratory (Par Lab) at UC Berkeley, of which Prof.
David Patterson was Director. The latter in particular was a pioneer of the RISC
architecture and one of the first to argue the obvious benefits of this approach
over its CISC counterpart, including a much simplified control system and faster
execution speed of individual instructions, which overall resulted in higher CPU
performance. The name RISC-V was actually a way of honouring Berkeley’s earlier
RISC projects (RISC-I, RISC-II, ...) that started to appear in the 1980s thanks to
Professor Patterson himself.

b RISC-V~°

Figure 2.5: RISC-V logo

The idea behind the project was to create a modular ISA [22] (a set of instructions
executable by a microprocessor) that would be royalty-free and usable by anyone,
both academically and commercially.

Modularity is a crucial aspect to ensure adoption of the instruction set by as
many entities as possible, from simple academic projects to complex industrial
designs. For this reason, the ISA is composed of instruction subsets that allow
the hardware to be developed according to the project’s needs. The base alone
(shown in Figure 2.6) can implement a simplified general-purpose computer, with
full software support, including a general-purpose compiler. Being a RISC based
architecture, memory accesses are reserved to load and store instructions only.

The standard supports a 32 x 32-bits register file and also defines the specific
function of each register, as show in Table 2.1. When the floating-point extension
is implemented, an additional 32 floating-point registers are placed. Except for
memory access instructions, instructions address only registers. The first integer
register is a zero register, and the remainder are general-purpose registers. A store

13

Background

RV32IMAC

CUURWS USGW . CAMOANOMW. AMORW W AMOXORW | cuw caw

(@ ch SBRGs CT S

R R (T

D D GEEREED

D TSR D T T

D (EmED (FEE (HEEET . css ow
D s e — >~ Rvsa | l— = — pyasc
. BaselntegerISA /| Compressed ISAExtension

Figure 2.6: The modular instruction set of the RV32IMAC variant

to the zero register has no effect, and a read always provides 0. Using the zero
register as a placeholder makes for a simpler instruction set.

Rl\eélsmt:r S}lf\Irr;‘tr););m Description Saved by
32 integer registers

x0 Zero Always zero

x1 ra Return Address Caller

x2 Sp Stack Pointer Callee

x3 gp Global Pointer

x4 tp Thread Pointer

x5 t0 Temporary / alternate return address | Caller

x6-7 t1-2 Temporaries Caller

x8 s0/fp Saved register / frame pointer Callee

x9 sl Saved register Callee

x10-11 | a0-1 Function arguments / return values Caller

x12-17 | a2-7 Function arguments Caller

x18-27 | s2-11 Saved registers Callee

x28-31 | t3-6 Temporaries Caller

Table 2.1: RISC-V register definitions

14

Background

2.4 OBI Protocol

The Open Bus Interface (OBI) is a request-grant-based protocol similar to the
AMBA AXI protocol. It was proposed by the OpenHW Group as the standard
communication bus for their CV32E40P processor ' — a 4-stage, in-order, 32-bit
RISC-V core — which is one of the CPUs available for the X-HEEP platform.
Although it is a generic communication protocol, the processor mainly uses it
for interfacing with code and data memories. Within X-HEEP; it is also used as
a communication protocol for the extension bus, which is key to this platform’s
flexibility.

The OBI is easier to interface than the AMBA AXI and AHB protocols, and
improves timing by removing rvalid->req dependency. The protocol also forces
address stability. Thus, the core cannot retract memory requests once issued,
nor can it change the issued address. Communication relies on the main signals
reported in Table 2.2:

Name Source ‘ Destination ‘ Description
Global signals

ok Clock source All ’I.‘h.(: bus clock times all bus transfers. All signal timings are related to the

rising edge of clk.
reset_n Reset controller All The bus reset signal is active LOW and resets the system and the bus. This is the only active LOW signal.

Address channel (A) signals
req Manager Subordinate | Address transfer request. req=1 signals the availability of valid address phase signals.
we Manager Subordinate | Write Enable, high for writes, low for reads.
bef] Manager Subordinate | Byte Enable. Is set for the bytes to write/read.
addr|] Manager Subordinate | Address
. Write data. Only valid for write transactions. Undefined for read
wdatal] Manager Subordinate . N
i transactions.
. Ready to accept response transfer. Response transfer is accepted on
rready| Manager 1§ ate | . R)
rready(] Anager Subordinatc rising clk with rvalid=1 and rready=1.
Response channel (R) signals
. . Grant. Ready to accept address transfer. Address transfer is accepted on

gnt Subordinate Manager e . X

rising clk with req=1 and gnt=1.
valid Subordinate N Response transfe.rirequest, rvalid=1 signals the avai.labilit‘v of valid

response phase signals. Used for both reads and writes.

. Read data. Only valid for read transactions. Undefined for write

rdatal] Subordinate Manager .

transactions.

Table 2.2: OBI signals

2.4.1 OBI transaction

Each OBI transaction consists of two transfers:

1. Address phase transfer over the A channel.

2. Response phase transfer over the R channel.

'https://docs.openhwgroup.org/projects/cv32e40p-user-manual/en/latest/intro.
html

15

https://docs.openhwgroup.org/projects/cv32e40p-user-manual/en/latest/intro.html
https://docs.openhwgroup.org/projects/cv32e40p-user-manual/en/latest/intro.html

Background

1. Address Phase Transfer

1. The manager asserts the request signal (req) high to indicate that the address
phase signals (addr, wdata, we, be) are valid.

2. The subordinate asserts the grant signal (gnt) high to indicate it is ready to
accept the address phase signals.

3. The address phase of a transaction starts in the cycle where req goes high,
and completes on the rising edge of the clock when both req and gnt are
high.

2. Response Phase Transfer

1. After a granted request on the A channel, the subordinate asserts rvalid high
to indicate that the response signals (e.g., rdata) are valid.

2. The manager asserts rready high to indicate it is ready to accept the response
phase signals.

3. The response phase of a transaction starts in the cycle where rvalid goes
high, and completes on the rising clock edge when both rvalid and rready
are high.

The OBI protocol supports other additional signals (e.g. auser, wuser, aid,
etc.), the usage of which is specified in the reference manual, but these are extensions
of the basic protocol and are therefore not supported by all controllers that comply
with the OBI standard. The basic OBI transfers are illustrated in the Figure 2.7
and Figure 2.8.

ok LML ok LML L
eq [\ req [\
addr 7777 address ¥/ addr 77777/ address ¥/
we [T\ we
e [\ e [\
wdata X value X7/ wdata
gnt / \ gnt /—\
rvalid /_\ rvalid /—\
rdata rdata 7 Nvalue\/

Figure 2.7: OBI writing transaction Figure 2.8: OBI reading transaction

16

Background

2.5 X-HEEP Overview

X-HEEP [19] is an open-source, extensible and configurable single-core RISC-V
microcontroller developed at the Embedded Systems Laboratory(ESL) of EPFL,
designed to be used both as low-cost microcontroller or extended and customized
with external peripherals and accelerators. Integration with external peripherals is
guaranteed by a shared bus system, which exposes master and slave ports to/from
the bus. The communication between the CPU and the external peripherals relies
on the OBI protocol described in the previous section.

This approach allows to inherit an IP fully capable of booting RTOS (such as
FreeRTOS) with the whole firmware stack, including HAL drivers and SDK, but
modular and extensible with proprietary hardware co-processors, accelerators or
any type of IP. An overview of the complete architecture is shown in Figure 2.9.

MEMORY SUBSYSTEM

SUBSVETEM RAMO RAM 1 RAM 2 RAM 3 D

INSTR DATA

= S
M BUS SUBSYSTEM

s s M
PERIPHERAL SUBSYSTEM 1 AQ PERIPHERAL SUBSYSTEM 1 i i
BOOT
o2t S S s S S M M S S Soor
PLIC EXECUTE
52 «f—1- FROM

SPI2 FQWER TIMER DMA BOOT ROM S0C CTRL FLASH

MANAGER
SCK2 +——1— S {——f— EXIT VALUE
TIMER 2 ——* EXIT VALID

S S B SFSH 5 S S S S

12¢ GPIO SPI e UART GPIO AO P |,

S) r T T #
[| [|
1 ! I

Cl 0.

SDA SCL 10(31:8] SD CS SCK SO

Iy
|
v

CF o ORXTX 10(7:0]

Figure 2.9: X-HEEP architecture overview.

The whole system is divided into 4 different power domains: CPU subsystem
domain, memory banks domains, peripheral subsystem domain and always-on
peripheral subsystem domain. IPs are carefully selected and grouped in the
mentioned power domains in order to maximize energy savings for ultra-low-power
edge-computing applications. A noteworthy aspect is that many of the IPs within

the design are actually derived from existing major open-source projects, such as
PULP, OpenHW and lowRISC.

The CPU subsystem is itself modular. The CPU can be selected among some
of the RISC-V-based processors developed by the OpenHW group, such as CVE2,

17

Background

CV32E40P and its variant with the CORE-V-X Interface called CV32E40PX,
and the CV32E40X, also with the X-IF. All the CPUs are 32-bit, open-source,
low-power embedded cores featuring a Harvard architecture with two separate bus
interfaces for instructions and data. Both interfaces use the Open Bus Interface
(OBI) protocol. Since the whole system has been designed to be energy-efficient,

this domain supports clock gating in order to reduce power dissipation when the
CPU is not needed.

The memory subsystem is divided into multiple banks, used for both code
and data memories. Each bank can have a different size. Access to multiple banks
simultaneously is possible thanks to dedicated interfaces with the global bus system.
Each bank supports both clock gating and retention modes to save power.

The peripheral subsystem domain includes some peripherals which are not
indispensable to the operation of the microcontroller but are convenient to have in
real-world applications, such as a general-purpose timer, an interrupt controller,
an 12C interface, a serial peripheral interface (SPI) and 24 general-purpose input-
output (GPIO). This subsystem is meant to be clock-gated or switched off when
not used.

The always-on peripheral subsystem domain consists of all those peripherals
designed to be powered on all the time. For this reason, it is not possible to apply
power-saving techniques to this domain. These include the power manager, the
fast interrupt controller and the boot ROM.

In particular, the boot ROM is crucial for system operation, as it determines
where the microcontroller jumps at reset time. The boot ROM contains code for

three different booting modes, which can be used for simulation and synthesis on
an FPGA.:

o« JTAG
e SPI Flash Execution
o SPI Flash Loading

18

Background

The boot procedure is defined by the value of two specific signals, boot_sel i
and execute from flash i, as reported in Table 2.3.

boot_sel_ i | execute_from_flash i Boot procedure
0 X JTAG
1 1 SPI Flash Execution
1 0 SPI Flash Loading

Table 2.3: Boot mode summary

JTAG When this boot mode is selected, the CPU enters the boot ROM and
loops indefinitely until an external JTAG programmer sets a specific exit loop flag
to 1 by writing to the corresponding memory location. During this process, the
CPU runs in debug mode, waiting for the programmer to finish loading instructions
into RAM before starting program execution. Subsequently, the CPU begins
executing instructions from the specified start address, which is obtained from a
memory-mapped register and is set to 0x180 at reset time.

An external bridge was added using the X-HEEP extensible structure to com-
municate with both the CW305 register domain and the microcontroller itself in
order to load firmware into RAM when this boot mode is selected.

SPI Flash Execution During this boot procedure, the CPU jumps to the
FLASH memory to execute the code directly from it once it enters the boot ROM.
Memory access operations are automatically translated into SPI transactions. This
method is mainly used as a second-stage boot procedure since it is very slow.

SPI Flash Loading When this boot mode is selected, the CPU enters the boot
ROM and, via the OpenTitan SPI host, copies the first 1 kB of content from the
FLASH (starting at address 0) to the RAM (also starting at address 0). The CPU
then jumps to the entry point at 0x180 in RAM and executes the start function
of the crt0 file, which is contained within the 1 kB of code copied to RAM. This
function checks whether the code has been completely copied (i.e. whether it is
less than or equal to 1 KB). If so, it jumps to the main function. Otherwise, it uses
the OpenTitan SPI to copy the remaining code bytes.

19

Chapter 3

Bridge 2 Xheep

During the boot phase, the X-HEEP microcontroller requires instructions to be
loaded into RAM from either an external flash memory or a JTAG programmer. To
allow the firmware to be uploaded via the structure and API provided by Chipwhis-
perer instead, a module called Bridge2Xheep was developed. The Bridge2Xheep
module interfaces the X-HEFEP microcontroller and the registers block. This allows
data sent from the host PC via USB to be loaded into the microcontroller’s memory,
eliminating the need for an external JTAG programmer (e.g. GDB).
The bridge structure is shown in Figure 3.1.

@305_Top
cw305_top.v
STATUS

ADDRESS
INSTR

—new_addr_valid
instr_valid

USB USB_REG_FE

cw305_usb_reg_fe.v

REG AES [%rst_new_addr_valid BRIDGE
cw305_reg_aes.V <€ rst_instr_valid— bridge2xheep.sv

HANDSHAKE
cu
usb_clock
k heep_clock J

Figure 3.1: Bridge overview

HEEP
gr_heep_top.sv

0BI protocol

CLOCKS
clocks.v

The firmware upload procedure consists of several steps. The host PC reads the
firmware file, extracts the instructions in the correct format, and sends the data to
the CW305 register interface via the Python API one byte at a time. Once the
data has been sent to the correct board register, the PC sets one of the status flags
in the status register to 1, thereby signalling to the bridge that a new instruction or
address is valid. The host PC then waits for the status flags to return to 0 before
starting a new operation. Meanwhile, the bridge continuously polls the value of
the status register bits until a new address or instruction is detected. When this
occurs, the bridge initiates communication with X-HEEP via the OBI protocol and

20

Bridge 2 Xheep

waits for the microcontroller to assert the grant signal. Once this has happened,
the microcontroller has received the data correctly and communication can be
considered concluded. The bridge will then reset the status register flags, allowing
the host PC to send new data.

A specific control unit was designed within the bridge to support this protocol,
as shown in Figure 3.2.

