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Abstract
In modern vehicles, the ongoing increase in capability, connectivity, and automation has
led to a substantial rise in both the number and complexity of Electronic Control Units
(ECUs). Balancing this growing complexity within strict cost, weight, and safety bound-
aries has become a major challenge for automotive manufacturers. Traditional document-
based engineering approaches are no longer able to ensure consistency between require-
ments, design, and implementation, which motivates the use of more integrated and
model-driven approaches capable of managing multidisciplinary trade-offs from the earli-
est phases of system development. The objective of this thesis is to develop and validate a
framework for the preliminary design and optimization of automotive electronic architec-
tures. In particular, the work addresses the question of how to allocate vehicle functions
to ECUs in order to minimize cost and weight while ensuring compliance with perfor-
mance and communication constraints. Furthermore, the framework aims to facilitate
early phase decision making by supporting engineers in the exploration and identification
of feasible designs across multiple architectural alternatives, even under complex design
constraints. To achieve this goal, the thesis combines Model-Based Systems Engineering
(MBSE) and Multidisciplinary Design Optimization (MDO). MBSE was implemented us-
ing Cameo Systems Modeler with the MagicGrid methodology to capture requirements,
system functions, and architectures in SysML. The resulting model was then converted
into structured CSV tables representing functions, computational loads, and communica-
tion signals. The optimization environment was developed in Python using the GEMSEO
library, supported by a dedicated ECU database built on Intel and AMD FPGA/SoC de-
vices. Two types of optimization problems were designed. In the single-objective case,
both continuous and discrete formulations were applied: the continuous cost model was
derived through curve fitting in MATLAB, incorporating computational performance and
bus connectivity, while the discrete model relied on catalog-based ECU selection. In the
multi-objective case, cost and weight were minimized simultaneously, producing Pareto
fronts that describe trade-offs in the allocation process. In all formulations, constraints
on computational load, bus capacity and maximum number of function for each ECU
were enforced to guarantee the validity of the optimized architectures. The results of this
thesis demonstrate that it is indeed possible to integrate MBSE and MDO environments,
thereby improving both traceability across system representations and the quality of early
decision-making in the design process. The optimized architectures obtained through the
proposed framework show promising results in terms of cost reduction and mass efficiency,
confirming the effectiveness of the approach. Nevertheless, future work should aim to ex-
tend the ECU database to provide greater variety and broader options for architectural
allocation, as well as to introduce additional optimization disciplines such as power con-
sumption, safety, and ECU placement. More broadly, the framework demonstrates the
potential of combining system modeling and optimization to address the challenges of
complex automotive electronics, supporting robust and informed decision-making from
the earliest design stages.
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Chapter 1

Introduction

1.1 Context and Motivation

In the current engineering industry, especially in fields such as automotive, aerospace, and
energy systems, the complexity of modern products has reached levels that traditional
development methods are no longer well equipped to handle. Products are no longer
standalone mechanical structures, but highly integrated systems that combine hardware,
electronics, software, and communication networks, all of which must work together reli-
ably and safely over time. This growing complexity has made it increasingly difficult to
maintain consistency, traceability, and control throughout the design and development
process. Continued reliance on document-based methods, combined with late-stage vali-
dation, often leads to errors, inconsistencies, and design misalignments, all of which can
result in significant delays, rework, and increased development costs. These challenges
become especially apparent in large-scale or multidisciplinary projects, where different
teams handle specific parts of the system, often using their own tools, templates, and
assumptions. Without a common structured model to guide development, key decisions
can easily be made in isolation, without a clear understanding of how they impact the
rest of the system. Requirements may be misinterpreted, changes in one subsystem may
not be reflected in others, and the lack of automated checks makes it difficult to detect
integration problems before they escalate.
As a result, many design flaws only become visible during the testing or integration
phases when correcting them is much more costly and time consuming. This fragmented
approach not only slows the development cycle, but also increases the risk of delivering
products that do not meet performance, safety or compliance expectations. It highlights
the urgent need for more structured and model-driven methodologies that can offer a
unified view of the system from the earliest design stages.
In response to these challenges, many companies and institutions are increasingly shifting
from traditional document-driven development methods to Model-Based Systems Engi-
neering (MBSE). MBSE marks a fundamental shift in the way engineers define, communi-
cate, and validate complex systems replacing fragmented document-based workflows with
a model-centric approach in which information is formalized, structured, and consistently
integrated from the earliest stages of development [13,14].
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Introduction

MBSE aims to create a coherent digital representation of the system by integrating re-
quirements, functional logic, architecture, behavior, and constraints into a single, con-
sistent model. Unlike informal diagrams or static documentation, these models are de-
veloped using standard languages, most notably SysML, and managed with specialized
tools such as Cameo Systems Modeler. The system model serves as a living artifact that
evolves with the project and can be reused across phases and teams [15].
One of the key advantages of MBSE is its ability to ensure traceability across the system.
Requirements can be directly linked to the functions that fulfill them, the components
that implement those functions, and the interfaces that connect them. This allows teams
to better assess the impact of changes, reduce ambiguities, and verify that every part of
the system contributes to the intended behavior. Changes made in the model propagate
automatically, improving consistency and reducing the risk of rework.
MBSE also enables early validation and verification (V&V). By simulating system be-
havior directly from the model or coupling it with domain-specific tools, engineers can
identify design issues early in the lifecycle before costly implementation begins, reducing
both technical risk and development time. [16]
In addition, MBSE supports cross-disciplinary collaboration, as engineers from different
domains work on a shared, structured model. This helps prevent miscommunication and
ensures that system-wide decisions are based on a consistent understanding. The reuse
of architectural patterns and components across projects further improves efficiency and
promotes standardization [17].
While MBSE is focused on form modeling and rationale of a complex system, it does not
itself address how to make optimal design choices across many technical fields. MDO,
Multidisciplinary Design Optimization, fills that void. MDO is an engineering discipline
used for the solution of highly complex problems with many competing objectives and
constraints in a broad range of disciplines, e.g. mechanics, electronics, control systems,
and software.
The underlying assumption of MDO is that the system is addressed as a unit, rather than
optimizing each subsystem in isolation; first developed in the aerospace sector to address
the tightly coupled relationship of aircraft structure and flight, MDO has obtained addi-
tional relevance in automotive, energy, and robotics applications [18].
Originally developed to manage strongly coupled interactions among control, aerody-
namics, and structure, MDO is now an essential tool to address complex multi-domain
engineering problems. These days, however, MDO frameworks, often run in Python,
MATLAB, or in-house systems, allow engineers to define objectives, place constraints,
and automate searching for best design solutions across a wide range of parameters.
But in the vast majority of actual application, MDO remains used regardless of system
architecture models. Optimization is typically performed against abstractions or solitary
representations, never leveraging the high-fidelity structural and functional data already
defined in MBSE models. Bridging the gap between the two approaches paves the way for
model-driven optimization, in which architectural and performance decisions are made
concurrently and constantly aligned with system-level requirements.
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1.2 – Thesis Objectives and Outline

1.2 Thesis Objectives and Outline

As systems become ever more intricate, traditional design methods often rooted in iso-
lated tools and discipline defined processes struggle to support the intricacies of interde-
pendencies between architecture, performance, and system requirements. In response to
these limitations, this thesis presents a novel solution, developed in collaboration between
Politecnico di Torino and Capgemini, where I carried out my internship, that combines
MBSE and MDO to enable improved decision-making during early design phases through
increased traceability, system representation defined by purpose, and quantitative evalu-
ation.
The objective of the research is to develop and validate a model-based workflow combin-
ing the description capabilities of MBSE and the analysis capabilities of MDO, with a key
focus on creating a methodology to optimize the electrical and electronic architectures of
systems. It aims to optimize an automotive Electronic Control Unit (ECU) architecture
and its network, a product that embodies the need to balance functional, physical, and
economic considerations using an integrated design approach.
The approach that is designed begins with the creation of a SysML system model within
Cameo Systems Modeler, an MBSE software, where components, requirements, and func-
tional relationships are clearly described and connected. The model serves as the struc-
tural and logical foundation used in the optimization process, which is implemented in
Python, a programming language. Design parameters such as ECU assignment or net-
work topology are examined with regard to two fundamental objectives: decreasing the
overall system weight and minimizing the total cost.
Architecture and functional parameters are constrained by optimization immediately de-
rived from the system model, such as ECUs count limits, redundancy policy, or com-
munication dependency. By integrating tight MBSE and MDO layers, the proposed
methodology enables a traceable and consistent design process in which architectural de-
cisions are permanently evaluated against performance and cost requirements.
To verify its effectiveness, the approach is applied to a case study of the conceptual de-
sign of an automotive simplified ECU network. The optimization variables are defined
as the number of functions and the outcomes are compared and contrasted for design
quality and to determine the trade-offs between cost and weight, as well as the benefit
of early and model-based optimization in guiding system-level design decisions. To guide
the reader, the thesis is structured as follows:

• Chapter 2 describes the methodology which is the foundation of the thesis. In this
chapter, Systems Engineering is discussed first to show how it began to advance
towards MBSE moved from a document-centric process to a model-centric process
which supports consistency, traceability, and integration. Then the system life cycle
and variety of V-model shapes are also introduced, followed by describing layered
structures and abstraction levels that consider requirements that can provide in-
put for design solutions. The chapter identifies SysML as the modeling language
used in this thesis and points on its duality to express requirements, structures and
behaviors into a combined representation. Next,MDO is introduced starting with
the general ’all-at-once’ formulation and works through the main finding monolithic

13



Introduction

architectures, comparing their strengths and weaknesses. The last part of the chap-
ter looks at the MBSE and MDO integration in order to show how MBSE models
can ensure structured inputs to optimization, while MDO has quantitative evalu-
ation tools to improve design decisions made by the architect. This integration is
the methodological conceptual framework formation for the remainder of the thesis
and provides the foundation for the case study in Chapter 3.

• Chapter 3 describes the case study generated for the thesis, conducted in collab-
oration with Capgemini. The chapter introduces the case study with the project
background and objectives, addressing the motivation for reducing cost and com-
plexity in automotive electronic architectures. It then describes the modeling pro-
cess employed in Cameo Systems Modeler, when stakeholder needs, context of sys-
tem use, and use cases were formalized and refined into subsystem structures and
exchange items. From activity diagrams structured tables are created to repre-
sent functional, computational loads and signal communication, which provide the
linkage from the MBSE model to the optimization environment. After building a
robust ECU database sourced from Intel and AMD, the work applies cost perfor-
mance modeling via MATLAB curve-fitting, deriving continuous relationships be-
tween DMIPS, interface count, and cost. The optimization itself is then carried out
under both single-objective and multi-objective formulations. In the single-objective
experiments, continuous formulations allow for interpolated performance and cost
surfaces, whereas the discrete case uses catalog-based ECU selection. The multi-
objective work builds Pareto fronts illustrating trade-offs between cost, weight, and
computational feasibility—all constrained by communication and performance re-
quirements.
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Chapter 2

Methodology

2.1 System Engineer main goals

The increasing complexity of modern technological systems has reshaped the role of engi-
neers. Today, delivering a product that integrates multiple disciplines such as mechanics,
electronics, software, and human interaction requires more than isolated technical exper-
tise. It requires a figure capable of orchestrating the system as a whole. That figure is
the System Engineer.
A System Engineer is a multidisciplinary integrator who ensures that all parts of a system
function together as intended. This role spans from early-stage requirements elicitation
to system design, integration, verification, and deployment.
The System Engineer is responsible for maintaining traceability between stakeholder
needs and the final system architecture, managing trade-offs, and aligning technical de-
cisions with business and operational goals.
At the core of this profession lies the concept of a system. According to ISO/IEC/IEEE
15288:2015, a system is: "A combination of interacting elements organized to achieve one
or more stated purposes." [17]
This definition implies several key attributes:

• Components: A system is composed of multiple parts, which may be physical (e.g.,
hardware), logical (e.g., algorithms), or human (e.g., operators).

• Interactions: The components are not independent but interact through defined
relationships functional, physical, or informational.

• Boundaries: Every system exists within an environment and has a boundary sepa-
rating it from that context.

• Purpose: A system is not random; it is designed to fulfill a specific function or
achieve a specific goal.

For instance, a modern vehicle can be considered a system that integrates propulsion,
braking, user interfaces, connectivity modules, and environmental sensors. Each of these
subsystems interacts to produce a coherent and safe driving experience. However, not
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every collection of parts is a system. The components must be interdependent, and their
configuration must give rise to behaviors or properties that cannot be attributed to indi-
vidual elements alone a concept often referred to as emergent behavior.
As shown in the figure 2.1, when an automobile is considered as a system, it can be decom-
posed into multiple interrelated subsystems such as the transmission, exhaust, braking
system, suspension, steering, electrical and electronic control systems, as well as safety
and comfort features. Each subsystem performs specific functions, yet their operation is
interdependent, collectively ensuring the vehicle’s overall performance, safety, and user
experience. This perspective highlights the multidisciplinary nature of modern vehicles,
where mechanical, electrical, electronic, and software elements must be integrated into a
coherent and reliable whole.

Figure 2.1: Example of system and sub-system in a vehicle [1]

Addressing this level of complexity requires a structured approach capable of managing
the interdependencies between diverse components and disciplines. This is precisely the
domain of Systems Engineering (SE), the discipline that enables the systematic develop-
ment, integration, and validation of complex systems.
The International Council on Systems Engineering (INCOSE) defines Systems Engineer-
ing as “a means to enable the realization of successful systems.” According to INCOSE,
Systems Engineering “focuses on defining customer needs and required functionality early
in the development cycle, documenting requirements, then proceeding with design synthe-
sis and system validation while considering the complete problem.” [19] Furthermore, “it
integrates all the disciplines and specialty groups into a team effort forming a structured
development process that proceeds from concept to production to operation.” Lastly, Sys-
tems Engineering “considers both the business and the technical needs of all customers
with the goal of providing a quality product that meets the user needs.” [19]
In alignment with this definition, Systems Engineering pursues a number of core goals
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aimed at improving product development efficiency, technical performance, and lifecycle
sustainability:

• Manage increasing system complexity: Modern products are no longer isolated
components but integrated systems composed of mechanical, electrical, electronic,
and software subsystems. As products incorporate more functionality and smart
capabilities , the number of interfaces and dependencies grows exponentially. SE
provides structured methods to manage this complexity by decomposing systems
into manageable subsystems and modeling their interactions early in the develop-
ment process. [2]

• Ensuring end-to-end traceability across the lifecycle: By adopting a model-
based approach, SE enables the reuse of validated components and architectures,
the automation of system documentation, and the alignment of system views across
teams. Centralized digital repositories and configuration management tools allow
for better knowledge sharing and consistency across development cycles and orga-
nizational boundaries. [2]

• Improving safety, reliability, and diagnosability: As system complexity in-
creases, so do the risks associated with unexpected failures. SE tools and methods
enhance safety by linking functional requirements to components and by enabling
failure mode and effect analysis (FMEA), hazard tracking, and fault tree analy-
sis. Additionally, system-level models support the development of diagnostic and
prognostic capabilities that are essential for mission-critical systems. [2]

• Integrating business and technical perspectives: SE is uniquely positioned
to bridge the gap between business goals and engineering execution. It ensures
that systems are not only technically sound but also aligned with cost, schedule,
and stakeholder expectations. This integrative function supports better risk man-
agement and promotes the delivery of quality systems that meet both user and
enterprise needs. [2]

• Reducing overall development costs and minimizing rework: Systems En-
gineering advocates for a "left shift" in effort and decision-making investing heavily
in early-stage activities such as requirement elicitation, trade-off analysis, and con-
ceptual modeling shown in 2.2. By identifying design flow or integration issues
early, SE helps avoid costly re-engineering in later phases, which is typically more
resource-intensive and time-constrained. [2]
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Figure 2.2: Comparison between the usual distributions of the percentage of total cost
covered for the system development and that proposed by the SE [2]

In practice, Systems Engineering (SE) decomposes complex problems into manageable
elements, examined from multiple perspectives to ensure thorough concept design and
complete requirements elicitation. By integrating system models within a unified virtual
environment, SE improves correlation between analyses, promotes a holistic system view,
and provides a reusable rationale applicable across projects. [2]
In complex products with multiple subsystems, SE supports safety analysis by mapping
clear links between requirements, functions, and components, enabling effective predic-
tion of failure modes and ensuring full traceability. Functional modelling further aids in
describing failures, while operational, functional, and architectural analyses enhance the
design of effective monitoring systems and support detailed simulations.
SE bridges the gap between project management and product design, performing technical
trade-offs, integrating multidisciplinary components, and maintaining alignment between
requirements and the delivered product from concept through operation.
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2.2 The evolution in Systems Engineering
In its earlier implementations, Systems Engineering (SE) was primarily conducted through
a document-based approach. In this paradigm, system requirements, specifications, de-
sign descriptions, and verification procedures were produced, stored, and exchanged as
static documents. These could take the form of requirement specifications, interface con-
trol documents, test plans, and design reports, often distributed across multiple formats
and repositories. [19]
While effective in the early stages of SE adoption, this approach faced significant chal-
lenges as systems grew in complexity. Information was often fragmented and duplicated
across different documents, creating inconsistencies and making it difficult to ensure that
all stakeholders were working with the most up-to-date data. Updating a single re-
quirement or design parameter could require manual revisions in multiple documents,
increasing the likelihood of errors and omissions.
Moreover, document-based methods made traceability between requirements, design ele-
ments, and verification activities cumbersome. Identifying the impact of a design change
on upstream requirements or downstream test procedures was often time-consuming and
prone to oversight. This also limited the ability to conduct rapid trade-off analyses, as
engineers needed to manually cross-reference disparate files rather than relying on a uni-
fied source of truth. [19]
As system architectures became more interconnected, particularly in domains such as
aerospace, automotive, and defense, the document-based approach began to reveal addi-
tional shortcomings. Communication between multidisciplinary teams was hindered by
the lack of an integrated environment, and the static nature of documents offered little
support for real-time collaboration or automated consistency checks.
These limitations set the stage for the transition toward Model-Based Systems Engineer-
ing an approach that replaces static documentation with dynamic, interconnected system
models. By representing requirements, architecture, behavior, and constraints within a
unified modeling environment, MBSE enables continuous validation, automated trace-
ability, and a holistic understanding of the system across its entire lifecycle. This shift
not only addresses the shortcomings of document-based methods but also fundamentally
transforms the way SE supports design, verification, and decision-making in complex
engineering projects. [2]
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The development of Systems Engineering (SE) can be described as an evolutionary process
that has moved through four major stages, each driven by the increasing complexity of
systems and the need for more integrated, accurate, and collaborative approaches.

