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Abstract

This thesis presents a behavioral model for dynamic virtual First-In-First-
Out (FIFO) buffers within a descriptor-based memory system architecture, de-
signed to support efficient context switching and preemption in high-performance
hardware environments. The hardware module manages a shared pool of reg-
ister buffers across multiple virtual FIFOs each representing either a cluster
(processing destination) or a heap (free buffer pool) using descriptor RAM to
dynamically link and organize buffer allocations.

Clusters are the destinations where incoming transactions are processed. To
enable efficient dispatching, the system implements a “Serial In, Parallel Out”
behavior: transactions arriving from a single input are dynamically divided
and routed to different clusters. The descriptor-based implementation supports
dynamic FIFO sizing, allocating required memory based on traffic demand of
each cluster, this reduces the overall memory requirements and chip area, with
only minimal delay overhead.

The behavioral model replicates the internal buffer allocation and deallo-
cation mechanisms of the memory system, maintaining a software-level repre-
sentation of the heap and cluster FIFOs. It is designed to ease debugging by
improving traceability of transactions, hiding the RTL complexity from the ver-
ification team, allowing developers to monitor buffer activity and identify mis-
matches or protocol violations more effectively. The model is integrated into
a standalone testbench environment that autonomously performs save/restore
checks based solely on peripheral and debug signal sequences, without relying
on external triggers. This facilitates the detection of context mismatches and
protocol errors during preemption scenarios.

The testing framework includes randomized and corner-case scenarios such
as ping-pong context switching and back-pressure preemption, ensuring robust
validation. By abstracting memory system behavior in a cycle-approximate

manner, the model enables faster simulation and easier traceability of buffer



transactions, ultimately aiding in the verification and debugging of complex
FIFO-based designs.

The final behavioral model is validated against a suite of standalone tests
and is intended for use in regression environments for broader system-level

verification.
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Introduzione

0.1 Design Verification

Pre-silicon verification is a critical phase in VLSI design, especially due to the
high non-recurring engineering (NRE) costs associated with fabrication. To
mitigate risk and reduce development time, modern verification methodologies
aim to automate and standardize the verification process as much as possible.

SystemVerilog introduced several software engineering concepts into hard-
ware verification, including object-oriented programming, constrained random
stimulus generation, and coverage-driven verification. Among the methodolo-
gies built on SystemVerilog, the Open Verification Methodology (OVM), de-
veloped by Cadence and Mentor Graphics, was one of the first widely adopted

frameworks.

0.1.1 Universal Verification Methodology (UVM)

To address limitations in OVM and unify verification practices across vendors,
the Universal Verification Methodology (UVM) was introduced. UVM provides
a standardized, modular, and reusable framework for building testbenches,
enabling teams to collaborate more effectively. Its transaction-level modeling
(TLM) abstraction allows components to be treated as black boxes, promoting
reuse and scalability:.

A typical UVM testbench consists of:

e Transactors, which interface directly with the Device Under Test (DUT)

driving inputs and sampling outputs.

e Higher-level components, which generate stimuli and verify DUT be-

havior against a reference model.

All DUT-facing components are encapsulated within an agent, which is

itself part of the environment, instantiated by the test.

0.1.1.1 UVM Phasing

UVM defines a phased approach to testbench execution, which automates and

standardizes simulation flow. The phases include:
e Build phase: Components are constructed and connected.

¢ Run phase: Stimuli are generated, and coverage data is collected.
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e Cleanup phase: Results are analyzed, coverage is reported, and the
simulation concludes.
0.1.1.2 Stimulus Generation: Sequence Items and Sequences
Stimuli are generated using sequence_item and sequence classes.
Sequence Item A sequence_item encapsulates the data to be sent to the

driver. Input fields are typically declared as rand, while output fields are not.

Constraints can be applied to guide randomization.

// Ezample of the data contained in a sequence_item
typedef struct packed {

logic [nbit-1:0] a;

logic [nbit-1:0] b;

logic cin;

} i_var;

rand i_var rand_in;
logic [nbit-1:0] s;

logic cout;

Sequence A sequence is a class that defines a body() task, which creates
and randomizes a specific set of items for direct tests or random set of items

for improving coverage, then sends them to the sequencer.

// Body task of a sequence class
virtual task body();
p4_sequence_item seq_item;
for (int i = 0; i < nTrans; i++) begin
seq_item = p4_sequence_item::type_id::create("
seq_item");
if (!seq_item.randomize ())
‘uvm_error ("RANDOMIZE_FAILED", "Failed to
randomize seq_item")
start_item(seq_item) ;
finish_item(seq_item);
end

endtask
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0.1.1.3 Driver and Monitor

The driver receives sequence items from the sequencer and drives them to
the DUT via an interface. After execution, it calls item_done() to signal
completion.

The monitor passively observes DUT outputs through the same interface
and broadcasts them to analysis components such as the scoreboard and cov-

erage collectors.

0.1.1.4 Agent and Scoreboard

An agent encapsulates the driver, monitor, and sequencer. It exposes analy-
sis ports that allow external components to connect without needing internal
knowledge of the agent’s structure, enhancing modularity and reuse.

The scoreboard is the core of functional verification. It compares DUT
outputs against expected results generated by a behavioral model. Typically,

it consists of:
e A predictor, which models expected behavior.
e An evaluator, which compares actual vs. expected outputs.

In the context of this thesis, the scoreboard plays a crucial role in verify-
ing the behavioral model of dynamic virtual FIFOs, ensuring that the DUT
behaves correctly under various stimulus conditions.

Pre-silicon verification is a critical step in VLSI design due to the high
non-recurring production costs. As a result, automating as much of the verifi-
cation process as possible is essential to reduce development time and improve

efficiency.
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Figure 1: UVM environment (Source: https://www.researchgate.net/figure/Typical-
UVM-block-level-testbench figl 370640353)

0.2 Graphics Processing Unit

In order to handle graphic workloads, a large number of similar operations
needs to be performed. Conventional CPUs are not able to properly handle
these workload, which prompted the need for hardware accelerators, GPUs,
that are able to handle tens of thousands of operations per clock cycle, provided

the operations are all of the same kind.