LD_CNT = @
rst_new_addr_flag=1|

SET_COUNTER

LD_CNT = 1
rst_new_addr_flag=0|

1] LD_INSTR

INSTR_REG_LD = 1

REQ_SENT

busy =1
req_to_xheep = 1
addr_to_xheep = cnt
data = 4 Byte recieved from USB
we =1
be = F

GNT_RECEIVED

req_to_xheep = @
we = @
cnt += 4
busy = @
rst_instr_valid_flag

WAIT_2

rst_instr_valid_flag=1

Figure 3.2: Bridge control unit FSM

More in detail, the behaviour of the bridge is different in the case of a valid
address or a valid instruction. In fact, when a new address is available, the bridge

21

Bridge 2 Xheep

merely updates the value of its internal counter with the new address provided by
the host PC, while, in the latter case the communication with X-HEFEP is started.
The bridge also supports a busy flag, which signals the bridge availability, although
it is not actually used in the design.

Since the bridge module acts as an intermediary between the register block and
the microcontroller, the communication protocol differs depending on which side
the bridge is communicating with. On the X-HEEP side, the communication relies
on the OBI protocol explained in the Section 2.4. It is important to notice that
the bridge is connected to the X-HEEP bus master port (EXT_M in Figure 2.9). On
the register side, a simple handshake protocol has been implemented to prevent
errors when the bridge and register block need to communicate, as they operate
in different clock domains. As explained in Section 2.2.2 and shown in Figure 3.1,
the entire design consists of two different clock domains: the USB clock and the
X-HEEP clock. The former operates at a fixed frequency of 96 MHz, while the
latter’s frequency can be adjusted according to the target device’s synthesis timing
requirements.

A special control unit manages the handshake protocol for the USB clock domain,
while the X-HEEP clock domain protocol counterpart is managed by the bridge.

A schematic of the USB-side handshake control unit is shown in Figure 3.3.
The main purpose of this module is to translate the reset signals received from
the bridge into pulses with a duration equal to one clock cycle of the USB clock
domain, as the two blocks operate at different speeds.

The bridge internal structure is shown in Figure 3.4 and it consists of:

e A counter, used for address management in OBI transactions. The counter
allows both increasing the internal value and loading a new address. This
is necessary because the firmware file is not contiguous and sometimes it is
necessary to jump to new memory areas. As the instructions consist of 32
bits, the counter increases by four units each time a new instruction is sent
correctly to the microcontroller.

o A 32-bit register, used to temporary store the instruction

o A control unit, which manages the communications with both X-HEEP and
the registers domain.

22

Bridge 2 Xheep

both reset to

1
~Tst_new_addr_valid
from bridge?

regs = 1 A
RST_ADDR
~~ Tst_new_addr_valid Ist_new_addr_valid_to_regs
From bridge? =0
l 1 WAIT_1
= rst_new_addr_valid_to_regs =
1
1
K " rst_instr_valid
from bridge?
| e
~ Tst_new_addr_valid
RST_INSTR From bridge?
L
o
WAIT_2
Ist_instr_valid_to_regs = 1

Figure 3.3: FSM for the handshake control unit

—INST_VALID— cv REQ >
! \

€—RST_INST_VALID—] LD_CNT EN_CNT WE:

——ADDR_VALID—> BE[3:0] >

<—RST_ADDR_VALID—]

Address CNT:
CNT + 4

<

—WDATA([31:0]— |

ADDR[31:0] |

(Master Port

GNT
Bridge [€———RVALID X-Heep
[€RDATA[31:0]— _)
INST_REG_LD
4 Byte
CLK RSTN

RS[TN

| |

Figure 3.4: Bridge internal structure

Software model

23

A first software model was implemented to ensure the correct interfacing with
X-HEEP only. The model has been implemented as a C++ class, and then tested
using Verilator [23], a software programming tool which converts the hardware
description language Verilog to a cycle-accurate behavioural model in the program-
ming languages C++ or SystemC. The bridge software model consists of a Driver

Bridge 2 Xheep

class, which simulates the OBI communication with the microcontroller, as shown
in Listing 3.5:

void Drv::drive(ReqBridge *req)
{
if (req->valid)
{
if (req->address >= 0x180)
{
switch (this->state)
{
case O:
// IDLE state

dut->req_i = 0;
this->state = 1;
this->busy = 1;
break;

case 1:
// REQUEST SENT state

dut->req_i = 1;

dut->addr_i = req->address;
dut->wdata_i = req->instruction;
dut->we_i = 1;

dut->be_i = Ob1111;

if (dut->gnt_o)

{
this->state = 2;
this->busy = 0;

} else {
this->state = 1;

32

33

34

35

36

37

38

39

40

// GNT RECEIVED

dut->req_i

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Bridge 2 Xheep

req->address += 4;
req->valid = O;

this->state = 0;
break;

default:
this->state = O;
this->busy = 0;
break;

Figure 3.5: C++ software model for the Bridge2Xheep module.

This model is a C++ translation of the FSM shown in Figure 3.2: a state
variable is used to store information about the current state, while a switch case
statement determines the state evolution and the active signals for each state.

It can be noticed that this model does not foresee any handshake mechanism
towards the register interface, as integration with the structure provided by the
CW305 board is not yet considered at this stage of the project. In addition, a
Request class was used to temporarily store the address and instruction to be sent
to the microcontroller.

The model has been simulated using a C++ testbench, structured as follows:
o Firstly, the Device-under-Test is reset and initialised

o After that, a special function has the task of reading the firmware file and
extracting the instructions with the correct endianness. When new data is
available, a new request is sent to X-HEEP. The request is kept active until
the model receives a response from the microcontroller. This procedure goes
on until all firmware has been loaded into RAM.

o When the loading procedure is complete, the boot exit loop flag is set by the
tb_set_exit_loop method.

This first simulation revealed an important detail about the firmware file format.
The endianness of the instructions in the file—automatically generated by gcc—is

25

Bridge 2 Xheep

opposite to what is expected by the microcontroller. As a result, it was necessary
to rearrange the characters in groups of two to match the required format. For
clarity, an example is provided in Table 3.1:

Firmware file instruction format | Expected instruction format
97 F1 00 00 00 00 F1 97

Table 3.1: Firmware file instruction endianness

Furthermore, the firmware file is not contiguous. The instructions in the file only
refer to non-zero memory areas, which are marked by an address that defines their
starting point. When a new address is encountered, the previous block has ended,
meaning that all the remaining instructions between the two addresses are to be
considered 0. This becomes problematic when the last instruction in a memory
area contains trailing zeros, as these are omitted. Consequently, the instruction
will be expressed over fewer than 4 bytes, and this must be taken into account
in the reading algorithm to maintain address/data alignment. As can be seen in
Figure 3.6, on line 26, the last instruction is reported as 82 80, when it should be
82 80 00 00.

Co 1B EF 1@ 80 1F @2 45 4C @@ @1 46 EF 00 20 04
6F 00 60 01| EF @@ 30 68| 82 80
@200001EC

41 11 7D 55 @6 C6 EF 00 D@ 67 41 11 89 67 22 C4
@6 C6 93 87 C7 85 2A 84 81 (7 81 45 EF 10 4@ 65
BD 67 3 A5 C7 E3 1C 55 91 C3 82 97 22 85 EF 00

Figure 3.6: Firmware File - Example of not contiguous memory areas

Taking these details into account, the model proved to be functional and the
communication with X-HEFEP was correct. A screenshot of the Verilator simulation
is shown in Figure 3.7.

rst_ni=1

boot_select_i=0

be_i[3:0]=F
addr_i[31:0] 00800000
wdata_i[31:0] 00800000

req_i=0

we_i =

]
gnt_o=0
rvalid o=0

Figure 3.7: Software model simulation

26

Bridge 2 Xheep

3.2 Hardware implementation

After verifying through simulation that the software model was successful, a
hardware model of the bridge was implemented. The model was described in Sys-
temVerilog to remain consistent with the X-HEFEP project, which is also described
in this language.

The hardware model follows the same structure shown in Figure 3.4 and the
relative control unit implements the same algorithm shown in Figure 3.2. In
particular, the microcontroller interface provides all the signals required for the
OBI protocol, and the registers interface also supports additional ports such as the
busy signal and a dedicated bus for data received from the microcontroller, even
though these are not used in the design.

At this stage of the project, it became clear that a synchronisation mechanism
was required to enable data exchange between the bridge and the registers, which
are controlled directly by the Python API. The solution was to use some bits of a
special register, namely the Status Register, as flags to signal data availability.

The Status Register has 8-bit parallelism (1 byte), which is used as follows:

Status Register Bit Function
Status[0] Bridge Busy Flag
Status[1] Instruction Valid
Status|2] Address Valid
Status|[3] Trigger Program Execution
Status[4] Unused
Status|5] Unused
Status|6] Unused
Status|7] Unused

Table 3.2: Status Register bits function

The Status Register is accessed by both the Python APIs and the bridge. In
more detail, the Python APIs are used to set the required flags when data coming
from the USB is complete and valid, such as a new instruction or a new address,
while the bridge has the role of reset these flags when the data have been received
by X-HEFEP. The register reset operation was implemented without altering the
interface of the register module. In fact, a simple bridge-driven multiplexer defines
which data is sent to the register block. Under normal conditions, the data and
address provided by the front-end block are passed directly to the register module.
When the reset signal is active, however, the address bus is driven with the address
of the corresponding register and the data bus with zeros, as shown in Listing 3.8.

27

10

11

12

13

14

15

16

17

18

19

Bridge 2 Xheep

always @(*) begin
if (~rst_new_addr_valid_to_regs) begin
reg_address “REG_BRIDGE_STATUS;
write_data = bridge_status_usb & ~(8'b00000100);
reg_write = 1'bl;

end

else if (~rst_instr_valid_to_regs) begin
reg_address = “REG_BRIDGE_STATUS;
write_data = bridge_status_usb & ~(8'b00000010);
reg_write = 1'bl;

end

else begin
reg_address = reg_address_fe;

write_data = write_data_fe;
reg_write = reg_write_fe;
end

end

Figure 3.8: SystemVerilog description of the status register reset mechanism.

As described in previous sections, the registers module and the bridge operate
in different clock domains. For this reason, synchronisers and a handshake protocol
have been implemented to ensure flawless asynchronous communication between
these two regions.

The CW305 register definitions were also modified according to the project
requirements, as was the register parallelism.

The entire system, including the bridge, the microcontroller and the CW305
wrap, was simulated by means of Verilator using a testbench very similar to the one
already used for the software model simulation. This time, however, two different
clock signals had to be generated for both the USB and the X-HEFEP clock domains,
in order to ensure that no communication errors occurred due to synchronism
problems.

In addition, it was also necessary to simulate the pseudo-USB communication to
the top-level CW305 to test the effectiveness of the status register in synchronising
the transmission of new data from the host PC when the bridge was already busy
in a transaction with X-HEEP.

The entire test bench can be summarised as follows:
— first the system is reset and initialized.

28

Bridge 2 Xheep

— Next, a new instruction or address is read from the firmware file. The testbench
then checks the value of the status register. If the instruction valid flag is
zero, it sends the new data to the board. Once the data has been sent, the
instruction valid flag is set by writing the entire status register, after which
USB communication stops.

— The bridge then polls the status register until the instruction valid flag equals
1. When this happens, communication with X-HEFEP begins. Once X-HEEP
has received the data, the bridge signals the reset of the status register flags
and waits for them to return to zero.

— The host PC is then free to send new data.

When the firmware loading procedure is complete, the host PC signals to write
a 1 to the address 2000000C, which triggers the X-HEEP exit boot loop condition.

Simulation extracts are shown in the Figure 3.9 and Figure 3.10. In Figure 3.9
it is possible to notice the pseudo-USB communication between the PC and the
board. In particular, the synchronisation mechanism between the board and the
host PC can be observed. The latter in fact continuously checks the value of the
status register. When the address valid flag is 0, the PC proceeds to send a new
instruction and set the instruction valid flag, then waits for this flag to be reset.

_c =
0_status[7:0] =00
0_address[31:0] =0000015

Figure 3.9: CW305 Simulation - USB communication

Figure 3.10, on the other hand, shows the OBI transaction between the bridge and
X-HEEP. Once the instruction valid flag is set, the request to the microcontroller
is sent from the bridge. The bridge then proceeds to reset the instruction valid flag
when the grant signal is asserted by X-HEFEP.

Figure 3.11 shows the exit boot loop procedure. An OBI request to the address
2000000C is sent by the bridge. After some clock cycles, the EXIT_LOOP flag is
raised.

29

Bridge 2 Xheep

rst_n-1
currentstate[7:0] =IDLE
rst_instr_valid-1
1st_new_address_valid=1
new_section_address[31:0] 00000180
instruction[31:0] -0000F197
addr_valid =0
instr_valid=e
addr[31:0] =00000180
wdata[31:0] =00000000
Teq-0
e =0
be[3:0] =0
gnt=-e
Tvalid =0
rdata[31:0] 00000000

bridge2xheep

bridge2xheep
clk=1
rst_n=1
currentState[7:@] =IDLE
Ist_instr_valid=1
rst_new_address_valid =1
new_section_address[31:0] =2000000C
instruction[31:0] =0E000001
addr_valid =@
instr_valid =0
addr[31:0] =2000000C
wdata[31:8] =00@0185C
Teq =0
we =0
be[3:0] =0
gnt =0
rvalid=0
rdata[31:@] -00000000

bridgezxheep

Figure 3.11: CW305 Simulation - Exit Boot Loop Flag

A simple blink program was run on the microcontroller to verify that the firmware
loading procedure was completed correctly. After the exit boot loop flag is set, the
microcontroller begins the program execution and the LED3 starts blinking, as it
can be observed in Figure 3.12:

3.3 Synthesis on FPGA

Since the on-board FPGA is a Xilinx Artix-7, the entire project was synthesised
using the Vivado Design Suite tool. A specific core file was designed to enable
automated synthesis using FuseSoC [24].