Figure 2.3: Evolution of System Engineering

• Classical Systems Engineering In its earliest form, SE was a document-centric
discipline. The design and management of complex engineering projects were con-
ducted over the life cycle of the system using static documentation as the main
medium for capturing and exchanging information. Specifications, requirements,
and design details were recorded in separate files or reports, often distributed across
different teams and formats. While this approach provided structure and a degree
of standardization, it suffered from significant limitations: fragmented information,
time-consuming updates, and limited ability to maintain accurate traceability be-
tween requirements, design elements, and verification activities. [20]

• Requirement-Based Systems Engineering In this step SE was focused on plac-
ing requirements at the core of the engineering process. Systematic requirements
analysis was introduced to clearly define system goals, functions, and constraints,
ensuring that all subsequent design, verification, and validation activities were tied
directly to these requirements. This approach improved visibility and control across
the project lifecycle, supported change management, and provided a clearer link be-
tween requirements and the design and verification phases [20] . However, despite
these advances, requirements were still mostly managed in document form, mean-
ing that the process remained vulnerable to the inefficiencies of document-based
workflows.

• Model-Based Systems Engineering To address the limitations of document-
driven processes,MBSE emerged as a more dynamic and integrated methodology.
MBSE formalizes the use of interconnected, digital models to capture requirements,
architecture, behavior, and constraints in a single, authoritative environment. This
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allows for real-time consistency checks, automated traceability, and more effective
cross-disciplinary collaboration. By linking logical and physical architectures with
functional analysis and verification data, MBSE enables engineers to understand the
system holistically and evaluate trade-offs more efficiently [21]. This model-based
approach also reduces the risk of inconsistencies, accelerates the design process, and
enhances the ability to detect potential failures early.

• Digital Continuity & Digital Twin The most recent stage in the evolution of
SE methodology is the integration of MBSE with the concepts of digital continuity
and the digital twin. Here, the focus is on maintaining a seamless flow of infor-
mation from concept to operations through a unified data model. Digital twins
high-fidelity digital replicas of physical systems enable continuous monitoring, pre-
dictive maintenance, and performance optimization throughout the operational life
of the system. This approach links design, manufacturing, and operational data,
providing a closed feedback loop that supports faster decision-making, reduces life-
cycle costs, and improves overall system reliability
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2.3 MBSE: Introduction and benefits
As discussed in the last section, typical document-based systems engineering (DBSE)
practices are clearly limited for complex and multidisciplinary activities. While document-
based systems engineering is acceptable for simpler systems, the modern requirements
of inter-disciplinary practice presents problems: limited integration between disciplines;
poor management of consistency; the inability to maintain and trace relationships be-
tween requirements and design elements; and little opportunity for systematic re-use of
knowledge. For these reasons, it is common for the technical baseline to degrade quickly
across a project, with repercussions to cost, schedule, and quality.
To overcome these challenges, systems engineering has progressively evolved. A first step
was the introduction of requirement-based systems engineering, which placed greater em-
phasis on the structured definition and verification of requirements across the life cycle.
Building on this foundation, the discipline advanced towards MBSE, which today repre-
sents the standard paradigm for managing complexity. According to INCOSE, MBSE is
the formalized application of modeling to support system requirements, analysis, design,
verification, and validation activities, beginning in the conceptual design phase and con-
tinuing throughout development and later life cycle phases. [19].

Figure 2.4: Comparison between traditional SE (a) and MBSE (b) [3]

The difference that MBSE provides, is in the replacement of documents with models as
the primary engineering artifacts. Rather than static documentation, models are repre-
sentations of facts and as such are authoritative and dynamic information sources that
can show requirements, represent structures and behaviors, communicate to stakeholders,
represent design trade-off analysis, and can stuff be executed and measure the system per-
formance. In this respect, MBSE is not just a methodology, MBSE constitutes a change
in the way we conceive of attributes like: requirements, architecture, behavior, and con-
straints into a coherent and evolving representations of the system. [22]
The motivations for adopting MBSE are deeply connected to the needs of contemporary
industries. Among the principal benefits are:

• Improve traceability: In traditional document-based processes, the relationship
between requirements, design elements, and validation steps is often fragmented
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or lost across different documents.With MBSE, traceability is integrated into the
model: each requirement can be traced to system functions, components, and as-
sociated test cases. This help engineer to understand how a decision propagates
through the system, what requirement is being satisfied, and which planned val-
idation procedure will confirm it.Such explicit traceability minimizes the risk of
missing critical dependencies, facilitates impact analysis in case of design changes,
and strengthens regulatory compliance in highly controlled industries.

• Reusability :Because system knowledge is stored in structured and machine-readable
form, models can be adapted and refined for new projects, product variants, or suc-
cessive generations of a product line.This continuity of knowledge prevents organi-
zations from "reinventing the wheel" with every new program and fosters product
line engineering and innovation by allowing organizations to leverage previously
developed components.

• Reduction of costs and time-to-market: Traditional processes do not find de-
sign issues until late in the process when inconsistencies or requirement mismatches
are discovered in prototypes or manufactured systems. MBSE lessens the prob-
lem, as it allows for verification and validation activities to be done much earlier in
the life cycle utilizing simulation and model execution.Detecting problems at the
conceptual or architectural stage prevents costly rework, limits delays, and con-
tributes to faster delivery of robust products. Empirical studies confirm that early
investments in MBSE reduce overall program costs, since errors corrected late in
the process are exponentially more expensive. This reduction in cost can be see in
2.5 [3]

Figure 2.5: Comparison of costs between traditional SE and MBSE [3]

• Improvement of communication: Multidisciplinary teams often face challenges
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in aligning terminology, understanding system behavior, or interpreting require-
ments. MBSE provides a shared, visual, and formalized representation of the system
that acts as a "common language" across engineering domains. Diagrams, behav-
ioral models, and structural views reduce ambiguities inherent in textual documen-
tation, facilitating decision-making and consensus among engineers, managers, and
external stakeholders. This makes achieving consensus or decision-making easier
for the engineers, managers, or outside stakeholders and it is especially significant
in international projects, where communication may involve linguistic or cultural
barriers.

• Risk management and quality assurance: Executable models allow engineers
to evaluate design alternatives, simulate system performance under different condi-
tions, and test critical scenarios before physical implementation. This anticipatory
capability makes it possible to identify risks early, assess their potential impact, and
design mitigation strategies proactively. As a result, the quality of the final system
improves, not only in terms of compliance with requirements but also in terms of
robustness, safety, and resilience to failures.

Having outlined the main benefits of adopting Model-Based Systems Engineering, it is
important to clarify how these advantages will be further developed in the following
chapters. MBSE should not be regarded simply as a set of abstract principles; rather,
it constitutes a methodological framework that reshapes the way system life cycles are
conceived and managed. As emphasized in the INCOSE Systems Engineering Handbook,
MBSE integrates seamlessly into established life cycle models, providing digital continuity
that extends from the earliest phases of concept definition through verification, validation,
operation, and eventual decommissioning. [19]
This continuity ensures that the links between requirements, design, and validation are
not only preserved but dynamically updated as the system evolves.The next chapter will
therefore explore how traditional system life cycle representations, such as the waterfall,
the V-model, and the spiral model, can be reinterpreted in light of MBSE practices,
highlighting their complementarities and limitations when applied to contemporary en-
gineering contexts.
Closely related to this discussion is the question of abstraction layers and system levels,
which will be addressed in the subsequent section. MBSE facilitates the definition of
consistent system views across multiple levels of abstraction, ranging from stakeholder
needs and high-level functional representations down to logical architectures and detailed
physical implementations. By maintaining coherence between these levels, MBSE reduces
the risk of inconsistencies and ensures that every design decision remains traceable back
to its original requirement.
In conclusion, we will focus specifically on the significance of languages and tools that
facilitate MBSE in practice. The application of formalized modeling languages, typi-
cally SysML, provides the expressiveness needed to represent the structural, behavioral,
and parametric facets of a complex system in a shared semantic space. Together with
dedicated tools offering model execution, requirements management, and automated anal-
ysis capabilities, SysML enables the methodological and operational benefits described
above. In this way, MBSE can become not only a formalized conceptual change, but also
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Figure 2.6: MBSE architecture [4]

an embodied practical approach based on tools and methods that enable the effective
application of MBSE principles in an industrial setting.
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2.4 The System Life Cycle and the V-Model Framework
In systems engineering, every product is understood not only as a physical artifact but
as a system that evolves through a life cycle. The life cycle encompasses all stages of
existence, from the initial conception of needs to final decommissioning and disposal.
According to ISO/IEC 15288, a life cycle is defined as the “evolution of a system from
conception through retirement”, which includes conception, development, production, op-
eration, maintenance, and disposal [17].
Taking and applying a life cycle framework is critical for two reasons. First, it creates a
full spectrum view of engineering behaviors, understanding that activities and decisions
made during design and production have immediate impact on operation, sustainment,
and retirement. Second, it underscores the thread of stakeholder needs; requirements es-
tablished during conception must remain true and traceable during the use of the system,
while feedback during operation can guide redesign and subsequent generations of prod-
ucts. Several models have been proposed to represent this life cycle graphically. Among
the most common are the Waterfall model, the V-Diagram, and the Spiral model. Each
of these emphasizes different aspects of the development process:

• Waterfall Model is one of the earliest and most intuitive representations of a
system development life cycle. It visualizes the process as sequential steps flowing
downward from requirements analysis to design, implementation, testing, deploy-
ment, and disposal [23]. Its appeal lies in its simplicity: each phase produces
outputs that feed the next, offering a clear pathway for project planning and man-
agement. However, the model assumes requirements can be fully defined at the
start and remain stable, which is rarely the case in complex systems. Since it lacks
explicit feedback loops, errors discovered in later phases become costly to fix. For
this reason, Waterfall is often considered too rigid for modern engineering, though
it retains value in projects with stable requirements and low uncertainty.

Figure 2.7: Model of the product lifecycle described by a waterfall diagramg
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• Spiral Model,introduced by Boehm in 1988, extends the life cycle perspective by
placing iteration and risk management at the center of development [24]. It was
proposed to overcome the limitations of the Waterfall approach, emphasizing the
recursive nature of Systems Engineering. Development proceeds step by step, circle
by circle, with each iteration refining the previous one, particularly when require-
ments are involved. As the spiral advances toward the center, the product gradually
reaches completion through requirement analysis, functional and physical modeling,
and final validation. This model highlights the need for continuous reassessment,
but some limitations remain. In safety-critical systems, for example, non-functional
and dysfunctional analyses must be integrated early to ensure reliability and pre-
vent severe failures. Moreover, effective product development should also consider
business aspects from the outset, avoiding excessive costs or weak market position-
ing. For these reasons, the spiral lifecycle is often combined with defined processes
and standards that continue to evolve in both industry and academia. [2]

Figure 2.8: Sketch of spiral diagram applied to the product development in systems
engineering [2]

• V-Diagram: To address the limitations of linear representations such as the Wa-
terfall model, the V-Diagram has been widely adopted in systems engineering as a
way to describe the fundamental stages of system development [2]. This diagram,
shaped like the letter “V”, illustrates the full trajectory of system engineering ac-
tivities: the left branch descends from the identification of stakeholder needs to
increasingly detailed design specifications, while the right branch ascends through
integration, verification, validation, and final deployment (2.9. The path begins at
the upper left corner with the early concept definition and progresses downwards
into more detailed design, before rising again through testing and validation to the
upper right corner, which represents deployment, service, and eventual disposal.
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The holistic nature of the diagram is one of its strengths, as it makes explicit that
system development spans the entire life cycle, from conception to retirement.The
diagram portrays a top-down approach: engineers start with the system as a whole,
and then decompose it down to subsystems, components, and parts. This per-
spective is different than in traditional material products, where each component is
designed and manufactured separately, in isolation, and then assembled as a system.

Figure 2.9: V-diagram and decision gates

The V-Diagram recognizes the need to be connected between the two perspectives;
every design activity on the left must equal a verification or validation activity
on the right. In this representation, the left-hand branch is often associated with
Application Lifecycle Management (ALM), which involves requirements elicitation,
functional decomposition, and architectural definition. The right-hand branch cor-
responds to Product Data Management (PDM), encompassing integration, assem-
bly, verification, validation, and service. Importantly, ALM and PDM should not
be seen as disconnected or sequential processes. Instead, the diagram emphasizes
their interdependence: for every function defined during the design phase, a corre-
sponding test must be foreseen to ensure that the requirement is properly verified
and the underlying stakeholder need is satisfied. This direct symmetry is one of
the reasons the V-Diagram has become a cornerstone of systems engineering. At
each major transition of the V-Diagram, decision gates are established to formally
assess progress and determine whether the project can advance to the next phase,
ensuring alignment with stakeholder needs and system objectives [19]. The diagram
also provides a chronological guideline for development.On the left-hand side, the
diagram starts with identifying customer needs, and it is evident stakeholders drive
requirements and specifications. By performing stakeholder identification, analysis,
and mapping, we can ensure all relevant actors, including people, processes, sys-
tems, and devices, are on the radar in this early period of the process, typically
through use cases. On the right side, each of these requirements is systematically
validated, moving from component testing to subsystem integration and finally to
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system-level acceptance.Additional considerations, such as transportation, instal-
lation, and disposal, are also placed within this right-hand branch, reflecting the
full span of the system life cycle. Although the V-Diagram provides clarity, it is
not without limitations.One criticism is that it shows requirements elicitation as a
one-time event established at the beginning of a development process, but require-
ments in practice evolve throughout design loops and performance assessments.
Therefore, revisions to the diagram have incorporated feedback loops (2.10) in the
systems specification process to symbolize the iterative nature of requirements as
shown in figure below.

Figure 2.10: V-diagram applied to the product development in systems engineering [2]

Contemporary systems engineering requires a broader perspective that integrates
monitoring, operator training, and continuous improvement, in line with Industry
4.0 paradigms. Moreover, the focus has expanded from individual systems to entire
product lines, introducing Model-Based Product Line Engineering (MBPLE) as an
extension of MBSE to capture variability and reuse across evolving products. [2]
For these reasons, the V-Diagram should never be interpreted as a fixed process
and should be considered a flexible framework that facilitates traceability from re-
quirements to validation; and allows for iterative change during the evolution of
the system. Also, when combined with Model-Based Systems Engineering, the V-
Diagram could be interpreted as both a methodological framework and a practical
roadmap for the development of complex and safety-critical systems.
The figure below illustrates an evolution of the traditional V-model through the
integration of Model-Based Systems Engineering (MBSE). In the classical represen-
tation, the V-model is essentially a sequence where requirements are decomposed
on the left side and then validated through integration and testing on the right side.
Here, however, the model is enriched with a clear separation between the system
level and the component level, highlighting how MBSE bridges the gap between
stakeholder requirements and the detailed development of components.
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Figure 2.11: V-diagram applied to the product development in systems engineering

At the system layer, requirements are not simply listed as static documents but are
formalized into models. This allows for architectural design, requirement allocation,
and early verification and validation to be carried out in a continuous and traceable
way. Moving down to the component layer, the process covers specification, design,
development, and integration, showing how system requirements are translated into
technical solutions.
What distinguishes this MBSE-based V-model from the basic one is the stronger
emphasis on iteration and early validation. By enabling the execution of verifica-
tion activities already in the design phase, it reduces the likelihood of overlooking
dependencies and makes it easier to detect inconsistencies before costly rework is
required. In this sense, MBSE ensures digital continuity throughout the lifecycle,
from stakeholder needs all the way to system integration and operation, offering a
more robust and interconnected framework than the classical V-model.
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2.5 Layered Structures and Model Levels in MBSE

As previously discussed, one of the defining challenges of contemporary systems engi-
neering lies in the increasing complexity of modern systems. These systems are no longer
linear or isolated artifacts but rather interconnected entities that must satisfy different
stakeholder needs while operating across dynamic environments throughout their entire
life cycle. Such complexity cannot be effectively addressed if the system is analyzed from
a single perspective or confined to one level of detail.
To address this issue, MBSE presents the two notions of layers and levels, which provide
a structural underpinning for modeling and reasoning about complex systems. Layers
are perspectives on the system: operational, functional, and physical views focus on sep-
arate questions and interests. Levels capture a hierarchical decomposition of the system,
defining its global architecture, systems, subsystems, components, and lower-level parts.
By combining these two dimensions, MBSE enables both vertical traceability (ensur-
ing requirements flow consistently from system-level needs to detailed implementations)
and horizontal consistency (aligning the different perspectives to avoid fragmentation of
knowledge). This way, it gives engineers a formal way to break complexity down, commu-
nicate with stakeholders, and ensure consistency over the complete life cycle of a system.
In this sense, layers and levels are not just ways to organize models, but they constitute
the foundation that supports the design, analysis, and verification of modern complex
systems.

2.5.1 System and Component Layers

The layered approach,shown in 2.12 is fundamental because modern system are too com-
plex to be fully understood from a single viewpoint,the first layer is the operational layer
,which captures the system in its context of use. At this level, the system is not yet con-
sidered in terms of architecture or technology, but rather in term of the mission it must
accomplish and the stakeholder needs it must satisfy. In this layer the main questions
are: What is the purpose of the system? Who are the stakeholders involved? Under which
condition will the system be used?.
Modeling at this layer elicits and structures stakeholder needs, mission objectives, and
operational scenarios (normal, off-nominal, degraded). Typical artifacts include use-case
models to delineate actor–system interactions; scenario and activity flows that narrate
operational sequences; high-level state models for modes of operation; and a first set of
operational requirements captured as model elements. Analysts also define preliminary
Measures of Effectiveness (MoE) and constraints that will later guide design trade-offs.
The aim is not to commit to any technical solution, but to produce a precise and testable
statement of intent that will guide the rest of the engineering effort [19]. In SysML,
this layer is often realized with Use Case Diagrams, Activity Diagrams for scenarios, and
Requirement Diagrams to formalize needs and assumptions.
For example, in the automotive domain this could involve describing a vehicle’s mission
to transport passengers safely and efficiently, considering scenarios such as urban driv-
ing.By focusing on purpose rather than design, the operational layer creates a shared
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understanding among stakeholders and establishes the foundation upon which all subse-
quent layers are built.