Graphics Pipeline

The main objective of a GPU is to decide what color each pixel on the screen
should be to properly represent the 3D scene on a 2D medium, to achieve this

a specilized pipeline is required

e Vertex Shader: Processes each vertex individually, applying transfor-
mations such as translation, rotation, and scaling. It typically converts

object-space coordinates to screen-space coordinates.

e Tessellation: Subdivides coarse geometry into finer pieces, allowing for
smoother surfaces and more detailed models. This stage is optional and

used mainly for complex surfaces.

e Geometry Shader: Operates on entire primitives (e.g., triangles), al-

lowing for the creation or modification of geometry. It can add or discard
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primitives dynamically.

e Rasterizer: Converts vector-based primitives into fragments (potential
pixels). It determines which pixels are covered by each primitive and

interpolates vertex attributes across the surface.

e Pixel Shader: Also known as the fragment shader, it computes the final
color of each fragment based on lighting, texture, and other effects. The

output is used to update the framebuffer.

After fragment processing, additional operations such as depth testing,
blending, and stencil testing are performed before the final image is written to
the screen. This entire pipeline is highly parallelized, allowing GPUs to render

complex scenes efficiently.

0.2.0.1 Vertex shader

Modern GPUs break down 3D models into triangles. These triangles are the
basic units processed by the pipeline. Each triangle is defined by three vertices,
and vertex attributes (like position, color, normals) are interpolated across its
surface during rasterization. Through matrix operations, the vertices can be

moved and rotated to the desired position

0.2.0.2 Tessellation

In some more complex structures, the number of trianglese could be too low
to have a satisfactory image, the tessellation stage improves the geometry
by subdividing triangles, and can be applied selectively, to avoid imposing

unnecessary workload on the GPU and optimizing performance

Figure 2: Illustration of tessellation in computer graphics (Source: comput-
ergraphics.stackexchange.com)
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0.2.0.3 Geometry Shader

A Geometry Shader (GS) is a programmable stage in the graphics pipeline,
written in GLSL, that processes entire primitives—such as points, lines, or
triangles—after the vertex shader and before vertex post-processing. Unlike
vertex shaders, which operate on individual vertices, geometry shaders take a
whole primitive as input and can emit zero or more output primitives, allowing

for dynamic geometry manipulation, main usages consist onehalfspacing

e Layered rendering: enabling a single primitive to be rendered across

multiple layers or images without switching render targets.

e Transform feedback: capturing processed geometry data for reuse or

computation, especially before the advent of compute shaders.

0.2.0.4 Rasterizer

Rasterization is the process of converting triangles in actual pixels, through the
process of identifying which triangle is occupying most of the pixel. Precision
can be increased using antialiasing, which consists of deciding the color of each

pixel as the weighted average of the colors occupying the pixel

Rasterized Vector
Triangle

Figure 3: Illustration of rasterization(Source:
https://www.computerhope.com/jargon /r/rasterize.htm)
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0.2.1 Pixel Shader

The pixel shader, also known as a fragment shader in OpenGL terminology,
is a programmable stage in the graphics pipeline responsible for determining
the final color and other attributes of each pixel rendered to the screen. Oper-
ating after the rasterization stage, the pixel shader receives interpolated data
from previous stages—such as vertex or geometry shaders—and executes user-
defined code to compute per-pixel outputs like color, depth, and transparency.
Unlike vertex or geometry shaders, which operate on geometric primitives, the
pixel shader is focused entirely on screen-space fragments. It is typically writ-
ten in shading languages such as GLSL (OpenGL), HLSL (DirectX), or Metal
Shading Language (Apple). Its primary role includes:

e Applying lighting models (e.g., Phong, Blinn-Phong)
e Executing texture sampling and blending

e Implementing effects such as bump mapping, shadowing, and post-processing
filters
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1. State of the Art

1.1 Register Transfer Level (RTL) Architecture

RTL design describes digital circuits in terms of data flow between registers
and the logical operations performed on that data. It is the foundation for
synthesizable hardware and is typically written in languages such as Verilog
or VHDL.

In advanced designs, hardware description implementations may include
dynamic linked list structures for managing queues. These structures use ded-
icated registers and RAM blocks to store data, pointers, and availability infor-
mation. Control logic orchestrates memory allocation, pointer updates, and
queue management.

Such architectures enable efficient buffer handling, scalable queue systems,
and high-performance data processing. They are particularly useful in systems

with constrained memory resources or complex transaction flows.

1.2 Structure of the Underlying RTL Implemen-

tation

The underlying RTL implementation is designed to manage dynamic buffer al-
location efficiently using a hardware-based linked list mechanism. Each queue
in the system is implemented as a linked list, with associated head-of-queue
(HOQ), tail-of-queue (TOQ), and link-length (LL) registers. These registers
track the start, end, and size of each queue respectively.

The system includes:

e Buffer RAM: Stores the actual data entries, typically in a wide format
(e.g., 128 bits).

e Link RAM: stores the links between buffers, in each location is present
the id to the next buffer in the cluster.

e Control Logic: Coordinates read/write operations, updates pointers,

and manages queue lengths.

This dynamic allocation strategy avoids memory fragmentation and under-
utilization common in statically allocated systems. It allows queues to grow

and shrink as needed, provided sufficient buffer space is available, and supports
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scalable designs with more than 16 queues without compromising access per-
formance. The number of entries per buffer can also be adjusted to optimize

for memory usage, power and performance based on the desired trade off.

1.2.1 Limitations of Traditional FIFO Designs

Fixed-size FIFO implementations, while simple, suffer from several drawbacks

in modern high-performance systems:

e Memory Fragmentation: Static allocation often leads to underutilized

memory blocks, especially under variable traffic conditions.

e Scalability Constraints: Supporting a large number of FIFOs requires

significant chip area and control logic.

e Limited Flexibility: Adapting to dynamic workloads or preemption

scenarios is difficult without reconfiguration.

These limitations motivate the use of dynamic FIFO architectures, such as
descriptor-based memory pools, which allow flexible allocation and dealloca-

tion of buffers.

1.2.2 Motivation for Behavioral Modeling

Behavioral modeling provides a high-level abstraction of system functionality,
enabling faster simulation and easier debugging. In the context of dynamic
virtual FIFOs, it allows:

e Cycle-approximate simulation for faster verification.
e Isolation of protocol violations without RTL complexity.

e Autonomous context-aware testing for preemption and save/restore

scenarios.

This abstraction bridges the gap between conceptual design and RTL imple-

mentation, making it a valuable tool in early-stage verification.
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1.3 Protocol Interfaces
Communication between components in hardware systems often relies on stan-
dardized signaling protocols. These typically include:

e srdy (source ready): Indicates that the sender has valid data to transmit.
e rrdy (receiver ready): Signals that the receiver is ready to accept data.

e data: The actual payload being transferred.

Control interfaces manage operations such as save /restore routines and con-
text switching. During normal operation, transactions are queued and com-
pared across interfaces. In case of context restoration, the system validates the

restored state and issues diagnostic messages based on configuration settings.

