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Abstract 

Viscosity, a fundamental rheological property of fluids, plays a key role in 

understanding and simulating flow behavior. This thesis presents a novel data-driven 

viscosity model for shear-thinning, time-independent non-Newtonian fluids, 

particularly elastomeric compounds processed in polymer manufacturing. The work 

begins with a detailed rheological characterization based on high-pressure capillary 

rheometry, employing Bagley and Weissenberg–Rabinowitsch corrections to extract 

accurate shear-stress and shear-rate data. Classical viscosity models, including the 

Carreau–Arrhenius formulation, were fitted using constrained nonlinear least squares 

to establish a physically meaningful baseline for augmented dataset generation. 

To overcome experimental limitations in the low-shear region, the validated classical 

model was used to augment the dataset with 2000 synthetic data points. The enriched 

dataset enabled the development of the Multi-Variable Implicit (MVI) viscosity model, 

derived through symbolic regression using the PySR library. The MVI model yields a 

closed-form algebraic expression that implicitly couples temperature and shear rate 

without relying on exponential or logarithmic terms. This structure ensures 

compatibility with CFD solvers while maintaining smoothness, numerical stability, 

and high computational efficiency. 

The model achieved an R² of 0.99 on unseen test data and demonstrated strong 

generalization across different polymer classes, including thermoplastics. It 

accurately reproduced the Newtonian plateau, transition region, and pseudoplastic 

regime. Although some non-Newtonian fluids exhibit a second Newtonian plateau at 

very high shear rates, the studied compound did not display such behavior within the 

experimentally accessible range. Consequently, the model was not trained on these 

extreme conditions and cannot capture that regime. The proposed approach bridges 

data-driven modeling and classical rheology, offering a viable path toward 

interpretable, AI-enhanced constitutive equations for engineering simulations. 
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Chapter 1 |     INTRODUCTION 

Understanding the behavior of fluids is essential for designing and optimizing 

processes in industries ranging from polymer processing and additive manufacturing 

to biomedical devices and energy systems [1], [2]. At the core of rheology is viscosity, 

which describes how a fluid resists deformation. For simple fluids like water or air, 

viscosity remains constant regardless of how fast the fluid is being sheared. These are 

known as Newtonian fluids, and their shear stress and shear rate relationship follows 

a linear law [3]. However, many real-world fluids behave quite differently. Their 

viscosity can change depending on the shear rate, temperature, or even time. These 

are called non-Newtonian fluids [4]. A particularly important subclass is shear-

thinning or pseudoplastic fluids. These materials, which include polymer melts, 

slurries, and biological fluids, become less viscous as they are sheared more [5]. 

The ability to predict and control the viscosity of such fluids is of great practical 

importance. In polymer processing, for instance, the viscosity determines how easily 

materials flow through dies and molds, directly influencing product quality, 

dimensional stability, and energy consumption. Similarly, in biomedical and energy 

systems, precise viscosity modeling governs the accuracy of simulations involving 

blood flow, lubrication, and heat transfer. In these contexts, even small modeling 

inaccuracies can propagate through computational frameworks, leading to significant 

errors in predicted flow behavior or system performance. 

Over the decades, numerous constitutive models have been developed to describe 

viscosity as a function of shear rate or temperature. Classical models such as the 

Power Law, Carreau, and Cross formulations have proven effective in characterizing 

shear-dependent behavior, while Arrhenius or WLF equations capture thermal effects. 

However, these models typically treat the two effects independently, which limits their 

applicability under conditions where shear rate and temperature interact strongly, as 

in non-isothermal polymer flows. When these equations are combined to capture both 

effects at the same time, they lead to mathematically complex expressions that are 

difficult to calibrate and computationally expensive to implement in CFD solvers. 
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In recent years, Artificial Intelligence (AI) and Machine Learning (ML) techniques have 

been increasingly employed to overcome the nonlinear and coupled nature of these 

dependencies. While these data-driven approaches demonstrate high predictive 

accuracy, they often sacrifice physical interpretability and introduce computational 

overhead, making them less suitable for integration into industrial simulation 

workflows. This motivates the need for a new modeling framework that preserves the 

interpretability and simplicity of classical rheological models while leveraging the 

flexibility of data-driven discovery. The present thesis addresses this need by 

developing a unified, compact, and physically interpretable viscosity model capable 

of representing the coupled influence of shear rate and temperature efficiently. 
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1.1    Literature Review 

In polymer processing, the shear-thinning behavior is crucial. When polymers are 

extruded or injected into molds, the reduction in viscosity under high shear allows 

smoother and more efficient flow [6]. Shear-thinning behavior is commonly described 

using mathematical models such as Carreau, Cross, and Power Law formulations. 

Among these, the Carreau model and its extension, Carreau-Yasuda model are 

particularly popular due to their ability to represent both the low and high shear rate 

Newtonian plateaus. Their capability to accurately capture the transition between 

these regions makes it especially suitable for complex flow scenarios, including 

hydraulic fracturing and flow over deformable boundaries [7], [8], [9]. Compared to 

simpler formulations such as the Power Law, the Carreau family of models provides a 

more robust framework for simulating shear-thinning fluids, effectively balancing 

physical accuracy with numerical stability in high-fidelity CFD simulations [10]. 

The Cross model is a well-known constitutive equation for describing shear-thinning 

fluids. It’s often used in blood flow simulations, where it helps predict how shear stress 

and velocity change across the aorta [11]. Compared to the Carreau model, the Cross 

model is simpler and easier to work with, which makes it a popular choice, especially 

in the polymer industry. It works well for fluids that act like Newtonian fluids at low 

shear rates but become shear-thinning as the shear rate increases [12]. 

The Power Law model remains one of the most frequently applied formulations for 

describing the flow behavior of non-Newtonian fluids, particularly those exhibiting 

shear-thinning or shear-thickening characteristics. Its widespread use stems largely 

from its mathematical simplicity, having only two fit parameters. This makes it 

especially appealing for integration into both analytical frameworks and 

computational tools, where it facilitates rapid estimation of viscosity across different 

shear rates. In practical terms, the Power Law model performs well in polymer 

processing operations such as extrusion and molding, where materials are subjected 

to a broad range of shear rates and rapid viscosity changes are expected [13]. 

However, a critical limitation of the Power Law model is its inability to represent the 

Newtonian behavior at very low and very high shear rates. It assumes a continuous 

power-law relationship throughout, which leads to unrealistic predictions. For 
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example, it suggests that viscosity becomes infinite as the shear rate approaches zero 

[14]. This is not only physically inaccurate but also introduces numerical instability in 

CFD simulations, particularly when modeling flow start-up or near-stagnant regions 

[15]. 

While these models focus primarily on the effect of shear rate, viscosity is also strongly 

influenced by temperature, especially in thermally sensitive or non-isothermal 

processes. As the temperature rises, the enhanced molecular mobility within the fluid 

reduces its viscosity, introducing a nonlinear behavior in the viscosity relationship. 

This nonlinearity must be captured carefully in simulations to avoid inaccurate flow 

predictions, particularly in applications like extrusion, injection molding, or 

lubrication, where temperature gradients are substantial and directly affect 

performance. 

One of the most widely used models for representing this temperature-viscosity 

relationship is the Arrhenius equation. This model assumes an exponential decay of 

viscosity with temperature, based on the idea that increased thermal energy helps 

molecules overcome intermolecular resistance more easily. The strength of the 

Arrhenius model lies in its simplicity: it requires only a few parameters including the 

activation energy, the universal gas constant, and a pre-exponential factor, which 

makes it computationally lightweight and easy to implement in both experimental 

analysis and CFD codes. Its analytical form also allows for convenient curve fitting and 

extrapolation within moderate temperature ranges [16]. 

However, the Arrhenius equation becomes less reliable near the glass transition 

temperature (𝑇𝑇𝑔𝑔) of polymeric or amorphous materials. In these regions, the physical 

behavior of the fluid deviates from the assumptions underpinning the Arrhenius 

model. Instead of following a smooth exponential trend, the viscosity tends to change 

more abruptly, reflecting the complex structural relaxation processes taking place 

within the material matrix. This deviation significantly impacts simulation accuracy 

when modeling temperature-sensitive systems or when temperature variations bring 

the material close to 𝑇𝑇𝑔𝑔. 
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To address these limitations, more sophisticated semiempirical models such as the 

Williams-Landel-Ferry (WLF) and Vogel–Fulcher–Tammann (VFT) equations have been 

introduced. These models are specifically designed to better capture the non-

Arrhenius behavior of fluids near 𝑇𝑇𝑔𝑔. The WLF model, for instance, is derived from 

polymer relaxation theory and is widely applied in time-temperature superposition 

techniques. It expresses the logarithmic shift in viscosity as a function of temperature 

relative to Tg, offering a more accurate prediction in the vicinity of this critical 

threshold. Similarly, the VFT model modifies the simple exponential structure of the 

Arrhenius equation by introducing a temperature offset, which reflects the asymptotic 

slowing down of molecular motion as temperature decreases toward the material's 

glassy state [17]. 

While classical viscosity models have played a fundamental role in understanding 

fluid behavior, they typically handle only one influencing factor at a time, either shear 

rate or temperature. However, in real-world scenarios, especially in complex industrial 

processes, both of these variables simultaneously affect the viscosity of non-

Newtonian fluids. Shear-thinning fluids, for instance, not only change their viscosity 

with flow but also respond sensitively to thermal conditions. To account for this, 

researchers have often combined a shear rate–dependent model like Carreau or 

Power Law with a temperature-dependent formulation such as the Arrhenius or WLF 

model. Although this coupling improves predictive accuracy, it results in complex and 

highly nonlinear equations that are difficult to implement efficiently in computational 

environments such as CFD solvers. These equations require careful calibration and 

often become computationally expensive. 

To address this challenge, the scientific community has increasingly explored Artificial 

Intelligence (AI) and Machine Learning (ML) techniques as alternative approaches for 

modeling viscosity. These data-driven methods offer a powerful way to capture 

nonlinear relationships. One notable example is the work by Daniel R. Cassar, who 

applied a Neural Network framework to estimate the temperature-dependent 

viscosity by predicting the fitting parameters of the MYEGA equation. His approach 

demonstrated that neural networks could successfully replicate established 
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empirical laws with minimal human intervention, thereby streamlining the model 

generation process [18]. 

Further studies have extended this idea by using more advanced neural network 

architecture. For instance, in the work by D. Li  et. Al., Multilayer Perceptron Neural 

Networks (MLPs) and Decision Trees have been implemented to predict the viscosity 

of crude oil. These models have achieved high predictive accuracy, often 

outperforming traditional regression-based techniques. Their ability to capture 

complex, high-dimensional relationships make them particularly well-suited for 

modeling fluids with nonlinear behavior under varying flow and thermal conditions 

[19]. 

In another relevant study, A.M. Elsharkwy et al. compared Classical Regression 

Techniques (CRT) and Neural Regression Techniques (NRT) for viscosity prediction. 

Their results revealed that NRTs were significantly more accurate, especially when 

dealing with highly nonlinear data. This emphasized the potential of machine learning 

not just as a supplement, but as a viable replacement for traditional empirical models 

in certain scenarios [20]. 

Moreover, Artificial Neural Networks (ANNs) have also been successfully employed to 

predict the viscosity of black oil below its bubble point. This application is particularly 

complex due to phase changes and strong pressure dependencies, yet the ANN model 

delivered better predictive performance than previously introduced physical models 

[21]. Similarly, researchers like Y. Hajizadeh explored hybrid AI techniques that 

combined Fuzzy Logic with Neural Networks. Their work showed that integrating rule-

based inference systems with machine learning could further enhance accuracy, 

especially when dealing with sparse or noisy datasets [22]. 

Perhaps one of the most promising developments in this space is the work by Saadat 

et al., who introduced a Rheology-Informed Neural Network (RhINN) framework. 

Unlike conventional machine learning models that act as black boxes, RhINNs embed 

physical constraints into the learning process. In their study, the neural network was 

trained to select the most appropriate constitutive model out of nine candidates by 

evaluating how well each model fits a given shear rate dataset. This combination of 
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domain knowledge and machine learning flexibility enabled the algorithm to 

autonomously identify the best-fit model [23]. 