Figure 2.12: MBSE Layers

The second layer is functional or logical, which translates operational needs into func-
tions and behaviors. Here, the system is described in terms of what it does rather what
is made of. Functions are actions or transformations the system accomplishes to fulfill its
intended objectives, while logical architectures describe the method of the functions and
how they can interact with each other through flows and interfaces. This layer abstracts
the physical implementation so engineers can objectively evaluate the various solution
concepts without being confined by predetermined technologies. For example, "ensuring
passenger safety" as an operational need could be expressed at the functional layer with
functions such as "detect obstructions," "assess collision potential," and "activate brak-
ing." These functional requirements could later be developed in a number of ways (e.g.,
via radar sensors, camera sensors, or a combination of both), but the focus at this layer is
to ensure the functional breakdown meets the mission needs. In this sense the functional
layer transitions intentions to physical implementation, providing the logical architecture
that will eventually be guided to allocate functions to physical components.
The modeling work being done here helps break down operational intent into functions
and sub-functions, specify logical interfaces and flows (information, energy, material), and
establish behavior using sequences, activities, and state machines. In the modeling pro-
cess, engineers define the functional architecture, identify allocations from requirements
to functions, and start to identify performance and parametric constraints as equations
for early analysis. This abstraction intentionally protects design freedom, and allows for
more systematic trade-off studies among competing concepts. In SysML, the modeling
work represents behavior using typical Activity/Sequence Diagrams, defines the logical
structure using Block Definition Diagrams (BDD), defines the interfaces using Internal
Block Diagrams (IBD), and defines constraints and performance bounds using Parametric
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Diagrams. The result is a technology-agnostic design specification that is fully traceable
to the operational needs and ready for allocation to physical entities.
The third is physical, or implementation layer,specifies the with what the tangible real-
ization of the logical design; defines the physical realization of the system. When you get
to the physical layer, you are mapping logical functions and blocks to components, sub-
systems, and actual technologies. It describes how the system will be built, integrated,
and maintained, also describes in detail all the software, hardware, and human-machine
interfaces, allowing a clear physical basis for verification and validation to occur. By
mapping each physical element to each function and permission, MBSE helps to ensure
that no design action happens without regard for original intent.
Modeling focuses on allocating functions to hardware/software components, defining in-
terfaces and protocols, and detailing integration architecture (e.g., mechanical assem-
blies, electronics, networks). Engineers refine non-functional requirements into compo-
nent specifications, establish budgets (mass, power, timing, cost), and plan verification
and validation by linking tests and test cases to the components and interfaces that
implement each requirement. SysML BDD/IBD remain central for structure and inter-
faces; Requirement Diagrams capture derived and allocated specifications; Parametric
Diagrams support performance compliance checks; and TestCase/«verify» relationships
connect implementation to V&V evidence. Crucially, every physical element is tied back,
via explicit model relations (e.g., «satisfy», «allocate», «verify»), to the logical functions
and operational requirements it realizes, preserving end-to-end traceability.

Figure 2.13: MBSE Grid:Layer Analysis [5]
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2.5.2 Abstraction and Model Levels

The layered perspectives discussed in the previous section highlight what aspects of a
system can be represented in MBSE, ranging from operational intent to functional de-
composition and physical realization. Yet, these perspectives alone are not sufficient to
fully capture the complexity of modern systems. In addition to representing multiple
viewpoints, systems must also be described across levels of abstraction, which reflect the
hierarchical decomposition of a system into progressively finer elements. While layers
separate different concerns, levels specify the granularity at which those concerns are
modeled.
At the highest point of this hierarchy lies the system level, which considers the product
as a whole in relation to its environment.At this level, the system is being treated as a
complete whole that must satisfy the needs of the stakeholders, is subjected to external
constraints, and must act as an integrated whole. For example, an automobile at the
system level is modeled in terms of its overall mission safe and efficient transportation
together with high-level requirements such as safety standards, fuel efficiency, or regu-
latory compliance. The system level provides the global context within which all lower
levels must remain consistent.Just below system level, we have the subsystem level, which
decomposes the system into large functional domains, or architectural ’blocks.’ In the ex-
ample of an automobile, this will include the powertrain, braking system, infotainment
system, or driver assistance module. Each subsystem will be modeled with its own in-
ternal architecture and requirements, but always in relation to the system’s high-level
objectives. Subsystems are where cross-disciplinary interactions often become visible,
requiring integration between mechanical, electrical, and software elements.

Figure 2.14: System Decomposition Diagram [6]

The next stage of decomposition is the component level, where subsystems are divided
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into concrete functional units with well-defined interfaces. Continuing the automotive
example, the braking subsystem might be realized through components such as the hy-
draulic actuator, brake pedal sensor, and electronic control unit (ECU). At this level,
engineers specify design details, allocate functions to individual components, and begin
to plan for integration and verification activities.Finally, at the most detailed stage lies
the part level, which defines the individual physical elements such as microprocessors,
circuit boards, sensors, and wiring harnesses that constitute the components. The part
level is critical for manufacturing, testing, and logistics planning, and forms the bridge
between system engineering models and product realization in practice.

2.5.3 System Requirement Definition

Having introduced the concepts of layers and levels, it is now possible to position the sys-
tem requirements within this structured framework. Stakeholder needs are first formal-
ized into requirements, which are then systematically allocated to the appropriate layer
depending on their perspective,and are decomposed across the different levels of abstrac-
tion. Requirements act as the formal bridge between stakeholder needs and the technical
specifications that ultimately shape the system architecture. According to ISO/IEC stan-
dards, a requirement can be defined as a “statement that translates or expresses a need
and its associated constraints and conditions” [2]. Stakeholders are understood as indi-
viduals or organizations with a legitimate interest in the system, ranging from customers
and regulatory authorities to manufacturers, suppliers, and end-users. Each stakeholder
introduces a unique set of expectations, which must be translated into requirements that
are clear, verifiable, and technically actionable [12].
At a high level, there is a distinction between stakeholder requirements and system re-
quirements. Stakeholder requirements are informal expressions of desired capabilities,
usually in natural language, and consequently open to interpretation. System require-
ments distill these informal expressions into structured and formal technical statements
that can shape their design and implementation. To accommodate varying degrees of
specificity in system requirements, there are often splits within system requirements be-
tween functional requirements that describe what the system must do, non-functional
requirements that capture quality attributes such as safety, reliability, and performance,
and constraints that detail technological, regulatory, or operational restraints. [2] This
structured hierarchy ensures all design decisions can be traced back to original stake-
holder needs which allows for consistency and accountability in a system during its life
cycle.
An essential principle of this process is traceability, which refers to the clear linkage of re-
quirements to functions, subsystems, components and ultimately to manufactured parts.
This effectively ties any failure of a physical element to the requirement that defined its
inclusion. For an aircraft, for instance, the requirement "the system shall be capable of
propulsion," can ultimately be linked back to the intended physical component through
the envisioned functionality (linking it to the function "propel") and logical block (e.g.
"engine") that should eventually manifest to a physical component (e.g. turbofan). Thus,
traceability purposes to decompose system complexity into manageable layers and gives
assurance that all needs have corresponding solutions, while all solutions can be linked

35



Methodology

back to a higher-level corresponding need. [2]
The quality of requirement statements is critical to the success of the entire development
process. As emphasized by INCOSE, requirement statements must adhere to specific
rules to ensure that they are clear, complete, consistent, verifiable, and achievable [13].
INCOSE also recommends the use of attributes such as requirement ID, priority, verifi-
cation method, and responsible stakeholder to support requirement management. Poorly
formulated requirements often lead to costly rework and system failures, whereas struc-
tured, high-quality statements create the conditions for effective design and validation.
Patterns for requirement statements are also encouraged, with structures varying de-
pending on the requirement type (e.g., functional, performance, interface),an illustrative
example is reported in Table 2.1. These patterns serve to reduce ambiguity and enforce
discipline in the definition of requirements [12].

Type Definition and Pattern
Functional Re-
quirement

Define what functions need to be performed to accomplish
the objectives.
The SYSTEM shall exhibit FUNCTION while in CONDI-
TION.

Performance Re-
quirement

Define how well the system needs to perform the functions.
The SYSTEM shall FUNCTION with PERFORMANCE
and TIMING upon EVENT TRIGGER while in CONDI-
TION.

Design Con-
straint Require-
ment

Limit the options open to a designer of a solution by impos-
ing immovable boundaries and limits.
The SYSTEM shall exhibit DESIGN CONSTRAINTS in ac-
cordance with PERFORMANCE while in CONDITION.

Environmental
Requirement

Define which characteristics the system should exhibit when
exposed in specific environments.
The SYSTEM shall exhibit CHARACTERISTIC during or
after exposure to ENVIRONMENT for EXPOSURE DU-
RATION.

Suitability Re-
quirement

Include a number of the “-ilities” (qualities) in requirements
to include.
The SYSTEM shall exhibit CHARACTERISTIC with PER-
FORMANCE while CONDITION for CONDITION DURA-
TION.

Table 2.1: Types of requirements and their definition/patterns [12]

In the context of MBSE, requirements are not merely documented but formally modeled.
Tools such as Cameo Systems Modeler support the creation of requirement diagrams,
allocation tables, and traceability matrices that link requirements to functions and de-
sign elements. Frameworks such as MagicGrid provide methodological guidance, ensuring
that requirements are progressively refined and connected across multiple modeling lay-
ers. This approach extends the traditional process by embedding requirements within
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a digital model, where they can be validated, verified, and even connected directly to
optimization workflows such as those implemented through MDO. The integration of
requirements within MBSE environments thus strengthens the digital continuity of the
system development process, ensuring that stakeholder needs are preserved and traceable
from conception to validation and beyond.

2.6 SysML

Considering the challenges posed by the growing complexity of modern systems, it be-
comes essential to complement MBSE with a formal language that ensures consistency
and traceability across requirements, architectures, and behaviors. Traditional document-
based approaches lack this formal rigor, often leading to fragmented system descriptions
and loss of consistency across the life cycle. To overcome these limitations, the Systems
Modeling Language (SysML) has emerged as the de facto standard for representing sys-
tem models within the MBSE paradigm.
SysML has been developed on the basis of the Unified Modeling Language (UML) a
general-purpose modeling language that was first crafted in the 1990s to be a standard
approach for software design.(2.15) UML standards and practices are now widely utilized
in software engineering to provide a graphical notation for specifying, visualizing, and
documenting software-intensive systems. UML focuses on modeling classes and behavior,
as well as their interactions, and is certainly powerful for software-centric applications.
However, when it comes to more focused or foundational views, UML leaves a lot out-
side its domain and does not consider the hardware, human operators and processes,
and other organizational constraints that must complement any software in the scope of
systems engineering. [25,26] SysML was standardized as a profile and extension of UML

Figure 2.15: SysML and UML relationship [7]

through the Object Management Group (OMG) to support systems engineering needs.
SysML simplifies certain parts of UML and extends other parts to provide a modeling
language that integrates structural, behavioral, requirement, and parametric representa-
tions of a system. In this respect, SysML is a domain-independent language because it
can model not only software, but also physical architectures, logical architectures, and
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others. SysML thereby gives multidisciplinary teams a common modeling language that
can communicate across domains and maintain the consistency among operational, func-
tional, and physical levels and among the different systems levels. [27] The distinction

Figure 2.16: UML Diagrams

Figure 2.17: SysML Diagrams [8]

between UML and SysML can be summarized across several dimensions. UML com-
prises 13 diagram types(2.16), heavily oriented toward software structure and behavior,
whereas SysML employs 9 diagram types,(2.17), that span four complementary cate-
gories: requirements, structure, behavior, and parametrics. Unlike UML, SysML treats
requirements as first-class model elements, linking them explicitly to design and verifi-
cation artifacts. Furthermore, SysML’s parametric diagrams provide a formal means to
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represent mathematical constraints and performance models, enabling engineers to inte-
grate analytical reasoning directly into system models. In this way, SysML extends the
modeling paradigm beyond software to capture the multidisciplinary nature of complex
engineered systems. This categorization reflects the multidimensional nature of MBSE:
requirements define what must be achieved, structures describe what the system is made
of, behaviors explain how it operates over time, and parametrics capture how performance
is quantified and constrained.

• Requirements diagrams: These diagrams allow requirements to be modeled as
explicit elements within the system model, instead of being managed only in textual
documents. Requirements can be hierarchically organized, refined, and linked to
design elements using relationships such as «satisfy», «verify», and «refine». This
enables engineers to establish end-to-end traceability from stakeholder needs to
system architecture and validation tests.

• Structural diagrams: SysML employs structural diagrams to define the static
architecture of a system. The Block Definition Diagram (BDD) captures the de-
composition of the system into blocks and subsystems, showing composition, spe-
cialization, and dependency relationships. Blocks can represent not only software
modules but also physical hardware or even abstract concepts such as interfaces.
Complementing the BDD, the Internal Block Diagram (IBD) specifies the internal
structure of a block by showing its parts, ports, and the flows exchanged through
connections. In the automotive example, a BDD might show the decomposition
of the vehicle into blocks such as Powertrain, Chassis, and Infotainment System,
while an IBD of the Powertrain block could detail the interactions between the
engine, transmission, and control units. Together, BDD and IBD provide a robust
structural framework for integrating physical and logical architectures.

Figure 2.18: IBD and BDD Diagrams

• Parametric diagrams are unique to SysML and provide a means to model quanti-
tative relationships and constraints. They link parameters of blocks using constraint
equations, enabling integration with simulation and analytical tools. This makes
it possible to verify whether the system meets performance requirements early in
the design process. For instance, in a vehicle’s thermal management system, a
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parametric diagram could relate variables such as coolant flow rate, heat genera-
tion allowing engineers to analyze whether thermal requirements are satisfied under
different operating conditions.

• Behavioral diagrams capture the dynamic aspects of a system, describing how
it responds to stimuli, executes functions, and interacts over time.These diagrams
offer complementary perspectives on system behavior, each focusing on a different
dimension of dynamics. At a high level, use case diagrams provide an intuitive
entry point by identifying the actors that interact with the system and the func-
tional services offered to them. They are particularly useful during early stages
of analysis, when stakeholder needs and high-level capabilities are being defined.
Once these capabilities have been established, more detailed behavioral models
refine the description of how functions unfold over time. Activity diagrams are
commonly used to represent workflows and control flows, describing sequences of
actions and the data or control dependencies among them. They are well suited
for modeling operational processes. Sequence diagrams, in contrast, emphasize the
temporal dimension of behavior by illustrating the exchange of messages or signals
between system elements. They are particularly effective for describing scenarios
of interaction. State machine diagrams complement these perspectives by focusing
on the different states that a system or component may assume and the transitions
triggered by events.

Figure 2.19: SysML Diagrams
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Figure 2.20: Example of package Diagram [2]

The integration of requirements, structural, behavioral, and parametric perspectives
within a single language makes SysML a powerful enabler of MBSE practices. By em-
bedding requirements directly into the model and linking them to design and verification
artifacts, SysML ensures end-to-end traceability, thereby reducing the risk of overlooked
dependencies and facilitating systematic validation. Its ability to represent both logical
abstractions and physical implementations provides a natural mechanism for consistency
across layers and levels, ensuring that design intent remains aligned with stakeholder
needs. Moreover, the explicit modeling of quantitative relationships through parametric
diagrams supports early trade-off analyses and performance verification, reducing costly
rework in later stages of development. SysML also fosters multidisciplinary communica-
tion, since engineers, software developers, and domain experts can work within a common
semantic framework rather than relying on heterogeneous document sets.
Taken together, these features make SysML more than a graphical notation: it is a for-
malized language for systems engineering, designed to capture the complexity of modern
products and support their evolution throughout the life cycle. By providing an integrated
modeling environment, SysML transforms MBSE from a conceptual methodology into a
practical, executable approach, enabling organizations to manage complexity, accelerate
development, and increase confidence in system outcomes. In this sense, SysML serves
both as a technical tool and as a strategic enabler, bridging the gap between stakeholder
needs, engineering design, and system validation. [19]
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2.7 MDO

2.7.1 Introduction

The design of contemporary engineering systems is creating a need for combining knowl-
edge from many fields. Traditional methods have generally involved optimizing single
disciplines in isolation or sequentially, as opposed to holistically and concurrently, will
not suffice for the complexity that tightly coupled architectures continually present. What
may be deemed an optimal solution from one discipline’s perspective may not be optimal,
or even feasible, when the interactions of other disciplines are included. Multidisciplinary
Design Optimization (MDO) can assist with these challenges. MDO represents a method-
ological framework for modeling, analyzing, and optimizing multiple disciplines in a single
integration process.