1.4 Testbench Architecture and Execution Flow

Modern testbenches are built to support scalable, reusable, and modular ver-
ification environments. While the introduction outlines the foundational con-
cepts of UVM, this section delves deeper into the architectural and operational

aspects of testbenches.

1.4.1 Component Hierarchy and Communication

A UVM testbench is composed of layered components that communicate using

transaction-level modeling (TLM) interfaces. These components include:

e Sequencer: Manages the flow of sequence items to the driver.

e Driver: Converts high-level transactions into pin-level activity on the
DUT interface.

e Monitor: Observes DUT activity and extracts transactions for analysis.

e Agent: Encapsulates the sequencer, driver, and monitor, and exposes

analysis ports.

e Environment: Instantiates agents and connects them to scoreboards

and coverage collectors.

Communication between components is handled via TLM ports and ex-

ports, allowing decoupled and flexible data exchange.
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1.4.2 Transaction Flow and Synchronization

The transaction flow begins with the generation of randomized or directed
stimuli in sequences. These are passed to the sequencer, which schedules them
for execution. The driver receives the sequence items and drives them onto
the DUT interface. After execution, the monitor captures the DUT response
and forwards it to analysis components.

Synchronization is managed through UVM phases and handshake mecha-

nisms such as start_item(), finish_item(), and item_done().

1.4.3 Scoreboarding and Reference Modeling

The scoreboard is central to functional verification. It compares DUT outputs

against expected results generated by a reference model. This involves:

e Predictor: Simulates expected behavior based on input transactions.

e Evaluator: Matches actual outputs to predicted ones and flags mis-

matches.

Advanced scoreboards may support out-of-order matching, temporal checks,

and error classification.

1.4.4 Coverage and Assertions

Verification completeness is measured using coverage metrics and assertions,
which together provide both quantitative and qualitative insights into the de-

sign’s correctness and robustness.

1.4.4.1 Functional Coverage

Functional coverage tracks whether specific scenarios, corner cases, or protocol
behaviors have been exercised during simulation. It is implemented using
SystemVerilog covergroup constructs, which define bins for each condition or
value of interest.

Covergroups can be embedded in:
e Sequence items: To track stimulus generation patterns.

e Monitors: To observe DUT behavior and protocol compliance.
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e Scoreboards: To verify that expected outputs are produced under spe-

cific conditions.

Example:

// Covergroup for input combinations
covergroup input_cov;
coverpoint a {
bins low = {0};
bins high = {[1:$]1};
}
coverpoint b {
bins low = {0};
bins high = {[1:$]1};
}
cross a, b;

endgroup

Cross coverage is especially useful for ensuring that combinations of inputs
are exercised, which is critical in designs with conditional logic or multiple

control paths.

1.4.4.2 Code Coverage

Code coverage is collected using simulation tools and includes:
e Line coverage: Tracks which lines of RTL code were executed.
e Branch coverage: Verifies that all conditional branches were taken.

e Toggle coverage: Ensures that all bits in the design toggled during

simulation.

e FSM coverage: Confirms that all states and transitions in finite state

machines were visited.

¢ Expression coverage: tracks what percent of boolean expressions are

executed during the simulation.

These metrics are typically reported by simulators and integrated into re-
gression dashboards. They help identify dead code, untested logic, and areas

requiring additional stimulus.
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1.4.4.3 Assertions

Assertions are formal checks embedded in the RTL or testbench to validate

design behavior. They are classified as:

e Immediate assertions: Checked at a specific simulation time.

e Concurrent assertions: Span multiple cycles and validate temporal

relationships.
e Assumptions: Used in formal verification to constrain input behavior.

e Coverage assertions: Track whether specific conditions have occurred.

Example:

// Immediate assertion

assert property (@(posedge clk) (req && ack) |-> (ready));

// Concurrent assertion

property handshake;
@(posedge clk) disable iff (!reset_n)
req |-> ##[1:3] ack;

endproperty

assert property (handshake);

Assertions are critical for catching protocol violations, illegal states, and
timing errors early in the simulation. They also serve as documentation for

design intent and can be reused in formal verification environments.

1.4.4.4 Integration and Reporting

Coverage and assertion results are collected and analyzed using verification

management tools. These tools provide:

e Coverage reports: Summarize functional and code coverage metrics.

e Assertion dashboards: Highlight passed, failed, and inactive asser-

tions.

e Gap analysis: Identify untested areas and suggest additional test sce-

narios or points to be wqaived.
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In regression environments, these metrics are used to track verification
progress, prioritize bug fixes, and guide test development. Coverage closure is
often a milestone in the verification lifecycle, indicating readiness for tape-out
or formal review.

Behavioral models may be used to accelerate simulation and isolate issues
before RTL is finalized.

1.5 Patent-Based Approaches to Dynamic FIFO

Architectures

1.5.1 Hardware Implementation of N-Way Dynamic Linked
Lists (US7035988B1)

The patent [1] presents a hardware-based solution for implementing multiple
dynamic linked lists, primarily targeting queue management in constrained
memory environments. The architecture comprises a register file with head-
of-queue (HOQ), tail-of-queue (TOQ), and link-length (LL) registers for each
queue. These registers facilitate tracking the start, end, and size of each linked
list.

The data elements are stored in a buffer RAM, while the linkage between
entries is maintained in a separate pointer RAM. A free pointer RAM manages
the pool of available memory locations, accessed in a FIFO manner. Control
logic orchestrates read /write operations, pointer updates, and dynamic alloca-
tion/deallocation of memory.

This design enables efficient memory usage by allowing queues to grow and
shrink dynamically. It avoids the pitfalls of static allocation, such as frag-
mentation and underutilization. The architecture supports up to 16 queues,
with scalability to larger numbers through parameterization. The separation

of data and pointer storage enhances access speed and modularity.

1.5.1.1 Key Components

e Register File: Contains HOQ, TOQ, and LL registers for each queue.
e Buffer RAM: Stores the actual data entries.

e Next Pointer RAM: Maintains linkage between entries.
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e Free Pointer RAM: Manages available memory locations.

e Control Logic: Coordinates operations and ensures consistency.

1.5.1.2 Advantages

e Dynamic allocation reduces memory waste.
e Hardware implementation ensures high performance.

e Modular design facilitates scalability.

1.5.2 Dynamic FIFO for Simulation (US7346483B2)

Patent [2] introduces a dynamic FIFO mechanism tailored for simulation en-
vironments. The primary goal is to optimize memory usage and prevent dead-
locks during simulation of complex systems. The FIFO starts with a small
initial size and expands incrementally based on traffic demand and wait peri-
ods.