Despite the success of these AI-based methods, challenges remain. Many of these 

models require large amounts of high-quality data for training, and they often need to 

be re-trained for each new fluid or set of conditions. Additionally, their complexity can 

introduce integration barriers in computational simulations, especially where real-

time performance or memory efficiency is critical. Therefore, the development of a 

simpler yet accurate modeling strategy remains crucial for bridging the gap between 

predictive performance and computational efficiency in rheological modeling. 

1.2    Problem Statement and Research Objectives 

Despite significant advances in rheological modeling, accurately representing the 

viscosity of shear-thinning fluids under coupled shear-rate and temperature variations 

remains an open challenge. Classical viscosity models, while physically grounded, 

require composite formulations to account for both shear-dependent and thermal 

behavior. These compound models introduce mathematical nonlinearity and 

parameter redundancy, which can severely impact computational efficiency and 

stability when implemented in finite volume or finite element solvers. Furthermore, 

many of these formulations rely on exponential terms or piecewise definitions, 

complicating their integration into industrial CFD frameworks. 

On the other hand, artificial intelligence and data-driven approaches have shown 

strong predictive power but lack interpretability and often demand significant training 

data and computational resources. Their complexity makes them impractical for fast 

simulations or real-time control systems, where stability, speed, and transparency are 

critical. 

In this context, the main research problem addressed by this thesis is the development 

of a unified, compact, and physically interpretable viscosity model that accurately 

captures the coupled influence of shear rate and temperature without the overhead of 

traditional or purely data-driven approaches. 

The specific research objectives are: 
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• To formulate a new viscosity model that inherently accounts for the nonlinear 

interaction between shear rate and temperature using a single, closed-form 

expression. 

• To reduce the computational complexity of existing models while preserving or 

improving accuracy, by deriving a mathematically efficient structure suitable 

for direct implementation in CFD solvers. 

• To employ symbolic regression as the core modeling tool, enabling automatic 

discovery of closed-form equations from experimental and synthetic data. 

• To evaluate the proposed MVI model against traditional models such as 

Carreau-Arrhenius in terms of predictive accuracy. 

1.3    Structure of the Thesis 

Due to the hierarchical structure and method-development focus of this thesis, the 

results are presented within each relevant chapter and section. This integrated 

approach reflects the sequential nature of the work, where the outcome of each stage 

serves as a necessary foundation for the subsequent one. 

The remainder of the thesis is organized as follows: 

• Chapter 2 provides the theoretical foundation for non-Newtonian fluid 

rheology. It introduces the strain rate tensor, classifies non-Newtonian and 

generalized Newtonian fluids, and discusses the influence of pressure and 

temperature on viscosity, as well as typical viscosity regions in shear-thinning 

behavior. 

• Chapter 3 presents rheometry techniques relevant to this study, 

comparing high-pressure capillary rheometers and cone-and-plate devices. It 

also details correction methods, including Bagley and Weissenberg–

Rabinowitsch corrections, to ensure accurate viscosity measurements. 

• Chapter 4 reviews classical viscosity models, separating shear rate-

dependent and temperature-dependent formulations. It also discusses 

combined multi-variable models and evaluates their strengths and limitations 

in capturing complex rheological behavior. 
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• Chapter 5 outlines the curve fitting methodology used to calibrate 

viscosity models. It introduces the theory of nonlinear least squares 

minimization, describes numerical solution methods, and presents the lmfit 

implementation with constraints reflecting physical bounds. 

• Chapter 6 describes the data preparation strategy, including the 

limitations of experimental data, generation of synthetic data using Carreau–

Arrhenius models, and final dataset assembly. It also defines the train–test split 

and preprocessing pipeline used prior to symbolic regression. 

• Chapter 7 introduces symbolic regression as a model discovery tool, 

discusses classical and modern approaches, formalizes the learning problem, 

and presents the PySR framework used to derive the final MVI model through 

multi-objective optimization. 

• Chapter 8 evaluates the performance and generalizability of the MVI 

model. Its accuracy is assessed on test data and additional compound 

datasets, highlighting its robustness, generalization capability, and suitability 

for CFD integration. 

• Chapter 9 concludes the thesis by summarizing the key contributions, 

discussing the advantages and potential limitations of the MVI model, and 

suggesting directions for future research and CFD integration. 

 

References are provided at the end of the thesis for reproducibility and 

transparency. 
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Chapter 2 |     Fundamentals of Non-Newtonian Fluid Rheology 

This chapter establishes the theoretical and mathematical framework underlying the 

rheological modeling used in this study, with particular focus on shear-thinning 

polymeric fluids. The fundamental equations and tensor definitions presented here 

are primarily based on Irgens [24] and provide the background necessary for 

formulating constitutive relationships later applied in model development and 

simulation. 

The chapter begins by defining essential quantities such as the rate-of-strain tensor 

and the shear rate. It then proceeds to classify Newtonian and non-Newtonian fluids, 

discusses generalized Newtonian formulations, and examines how pressure and 

temperature influence viscosity. In addition, it presents the characteristic rheological 

regions typically observed in a viscosity–shear-rate curve, including the low-shear 

Newtonian plateau, the intermediate transition region, and the high-shear thinning 

regime. The physical significance of these regions and their relevance to polymer-

processing applications are emphasized, as they form part of the theoretical 

foundation for the modeling, data generation, and symbolic-regression analyses 

developed in the later chapters. 
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2.1    Strain Rate Tensor Definition 

For incompressible flows, the rate-of-strain tensor D is defined as the symmetric part 

of the velocity gradient tensor: 

𝐷𝐷 =
1
2

(∇𝑢𝑢 + (∇𝑢𝑢)𝑡𝑡) (2-1) 

 

where u is the velocity vector. This tensor quantifies the rate at which fluid elements 

deform. From D, the scalar shear rate 𝛾̇𝛾 is often defined as the second invariant: 

𝛾̇𝛾 = �2𝑡𝑡𝑡𝑡(𝐷𝐷2) (2-2) 

 

Where tr(-) is the trace operator. This shear rate serves as the primary input in 

generalized Newtonian models, describing the dependence of viscosity on the flow 

field. 

2.2    Non-Newtonian Fluids 

Unlike Newtonian fluids where viscosity remains constant, non-Newtonian fluids 

exhibit a viscosity that depends on shear rate, time, temperature, or stress history. 

Based on the dependency, non-Newtonian fluids are broadly classified into [24]: 

• Time-independent fluids: In these fluids, viscosity depends only on the 

instantaneous shear rate, and they can be categorized to pseudoplastic (shear-

thinning), dilatant (shear-thickening), and Bingham-type materials. 

• Time-dependent fluids: Viscosity changes over time under constant 

shear. Examples include thixotropic fluids (viscosity decreases with time) and 

rheopectic fluids (viscosity increases with time). 

• Viscoelastic fluids: These display both elastic and viscous behavior. 

Under stress, they initially deform elastically and then flow like a viscous fluid. 

These fluids require more complex constitutive equations involving relaxation 

and retardation times. 
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This study focuses on shear-thinning, time-independent fluids, particularly elastomer 

compounds with no significant yield stress or time-dependent effects under the 

investigated conditions. 

2.3    Rheological Regions in Shear-Thinning Fluids 

Shear-thinning materials exhibit distinct flow regimes as a function of shear rate. A 

typical viscosity–shear rate curve, plotted on logarithmic axes, can be segmented into 

the following key regions: 

• Newtonian Plateau (Zero-Shear Viscosity Region): 

At very low shear rates, the viscosity remains approximately constant. This is 

referred to as the zero-shear viscosity, 𝜂𝜂0, and characterizes the fluid’s 

resistance to flow in the absence of significant deformation. Molecular chains 

or internal microstructures are in a relaxed, entangled state. 

• Transition Region: 

As the shear rate increases, polymer chains or suspended structures begin to 

align and disentangle in the direction of flow. This leads to a rapid decrease in 

viscosity and the breakdown of the Newtonian assumption. This nonlinear 

zone connects the Newtonian plateau with the shear-thinning region and 

varies in width depending on the fluid’s microstructure and temperature. 

• Shear-Thinning (Pseudoplastic) Region: 

At moderate to high shear rates, the fluid shows a nearly linear behavior in 

log–log space. 

Here, molecular alignment reduces internal friction, leading to a continued 

decline in viscosity with an increasing shear rate. This region dominates 

industrial processing operations such as extrusion, injection molding, or 

mixing. 

• Second Newtonian Plateau: 

In some complex polymer melts or structured fluids, viscosity may stabilize 

again at extremely high shear rates due to complete alignment of molecular 

chains. This second Newtonian plateau is difficult to capture experimentally 

and was not observed in the current study. 
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Figure 2.1 shows a schematic plot of these regions for a typical shear-thinning 

polymer. 

 

Figure 2.1) Rheological regions of the viscosity 

 

2.4    Generalized Newtonian Fluids (GNF) 

Generalized Newtonian Fluids are a class of time-independent non-Newtonian fluids 

where the extra stress tensor is defined as: 

Τ′ = 2𝜂𝜂(𝛾̇𝛾)𝐷𝐷 (2-3) 

 

Here, 𝜂𝜂(𝛾̇𝛾) is the apparent viscosity, a scalar function of the shear rate 𝛾̇𝛾. This 

framework retains the structure of the Newtonian model but generalizes it by allowing 

viscosity to vary with flow conditions. 

Common models used to define 𝜂𝜂(𝛾̇𝛾) include: 

Power Law:  This model is considered as one of the simplest and most 

straightforward viscosity models, while suffering from limitations in first and 

second Newtonian plateaus. 
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𝜂𝜂(𝛾̇𝛾) = 𝐾𝐾 ∙  𝛾̇𝛾𝑛𝑛−1 (2-4) 

 

Spriggs Model: A truncated Power Law that limits η for 0 shear rate in order 

to prevent the model from predicting infinite value for viscosity and reads as: 

𝜂𝜂(𝛾̇𝛾)  =  𝜂𝜂0    𝑖𝑖𝑖𝑖    𝛾̇𝛾 ≤ 𝛾̇𝛾0    ,    𝜂𝜂(𝛾̇𝛾)  =  𝜂𝜂0(
𝛾̇𝛾
𝛾̇𝛾0

)𝑛𝑛−1    𝑖𝑖𝑖𝑖    𝛾̇𝛾 > 𝛾̇𝛾0 (2-5) 

 

Cross Model: A  shear rate dependency model that captures Newtonian 

plateau by incorporating a zero-shear viscosity parameter, avoiding the 

viscosity to reach infinity at zero shear rate. 

𝜂𝜂(𝛾̇𝛾) =  
𝜂𝜂0

1 + �𝜂𝜂0. 𝛾̇𝛾
𝜏𝜏∗ �

1 −𝑛𝑛 (2-6) 

 

Carreau Model: This model also handles zero shear viscosity and is widely 

used to describe viscosity behavior of polymers. 

𝜂𝜂(𝛾̇𝛾) =  𝜂𝜂0 ∙ (1 + (𝜆𝜆𝛾̇𝛾)2)
(𝑛𝑛−1)
2  (2-7) 

 

Bingham Model: Includes a yield stress τ₀ and a linear post-yield flow and 

defined as: 

𝜂𝜂(𝛾̇𝛾)  =  𝜇𝜇 +
𝜏𝜏𝑦𝑦
𝛾̇𝛾

    𝑤𝑤ℎ𝑒𝑒𝑒𝑒    𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝜏𝜏𝑦𝑦    𝑎𝑎𝑎𝑎𝑎𝑎    𝜂𝜂(𝛾̇𝛾)  =  ∞    𝑤𝑤ℎ𝑒𝑒𝑒𝑒    𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 < 𝜏𝜏𝑦𝑦 (2-8) 

 

Herschel–Bulkley / Ellis Models: Combine shear-thinning and yield stress 

behavior, defined as: 

𝜂𝜂(𝛾̇𝛾)  =  
𝜏𝜏0
𝛾̇𝛾

+ 𝐾𝐾𝛾̇𝛾𝑛𝑛−1 (2-9) 
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These models are widely implemented in computational fluid dynamics (CFD) and are 

crucial for accurate prediction of flow in polymer processing. As the aim of the present 

study is focused on the behavior of shear-thinning fluids, a more complete explanation 

of models capable of describing such behavior will be given in Chapter 4. 