Figure 2.21: Comparison between conventional design and optimal design [9]

MDO can be defined as the systematic application of optimization techniques to the de-
sign of systems involving strongly coupled disciplinary analyses, with the aim of achieving
globally optimal solutions that satisfy requirements across all domains [10]. Unlike con-
ventional design approaches, where disciplines are often considered independently, MDO
explicitly accounts for cross-disciplinary dependencies, thereby enabling the structured
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exploration of trade-offs and synergies. Its origins are closely tied to aerospace engi-
neering, where aerodynamic, structural, and control disciplines are intrinsically interde-
pendent in aircraft design [9]. Over time, its scope has expanded to domains such as
automotive, energy, and space systems, reflecting the growing need for integrated opti-
mization in the design of complex architectures [12,28].
At its core, an MDO problem can be cast as a constrained optimization problem that
involves a set of design variables, objective functions, and constraints. Design variables
may be distributed across disciplines and constraints typically reflect physical laws, per-
formance limits, or stakeholder needs. Objective functions may represent performance
measures, such as weight, cost, or efficiency that must be optimized simultaneously and
in the context of disciplinary coupling. The real difference in multi-disciplinary optimiza-
tion comes, not from the optimization, but from the coordination made possible when
analyses for the disciplinary aspects are coupled in the optimization loop.(2.21) An op-
timizer at the system level must perform a coordinated set of evaluations from analysis
codes for a wide range of disciplines, determines that the global solution respects all the
conditions where disciplinary information must be consistent, and converge to an optimal
design that satisfies a set of local and system-wide requirements. [10]
A central concept in MDO is that of architectures, which define how the optimization
process is organized relative to the disciplinary analyses. Architectures establish the flow
of information among system and disciplinary models, allocate responsibilities between
optimizers, and determine how multidisciplinary consistency is enforced. As Martins and
Lambe emphasize, the choice of architecture is often as critical as the mathematical for-
mulation of the optimization problem itself, since it strongly influences computational
cost, scalability, and ease of implementation. [10]
Among the various approaches developed in the literature, the simplest class is repre-
sented by the monolithic architectures.Monolithic architectures are of particular impor-
tance for two reasons. First, they provide the theoretical foundation for understanding
MDO, since most alternative formulations can be derived from a monolithic framework
by introducing decomposition or relaxation strategies. Second, they serve as benchmarks:
their conceptual simplicity and rigorous mathematical basis make them useful references
for evaluating the efficiency and scalability of more advanced approaches. [10]
The principal monolithic formulations discussed in the literature are All-at-Once (AAO),
Multidisciplinary Feasible (MDF), Individual Discipline Feasible (IDF) and Simultaneous
Analysis and Design (SAND) architectures. Each of these represents a different balance
between problem size, computational cost, and the manner in which disciplinary consis-
tency is enforced.
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2.7.2 The All-at-Once (AAO) Problem

The most general way to formulate an MDO problem is the All-at-Once (AAO) archi-
tecture. In this approach, all design variables, state variables, and coupling variables
including their target copies are treated as optimization variables. The disciplinary resid-
ual equations, physical constraints, and consistency constraints are all enforced explicitly
within the optimization problem. The AAO formulation can be expressed as:

minimize f0(x, y) +
N∑︂

i=1
fi(x0, xi, yi) (2.1)

with respect to x, yt, y, y (2.2)
subject to c0(x, y) ≥ 0, (2.3)

ci(x0, xi, yi) ≥ 0, i = 1, . . . , N, (2.4)
cc

i = yt
i − yi = 0, i = 1, . . . , N, (2.5)

Ri(x0, xi, yt
j /=i, yi, yi) = 0, i = 1, . . . , N. (2.6)

where:

Figure 2.22: Mathematical notation for MDO problem formulations [10]

In the field of MDO, XDSM stands for Extended Design Structure Matrix. It is a graphical
representation method used to describe the process flow of information between analysis
disciplines, optimization algorithms, and system-level models. By explicitly illustrating
data dependencies and the sequence of computational tasks, it provides a clear and stan-
dardized way to document, analyze, and communicate MDO architectures. [10] To keep
the diagrams compact,it is assumed by convention that any block referring to discipline
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i represents a repeated pattern for every discipline. Thus, in Figure 2.23 a residual block
exists for every discipline in the problem and each block can be executed in parallel. As
an added visual cue in the XDSM, the “Residual i” component is displayed as a stack of
similar component.
Although AAO provides the most general and flexible problem formulation, it is rarely
solved directly in practice due to the large number of optimization variables and con-
straints. Instead, AAO is often used as a conceptual starting point, from which other
monolithic formulations can be derived by removing groups of constraints.

Figure 2.23: XDSM for solving the AAO problem [10]

2.7.3 The Multidisciplinary Feasible (MDF) Problem

The Multidisciplinary Feasible (MDF) architecture is obtained from AAO If both analysis
and consistency constraints are removed from Problem. Feasibility across disciplines is
instead enforced by solving a complete Multidisciplinary Analysis (MDA) at each iter-
ation. This architecture has also been referred to in the literature as Fully Integrated
Optimization and Nested Analysis and Design. [10] The resulting optimization problem
is:

minimize f0(x, y(x, y)) (2.7)
with respect to x (2.8)

subjected to c0(x, y(x, y)) ≥ 0, (2.9)
ci(x0, xi, yi(x0, xi, yj /=i) = 0, i = 1, . . . , N, (2.10)

where y(x) are the coupling variables obtained from solving the MDA for a given set
of design variables. MDF is conceptually simple and requires the smallest optimization
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problem, expressed only in terms of design variables. However, it requires solving the full
MDA at every iteration, which is computationally expensive [9, 10].

Figure 2.24: XDSM for solving the MDF problem [10]

2.7.4 The Individual Discipline Feasible (IDF) Problem

The Individual Discipline Feasible (IDF) is obtained by eliminating the disciplinary anal-
ysis constraints Ri(x0, xi, yi, yt

j /=i, yi) = 0, it avoids solving a full MDA at each iteration
by introducing target variables as optimization variables. Each discipline is solved in-
dependently, and consistency is enforced by adding equality constraints to match target
and actual coupling variables. The formulation is:

minimize f0(x, y(x, yt)) (2.11)
with respect to x, yt (2.12)

subjected to c0(x, y(x, yt)) ≥ 0, (2.13)
ci(x0, xi, yi(x0, xi, yt

j /=i) = 0, i = 1, . . . , N, (2.14)
cc

i = yt
i − yi(x0, xi, yi(x0, xi, yt

j /=i) = 0, i = 1, . . . , N, (2.15)

A key advantage of IDF is that it enables the use of existing disciplinary codes with
minimal modification, since they can be treated as independent black-box solvers. This
also makes it possible to execute analyzes in parallel, with consistency across disciplines
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enforced through target variables and explicit consistency constraints.Nevertheless, chal-
lenges remain. If the number of coupling variables is large, the optimization problem can
still grow significantly, limiting efficiency. Moreover, for gradient-based methods which
are often essential in large scale optimization the computation of consistent gradients
becomes a major difficulty. Gradients must reflect discipline feasibility, and inaccuracies
in their evaluation can severely degrade optimizer performance. Thus, while IDF strikes
a balance between computational tractability and compatibility with existing analysis
tools, it still faces scalability and sensitivity challenges in practice [10].

Figure 2.25: XDSM for solving the IDF problem [10]

2.7.5 The Simultaneous Analysis and Design (SAND) Problem

The Simultaneous Analysis and Design (SAND) architecture is obtained by simplifying
the AAO formulation through the elimination of consistency constraints, merging target
and response variables into a single set of coupling variables. In this way, the optimizer
directly handles both design and analysis variables, simultaneously exploring design and
feasibility.The formulation is:

minimize f0(x, y) (2.16)
with respect to x, y, y (2.17)

subjected to c0(x, y) ≥ 0, (2.18)
ci(x0, xi, yi) = 0, i = 1, . . . , N, (2.19)
Ri(x0, xi, y, yi) = 0, i = 1, . . . , N, (2.20)

A key feature of SAND is that it does not require explicit or exact solution of the dis-
ciplinary analyses at every iteration. This allows the optimizer to traverse infeasible
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regions of the design space, potentially accelerating convergence. Moreover, SAND is not
restricted to multidisciplinary contexts and can be applied to single-discipline optimiza-
tion, where it reduces to the familiar case of PDE-constrained optimization.
However, two major drawbacks limit its practical use. First, the problem formulation still
requires the inclusion of all state variables and residual equations, leading to very large
problem sizes and the risk of the optimizer stalling at infeasible designs. Second, since dis-
ciplinary residuals must be expressed explicitly as constraints, they and their derivatives
must be made available to the optimizer. In practice, many engineering codes operate as
“black boxes” and do not expose residuals or internal state variables, making the imple-
mentation of SAND often impractical. For this reason, while SAND remains conceptually
important, most engineering applications prefer alternative formulations such as MDF or
IDF, which are more compatible with existing disciplinary solvers. [10]

Figure 2.26: XDSM for solving the SAND problem [10]
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2.7.6 Comparison of Monolithic Architectures

When comparing the monolithic architectures of multidisciplinary design optimization
(MDO), it is clear that each formulation represents a different compromise between prob-
lem size, feasibility enforcement, and compatibility with existing disciplinary analyses.
The AAO formulation serves mainly as a theoretical starting point, while MDF, IDF,
and SAND offer more practical alternatives. MDF guarantees multidisciplinary consis-
tency but requires repeated costly analyses; IDF introduces target variables to allow
parallel execution while increasing problem size; and SAND avoids nested analyses but
relies on explicit access to residual equations, which limits applicability in real engineering
contexts. A comparative summary is provided in Table 2.2.

Architecture Advantages Disadvantages
AAO Most general and flexible formula-

tion; includes all design, state, and
coupling variables; serves as theo-
retical starting point for deriving
other formulations.

Very large optimization problem;
rarely solved in practice; high com-
putational burden.

MDF Simplest and most intuitive ap-
proach; optimization problem ex-
pressed only in design variables;
smallest problem size; intermediate
designs always feasible.

Requires a full multidisciplinary
analysis (MDA) at every iteration;
derivative computation is costly;
poor scalability for large systems.

IDF Avoids nested MDA by introducing
target variables; allows disciplines
to run independently and in paral-
lel; good balance between feasibility
and flexibility.

Problem dimension increases due
to target variables and consistency
constraints; slower convergence pos-
sible.

SAND Eliminates nested analyses; feasi-
bility enforced directly by opti-
mizer; can accelerate convergence
for small/medium-scale problems.

Optimization problem grows signif-
icantly by including all state vari-
ables; limited scalability for large
systems.

Table 2.2: Comparison of monolithic MDO architectures [9, 10,12].
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2.8 Integration MBSE and MDO

Modern engineering systems have become more complex as technology and their relation-
ship with humanity evolve. Engineering systems today require methods that are capable
of structuring information as well as supporting decisions based on quantitative analysis.
In this context two complementary approaches were developed: MBSE and MDO. While
they come from different roots, their potential together provide a very robust method of
design and validation for complex systems.
MBSE emphasizes representing and managing the system through its life cycle using
formal models rather than the conventional document-based paradigm. MBSE is a de-
velopment method that employs modeling languages such as SysML to use models to
capture requirements, system architectures, interfaces, and behavioral scenarios entirely
in a unified framework. The focus of MBSE is not on numerical optimization but to
create traceability, consistency, and communication with the stakeholders and engineer-
ing teams’ designs and engineering activities. MBSE, in this way, serves as the semantic
foundation that connects and aligns stakeholder requirements, design artifacts, and test-
ing/verification activities, which helps prevent inconsistencies or integration errors.
On the other hand, MDO mainly focuses on the optimization or trade space of engineer-
ing systems with multiple interdependent disciplines. MDO focuses on an area for more
optimized designs through multi-domain analysis and optimization of the design, look
at the tradeoffs between each discipline, and discounted individual discipline optima in
favor of a global optimum. MDOs benefit is navigating the system towards less cost,
less mass, less development and more performance than found through only simply op-
timizing an individual discipline. Therefore the use of MDO is a computational engine
for identifying alternatives and helping the system work towards optimal with quantita-
tive results. MBSE and MDO are separate but complementary tools: MBSE provides
a formal representation and traceable design space, MDO branches out into the design
space to discover solutions it could identify. The combined use is the natural next step
of further complication and resolution of performance.

Figure 2.27: Tools used for the integration

The differences between MBSE and MDO are also apparent in the tooling that is available
for use. For example, in the MBSE domain, one of the most well-known environments is
Cameo Systems Modeler. Cameo is a full environment for MBSE and is developed with
the SysML language. Using Cameo means that engineers can capture system require-
ments, develop the functional architecture and physical architecture, develop parametric
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relationships, and create traceability across the various layers of the system model. In ad-
dition to modeling, Cameo supports simulation and validation so that engineers are able
to demonstrated early verification that the system design will satisfy the requirements.
One of the best capabilities of Cameo is that engineers can manage complexity through
structured diagrams and the life cycle is well documented through traceability so that
if the requirements or design changes, the model can propagate that change across the
model.
In contrast, MDO environments are focused on numerical computation and optimiza-
tion. For example, GEMSEO is an open-source Python package specifically designed for
multidisciplinary optimization. GEMSEO defines MDO problems, connects disciplinary
analyzes, and utilizes specific optimization architectures like MDF, IDF, or SAND. Since
it is written in Python, it works smoothly with numerical solvers and external simulation
tools, allowing engineers to automate workflows and run design studies more efficiently.
One of its main advantages is that it can use existing disciplinary models and connect
them into a single integrated optimization process.
These two toolchains highlight the different philosophies of MBSE and MDO: MBSE tools
such as Cameo emphasize formal representation, communication, and traceability, while
MDO tools such as GEMSEO prioritize numerical analysis, optimization, and computa-
tional efficiency. Bridging these two worlds therefore requires both conceptual alignment
and technical integration, ensuring that the structured models developed in MBSE can
be translated into the computational workflows required for MDO.

Figure 2.28: MBSE and MDO integration

The overarching objective of this work is to define the electronic architecture of an au-
tomobile and to determine its most suitable configurations with respect to two critical
criteria: cost and weight. The challenge lies in exploring multiple possible ECU allo-
cations and identifying the solutions that optimally balance performance and resource
constraints. Addressing this problem requires not only a systematic representation of the
system architecture but also a quantitative optimization process capable of evaluating
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trade-offs across many alternatives.
The integration between MBSE and MDO has been realized through the combined use
of Cameo Systems Modeler and GEMSEO in Python. As said before Cameo is used to
model the system architecture, requirements, and parametric relationships of the auto-
motive electronic system. Within Cameo, dedicated tables are created to capture relevant
design data such as ECU functions. These tables can be exported in a CSV format, which
serves as the interface between the MBSE environment and the optimization framework.
On the MDO side, Python scripts leveraging GEMSEO can directly import these CSV
files and transform them into structured input data for the optimization process. In this
way, the inputs for the optimization problem are generated directly in Cameo, ensuring
full traceability from system requirements to design parameters. The optimization then
proceeds by applying the selected MDO architecture and algorithms to explore alterna-
tive configurations and identify optimal solutions.
The outputs of the process, as presented in this thesis, are therefore already optimized
configurations of the electronic control units, evaluated in terms of cost and weight. This
integration establishes a seamless workflow: Cameo provides the formal and traceable
definition of the system, while GEMSEO acts as the computational engine that delivers
quantitatively superior solutions. The result is a digital process that bridges descriptive
system modeling and optimization-driven design exploration.
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Case study

3.1 The e-MBE Initiative at Capgemini: Structure, Objec-
tives, and Team Contributions

Capgemini is a global consulting company that operates at the intersection of technology,
engineering, and digital transformation. With a consolidated presence in the automo-
tive, aerospace, and industrial sectors, the company supports organizations in adopting
innovative methodologies and tools to improve efficiency, quality, and competitiveness.
Within this framework, Capgemini has established several Centers of Excellence, designed
to develop and disseminate best practices in advanced engineering disciplines.
During my internship, I was part of the Center of Excellence for Systems Engineering
and Product Design, which plays a central role in promoting the adoption of model-based
approaches within complex industrial projects. In particular, I contributed to the e-MBE
(Extended Model-Based Engineering) project, an internal initiative aimed at extending
and industrializing MBSE practices across different phases of the product life cycle. The
project is structured around three specialized teams shown in 3.1, each with distinct goals
and complementary expertise.

• The first stream, called Model-Based Digital Continuity, focuses on establish-
ing a model-based approach to ensure data and process continuity across the prod-
uct life cycle. Its objectives include the development of a digital thread architecture
and the integration of MBSE with CAD and software environments. By doing so,
the team ensures that product information remains consistent and traceable across
design domains and throughout successive development phases.

• The second stream, known as Early Verification and Validation (V&V), is
dedicated to improving the validation of requirements and functions during the
early phases of development. Its activities involve the preliminary validation of
requirements, functional simulation of early designs, prototyping of human–machine
interfaces (HMI) during the concept stage, and the definition and validation of test
cases. The goal is to detect inconsistencies and potential issues at an early stage,
thereby reducing costly design changes later in the process.
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• The third stream, Advanced Decision Making, is the one I actively participated
in. This team addresses the need for robust methodologies to support strategic
design decisions in the early phases of system development. Its objectives are three-
fold: first, to optimize system architectures at the earliest design stages, when the
potential for improvement is highest; second, to provide robust decision-making
methods that can account for uncertainty and variability; and third, to explore
the integration of MBSE and MDO as a means of enhancing decision quality. By
connecting the descriptive power of MBSE with the quantitative rigor of MDO,
this group aims to provide decision-makers with reliable, traceable, and optimized
design alternatives that can significantly improve the overall system development
process.

Figure 3.1: MBSE and MDO integration

3.2 Case study overview
The case study presented in this thesis arises from a concrete industrial challenge that
affects the automotive sector: the need to reduce both the cost and the complexity of
the electronic architectures of modern vehicles. Over the past decades, the number of
electronic control units integrated into automobiles has steadily increased to support a
wide range of functions, from basic comfort features to advanced safety systems and
connectivity services. While this expansion has enhanced vehicle performance and user
experience, it has also generated several drawbacks. The proliferation of ECUs results in
higher production and integration costs, redundant wiring, greater system weight, and a
rise in overall complexity that makes verification and maintenance more challenging. As
a consequence, car manufacturers are actively exploring systematic approaches to ratio-
nalize ECU allocation and to design electronic architectures that remain cost-efficient,
lightweight, and easier to manage.
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The objective of this thesis is to demonstrate how the integration of Model-Based Systems
Engineering and Multidisciplinary Design Optimization can provide a methodological and
practical framework to address this challenge. More specifically, the goal is to define an
electronic architecture for an automobile,like in figure 3.2, and to identify its most suit-
able configurations with respect to two primary criteria: cost and weight. To delimit
the scope of the study, the project focuses on the allocation of functions belonging to
three subsystems that are representative of typical body electronics: the door locking
and unlocking system, the climate control system, and the window opening and closing
system.

Figure 3.2: Vehicle architecture

The starting point of the process is the formal definition of system requirements within
Cameo Systems Modeler, the MBSE tool adopted for this project. Requirements were
systematically translated into functional models of the subsystems under analysis. To
ensure clarity and completeness, both black-box views (describing the system in terms of
external inputs and outputs) and white-box views (capturing the internal functional de-
composition and potential allocations) were developed. This modeling activity provided
a coherent and traceable representation of the system, ensuring that stakeholder needs,
system functions, and architectural choices were formally documented and linked.
From this foundation, the integration between MBSE and MDO was realized by following
a structured digital continuity workflow, as represented in Figure 3.3, that allowed infor-
mation to flow seamlessly between the two environments. The process can be described
in four major steps:

• Creation of the MBSE model in Cameo: requirements, functional architectures, and
candidate allocations were defined within SysML diagrams, supported by tables to
capture the relationships among system elements.
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• Export of a functional model in matrix form: the information from Cameo was
transformed into a CSV file that encapsulated functions, their interdependencies,
and their weight. This functional matrix served as the structured input for the
optimization phase, enabling the translation of descriptive system models into a
quantitative problem formulation.

• The CSV dataset was imported into GEMSEO to define the optimization problem,
which pursued the dual objective of minimizing both the total cost and the overall
weight of the ECU network, while ensuring compliance with all system requirements.
Parameters of the candidate ECUs, such as cost and mass, were sourced from an ex-
ternal database to maintain the realism and consistency of the optimization. Within
this framework, GEMSEO implemented the selected optimization architecture and
algorithm, systematically exploring alternative allocations of functions across ECU
candidates and assessing the resulting trade-offs.