The architecture supports autonomous resizing of the FIFO buffer when
predefined wait periods expire without data consumption. This adaptive be-
havior ensures that simulation resources are used efficiently, avoiding unneces-
sary memory allocation while maintaining throughput.

The dynamic FIFO is particularly useful in scenarios involving multiple
models with varying execution domains and timing behaviors. It facilitates
integration across system-level, RTL, and gate-level simulations, supporting

languages such as SystemC, Verilog, and VHDL.

1.5.2.1 Key Features

e Wait Period Management: FIFO size increases when wait periods

expire.
¢ Adaptive Sizing: Balances memory usage and simulation speed.

e Cross-Domain Compatibility: Supports integration across different

simulation levels.
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1.5.2.2 Use Cases

e Simulation of graphics pipelines and compute-intensive systems.
e Verification of context switching and preemption mechanisms.

e Integration with UVM-based testbenches.

1.5.3 Multiple Virtual FIFO Arrangement (US5426639)

Patent [3] proposes a dynamic buffering architecture for packet switches, where
each data source connected to a port circuit is assigned a virtual FIFO whose
capacity can expand or contract based on traffic demands. The system parti-
tions internal memory into a set of data buffers, some of which are statically
assigned to channels while the rest form a pool of free buffers. When a buffer
assigned to a channel becomes full, additional buffers are dynamically linked
from the pool to extend its capacity. Conversely, when a buffer is emptied,
it is returned to the pool. The architecture uses channel records to track
the head and tail pointers of each virtual FIFO, and buffer link records to
maintain the chaining of buffers. This enables the system to support a large
number of sources (e.g., 512 channels) without requiring a fixed buffer per
source, thereby reducing memory overhead and improving scalability. The
dynamic linking mechanism is managed by sequencers and controllers that
monitor buffer fullness and trigger allocation or deallocation accordingly. Im-
portantly, the design avoids static allocation and supports variable service
grades (latency, bandwidth, reliability), making it suitable for heterogeneous
traffic environments. The virtual FIFO concept allows for efficient memory
utilization and flexible adaptation to varying data rates, aligning well with

behavioral models of dynamic FIFO systems.

1.5.4 System with Multiple Dynamically-Sized Logical
FIFOs Sharing Single Memory (US6269413)

Patent [4] introduces a system architecture that enables multiple independent
logical FIFO buffers to share a single memory structure, with dynamic allo-
cation of storage capacity among them. The design eliminates the need for
fixed-size, dedicated buffers per FIFO, thereby reducing hardware redundancy

and optimizing memory usage. The system comprises:
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e A main register file that stores both payload data and link data, forming
a linked list for each logical FIFO.

e Separate write and read pointer register files, each maintaining pointers

for every logical FIFO

e A free register identifier, which dynamically tracks available memory lo-
cations using one of three mechanisms: a priority encoder, a conventional
FIFO buffer, or a dedicated logical FIFO.

Each FIFO entry includes a payload field and a link field. When data is

enqueued, the system:
1. Selects the appropriate write pointer.
2. Stores the data in the payload field of the destination register.

3. Updates the link field and write pointer with the address of the next free

registe

When data is dequeued, the system: selects the appropriate read pointer,
retrieves the payload and updates the read pointer using the link field.

This architecture supports simultaneous and independent read/write oper-
ations, making it suitable for high-throughput environments. It also includes
mechanisms for empty /full detection using counters and synchronization logic,
especially useful when read and write operations occur in different clock do-
mains. The system is highly scalable and adaptable, aligning well with be-
havioral models of dynamic virtual FIFOs. It provides a robust framework for
managing multiple data streams efficiently, which is directly relevant to your

thesis on memory pool modeling.

1.6 Comparative Analysis

The four patents under review address dynamic FIFO management across
different domains—hardware implementation, simulation environments, and
shared memory architectures. Each offers a unique strategy for handling buffer

allocation, scalability, and integration.

e US7035988B1 focuses on hardware-efficient linked list FIFO queues for
embedded systems.
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e US7346483B2 introduces dynamic FIFO resizing for simulation mod-

els.

e US5426639A presents a virtual FIFO system with dynamic buffer link-

ing for packet switches.

e US6269413B1 describes a multi-FIFO system sharing a single memory

with dynamic allocation and pointer management.

Feature US7035988B1| US7346483B2| US5426639A | US6269413B1
Domain Hardware Simulation Networking Shared Mem-
Hardware ory FIFO
Allocation Strat- | Linked List Incremental Dynamic Linked List per
egy Growth Buffer Linking | FIFO
Memory Manage- | Pointer RAM | Wait-Based Buffer Pool | Central Regis-
ment Resizing with Linkage ter File
Scalability Fixed Queues | Dynamic Up to 512 | Arbitrary
(e.g., 16) Channels FIFO Count
Integration RTL Designs UVM, Sys- | Packet RTL, SoC
temC, Verilog | Switches FIFO Con-
trollers

Table 1.1: Comparison of Dynamic FIFO Patents

Relevance to Modern FIFO Architectures

These patents collectively inform the design of modern FIFO systems across

hardware and simulation domains. The hardware-centric approaches of US7035988B1,
USH5426639A, and US6269413B1 provide scalable and memory-efficient solu-

tions for embedded systems, packet switches, and shared memory architec-

tures. Their use of linked lists and dynamic buffer chaining aligns with current

trends in low-latency, high-throughput designs.

Meanwhile, US7346483B2 enhances simulation workflows by enabling adap-

tive FIFO sizing based on runtime behavior. This is particularly relevant for

pre-silicon validation, regression testing, and mixed-abstraction modeling.

Together, these methodologies offer complementary perspectives on dy-

namic FIFO design. Their principles can be extended to support advanced

features such as context-aware preemption, fault recovery, and multi-threaded




1.7 Queuing Mechanisms on GPUs

21

behavioral modeling—directly relevant to the memory pool abstraction in your

thesis.
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1.7 Queuing Mechanisms on GPUs

1.7.1 The Broker Queue

Kerbl et al. [5] introduce the Broker Queue (BQ), a linearizable FIFO queue
designed for fine-granular work distribution on GPUs. Traditional lock-free
or blocking queues suffer from performance degradation or inflexibility under
massive parallelism. BQ addresses these limitations by introducing a broker
mechanism that mediates access to the queue via a shared counter (Count),

enabling predictable and scalable behavior.
1.7.1.1 Design Principles

The Broker Queue is built upon the following principles:

e Linearizability: Ensures that concurrent operations appear atomic and

ordered.

e Static memory usage: Avoids dynamic allocation, which is costly on
GPUs.