2.5    Effect of Temperature and Static Pressure 

Viscosity is highly temperature-dependent. Several models are used to capture this 

effect: 

Arrhenius Law:  

𝜂𝜂(𝑇𝑇) = 𝜂𝜂𝑎𝑎 .  𝑒𝑒�
𝐸𝐸𝑎𝑎
𝑅𝑅 . 𝑇𝑇� (2-10) 

 

Williams–Landel–Ferry (WLF) Law:  

𝜂𝜂(𝑇𝑇) =  𝜂𝜂0 .  𝑒𝑒
�−

𝐶𝐶1 . �𝑇𝑇 − 𝑇𝑇𝑔𝑔�
𝐶𝐶2 + �𝑇𝑇 − 𝑇𝑇𝑔𝑔�

�
 

(2-11) 

 

Vogel–Fulcher–Tammann (VFT): 

𝜂𝜂(𝑇𝑇) = 𝜂𝜂0 .  𝑒𝑒
� 𝐸𝐸0
𝑅𝑅 . (𝑇𝑇−𝑇𝑇0)� (2-12) 

 

 

The VFT equation can be viewed as an Arrhenius-type model with a shifted reference 

temperature, making their functional forms qualitatively similar under certain 

parameterizations. A more detailed comparison between temperature dependency 

models is given in Chapter 4. 

Pressure also affects viscosity, but to a lesser extent. For polymers, a 1000-bar 

increase in pressure can have an effect similar to a 15–30 °C temperature change on 

the shear viscosity [25]. In this study, due to equipment limitations and negligible 

effects of the pressure on viscosity, pressure-dependent effects are disregarded. 
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Chapter 3 |     Experimental Rheometry and Viscosity Correction 

Methods 

This chapter presents the experimental framework used to obtain viscosity data for the 

development of the proposed model. The measurements were conducted using a 

high-pressure capillary rheometer, which is particularly suited for characterizing 

polymeric fluids under high-shear, processing-relevant conditions. This technique 

enables the accurate determination of shear-dependent viscosity across the range 

most representative of industrial flows.  

In addition to describing the experimental setup, the chapter outlines the correction 

procedures necessary to convert raw measurements into true rheological quantities. 

The Bagley and Weissenberg–Rabinowitsch corrections are applied sequentially to 

eliminate entrance losses and account for non-Newtonian velocity profiles, 

respectively. The corrected viscosity dataset obtained from these experiments serves 

as the foundation for the model calibration and validation stages discussed in 

subsequent chapters. 
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3.1    Experimental Setup 

Various types of rheometers have been developed to measure viscosity under different 

shear conditions. This study primarily utilized capillary rheometry, which is well-suited 

for high-shear industrial conditions [26]. For completeness, a brief overview of cone-

plate rheometry, commonly employed for low-shear oscillatory measurements in 

laboratory settings is also included [27]. Each method provides distinct yet 

complementary insights into the flow behavior of shear-thinning materials. 

3.1.1    Cone-Plate Rheometry 

In the cone-plate configuration, the sample is placed between a flat plate and a 

shallow-angle cone, which rotates to impose shear. In the case of parallel-plate 

geometry, two flat, circular plates are used instead, with the upper plate rotating at a 

specified angular velocity. In fact, the fluid is sheared between a stationary and moving 

wall. The fluid is adhered to the moving wall and dragged along it [28]. 

Cone-plate rheometry is particularly useful in the low shear rate domain where 

capillary rheometers may lack resolution or produce unstable data due to limitations 

such as pressure sensor range and entrance effects. However, cone-plate rheometry 

has its own challenges, including potential edge fracture, slippage at the wall, and 

sample drying or degradation during extended high-temperature measurements. 

Figure 3.1 illustrates an overview of cone-plate rheometer structure [29]. 
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Figure 3.1) An Overview of Cone-Plate Rheometer.  

3.1.2    Capillary Rheometry 

Capillary rheometry, and specifically high-pressure capillary rheometry, represents a 

powerful approach for characterizing fluid viscosity under high-shear conditions. The 

principle behind high-pressure capillary rheometers  involves pushing the sample 

through a cylindrical or slit-shaped channel using a piston, generating a pressure-

driven flow [30]. These devices are generally classified into two types: Speed Control 

and Pressure Control systems [31]. In this work, a Speed Control rheometer with round 

channel was used, where the piston sets the flow rate while pressure data is recorded. 

Once the pressure curve stabilizes, a measurement point is taken, after which the 

piston speed is increased to reach the next shear rate. The experiments were 

conducted and provided by SEMPERIT AG using a Rheograph 25/50 (Göttfert GmbH), 

with test temperatures ranging from 70 °C to 120 °C and shear rates from 

approximately 10 s⁻¹ to 5000 s⁻¹. These conditions align with the recommended 

operational window for such instruments [32].  
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The material tested had a glass transition temperature around –50 °C. The main die 

used in the tests was 20 mm long with a 2 mm diameter, corresponding to a 10:1 

aspect ratio. As illustrated in Figure 3.2, pressure sensors in round dies can only be 

installed at the die entrance, which limits direct measurement of the pressure drop 

along the channel [33]. In addition to the primary die, a secondary short die of 0.2 mm 

length, used for Bagley correction. This arrangement enables linear Bagley correction 

to be applied, compensating for entrance pressure losses that are otherwise 

inseparable from pressure drop along the die. 

 

Figure 3.2) Round die and Slit die configurations 

 

 

3.1.3    Comparative Insights 

While both rheometry techniques aim to characterize shear-dependent viscosity, they 

differ significantly in their measurement regimes and associated assumptions. Cone-

plate rheometry is best suited for low to moderate shear rates and is ideal for capturing 
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viscoelastic properties and linear viscoelastic spectra under oscillatory conditions. 

However, it lacks the ability to replicate the high-shear environments experienced in 

real-world processes like extrusion. 

In contrast, capillary rheometry provides access to high shear rates, capturing the 

shear-thinning behavior and temperature dependence under pressure-driven flow, 

closely mimicking processing conditions in polymer extrusion, molding, and 

compound shaping. 

Considering the advantages of both techniques, it’s best to combine these methods 

to achieve a reliable and broad range of viscosity data as illustrated in Figure 3.3. The 

reason behind it is at low shear rates, torque and pressure is low, therefore cone-plate 

rheometer is the best option. However, in high shear rates, torque and pressure 

increases which results in flow instability. In this regime, capillary rheometry is the 

best option. 

 

Figure 3.3) Combined Rotational and Capillary techniques 

 

In this study, the capillary rheometer was used to build the primary dataset for model 

development, due to its ability to cover the shear rate domain of industrial interest. 

log(𝛾̇𝛾) 

log(𝜂𝜂) 

Capillary Flow 
Torsional Flow 

𝜂𝜂0 
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3.2    Apparent Viscosity 

Measuring viscosity through rheometry techniques involves several assumptions 

during the experimental measurement. Consequently, the viscosity values obtained 

through such techniques do not represent the true behavior of the fluid unless we 

account for these assumptions and errors. Therefore, the concept of Apparent 

Viscosity is introduced, which means the measured viscosity does not actually 

represent the true behavior of the fluid, and appropriate correction procedures must 

be applied to obtain true viscosity values, depending on the material, rheometry 

technique, and the device used for measurements. 

The need for correction depends primarily on two factors: (1) the flow channel 

geometry of the rheometer (round vs. slit die), and (2) the rheological behavior of the 

fluid, particularly whether it exhibits high viscosity and elastic behavior or behaves 

more like a Newtonian or mildly shear-thinning fluid. 

For highly viscous materials, such as polymer melts or elastomers, the following 

correction sequence is typically required to achieve accurate viscosity values: 

• Bagley correction: to account for entrance pressure losses that are significant 

due to the material’s resistance to deformation, 

• Dissipation correction: to account for heating effects caused by internal 

viscous dissipation, 

• Mooney correction: for wall slip in cases of highly elastic melts, 

• Weissenberg–Rabinowitsch correction: to convert apparent shear rate to 

true shear rate. 

In contrast, for low-viscosity fluids, such as dilute solutions or oils, the correction 

sequence differs: 

• Hagenbach correction: accounts for kinetic energy effects (non-viscous 

losses) in capillary viscometry, 

• Bagley correction: compensates for entrance effects, 
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• Weissenberg–Rabinowitsch correction: accounts for shear-thinning effects, 

non-parabolic velocity profile and corrects the shear rate. 

Moreover, the correction order is influenced by the geometry of the capillary die: 

• In round dies, pressure is typically measured only at the entrance, making 

Bagley correction essential to isolate pressure drops caused by fully developed 

flow. 

• In slit dies, pressure can be measured along the channel, potentially allowing 

direct estimation of shear stress, thereby influencing which corrections are 

applied and in what sequence. 

These considerations highlight that no single correction protocol fits all scenarios. we 

must select and apply the appropriate corrections based on the specific flow 

configuration and fluid rheology. In the current study, since we are dealing with highly 

viscous, shear-thinning polymeric fluids using round capillary dies, we follow the 

established order of applying Bagley correction first to obtain true shear stress, 

followed by the Weissenberg–Rabinowitsch correction to calculate true shear rate. 

This sequential correction ensures accurate determination of true shear viscosity [34]. 

Figure 3.4 shows the sequence of applying the two most important corrections based 

on die type used. 
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Figure 3.4) Necessary Corrections by order based on die type 

 

 

3.3    Bagley Correction 

In high-pressure capillary rheometry, the sample is extruded through a cylindrical 

capillary die using a piston-driven setup. Due to instrumentation constraints of the 

round dies, the pressure transducer is typically located at the entrance of the capillary, 

and not along the die length. Consequently, the pressure reading at that point reflects 
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the total pressure drop required to drive the material through the capillary, leading  to 

higher measured pressure gradient compared to pressure inside the capillary [35], 

which comprises two main components: 

𝑝𝑝 = 𝑝𝑝𝑙𝑙 +  𝑝𝑝𝑒𝑒  (3-1) 

where: 

• 𝑝𝑝𝑙𝑙 is the viscous pressure drop along the length of the capillary, 

• 𝑝𝑝𝑒𝑒 is the entrance pressure loss, originating from the abrupt contraction 

from the piston diameter to the die diameter. 

This entrance pressure drop 𝑝𝑝𝑒𝑒 is not associated with viscous shear in the capillary but 

rather with a complex flow pattern including and secondary flows near the entrance 

region as shown in Figure 3.5. As such, it must be removed from the total pressure to 

determine the true shear-induced stress inside the capillary. 

a) 

 

b) 

 

Figure 3.5) a) Newtonian Fluid b) Non-Newtonian Fluid 

The Bagley correction, introduced by E.B. Bagley in 1957 [36], is an empirical method 

for estimating and subtracting the entrance pressure loss. The involves using 

capillaries of different lengths but identical diameters and performing rheological 

measurements under identical temperature and flow conditions. The total measured 

pressure is then plotted against the die length, and the resulting linear extrapolation to 

zero length yields the entrance pressure loss 𝑝𝑝𝑒𝑒: 

𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚. 𝐿𝐿 +  𝑝𝑝𝑒𝑒  (3-2) 

Here: 
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• 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  is the pressure recorded by the transducer, 

• L is the capillary length, 

• m is the slope representing the pressure gradient along the capillary 

(Pa/mm), 

• 𝑝𝑝𝑒𝑒 is the y-intercept, indicating the entrance pressure loss (Pa). 

The experimental procedure typically uses two or more capillaries in parallel 

measurements. In this work, two round dies were used: one with length L=20 mm, and 

another with short length L≈0.2 mm, effectively serving as a theoretical "zero-length" 

die. A theoretical zero-length capillary is characterized by a length-to-radius ratio of 

zero. Therefore, as the polymer melt passes through such a contraction, the flow 

immediately converges and diverges without traveling any meaningful distance. The 

channel is too short for the development of a fully established flow profile. In theory, 

the only pressure losses in a zero-length capillary arise from the entrance convergence 

and the exit divergence of the flow [37]. This design enables linear Bagley correction, 

assuming that the entrance pressure drop remains constant and independent of die 

length. 