• Reintegration of results into the MBSE model: the optimized ECU configurations
produced by GEMSEO were reintroduced into the Cameo model. This final step
ensured that the optimized results were not treated as isolated outcomes of the
optimization process but were fully embedded in the system model, preserving
traceability to the original requirements and maintaining consistency across the life
cycle.

Figure 3.3: MBSE and MDO workflow

This iterative loop model creation, functional export, optimization, and reintegration
constitutes the backbone of digital continuity between MBSE and MDO. It ensures that
descriptive system models and quantitative optimization do not exist in separate silos but
are connected within a coherent workflow. The advantage of this approach is twofold. On
the one hand, MBSE guarantees the semantic integrity and traceability of requirements,
functions, and architectures. On the other, MDO provides the computational capability
to explore the design space, evaluate trade-offs, and propose quantitatively superior so-
lutions.
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The outputs of this process, as presented in the thesis, are therefore optimized ECU con-
figurations and network that strike the best balance between cost and weight andsatisfies
the design constraints. The case study thus demonstrates the potential of combining
MBSE and MDO to address one of the most pressing challenges in automotive engineer-
ing: how to design electronic architectures that are not only functionally complete but
also cost-efficient, lightweight, and systematically validated across the development life
cycle.

3.3 From Stakeholder Needs to System Modeling: The Case
Study Framework

3.3.1 System Modeling Approach

The model developed in Cameo Systems Modeler was structured according to the Magic-
Grid framework, which provides a systematic way to organize system information across
multiple perspectives and levels of abstraction. The structure of the model reflects the
natural progression from high-level stakeholder needs to detailed subsystem analysis, en-
suring both completeness and traceability throughout the process.(3.4)

Figure 3.4: Model Structure

At the highest level, the Problem Domain for MDO was defined, serving as the root
package of the case study. This domain was divided into several main sections:
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• Black Box: This section captures the external view of the system. It begins with
the identification of stakeholder needs, followed by the definition of the system
context and the specification of relevant use cases. Additional elements such as
measures of effectiveness (MoEs) and external system activities were included to
provide a comprehensive description of the system environment and to establish
criteria for assessing system performance.

• White Box: The white-box perspective provides the internal view of the system,
focusing on its internal structure and behavior. This part of the model contains the
conceptual subsystem communication architecture, which shows how subsystems
interact, as well as the functional analysis, which decomposes high-level functions
into more detailed ones. It also includes measures of effectiveness for subsystems,
enabling the evaluation of performance at a finer granularity.

• Exchange Items: This section defines the flows of information and material ex-
changed among subsystems. Exchange items are essential for understanding the
system’s internal interactions and ensuring consistency between functional decom-
position and subsystem communication.

• Traceability: To guarantee consistency and alignment across all levels of abstrac-
tion, a dedicated traceability package was created. This section establishes explicit
links between stakeholder needs, system requirements, functions, subsystems, and
exchange items. Traceability ensures that every design choice can be linked back
to the original requirements, thus supporting verification and validation activities
and enabling digital continuity with the optimization framework.

This structured approach to modeling offers several advantages. By distinguishing be-
tween external and internal perspectives, the model provides a holistic view of the system
that captures both what the system must achieve and how it will achieve it. The layered
representation improves clarity and reduces ambiguity, while the explicit definition of ex-
changes enhances understanding of interactions between subsystems. Most importantly,
the traceability view guarantees consistency across all modeling levels, enabling design-
ers to maintain alignment between requirements, functions, and architectural choices
throughout the system development process. It is important to note, however, that in
this case study the model represents a simplified version of a complete system model. In
particular, the measures of effectiveness were not included, as the focus was placed pri-
marily on capturing stakeholder needs, requirements, and functional interactions rather
than on quantitative performance assessment.

3.3.2 Stakeholder Needs

The first step in the system definition process is the identification and formalization of
stakeholder needs. Stakeholders are individuals or organizations that have a legitimate
interest in the system, either because they interact directly with it, rely on its perfor-
mance, or are responsible for its compliance with external standards. In the automotive
context, stakeholders may include end-users, manufacturers, suppliers, regulatory author-
ities, and service providers, each with specific expectations regarding the behavior and
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performance of the system.
Stakeholder needs describe what the system is expected to achieve, they capture the key
functions and services that must be delivered to meet stakeholder objectives and there-
fore serve as the starting point for the entire requirements engineering process. From
these needs, system requirements are derived and progressively refined into functional
architectures and design solutions. In this case study, the stakeholder needs were identi-
fied by selecting the most significant functions considered essential for the system under
analysis, drawing on prior company experience and previously executed projects, shown
in Figure 3.5.

Figure 3.5: Stakeholder needs

The stakeholder needs can be grouped into three main categories: vehicle lock and unlock,
the operation of doors and the trunk; window opening and closing; and climate control
functions. Each needs is characterized by a unique identifier, a descriptive name, and a
textual specification as shown in Figure 3.5.

• A first group of needs defines how users must be able to secure and access the vehicle
using both the remote key fob (TLC) and in-vehicle controls. From the remote side,
pressing the dedicated buttons must allow the user to lock the doors (TLC “B”
button) and unlock them (TLC “A” button). Proximity-based access is required
as well: when the user pulls the door handle while the TLC is detected within 1.5
m, the door must open, enabling a passive-entry interaction. Trunk access is also
controlled by the TLC “T” button with state-dependent behavior: if the trunk is
closed, pressing “T” shall unlock and open it; if the trunk is open, pressing “T”
shall close and lock it. Complementing the remote functions, an internal lock/unlock
button must provide equivalent capability from inside the cabin. This cluster also
embeds status awareness and feedback: the user must be constantly informed of the
vehicle’s locked/unlocked state, with light signals indicating lock/unlock operations
and explicit feedback on both door and trunk open/close status. Two safety oriented
needs further qualify these interactions: the key must not remain locked inside the
vehicle, and egress must always be possible the user shall be able to get out of
the vehicle regardless of prior lock commands. Together, these needs establish a
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complete access-control experience: multiple actuation paths (remote and internal),
context-aware trunk behavior, continuous HMI feedback, and safeguards to prevent
lock-in or loss of access.

• A second group concerns window operation. Users must be able to open and close
the windows from inside the vehicle. Although concise, this need sets a functional
baseline that will drive the allocation of window-lift functions, the definition of
related HMI elements, and the specification of interlocks (e.g., behavior when doors
are locked or child-safety features in later refinements).

• The third group addresses climate control. The system must allow the user to man-
ually set and adjust the desired cabin temperature. This establishes the core capa-
bility for HVAC (Heating, Ventilation, and Air Conditioning): a target-temperature
setpoint managed through the climate interface, the system shall be able to reach
the desired temperature set by the user.

3.3.3 System Context

The system context provides a high-level view of the actors involved in the interactions
with the system and the types of information exchanged between them. In this case study,
three primary entities are identified: the user, representing the driver or passenger of the
vehicle; the vehicle, which encompasses the electronic and mechanical systems under
analysis; and the TLC (key fob), which enables remote communication with the vehicle.
Based on these elements, two distinct system contexts are defined: vehicle access and
vehicle comfort. The vehicle access context shown in figure 3.6 describes the interactions
related to locking, unlocking, and accessing the vehicle. In this context, three actors
are present: the user, the vehicle, and the TLC. Several types of information flows are
exchanged among them. From the user to the vehicle, the main signals are the handle pull
and the external key signal, which trigger lock/unlock actions. From the vehicle to the
user, multiple forms of feedback are provided, including internal and external lock/unlock
status changes, external light signals, and open/close status changes for both doors and
trunk. Between the TLC and the vehicle, dedicated signals ensure remote control and
authentication, specifically the TLC command signals and the TLC search process that
verifies proximity and authorization.

Figure 3.6: Vehicle access context

The vehicle comfort context focuses shown in figure 3.7 on functions associated with
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passenger convenience, namely air conditioning and window control. In this case, the
context includes only two actors: the user and the vehicle. The user provides inputs in
the form of desired temperature settings, air conditioning (AC) button commands, and
window button commands. In response, the vehicle returns information such as window
open/close feedback and cabin temperature data, ensuring that the user is informed about
the state of comfort-related functions.

Figure 3.7: Vehicle comfort context

3.3.4 Use Cases

Use cases are a standard way of capturing the functional behavior of a system in systems
engineering but also organizing that behavior. A use case describes the interactions that
take place between the system being examined and actors external to the system (people,
devices and/or other systems, etc.) in order to accomplish a goal. Use cases generally
represent the interactions as a sequence of exchanging actions between the system and
the actor and give an intuitive representation of how the system would be expected to
behave in a real-world circumstance. The main advantage of use cases is that they pro-
vide a link between stakeholder needs, and system requirements. Use cases define the
high-level purpose or goal for a system, and then enumerate the specific situations, es-
tablishing clarification not just as to what the system has to do, but also the conditions
under which it must be done, and the type and kinds of interactions that occur. In this
way use cases establish the boundaries of the system, establishing explicitly who or what
will initiate an interaction with the system, what inputs the actors provide in relation to
the interaction, and what outputs or response the system provides.
First, they improve communication across multidisciplinary stakeholders by providing a
shared visual and textual language that avoids technical ambiguity. Second, they support
traceability, as each use case can be linked directly to stakeholder needs, requirements,
and subsequently to test cases.By being represented in modeling languages such as UML
or SysML, they become part of a consistent model that integrates functional, structural,
and behavioral views of the system. This allows use cases not only to act as high-level
narratives, but also as formal modeling elements that can be connected to activities,
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functions, and system components, thus ensuring a continuous and model-based repre-
sentation of requirements and system behavior.
Building on the general principles described above, the use cases developed in this the-
sis have been organized into two main groups that reflect the functional domains of the
system. The first group figure 3.8 concerns vehicle access, which includes all interactions
related to locking, unlocking, and trunk operations. These scenarios involve both the
user and the TLC (key fob) as actors and describe situations such as manual or remote
door locking, unlocking and opening the trunk, passive entry, and safe vehicle exit. The
second group figure3.9 relates to vehicle comfort, capturing functions that enhance the
user’s experience within the cabin, specifically the operation of windows and the adjust-
ment of the cabin temperature through the HVAC system.

Figure 3.8: Use case: vehicle access
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Figure 3.9: Use case: comfort

It should be noted that the case study represents a simplified version of a real automotive
system, and therefore only a limited number of use cases were included. Nevertheless,
these cases are sufficient to capture the essential functionalities and to illustrate the
integration of MBSE practices with system optimization. Each one is refined into an
activity diagram that details the sequence of actions, decision points, and interactions
between the system and its actors. This ensures that the logic of every functional scenario
is fully specified and provides a robust foundation for subsequent functional decomposition
and allocation.
Through this structured approach, the use cases not only serve as a direct translation of
stakeholder needs into operational scenarios, but also provide a clear, traceable link to
the functional and architectural models developed later in the study.

3.3.5 Subsystem Structure

The vehicle system has been conceptually divided into a set of subsystems, each repre-
senting a specific functional domain: Sensors, Body Control, Ventilation System, Info-
tainment, Actuators, Entry Control, and the RF Transceiver. This decomposition enables
a clearer representation of responsibilities and provides a structured view of how infor-
mation flows between different parts of the vehicle.
As shown in the first block definition diagram figure 3.10, the model highlights the in-
terfaces through which the subsystems communicate, making explicit all the signals ex-
changed among them. In particular, three high-level communication channels frame the
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architecture: User Command, which represents the inputs generated by the user through
handles, buttons, or other interactions; User Feedback, which provides information back
to the user in the form of status changes, light signals, or notifications; and TLC Com-
munication, which manages the interaction between the vehicle and the key fob.

Figure 3.10: BDD: Vehicle interface

In addition to this top-level representation, a dedicated BDD was developed for each
subsystem of the vehicle, the Body Control subsystem is shown in figure 3.11, which
acts as the core coordinator of the vehicle architecture. This diagram specifies all the
inputs and outputs associated with Body Control, including signals from sensors (e.g.,
vehicle status, trunk status, key location), commands to actuators (e.g., window opera-
tions, ventilation actuation), and feedback channels to the user. By explicitly modeling
these interfaces, the Body Control unit is clearly represented as the central node that
integrates information from external actors, processes it, and distributes the appropriate
commands to other subsystems. These connections are further detailed through the use
of interface blocks, which, when linked as inputs or outputs, explicitly capture all the
signals exchanged with the Body Control. In this way, the diagram not only identifies
the subsystems involved but also provides a precise specification of the information flows
that ensure correct system operation. In figure 3.12 and 3.12 are shown other example
of BDD of subsystems of the vehicle.
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Figure 3.11: BDD: Body control

Figure 3.12: BDD: Body control and Sensor

Figure 3.13: BDD: Actuator, Infotainment and RF Transciver
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The Internal Block Diagram is used to describe the internal structure of a system block
and the way its parts interact. Unlike the Block Definition Diagram, which provides a
hierarchical view of the system’s composition, the IBD focuses on the flow of information,
energy, or material between the system’s internal components. Its primary purpose is to
represent the interfaces and connections among subsystems, making explicit how data
and signals are exchanged.
In the IBD shown in figure 3.14, it is possible to observe both the external exchanges
between the vehicle and its environment—represented by User Command, TLC Commu-
nication, and User Feedback, modeled as green pins placed on the diagram borders.For
the internal interactions among the vehicle’s subsystems in the diagram the blocks cor-
respond to the individual subsystems, while the connecting arrows represent the links
through which signals are exchanged. In this way, the diagram provides a clear visu-
alization of how the vehicle integrates external inputs with internal processes, ensuring
coherent communication across all functional domains.

Figure 3.14: IBD: Vehicle
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3.3.6 Exchange Items

In complex automotive systems, the definition and management of exchange items namely
the signals exchanged among subsystems and between the system and its external en-
vironment represent a crucial step in the modeling process. These signals embody the
flow of information that enables the execution of functions and the coordination of oper-
ations across the vehicle’s architecture. By explicitly modeling them, it becomes possible
to trace how stakeholder needs and system requirements are concretely implemented
through communication among subsystems. To improve clarity and avoid confusion in
system modeling, the exchange items identified in this case study have been categorized
into two main groups:

• Internal signals, representing information exchanged within the vehicle architec-
ture. These include communications among subsystems such as sensors, actuators,
body control, ventilation, and entry control. Examples are the transfer of cabin
temperature data, ventilation system status, vehicle information, all the internal
signal are shown in figure 3.16

• External signals, representing interactions between the vehicle and external actors
such as the user or the remote key (TLC), all the button, external feedback for the
user ecc... All this signal are shown in figure 3.15 with thei classification.

This distinction, also represented in the figures, makes it easier to navigate the com-
plexity of the system and supports traceability from requirements to implementation.
Furthermore, it highlights the dual nature of automotive system interactions: on the one
hand, the internal coordination among subsystems required to maintain consistency and
performance, and on the other, the communication with the user that ensures correct
and safe operation of vehicle functions.
The categorization of exchange items is not merely a descriptive exercise; it has practical
implications for design, validation, and optimization. Grouping signals by their origin and
destination clarifies responsibilities within the architecture, helps in identifying potential
bottlenecks or redundancies, and facilitates the definition of verification and validation
strategies tailored to specific categories of interaction.
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Figure 3.15: BDD: Exchange external items
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Figure 3.16: BDD: Exchange internal items
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3.4 Activity diagram and Data Export Workflow

As previously discussed, each use case in the model is associated with a dedicated ac-
tivity diagram, which provides a detailed view of how the corresponding functionality is
executed. Activity diagrams are a key element of SysML modeling, as they describe the
dynamic behavior of the system, illustrating the sequence of actions, decision points, and
data flows that occur when a specific use case is performed. In this way, they bridge the
gap between the high-level description of stakeholder interactions and the operational
logic required to implement them.
In this project, several activity diagrams have been developed to capture the behavior of
the different use cases identified earlier, such as vehicle access, trunk operations, and user
feedback. However, in order to maintain clarity and avoid unnecessary redundancy, only
two representative use cases will be presented in detail shown in Figure 3.8 and Figure
3.9. The first selected is the Provide Comfortable Temperature use case, which be-
longs to the broader category of Vehicle Comfort, the second one is the Unlock vehicle
by TLC. This examples has been chosen because it encapsulates the interaction between
user commands, subsystem coordination, and system feedback, making it a particularly
illustrative case of the modeling approach adopted in this study.
In addition to the illustration of the activity diagrams, this part of the thesis will be ex-
plained how the system model can be systematically transformed into tables that serve as
a bridge between MBSE and MDO. These tables, extracted directly from the model are
formatted to be used as input for the optimization framework implemented in Python.

3.4.1 Provide Comfortable Temperature

The “Provide Comfortable Temperature” use case is modeled with two swimlanes User
and Vehicle so that the allocation of responsibilities is explicit: actions in the User lane
represent external interactions with the system, while actions in the Vehicle lane capture
the internal system behavior needed to realize the function.
At a high level, the sequence proceeds as follows, figure 3.17 The User initiates the
service by turning on the climate control. The Vehicle then checks the system and, if
operational, starts climate control. The vehicle measures the cabin temperature and dis-
plays this information to the user. The User then evaluates comfort; if the current state
is not satisfactory, the user sets a desired temperature. The vehicle proceeds to provide
air and iterates the control loop until the desired temperature is reached. Once the user
is satisfied, or explicitly requests it, the system stops climate control, and the activity
terminates. In figure 3.17 each Activity parameter node present an activity diagram the
shows the flow of function inside the vehicle, it is useful to analize which subsystem does
the function. As an example in figure 3.18 is shown The “Reach Desired Temperature”
activity, it provides a detailed representation of the internal control logic that enables
the vehicle to deliver the user’s requested cabin temperature. The diagram is structured
around two subsystems, Body Control and the Ventilation System, with clear inputs and
outputs that define the interaction between them.
The process begins with the acquisition of three critical inputs: the Desired Temperature
set by the user, the Cabin Temperature information measured by onboard sensors, and
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Figure 3.17: Activity diagram: Provide Comfortable Temperature activity

the Air available to the system. These inputs are first processed within the Ventilation
System, where the cabin temperature is read and transferred to the computing unit for
further evaluation. At the same time, the Body Control unit receives both the cabin
data and the user’s setpoint and undertakes a comparison between the actual and desired
temperature.
Based on this assessment, the system follows one of two possible branches. If the cabin
temperature is higher than desired, the Body Control initializes the cooling sequence;
conversely, if the cabin temperature is lower than desired, the heating sequence is ac-
tivated. In either case, Body Control generates a CU command that orchestrates the
Ventilation System’s actions.For cooling, the Ventilation System draws air out from the
cabin, reduces its temperature to the required level, and blows the cooled air back into
the interior. For heating, the process mirrors this logic: the system extracts air from the
cabin, warms it to the setpoint, and reintroduces it into the cabin. These operations en-
sure a continuous flow of treated air, progressively steering the cabin environment toward
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the desired conditions.