¢ Execution model compatibility: Supports individual threads, warps,

and cooperative thread groups.
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e Multi-queue support: Enables advanced scheduling strategies such as

work stealing.

1.7.1.2 Variants

The authors propose two variants of the Broker Queue:

e Broker Work Distributor (BWD): Sacrifices linearizability for per-

formance, suitable for work distribution scenarios.

e Broker Stealing Queue (BSQ): Adds work stealing capabilities for

dynamic task redistribution across multiple queues.

1.7.1.3 Performance Evaluation

In synthetic benchmarks and real-world workloads such as PageRank, BQ
demonstrates superior performance compared to traditional lock-free and block-
ing queues. It achieves up to three orders of magnitude speedup and maintains

low contention even under high thread concurrency.

1.7.1.4 Modeling Relevance

The Broker Queue’s ring-buffer-based design, ticketing system, and assurance-
based concurrency control provide a rich behavioral abstraction for modeling
dynamic virtual FIFOs. These mechanisms are directly applicable to the sim-
ulation and analysis of queue state transitions and thread interactions in the

proposed model.

1.8 Dynamic Memory Allocation on GPUs

1.8.1 Owuroboros: Virtualized Queues

Winter et al. [6] present Ouroboros, a virtualized queueing structure for dy-
namic memory allocation on GPUs. Unlike static allocators, Ouroboros sup-
ports multiple allocation sizes and dynamic growth/shrinkage of queues, mak-

ing it highly adaptable to varying workloads.

1.8.1.1 Architectural Components

Ouroboros introduces two virtualized queue architectures:
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e Virtualized Array-Hierarchy Queue (VAQ): Uses a small pointer

array to manage queue chunks.

e Virtualized Linked-Chunk Queue (VLQ): Uses linked chunks with

minimal static overhead.

It employs a bulk semaphore to efficiently manage concurrent access and

allocation, and supports both page-based and chunk-based memory reuse.

1.8.1.2 Performance Evaluation

Ouroboros achieves:

e Speed-ups of 11x to 412x over CUDA’s native allocator.

e Memory footprint reduction of up to 32x compared to faimGraph.

e Superior performance in real-world graph algorithms such as PageRank

and Static Triangle Counting.

1.8.1.3 Modeling Relevance

The virtualized queue architecture and concurrency primitives in Ouroboros

provide a layered behavioral abstraction for modeling dynamic memory pools.

Its modular design—chunks, pages, and queues—aligns well with the hierar-

chical modeling approach used in this thesis.

1.9 Comparative Analysis

Table 1.2: Comparison of Broker Queue and Ouroboros

Feature

Broker Queue

Ouroboros

Design Focus

Queue Type
Concurrency Control
Memory Model
Variants
Performance
Modeling Potential

Work distribution
Linearizable FIFO
Broker + ticketing
Static ring buffer
BWD, BSQ
Fastest linearizable GPU queue

Scheduling abstraction

Memory allocation
Virtualized index queues
Bulk semaphore
Dynamic chunk/page system
VAQ, VLQ
Fastest dynamic allocator

Memory reuse abstraction
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Both systems demonstrate how GPU-specific constraints—such as limited mem-
ory, high contention, and lack of fine-grained scheduling—can be addressed
through innovative queueing and allocation strategies. Their design choices
offer valuable insights for the behavioral modeling of dynamic virtual FIFOs,
particularly in terms of concurrency control, memory reuse, and execution

paradigms.
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2. Verification Environments

To ensure the correctness and robustness of the behavioral model, a com-
prehensive verification environment is developed using the Universal Verifica-
tion Methodology (UVM). This environment not only validates the functional
behavior of the model but also serves as a platform for Register Transfer Level
(RTL) verification, enabling deeper insights into the architectural implementa-
tion. The verification framework is designed to support autonomous checking
mechanisms, leveraging debug and peripheral signals to facilitate both func-

tional and architectural validation.

2.1 Overview of Verification Strategy

The verification strategy is centered around modularity, scalability, and reusabil-
ity. The environment is structured to accommodate multiple verification phases,
including unit-level testing, integration testing, and system-level validation.
Key components such as monitors, scoreboards, and coverage collectors are
instantiated in a hierarchical manner to ensure thorough verification across all
levels of abstraction.

The verification flow begins with the instantiation of the Device Under Test
(DUT) within a UVM testbench. Stimuli are generated using configurable
sequences that emulate realistic transaction patterns. These transactions are
injected into the DUT through well-defined interfaces, and the responses are

captured and analyzed using monitors and scoreboards.

2.2 Testbench Structure

The testbench is architected to differentiate between various interfaces con-
nected to the DUT, primarily categorized into transaction interfaces and con-

trol interfaces.

2.2.1 Transaction Interface

The transaction interface is responsible for handling the data flow into and out

of the DUT. It includes:
e Input transaction stream

e Output transaction stream
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Figure 2.1: Testbench structure

e Handshake protocol signals

Each input and output cluster is equipped with a dedicated interface to
ensure isolation and accurate tracking of data movement. The handshake
protocol ensures synchronization between the DUT and the testbench, enabling

precise control over transaction timing.

2.2.2 Control Interface

The control interface facilitates communication of control signals to the DUT.

It encompasses:
e Initialization commands
e Debug access signals
e Internal state information

This interface plays a crucial role in context-aware operations such as save
and restore, preemption, and fault recovery. It allows the testbench to ma-
nipulate the internal state of the DUT, thereby enabling advanced verification

scenarios.
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2.3 Monitors and Scoreboard

Monitors are instantiated for each interface to observe and capture the data
transactions. They operate in a non-intrusive manner, ensuring that the DUT

behavior remains unaffected. The monitors perform the following functions:
e Capture input and output transactions
e Detect context changes via debug signals
e Extract state information for reconstruction

The scoreboard is implemented using SystemVerilog queues and serves as
the reference model for output verification. It maintains a record of expected
transactions and compares them against the actual DUT outputs. The score-

board operations include:
e Pushing incoming transactions to the back of the queue
e Popping transactions from the front upon request
e Resetting and reconstructing queues during context switches

This mechanism ensures that the DUT adheres to the expected behavior
under various operational conditions, including context switching and fault

recovery.

2.4 Test Scenarios

A diverse set of test scenarios is implemented to validate the DUT under
different operating conditions. These scenarios are designed to uncover corner

cases and timing-critical issues. The test scenarios include:

e Random Test: Sends randomized transactions through the DUT to

validate general functionality.

e Back Pressure Test: Holds output transactions until clusters are full,

then releases them to test flow control.

e Halt Test: Saves all registers, resets the DUT, and restores the state to

verify halt and resume functionality.
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e Preemption Test: Saves and restores only essential registers to simu-

late task preemption.

e Ping-Pong Test: Switches context and resumes the original context to

test context switching mechanisms.

e Back Pressure Preemption Test: Combines back pressure and pre-

emption to test complex scenarios.