The data points from both dies are plotted as pressure versus length, and a linear 

regression is applied. The interception of this line at L = 0 directly gives the entrance 

pressure drop 𝑝𝑝𝑒𝑒. The corrected pressure drop due to viscous flow is then: 

𝑝𝑝 = 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 −  𝑝𝑝𝑒𝑒  (3-3) 

 

Once the entrance pressure loss is known, the true wall shear stress in the capillary 

can be computed using the corrected pressure drop: 

𝜏𝜏 =
𝑝𝑝.𝑅𝑅
2. 𝐿𝐿

 (3-4) 

 

where: 

• 𝜏𝜏 the true wall shear stress (Pa), 

• 𝑝𝑝 = 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 −  𝑝𝑝𝑒𝑒 is the corrected pressure loss (Pa), 
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• R is the capillary radius (mm), 

• L is the capillary length (mm). 

This expression arises from the assumption of fully developed laminar flow in a 

cylindrical tube, where the shear stress at the wall is linearly proportional to the 

pressure gradient and the capillary radius. 

In some cases, especially when three or more dies of varying lengths are used, a 

nonlinear Bagley correction may be applied to account for deviations from linear 

behavior. However, in this work, a linear Bagley correction was implemented, which is 

appropriate for most practical applications involving moderate aspect ratios and 

shear rates. 

Figure 3.6 shows a representative Bagley plot, where pressure values obtained from 

the long and short dies at a specific temperature are plotted against their respective 

lengths. The linear extrapolation provides a clear estimate of 𝑝𝑝𝑒𝑒. As seen in Figure 3.7, 

application of Bagley correction results in a downward shift of the viscosity curve, 

indicating that the shear stress was previously overestimated due to uncorrected 

entrance losses. 
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Figure 3.6) Linear Bagley correction plot 

 

 

Figure 3.7) Shear stress corrected viscosity values 
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3.4    Weissenberg-Rabinowitsch Correction  

To obtain true values of viscosity, the next step will be to determine true values of shear 

rate. While Bagley correction addresses the overestimation of wall shear stress due to 

entrance pressure losses, the apparent wall shear rate calculated under Newtonian 

assumptions remains a source of significant error for shear-thinning fluids. This 

discrepancy is addressed through the Weissenberg-Rabinowitsch correction, a 

mathematical formulation that adjusts the apparent shear rate to reflect the true 

velocity gradient at the capillary wall. 

The default method in capillary rheometry estimates wall shear rate 𝛾̇𝛾 using the 

analytical expression for Newtonian fluids: 

𝛾̇𝛾𝑎𝑎𝑎𝑎𝑎𝑎 =  
4.𝑄𝑄
𝜋𝜋.𝑅𝑅3

 (3-5) 

where: 

• Q is the volumetric flow rate (mm³/s), 

• R is the capillary radius (mm). 

This equation is derived from the parabolic velocity profile associated with fully 

developed laminar flow of Newtonian fluids in a cylindrical tube [38]. However, for non-

Newtonian fluids, especially shear-thinning materials, the velocity profile becomes a 

function of viscosity, and the shear rate at the wall is underestimated if Newtonian 

assumptions are applied. 

As a result, the viscosity 𝜂𝜂(𝛾̇𝛾) =  𝜏𝜏
𝛾̇𝛾
 calculated using apparent shear rate would be 

overestimated, compromising both model accuracy and subsequent simulations. The 

solution is to apply the Weissenberg-Rabinowitsch correction to obtain a more 

physically representative true wall shear rate. 

The Weissenberg-Rabinowitsch (WR) equation is based on a generalized formulation 

for non-Newtonian laminar flow in a circular capillary. The true wall shear rate is given 

by [39]: 

𝛾̇𝛾 =  
3𝑛𝑛 + 1

4𝑛𝑛 
 . 𝛾̇𝛾𝑎𝑎𝑎𝑎𝑎𝑎 (3-6) 
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Here, term n represents the logarithmic slope of the shear stress versus apparent 

shear rate curve and serves as a correction factor that adjusts for the deviation from 

Newtonian behavior. For a Newtonian fluid, this slope equals 1, and the correction 

reduces to the classical Newtonian case. 

In practice, the WR correction is implemented numerically by fitting a log-log curve to 

the Bagley-corrected shear stress 𝜏𝜏𝑤𝑤 versus the apparent shear rate 𝛾̇𝛾𝑎𝑎𝑎𝑎𝑎𝑎. This step 

ensures that both pressure losses and non-Newtonian velocity profiles are accounted 

for in the final viscosity calculation. 

In the current study, a 4th-order polynomial fit was applied to the log(𝜏𝜏𝑤𝑤) vs log(𝛾̇𝛾𝑎𝑎𝑎𝑎𝑎𝑎) 

data. While a 2nd-order polynomial may be sufficient in many cases, the higher-order 

fit was chosen to enhance the smoothness of the gradient and avoid numerical 

instability [40]. 

Once the curve is fitted, the derivative of the fitted polynomial  is computed 

numerically for each data point. This slope is then inserted into the WR equation to 

yield the corrected wall shear rate 𝛾̇𝛾. 

Finally, the true shear viscosity is calculated as: 

𝜂𝜂(𝛾̇𝛾) =  
𝜏𝜏
𝛾̇𝛾

 (3-7) 

 

The effect of WR correction is illustrated in Figure 3.8. As observed, the viscosity 

curves undergo a horizontal shift to the right, reflecting an increase in the computed 

shear rate due to the correction. This adjustment is particularly significant for high-

viscosity fluids and at moderate to high shear rates, where the non-parabolic flow 

profile exerts a more pronounced effect. 
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Figure 3.8) Shear rate corrected viscosity values 

 

When combined with the Bagley correction (which shifts the curves downward by 

reducing wall shear stress), the WR correction ensures that both axes of the viscosity 

curve, stress and rate, are properly adjusted. The net result is a corrected viscosity 

curve that aligns closely with physical reality, thereby serving as a reliable basis for 

model development as can be seen in Figure 3.9. 
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Figure 3.9) Corrected true viscosity data 

 

The derivation and application of the Weissenberg-Rabinowitsch correction rest on 

several theoretical assumptions [40], [41]: 

• The flow is steady, laminar, and fully developed within the capillary. 

• The fluid is incompressible and obeys a generalized Newtonian model. 

Which means the viscosity is only the function of shear rate. Which indicates 

that the iso-thermal condition should be considered as an assumption. 

• The flow is slippage free. In case of presence of slippage in the measured 

data points, the data should be slip-corrected before attempting to apply WR 

correction. 

Additionally, the correction becomes more sensitive to data scatter and noise when 

implemented numerically, especially in the slope calculation. Therefore, the quality of 

curve fitting and the choice of polynomial order are critical in minimizing artifacts in 

the corrected shear rate.  
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Chapter 4 |     Classical Viscosity Models for Shear-Thinning 

Fluids 

This chapter provides a detailed overview of classical constitutive models used to 

describe the viscosity of shear-thinning fluids. Although both shear rate and 

temperature influence viscosity in real systems, traditional formulations typically treat 

these effects separately. Accordingly, the models presented here are categorized into 

two main groups: those that describe shear rate dependence and those that account 

for temperature dependence. The discussion highlights the theoretical foundations, 

assumptions, and applicability ranges of each formulation, providing the necessary 

background for the development of the unified model proposed later in this thesis. It 

should be noted that, due to instrumentation constraints in the experimental setup, 

the effects of pressure are not considered in this study [42]. 
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4.1    Shear Rate-Dependent Viscosity Models 

Shear-thinning fluids exhibit a non-linear decline in viscosity as the applied shear rate 

increases. This effect is physically attributed to molecular alignment, 

disentanglement, or breakdown of internal structures under flow. To capture this non-

Newtonian behavior, several models have been developed, each with its own level of 

complexity, accuracy, and range of applicability. 

4.1.1    Power Law Model 

The Power Law model is one of the earliest and most intuitive models used to describe 

shear-thinning behavior. It is mathematically simple and involves only two fitting 

parameters: the consistency index K and the flow behavior index n. The Power Law 

model reads as: 

𝜂𝜂(𝛾̇𝛾) = 𝐾𝐾 ∙  𝛾̇𝛾𝑛𝑛−1 (4-1) 

The Power Law model is capable of describing both shear-thinning and shear-

thickening behavior. The flow behavior index, n, tunes the model to describe both 

behaviors. By n < 1 the model fits on the shear-thinning fluid data and by n > 1 it 

describes shear-thickening materials. It’s obvious that with n = 1 the dependency of 

the models in shear rate will cancel out and it eventually ends with a Newtonian 

constant viscosity. Therefore, the physical units of the flow consistency index K will be 

Pa.s and the flow behavior index is dimensionless. However, the dimensional 

inconsistency of the Power Law model is discussed in the paper published by 

PRENTICE, J. H. [43] which indicates another limitation of this model. This arises from 

the fact that K must absorb units of shear rate raised to a power, which varies with n. 

Despite its computational efficiency and ease of implementation, the Power Law 

model has critical limitations. Notably, it does not predict the Newtonian plateau at 

low shear rates (zero-shear viscosity) and predicts infinite value for viscosity at shear 

rate equal to zero. Likewise, it fails to represent a second plateau at high shear rates, 

a region that some complex fluids do exhibit. These shortcomings limit their 

usefulness in full-range rheological characterizations, especially in CFD applications 

where numerical instability can result from infinite or undefined viscosities at shear 

rate boundaries. 
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4.1.2    Carreau Model 

To address the deficiencies of the Power Law model, the Carreau model [44] 

introduces a more flexible three-parameter form. It smoothly transitions between 

Newtonian behavior at low shear rates and Power Law behavior at higher shear rates. 

The functional form is expressed as: 

𝜂𝜂(𝛾̇𝛾) =  𝜂𝜂0 ∙ (1 + (𝜆𝜆𝛾̇𝛾)2)
(𝑛𝑛−1)
2  (4-2) 

where: 

• 𝜂𝜂0 is the zero-shear viscosity (Pa·s), 

• 𝜆𝜆 is the relaxation time (s), indicating the inverse of the critical 

shear rate, at which the shear-thinning behavior is triggered. 

• n is the flow behavior index (dimensionless). 

This model provides a more complete description of the flow curve and is well-suited 

to many polymeric systems, as it inherently captures the Newtonian plateau at low 

shear and the shear-thinning region without asymptotic divergence. At very high shear 

rates, however, the model may still predict a continuous decrease in viscosity, which 

does not correspond to the finite viscosity plateau observed in some materials. In 

order to enable the model to predict the second Newtonian plateau at high shear rates, 

the Carreau-Yasuda model was introduced [45]. 

4.1.3    Cross Model 

The Cross model offers an alternative to Carreau with a slightly simplified structure. 

Unlike Carreau model that assumes quadratic dependency on the shear rate through 

(𝜆𝜆𝛾̇𝛾)2 term, the Cross model assumes a simpler linear relationship between viscosity 

and shear rate through (𝜆𝜆𝛾̇𝛾) [46] or �𝜂𝜂0
𝜏𝜏∗
𝛾̇𝛾� [47]and can be written as [47]: 

𝜂𝜂(𝛾̇𝛾) =  
𝜂𝜂0

1 + �𝜂𝜂0. 𝛾̇𝛾
𝜏𝜏∗ �

1 −𝑛𝑛 (4-3) 

The Cross model is claimed to be a simplified form of Carreau model, also known as 

Bird-Carreau [46]. where 𝜂𝜂0 remains the zero-shear viscosity, n is the Power Law index, 

and 𝜏𝜏∗ is the characteristic shear stress, and it mostly depends on chemical properties 
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of the material [48] and identifies a shear stress at which the transition to non-

Newtonian behavior begins. 

The Cross model is widely employed in polymer processing simulations and 

rheological measurements. Compared to the Carreau model, it provides a different 

curvature for the transition region. It is particularly effective for modeling fluids in 

industrial extrusion, molding, and mixing applications. 