Figure 3.18: Activity diagram: Reach desired temperature activity
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3.4.2 Unlock vehicle by TLC

The Unlock Vehicle by TLC activity diagram, figure 3.19 provides a structured represen-
tation of how the vehicle interacts with the user and the TLC device in order to execute
the unlocking operation. The process is initiated when the user presses the unlocking
button on the TLC (Send Unlock Command). This input triggers the TLC to gener-
ate a digital signal, which is subsequently received (Receive TLC Signal) and validated
(Validate TLC Signal). Validation serves as a safeguard: if the received signal does not
conform to the expected protocol or security criteria, the process is immediately aborted,
thereby preventing unauthorized access.
If the validation is successful, the verified TLC Signal Info is transmitted to the vehicle
subsystem, which undertakes the critical task of checking its current state (Check Ve-
hicle Status). This step determines whether the vehicle is already unlocked or requires
an unlocking command. Should the vehicle be locked, the control logic formulates and
transmits an Actuation Command through the Send Command activity, which is elabo-
rated by the Body Control unit. This command initiates the unlocking process, physically
engaging the actuators and changing the state of the locking mechanism.

Figure 3.19: Activity diagram: Unlock Vehicle by TLC activity

Upon successful unlocking, feedback is generated at two distinct levels. First, the system
updates internal and external status signals (INT/EXT Lock/Unlock Status Change),second,
a user-oriented feedback mechanism is activated by generating an EXT Light Signal,
thereby providing the driver with immediate confirmation of the completed action.
From a structural perspective, the diagram is organized into swimlanes that clearly de-
lineate responsibilities across the user, the TLC, and the vehicle. The user initiates the

73



Case study

process by interacting with the TLC, the TLC is responsible for generating, transmit-
ting, and validating the unlocking command, and the vehicle processes validated signals,
verifies conditions, and physically actuates the unlocking mechanism. This structured
decomposition highlights not only the logical sequence of operations but also the impor-
tance of validation and feedback mechanisms.
As outlined in the previous section, each activity parameter node is associated with an
activity diagram that allocates specific functions to the corresponding subsystems. In
the case illustrated, the Send Command function is represented in figure 3.20. Unlike
the more complex processes discussed earlier, this diagram highlights a single function
allocated entirely to the Body Control subsystem. The activity is characterized by a
straightforward structure, comprising one input (TLC Signal Info) and one output (Ac-
tuation Command). This simplicity stands in contrast to the multi-layered interactions
of previous activity diagrams, underscoring how certain functions can be modeled with a
reduced degree of complexity while still maintaining clarity in the representation of signal
flows.

Figure 3.20: Send Command activity
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3.4.3 Tabular Data Extraction and Structuring for MBSE–MDO Cou-
pling

In order to establish a seamless connection between Model-Based Systems Engineering
and Multidisciplinary Design Optimization, it is necessary to transform the information
contained in the system model into a format that can be readily interpreted by exter-
nal optimization tools. For this purpose, a series of tables has been developed. These
tables act as an intermediate layer between the SysML-based system model and the
Python/GEMSEO optimization environment, ensuring that functional, structural, and
signal-related information is transferred in a consistent and machine-readable way.
The data extracted from the system model is exported in the form of CSV files. A CSV
file is a widely used plain-text format in which data is organized in rows and columns,
with each value separated by a delimiter (commonly a comma or semicolon). This struc-
ture makes CSV files both human-readable and easily processable by software tools.
To enable the transfer of data into Python for the optimization phase, three dedicated
tables were created. The table 3.1 called MDO input is organized into three columns:
the first specifies whether the element is classified as an input or an output, the second
describes the function performed, and the third identifies the signal exchanged. The pur-
pose of this table is to provide a comprehensive mapping of all system functions, clearly
associating them with their corresponding inputs and outputs, and thereby making ex-
plicit the relationships that govern their interactions. In addition, the table highlights
cases in which two functions share the same type: if one function produces an output
and another consumes it as an input, the signal is thereby identified as being exchanged
between the two functions.

I/O
signal

Owner Type

input :Terminate Climate control AC Button
input :Check ventilation system status AC Button
input :Lock Door & Trunk from INT Actuation Command
input :Unlock Trunk Actuation Command
input :Close Trunk Actuation Command
input :Lock Trunk Actuation Command
input :Unlock Door & Trunk Actuation Command
input :Lock Door & Trunk Actuation Command
input :Open Trunk Actuation Command
input :Lock Door Actuation Command
input :Open or Close window Actuation Command

window
input :elaborate request Actuation Command

window
input :Generate Vehicle Lock/Unlock External

Feedback
Actuation Feedback

input :Generate Vehicle Open/Close External
Feedback

Actuation Feedback
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I/O
signal

Owner Type

input :Generate Vehicle Lock/Unlock External
Feedback

Actuation Feedback

input :Generate Vehicle Lock/Unlock External
Feedback

Actuation Feedback

input :Generate Vehicle Open/Close External
Feedback

Actuation Feedback

input :Generate Vehicle Lock/Unlock External
Feedback

Actuation Feedback

input :Generate Vehicle Lock/Unlock External
Feedback

Actuation Feedback

input :Generate Vehicle Lock/Unlock External
Feedback

Actuation Feedback

input :Draw air out from cabin Air
input :Draw air out from cabin Air
input :Display Temperature Cabine Temperature info
input :Read cabine temperature Cabine Temperature info
input :Blow heated air back to cabin Comfortable air
input :Blow cooled air back to cabin Comfortable air
input :Heat up temperature to desired CU command
input :Cool down temperature to desired CU command
input :Send Data to Comuputing unit Desired Temperature
input :Process data Desired Temperature
input :Validity Analysis of TLC input Digital TLC Signal
input :Elaborate Search Signal Entry Request
input :Receive External Command Handle Pull
input :Receive External Command Handle Pull
input :Receive External Command Handle Pull
input :Receive External Command Handle Pull
input :Receive External Command Handle Pull
input :Receive Internal Lock/Unlock Button Press Internal Button Pression
input :Trasform processed data into actuator input Processed data
input :Send Search Signal TLC Digital Request
input :Convert RF TLC input to Digital TLC Signal
input :Elaborate TLC Input Request TLC Signal Info
input :Elaborate Key Position (INT or EXT) TLC Signal Info
input : Internal check of trunk status Trunk lock/Unlock

status
input :Internal Check of Vehicle Status Vehcile lock/Unlock

status
input :Generate Close/Open Info Feedback Vehicle Information
input :Communicate Command Reception Vehicle Information
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I/O
signal

Owner Type

input :Generate Close/Open Info Feedback Vehicle Information
input :Generate Close/Open Info Feedback Vehicle Information
input :Generate Close/Open Info Feedback Vehicle Information
input :Inizialize climate control Ventilation system status
input :Verify status of window how much open or

close
Window button

input :Evaluate data and trasform it into an input window sensor
input1 :Process data Cabine Temperature info
input1 :Draw air out from cabin CU command
input1 :Draw air out from cabin CU command
input1 : Internal check of trunk status Trunk close/open status
input1 :Internal Check of Vehicle Status Vehicle close/open status
output :Elaborate Internal Command Actuation Command
output :Elaborate TLC Input Request Actuation Command
output :Elaborate Internal Command Actuation Command
output :Trasform processed data into actuator input Actuation Command

window
output :elaborate request Actuation Command

window
output :Lock Door & Trunk from INT Actuation Feedback
output :Unlock Door & Trunk Actuation Feedback
output :Open Trunk Actuation Feedback
output :Close Trunk Actuation Feedback
output :Lock Trunk Actuation Feedback
output :Unlock Trunk Actuation Feedback
output :Lock Door Actuation Feedback
output :Lock Door & Trunk Actuation Feedback
output :Read cabine temperature Cabine Temperature info
output :Measure Temperature inside the cabin Cabine Temperature info
output :Display Temperature Cabine Temperature info
output :Blow heated air back to cabin Comfortable air
output :Blow cooled air back to cabin Comfortable air
output :Cool down temperature to desired Comfortable air
output :Heat up temperature to desired Comfortable air
output :Initialize Cooling CU command
output :Draw air out from cabin CU command
output :Initialize Heating CU command
output :Draw air out from cabin CU command
output :Send Data to Comuputing unit Desired Temperature
output :Convert RF TLC input to Digital Digital TLC Signal
output :Communicate Command Reception Entry Request
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I/O
signal

Owner Type

output :Generate Visual Feedback EXT_Light Signal
output :Generate Vehicle Lock/Unlock External

Feedback
INT/EXT Lock/Unlock
Status Change

output :Generate Vehicle Lock/Unlock External
Feedback

INT/EXT Lock/Unlock
Status Change

output :Generate Vehicle Lock/Unlock External
Feedback

INT/EXT Lock/Unlock
Status Change

output :Generate Vehicle Lock/Unlock External
Feedback

INT/EXT Lock/Unlock
Status Change

output :Generate Vehicle Lock/Unlock External
Feedback

INT/EXT Lock/Unlock
Status Change

output :Generate Vehicle Lock/Unlock External
Feedback

INT/EXT Lock/Unlock
Status Change

output :Elaborate Key Position (INT or EXT) Key location
output :Verify if Power is ON or OFF Key ON/OFF
output :Generate Close/Open Info Feedback Open/Close Status

Change
output :Generate Vehicle Open/Close External

Feedback
Open/Close Status
Change

output :Generate Close/Open Info Feedback Open/Close Status
Change

output :Generate Close/Open Info Feedback Open/Close Status
Change

output :Generate Close/Open Info Feedback Open/Close Status
Change

output :Generate Vehicle Open/Close External
Feedback

Open/Close Status
Change

output :Open or Close window Open/close window
output :Evaluate data and trasform it into an input Processed data
output :Elaborate Search Signal TLC Digital Request
output :Send Search Signal TLC Search
output :Validity Analysis of TLC input TLC Signal Info
output :Verify if Trunk is Open/Close Trunk close/open status
output :Verify if Trunk is Locked/Unlocked Trunk lock/Unlock

status
output : Internal check of trunk status Trunk status
output :Verify if Vehicle is Locked/Unlocked from

INT/EXT
Vehcile lock/Unlock sta-
tus

output :Verify if Vehicle is Close/Open Vehicle close/open
status

output :Receive External Command Vehicle Information
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I/O
signal

Owner Type

output :Receive External Command Vehicle Information
output :Receive External Command Vehicle Information
output :Receive External Command Vehicle Information
output :Receive External Command Vehicle Information
output :Internal Check of Vehicle Status Vehicle status
output :Check ventilation system status Ventilation system status
output :Verify status of window how much open or

close
window sensor

output1 :Suck air from outside Air
output1 :Measure Temperature inside the cabin Cabine Temperature info

Table 3.1: MDO input
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The table 3.2, referred to as the Function Weight table, is designed to capture the
computational load associated with each vehicle function. This table is structured into
three columns. The first column of the table indicates the functional group to which each
function belongs,function have been classified according to their purpose and similarity,
in order to cluster them in the most consistent way. This categorization aims to support
the allocation of similar tasks to the same control unit, thereby improving modularity
and reducing implementation complexity.The second column lists all the functions that
the ECUs must perform, to ensure clarity and consistency, only the functions previously
identified within the activity diagrams and specifically allocated to the Vehicle swimlanes
and its subsystems are included. The third column assigns a category to each function
and the fourth a numerical value expressed in DMIPS (Dhrystone Million Instructions
Per Second).
DMIPS is a widely used benchmark metric that measures the processing capability of a
microprocessor by quantifying how many millions of Dhrystone instructions it can execute
per second. The Dhrystone benchmark, originally developed as a synthetic performance
test, has become an industry-standard reference point for evaluating embedded systems.
In the context of ECUs, DMIPS provides a normalized way to assess and compare com-
putational requirements across diverse hardware platforms.

Group Function map: Category DMIPS
1 Terminate Climate control A 3
1 Check ventilation system status C 20
2 Lock Door & Trunk from INT A 3
2 Unlock Trunk A 3
2 Close Trunk A 3
2 Lock Trunk A 3
2 Unlock Door & Trunk A 3
2 Lock Door & Trunk A 3
2 Open Trunk A 3
2 Lock Door A 3
9 Open or Close window A 3
3 elaborate request D 30
4 Generate Vehicle Lock/Unlock External Feedback A 3
4 Generate Vehicle Open/Close External Feedback A 3
5 Draw air out from cabin B 10
1 Display Temperature A 3
1 Read cabine temperature A 3
5 Blow heated air back to cabin B 10
5 Blow cooled air back to cabin B 10
1 Heat up temperature to desired C 20
1 Cool down temperature to desired C 20
1 Send Data to Comuputing unit C 20
1 Process data C 20
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Group Function map Category DMIPS
1 Validity Analysis of TLC input A 3
1 Elaborate Search Signal A 3
1 Receive External Command D 30
1 Receive Internal Lock/Unlock Button Press D 30
1 Trasform processed data into actuator input D 30
1 Send Search Signal D 30
1 Convert RF TLC input to Digital D 30
1 Elaborate TLC Input Request D 30
1 Elaborate Key Position (INT or EXT) D 30
1 Internal check of trunk status D 30
1 Internal Check of Vehicle Status D 30
1 Generate Close/Open Info Feedback D 30
1 Communicate Command Reception D 30
1 Inizialize climate control D 30
1 Verify status of window how much open or close D 30
1 Evaluate data and trasform it into an input D 30
5 Process data B 10
5 Draw air out from cabin B 10
5 Internal check of trunk status B 10
5 Internal Check of Vehicle Status B 10
5 Generate Close/Open Info Feedback B 10
5 Communicate Command Reception B 10
5 Inizialize climate control B 10
5 Verify status of window how much open or close B 10
5 Evaluate data and trasform it into an input B 10
5 Suck air from outside B 10

Table 3.2: Function Weigh

By associating each system function with a weight in DMIPS, the table enables a direct
estimation of the processing demand imposed on the vehicle’s electronic architecture.
This approach allows system engineers to match functions with appropriate ECUs, en-
suring that the available computational capacity is sufficient to guarantee reliable opera-
tion. Table 3.3 presents the classification of system functions into four categories, defined
according to their level of complexity and computational demand, each category is de-
scribed by a short definition and is associated with an estimated DMIPS value, which
provides a quantitative indication of the processing effort required. The categories can
be summarized as follows:

• Category A: Groups the most basic functions, limited to signal acquisition or
output transmission without further elaboration, sometimes including simple visual
feedback.

• Category B: Encompasses functions responsible for handling internal commands
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and implementing control logic, ensuring proper coordination of subsystem opera-
tions.

• Category C: Refers to more complex functions that involve algorithmic processing,
signal analysis, and interactions across multiple subsystems.

• Category D: Covers the most computationally intensive functions, characterized
by advanced data elaboration and processing activities.

Category Description DMIPS
A Input Acquisition or Output sending without elaboration

or Visual Feedback Signal
3

B Internal Command Handling and Control Logic Signal 10
C Complex Algorithm, Signal Analysis and Multiple System

Interaction
20

D Elaboration and procession of data 30

Table 3.3: Category classification with description and DMIPS value

The table 3.4 is called Functional Interface Weight table, which focuses on the com-
putational weight of the signals exchanged between subsystems and ECUs. Unlike the
previous Function Weight table, which quantified the processing demand of functions,
this table addresses the communication layer of the architecture. By assigning weights
to the various signals, it becomes possible to evaluate and configure the data traffic ex-
changed over the in-vehicle communication buses.
This information is essential for determining the most appropriate allocation of signals
to specific communication channels (e.g., CAN, LIN, or Ethernet) and for assessing the
overall bus load under different configurations. In practice, the table enables system
engineers to anticipate possible bottlenecks, balance communication demands across the
architecture, and ensure that the design of the ECU network satisfies both performance
and reliability requirements.

Signal name Computational load (DMIPS)
AC Button 1
Actuation Command 2
Actuation Command window 2
Actuation Feedback 2
Air 1
Button A Pression 1
Button B Pression 1
Button T Pression 1
Cabine Temperature info 3
Comfortable air 1
CU command 2

82



3.4 – Activity diagram and Data Export Workflow

Signal name Computational load (DMIPS)
Desired Temperature 1
Digital TLC Signal 3
Door Closure 2
Door Lock/Unlock Status Change 3
Door Open/Close Status Change 3
Entry Request 3
EXT_Key Off 1
EXT_Key On 1
EXT_Key Signal 3
EXT_Light Signal 3
External Handle Pull 1
Handle Pull 1
INT/EXT Lock/Unlock Status
Change

2

Internal Button Pression 1
Internal Handle Pull 1
Key location 3
Key ON/OFF 1
Open/Close Status Change 6
Open/close window 3
Processed data 6
TLC Answer 2
TLC Digital Data 1
TLC Digital Request 2
TLC Search 1
TLC Signal 1
TLC Signal Info 1
Trunk close/open status 2
Trunk Closure 1
Trunk Handle Pull 1
Trunk lock/Unlock status 2
Trunk Lock/Unlock Status Change 6
Trunk Open/Close Status Change 6
Trunk status 2
Vehicle lock/Unlock status 2
Vehicle close/open status 2
Vehicle Information 3
Vehicle status 3
Ventilation system status 3
Window button 1
Window sensor 3
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Table 3.4: Functional Interface weight

As was done for the Function Weight table, the different signals have been categorized
into predefined groups, and each category has been assigned an estimated computational
weight. These values, expressed in DMIPS, were determined according to the information
load associated with the exchanged signal. In this way, signals carrying more complex or
data-intensive information are assigned higher DMIPS values, while simpler signals are
associated with lower computational demands.
This categorization is explained in table 3.5.

Description DMIPS
Actuation feedback signals are very simple, often boolean, and confirm
the status of actuators (e.g., locked/unlocked). These signals involve
a straightforward reading of the actuator’s state and transmitting this
information. Processing is minimal. Feedback signals are smaller in
content compared to commands and are generally boolean.