Some changes had to be made to the default I/O pad configuration for X-HEEP.
The design features a pad ring through which the microcontroller’s I/O pins can
be accessed; however, Vivado only allows synthesis of such a structure for signals
connected to the FPGA’s physical pins. Therefore, to avoid synthesis errors, the
unused 1/0 signals were removed from the pad ring and the rest were connected
to the physical pins on the board. In particular, the microcontroller’s GPI0 2 was

30

Bridge 2 Xheep

Figure 3.12: CW305 Simulation - LED blinking

connected to the on-board LED3, thus enabling verification of the system’s correct
operation through the same blink program used for the simulations. GPI0O 3 was
also connected directly to Status Register bit 3, and GPIO 4 was mapped to a
specific FPGA pin for triggering the oscilloscope data acquisition.

3.4 On-board test

As in the simulation, the initial algorithm tested on the board was a simple LED
blink program. In parallel, the functionality of the microcontroller’s UART pe-
ripheral was also verified. Its TX and RX lines were mapped to specific FPGA
pins, allowing communication with a PC via a UART-to-USB converter. Data
transmitted from the microcontroller was received and displayed on the PC us-
ing the command-line tool picocom. The algorithm specifically toggled GPIO 2
pin—connected to LED 3 on the board—and sent the updated pin status over
UART.

Once the correct functioning of the device was verified, it was ready to perform
the side channel analysis of encryption algorithms.

31

Chapter 4

Power Analysis Side
Channel Attack

4.1 Introduction

As mentioned in the introduction to this thesis, all electronic devices have power
consumption during their operation due to various contributions, as shown in the
Equation 4.1:

Ptot - Psc + Pstatic + denamic (41)

Figure 4.1: Visualization of the short-circuit current for a logic inverter.

The first contribution relates to the short-circuit current. Considering the
structure of the logic inverter built with CMOS technology, as shown in the
Figure 4.1, it can be seen that, once a logic state has been reached, one of the
two transistors is in a non-conductive mode. Consequently, current cannot flow
from Vpp to ground. However, for a brief moment during commutation when Viy
reaches Vpp /2, both transistors are in conduction, creating a direct path between
the supply and ground. This causes the short-circuit current.

The second contribution is due to the parasitic leakage currents that exist due
to the non-ideality of transistors. Ideally, transistors should behave like perfect

32

Power Analysis Side Channel Attack

switches that prevent any current from flowing when they are turned off. In reality,
transistors are slightly conductive even when turned off due to parasitic effects such
as short-channel effects, drain-induced barrier lowering (DIBL) and sub-threshold
current. While these effects were once negligible, they have become increasingly
prominent as technology has advanced and transistor dimensions have decreased.

Nevertheless, the primary source of information regarding power side-channel
attacks is the last term.: the dynamic power dissipation.

Dynamic power dissipation is caused by the charge and discharge of the load
capacitance during the commutations. For the sake of clarity, during the 0 — 1
transition the hi-side pMOS is conducting, creating a connection between the power
rail and the load capacitance, which allow the capacitor to charge up to Vpp.
This implies an energy transfer from the power rail to the capacitor and so power
consumption. The energy stored in the capacitor is then transferred to ground
during the 1 — 0 transition.

Dynamic power dissipation can be modelled as described in Equation 4.2:

denamic =a- VI%D : CL : fclk (42)

where Vpp, Cr, far and a represent the supply voltage, the load capacitance,
the clock frequency and the switching activity factor, respectively.

From the Equation 4.2 it is clear that the dynamic power consumption in
proportional to the switching activity factor «, which in turn depends on what
algorithm the device is executing. In other terms, it is possible to find a correlation
between the internal state of the device and the its power consumption. This is

the key idea behind Power Side-Channel Attacks.

The measurement of power traces is also quite simple and inexpensive. The typ-
ical measurement setup in fact only requires inserting a shunt resistor of reasonably
small value (typically in the order of a few tens of ohms) in hi-side configuration
between the power line and the supply pin of the device, as shown in Figure 4.2. In
this way, by measuring the voltage drop at the ends of the resistor, it is possible to
determine the instantaneous current absorption, from which it is possible to derive
the power consumption according to the expression Pjyeyice = Vpp * Lgevice- NOte
that the supply voltage is assumed to be constant during the analysis. A similar
measurement setup is also used for electromagnetic (EM) side-channel attacks. In
that case, however, it is not necessary to insert a shunt resistor on the power supply
network as the current consumption is measured directly through a current probe,
represented in its simplest form by a coil of wire.

Since the value of Vpp is fixed, any variation in the current absorption is
translated to a variation in the power consumption. In particular, for the hi-side
configuration, an higher current absorption generates a bigger voltage drop across

33

Power Analysis Side Channel Attack

i
——

i

Before | After

Figure 4.2: Implementation of the shunt resistor as current sensor.

the shunt resistor. As result, the trace measured by the oscilloscope will have a
negative peak.

To highlight absorption peaks more strongly, the oscilloscope is usually coupled in
AC mode to eliminate the DC voltage contribution from Vpp. Better measurement
results are obtained if the shunt resistor is connected to the pin which powers the
cryptographic core, especially if the device has multiple supply pins. Removing
the decoupling capacitor from the power distribution network and bypassing any
internal voltage regulator is also beneficial, since these tend to reduce the voltage
variations that are useful for the attack.

By processing the power traces, it is possible to extract useful information about
the internal state of the device, including the secret key employed by the encryption
algorithms.

There are various types of power analysis attacks, each with its own effectiveness
and complexity in implementation. The main ones are listed below:

— Simple Power Analysis
— Differential Power Analysis

— Correlation Power Analysis

34

ot = w [-

Power Analysis Side Channel Attack

4.2 Simple Power Analysis (SPA)

Simple Power Analysis (SPA) is a technique that involves the direct interpretation
of power consumption measurements collected during cryptographic operations
[8]. If the algorithm being executed is know by the attacker, it is quite simple to
retrieve information about the internal processing state.

WWWWWWMWAWWW |

4 08 1.6 24 32 4.0 4.8 5.6 6.4 72 8.0

Time (mS)

Current (mA)

Figure 4.3: SPA trace showing an entire DES operation [8].

By means of SPA is therefore possible to determine the sequence of instructions
executed, so it can be used to break cryptographic implementations in which the
execution path depends on the data being processed. For instance, an algorithm
with conditional jumps will have different power traces depending on whether
the jump is performed or not. Possible examples are DES key schedule, DES
permutations or comparisons, where typically a conditional branch is taken if a
mismatch is found.

This principle can be illustrated more clearly with a simple password check
program (C code below): if the password check is performed by comparing each
character of the inserted string with the correct password, the algorithm’s execution
time (and thus the power traces) will differ depending on the number of correct
characters, as shown in Figure 4.4 [25].

It can be seen that the calculation takes longer when a larger number of
characters pass the comparison. Thus, it is possible to guess the correct password
character by character, simply by looking at the resulting power traces, instead of
guessing the entire password at once. For example, assuming the password contains
only alphabetical letters, for a 4-character password it is only necessary to guess
26 + 26 + 26 + 26 = 104 combinations instead of 26* = 456976 ones.

#include <stdio.h>
#include <stdlib.h>

int main(){
char inserted_password[4];
char correct_password[4] = {'a', 'b', 'c', 'd'};

B

35

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Power Analysis Side Channel Attack

int pass_ok = 1;

// Get user password
printf ("Enter password: ");
scanf (")s", inserted_password) ;

// Check the password char by char
for (int i = 0; i < sizeof (correct_password); i++){

if (correct_password[i] !'= inserted_password[i]){
pass_ok = 0;
break;

}

if (pass_ok) {

printf ("Password Correct.\n");

} else {

printf ("Password Fail.\n");

}

return pass_ok;

Power

Peower

Power

Figure 4.4: Possible power traces for totally correct, partially correct and incorrect passwords.

P—

M\HIMH!I | M,||!||| !Mr ' W “!W ' 'M L
|
W”H" ."|' N‘WFM | ’I'M ’l'l —- 1.“"“ |
!

[T |“ 1

36

Power Analysis Side Channel Attack

4.3 Differential Power Analysis (DPA)

The Differential Power Analysis (DPA) was the first statistics-based method applied
to power-side channel analysis. It was introduced by Paul Kocher et al.[8] in their
1999 paper "Differential Power Analysis'. Unlike SPA, the Differential Power
Analysis method requires the capture of a large number of power traces to achieve
key recovery by exploiting statistical methods. In fact, by averaging a large number
of traces, even the smallest variation in the data can be revealed, as the noise
cancels out.

The key to the success of this type of attack lies in the existence of a relationship
between an intermediate state of the algorithm and a measurable physical quantity
(e.g., power consumption). This intermediate state is typically the result of an
operation performed between the secret key and the known input data (the plaintext
or nonce). From the known input data and the collected traces, it is possible to
derive information about the secret key simply by analyzing which hypothesis of
the key produces the measured power consumption for a given input data.

An important role is played by the selection function, which is essential for the
computation of the intermediate state value used for the attack. An example of a
selection function for cryptographic algorithms is the result of a XOR operation
between the secret key and known data.

Traces are grouped according to the value of the bit computed by the selection
function for a given key guess. Typically the target bit is the LSB, but the rule
can be applied to any bit.

Once the traces have been partitioned into two groups, one in which the LSB of
the intermediate state is equal to 0 and one in which it takes the value 1, the mean
difference between the two groups can be calculated. If the hypothesis is correct,
the difference between the two groups will exhibit spikes, indicating that there is a
difference in power consumption due to the presence of a different number of bits
equal to 1. Otherwise, the two groups contain only noise and their difference will
tend to zero out as the number of analysed traces increases.

The Python code for the DPA algorithm is shown in the Listing 4.5.

One detail to pay attention to when working with DPA is the possible condi-
tioning of traces before the actual analysis. Indeed, it may be necessary to remove
some samples to improve the signal-to-noise ratio or realign the traces. Due to
uncertainties about the device clock (jitter) or lack of synchronization between it
and the oscilloscope used for measurements it could happen that the operation
under attack is performed at different time instants. As a result, it might be
more complicated to correlate the measured data with the algorithm model, thus
reducing the effectiveness of the attack. An example of this situation is shown in
Figure 4.6.

37

10

11

12

13

14

15

16

Power Analysis Side Channel Attack

Figure 4.5: Python code example for the DPA algorithm.

TARGET_BIT = 0
difference_of _means = []

for key_guess in range(8):
traces_0O 1
traces_1 1
for i in range(len(nonces)):

hypothetical_output = selection_function(key_guess, known_input,

— TARGET_BIT)

if hypothetical_output ==
traces_0.append(traces[i])

else:
traces_1.append(traces[i])

diff = np.mean(traces_1, axis=0) - np.mean(traces_0, axis=0)
difference_of_means.append(diff)

0.05r

_0.05 1 1 1 L 1]
0 50 100 160 200 250 300
Unaligned traces at the end of acquisition
0.05
0
-0.05 : : : : : ’
0 50 100 150 200 250 300

Aligned traces at the end of acquisition

Figure 4.6: Difference between aligned and unaligned power traces

38

Power Analysis Side Channel Attack

4.4 Correlation Power Analysis (CPA)

Similar to DPA, Correlation Power Analysis (CPA) is a type of attack that is
not limited to the pure observation of acquired power traces, but involves using
statistical methods to retrieve the content of the entire secret key used by the
encryption algorithm. It was introduced by Eric Brier, Christophe Clavier, and
Francis Olivier in their CHES 2004 paper “Correlation Power Analysis with a
Leakage Model” [26] and it can be considered an extension of the DPA.

In the previous sections, it has been explained that the main cause of power
consumption of electronic devices is related to the charging and discharging of load
capacity Cp. It is therefore evident that the greater the number of ‘1’s present on
the bus, the greater the energy absorbed by the power supply network to charge
the C' capacity. The number of ‘1’s present on the bus, also referred to as the
Hamming Weight, has an influence on power consumption. In other words, it is
possible to prove the existence of a correlation between the Hamming Weight and
consumption peaks, and this is the basic idea behind this attack. More in general,
if a word D contains m independent and uniformly distributed bits, the average
hamming weight and variance would be pgw = % and oy = T

The Hamming Weight is not the only possible leakage model that can be used
for this type of attack. In the paper by Eric Brier, Christophe Clavier and Francis
Olivier [26] they proposed an approach based on the Hamming Distance model,
which relates the power consumption to the number of bits toggling on the bus
when transitioning from a value to the successive one. Assuming that the initial
state of a bus is a constant m-bit word R, unknown but not necessarily zero, the
Hamming Distance between D and R can be described as Hp(D @ R), where the &
symbol denotes the bitwise XOR operation. If the word D is a random value with
a uniform distribution, the same is true for D @ R, so HD(D & R) has the same
average value pgw = 7% and variance oy = 7 as for the case of the Hamming
Weight.

For instance, the transition between 0x51 to 0x53 denotes a Hamming Distance
Hp(0x51 — 0x53) = Hp(0x51 @ 0x53) = 1, since only 1 bit toggles during the
transition.

Knowing the hamming distance, it is possible to find a linear relationship
between it and the power consumption W, as shown in the Equation 4.3, where a
represents the scalar gain between the hamming distance and the power consumed
and b is a term that takes into account all parasitic effects that have an effect on
measurements such as offset or noise.

W =a-Hp(D&®R) +b (4.3)
39

Power Analysis Side Channel Attack

The linear relationship proposed by the authors [26] can be seen as a simpli-
fication since it does not take into account many contributions that influence
power consumption, but it is by no means unrealistic as bus lines are typically the
main cause of consumption in embedded systems. As a consequence of the linear
relationship, the following expression for the variances is also verified (Equation 4.4):

oy = d’oy, + o (4.4)

The Correlation Power Analysis is based on the idea that a linear dependency
exists between the power consumption and the Hamming Weight or the Hamming
Distance of an algorithm intermediate value. The Pearson’s Correlation Coefficient
p is used to prove this linear dependency, as shown in Equation 4.5.