 

4.2    Temperature-Dependent Viscosity Models 

Temperature plays a fundamental role in determining the viscosity. For polymeric 

systems, temperature influences both molecular mobility and chain entanglement, 

resulting in a highly non-linear response of viscosity. It is worth mentioning that the 

effect of temperature on viscosity is also considered in the case of a Newtonian flow. 

In liquids, an increase in temperature will result in a decrease in viscosity. However, in 

gaseous fluids the viscosity increases with an increase in temperature. The reason for 

this behavior is that the definition of viscosity in gases is considered as random 

collision of gas molecules which creates a resistance to flow, and these random 

motions increase by increasing temperature. The effect of temperature on the 

viscosity of a non-Newtonian fluid makes this property highly-nonlinear and complex. 

In this section, some of the mostly used temperature dependency models will be 

discussed in detail. 

4.2.1    Arrhenius Model 

The Arrhenius model is one of the most straightforward representations of 

temperature-dependent viscosity, assuming an exponential decay in viscosity with 

increasing temperature. Its classical form is [49]: 

𝜂𝜂(𝑇𝑇) = 𝜂𝜂𝑎𝑎 .  𝑒𝑒�
𝐸𝐸𝑎𝑎
𝑅𝑅 . 𝑇𝑇� (4-4) 

where: 

• 𝜂𝜂𝑎𝑎 is the pre-exponential factor or viscosity in a reference temperature 

(Pa·s), 
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• 𝐸𝐸𝑎𝑎 is the activation energy for viscous flow (J/mol), 

• R is the universal gas constant (8.314 J/mol·K), 

• T is the absolute temperature in Kelvin. 

The model is particularly valid for simple liquids or low-molecular-weight polymer 

melts. However, in most non-Newtonian fluids, the model fails to accurately predict 

the viscosity in temperatures near glass transition temperature 𝑇𝑇𝑔𝑔. This behavior is 

mainly due to the temperature-dependent nature of the activation energy [50]. 

4.2.2    Vogel–Fulcher–Tammann (VFT) Equation 

Vogel–Fulcher–Tammann (VFT) is basically another representation of Arrhenius-type 

equation which incorporates a reference temperature. It means that the model can 

have better accuracy if we input measured viscosity in a specific temperature and then 

fit the model to the experimental data. The VFT equation can be written as [51]:  

𝜂𝜂(𝑇𝑇) = 𝜂𝜂0 .  𝑒𝑒
� 𝐸𝐸0
𝑅𝑅 . (𝑇𝑇−𝑇𝑇0)� (4-5) 

The equivalence between the Arrhenius and VFT equations can be demonstrated 

through mathematical manipulation when the reference temperature is embedded in 

the exponential term, aligning their predictive behavior under certain conditions. 

4.2.3    Williams–Landel–Ferry (WLF) Equation 

For polymeric fluids in the temperature range close to 𝑇𝑇𝑔𝑔 [52], the WLF model is more 

appropriate. Unlike the Arrhenius model, WLF is derived from the time–temperature 

superposition principle and is particularly applicable to amorphous polymers [53]. The 

model is given as: 

𝜂𝜂(𝑇𝑇) =  𝜂𝜂0 .  𝑒𝑒
�−

𝐶𝐶1 . �𝑇𝑇 − 𝑇𝑇𝑔𝑔�
𝐶𝐶2 + �𝑇𝑇 − 𝑇𝑇𝑔𝑔�

�
 

(4-6) 

where: 

• C1 and C2 are model variables and should be determined via curve 

fitting, 

• 𝑇𝑇𝑔𝑔 is the glass transition temperature. 
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This equation is especially useful when modeling materials over a narrow range near 

𝑇𝑇𝑔𝑔, and it implicitly reflects the molecular free volume theory. As polymers undergo 

relaxation near 𝑇𝑇𝑔𝑔, the viscosity change becomes highly nonlinear and the WLF model 

excels in this transitional domain. 

The WLF model is capable of capturing the effects of both temperature and pressure. 

In applications where pressure also affects viscosity (as it alters 𝑇𝑇𝑔𝑔), a pressure-

dependent version of the WLF equation can be used [47]: 

𝑇𝑇𝑔𝑔 = 𝐷𝐷2 +  𝐷𝐷3.𝑃𝑃 (4-7) 

where 𝐷𝐷2 denotes the value of glass transition temperature at atmospheric pressure 

and 𝐷𝐷3 is related to polymer’s compressibility. However, for many practical 

applications, especially in atmospheric conditions, pressure dependence is 

neglected, therefore the equation is reduced to the standard WLF equation as: 

𝑇𝑇𝑔𝑔 = 𝐷𝐷2 (4-8) 

 

4.3    Combined Shear Rate and Temperature-Dependent Models 

Since viscosity in realistic polymer processing is simultaneously influenced by shear 

rate and temperature, it is often necessary to combine the aforementioned models to 

achieve predictive capability over the entire process domain. It can be claimed that 

zero shear viscosity 𝜂𝜂0, follows an Arrhenius-Type behavior [54] and WLF model is also 

capable of describing such behavior [55]. This approach results in multi-variable 

constitutive models, which blend shear-rate sensitivity (e.g., Carreau or Cross) with 

temperature-dependence (e.g., Arrhenius or WLF). The final formulation of Multi-

Variable Constitutive models can be seen in Table 4-1. 
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Table 4-1) Multi-Variable constitutive viscosity models 

 Arrhenius WLF 

Carreau 𝜂𝜂0 .  𝑒𝑒
𝐸𝐸

𝑅𝑅 . 𝑇𝑇  . (1 + (𝜆𝜆 .  𝛾̇𝛾)2)
𝑛𝑛 −1
2  𝜂𝜂0 .  𝑒𝑒

�−
𝑐𝑐1 . �𝑇𝑇 − 𝑇𝑇𝑔𝑔�
𝑐𝑐2 + �𝑇𝑇 − 𝑇𝑇𝑔𝑔�

�
. (1 + (𝜆𝜆 .  𝛾̇𝛾)2)

𝑛𝑛 −1
2  

Cross 
𝜂𝜂0 .  𝑒𝑒

𝐸𝐸
𝑅𝑅 . 𝑇𝑇

1 + �𝜂𝜂0 .  𝑒𝑒
𝐸𝐸

𝑅𝑅 . 𝑇𝑇  . 𝛾̇𝛾
𝜏𝜏∗ �

1 −𝑛𝑛 
𝜂𝜂0 .  𝑒𝑒

�−
𝑐𝑐1 . �𝑇𝑇 − 𝑇𝑇𝑔𝑔�
𝑐𝑐2 + �𝑇𝑇 − 𝑇𝑇𝑔𝑔�

�

1 +

⎝

⎛𝜂𝜂0 .  𝑒𝑒
�−

𝑐𝑐1 . �𝑇𝑇 − 𝑇𝑇𝑔𝑔�
𝑐𝑐2 + �𝑇𝑇 − 𝑇𝑇𝑔𝑔�

�
. 𝛾̇𝛾

𝜏𝜏∗

⎠

⎞

1 −𝑛𝑛 

Power Law 𝜂𝜂0 .  𝑒𝑒
𝐸𝐸

𝑅𝑅 . 𝑇𝑇  . 𝛾̇𝛾𝑛𝑛−1 𝜂𝜂0 .  𝑒𝑒
�−

𝑐𝑐1 . �𝑇𝑇 − 𝑇𝑇𝑔𝑔�
𝑐𝑐2 + �𝑇𝑇 − 𝑇𝑇𝑔𝑔�

�
. 𝛾̇𝛾𝑛𝑛−1 

 

This formulation retains the shear-thinning flexibility of the shear rate dependency 

models while accurately capturing thermal effects.  

Despite their descriptive power, these composite models involve complex 

formulations and nonlinear terms, especially exponential functions, that are 

computationally intensive for numerical solvers. As discussed in the present study, 

this computational burden has motivated the development of a simplified model 

which aims to retain accuracy while improving efficiency. 
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Chapter 5 |      Curve Fitting Methodology 

Accurate determination of model parameters is essential for translating theoretical 

viscosity formulations into predictive tools. In this thesis, curve fitting is employed to 

calibrate classical viscosity models using the corrected rheological measurements 

obtained from high-pressure capillary experiments. Among the available optimization 

methods, nonlinear least squares (NLLS) fitting remains the most widely applied and 

theoretically grounded approach for parameter estimation in nonlinear systems [56]. 

This chapter presents the mathematical formulation of the NLLS problem, discusses 

numerical strategies for its solution, and explains the implementation using the lmfit 

package in Python. Particular emphasis is placed on parameter initialization, 

constraint handling, and convergence diagnostics, which are critical for ensuring both 

numerical stability and physically meaningful results. 
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5.1    Theoretical Basis of Nonlinear Least Squares 

The nonlinear least squares problem is a generalization of linear regression where the 

dependent variable y is modeled as a nonlinear function of one or more independent 

variables x, and a set of parameters β. The objective is to find the parameter vector β ∈

𝑅𝑅𝑝𝑝 that minimizes the sum of the squared differences between the observed data and 

the model predictions. 

Mathematically, the problem is posed as: 

min
β

RSS (β) = �[𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖;β)]2
𝑛𝑛

𝑖𝑖=1

 (5-1) 

Where: 

• 𝑓𝑓(𝑥𝑥𝑖𝑖;𝜷𝜷) is the nonlinear model function (e.g., Carreau or Arrhenius) 

• 𝑦𝑦𝑖𝑖  is the measured viscosity at the 𝑖𝑖-th shear rate and temperature 

• 𝑥𝑥𝑖𝑖  contains the independent variables (𝛾̇𝛾,T) 

• n is the number of data points 

• RSS denotes the Residual Sum of Squares 

The goal is to find the set of parameters β that minimizes this residual sum. Unlike 

linear regression, however, no closed-form analytical solution exists for the minimizer 

of RSS in the general nonlinear case. 

5.2    Iterative Numerical Solution 

To solve the nonlinear least squares problem, iterative numerical algorithms are 

employed. The two most commonly used methods are the Gauss-Newton algorithm 

and the Levenberg-Marquardt algorithm, both of which approximate the nonlinear 

model using local linearization. 

Let us denote: 

• 𝑟𝑟(β) =  �

𝑦𝑦1 − 𝑓𝑓(𝑥𝑥1;β)
𝑦𝑦2 − 𝑓𝑓(𝑥𝑥2;β)

⋮
𝑦𝑦𝑛𝑛 − 𝑓𝑓(𝑥𝑥𝑛𝑛;β)

� as the residual vector, 
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• 𝐽𝐽 ∈ 𝑅𝑅𝑛𝑛×𝑝𝑝 as the Jacobian matrix of partial derivatives with elements 𝐽𝐽𝑖𝑖𝑖𝑖 =
∂𝑓𝑓(𝑥𝑥𝑖𝑖;β)
∂β𝑗𝑗

 

In the Gauss-Newton method, the update rule is: 

β(𝑘𝑘+1) = β(𝑘𝑘) + δ(𝑘𝑘) where  𝛿𝛿(𝑘𝑘) = (𝐽𝐽⊤𝐽𝐽)−1𝐽𝐽⊤𝒓𝒓 

 
(5-2) 

This method assumes the model behaves nearly linearly near the solution. For highly 

nonlinear problems or when convergence stalls, the Levenberg-Marquardt algorithm 

introduces a damping term to stabilize the inversion: 

(𝐽𝐽⊤𝐽𝐽 + λ𝐼𝐼)δ = 𝐽𝐽⊤𝒓𝒓 (5-3) 

Here, 𝜆𝜆 is an adaptive parameter that transitions between 𝜆𝜆 →

0 (Gauss-Newton) and 𝜆𝜆 → ∞ (Gradient Descent). 

These updates are repeated iteratively until convergence, typically assessed by: 

• Reduction in RSS below a threshold 

• Change in parameter vector below a threshold 

• Maximum number of iterations 

5.3    Practical Considerations in Viscosity Model Fitting 

When fitting rheological models like Carreau, Cross, or Arrhenius to experimental 

data, several practical challenges arise: 

1. Parameter Sensitivity: Viscosity models contain parameters with 

strong nonlinear effects (e.g. 𝜆𝜆, n, 𝜂𝜂0), which can lead to ill-conditioned 

optimization landscapes. 