1

Basic and moderately complex commands involving the control of ac-
tuators or the management of requests. These signals range from
simple predefined instructions directly forwarded to components, to
more elaborate requests requiring limited processing, matching logic,
or event triggering. They remain less computationally demanding than
advanced cryptographic signals.

2

System state data require minimal update logic. The state of compo-
nents is managed through periodic readings and basic logic. Updates
are frequent but contain minimal information.

3

Signals that verify the integrity and accuracy of data. It includes vali-
dation logic. The amount of data exchanged is significant, as detailed
information is transmitted to ensure integrity.

6

Signals that require more complex processing, including decoding, con-
version, and signal validation. Conversion requires intensive operations,
and authentication is crucial for security. These signals include rich data
that must be transmitted and verified.

10

Table 3.5: Classification of signals and DMIPS value

3.5 ECUs and Database Modeling for System Optimization

3.5.1 ECUs: Definition, Functions, and FPGA Perspectives

Electronic Control Units constitute the computational core of modern automobiles, en-
abling the control of safety, powertrain, comfort, and infotainment functions. Each ECU
is essentially a small embedded computer that integrates a microcontroller or processor,
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memory, input/output interfaces, communication transceivers, and diagnostic mecha-
nisms,an example is shown in Figure 3.21. It processes sensor data, executes control
algorithms in real time, and sends commands to actuators to ensure that the vehicle be-
haves according to its design specifications. The growing number of ECUs in vehicles,often
several dozen in premium cars,reflects both the increasing complexity of automotive func-
tions and the need for modularity and specialization in system design. [29]
From a hardware perspective, an ECU typically includes volatile and non-volatile mem-
ory, mixed-signal interfaces, and dedicated safety elements such as watchdogs or error-
correcting code. On the software side, it usually runs a real-time operating system,
communication stacks, and application software tailored to the specific domain. This
dual hardware–software integration enables the ECU to deliver deterministic performance
while also ensuring compliance with safety standards such as ISO 26262 [30].
Because no single ECU can centralize all functionality, in-vehicle communication networks
are essential for coordinating data exchange among them. Several standardized technolo-
gies coexist: LIN provides low-cost communication for simple body functions at modest
data rates; CAN and CAN FD serve as robust, fault-tolerant buses for real-time power-
train and chassis control; and Automotive Ethernet has emerged as the high-bandwidth
backbone for data intensive applications such as cameras, radar, and infotainment. Each
of these networks offers distinct trade-offs in terms of determinism, bandwidth, cost, and
scalability, and they are typically combined in layered architectures to balance vehicle
requirements.

Figure 3.21: Example of car’s ECU [11]

At the hardware level, an ECU can be understood as a compact embedded computer,
specifically engineered to operate reliably under the demanding conditions of the auto-
motive environment. At its core lies a microcontroller unit or processor, often based on
architectures such as ARM, Infineon TriCore, or PowerPC. This processing element is
responsible for executing real-time control algorithms, managing communication proto-
cols, and coordinating diagnostic routines. In more advanced applications, particularly
those requiring high levels of parallel computation, the microcontroller may be replaced
or complemented by multicore processors or FPGA-based System-on-Chip devices, which
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offer superior flexibility and hardware-level acceleration.
At its core, the processor is supported by a memory architecture composed of Flash, EEP-
ROM, and SRAM, ensuring deterministic access for real-time control. Interfaces such as
analog-to-digital and digital-to-analog converters, together with PWM drivers, connect
the ECU to sensors and actuators, translating environmental data into precise control
actions. Field-Programmable Gate Arrays (FPGAs) represent a class of integrated cir-
cuits whose internal hardware configuration can be reprogrammed after manufacturing.
Unlike fixed-function microcontrollers, FPGAs provide a reconfigurable architecture that
allows engineers to tailor computational resources to specific applications. This flexibility,
combined with their capacity for massively parallel execution, makes them particularly
suitable for complex, real-time automotive function. [31]
In the automotive domain, FPGA-based ECUs are increasingly adopted for tasks that
require high-performance computation, adaptability, and hardware-level safety mecha-
nisms, applications include sensor fusion in advanced driver-assistance systems (ADAS),
implementation of safety-critical communication protocols, electric powertrain control,
and high-speed in-vehicle networking. The ability to update or reconfigure FPGA logic
even after deployment ensures longer product lifecycles and facilitates compliance with
evolving industry standards.In modern vehicle architectures, FPGA devices are also used
to support complex operations such as AI inference and sensor fusion. Their parallel
computing nature and flexibility make them well suited for interfacing with a wide range
of sensors, cameras, and displays in automotive systems [31].A further benefit is their de-
terministic timing characteristics, essential for safety-critical systems controlled by stan-
dards such as ISO 26262. FPGAs can provide lower latencies and greater throughput
than software-based ECUs and still be coupled with embedded processors using hybrid
System-on-Chip (SoC) designs. In addition, Intel and AMD have recently highlighted the
role of FPGAs in automotive applications, with device families qualified for automotive-
grade operation.

3.5.2 Design and Structure of the ECU Database

Based on the advantages previously discussed, the decision was made to construct a
dedicated database of FPGA- and SoC-based ECUs, focusing on devices explicitly rec-
ommended for automotive use. The database presented in Table 3.6 includes solutions
provided by two of the main semiconductor manufacturers in this domain, Intel and AMD,
both of which offer product lines qualified for the stringent requirements of the automo-
tive environment. [32,33] The technical specifications of each ECU were collected directly
from the official product handbooks and datasheets, ensuring reliability and alignment
with vendor documentation. Several parameters were selected as the basis for evaluation.
First, computational performance was quantified using DMIPS values, which serve as
a standard benchmark for measuring processing capability. [34, 35] Second, the commu-
nication interfaces available on each ECU were considered, with particular attention to
the presence or implementability of CAN and LIN bus connectivity, For simplicity, each
additional protocol interface has been assumed to incur a cost of 15$.
To evaluate the computational performance of the selected ECUs, their programmable
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nature was leveraged. Unlike traditional microcontrollers, FPGA platforms allow the in-
tegration of multiple softcore processors, which can be instantiated in parallel to increase
processing capacity. In principle, the number and configuration of these softcores can vary
depending on the design choices and the specific application requirements. However, for
the purpose of this thesis and in order to provide a consistent basis of comparison across
different devices, the analysis considered the maximum configuration, i.e., the scenario
in which each ECU is programmed with the largest number of softcores supported by
its architecture. This assumption ensures that the database reflects the upper bound
of computational load achievable by each device, simplifying the benchmarking process
while still capturing the scalability advantages of FPGA-based solutions. Finally, cost
and mass data for each ECU was collected from commercial distributors such as Digipart
and octopart..., providing a market oriented perspective that complements the technical
evaluation.

ECU
Model

Part
Number

Protocol
Interface

Add.
Prot.
Int.

Comp.
load
[DMIPS]

Cost
[$]

Max
Cost
[$]

Mass
[Kg]

Artix 7 XA
FPGA

Arty A7-
35T

1 ET
1 LIN

4 211.14 140 200 0.883

MAX 10 DK-DEV-
10M50-A

2 ET 10 85.722 196 346 1.035

Zynq 7000
XA SoCs

AX7Z010B 2 ET
2 CAN
2 LIN

9 419.52 198 333 1.000

Spartan 7
FPGA

AX7050 1 ET
1 LIN

4 369.84 198 258 1.300

Zynq 7000
XA SoCs

AX7Z020B 2 ET
2 CAN
2 LIN

9 1048.8 238 373 1.200

Artix 7 XA
FPGA

Arty A7-
100T

1 ET
1 LIN

4 1055.7 262 322 0.913

Zynq Ultra-
Scale+ SoC

AXU3EGB 2 ET
2 CAN
2 LIN

0 830 449 449 1.300

Cyclone V E DK-DEV-
5CEA7N

1 ET 10 440.856 817 967 1.447

Spartan 7
FPGA

EK-S7-
SP701-G
(SP701)

2 ET
1 LIN

6 739.68 836 926 2.347

Zynq Ultra-
Scale+ SoC

AXU4EVB-
P

2 ET
2 CAN
2 LIN

0 830 885 885 1.200

Cyclone IV
GX

DK-DEV-
4CGX150N

1 ET 21 305.208 963 1278 1.700
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ECU
Model

Part
Number

Protocol
Interfaces

Add.
Prot.
Int.

Comp.
load
[DMIPS]

Cost
[$]

Max
Cost
[$]

Mass
[Kg]

Cyclone V
GT

DK-DEV-
5CGTD9N

1 ET 10 881.712 966 1116 2.374

Versal AI
Edge XA

VD100 2 ET
2 CAN
1 LIN

0 885 1391 1391 1.200

Cyclone V
SX SoC

DK-DEV-
5CSXC6N/ES

3 ET
1 LIN
1 CAN

10 2230 1595 1745 2.778

Table 3.6: ECU discrete database

Building on the developed ECU database, a cost-performance model was constructed
using the Curve Fitter tool in MATLAB, the objective was to derive a continuous rela-
tionship between computational performance, communication capabilities, and cost. In
this framework, the x and y axes represent, respectively, the DMIPS values (as a proxy for
computational capacity) and the total number of supported interfaces, while the z-axis
corresponds to the estimated cost of the ECU.
To capture the dependency on communication capabilities, each ECU entry in the database
was replicated according to the number of possible interfaces. For instance, if a given
ECU natively supports two fixed interfaces and allows the implementation of up to three
additional ones, four virtual configurations were generated: one with two interfaces, one
with three, one with four, and one with five. In order to account for the cost increase
associated with additional interfaces, a linear surcharge of 15 $ per interface was applied,
while the baseline price was taken from vendor or distributor data, each incremental in-
terface was modeled as an additive cost, ensuring that the final fitted curve incorporates
both computational performance and connectivity as cost drivers. The cost curve was
generated by considering all possible configurations of each ECU with respect to its avail-
able interfaces. As illustrated in Figure 3.22, each dot in the plot corresponds to a single
ECU configuration, highlighting the relationship between computational performance,
interface count, and cost. The resulting curve presented in Figure 3.22 provides a syn-
thetic but representative model of the trade-offs between performance, communication
flexibility, and economic investment, which serves as a valuable input for subsequent op-
timization of ECU allocation. The polynomial regression carried out in MATLAB produced
the following analytical cost model:

Cost(x, y) = p00 + p10x + p01y + p20x2 + p11xy (3.1)
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Where the coefficients were estimated as:

p00 = 71.51
p10 = 1.184
p01 = 15
p20 = −0.0002302
p11 ≈ 0 (fixed at bound)

The accuracy of the model is quantified through the coefficient of determination
(R2)= 0.7807 and the root mean squared error (RMSE) = 244.
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Figure
3.22:

C
ost-perform

ance-interface
plot
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3.6 Optimization of the Vehicle Electronic Architecture

The optimization process developed in this project stems directly from the system model
created in Cameo Systems Modeler, then exported as three well-formed CSV tables.
Each table has its purpose, in that the first table outlines the exchanges between varying
system functions, with the second table indicating each function computational weight
as DMIPS; while the third table establishing the weight of the communication signals.
With this information the optimizer can determine how functions should be allocated on
the ECUs, the associated computational burden, and find the best configurations for the
vehicle’s network.
While discussing the problem formulation, the types of design variables are directly re-
lated to the number of functions and the number of groups, presented in Table 3.2. The
functions to be allocated will also be subject to constraints that make sure that the overall
architectures are feasible. For example, there will only be a certain amount of functions
that each ECU can host, tightly coupled group of functions presented in Chapter 3.4.3
can be consolidated together and not distributed on multiple ECU, this constraint is
implemented in Python, as illustrated in Figure 3.23 where G_F1 stands for the first
function and the number in blue is related to the assigned group. Even limits relative to
functionality originate from ECU database, like limits on maximum computation load,
and the number of interfaces that can be supported.
The Python code is flexible: there are flags at the beginning of the solution to allow
the user to select their optimization modes, shown in Figure 3.24, for example, the user
can decide to work with a continuous database, with performance–cost curves, which
are interpolated, or a discrete database, with catalog entries. The user can also decide
to do a single-objective optimization (cost is minimized) or multi-objective optimization
(trade-off between cost and weight).

Figure 3.23: Function allo-
cation

Figure 3.24: Optimization modes selection
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The Multidisciplinary Feasible (MDF) form of architecture was selected as the reference
architecture based upon the structure of the optimization problem because it guarantees
that multidisciplinary analysis is consistent at each optimization iteration, and is con-
sistent in the sense that coupling variables are solved completely and consistently prior
to the acquisition of information by the optimizer. This is especially desirable because
it guarantees that every candidate solution that is evaluated in front of the optimizer
is truly a feasible system, which is especially valuable from an engineering perspective,
where it is critical that the entire system is consistent [10]. In addition, MDF formula-
tions typically have smaller optimization problems than the other architectures, such as
SAND or IDF, which will reduce computing cost.
The optimization process was segmented into several disciplines each responsible for an
area of system evaluation in this framework;in order to clearly show the flow of informa-
tion, the workflow was depicted in the XDSM diagram in Figure 3.25 showing the input
and output for each disciplines and the sequence of action for the optimization; for the
multi objective optimization the mass discipline has been added after the cost evaluation.

Figure 3.25: Case study’s XDSM diagram

3.6.1 Functional discipline

The functional discipline is the kickoff point of the optimization workflow because it con-
verts the SysML model exported from Cameo into a compact, computable representation
of what the system does, and how the functions connect. The functional discipline takes
those inputs and constructs a function to function interaction matrix (the matrix shown
in Figure 3.26). Each function is represented by a unique cell on the main diagonal, F1
for example, each off-diagonal entry captures pairwise exchanges: an “X” indicates that
there is one signal between the function in row i and the function in column j.
Apart from producing the interaction matrix, this discipline is also responsible for the as-
signment of the various functions to their groups. As described above, these groups were
predetermined and imposed before optimization, meaning that certain sets of functions
remain co-located and are treated as inseparable units in subsequent optimization steps.
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The function groups shown in Figure 3.26 , are represented as grey squares;the function
groups are important because they enforce the constraint that all functions must belong
to a group and thus all functions in a group must be put onto the same ECU.

Figure 3.26: Example of functional matrix model

3.6.2 Technical discipline

The Technical Discipline is the second discipline of the optimizer; it takes the functional
model as input from the last step, namely the functions and function groups, and builds
the ECUs list. When mapping, the discipline relates function groups to ECUs while meet-
ing ECU dimension constraints. ECUs are depicted in Figure 3.27 by the colored line
border that encompasses the groups, showing that the functions of a group are together.
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So as a result of this discipline we will have a first approximation of the functional groups
mapped onto ECUs; this sufficient step is the basis for the next, phase of generating the
network.

Figure 3.27: Example of technical matrix model

3.6.3 Network generator discipline

The third discipline in the optimization workflow is the Network Generation Discipline.
At this stage, a listing of communication buses is created, the inputs is the technical
model that was created in the previous step, containing all of the functions, ECUs, and
relationships. The discipline works to identify where and how to place and configure the
communication buses in a way that satisfies the necessary interactions among the ECUs.
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It confirms that the functional exchanges identified in the previous disciplines are satisfied
by the network infrastructure. The outputs are a complete network configuration,shown
in Figure 3.28, of the ECUs and the buses that connect them; looking at the figure, it
becomes clear that each communication bus is represented by a distinct color. The X
marks in the off-diagonal terms of the matrix indicate the signals exchanged between the
ECUs, making explicit the communication links that must be supported by the network.

Figure 3.28: Example of network generator matrix model

3.6.4 Cost and Mass evaluation discipline

The Cost Discipline plays a central role in the optimization framework, as it evaluates the
economic implications of each proposed network configuration. As we noted before, this
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discipline can be applied to both single objective optimization (in continuous and discrete
formulations) and multi-objective optimization as well. The inputs to Cost Discipline are
the network architectures from the previous stage when the full set of ECUs and their
corresponding communications buses exist.
The first step, which is the same in all cases, characterizing the basic parameters for each
ECU; which are the number and type of communications interfaces, and the computa-
tional load in order to satisfy the functions allotted to each ECU. This is accomplished in
Python by the function compute ecu from catalogue and returns the number of required
interfaces in the configuration of LIN, CAN, or Ethernet, and the computational load of
the ECUs,it is calculated as the sum of the computational weight of the internal signals
and functions made available to the ECU. So, it returns four outputs which are the num-
ber of LIN,CAN,Ethernet interfaces, and the total value of DMIPS required, which is the
basis for the cost measurements.
For the single-objective continuous case , we plug the interface parameters and com-
putational burden into the polynomial cost function, equation 3.1, we previously estab-
lished using curve fitting. The output is the estimated cost for each ECU delivered as a
continuous function of performance and connection.
In the single-objective discrete case the optimization code manually added a catalog
of ECU options as shown in Python code 3.1. The algorithm checks to see which ECU
model meet all the imposed constraints (for interfaces and computational capacity) and
extract a list of possible ECU; then, among the options that meet the constraints, a
specific function min cost selects the cheapest option to be included in the architecture.
For the multi-objective optimization therefore only the discrete formulation was im-
plemented. Following the same process as for the discrete single-objective case, the pro-
cedure remains the same, however, the selection criterion changes: all feasible ECUs were
normalized for cost and weight and the ECU with the least combined normalized score
was selected as shown in the Python code 3.1 in the function min mass cost.