This coefficient always assumes values in the range [-1, 1] and, depending on its
value, it has a different meaning: a correlation equal to 1 means that a direct linear
relation exist between the two variables (an increase in the former corresponds to
an increase in the latter), while a correlation equal to -1 indicates an inverse linear
relation (an increase in the former corresponds to an decrease in the latter). More
in general, positive values of correlation denote a direct linear trend, vice versa for
the negative ones. If no relationship exist, the correlation assumes the value 0. A
graphical summary is shown in Figure 4.7.

cov(W,Hp) aop, ao,, a/m (45)
)OWHD —_= = et g .
2
OwWOH, ow \/CL2O'H% + o; \/ma2 + 4o}
T ///: T T T T \\\‘

N\

be \.\\

Yy " Yy ' Y e Y g y '
((a)) Perfect positive ((b)) Low positive ((c)) No correlation. ((d)) Low negative ((e)) Perfect negative

correlation. correlation. correlation. correlation.
pwH =1 0.3 > puwy >0 pwu =0 0> pwpy >-03 pwh = —1

Figure 4.7: Visual representation of the correlation factor for different relationship between the
x and y variables.

Having shown that a correlation exists between power consumption and internal
state R, it is possible to use this tool to retrieve the secret key used by the algorithm.
Given a set of input data D and relative power traces, correlation can be used to
find the secret key R among all possible 2™ combinations by observing which one
has the highest correlation with the measured traces.

Obviously, the effectiveness of this attack is greater when the parallelism of the
data to be recovered is relatively small. This is the case, for instance, with the AES

40

Power Analysis Side Channel Attack

algorithm. Although it is based on a 128-bit key, which requires testing all 2128
possible combinations in the classical way, each round is performed on 1 byte of
data, so using CPA it is sufficient to test only the possible 2% = 256 combinations
to recover a key byte, a very simple task that can be performed by any modern
computer in few minutes.

The general representation of a Correlation Power Analysis is shown in Figure 4.8.
The standard attack procedure consist of few steps [27]:

1.

Choose an intermediate variable of the algorithm as the attack point. This
variable, called selection function, must be a function f(d, k), of a part of the
key k and the known non-constant data d (e.g. plaintext, nonce).

Measure the power consumption of the device while it executes the crypto-
graphic algorithm [/ times. For each execution, the power trace is collected.
At the end of the process, all power traces will form a matrix T of size [x s,
where s is the number of samples. It is important to verify that power traces
are correctly aligned in time and to note of the input data d = (dj, ..., d;) used
as known-data.

Calculate hypothetical intermediate values for every possible candidate of
k. Let k = (ki,...,k,) be the vector of p possible candidates for &, also
usually referred to as key hypotheses or key guesses. For each key guess, the
selection function f(d, k) is exploited to compute the hypothetical intermediate
values corresponding to the vector d. Performing this calculation for all key
hypotheses results in a matrix of hypothetical intermediate values, denoted by
V, of size | x p.

Map hypothetical intermediate values to hypothetical power consumption
values. A leakage model must be chosen to estimate the power consumption
(i.e., hypothetical power consumption) exposed by the device when processing
a value. The Hamming Weight and the Hamming Distance are often used
as leakage models. Each value in V is then mapped to a corresponding
hypothetical power consumption value, resulting in a hypothetical power
consumption matrix H of size [x p.

Compare the hypothetical power consumption values with the power traces.
As explained above, the the Pearson’s correlation coefficient is used to examine
the linear correlation between the hypothetical power consumption values of
each key candidate with the measured traces at every position. Specifically,
the correlation coefficient is computed between each column h; of the matrix
H and each column ¢; of the matrix T, resulting the element r; ; of the matrix
R of size p x s, where r; ; is computed as:

41

Power Analysis Side Channel Attack

_ L (B — Bty —)
Vo (=)2 S (b — 1)

6. The key can be recovered based on the fact that the higher value r; ; indicates
a stronger linear correlation between the columns h; and t;, suggesting a better
match under the assumed leakage model. Let ¢, be the index of the correct
key ke (i.e., the key that is used in the device) in the vector k, and ¢; be the
index of the power consumption values t.; that depend on the intermediate
values vq;. The columns h. and t. should be strongly correlated. Thus, the
highest value 7. in the matrix R reveals the indexes of the correct key ¢4
and the position ¢;.

ozE) _, [
~ET
T

aTXTY
ﬁ Leakage model

(4.6)

Ti,j

Correlation

_ eov(X,Y)

Figure 4.8: Schematic of the measurement setup for the CPA attack

42

Power Analysis Side Channel Attack

4.5 Countermeasures

Because the effectiveness of side-channel attacks lies in the leakage of computation-
related information through unintended channels, several countermeasures have
been introduced to eliminate or otherwise reduce this leakage of information. These
countermeasures fall in three main categories:

» Refactoring the algorithm: these countermeasures try to rewrite the
algorithm in a way that no information is leaked on the side channel

o Eliminate the information: the idea behind these countermeasures is that
of trying to reduce the correlation between the data being processed and the
measurements taken on the side channel

o Suppress the side channel: countermeasures whose purpose is to physically
suppress the side channel

4.5.1 Refactoring the algorithm

Countermeasures that fall into this category are intended to mitigate the possibility
of SPA attacks. Indeed, simple power analysis exploits the dependency between the
control flow and the value of the secret key, as shown in the example in Section 4.2,
where the password check is performed by comparing one character at the time.

To eliminate this dependency, it is sufficient to rewrite the algorithm by choosing
an implementation that makes use of constant-time execution paths. This can
be achieved, for example, by eliminating all conditional constructs (e.g., if state-
ments) by turning them into predicated instructions. Some ISAs support predicate
instructions natively.

4.5.2 FEliminate the information

Preventing side channel attacks based on statistical methods, such as DPA and
CPA, is more challenging than the SPA case and requires some caveats. In fact,
the effectiveness of these attacks is based on their ability to isolate the useful
signal from the noise by simply analyzing a good number of traces and looking
for temporal correlation between the measured data and the algorithm model.
Consequently, one possible countermeasure against this type of attack may be to
hide the sensitive operation in time by introducing a non-deterministic delay
at the instant the operation is actually performed. In this way, the collected traces
will not be aligned with respect to the sensitive operation, lowering the correlation
of instantaneous power consumption. Hiding in software can be easily achieved
introducing a loop of NOP operations in the algorithm, where the number of

43

Power Analysis Side Channel Attack

iterations is picked at random each time. The same can be done in hardware by
introducing small disturbances on the clock generator or by using different clock
generators.

Despite being a simple solution, this countermeasure does not entirely eliminate
the correlation on the data: by collecting more traces it will still be possible to
find a correlation between the model and power consumption.

Masking is another widely adopted countermeasure against Differential Power
Analysis (DPA) and, more generally, side-channel attacks. Its core idea is to
randomly divide each sensitive intermediate variable involved in a computation
into (d + 1) shares, where d, the masking order, acts as a security parameter [28].
The purpose of this approach is to ensure that observing fewer than all the shares
reveals no information about the original secret value.

By concealing the actual input values used during operations, masking prevents
attackers from accurately predicting intermediate values in the cryptographic
algorithm. In practice, masking can be implemented by adding a random value
to each share using an XOR operation. This randomization does not alter the
true input data or secret key, since most cryptographic algorithms already use
XOR-based key additions that naturally cancel out the added randomness.

Despite its effectiveness, masking introduces significant computational and hard-
ware overhead, which limits its applicability in resource-constrained environments.
In particular, hardware implementations often require additional components such
as GF multipliers, used, for example, in Domain-Oriented Masking (DOM), whose
number increases quadratically with the masking order, as expressed in Equa-
tion 4.7:

GF Multipliers oc (d + 1) (4.7)

4.5.3 Suppress the side channel

These countermeasures aim to eliminate the side channel completely, thus removing
the source of information. An example can be the use of differential logic styles
(such as WDDL [29]). With this kind of logic, each gate computes both the actual
and complementary output of the implemented function (e.g. both = and). As
result, the switching activity of the gate is kept constant during the computation,
thus removing the dependency between the power consumption and the number of
gates switches.

44

Chapter 5

Advanced Encryption
Standard (AES)

Among the encryption algorithms tested on the microcontroller is the Advanced
Encryption Standard (AES), the encryption specification for electronic data adopted
by the U.S. National Institute of Standards and Technology (NIST) in 2001. [30]
31]

AES was derived as a variant of the Rijndael block cipher developed by the two
Belgian cryptographers, Joan Daemen and Vincent Rijmen, from which it differs
in block size and key length. Indeed, AES specifications allow a block size of 128
bits only, but three different key lengths: 128, 192 and 256 bits.

The algorithm described by AES is a symmetric-key encryption one, where
the same key is used for both the encryption and decryption procedure, and it
consist of rounds, sequences of simple operations iterated several times until the
whole plaintext is encrypted. In particular, the number of rounds performed by
the algorithm depends on the key length: 10 rounds for 128-bit keys, 12 rounds for
192-bit keys, 14 rounds for 256-bit keys.

Of course, each of these operations can be undone knowing the secret key, so
that authorised personnel can retrieve the encrypted information.

AES is based on a design principle known as the substitution-permutation
network, in which the chipertext is obtained as a result of successive byte substitution
and permutation operations performed on the plaintext, which is organized as a
4x4 byte array. In addition to these, operations involving the use of the secret key
are executed in order to make it impossible to decipher the result by reversing the
sequence of operations performed unless the key is known.

The sequence of operations performed in each round is shown in the Figure 5.1
and listed hereafter.

45

Advanced Encryption Standard (AES)

o KeyFEzrpansion: round keys are derived from the secret key using the AES key
schedule;

o AddRoundKey: a bitwise XOR operation is performed between each byte of
the plaintext (or State) and a byte of the round key;

o SubBytes: each byte of the State array is replaced with another one obtained
in a non linear way by means of a 8-bit substitution box (S-Boz);

o ShiftRows: bytes in each row of the State array are shifted in a circular way by
a certain offset. This step is necessary to avoid the columns being encrypted
independently;

o MixColumns: the 4 bytes of each column are combined together by means of
a linear combination, producing 4 different bytes in a reversible way.

It is important to notice that all the rounds consist of the same sequence of
operations except for the last one, where the MixColumns phase is absent.

Plaintext

| Addroundkey |4‘
K1
v
Substitute bytes |
- v
-
£ v

Mix columns |

I
| Shiftrows |
I
I

Add roundkey IQ—;
* K2
Substitute bytes |

v

Shift rows |

¥

Mix columns |

¥

Addroundkey |1¥

v ?

! i
v

| Substitute bytes |

v

Shiftrows |

v
| Add roundkey |¢—

Kr
Ciphertext

Figure 5.1: Visualization of the AES algorithm. [32]

Key Expansion

Round 2

Round Nr

The simplicity of the AES algorithm makes it very fast in both hardware and
software implementation, which is why, combined with its inherent mathematical
robustness, it is used as the standard encryption algorithm.

46

Advanced Encryption Standard (AES)

In fact, even using a 128-bit key it would be necessary to test 22 ~ 3.40 - 103
possible combinations to discover the secret key. Even assuming a modern computer
can test 1 billion combinations per second, it would still take 3.4 - 10* seconds to
guess the correct key, or approximately 10?2 years. As a metric for comparison, the
estimated age of our universe is around 13 billion years (10'°), so it is clear that
the algorithm is mathematically impossible to bypass.

5.1 AES Robustness against Side-Channel At-
tacks

Despite its mathematical robustness, the AES algorithm is susceptible to side-
channel attacks and, more in particular, to Power Side-Channel Attacks, as ex-
plained in Section 4.4.

More specifically, the greatest vulnerability of AES lies in the structure of
the S-Box. In fact, AES’s S-Boxes are designed to introduce non-linearity and
confusion into the encryption process, in order to make the algorithm robust against
traditional cryptanalysis methods. As a side effect, the non-linearity introduced by
the S-Box causes a large number of bits to be toggled, which in turn leads to a
large variation in power consumption. This variation can be measured to recover
information regarding the secret key.

For this reason, the Hamming Weight or the Hamming Distance at the S-Box
output are typically used as leakage models. In each round, a bitwise XOR operation
is performed between a key byte and a plain text byte, whose result is then used
to point to the S-Box, a look-up table that returns the data corresponding to the
requested address. The output of the S-Box is therefore closely related to the secret
key, and this is where the information leaks the most.

The purpose of this analysis is therefore to verify whether a modification to
the structure of the S-Box, like a reduction of its non-linearity, can reduce the
sensitivity of the algorithm to side channel attacks. This type of solution is, at
least in theory, very promising since it allows for the implementation of a simple
and effective countermeasure against side channel attacks at almost no cost.

5.2 Measurement Setup

The analysis was conducted on the Chip Whisperer CW305 board as shown by
Figure 5.2, where the X-HEFEP microcontroller is synthesized as the target platform,
and all measurements were performed using a Picoscope PS5000 oscilloscope. The
scope configuration is the following:

47

Advanced Encryption Standard (AES)

\ Correlation

_eoXY) | —p L

~ oxoy

P V| o amm(prinentl o xeuent)

Leakage model]

Figure 5.2: Measurement setup for the CPA attack on AES

o Channel A: used for trace acquisition. AC coupled to remove the unwanted
3.3 V DC component of the power supply.

e Channel B: used as the trigger source. DC coupled.

o Sampling Frequency: 125 MHz. This sampling frequency value was chosen to
be much higher than the microcontroller clock frequency (10 MHz) in order
to compensate for any synchronization problems caused by the different clock
sources used by the oscilloscope and the microcontroller.

e Resolution: &-bit

As explained in Section 1, side-channel analysis was performed on the software
implementation of AES. More specifically, a slightly modified version of the C
implementation! of AES was the subject of the analysis. The main changes
consisted of the addition of the code necessary for the generation of the trigger for
the oscilloscope. In fact, the trace acquisition is triggered only at the first round
of AES, even though the algorithm is executed in its entirety. More in detail, the
acquisition procedure is performed as follows:

1. When a new encryption operation is going to be started, the bit 3 of the status
register is set using the Python APIs provided by Chip Whisperer. Bit 3 of the
status register is directly connected to the microcontroller’s GPIO 3.

2. The microcontroller polls the value of GPIO 3 and waits until the PIN value
becomes high.

3. The microcontroller sets GPIO 4 to 1. This PIN is connected to one of the
physical pins of the FPGA, which also has a connector on the board. The
oscilloscope probe for channel B is connected to this PIN and is used as the
trigger source.

https://github.com/kokke/tiny-AES-c

48

https://github.com/kokke/tiny-AES-c

Advanced Encryption Standard (AES)

4. The microcontroller executes the algorithm. When execution is complete, the
microcontroller waits for the GPIO 3 value to return low before starting a
new encryption operation.