Each scenario is parameterized to allow variations in transaction patterns,
timing, and control signals. This flexibility enables exhaustive testing of the

DUT under realistic conditions.

2.5 Advanced Verification Features

Inspired by industrial verification practices, the environment incorporates ad-

vanced features such as:

e State Snapshotting: Captures the internal state of the DUT at specific
checkpoints for debugging and analysis.

e Fault Injection: Introduces faults into the DUT to test error handling

and recovery mechanisms.

e Randomized Context Switching: Randomly switches contexts to

validate robustness under unpredictable conditions.

e Microcode Validation: Integrates microcode checkers to detect errors

in control logic execution.

These features enhance the coverage and reliability of the verification pro-

cess, ensuring that the DUT meets stringent quality standards.

2.6 Summary

The verification environment provides a robust and flexible framework for val-
idating the behavioral and architectural aspects of dynamic virtual FIFOs. Its
modular design, support for context-aware operations, and advanced verifica-
tion features make it suitable for comprehensive validation. Future enhance-
ments will focus on increasing automation, improving coverage, and integrating

with system-level testbenches to ensure complete verification of the DUT.
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3. behavioral model

3.1 Why We Use Behavioral Modelling in Digi-

tal Electronics and Computer Architecture

Introduction Behavioral modelling is a high-level abstraction technique
used to describe the functionality of digital systems without specifying
their structural or timing details. Instead of detailing how a system
is built, behavioral models focus on what the system does its response
to inputs and its overall behavior over time. This modelling approach
is particularly valuable in the early stages of design, simulation, and

verification.

Accelerating Design and Simulation One of the primary advantages
of behavioral modelling is its ability to significantly accelerate simula-
tion. Gate-level or RTL simulations of complex systems can be slow and
resource-intensive. Behavioral models, operating at a higher level of ab-
straction, enable faster simulation cycles, allowing designers to iterate

quickly and identify functional issues early in the development process.

Managing ComplexityModern digital systems are composed of nu-
merous interconnected components. Behavioral modelling helps manage
this complexity by allowing designers to validate system functionality be-
fore delving into implementation details. This abstraction is especially
useful when dealing with dynamic structures such as FIFOs, and linked

lists, where functional correctness is critical.

Facilitating Debugging and Verification Behavioral models are es-
sential tools for debugging and verification. They serve as reference mod-
els that mirror the expected behavior of the system. During testing,
discrepancies between the behavioral model and the actual implementa-
tion can highlight bugs or design flaws. Behavioral models also integrate
seamlessly into testbenches, enabling validation of features like context

switching, save/restore routines, and preemption logic.

Supporting Incremental Development Behavioral modelling sup-
ports incremental development by allowing components to be prototyped
and tested in isolation. This modular approach is particularly effective in
environments where individual subsystems such as memory management

units or control interfaces are developed independently. Once validated
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behaviorally, these components can be integrated into the full system

with confidence.

e Cross-Domain Integration Behavioral models act as bridges between
different specification languages and execution domains. They facilitate
integration across tools and languages such as SystemC, Verilog, VHDL,
and C++, enabling a unified simulation environment. This flexibility
allows teams to choose the most appropriate language for each subsystem

while maintaining overall coherence.

e Avoiding Deadlocks and Resource Waste Fixed-size buffers and
FIFOs can lead to deadlocks if not properly sized. Behavioral models,
especially dynamic ones, adapt to runtime conditions, resizing and ad-
justing wait periods to prevent blocking and improve throughput. This
adaptability informs hardware implementation decisions, ensuring effi-

cient resource utilization.

e Autonomous and Context-Aware Testing Behavioral models en-
able autonomous testing environments where the system can detect and
respond to events such as context switches or save/restore operations
without external triggers. This capability is crucial for verifying complex
behaviors like fault injection, preemption, and corner-case handling. Be-
havioral models simulate realistic scenarios, collect coverage data, and

validate microcode logic all while maintaining abstraction and readabil-
ity.

e Cycle-Accuracy vs. Functional Fidelity While behavioral models
may lack cycle accuracy, they excel in functional fidelity. This trade-
off is acceptable during early design and verification phases. Once the
behavioral model is validated, it can be refined or replaced with more

detailed RTL models for timing analysis and synthesis.

e Conclusion Behavioral modelling is a strategic tool in digital design. It
enables faster simulation, effective debugging, complexity management,
and efficient resource allocation. In the context of dynamic virtual FI-
FOs, behavioral modelling plays a central role in validating behavior,
supporting autonomous test environments, and guiding hardware imple-
mentation. It bridges the gap between conceptual design and physical

realization, making it indispensable in modern computer architecture.
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3.2 Formalization of Tradeoffs in Design

In the design of dynamic virtual FIFOs, several parameters interact to deter-
mine performance, resource utilization, and implementation complexity. This
section formalizes the tradeoffs between buffer depth, number of buffers, and

total memory, providing a framework for evaluating design choices.

3.2.1 Parameter Definitions

Let the following variables define the system:
e B = buffer depth (number of registers per buffer)
e N = number of buffers

e R = register width (in bits)

T = total memory used

d = descriptor size (in bits)

D = total descriptor memory

U = utilization efficiency (fraction of memory actively used)

e [ = latency per transaction (in cycles)

e F' = number of FIFOs (clients + heap)

3.2.2 Memory Usage and Overhead

The total memory used for data storage is:

T=BxN xR (3.1)

The descriptor memory overhead is:

D=N xd (3.2)
Utilization efficiency is defined as:

B Active Buffers
B N
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3.2.3 Tradeoff Functions
3.2.3.1 Memory vs. Flexibility

In a fixed allocation scheme:

Tixed = F x B X R (3.4)

In a shared pool configuration:

Toared = B X N x R (3.5)

The difference in memory usage is:
AT = Tshared - Tﬁxed (36)

1 O@otal Memory vs. Buffer Depth
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Figure 3.1: Total memory usage as a function of buffer depth

3.2.3.2 Descriptor RAM Overhead vs. Granularity

As buffer depth decreases, descriptor count increases:
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Descriptor Overhead vs. Buffer Depth
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Figure 3.2: Descriptor overhead increases with finer granularity (smaller
buffer depth), assuming 7' = 100000 bits and d = 7 bits per
descriptor.