2. Physical Bounds: Some parameters must stay within physically 

meaningful ranges (e.g., 𝜆𝜆 cannot be negative as the units are second). 

3. Initial Guess Sensitivity: Convergence and accuracy depend 

significantly on the choice of initial parameter estimates. 

4. Heteroscedastic Errors: Viscosity measurements often have higher 

uncertainty at low shear rates, violating assumptions of constant variance. This 
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behavior may bias the fitting process toward high-shear data unless weighting 

or error modeling is considered. 

To manage these challenges effectively, we employ the lmfit library in Python, which is 

specifically designed for flexible and robust nonlinear curve fitting. 

5.4    lmfit Python Library 

The lmfit package is a high-level wrapper around SciPy's optimization routines, 

especially scipy.optimize.least_squares, offering several key benefits tailored to 

scientific modeling [57]: 

• Named Parameters: Parameters can be labeled, constrained, and 

bounded explicitly. 

• Bounds and Constraints: Physically meaningful limits (e.g., 𝜆𝜆 > 0) can 

be applied easily. 

• Initial Value Handling: It allows precise control over starting values, 

which is crucial for convergence. 

• Composite Models: Multiple model components (e.g., Carreau + 

Arrhenius) can be defined symbolically and linked. 

• Fit Statistics: Returns comprehensive metrics including: 

o R-squared 

o Reduced chi-squared 

o AIC and BIC 

o Confidence intervals via covariance estimation 

5.5    Fit Results and Model Selection 

Following the implementation of the nonlinear least squares curve fitting procedure 

using the lmfit Python library, a set of classical viscosity models were evaluated for 

their ability to accurately capture the rheological behavior of the elastomeric 

compound. Among these, the Carreau–Arrhenius model was selected as the most 
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appropriate baseline due to both its physical consistency and its superior numerical 

performance across the shear rate and temperature range. 

The mathematical form of the Carreau–Arrhenius model used in this study is as 

follows: 

η(γ̇,𝑇𝑇) = 𝜂𝜂0 .  𝑒𝑒
𝐸𝐸

𝑅𝑅 . 𝑇𝑇  . (1 + (𝜆𝜆 .  𝛾̇𝛾)2)
𝑛𝑛 −1
2  (5-4) 

Where: 

η: dynamic viscosity [Pa·s] 

𝛾̇𝛾: shear rate [𝑠𝑠−1] 

𝑇𝑇: absolute temperature [K] 

𝜂𝜂0: zero-shear viscosity [Pa·s] 

𝐸𝐸: activation energy [J/mol] 

R: universal gas constant [8.314 J/mol·K] 

𝜆𝜆: characteristic time constant [s] 

𝑛𝑛: flow behavior index [–] 

To ensure physically meaningful and numerically stable results, parameter bounds 

were imposed during the fitting process: 

 0 <  𝜂𝜂0,  0 <  𝐸𝐸,  0 <  𝜆𝜆,  0 <  𝑛𝑛 <  1 

In particular, the upper bound on the flow behavior index 𝑛𝑛 was chosen to reflect the 

shear-thinning nature of the compound, ensuring that the model did not converge to 

Newtonian or shear-thickening behavior. Initial guesses for all parameters were 

chosen based on ranges reported in the literature for similar elastomeric systems. This 

was necessary to reduce computational cost and minimize the risk of divergence in 

the optimization routine, especially given the non-convex nature of the residual 

surface. 

After optimization, residual plots were inspected to confirm the absence of systematic 

trends, and confidence intervals were extracted from the covariance matrix of the fit 

to assess the statistical significance of the model parameters. The final fitted curve 
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displayed excellent agreement with the experimental viscosity data across the tested 

shear rates and temperatures. This performance is illustrated in Figure 5.1, which 

shows the model fit over the original experimental dataset, confirming its ability to 

capture the measured rheological behavior with high fidelity. 

 

Figure 5.1) Carreau-Arrhenius model fit results on corrected viscosity data. Shear 

Rate and Viscosity are in Logarithmic scale. 

To further assess the physical validity and extrapolation capability of the model, an 

additional evaluation was performed beyond the experimental range. Specifically, the 

Carreau–Arrhenius model was extrapolated over a broader shear rate domain, 

extending into the low-shear region where the Newtonian plateau is expected. The 

result, shown in Figure 5.2, demonstrates that the model correctly predicts asymptotic 

behavior at low shear rates, reinforcing its suitability as a benchmark for comparison 

with the proposed MVI model. 
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Figure 5.2) Extrapolation of  Carreau-Arrhenius model fit results on corrected viscosity 

data. Shear Rate and Viscosity are in Logarithmic scale. 

Figure 5.3 and Figure 5.4 show the viscosity contour of Carreau-Arrhenius model to our 

corrected viscosity data. Temperature dependency behavior on all three rheological 

regions including Newtonian plateau, transition region and shear-thinning regime can 

be observed. 



54 

 

Figure 5.3) Carreau-Arrhenius model viscosity contour on final corrected viscosity 

data 
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Figure 5.4) Extrapolation of Carreau-Arrhenius model viscosity contour on final 

corrected viscosity data 

Fit statistics at Table 5-1 show final obtained model variables from the corrected 

dataset. The extracted fit parameters from the extrapolated fit served as the source of 

synthetic data generation for training the MVI model, as discussed in the following 

chapter. 

Table 5-1) Extracted fit parameters of Carreau-Arrhenius model from the corrected 

dataset 

 Carreau-Arrhenius 

n [-] 0.14 

E [J/mol] 8968 

𝜂𝜂0 [Pa. s] 1505 

𝜆𝜆 [s] 0.195 
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Several classical models were initially considered during the model selection process. 

While the Power Law model provides a basic approximation for shear-thinning fluids, 

it fails to represent the Newtonian plateau observed at low shear rates. This limitation 

is particularly important in the present context, as both the experimental data and the 

final MVI model exhibit a continuous transition between Newtonian and non-

Newtonian behavior. Therefore, the Power Law model was excluded from further 

analysis. 

The Cross and Carreau models are both capable of capturing the full viscosity curve, 

differing mainly in the curvature of the transition region. In this study, the Carreau 

model demonstrated a better fit across the full range of shear rates and hence was 

selected as the shear-rate dependency component. The Arrhenius temperature 

dependency was preferred over the WLF model due to the low glass transition 

temperature (approximately –50 °C) of the compound. Since all measurements were 

taken well above 𝑇𝑇𝑔𝑔, the Arrhenius formulation is more appropriate and avoids 

unnecessary parameter inflation associated with the WLF equation, which is typically 

suited for behavior close to 𝑇𝑇𝑔𝑔. 

The Carreau–Arrhenius model was selected as the classical benchmark for 

subsequent comparisons, including the symbolic regression-based MVI model 

developed in later chapters. The model not only provided a high-fidelity fit to the 

experimental data but also maintained a compact parameter set and physical 

interpretability.  
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Chapter 6 |     Data Preparation and Train-Test Partitioning 

The development of any data-driven model critically depends on the quality, diversity, 

and physical consistency of the dataset on which it is trained. In this work, data 

preparation forms the foundation of model discovery, ensuring that the resulting 

viscosity model is both generalizable and physically meaningful. To achieve 

comprehensive coverage of the relevant rheological regimes, including the Newtonian 

plateau, transition region, and pseudoplastic domain, a combined dataset was 

constructed using experimental measurements and synthetic data generated from a 

validated classical formulation. 

This chapter describes the procedures used to assemble, preprocess, and normalize 

the data prior to model training. It also outlines the strategy adopted for dividing the 

dataset into training and test subsets, ensuring that both domains adequately 

represent the range of shear-rate and temperature conditions required for model 

development in the following chapter. The experimental limitations of the high-

pressure capillary rheometer, particularly its restricted low-shear resolution, are 

discussed, along with the complementary strategy employed to overcome them 

through the generation of synthetic data from a validated classical model. 
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6.1    Limitations of Experimental Data 

Despite the high quality of the capillary rheometry data, a key limitation became 

evident: the measurements were concentrated in the shear-thinning region. Due to the 

material's very low zero-shear viscosity and the physical limitations of the capillary 

method, it was not possible to obtain experimental data in the low-shear Newtonian 

plateau or the intermediate transition zone. 

This posed a serious challenge for downstream symbolic regression. When training 

data lacks these key regions, symbolic models are prone to overfitting to monotonic or 

power-law–like behavior, making them incapable of capturing zero-shear viscosity or 

smooth curvature. Furthermore, models without plateau behavior  exhibit singularities 

or unstable behavior at low shear rates, compromising their usability in CFD solvers. 

6.2    Synthetic Dataset Generation 

The Carreau–Arrhenius model was chosen not only for its good fit to the data but also 

for its physical plausibility and compatibility with the expected viscosity behavior 

across shear and temperature domains. 

Using the best-fit parameters, a synthetic dataset of ~2000 points was generated. This 

dataset was: 

• Logarithmically spaced in shear rate (to emphasize both plateau and high-

shear regions) 

• Spread across the temperature range of experimental data 

• Explicitly included a data point at 𝜸̇𝜸 = 𝟎𝟎 to define zero-shear viscosity 

• Temperature was incremented by 2 °C to allow the model to better learn 

temperature behavior. 

This ensures that the symbolic regression algorithm is not only trained across all 

relevant physical regimes, but is also penalized if it attempts to generate singularities 

near zero shear. 

6.3    Final Dataset Composition and Balancing 

The final dataset used to train the MVI model was composed of two parts: 
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• Synthetic data: Derived from the validated Carreau–Arrhenius model, covering 

the entire shear-viscosity curve uniformly 

• Experimental data: Measured values corrected for entrance and shear-rate 

artifacts 

To prevent model bias toward either dataset, a weighted loss function was 

implemented in the symbolic regression routine. This ensures that the discovered 

expression reflects both: 

• The empirical accuracy of real-world measurements 

• The structural realism and smoothness offered by the synthetic data 

This composite dataset provides an ideal balance between experimental fidelity and 

full-domain coverage, enabling the symbolic regression algorithm to discover a model 

that is both physically interpretable and numerically robust. 

6.4    Train-Test Split Strategy 

A robust and physically consistent symbolic model must not only fit the training data 

but also generalize to unseen data points. To this end, the dataset was divided into two 

subsets: a training set and a test set. Approximately 70% of the total data was used for 

training, serving as the foundation for model discovery. The remaining 30% was 

withheld from the training process and later used to evaluate the generalization 

capability of the final discovered model. 

This split ratio (70/30) is consistent with findings in machine learning theory, 

particularly in symbolic regression literature, where the accuracy of tree-based search 

methods depends more on the diversity and coverage of the training set than on sheer 

volume [58]. Furthermore, the test set provides a good measure of generalizability of 

the model, being able to be fit on the unseen data without being overfit to the training 

set. 

6.5    Final Preprocessing Steps 

Before feeding the dataset into the symbolic regression engine (PySR), several final 

transformations were applied: 
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• Log-transformation of shear rate and viscosity: 

𝑥𝑥 =  log10(𝛾̇𝛾), 𝑦𝑦 =  log10(𝜂𝜂) 

This reduces dynamic range and linearizes power-law-like behavior, improving 

convergence and reducing overfitting. 