5. Bit 3 of the status register is reset via the Python API. At this point, a new
operation can start.

This sequence of operations can be performed automatically as many times as
desired using a Python notebook. For this analysis, several sets of 5,000 traces
were collected, in each of which the algorithm was executed with a different S-Box.

5.3 CPA Attack

A Correlation Power Analysis attack was carried out on each set of traces using
the Chip Whisperer framework. The Hamming weight at the S-Box output was
chosen as leakage model for the attack, as shown in Equation 5.1.

leakagelbyte;] = HW (S Bozx|plaintex|byte;] ® key[byte;]) (5.1)

Once the leakage model has been defined, the Chip Whisperer framework performs
the entire analysis by carrying out the CPA attack on the 16 bits of the key. In
particular, the correlation is calculated using an incremental algorithm, which allows
the traces to be analysed in groups without losing information on the analysis of
previous traces. The size of the groups defines the resolution used for the attack.

This makes it possible to follow the progress of the attack and assess whether or
not it is successful. In addition, the framework also sorts the key guesses according
to their correlation value and calculates some parameters useful for side channel
analysis, such as Partial Guessing Entropy (PGE) and correlation graphs as a
function of the number of traces analysed.

Figure 5.3 shows the shape of the power traces captured during the first round
of the algorithm. From this data, it is already possible to obtain some information
about the algorithm being executed. In particular, it is possible to distinguish the
SubBytes phase at the beginning, ShiftRows in the middle, and MixColumns at
the end.

A closer look at the SubBytes phase shows exactly 16 peaks, each relating to an
operation performed on a byte of the state, confirming the presence of a 128-bit
block cipher. Furthermore, the presence of 3 peaks in the shift rows phase indicates
that 3 of the 4 rows of the state matrix have been rotated as expected, as the first
row is not modified in this phase.

49

Advanced Encryption Standard (AES)

40 captured power traces overlapped

| i IRTAY
L b1 | i “|w oy ‘|.
ARG LR

fit TP Wl

‘.‘,-H‘
(i bkt [‘1’”;“‘

{1 A A L]
I fi J’sm SR2, SRJ I\ ‘\‘H‘

U [LLLLHL) 1
SubBytes | || ShiftRows MixColumins ' | '\ IETRER | |‘

W
Time (us)

Figure 5.3: Power traces for the first round of AES.

A summary of the results obtained from the attack with each S-Box is available
in Table 5.1 and Table 5.2. Chapter 7 will explore the meaning of the metrics shown
in the table in more detail, considering both resistance to classical cryptanalysis
and resistance to side-channel attacks.

Power analysis resistance Cryptanalysis resistance

SB PGE < 10 Non Differential Confusion
ox

AES HW AES SW Linearity Uniformity Coefficient
Rijandael ~ 800 traces ~ 500 traces 112.0 4/256 0.111
Freyre; ~ 1190 traces ~ 760 traces 100.0 8/256 4.500
Freyres ~ 2000 traces ~ 1300 traces 100.0 8/256 4.492
Freyres ~ 1340 traces ~ 400 traces 102.0 8/256 1.934
Ozkaynak; ~ 1750 traces ~ 350 traces 106.7 10/256 0.103
Hussaing ~ 1290 traces ~ 360 traces 112.0 4/256 0.111

Table 5.1: Trade-off between the cryptanalytic properties and PGE threshold in AES

The results of the attack showed that the type of S-Box used in the algorithm
50

Advanced Encryption Standard (AES)

Sbox type NL min NL max DU CCV MCC TO

Rijndael 112.0 112.0 1 0.1113 0.8125 7.8600
Freyre 1 100.0 110.0 8 4.5003 0.1328 7.5627
Freyre 2 100.0 110.0 8 4.4918 0.1289 7.5696
Freyre 3 102.0 110.0 8 1.9343 0.4492 7.6684

Hussain 6 112.0 112.0 4 0.1113 0.8125 7.8600
Ozkaynak 1 86.0 110.0 12 0.1030 0.7539 7.7983

Azam 1 94.0 110.0 10 0.0903 0.7656 7.8272
Azam 2 90.0 108.0 12 0.1105 0.7812 7.8243
Azam 3 94.0 110.0 10 0.1375 0.6875 7.8127

Table 5.2: Cryptographic properties of the S-boxes in exam for AES. NL: Non-Linearity. DU
: Differential Uniformity. CCV : Confusion Coefficient Variance. MCC : Minimum Confusion
Coefficient. TO : Transparency Order

can have an impact on sensitivity to side channel attacks. In fact, in the case of the
standard S-Box (rijandael), approximately 500 traces are needed to fully recover
the secret key, as shown in Figure 5.4. In the case of the Freyre-2 S-Box, however,
data shows that the same amount of traces traces is still not enough to recover all
the bytes of the secret key (Figure 5.5).

Figure 5.4: Partial Guessing Entropy for Figure 5.5: Partial Guessing Entropy for
the standard AES S-Box. the S-Box Freyre 2.

As further confirmation, Figure 5.6 and Figure 5.7 show the success rates of
attacks using the same number of traces for the two S-Boxes. Clearly, in the first
case, a success rate of 1 is achieved after a few hundred traces, while for the Freyre-2
S-Box, some incorrect bytes are ranked first even with a larger number of traces,

51

Advanced Encryption Standard (AES)

reducing the success rate value.

AES CPA Success Rate AES CPA Success Rate

Success Rate
Success Rate

0 1000 2000 00 4000 5000

30 0 1000 200
Number of traces

0 3000 4000 5000
Number of traces

Figure 5.6: Success rate for the standard Figure 5.7: Success rate for the S-Box
AES S-Box. Freyres.

As for the remaining S-Boxes, only Freyre 1 has some minor advantages over the
standard Rijndael S-Box, while Freyre 3, Hussain, and Ozkaynak perform as well
as, if not worse than, the default AES S-Box. The PGE plots for these S-Boxes
are shown in Figure 5.8, Figure 5.9, Figure 5.10 and Figure 5.11. Note that for

the last three S-Boxes, the horizontal scale has been reduced to allow for better
visualisation.

AES S-Box freyre_1 - PGE

AES S-Box freyre_3 - PGE

Traces Traces

Figure 5.8: Partial Guessing Entropy for Figure 5.9: Partial Guessing Entropy for
the S-Box Freyre 1. the S-Box Freyre 3.

52

Advanced Encryption Standard (AES)

AES S-Box hussain_6 - PGE AES S-Box ozkaynak_1 - PGE

Figure 5.10: Partial Guessing Entropy for Figure 5.11: Partial Guessing Entropy for
the S-Box Hussain. the S-Box Ozkaynak.

5.4 Considerations

The results show that modifying the structure of the S-Box can affect the algorithm’s
sensitivity to power side-channel attacks.

In this case, however, the advantages of this countermeasure are minimal, most
likely due to the nature of the algorithm itself. For AES, the 128-bit key is used in
groups of one byte each, making it very easy to implement an efficient CPA attack,
as one byte of information is leaked each time. In fact, the signal-to-noise ratio is
much higher than that found in the case of ASCON, which is described in the next
chapter, where the leaked information relates to just one bit.

The SNR plots for the Rijandael and Freyre 2 are shown in Figure 5.12 and
Figure 5.13.

nnnnnnnnnnnnnnnnnn

000 o
Sample sample

Figure 5.12: SNR for the Rijandael S-Box. Figure 5.13: SNR for the Freyre 2 S-Box.

Despite the advantages in terms of side-channel resistance, this type of mod-
ification usually affects the algorithm’s mathematical robustness against classic
cryptographic attacks. Therefore, there is a trade-off between mathematical ro-
bustness and sensitivity to power side-channel attacks.

53

Chapter 6

ASCON

ASCON is a family of lightweight algorithms designed to provide Authenticated
Encryption with Associated Data (AEAD), a hash function, and two eXtendable
Output Functions (XOFs) [33]. The Ascon family has been designed to be efficient
in constrained environments, such as RFID tags, sensors, and smart cards, where
hardware resources are often limited to execute the time-proven AES algorithm. For
this reason, in 2023 the Ascon family had been selected by US National Institute
of Standards and Technology (NIST) for future standardization of the lightweight
cryptography [34].

The ability to encrypt data combined with the possibility of authenticating the
message through a hash function makes the algorithm even more secure for the type
of application for which it was designed. In fact, encrypting sensitive data is as
important as ensuring that the message is not tampered with during transmission.
In these cases, adding a TAG to the message is useful to guarantee its authenticity.
The TAG can be generated through hash functions, i.e., functions that generate
a fixed-size result from a much larger input. The peculiarity of hash functions is
that they always generate the same result from the same input data. Consequently,
to verify the authenticity of the received message, it is sufficient to check that the
hash generated by the received message is identical to that of the sent message.

The main advantages of ASCON over other cryptographic algorithms are [33]:

e Multiple functionalities: the ASCON family was developed with the goal
of reducing resource usage. For this reason, the same permutations are used to
build multiple functionalities, allowing for the implementation of AEAD, hash,
and XOF functionalities to share logic. If these functions had been developed
independently, they would inevitably have required more resources.

e Online and single-pass: an important feature of ASCON is its ability to
require only the i-th plaintext block to generate the i-th ciphertext block, in

o4

ASCON

addition to the key, nonce, and associated data. This way, only one pass over
the data is required.

o Inverse free: all the ASCON functions are designed to use the underlying
permutations in the forward direction. This simplifies the decryption process
and reduces implementation costs, since there is no need to develop the inverse
function for permutations.

6.1 Internal structure

This section provides an in-depth look at the ASCON encryption process. The
algorithm takes as input the 128-bits key K, the 128-bits nonce N, the associated
data Ay, ..., A, and the plaintexts P, ..., P;, both in 64-bit blocks, and the 64-bit
initialization vector IV. The 128-bit tag T and the chipertexts C1,...CY;, each of
64-bits, are generated as output. A graphical representation of the process is shown
in the Figure 6.1.

.

‘J’\'

K

Initialization Associated Data Plaintext Finalization

J

Ascon-p[12]
Ascon-p(8]
Ascon-p(8]
Ascon-p(8]

Ascon-p(8]
> o
Ascon-p[12]

VKN 05K 011 © K|[o%t

Figure 6.1: Ascon-AEADI128 encryption [33]

As specified in the previous section, the core of the algorithm is represented by
permutations, denoted by p® and p®, which consist of a different number of rounds
depending on the version of the algorithm used. In particular, for the ASCON-128a
version used in this analysis, a = 12 and b = 8. Each round is composed by three
phases acting on a 320-bit state, as shown in Figure 6.2:

« Addition of round constant (1): a 8-bit constant is added to the least
significant byte of the state register Sy. Each round has its own round constant.

» Substitution box (S-Box) (2): the i-th column of the state is taken as
input for the 5-bit S-Box. That same column is updated with the 5-bit S-Box
output (b). The algebraic normal form of the S-Box is reported in Figure 6.1.
Note that these expressions refer to operations performed on a single column
of the state (bit-sliced form) and must be repeated on all 64 bits. Denoting

59

ASCON

the state registers at the beginning of the round as x, ..., z4 and the state at
the output of the S-Box as yq, ..., y4, we have:

Yo = T421 D 13 D L2271 D T2 D 1129 D 11 D Xo

Y1 = T4 D T3%2 D 1371 D T3 D 2221 O T2 D T1 D T

Yo = T4T3 D xs DT D1 D1 (6.1)
Yz = T4 D X4 D X370 D T3 D T2 D 1 D To

Yqg = X421 Dy DrsDriry DX

Since at the beginning of the initialization phase the initialization vector is
stored in the register Sy, the two halves of the key in the registers S; and Sy
and the two halves of the nonce in the registers S3 and Sy, the terms zq, x1,
Zo, 3, T4 can be replaced with IV, kg, ki, ng, n1. The previous expressions
can thus be rewritten as Equation 6.2:

Yo = Niko D ng D krko D k1 D kolV & kg ® IV

Y1 = N1 B noky B noko B ng B kiko ® k1 D ko B IV

Yo =ning @& ny B k1 ko D1 (6.2)
Yz =m IV &ny @nolV &ng® ki ® ko ®IV

Ys = niko B ny B ng® kolV & ko

Linear diffusion layer (3) The linear diffusion layer provides diffusion
within each 64-bit word S;. This layer applies the linear functions ¥; to their
corresponding state words as S; < X;(.5;), for 0 < ¢ < 4, where each ¥; is
defined as:

20(So) = So @ (S>> 19) @ (Sp > 28)
Y1(51) =51 @ (51> 61) @ (S1 > 39)
Yo(S2) =528 (52> 1) (S>> 6) (6.3)
Y3(53) = S3 @ (53 >>10) @ (S5 >> 17)
Y4(S4) =81 ®(Sa> T)® (Sy>41)

In practice, the linear shift layer performs a circular rotation of the bits in
each state register. The contents of each state register are shifted to the right
by a certain amount. The LSBs that would be lost in this process are instead
moved to the left, occupying the positions that become free as a result of the
shift operation.

56

ASCON

(1) Addition of constants

AT AAARAA RAAARARARAN
i T

| |
v»vvviv‘vvvwvv‘ UMMM AN i ‘

(2) Substitution layer

— — — P

(3) Linear diffusion layer

(a) Three steps of a round (b) An S-box computation.

Figure 6.2: Display of the 3 steps of a single round [27]

The 320-bit state is divided into 5 words of 64 bits each (Equation 6.4). This
allows mathematical expressions to be easily translated into the corresponding
hardware or software implementation. In particular, each word can be stored
in one or more registers, facilitating implementation on 8-bit, 32-bit, and 64-bit
architectures.

S = Sol|51]]S2|53]]S4 (6.4)

6.2 Sensitivity to side-channel attacks

Being aware of this vulnerability, ASCON designers took into account the threat
posed by side-channel attacks as early as the design stage. For this reason, the
320-bit state is divided into 64-bit registers, which are updated after each operation.
If an attacker wanted to perform a Correlation Power Analysis as done for AES, it
would be necessary to calculate the correlation between the captured traces and all
264 possible hypotheses for the secret key. Obviously, this makes the computation
extremely demanding both in terms of the hardware resources and the computation
time required on present-day computers.