3.2.4 Cost Function

To evaluate configurations, we define a cost function:

where w; are weights reflecting design priorities.

3.2.5 Optimization Problem

The design optimization can be posed as:

Minimize: C(B,N) (3.9)
Subject to: T < Thax (3.10)
D < Dy (3.11)

L < Liarget (3.12)

U > Unin (3.13)

This formalization supports simulation-based exploration and guides im-

plementation decisions.



3.8 Combined Cost Function Analysis

37

3.3 Combined Cost Function Analysis

To evaluate the tradeoffs between buffer depth (B), number of buffers (N), and
overall system performance, we define a combined cost function that aggregates
key metrics into a single scalar value. This function helps identify optimal
configurations for the design by balancing memory usage, descriptor overhead,

latency, and utilization efficiency.

3.3.1 Cost Function Definition

The cost function is defined as:

C(B,N)=w;-THwy-D+ws-L+wy (1-0) (3.14)
where:
e T'= B-N-Ris the total memory usage (with R = 50 bits per register),
e D = N -d is the descriptor overhead (with d = 7 bits per descriptor),
e L(B)=Ly— «a-log(B) is the latency model (with Ly = 20, a = 3),
[ — N-—32

=+~ is a simplified utilization model assuming 32 buffers are idle,

w1, Wy, w3, wy are weights reflecting design priorities.

In this example, we use:

w1 = 10, Wy = 05, W3 = 08, Wy = 0.2

3.3.2 Interpretation

The cost function allows us to compare configurations and identify the "sweet
spot" where memory usage, latency, and overhead are jointly optimized. A
lower value of C'(B, N) indicates a more efficient configuration. The heatmap
below visualizes this cost function across a range of buffer depths and buffer

counts.
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3.4 Implementation of the Behavioral Model

The behavioral model developed in this thesis is a comprehensive SystemVerilog-
based simulation framework designed to emulate the dynamic behavior of vir-
tual FIFO systems. It is structured to reflect the operational intricacies of
clustered buffer management, transaction flow control, and state introspec-
tion. The model is highly parameterized, allowing for flexible configuration

and scalability across different use cases and system sizes.

3.4.1 General Architecture and Parameterization

At the heart of the behavioral model lies a top-level module that orchestrates
the interaction between clusters, buffers, and control interfaces. This module is
defined with a rich set of parameters that govern its structural and functional
behavior. These parameters include the number of clusters (virtual FIFOs),
the total depth of the system (i.e., the number of transaction entries), the size
of each buffer (number of transactions per buffer), and the width of each trans-
action (bit-width). Additional parameters define the depth of internal FIFOs
used for buffer allocation and deallocation, the size of the debug memory, and
the width of address and data buses used for save and restore operations.
The model calculates several derived parameters, such as the number of
buffers (computed as the total depth divided by buffer size), and the number
of bits required to index buffers and lines within buffers. These derived values

are used throughout the model to ensure consistent addressing and indexing.
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Figure 3.3: Class hierarchy and method relationships in the behavioral
model. The top-level module instantiates clusters, which con-
tain buffers. Each class exposes methods for transaction man-
agement, state queries, and debug operations.

3.4.2 Cluster and Buffer Composition

Each cluster in the model is instantiated as an object that contains a dynamic
array of buffer objects. These buffers are responsible for storing transactions
and maintaining internal pointers that track the head and tail positions. The
cluster objects expose a variety of utility functions that allow external modules
to query their state, including functions to retrieve the buffer IDs and line
indices of the head and tail, the total number of active buffers, and encoded
representations of the cluster head and tail positions.

Buffers are initialized with default values and are equipped with mecha-
nisms to determine whether they are full or empty. The head pointer indicates
the next transaction to be read, while the tail pointer indicates the next loca-
tion to write a transaction. When a buffer becomes full, it signals the need for
a new buffer to be allocated. Conversely, when a buffer becomes empty after

a transaction is read, it is returned to a shared heap for reuse.

3.4.3 Initialization and Heap Management

During the initialization phase, each cluster is assigned a single buffer, and the

remaining buffers are stored in a shared heap. This heap acts as a reservoir
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from which clusters can draw additional buffers as needed. The initialization
process involves creating buffer instances, assigning them unique identifiers,
and distributing them between clusters and the heap. This setup ensures that
each cluster starts with a minimal allocation and can dynamically expand its
storage capacity based on workload demands.

The model includes logic to determine whether all clusters and the heap
are empty, which is used to control reset behavior and stabilization phases.
This logic iterates through all buffers in all clusters and the heap, checking for

the presence of transactions.

3.4.4 Transaction Flow Control

Transactions are inserted into clusters through a controlled interface that
checks for readiness and stabilization conditions. When a transaction is ready
to be inserted, it is directed to the tail buffer of the target cluster. If the tail
buffer is full, a new buffer is allocated from the heap and appended to the
cluster. This dynamic allocation mechanism allows the system to adapt to
varying workloads and ensures that clusters can grow as needed.
Transactions are extracted from the head of each cluster. The model checks
whether the head buffer contains any valid transactions. If it does, the trans-
action is retrieved and the head pointer is advanced. If the buffer becomes
empty after the extraction, it is returned to the heap for reuse. This recycling

of buffers ensures efficient memory utilization and prevents resource leakage.

3.4.5 Debug Interface and Save/Restore Protocol

The behavioral model includes a comprehensive debug interface that supports
both read and write operations to match current RTL design. This interface is
used to capture the internal state of the model for diagnostic or checkpointing

purposes. The save and restore process follows a multi-step protocol:

1. Enable buffer reservation and allow upstream data to be written.
2. Activate stabilization to drain fetch and return FIFOs.
3. Wait for the system to signal that stabilization is complete.

4. For save or debug read operations, set the address and initiate a read

request. The model responds with the corresponding data.
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5. Apply and release reset to prepare for restore.

6. For restore operations, set the address and initiate a write request. The

model acknowledges the write.

7. Disable stabilization and buffer reservation to resume normal operation.

The debug memory is populated with data from all clusters and the heap,
including transaction contents, buffer link information, and cluster metadata.
This data is indexed and stored in a structured format that allows for efficient

retrieval and analysis.

3.4.6 Concurrency and Synchronization Mechanisms

To manage concurrent access and ensure data consistency, the model employs
a combination of clocked and combinational logic. Read and write operations
are gated by readiness signals, and stabilization flags are used to control the
flow of transactions during critical operations such as save and restore. This
design ensures that the model behaves predictably under concurrent access
scenarios and maintains the integrity of stored transactions.