• Standardization: 

o Input variables (𝛾̇𝛾, T) were standardized to zero mean and unit 

variance 

o This helps in maintaining numerical stability during symbolic 

regression and ensures gradient-based operations remain well-scaled 

This precise approach to data preparation ensured that the symbolic regression 

algorithm would discover an interpretable, generalizable, and physically meaningful 

viscosity model, setting the stage for the derivation of the MVI equation in the next 

chapter. Figure 6.1 shows the final data set for the model training, before 70/30 

splitting. 
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Figure 6.1) A sample of final synthetic data set 
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Chapter 7 |     Symbolic Regression 
This chapter introduces symbolic regression as the central data-driven methodology 

for discovering explicit viscosity models. The chapter begins with a conceptual 

overview of symbolic regression and a review of the principal algorithms historically 

used for equation discovery, including genetic programming, simulated annealing, 

Bayesian methods, and heuristic search approaches. It then formalizes the learning 

problem and defines the evaluation metrics adopted in this study. Finally, the 

implementation of symbolic regression through the PySR framework is presented, 

followed by the derivation and assessment of the Multi-Variable Implicit (MVI) model 

proposed in this thesis. 
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7.1    Introduction to Symbolic Regression 

Symbolic Regression (SR) represents a class of machine learning techniques that seek 

not only to fit data but to uncover the underlying mathematical structure governing a 

system. Unlike traditional regression methods that assume a predefined form for the 

function (e.g., linear, polynomial, or exponential), symbolic regression attempts to 

discover both the optimal structure and parameters of the model simultaneously. This 

task is particularly appealing in scientific disciplines where interpretability, physical 

insight, and mathematical simplicity are as important as predictive accuracy. 

Symbolic regression belongs to the class of evolutionary algorithms and differs from 

traditional regression methods by directly generating analytical formulas from data 

without requiring prior assumptions about model structure [59]. This approach not 

only enhances flexibility but also delivers physically meaningful models that are ideal 

for integration into numerical solvers. The symbolic expressions it produces can 

maintain smoothness, differentiability, and compactness. 

The symbolic regression problem is formally defined as follows: given a set of input-

output pairs (X,  y)  =  { (xi,  yi) }i=1n , with 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑑𝑑 ,  𝑦𝑦𝑖𝑖 ∈ 𝑅𝑅, and assuming the outputs 

are generated by an unknown function 𝑦𝑦𝑖𝑖 = 𝑓𝑓(𝑥𝑥𝑖𝑖) + ϵ𝑖𝑖, the goal is to discover an 

expression 𝑔𝑔(⋅) such that 𝑔𝑔 ≈ 𝑓𝑓 over the domain of interest. The challenge lies in the 

fact that the function space 𝓕𝓕 is effectively infinite and contains arbitrarily complex 

expressions composed of arithmetic, algebraic, and transcendental functions. 

Two key objectives guide symbolic regression: 

1. Accuracy: The expression should minimize the discrepancy between 

predicted and actual outputs, typically measured via metrics such as RMSE, 

MAE, or R². 

2. Simplicity: The expression should be as concise and interpretable as 

possible, aligning with the principle of Occam’s razor. 

These objectives are often in tension; increasing complexity generally improves fitness 

but reduces interpretability. To balance this trade-off, Pareto optimization is used. It 

identifies the set of best possible compromises, called the Pareto front, where no 

solution can be both more accurate and simpler at the same time. 
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7.2    Classical Methods in Symbolic Regression 

7.2.1    Genetic Programming 

Symbolic regression as a formalized computational method emerged prominently 

with the work of John Koza [60] in the early 1990s through the paradigm of Genetic 

Programming (GP). GP treats candidate mathematical expressions as "individuals" in 

a population, each represented by a tree structure. Internal nodes of the tree 

correspond to operators (e.g., +, –, ×, sin, exp), while leaves correspond to variables or 

constants. 

GP constructs candidate models as expression trees, where primitive functions (e.g., 

+, ×, log) are internal nodes and variables/constants are terminal nodes. This structure 

allows symbolic regression to evolve new equations by applying biologically inspired 

operations such as mutation and crossover [61]. A visual representation of this 

structure is shown in Figure 7.1, which illustrates how symbolic expressions are 

constructed as rooted trees. The internal nodes represent mathematical operators, 

while the leaves contain constants and variables. 

 

Figure 7.1) Tree-Shaped symbolic regression algorithm structure. 

 

(2X1 + 14) – sin(X2) 
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The GP algorithm iteratively evolves the population via biologically inspired operators: 

• Crossover: Randomly exchanges subtrees between parent 

expressions. 

• Mutation: Replaces a randomly selected subtree with a new, randomly 

generated one. 

• Selection: Chooses individuals based on a fitness function (e.g., low 

RMSE and low complexity). 

This approach enables the exploration of vast search spaces without requiring prior 

assumptions on the model structure. However, it suffers from several drawbacks: 

• Premature convergence: Populations can converge to suboptimal 

solutions early in the evolution. 

• Computational cost: Evaluating and mutating large expression trees is 

resource-intensive. 

• Overfitting: Complex trees may fit noise in the data. 

Nonetheless, GP remains a foundational approach. Tools such as GPTIPS [62], AI 

Feynman [63], Eureqa [64], Operon [65], and gplearn [66] have improved upon the 

basic GP paradigm by incorporating linear scaling, semantic backpropagation, neural-

symbolic hybridization, multi-tree ensembles, and C++ optimization for faster 

execution. 

7.2.2    Simulated Annealing 

Simulated Annealing (SA) offers another metaheuristic strategy for SR. Inspired by the 

physical annealing process in metallurgy, SA explores the solution space by 

stochastically accepting worse solutions based on a "temperature" parameter that 

gradually cools. The idea is to avoid local minima early in the search and gradually 

refine solutions as the temperature drops. 

SA-based symbolic regression typically perturbs expressions via defined 

neighborhood function such as modifying an operator or constant, and accepts 

changes based on a Metropolis criterion. While less common than GP, SA can yield 
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competitive results, especially when combined with handcrafted priors or domain-

specific knowledge, as seen in software like TuringBot. 

7.2.3    Bayesian Methods 

Bayesian symbolic regression attempts to infer posterior distributions over expression 

trees given observed data. This involves defining a prior over expressions typically via 

a context-free grammar, and using Markov Chain Monte Carlo (MCMC) or Metropolis-

Hastings algorithms to sample from the posterior. 

This approach naturally incorporates uncertainty and prior knowledge, making it 

suitable for scientific applications. However, it often suffers from scalability 

limitations due to the high computational cost of evaluating and sampling over 

complex tree structures. 

One notable contribution is the Bayesian symbolic regression framework proposed by 

Jin et al., where trees are constructed from a library of basis functions and scored 

according to both data fit and model complexity [67]. A Bayesian logic-guided GP 

variant has also been proposed to embed auxiliary truths and reject expressions 

inconsistent with physical constraints. 

7.2.4    Random Search and Greedy Algorithms 

In contrast to GP and SA, random search explores the space of expressions by 

stochastically generating candidate trees and retaining the best-scoring ones. 

Surprisingly, studies have shown that random search can match or even outperform 

GP on certain domains when coupled with effective filtering strategies [68],  [69]. 

Greedy algorithms such as SymTree further refine this idea by incrementally 

constructing expressions through a deterministic process. Given a predefined 

grammar (e.g., combinations of polynomials and trigonometric functions), the 

algorithm expands expressions step-by-step by evaluating local improvements in 

accuracy and complexity. While fast and interpretable, such methods are typically 

limited by their rigid structure and inability to escape local optima. 
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7.3    Problem Formalization and Evaluation Criteria 

Symbolic regression involves searching for a function 𝑔𝑔 such that 𝑔𝑔 ≈ 𝑓𝑓 and 𝑔𝑔 is 

simple. Mathematically, the problem can be framed as a multi-objective optimization: 

min
𝑔𝑔∈ℱ

�𝐿𝐿(𝑔𝑔;𝑋𝑋,𝑦𝑦),  𝐶𝐶(𝑔𝑔)� (7-1) 

where: 

• 𝐿𝐿(𝑔𝑔;𝑋𝑋, 𝑦𝑦) measures the loss or prediction error, e.g., RMSE or MAE, 

• 𝐶𝐶(𝑔𝑔) quantifies expression complexity, e.g., number of nodes, depth, 

number of nonlinear operators. 

Solutions to this problem are evaluated along two axes: 

• Accuracy: How closely the predicted outputs match ground truth. 

Commonly used metrics include RMSE, 𝑅𝑅2, or normalized error. 

• Simplicity: Often measured using handcrafted heuristics such as: 

o Number of operations 

o Tree depth 

o Number of variables 

o Operator type weights (e.g., log and exp penalized more than + or 

×) 

o Expression length in prefix/postfix notation 

To balance the trade-off between these metrics, the Pareto front is computed. 

Expressions on this front are non-dominated: no other expression is both more 

accurate and simpler. Model selection is then guided by the desired trade-off for a 

specific application, for example maximum interpretability or minimum error. 

7.4    Symbolic Regression and PySR 

7.4.1    Overview of the PySR Framework 

PySR (short for Python Symbolic Regression) is a symbolic regression package that 

combines the expressive power of genetic programming with the efficiency of sparse 
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optimization and multi-objective search. Developed by Miles Cranmer et al. [70], PySR 

is implemented in Julia for performance and offers a Python interface for integration 

with scientific workflows. PySR utilizes a multi-population evolutionary strategy, in 

which separate “islands” evolve in parallel. Within each island, new individuals 

(mathematical expressions) are generated via genetic programming operations such 

as mutation and crossover. The algorithm is inspired by tournament selection, where 

individuals with lower prediction error and lower complexity are more likely to survive 

and reproduce [71], [72], while mutation and crossover operations act on symbolic 

trees to evolve new expressions. These processes are depicted in Figure 7.2. 

a) 

 

  
(2X1 + 14) – sin(X2) 

 

(2X1 + 14) + sin(X2) 
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b) 

 

Figure 7.2) a)Mutation applied to the expression tree. b) Crossover applied to two 

different expression trees 

Its core methodology involves evolving populations of candidate mathematical 

expressions, each composed of user-defined operators (e.g., +, ×, exp, log) and 

operands (variables and constants), to minimize a loss function based on prediction 

error. The algorithm maintains a Pareto front of non-dominated expressions that 

simultaneously optimize for accuracy (e.g., mean squared error) and simplicity (e.g., 

number of nodes in the expression tree). 

Key features of PySR include: 

• Multi-objective optimization: Returns a set of expressions balancing 

complexity and accuracy. 

(2X1 + 14) – sin(X2) 

 

X1^log (X2 ) 

 

(2X1 + 14) – log (X2 ) 

 

X1^ sin(X2) 
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• Flexible search space: Users can define the allowed operators and 

constants. 

• Fast parallel execution: Uses multi-threading and Just-In-Time (JIT) 

compilation via Julia. 

• Symbolic output: All models are returned as interpretable LaTeX-style 

expressions. 

A detailed explanation of the algorithm, including design choices and 

performance considerations, can be found in the original publication by Miles 

Cranmer et al. [70], which describes how symbolic regression is made 

computationally tractable through parallelization and optimization of 

expression trees. 

7.4.2    Configuration and Search Constraints 

The symbolic search was configured with strict constraints to control complexity 

and ensure interpretability.  

Input variables: 

• Shear rate: 𝛾̇𝛾 

• Temperature: T (in Kelvin) 

Target variable: 

• Dynamic viscosity: 𝜂𝜂(𝑦̇𝑦,𝑇𝑇) (Pa·s) 

Operators allowed: 

• {(*, -, +, /, pow)} 

• Exponential, logarithmic, and nested exponentials were explicitly 

disallowed to avoid excessive complexity and improve computational 

efficiency. 

Loss function: 

• Mean Squared Error (MSE) between predicted and measured log10(𝜂𝜂) 
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Loss =
1
𝑛𝑛
�(log10(η𝚤𝚤� ) − log10(η𝑖𝑖))2
𝑛𝑛

𝑖𝑖=1

 (7-2) 

 

Search strategy and complexity control: 

• Population size: 500 individuals across 24 subpopulations (island 

model) 

• Maximum generation: 1000 

• Dimensional constraint penalty: 103 

• Maximum allowed power in pow(a, b) was constrained to the range 𝑏𝑏 ∈

 [3, 9] 

 

Pareto optimization: 

• Expressions were ranked based on two objectives: 

1. Prediction error (MSE) 

2. Expression complexity (total number of operations) 

• Final selection was made from the Pareto front to ensure a trade-off 

between accuracy and simplicity. 