Nevertheless, it is possible to perform CPA attacks on ASCON, as first described
by Samwel and Daemen [35]. The vulnerable part of the process is the initialization
phase. In this phase, the state is initially constructed by storing the 64 bits of the
initialization vector in register Sy, the 128 bits of the key in registers S; and Sy,
and the 128 bits of the nonce in registers S3 and Sj.

The initialization phase is followed by the p* permutation step, consisting of 12
rounds. Of these, the first round is the target of the side-channel attack, since at
this point the initial state content is known and the key is used for the first time.

Since each round consists of three steps, various points can be targeted by a
side channel attack, such as the output value of the S-Box, as was also the case

57

ASCON

with AES, and the result of the linear shift layer. Of the two, the latter proves
to be effective for the attack, as reported by [27]. In their article, the researchers
analyse the reasons why the attack is ineffective when the S-Box output is used as
a selection function, concluding that this model does not guarantee uniqueness in
the correlation of the results obtained. For this reason, the output of the linear
shift layer is preferred and is used as the selection function for this analysis.

More in detail only the expression for yé, y{ , yi from Equation 6.2 can be
considered for the attack as their computations contain non-linear terms between
the key and the nonce, as explained by [35]. For the sake of clarity, the expression
for yg is shown below:

w=nlkien) e okl eIV ekie IV (6.5)

A useful simplification can be made to this expression. In fact, assuming that

the key is always the same during the analysis, the quantity k{k}® k] @k IVI @IV

can be removed since it contains only constant terms that do not depend on the

value of the nonce [36]. Therefore, these will contribute a constant amount to the

power consumption, which is then eliminated by performing a differential analysis.
The simplified expression for the S-Box output becomes:

7 =k(n] & 1) ®n (6.6)

Since the target of the attack is the output of the linear shift layer, this operation
is taken into account on the newly calculated quantity. From Equation 6.3, the
output 2 for the state register 5 is:

20 = Yo D (Yo > 19) & (yo > 28) (6.7)
The i-th bit of 2y (0 <4 < 63) thus can be computed as:

, : 1o g
B=UhOu DR (6.8)
or, more explicitly

%= (K(n] @ 1) @ nj)
D (kg+36(nji+36) 1) ® n6+36> (69)
D (kg+45(n]i+45 @ 1) ® n6+45>
~As can be observed, the sole unknowns in the Expression 6.9 are the 3 bits
kD, k3T k3T of the most significant half of key. From each bit of the state register
Sp at the output of the linear shift layer, it is therefore possible to recover 3 bits of

the key. This offers the possibility of performing a correlation power analysis on
the 23 possible combinations of these 3 bits.

58

- w [} -

ASCON

In a similar fashion, it is possible to derive the expression for the state register
S1, as reported in Equation 6.10:

H = (nj(ky @ 1) @ nl)
® MK @ 1) @ndt (6.10)
D (j+39(kj+39 @ 1) D n]+39)

where kél = ké &) k:{ As opposed to the most significant half of the key kg, the
bits of the half relating to k; are recovered indirectly using the bits recovered by
attacking zJ.

6.3 Measurement setup

The experiment setup for the CPA attack on ASCON'’s software implementation
is shown in Figure 6.3. The X-HEEP microcontroller is synthesised on the FPGA
of the CW305 board and operates at a frequency of 10 MHz.

As explained in the previous section, the linear shift layer is chosen as the attack
point, and Hamming weight is used as leakage model for the state registers Sy and
S1. As for these two words, their content is divided between two CPU registers
each, since the microcontroller used for this analysis has a 32-bit architecture.

\ Correlation

cov(XY) | —p o

oX0y

___ Leakage model
> HW (LinearShiftLayer(IV, Nonce, KeyGuess))

Figure 6.3: Measurement setup for the CPA attack on ASCON

In order to reduce the number of samples per trace, the oscilloscope is triggered
only at the beginning of the linear shift layer, and the observation time covers the
two instructions that update the above-mentioned registers, as show in the code
snippet below. With this approach, each trace contains 1125 samples.

s—>x[0] ~=

(s—>x[0] >> 19) = (s->x[0] << 45) =~ (s->x[0] >> 28) ~ (s->x[0] << 36);
s—>x[1] ~=

(s=>x[1] >> 61) =~ (s->x[1] << 3) ~ (s->x[1] >> 39) ~ (s->x[1] << 25);

59

ASCON

The algorithm has been modified to implement the mechanism for triggering the
oscilloscope, as discussed in detail in the section on AES. The same configuration
was also used for the oscilloscope.

The Figure 6.4 shows the plot of the measured power traces. It can be seen that
the absorption peaks are concentrated in only two groups, each corresponding to
the update of the two state words Sy and .S;.

40 power traces overlapped

204

Voltage (mV)

0] | i {1 I B!

Time (ps)

Figure 6.4: Plot of 40 captured power traces

6.4 CPA attack

As already done for AES, the objective of this analysis is to demonstrate the impact
of the S-Box used on the sensitivity of the algorithm to side-channel attacks. In
this regard, the selection function used is not the one reported in Equation 6.9 and
Equation 6.10, but a more generic model that takes into account all the operations
performed in a single round, namely: round constant addition, substitution layer
and linear shift layer. In this way, the results predicted by the model always reflect
the operations actually performed by the device. It is only necessary to specify the
S-Box used.
More in detail, the model is built as follows:

e The 7,5 + co,j + c1 bits are extracted from the initialization vector IV, and
the two nonce halves ny and n;. The shift amount value ¢; is defined by the
index of the attacked state register, as reported in Equation 6.3. For instance,
if the attacked register is Sy, the two shift amount values ¢y and ¢; will be 19
and 28, respectively.

60

ASCON

A key guess of 3 bits is chosen for both the two halves of the key kg and k1. The
the indexes of the 3 bits of each key guess follow the same rule j, j 4+ ¢o, 7 + ¢;.

The 5-bit input of the S-Box is built from these values, in the following order
(the most significant bit is represented by IV;):

anUtj = (IVJ, kéa k{? n{)u njl)
inputj+co — (Ivj—i-co7 k6+607 k{'+co, né+co7 n{Jrco) (6.11)

. _ jtec pitea pita L jta jta
inputjie, = IV kg™ kT mg o m)

The 5-bit output of the S-Box is computed for each of the previous inputs

output; = SBox(input;)
output o, = SBox(iinput;ic,) (6.12)

output ., = SBox(inputji.,)

The XOR operation defined by the linear shift layer is applied to the 3 outputs
of the S-Box

Z = (output;) & (outputjic,) ® (outputji.,) (6.13)

The bit corresponding to the attacked state register is extracted. The Hamming
Weight of that bit is used as leakage model (since there is just 1 bit, the
Hamming Weight coincides with the bit value itself).

For greater clarity, Figure 6.5 shows a diagram of the process described above
when the attacked register is Sy.

So

S

S

Ss

Sy

column; R R
n
5-bit S-Box) 5-bit
v [64-bit ED) s []
oy Attacked bit L 2
keyo [64-bit T
. z
. a) Yo '
key, 64-bit T2 columnj 19 Il
S-Box M 5 XOR ——{ [x
nonceg [64-bit T3 5-bit ;’2% I
~
Y4 z3
nonce; [64-bit Ty [
——— 24
L | Yo L
columnj.og y
CAEUIN S-Box :
5-bit y2
Y3

Figure 6.5: Leakage model used for the analysis on ASCON.

61

ASCON

In the case of the standard Ascon S-Box, the model is reduced to Equation 6.9
and Equation 6.10, with the assumption that the 3 bits of the key guess for k; are
all equal to 0. This assumption proved to be correct, since the 64 results of the
CPA attack on the Sy state register had the same correlation value in groups of 8,
confirming that the hypothesis made on the 3 bits of k; is not significant for the
attack on that register.

The S-Boxes used for this analysis are listed in Table 6.1. Their cryptographic
properties and a summary table of the results obtained from the CPA attack are
provided in the Table 6.2 and Table 6.3. Chapter 7 will explore the meaning of the
metrics shown in the table in more detail, considering both resistance to classical
cryptanalysis and resistance to side-channel attacks. A different number of traces
were collected for each of them.

S-Box ASCON Bilgin Allouzi LU4 LUS5 LU6 LUTY
Number of traces 10k 150k 150k 150k 150k 150k 150k

Table 6.1: Tested S-Boxes for the analysis on ASCON with the number of collected traces

Power analysis resistance Cryptanalysis resistance

SBox Ascon HW Ascon SW Non Differential Confusion

Traces Key bits Traces Key bits linearity Uniformity Coefficient
Ascon 60k 128/128 10k 128/128 8 8/32 0.5016
Bilgin [37] 1M 80/128 150k 98/128 12 2/32 0.3080
Allouzi [38] 1M 88/128 150k 95/128 12 2/32 0.4048
Lu 4 [39] 60k 96/128 150k 86/128 8 8/32 0.5824
Lu 5 [39] 1M 110/128 150k 107/128 8 8/32 0.2233
Lu 6 [39] 60k 86/128 150k 81/128 8 8/32 0.8887
Lu 7 [39] 60k 97/128 150k 81/128 8 6/32 0.7072

Table 6.2: Trade-off between power analysis resistance and cryptanalytic properties for ASCON
S-Box

The results of the analysis showed that fewer than 10,000 traces are necessary to
recover the entire key from ASCON'’s software implementation with the standard
S-Box. These results are consistent with those reported by Picek’s analysis on the
ASCON’s software implementation on a STM32 microcontroller, which reported

62

ASCON

Sbox type NL min NL max DU CCV MCC TO

Ascon 8 12 8 0.5016 0.2500 4.2581
Lut Bilgin 12 12 2 0.3080 0.3750 4.8387
Lut Shamash 12 12 2 0.4048 0.3750 4.8387
Lut Lu 4 8 12 8 0.5824 0.1719 4.4798
Lut Lu b 8 12 8 0.2233 0.3750 4.4839
Lut Lu 6 8 12 8 0.8887 0.2500 4.3871
Lut Lu 7 8 12 6 0.7072 0.3438 4.4032

Table 6.3: Cryptographic properties for the S-boxes in exam for ASCON. NL: nonlinearity. DU:
differential uniformity. CCV: confusion coefficient variance. MCC: minimum confusion coefficient.
TO: transparency order

that approximately 8,000 traces are sufficient to recover the entire key [40].

With regard to the choice of which bits to attack, the researchers [27] provide
a table of suggested indices computed with the aim of reducing the total number
of bits to be attacked. Since 3 bits of the key can be recovered from each of the
states register bits, it is not necessary to attack all 64 bits of each register, as many
of the recovered bits would be overwritten multiple times. In their analysis, the
researchers report that they performed 23 CPA attacks on register Sy and 24 on
register 9.

In this analysis, however, the signal-to-noise ratio was considered as the criterion
of choice for the indices of the bits to be attacked. In particular, the attacks were
performed on the bits with a higher SNR, proceeding in descending order until all
the bits in the range 0-63 had been recovered. This approach required a greater
number of CPA attacks overall (34 for the register Sy and 37 for the register Sy),
but on the other hand, far fewer traces were needed to recover the entire key.

The list of the indexes of the attacked bits is reported in Table 6.4.

State register ‘ Attacked bits

321334465436033637165519 17411 40
8 48 24 39 14 31 58 49 56 47 37 29 15 46 57 11

320631141336153183843518231245169

S 0

42 3 51 249 24 20 44 40 28 30 37 19 47 59 53 4 46

Table 6.4: ASCON standard S-Box: attacked bits, ordered according to their SNR

63

ASCON

The signal-to-noise ratio appears to be a promising method for selecting which
bits to attack. Figure 6.6 and Figure 6.7 show the comparison between bit 33,
which has a higher SNR, and bit 48. It can be seen that for the attack on bit 33,
the correlation value obtained for the correct key guess is much higher for the same
number of traces. Similarly, for the same correlation value, a much smaller number
of traces is required.

The Figure 6.8 and Figure 6.9 show the SNR graph plotted over the measured
power traces for both bits. It is interesting to note that the maximum value for
the signal-to-noise ratio occurs at a peak power absorption for both cases, further
indicating that the Sy status register is updated at that point.

Correlation vs Number of traces - Bit 33 - 5-Box lut_ascon Correlation vs Number of traces - Bit 48 - 5-Box lut_ascon

Figure 6.6: Correlation values for the bit Figure 6.7: Correlation values for the bit
33 48

WMWWWW

e

Figure 6.8: SNR value for the bit 33 Figure 6.9: SNR value for the bit 48

For the analysis on different S-Boxes, 150,000 power traces were collected for
each of them. The procedure followed for the attack was the same used for the
standard S-Box:

e SNR computation
e Definition of bits to attack
e CPA attack

o Evaluation of results

The results show that the S-Boxes analysed behave differently, some better than
others, but in no case was it possible to recover all the key bits. An important

64

ASCON

detail is that even for some of the bits with a high SNR, the correlation value of
the correct key guess is lower than that of other incorrect key guesses. As a result,
the recovered key bits are different from what was expected.

Figure 6.10 and Figure 6.11 show the correlation value trend for all key guesses
as the number of traces for bit 48 increases. It can be seen that for the bilgin S-Box,
the correlation of the correct key guess remains similar to that of the incorrect key
guesses, even though the SNR value of that bit calculated on the data measured
for the bilgin S-Box is still greater than the SNR value for the same bit measured
on the standard S-Box data.

Correlation vs Number of traces - Bit 48 - S-Box lut_ascon Correlation vs Number of traces - Bit 48 - S-Box lut_bilgin

nnnnn

Figure 6.10: Correlation plot as function Figure 6.11: Correlation plot as function
of traces for bit 48 - Standard S-Box. SNR of traces for bit 48 - Bilgin S-Box. SRN =
= 0.003856 0.007813

6.5 Considerations

The results obtained clearly show that the type of S-Box used influences the
effectiveness of power side-channel attacks against the ASCON algorithm. In
particular, using the standard S-Box, it was possible to recover the entire key
with less than 10,000 traces, while for all other S-Boxes, 150,000 traces were not
sufficient.