The model also includes mechanisms to pulse acknowledgment signals in
response to read and write requests. These pulses are synchronized with the
system clock and ensure that external modules receive timely and accurate
feedback.

3.4.7 Design Flexibility and Performance Trade-offs

The behavioral model is designed to support optional features such as preemp-
tion and debug read access. When preemption is disabled, the model operates
at full throughput. When enabled, it introduces additional control logic that
may reduce performance if only a single cluster is active. This trade-off allows
the model to balance flexibility and efficiency based on the specific require-
ments of the system.

The model also supports slice-based configurations, which allow for par-
titioning of resources and more granular control over buffer allocation and

transaction routing.
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3.4.8 Conclusion

In summary, the behavioral model provides a robust, scalable, and highly con-
figurable framework for simulating dynamic virtual FIFO systems. Its modular
architecture, dynamic buffer management, and comprehensive debug capabil-
ities make it suitable for integration into complex RTL environments. The
design reflects a deep understanding of hardware modeling principles and of-
fers a practical solution for managing shared resources in clustered architec-
tures. By abstracting the complexities of buffer allocation and transaction
flow, the model enables efficient simulation and verification of systems that

rely on dynamic resource sharing and virtualized data paths.
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4. Results

4.1 Overview

This chapter presents the results obtained from the behavioral model simu-
lations and verification environment. The focus is on functional correctness,

coverage metrics, performance profiling, and memory utilization.

4.2 Code Coverage

To assess the thoroughness of the verification environment, code coverage met-
rics were collected across multiple dimensions. The behavioral model was sub-
jected to randomized and directed test scenarios to ensure broad functional

exercise.

e Line coverage: 90%
e Branch coverage: 95%

e F'SM coverage: 100%

The results demonstrate strong coverage across line, branch, and FSM dimen-
sions, indicating that the testbench effectively stimulates the design under test

and validates key functional paths.

4.3 Simulation Performance

Metric Behavioral RTL
Cycles simulated 100,000,000 | 20,791,000
Total CPU Time (relative) 4.25 3.06
Memory Usage (relative) 4.98 5.78

Table 4.1: Summary of simulation profiling metrics for random test Behav-
ioral and RTL models

The simulation profiling data reveals distinct behavioral patterns between
the two models. The Behavioral model tends to allocate more memory to com-
ponents such as transaction_item and uvm_event, which suggests a higher

degree of dynamic object creation or reuse. This behavior is consistent with
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Metric Behavioral RTL
Cycles simulated 228,750,000 | 145,931,000
Total CPU Time (relative) 4.31 3.99
Memory Usage (relative) 3.0 3.0

Table 4.2: Summary of simulation profiling metrics for ping pong test in Be-
havioral and RTL models

Metric Behavioral RTL
Cycles simulated 20,911,000 | 20,891,000
Total CPU Time (relative) 3.74 3.49
Memory Usage (relative) 4.0 3.0

Table 4.3: Summary of simulation profiling metrics for back pressure test in
Behavioral and RTL models

its architectural abstraction, where flexibility and modularity often come at
the cost of increased memory overhead.

In contrast, the RTL model exhibits significantly higher memory usage in
constructs like Event. This could be attributed to more frequent event trigger-
ing or less efficient memory reuse mechanisms. The observed count differences
(such as a delta of -750) may indicate structural or functional disparities in
how resources are instantiated and managed across the two models.

From a performance standpoint, the Behavioral model simulates substan-
tially more cycles in the random test scenario, but this comes with increased
CPU time and slightly reduced memory usage compared to RTL. In the ping
pong test, both models demonstrate similar memory footprints, although the
Behavioral model again simulates more cycles. The back pressure test shows
near-identical cycle counts, with the RTL model being marginally more effi-
cient in both CPU time and memory consumption.

These findings underscore the trade-offs between abstraction and efficiency,
and highlight the importance of profiling in guiding model optimization and

architectural decisions.

e Simulation time (RTL vs Behavioral)
e Speed-up factor

e Profiling insights (e.g., bottlenecks, memory usage)
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4. Results

4.4 Summary

The behavioral model achieved high verification completeness, with line, branch,
and FSM coverage all above 90%. Simulation profiling across random, ping
pong, and back pressure tests revealed that the behavioral model consistently
simulated more cycles than RTL, with trade-offs in CPU time and memory
usage. Profiling insights highlighted architectural differences in memory allo-
cation and event handling. Overall, the results confirm the model’s functional
accuracy and its suitability for early-stage validation and architectural explo-

ration.



Chapter 5

Conclusions

5.1 Summary of Contributions

This thesis presents a robust and multi-layered methodology for modeling and
verifying dynamic virtual FIFO systems. A behavioral model was meticulous-
lydeveloped to encapsulate the functional dynamics of virtual FIFOs, including
buffer allocation, transaction flow, and cluster-based data management. The
model supports granular control over buffer states such as head/tail indexing,
fullness, and emptiness enabling precise simulation of real-world scenarios.
The model integrates a modular structure that allows dynamic configuration
of clusters, buffers, and transaction pipelines. This flexibility supports both
throughput optimization and preemption/debug-read capabilities, depending
on buffer sizing and operational mode. A UVM-based verification environment
was designed and implemented to rigorously test the model. This environ-
ment includes simulation mechanisms that track transaction integrity, buffer
transitions, and cluster interactions. Coverage analysis was performed across
multiple dimensions functional, structural, and temporal to ensure exhaustive
validation. Additionally, the model incorporates debug and save/restore inter-
faces, allowing for introspection and state recovery. These features are critical
for validating system behavior under reset conditions and during preemption

events, further enhancing the reliability and testability of the design.
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Conclusioni

5.2 Limitations

While the behavioral model offers flexibility and abstraction, it does not guar-
antee cycle accuracy. Certain trade-offs were made to prioritize functional
fidelity over timing precision, which may limit its applicability in low-level
performance tuning. Additionally, the scope of test scenarios was constrained
to representative cases such as random, ping pong, and back pressure tests,

leaving room for broader stress testing and corner-case exploration.

5.3 Future Work

Several directions can extend the current work. Integrating the behavioral
model with system-level testbenches would enable end-to-end validation in
more realistic scenarios. Formal verification techniques could be applied to
strengthen correctness guarantees, while synthesis experiments may help as-
sess hardware feasibility. Finally, extending support for multi-threaded or
hierarchical FIFO systems would broaden the model’s applicability to more

complex architectures.
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Acronyms

UVM Universal Verification Methodology
FIFO First In First Out

GPU Graphical Processing Unit

CPU Central Processing Unit

DUT Device Under Test

RTL Register Transfer Level
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