 

7.5    Derived MVI Model Expression 

The final model selected from the symbolic regression search represents a compact 

yet powerful expression that implicitly incorporates both shear rate and temperature 

dependencies. The derived MVI viscosity model is expressed as: 

𝜂𝜂(𝛾̇𝛾,𝑇𝑇) =
(𝑐𝑐1 − 𝑇𝑇) .  𝑐𝑐2

𝑐𝑐3 + (𝛾̇𝛾2 .  (𝛾̇𝛾 +  𝑐𝑐4)𝑐𝑐5)
 (7-3) 

Where: 
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• 𝑐𝑐1  to 𝑐𝑐5 are model parameters that must be fitted to experimental data 

using nonlinear curve fitting techniques such as the bounded Levenberg-

Marquardt method implemented via the lmfit library in Python. 

Although these parameters are not directly physical constants, they can be interpreted 

functionally based on their units and behavior as explained in Table 7-1. 

 

Table 7-1) Physical interpretation of MVI model parameters 

Parameter Units Interpretation 

𝑐𝑐1  [K] Reference temperature used for normalization 

𝑐𝑐2 
[Pa/(K.s(1+C5)] 

Thermo-rheological coefficient capturing temperature-

shear coupling 

𝑐𝑐3 [1/s(2+C5)] Relaxation-related term linked to structural resistance 

𝑐𝑐4 [1/s] Shear rate offset controlling shear-thinning onset 

𝑐𝑐5 
[–] 

Time-scaling exponent affecting nonlinearity of the 

model 

 

7.5.1    Model Performance 

The MVI model showed excellent performance across all datasets tested, achieving a 

coefficient of determination 𝑅𝑅2>0.95 even on unseen test and evaluation data, 

including elastomeric and thermoplastic fluids. The expression consistently preserved 

physically expected trends: 

• Viscosity decreased monotonically with increasing shear rate (shear-

thinning behavior) 

• Viscosity decreased with increasing temperature, consistent with 

thermal softening 

The MVI model achieves full-range coverage, including: 

• Zero-shear viscosity plateau 
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• Transition region 

• Power-law (pseudoplastic) region 

Moreover, the absence of exponential or logarithmic operations significantly improves 

computational efficiency. On modern CPUs, basic arithmetic operations such as 

addition, multiplication, and division typically execute in 3–13 cycles, whereas 

transcendental functions like exp() or log() require 50–200+ cycles due to their 

computational complexity. By relying solely on algebraic operations, the MVI model 

minimizes evaluation latency, making it well-suited for embedded implementations 

within finite-volume solvers or real-time control systems [58]. 

Finally, the model’s smooth, differentiable structure ensures numerical stability when 

integrated into CFD environments such as OpenFOAM or STAR-CCM+. 
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Chapter 8 |     Performance and Generalizability 

This chapter evaluates the performance and generalization capability of the proposed 

Multi-Variable Implicit (MVI) viscosity model. The assessment is carried out in two 

stages. The first involves a quantitative comparison between the MVI model and 

established classical viscosity formulations using the designated test dataset. The 

second stage examines the model’s predictive behavior on an independent dataset 

comprising different polymer materials not included in the training process. These 

analyses collectively provide insight into the accuracy, robustness, and extrapolation 

potential of the MVI model across diverse flow and thermal conditions, demonstrating 

its suitability for practical rheological and CFD applications. 
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8.1    Test Set Evaluation and Comparison with Classical Models 

To begin the evaluation, the MVI model was tested on a dedicated test set composed 

of data points that were not used during model training. This test set was designed to 

assess the model’s generalization ability to unseen data, and to provide a fair basis for 

comparison with a classical viscosity model. 

For benchmarking purposes, the Carreau–Arrhenius model was independently re-

fitted on the same test set. While this means the Carreau–Arrhenius model had access 

to the test data during its fitting, the MVI model encountered these points for the first 

time. Although this creates an uneven comparison, it emphasizes the MVI model’s true 

generalization capability, since it was never optimized on the test data. This 

comparison serves to evaluate how well the symbolic MVI model can approximate 

classical rheological behavior on previously unseen data. 

Figure 8.1 and Figure 8.2 show the predicted viscosity curves of both models evaluated 

on the test set. The MVI model achieved a coefficient of determination of 𝑅𝑅2 = 99, a 

Bayesian Information Criterion (BIC) value of 1187, and a Root Mean Squared 

Standardized Residual (RMSSR) of 1.00118. These metrics confirm that the MVI model 

delivers excellent predictive accuracy while maintaining a compact, closed-form 

structure optimized for computational efficiency. 

 

Figure 8.1) Carreau-Arrhenius fit results on the test set 
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Figure 8.2) MVI Model fit results on the test set 

In particular, the MVI model successfully captures the transition from the Newtonian 

plateau to the pseudoplastic region, and exhibits smooth, stable behavior across the 

full shear rate spectrum. It also demonstrates strong extrapolation capability in low 

shear regions, where the accurate representation of zero-shear viscosity is essential 

for both rheological analysis and CFD applications. These capabilities can be 

observed in Figure 8.3 and Figure 8.4 where both MVI model and Carreau-Arrhenius 

model are extrapolated to compare their ability to capture Newtonian plateau and 

transition region. 

 

Figure 8.3) Extrapolation of Carreau-Arrhenius model on the test set 
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Figure 8.4) Extrapolation of MVI model on the test set 

 

Viscosity contours as a function of shear rate and temperature, presented in Figure 

8.5, further confirm the model's physical realism. Notably, Figure 8.6 illustrates the 

model’s ability to reproduce temperature shift behavior, although small deviations are 

visible in the Newtonian region, which is an acceptable trade-off resulting from 

symbolic simplification. 

a) 
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b) 

 

Figure 8.5) a) Carreau-Arrhenius viscosity contour on the test set. b) MVI Viscosity model 

viscosity contour on the test set. 
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a) 

 

b) 

 

Figure 8.6) a) Carreau-Arrhenius model extrapolation of the viscosity contour on the test 

set. b) MVI Viscosity model extrapolation of the viscosity contour on the test set. 

Table 8-1 and Table 8-2 summarize the fitted parameters for both the MVI and 

Carreau–Arrhenius models, allowing a direct comparison in terms of parameter scale 

and functional interpretation. 
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Table 8-1) Derived variables of Carreau-Arrhenius viscosity model. 

 Carreau-Arrhenius 

n [-] 0.185 

E [J/mol] 9484 

𝜂𝜂0 [Pa. s] 2592 

𝜆𝜆 [s] 0.535 

 

Table 8-2) Derived variables of MVI viscosity model. 

 MVI Viscosity Model 

C1 [K] 492.12 

C2 [Pa/(K.s(1+C5)] 903.5 

C3 [1/s(2+C5)] 1.19 

C4 [1/s] 0.525 

C5 [-] -1.16 

 

8.2    Evaluation on an Independent Dataset 

To evaluate the generalizability of the proposed model, an independent validation 

study was conducted using three thermoplastic polymers with rheological properties 

distinct from the elastomer used during model training: polypropylene (PP), 

polystyrene (PS), and acrylonitrile butadiene styrene (ABS). 

The measurements were carried out using an Anton Paar MCR 302 rheometer in 

parallel-plate mode under a nitrogen atmosphere. Samples were compression 

molded into disc-shaped specimens with a diameter of 25 mm and a thickness of 1 

mm. For each material, frequency-sweep tests were conducted within the linear 

viscoelastic region across an angular frequency range of 0.1–121 rad/s. The Cox–Merz 

rule was then applied to convert oscillatory data into steady-shear viscosity data. The 

viscosity measurement of these 3 datasets at different temperatures are depicted in 

Figure 8.7. 
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a) 

 

b) 

 

c) 
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Figure 8.7) Viscosity measurements of independent validation datasets under varying 

shear rates and temperatures: a) Polypropylene (PP) b) Polystyrene (PS) c)Acrylonitrile 

Butadiene Styrene (ABS). The plot is in logarithmic scale. 

Figure 8.8 presents the fit results of the MVI model for the three independent 

compounds. Importantly, the model was applied directly without any retraining or 

parameter tuning, underscoring its flexibility. Across all three polymers, the MVI model 

accurately captured both shear-thinning behavior and temperature sensitivity, 

successfully predicting the viscosity trends observed experimentally. 

a) 

 

b) 
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c) 

 

Figure 8.8) Fit results of the MVI viscosity model on independent validation datasets: a) 

Polypropylene (PP) b) Polystyrene (PS) c) Acrylonitrile-Butadiene-Styrene (ABS) 

To quantify the model’s generalization capability, key performance metrics were 

computed for each material, including: 

• 𝑹𝑹𝟐𝟐: Coefficient of determination 

• BIC: Bayesian Information Criterion 

• RMSSR: Root Mean Squared Standardized Residual 

The results, summarized in Table 8-3, confirm that the MVI model consistently delivers 

high predictive accuracy across all cases. For each of the three polymer types, the 𝑅𝑅2 

value remains above 0.95, while BIC and RMSSR values are within acceptable ranges, 

reflecting both data conformity and numerical stability. 

 

Table 8-3) Fit statistics of MVI viscosity model un independent dataset. 

Material R2 BIC RMSSR 

PP 0.990 624.5 1.00629 

PS 0.957 938.1 1.00416 

ABS 0.977 1005.3 1.00456 

 

These findings validate the model’s ability to handle a broad spectrum of non-

Newtonian fluids beyond its original training domain. Its closed-form structure, 
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implicit handling of shear rate and temperature effects, and computational simplicity 

make it particularly suitable for implementation in CFD workflows and engineering 

simulation tools.  
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Chapter 9 |     Conclusion and Future Work 

This final chapter summarizes the main outcomes and contributions of the research, 

providing a synthesis of the modeling framework developed throughout the thesis. The 

discussion revisits the objectives introduced in Chapter 1 and evaluates how they 

were achieved through a combination of experimental data analysis, classical 

rheological modeling, and symbolic regression. The performance and generalization 

results of the proposed Multi-Variable Implicit (MVI) model are reviewed, followed by 

a discussion of its limitations and potential directions for future development. 

Together, these reflections consolidate the scientific and practical significance of the 

MVI approach in advancing data-driven rheological modeling for computational fluid 

dynamics applications. 
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9.1    Conclusion 

This thesis introduced a new closed-form Multi-Variable Implicit (MVI) viscosity model 

capable of accurately representing the shear-thinning and temperature-dependent 

behavior of non-Newtonian fluids. The model was derived through symbolic regression 

and trained on a hybrid dataset combining experimentally corrected capillary 

rheometry measurements and physically consistent synthetic data generated using 

the Carreau–Arrhenius model. 

Unlike classical models that rely on predefined functional forms, the MVI model was 

discovered purely from data, yet respects physical trends such as: 

• decreasing viscosity with increasing shear rate, 

• temperature-induced softening, 

• and smooth transition across viscosity regimes. 

The final expression is algebraic and compact, using only five parameters, with no 

exponential or logarithmic terms. This makes it computationally lightweight and CFD-

friendly, suitable for integration in simulation environments where efficiency and 

robustness are critical. 

Model performance was validated in two stages: 

• A test set consisting of unseen data showed excellent agreement (R² > 0.99), 

confirming the model generalizes well to data it was not trained on. 

• An independent dataset of thermoplastic materials demonstrated strong 

generalizability, confirming the model's versatility across fluid classes. 

9.2    Limitations and Future Work 

While the MVI model successfully reproduces the zero-shear plateau, transition 

region, and power-law behavior, it does not capture the second Newtonian plateau 

that some materials exhibit at very high shear rates. This is a known limitation of the 

model structure discovered through symbolic regression under the imposed operator 

constraints and training dataset composition. 

Future research can explore: 
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• Alternative symbolic structures that explicitly allow for multiple plateau 

behaviors, 

• Inclusion of additional data from extreme shear rate regions to guide the model 

toward second plateau behavior, 

• Relaxation of operator constraints (e.g., reintroducing bounded exponential 

functions) if necessary to improve accuracy in specific regimes. 

The approach demonstrated here offers a solid foundation for further model 

development by combining experimental accuracy, symbolic interpretability, and CFD 

compatibility. Future work may extend this framework to broader fluid classes, 

including viscoelastic and shear-thickening materials. 
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