It is interesting to note that there is an order of magnitude difference between
the two cases. This shows that the use of different S-Boxes represents a possible
lightweight countermeasure against this type of attack, with minimal additional
overhead.

Unlike the case of AES, where the effect of different types of S-Boxes was more
limited, in the case of ASCON the advantages are much more pronounced, probably
due to the very nature of the two algorithms. In fact, the strength of side-channel
attacks lies in their ability to exploit information leaked from the device into the
surrounding environment. In the case of AES, the key is used in 1-byte blocks.
This makes it relatively easy to implement a CPA attack as the assumption is
made on 1 byte of information. In the case of ASCON, however, the CPA attack
is performed on a single bit, which inevitably presents less information that can
be exploited for the attack. For this reason, the characteristics of the S-Box used

65

ASCON

seem to have a more significant impact on sensitivity to this type of attack.

On the other hand, this type of countermeasure introduces a significant trade-off.
The use of S-Boxes with different mathematical characteristics from the default
S-Box reduces the algorithm’s resistance to standard cryptanalysis, so it is necessary
to find a balance between the two properties.

66

Chapter 7

S-Box metrics: State of the
Art

In recent years, the threat posed by side channel attacks has received increasing
attention from the research community due to their particular effectiveness com-
pared to classical cryptography attacks. In fact, an attacker will choose the type of
attack based on the complexity of implementation, favouring by far the simplest
one. In the context of embedded systems, the choice will always fall on side-channel
attacks, as the difference in the amount of data needed to break the algorithm is
many orders of magnitude [41].

For this reason, one of the main focuses of this thesis was to verify the effectiveness
of different S-Boxes as a lightweight countermeasure against power side-channel
attacks for the well-known AES algorithm and for the new ASCON lightweight
cryptography standard. At this point, one might wonder why the analysis focused
on this type of countermeasure and not on one of the other types listed in Section 4.5.
After all, some of those countermeasures have proven to be particularly effective,
such as the masking technique [42].

The main reason why the S-Box was chosen as the countermeasure essentially
concerns the implementation overhead associated with the countermeasures them-
selves. The use of masking introduces a significant performance overhead, making
its use impractical on embedded devices where both computing power and memory
size are extremely limited and the chip area must fall within certain limits.

Based on this severe penalty, some researchers have suggested considering
resistance to side-channel attacks as early as the algorithm design stage, on a par
with all other parameters used to define resistance against standard cryptanalysis.
This approach would make the addition of further countermeasures unnecessary
and avoid the overhead associated with them [43].

67

S-Box metrics: State of the Art

As many of the properties that make an algorithm resistant to classical crypt-
analysis depend on the design of the S-Box and since the S-Box is the main target
of many side-channel attacks (as in the case of AES), some researchers suggest
incorporating resistance parameters against side-channel attacks into the S-Box
itself [44].

In this way, the S-Box becomes a countermeasure against side-channel attacks
by its very nature, without introducing any additional overhead or significant
differences in the required hardware resources. However, there are some caveats to
consider when constructing the S-Box.

For an encryption algorithm to be considered secure, it must satisfy the criteria
of confusion and diffusion. The S-Box’s role is to introduce confusion through
a non-linear transformation of the input bits. While this property ensures the
algorithm is secure against classical cryptanalysis, it is also a primary source of
information that can be exploited by side-channel analysis. In fact, the use of a
non-linear function inevitably involves the toggle of many of the output bits, and
this inevitably translates into higher power consumption, for the reasons explained
in Section 4.

In the construction of S-Boxes, there is therefore a trade-off between resistance
to classical cryptographic analysis and side-channel analysis [44]. The following
sections list some of the properties used to define the quality of an S-Box depending
on the type of analysis considered.

7.1 Classical cryptanalysis resistance metrics

When it comes to classical cryptanalysis, the most important parameters defining
the quality of an S-Box certainly include non-linearity and differential uniformity,
which are defined as follows [45]:

» Non-linearity[44]: The term S-Box stands for Substitution box. Its role is
to apply a transformation to the input bits using a specific function f. This
function must be chosen so as to resist linear cryptanalysis, which is why
the non-linearity parameter is introduced. Non-linearity is defined as the
minimum Hamming Distance between function f and affine functions, i.e. all
those functions that can be expressed in the form represented by Equation 7.1,
where x represents the n-bit input vector, A is a binary matrix of size m x n,
while b is a constant vector of m-bits.

fla)=Az @b (7.1)

High non-linearity is desirable because it ensures resistance to linear crypt-
analysis.

68

S-Box metrics: State of the Art

 Differential Uniformity[44]: is a measure of the S-Box resistance to dif-
ferential cryptanalysis. 1t is defined as the maximum number of times any
specific output difference can result from a given input difference, across all
possible input pairs. In other words, this quantity represents the probability
that a difference in the input data of the S-Box will lead to a difference in
the output of the S-Box. Functions f that have differential uniformity equal
to 2 are called the Almost Perfect Nonlinear (APN) functions. A differential
uniformity value close to 2 ensures resistance to differential cryptanalysis.

7.2 Side channel attack resistance metrics

Over the years, studies have been conducted on classical cryptanalysis resistance
metrics to assess their impact on effectiveness against side-channel attacks. In par-
ticular, it has been shown that metrics that make an S-Box secure against classical
cryptanalysis conflict with security against side-channel attacks, as demonstrated
by Prouff [43]. Therefore, it is often necessary to find a compromise.

For example, a high non-linearity value is desirable as it makes the S-Box
resistant to linear cryptanalysis, but at the same time, it makes it very sensitive to
side-channel attacks. A high non-linearity value implies a large Hamming Distance
between the input value of the S-Box and the corresponding output. This Hamming
Distance inevitably translates into a large variation in power consumption that
can be easily measured and exploited by an attacker. Intuitively, to make an
S-Box secure against side-channel attacks, the Hamming Distance between an input
variable = and the output value S-Box(z) must be minimal, so as to cause a reduced
variation in power consumption. However, this property would make it extremely
vulnerable to classical cryptanalysis attacks.

On the contrary, if only one bit of the S-Box output is considered, the greater
the resistance to side-channel attacks, the lower the resistance to differential
cryptanalysis, although, as proven by Carlet [44], this statement is not necessarily
true when considering the entire output of the S-Box.

It is therefore clear that new metrics need to be introduced to evaluate the
resistance of S-Boxes to side-channel attacks, as summarized in [46]:

« Confusion Coefficient Variance (CCV): Before defining this metric, it is
worth exploring the concept of Confusion Coefficient, introduced by Fei [47].
This metric measurers the probability of occurrences for which key hypotheses
k; and k; result in different intermediate values v. When performing a DPA
attack, this parameter can be computed according to the Equation 7.2, where
£ denotes the leakage function, p denotes the arbitrary inputs, and E is the
mean operator:

69

S-Box metrics: State of the Art

k(ki, k;) = E [(S(F(k; @ p) — £(F(k; @ p)))?] (7.2)

Some years later Picek [48], proposed to calculate the variance of all confusion
coefficients with respect to each possible k; and k; under the Hamming Weight
leakage model. He proved that S-Box with higher confusion coefficient variance
(CCV) value leads to a higher resistance against side-channel attacks. This
metric can be computed as shown in Equation 7.3.

CCV(F) =var (E [(H(F(k ®p)) — H(F(k; ©p)))?]) (7.3)

e Minimum Confusion Coefficient (MCC): In their analysis, Guilley [49]
et al. emphasise that, in the context of DPA or CPA attacks and low SNR,
S-boxes with the lowest confusion coefficient are the most resistant to side-
channel attacks. The lower the value of MCC, the lower the success probability
to extract the secret key based on leakages associated with the S-Box. MCC
can be computed as shown in Equation 7.4.

MCC(F) = min (IE { (‘g(F(k* ©p) - £(F(k @p))>2}> (7.4)

kk* 2

« Transparency Order (TO): This metric was formally defined by Prouff [43]
and indicates the degree of resistance of an S-Box against DPA attacks. The
lower the transparency order value of the S-Box, the greater its resistance to
DPA attacks. In his article, the author also reports expressions for calculating
an upper bound and a lower bound for the TO. The latter in particular repre-
sents the maximum resistance value against DPA attacks that can be achieved
by an S-Box. The TO of an (n,m) S-Box is defined as the Equation 7.5,
where D, F' is the derivative of F' with respect to a vector a, and Wp_p is the
Fourier transform of D, F'.

TO(F) = maxginry (Im — 2H(8)|—
22n1_2n oI > (=) Wp,r(0,0))) (7.5)

a€F* weF H(v)=1

Now that these new metrics have been introduced, it is appropriate to verify
whether the theoretical results of S-Boxes constructed according to these resistance
parameters reflect reality, highlighting effective resistance to side-channel attacks.

A theoretical analysis conducted by Li et al. [46] on 11 S-boxes of different
sizes, more precisely 4 x 4 and 8 x 8, demonstrated the existence of an effective

70

S-Box metrics: State of the Art

relation between the improved transparency order VTO (a slightly modified version
of the TO) and the confusion coefficient variance CCV. In particular, the trend of
these two metrics is consistent: lower VTO and higher CCV values correspond to
S-Boxes that are more resistant to side-channel attacks. On the other hand, the
ordering of S-Boxes obtained using the minimum confusion coefficient MCC as a
metric is not consistent with either VT'O or CCV.

The authors also point out that larger S-Boxes lead to significantly higher values
of VTO and MCC, which implies S-Boxes with larger sizes are more vulnerable
against SCAs.

In the second part of their analysis, the authors focus on the experimental results
obtained by performing a CPA attack on all the S-Boxes analysed theoretically.
The results clearly demonstrated the connection between VT O and CCV, revealing
that S-Boxes with lower VTO values and higher CCV values are more resistant
to CPA. However, when the difference of the VIO (or CCV) values of the two
S-Boxes is relatively small, these two metrics lack the accuracy to order the S-Boxes
according to their resiliency, resulting in inconsistencies with the theoretical results.

According to the authors, this inconsistency is due to the different ways in which
the leakage model is used in constructing the metrics and in the CPA attack. In
the former case, the Hamming Weight of an S-Box output is used as the leakage
model, whereas in the latter case, the Pearson’s correlation coefficient is used to
compute a relationship between the traces and the Hamming Weight of the S-Box
output.

7.2.1 AES SoA S-Boxes

With regard to the analysis conducted in this thesis, the experimental results
obtained using the 8 x 8 S-Boxes in the AES case actually demonstrate behaviour
consistent with Li’s statement [46]. The analysis revealed that the Freyre, S-Box
offered the greatest resistance to CPA attacks, followed by the Freyre; S-Box.
Both S-Boxes have the lowest TO values and the highest CCV values. Freyre;
should theoretically perform better, but the difference between the TO and CCV
values of the two S-Boxes is so small that the same inconsistency between the
theoretical model and the experimental results highlighted by Li also appears in
this case.

Nevertheless, the advantage of using SCA-resilient S-Boxes is not particularly
significant in the context of AES.

7.2.2 ASCON SoA S-Boxes

In the case of ASCON, however, the two 5 x 5 S-Boxes that demonstrated the
greatest resistance to CPA attacks were Lut LUg and Lut LUy, resulting in the

71

S-Box metrics: State of the Art

lowest success rates. According to the theoretical model, these two S-Boxes have
the highest CCV values. The idea that the higher the CCV value, the higher the
SCA resistance appears to be true this time. However, in this case, the difference
in TO values is less pronounced. These two S-Boxes show slightly higher TO
values than the standard ASCON S-Box; theoretically, they should therefore perform
worse. However, the difference is very small, and the situation could fall within the
inconsistency issue identified by Li.

Despite these inconsistencies, the CPA attack on all the modified S-Boxes
proved ineffective in recovering all the key bits with 150,000 traces. This clearly
demonstrates that choosing a different S-Boxes can be an effective countermeasure
against SCA when addressing the ASCON algorithm.

72

Chapter 8
Conclusion

This thesis explored the vulnerability of cryptographic algorithm implementations
to power side-channel attacks, with a primary focus on the well-known Advanced
Encryption Standard (AES) and the new ASCON family of lightweight cryptographic
algorithms.

Analysis was conducted on a microcontroller based on RISC-V architecture,
synthesised on a Chip Whisperer board. It was demonstrated that low-cost side-
channel analysis can be conducted using only open-source tools. Furthermore, the
analysis revealed that even this type of platform is susceptible to side-channel
attacks as it exhibits measurable leakage that could compromise security.

A hardware module called Bridge2Xheep was developed to enable communica-
tion between the host PC and the microcontroller, and to allow instructions to be
loaded into the microcontroller’s RAM during the boot phase.

After testing the correct functioning of the platform, side channel analysis
was performed by executing CPA attacks on AES and ASCON. In particular, the
effectiveness of appropriately designed S-boxes in improving the resistance of
algorithms against side-channel attacks was analysed. For the ASCON case, the
selection of the bits to attack was made using the signal-to-noise ratio (SNR) as
a metric. This metric proved effective, as attacks on bits with a high SNR were
successful, unlike those on bits with a low SNR.

The analysis showed that the choice of S-Box impacts the success of the attack
for both AES and ASCON and can therefore be seen as a lightweight countermeasure.

Finally, an investigation was conducted into the metrics used to evaluate the
resistance of S-boxes against classical cryptanalysis and side-channel analysis. The

73

Conclusion

validity of these metrics was then compared with the obtained results, demonstrating
that the transparency order (or rather, the improved transparency order) and the
confusion coefficient variance are useful metrics for constructing S-boxes that are
resistant to side-channel attacks.

74

Bibliography

[10]

Jean-Philippe Aumasson. Serious cryptography: a practical introduction to
modern encryption. No Starch Press, Inc, 2024 (cit. on p. 1).

Suetonius. Vita Divi Julii. "56.6". URL: https://thelatinlibrary.com/
suetonius/suet.caesar.html#56 (cit. on p. 1).

Hans Delfs, Helmut Knebl, and Helmut Knebl. Introduction to cryptography.
Vol. 2. Springer, 2002 (cit. on p. 2).

Ronald L Rivest, Adi Shamir, and Leonard Adleman. « A method for obtaining
digital signatures and public-key cryptosystemsy. In: Communications of the
ACM 21.2 (1978), pp. 120-126 (cit. on p. 2).

Jan Pelzl ChristofPaar and Bart Preneel. «Understanding Cryptography: A
Textbook for Students and ractitionersy. In: Springer (2010) (cit. on p. 2).

YongBin Zhou and DengGuo Feng. «Side-channel attacks: Ten years after its
publication and the impacts on cryptographic module security testing». In:
Cryptology ePrint Archive (2005) (cit. on pp. 3, 6).

Paul C Kocher. «Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems». In: Advances in Cryptology—CRYPTO’96: 16th
Annual International Cryptology Conference Santa Barbara, California, USA
August 18-22, 1996 Proceedings 16. Springer. 1996, pp. 104-113 (cit. on p. 3).

Paul Kocher, Joshua Jaffe, and Benjamin Jun. «Differential power analy-
sis». In: Advances in Cryptology—CRYPT0’99: 19th Annual International
Cryptology Conference Santa Barbara, California, USA, August 15-19, 1999
Proceedings 19. Springer. 1999, pp. 388-397 (cit. on pp. 3, 35, 37).

Paul Kocher, Ruby Lee, Gary McGraw, and Anand Raghunathan. «Security
as a new dimension in embedded system design». In: Proceedings of the 41st
annual design automation conference. 2004, pp. 753-760 (cit. on p. 3).

YongBin Zhou and DengGuo Feng. «Side-channel attacks: Ten years after its
publication and the impacts on cryptographic module security testing». In:
Cryptology ePrint Archive (2005) (cit. on p. 3).

75

https://thelatinlibrary.com/suetonius/suet.caesar.html#56
https://thelatinlibrary.com/suetonius/suet.caesar.html#56

BIBLIOGRAPHY

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[21]

P. Wright. Spycatcher: The Candid Autobiography of Senior Intelligence
Officer. Stoddart, 1987. 1SBN: 9780773721685. URL: https://books.google.
it/books?id=grQ_HMEsmG4C (cit. on p. 4).

Dmitri Asonov and Rakesh Agrawal. «Keyboard acoustic emanations». In:
IEEE Symposium on Security and Privacy, 2004. Proceedings. 2004. IEEE.
2004, pp. 3-11 (cit. on p. 4).

Moritz Lipp et al. «Meltdowny. In: arXiv preprint arXiv:1801.01207 (2018)
(cit. on p. 4).

Paul Kocher et al. «Spectre attacks: Exploiting speculative executiony. In:
Communications of the ACM 63.7 (2020), pp. 93-101 (cit. on p. 4).

Elke De Mulder, Samatha Gummalla, and Michael Hutter. «Protecting RISC-
V against side-channel attacks». In: Proceedings of the 56th Annual Design
Automation Conference 2019. 2019, pp. 1-4 (cit. on p. 6).

Hao Cheng, Daniel Page, and Weijia Wang. «eLIMInate: a Leakage-focused
ISE for Masked Implementationy. In: JACR Transactions on Cryptographic
Hardware and Embedded Systems 2024.2 (2024), pp. 329-358 (cit. on p. 6).

Qi Tian, Hao Cheng, Chun Guo, Daniel Page, Meiqin Wang, and Weijia
Wang. «A Code-Based ISE to Protect Boolean Masking in Software». In:
TACR Transactions on Cryptographic Hardware and Embedded Systems 2025.2
(2025), pp. 293-332 (cit. on p. 6).

Alessandro Barenghi, Luca Breveglieri, Niccolo Izzo, and Gerardo Pelosi.
«Exploring cortex-M microarchitectural side channel information leakage».
In: IEEE Access 9 (2021), pp. 156507-156527 (cit. on p. 6).

Simone Machetti, Pasquale Davide Schiavone, Thomas Christoph Miiller,
Miguel Peon-Quirds, and David Atienza. X-HEEP: An Open-Source, Config-
urable and Fxtendible RISC-V Microcontroller for the Exploration of Ultra-
Low-Power Edge Accelerators. 2024. arXiv: 2401 .05548 [cs.AR] (cit. on
pp. 7, 17).

Colin O’flynn and Zhizhang Chen. « Chipwhisperer: An open-source platform
for hardware embedded security research». In: Constructive Side-Channel
Analysis and Secure Design: 5th International Workshop, COSADE 201/,
Paris, France, April 13-15, 201/. Revised Selected Papers 5. Springer. 2014,
pp. 243-260 (cit. on p. 8).

Krste Asanovi¢ and David A Patterson. «Instruction sets should be free: The
case for risc-v». In: EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2014-146 (2014) (cit. on p. 13).

76

https://books.google.it/books?id=grQ_HMEsmG4C
https://books.google.it/books?id=grQ_HMEsmG4C
https://arxiv.org/abs/2401.05548

BIBLIOGRAPHY

[22]

[25]

[26]

[27]

28]

[29]

Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanovic.
«The RISC-V instruction set manual, volume I: User-level ISA, version
2.0». In: EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2014-54 (2014), p. 4 (cit. on p. 13).

Wilson Snyder. «Verilator and systemperl». In: North American SystemC
Users’ Group, Design Automation Conference. Vol. 79. 2004, pp. 122-148
(cit. on p. 23).

Olof Kindgren. «A scalable approach to IP management with FuseSoC».
In: 1st Workshop on Open-Source Design Automation (OSDA). Vol. 5. 2019
(cit. on p. 30).

Jasper Van Woudenberg and Colin O’Flynn. The hardware hacking handbook:
breaking embedded security with hardware attacks. No Starch Press, 2021 (cit.
on p. 35).

Eric Brier, Christophe Clavier, and Francis Olivier. «Correlation power analy-
sis with a leakage model». In: Cryptographic Hardware and Embedded Systems-
CHES 2004: 6th International Workshop Cambridge, MA, USA, August 11-13,
2004. Proceedings 6. Springer. 2004, pp. 16-29 (cit. on pp. 39, 40).

Viet Sang Nguyen, Vincent Grosso, and Pierre-Louis Cayrel. «Practical
Second-Order CPA Attack on Ascon with Proper Selection Function». In: (),
p. 4 (cit. on pp. 41, 57, 58, 63).

Emmanuel Prouff and Matthieu Rivain. « Masking against side-channel attacks:
A formal security proof». In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer. 2013, pp. 142-159
(cit. on p. 44).

Kris Tiri and Ingrid Verbauwhede. «A logic level design methodology for
a secure DPA resistant ASIC or FPGA implementation». In: Proceedings
Design, Automation and Test in FEurope Conference and Ezxhibition. Vol. 1.
[EEE. 2004, pp. 246-251 (cit. on p. 44).

Joan Daemen and Vincent Rijmen. The design of Rijndael: AES — the
Advanced Encryption Standard. Springer-Verlag, 2002, p. 238. 1SBN: 3-540-
42580-2 (cit. on p. 45).

Specification for the Advanced Encryption Standard (AES). Federal Informa-
tion Processing Standards Publication 197. 2001. URL: http://csrc.nist.
gov/publications/fips/fips197/fips-197.pdf (cit. on p. 45).

7

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

BIBLIOGRAPHY

[32]

[33]

[34]

[35]

[37]

[40]

Muhammad Mushtaq, Sapiee Jamel, Abdulkadir Disina, Zahraddeen Pindar,
Nur Shakir, and Mustafa Mat Deris. « A Survey on the Cryptographic Encryp-
tion Algorithmsy. In: International Journal of Advanced Computer Science
and Applications 8 (Nov. 2017), pp. 333-344. DOI: 10.14569/IJACSA.2017.
081141 (cit. on p. 46).

Meltem Sénmez Turan, Kerry McKay, Donghoon Chang, Jinkeon Kang, and
John Kelsey. Ascon-based lightweight cryptography standards for constrained
devices: authenticated encryption, hash, and extendable output functions. Tech.
rep. National Institute of Standards and Technology, 2024 (cit. on pp. 54,
55).

Chad Boutin. «NIST Selects ‘Lightweight Cryptography’Algorithms to Protect
Small Devices». In: US Department of Commerce, National Institute of
Standards and Technology, Tech. Rep. (2023) (cit. on p. 54).

Niels Samwel and Joan Daemen. « DPA on hardware implementations of
Ascon and Keyak». In: Proceedings of the Computing Frontiers conference.
2017, pp. 415-424 (cit. on pp. 57, 58).

Guido Bertoni, Joan Daemen, Nicolas Debande, Thanh-Ha Le, Michael
Peeters, and Gilles Van Assche. «Power analysis of hardware implemen-
tations protected with secret sharing». In: 2012 /5th Annual IEEE/ACM
International Symposium on Microarchitecture Workshops. 2012, pp. 9-16.
DOI: 10.1109/MICROW.2012.12 (Cit. on p. 58).

Begul Bilgin, Andrey Bogdanov, Miroslav Knezevic, Florian Mendel, and
Qingju Wang. «Fides: Lightweight Authenticated Cipher with Side-Channel
Resistance for Constrained Hardware». In: CHES. Springer, 2013, pp. 142—
158. DOI: 10.1007/978-3-642-40349-1_9. URL: https://www.iacr.org/
archive/ches2013/80860199/80860199.pdf (cit. on p. 62).

Cihangir Tezcan. « Analysis of ascon, drygascon, and shamash permutations».
In: International Journal of Information Security Science 9.3 (2020), pp. 172
187 (cit. on p. 62).

Zhenyu Lu, Sihem Mesnager, Tingting Cui, Yanhong Fan, and Meigin Wang.
An STP-based model toward designing S-boxes with good cryptographic prop-
erties. Cryptology ePrint Archive, Paper 2023/1023. 2023. po1: 10. 1007/
s10623-022-01034-2. URL: https://eprint.iacr.org/2023/1023 (cit. on
p. 62).

Léo Weissbart and Stjepan Picek. «Lightweight but not easy: Side-channel
analysis of the ascon authenticated cipher on a 32-bit microcontroller». In:
Cryptology ePrint Archive (2023) (cit. on p. 63).

78

https://doi.org/10.14569/IJACSA.2017.081141
https://doi.org/10.14569/IJACSA.2017.081141
https://doi.org/10.1109/MICROW.2012.12
https://doi.org/10.1007/978-3-642-40349-1_9
https://www.iacr.org/archive/ches2013/80860199/80860199.pdf
https://www.iacr.org/archive/ches2013/80860199/80860199.pdf
https://doi.org/10.1007/s10623-022-01034-2
https://doi.org/10.1007/s10623-022-01034-2
https://eprint.iacr.org/2023/1023

BIBLIOGRAPHY

[41]

[42]

[4]

[46]

[47]

[48]

[49]

Claude Carlet. «On highly nonlinear S-boxes and their inability to thwart
DPA attacks (completed version)». In: Cryptology ePrint Archive (2005) (cit.
on p. 67).

Suresh Chari, Charanjit S Jutla, Josyula R Rao, and Pankaj Rohatgi. «To-
wards sound approaches to counteract power-analysis attacks». In: Annual

International Cryptology Conference. Springer. 1999, pp. 398-412 (cit. on
p. 67).

Emmanuel Prouff. «DPA attacks and S-boxesy. In: International Workshop
on Fast Software Encryption. Springer. 2005, pp. 424-441 (cit. on pp. 67, 69,
70).

Claude Carlet, Annelie Heuser, and Stjepan Picek. «Trade-offs for S-boxes:
Cryptographic properties and side-channel resilience». In: International con-

ference on applied cryptography and network security. Springer. 2017, pp. 393
414 (cit. on pp. 68, 69).

Mehmet Sahin Acikkapi, Fatih Ozkaynak, and Ahmet Bedri Ozer. «Side-
channel analysis of chaos-based substitution box structuresy. In: IEEE Access

7 (2019), pp. 79030-79043 (cit. on p. 68).

Huizhong Li, Guang Yang, Jingdian Ming, Yongbin Zhou, and Chengbin
Jin. «Transparency order versus confusion coefficient: a case study of NIST
lightweight cryptography S-Boxesy. In: Cybersecurity 4.1 (2021), p. 35 (cit. on
pp. 69-71).

Yunsi Fei, Qiasi Luo, and A Adam Ding. «A statistical model for DPA
with novel algorithmic confusion analysis». In: International Workshop on
Cryptographic Hardware and Embedded Systems. Springer. 2012, pp. 233-250
(cit. on p. 69).

Stjepan Picek, Kostas Papagiannopoulos, Barig Ege, Lejla Batina, and Do-
magoj Jakobovic. «Confused by confusion: Systematic evaluation of DPA
resistance of various s-boxes». In: International Conference on Cryptology in
India. Springer. 2014, pp. 374-390 (cit. on p. 70).

Sylvain Guilley, Annelie Heuser, and Olivier Rioul. «A key to success: Success
exponents for side-channel distinguishersy». In: International Conference on
Cryptology in India. Springer. 2015, pp. 270-290 (cit. on p. 70).

79

	List of Tables
	List of Figures
	Acronyms
	Introduction to Cryptography and Side-Channel Attacks
	Side-channel attacks

	Background
	Chipwhisperer
	CW305 Overview
	USB-to-Registers Interface
	Clock Domains
	Register Interface

	RISC-V
	OBI Protocol
	OBI transaction

	X-HEEP Overview

	Bridge 2 Xheep
	Software model
	Hardware implementation
	Synthesis on FPGA
	On-board test

	Power Analysis Side Channel Attack
	Introduction
	Simple Power Analysis (SPA)
	Differential Power Analysis (DPA)
	Correlation Power Analysis (CPA)
	Countermeasures
	Refactoring the algorithm
	Eliminate the information
	Suppress the side channel

	Advanced Encryption Standard (AES)
	AES Robustness against Side-Channel Attacks
	Measurement Setup
	CPA Attack
	Considerations

	ASCON
	Internal structure
	Sensitivity to side-channel attacks
	Measurement setup
	CPA attack
	Considerations

	S-Box metrics: State of the Art
	Classical cryptanalysis resistance metrics
	Side channel attack resistance metrics
	AES SoA S-Boxes
	ASCON SoA S-Boxes

	Conclusion
	Bibliography