1 # Databases
2 NAME_DATABASE = [
3 ’Arty␣A7 -35T’,’DK -DEV -10M50 -A’,’AX7Z010B ’,’AX7050 ’,’AX7Z020B ’,’

Arty␣A7 -100T’,
4 ’AXU3EGB ’,’DK -DEV -5 CEA7N’,’SP701’,’AXU4EVB -P’,’DK -DEV -4 CGX150N ’

,
5 ’DK -DEV -5 CGTD9N ’,’VD100’,’DK -DEV -5 CSXC6N/ES’,’ECU_NOT_REAL ’
6 ]
7 LIN_DATABASE = [1,0,2,1,2,1,2,0,1,2,0,0,1,1,float(’inf’)]
8 CAN_DATABASE = [0,0,2,0,2,0,2,0,0,2,0,0,2,1,float(’inf’)]
9 ET_DATABASE = [1,2,2,1,2,1,2,1,2,2,1,1,2,3,float(’inf’)]

10 DMIPS_DATABASE =
[211.14 ,85.722 ,419.52 ,369.84 ,1048.8 ,1055.7 ,830 ,440.856 ,739.68 ,830 ,

11 305.208 ,881.712 ,885 ,2230 , float(’inf’)]
12 PIN_DATABASE = [4,10,9,4,9,4,0,10,6,0,21,10,0,10, float(’inf’)]
13 COST_DATABASE =

[140 ,196 ,198 ,198 ,238 ,262 ,449 ,817 ,836 ,885 ,963 ,966 ,1391 ,1595 ,10000]
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14 MASS_DATABASE =
[0.883 ,1.035 ,1 ,1.3 ,1.2 ,0.913 ,1.3 ,1.447 ,2.347 ,1.2 ,1.7 ,2.374 ,1.2 ,

15 2.778 , float(’inf’)]
16 for i in range(len(DMIPS_DATABASE)):
17 if DMIPS_DATABASE[i] >= DMIPS and ET_DATABASE[i] >= ET:
18 # SoC case
19 if PIN_DATABASE[i] == 0:
20 if CAN_DATABASE[i] >= CAN and LIN_DATABASE[i] >= LIN:
21 indici.append(i)
22 plus.append (0)
23 else:
24 # FPGA case
25 if CAN_DATABASE[i] >= CAN:
26 if LIN_DATABASE[i] >= LIN:
27 indici.append(i)
28 plus.append (0)
29 else:
30 # Not enough LIN interfaces: use pins for the

delta
31 LIN_new = LIN - LIN_DATABASE[i]
32 if PIN_DATABASE[i] >= LIN_new:
33 indici.append(i)
34 plus.append(LIN_new)
35 else:
36 # Not enough CAN interfaces: use pins for the delta
37 CAN_new = CAN - CAN_DATABASE[i]
38 if PIN_DATABASE[i] >= CAN_new:
39 PIN_DATABASE[i] = PIN_DATABASE[i] - CAN_new
40 if LIN_DATABASE[i] >= LIN:
41 indici.append(i)
42 plus.append(CAN_new)
43 else:
44 # Use pins for both CAN and LIN deficits
45 LIN_new = LIN - LIN_DATABASE[i]
46 if PIN_DATABASE[i] >= LIN_new:
47 indici.append(i)
48 plus.append(LIN_new + CAN_new)
49 for k in range(len(indici)):
50 idx = indici[k]
51 COST_DATABASE[idx] += 15 * plus[k]
52 NEW_PIN[idx] -= plus[k]
53 # Normalize cost and mass (excluding the sentinel inf at the end)
54 min_cost , max_cost = min(COST_DATABASE [:-1]), max(COST_DATABASE

[:-1])
55 NORM_COST = [(x - min_cost) / (max_cost - min_cost) for x in

COST_DATABASE [: -1]]
56 NORM_COST.append(COST_DATABASE [-1])
57 min_mass , max_mass = min(MASS_DATABASE [:-1]), max(MASS_DATABASE

[:-1])
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58 NORM_MASS = [(x - min_mass) / (max_mass - min_mass) for x in
MASS_DATABASE [: -1]]

59 NORM_MASS.append(MASS_DATABASE [-1])
60 for i in indici:
61 ECU_DA_CONFRONTARE_COST.append(COST_DATABASE[i])
62 ECU_DA_CONFRONTARE_NAME.append(NAME_DATABASE[i])
63 ECU_DA_CONFRONTARE_MASS.append(MASS_DATABASE[i])
64 ECU_DA_CONFRONTARE_COST_NORM.append(NORM_COST[i])
65 ECU_DA_CONFRONTARE_MASS_NORM.append(NORM_MASS[i])
66 return (ECU_DA_CONFRONTARE_COST , ECU_DA_CONFRONTARE_MASS ,
67 ECU_DA_CONFRONTARE_NAME , ECU_DA_CONFRONTARE_COST_NORM ,
68 ECU_DA_CONFRONTARE_MASS_NORM)
69 def min_cost(ECU_DA_CONFRONTARE_COST , ECU_DA_CONFRONTARE_NAME):
70 # Find minimum value and index
71 minimo = min(ECU_DA_CONFRONTARE_COST)
72 pos = ECU_DA_CONFRONTARE_COST.index(minimo)
73 nome = ECU_DA_CONFRONTARE_NAME[pos]
74 return minimo , nome
75 def min_mass_cost(ECU_DA_CONFRONTARE_COST , ECU_DA_CONFRONTARE_MASS ,
76 ECU_DA_CONFRONTARE_NAME ,

ECU_DA_CONFRONTARE_COST_NORM ,
77 ECU_DA_CONFRONTARE_MASS_NORM):
78 # Compute normalized sum of cost and mass
79 somma_norm = list(map(operator.add ,
80 ECU_DA_CONFRONTARE_COST_NORM ,
81 ECU_DA_CONFRONTARE_MASS_NORM))
82 pos = somma_norm.index(min(somma_norm))
83 minimo_costo = ECU_DA_CONFRONTARE_COST[pos]
84 nome = ECU_DA_CONFRONTARE_NAME[pos]
85 minima_massa = ECU_DA_CONFRONTARE_MASS[pos]
86 return minimo_costo , nome , minima_massa

Listing 3.1: ECU filtering and cost and mass evaluation

3.7 Results
To assess the viability of the optimization framework presented, this study considered
three categories of optimization problems: single-objective discrete, single-objective con-
tinuous, and multi-objective discrete. For each formulation, several test were run by
changing the maximum number of functions that could be allocated to a single ECU.
The maximum number of functions to allocate to a single ECU was the parameter ex-
amined because of its direct impact on both the scalability of the architecture and the
comprehensive understanding of computational workload versus communication needs
and cost.All optimization runs took place in the same computational environment so that
results would be comparable. The experiments were conducted on a machine equipped
with an Intel(R) Core(TM) i5-10310U CPU running at 1.70 GHz (boost up to 2.21 GHz)
and 16 GB of RAM.
The optimization problem, shown in equation (3.2)–(3.8), in this work solved using the
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Multidisciplinary Feasible (MDF) approach discussed before. Within this formulation,
the decision variables include the allocation of groups in the ECUs (ECU_Gj) and the
configuration of communication buses (BUS_ECUk_ECUj), while the objectives are the
minimization of total cost and, in the multi-objective case, minimization of both cost and
weight. Constraints are enforced to guarantee feasibility, including limits on the maxi-
mum number of functions per ECU(eq. (3.4)), the computational capacity expressed in
DMIPS for ECU (eq. (3.6)) and Buses (eq. (3.5)) and the maximum number of interfaces
available (eq. (3.7), eq. (3.8)).

minimize Cost or Cost_Mass (3.2)
with respect to ECU_Gj j = 1, . . . , N

BUS_ECUk_ECUj j, k = 1, . . . , N

(3.3)

subject to Max_Dim_ECU ∈ {10,12,15} (3.4)
Bus_load ≤ 100 Mbit/s (3.5)
ECU_Comp_Load ≤ 2230 DMIPS (3.6)
ECU_Interf ≤ 13 (3.7)
ECU_Et ≤ 3 (3.8)

Where:

• ECU_G represent the group of function previously presented

• N represent the number of groups

• BUS_ECU_ECU represent the bus that connect the ECUi with the ECUj

• Max_Dim_ECU represent the maximum number of functions that can be allocated
in each ECU

• ECU_Comp_Load represent the maximum computational load for each ECU

• Bus_load represent the value of the maximum computational load for each BUS

• ECU_Interf represent the maximum number of possible protocol interfaces (LIN+CAN)
for each ECU

• ECU_Et represent the maximum number of possible Ethernet interfaces for each
ECU in the network
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For the optimization, the parameters listed in Table 3.7 were selected:

Parameter Value
Number of functions 50
Function weight from 3 to 30 DMIPS
Function interface weight from 1 to 6 DMIPS
Optimization algorithm Pymoo_GA
Pop size 1000

Table 3.7: Optimization setup

3.7.1 Single-objective optimization discrete database

The first set of experiments focused on discrete single-objective optimization, in which
ECU configurations were directly selected from the database. Three different constraints
on the maximum number of functions per ECU were tested: 10, 12, and 15. For the case
with a maximum of 10 functions per ECU, the optimizer generated a solution consisting
of six ECUs and two communication buses, with a total cost of 1029.75$ and an execu-
tion time of 1 hour, 03 minutes, and 54 seconds; the network configuration is shown in
Figure 3.29. It should be noted that, based on the assumptions defined by the functional
groups in Table 3.2, the minimum feasible number of ECUs was six, a condition that was
correctly satisfied by the optimizer. The allocation process ensured that all functions
were mapped to ECUs while always respecting the grouping constraints, thus preserving
the integrity of the predefined functional clusters. Moreover, the optimizer try to mini-
mize the number of buses, since reducing interconnections directly contributes to lowering
overall cost. This behavior is evident in the resulting configuration, where the number of
buses remains low but still meets all communication requirements. In particular, one of
the buses connects ECUs 10 and 11 simultaneously with ECU 6, providing a cost-effective
solution that balances functional allocation with minimal networking overhead, and the
other two buses connecting ECU 3 with ECU 10 and ECU 6.
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Figure 3.29: Single-objective optimization discrete database max dim 10

ECU Cost ($) Model
ECU_3 198.00 AX7Z010B
ECU_5 140.00 Arty A7-35T
ECU_6 198.00 AX7Z010B
ECU_7 140.00 Arty A7-35T
ECU_10 198.00 AX7Z010B
ECU_11 155.00 Arty A7-35T
BUS_2 0.25 CAN
BUS_16 0.25 CAN
BUS_39 0.25 CAN

Total 1029.75 –

Table 3.8: ECU cost and model summary single-objective optimization discrete database
max dim 10

When the limit was increased to 12 functions per ECU, the optimizer identified a more
compact solution with five ECUs interconnected by five buses, achieving a lower overall
cost of 889.75 $ and requiring 23 minutes and 56 seconds to compute. The network
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configuration is shown in Figure 3.30 and the cost and model of the ECU are illustrated
in Table 3.9.

Figure 3.30: Single-objective optimization discrete database max dim 12

ECU Cost ($) Model
ECU_1 140.00 Arty A7-35T
ECU_2 198.00 AX7Z010B
ECU_3 198.00 AX7Z010B
ECU_7 198.00 AX7Z010B
ECU_10 155.00 Arty A7-35T
BUS_27 0.25 CAN
BUS_29 0.25 CAN
BUS_33 0.25 CAN

Total 889.75 –

Table 3.9: ECU cost and model summary single-objective optimization discrete database
max dim 12

Finally, for the case with a maximum of 15 functions per ECU, the optimizer produced
an even more compact architecture of four ECUs and one bus, one of which connected
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three ECUs simultaneously. This configuration achieved the lowest cost of the three
scenarios, 774.25 $, with an execution time of 42 minutes, and 14 seconds.This network
configuration is shown in Figure 3.31 and the cost and model of the ECU are illustrated
in Table 3.10. The data show a clear trend: with a larger maximum ECU dimension,
the number of ECUs will decrease, which fundamentally reduces the total cost of the
network. Large ECUs can hold more functions and subsequently fewer devices, which
provides a simpler network topology.

ECU Cost ($) Model
ECU_2 238.00 AX7Z020B
ECU_4 198.00 AX7Z010B
ECU_8 198.00 AX7Z010B
ECU_9 140.00 Arty A7-35T
BUS_14 0.25 CAN

Total 774.25 –

Table 3.10: ECU cost and model summary single-objective optimization discrete database
max dim 15

Figure 3.31: Single-objective optimization discrete database max dim 15
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3.7.2 Single-objective optimization continuous database

The second set of experiments focused on the single-objective continuous optimization;
in this process, the price of each ECU was predicted using the polynomial cost function
described earlier. The same three constraints on the maximum number of functions per
ECU as in the discrete case were employed in this experiment: 10, 12, and 15.
Figure 3.32 depicts the configuration with a maximum of 10 functions per ECU. The
optimizer returned a solution of 6 ECUs and 4 buses, and the cost amounted to 2324.00
$ while the execution time was 1 hour, 24 minutes, and 06 seconds. The buses used in
this configuration spread out the functional interactions of the ECUs, and all functional
interactions were satisfied. The overall effect was to make a more interactive network
compared to the discrete solution.
When the maximum number of functions was raised to 12 (Figure 3.33), the optimizer
again provided a solution, which was a more constrained solution of 5 ECUs and 2 buses.
Here, the total cost was 2004.55$ with a shorter execution time of 51 minutes and 37
seconds.
Finally, in the case with a maximum of 15 functions per ECU (Figure 3.34), the opti-
mizer identified a configuration of four ECUs with three buses, achieving the lowest cost
among the three continuous scenarios: 1,864.69 $. This run required 55 minutes, and 05
seconds, due to the broader search space explored by the optimizer when larger ECUs
are permitted.

Figure 3.32: Single-objective optimization continuous database max dim 10
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Figure 3.33: Single-objective optimization continuous database max dim 12

Figure 3.34: Single-objective optimization continuous database max dim 15
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An important insight of this result is that the optimization cost values from the con-
tinuous optimization are always greater than those from the discrete optimization; this
difference is a result of how the ECU cost is modeled with curve fitting in the continuous
optimization: the polynomial equation does not perfectly model the cost trends of the
actual ECU costs of the dataset, and the optimization yields a cost which has deviations
that yield a higher cost. As such, while the continuous model remains useful in under-
standing and demonstrating the applied relationship between cost and performance, it
primarily enables the optimization process to capture a smoother and more continuous
representation of system behavior. However, this approach does not provide the same
predictive accuracy of absolute cost values as the catalog-based discrete formulation. De-
spite this limitation, the experiments demonstrated the feasibility of applying the contin-
uous methodology, confirming that it can still generate valid and consistent architectures.
Compared to the discrete case, the continuous optimization tends to produce solutions
with a higher number of communication buses. This behavior suggests that while the
continuous model can capture general cost-performance trends, its less constrained na-
ture may lead to network configurations that rely on additional interconnections, thereby
increasing overall cost.

3.7.3 Multi-objective optimization discrete database

In the case with a maximum of 12 functions for each ECU, the optimizer was run using
a multi-objective setup whereby both cost and weight were minimized at the same time.
In contrast to the single-objective cases, the results include a Pareto front that captures
the best trade-offs between the two objectives.
In the chart 3.35 produced by the optimizer, we can see the full picture of the configu-
rations that have been analyzed; there are three categories of points used in this chart
to describe the possible configurations: Pareto-optimal points, Pareto-dominated points,
and non-feasible points. The points that are defined as Pareto-optimal are the points
that are designated as optimal solution in the results table (Table 3.11), they constitute
the Pareto fronts, and provide the best possible compromise between cost and weight.
In contrast to the Pareto-optimal points, the Pareto-dominated points specify that there
are valid ECU network configuration points that are strictly worse than Pareto-optimal
points as they incur additional costs or increase weight without providing additional
value. The non-feasible points represent types of configurations that violate at least one
constraint established at the outset of the entire process.
The second chart 3.36 shows a zoom of the area of interest indicated in the first chart
3.35, and this view provides a more comprehensive inspection of the trade-offs in the
most salient region of cost and weight. The zoomed-in view also depicts the utopia point,
which represents the theoretical configuration that minimizes both objectives simultane-
ously. It is not always possible to achieve the Utopia point in practice; however, it serves
as a useful benchmark to assess how close the obtained solutions are to the ideal. In our
case, the Utopia point has objective values of 904.95 $ and 4.662 Kg. Among the config-
urations generated by the optimizer on the Pareto front (indicated by the blue points),
the closest configuration to the Utopia point is the Configuration 2 with values of 953.5
$ and 4.769 Kg,shown in Table 3.11.
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Figure 3.35: Pareto front of the multi-objective optimization continuous database max
dim 12

Figure 3.36: Zoom of pareto-front of the multi-objective optimization continuous database
max dim 12

In order to better illustrate the trade-offs captured by the Pareto front, two representa-
tive configurations were selected from Table 3.11 and are presented in Figures 3.37 and
3.38. Configuration 2, shown in Figure 3.37, represents the solution closest to the Utopia
point,achieving the most balanced trade-off between mass and cost,in contrast, Figure
3.38 illustrates the configuration 7 with the lowest overall cost.
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Configuration Cost [$] Mass [Kg]
1 1047.45 4.662
2 953.5 4.769
3 968.5 4.769
4 983.5 4.769
5 998.5 4.769
6 1013.5 4.769
7 904.95 4.926

Table 3.11: Pareto-optimal configuration (max dim 12)

Figure 3.37: Multi-objective Optimized Network Architecture Configuration 2 (max dim
12)
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ECU Cost ($) Model Mass (kg)
ECU_1 198.00 AX7Z010B 1.000
ECU_2 277.00 Arty A7-100T 0.913
ECU_3 140.00 Arty A7-35T 0.883
ECU_4 198.00 AX7Z010B 1.000
ECU_5 140.00 Arty A7-35T 0.883
BUS_1 0.25 CAN 0.045
BUS_48 0.25 CAN 0.045

Total 953.5 – 4.769

Table 3.12: ECU costs, models, and masses (Multi-objective max dim 12 Configuration
2)

Figure 3.38: Multi-objective Optimized Network Architecture Configuration 7 (max dim
12)
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ECU Cost ($) Model Mass (kg)
ECU_3 155.00 Arty A7-35T 0.883
ECU_5 198.00 AX7Z010B 1.000
ECU_7 213.00 AX7Z010B 1.000
ECU_8 140.00 Arty A7-35T 0.883
ECU_10 198.00 AX7Z010B 1.000
BUS_18 0.25 CAN 0.045
BUS_36 0.20 LIN 0.025
BUS_38 0.25 CAN 0.045
BUS_48 0.25 CAN 0.045

Total 904.95 – 4.926

Table 3.13: ECU costs, models, and masses (Multi-objective max dim 12 Configuration
7)

The same procedure was carried out for the case with a maximum of 15 functions per
ECU. The results are summarized in Figure 3.39, which presents the complete Pareto
front, and Figure 3.40, which provides a zoomed view of the most relevant region of the
solution space. Table 3.14 reports the feasible configurations that compose the Pareto-
optimal set, from which two representative solutions have been selected for closer analysis.
Figure 3.41 illustrates the configuration achieving a trade-off solution, while Figure 3.42
shows the configuration with the minimum weight. As in the previous case, these ex-
amples highlight how different optimization priorities can lead to distinct but valid ECU
network architectures. The comparison between the two solutions demonstrates the na-
ture of the trade-offs: the weight-minimized configuration reduces system mass at the
expense of higher costs, whereas the balanced configuration provides significant economic
savings while requiring a slightly heavier system. This dual perspective once again empha-
sizes the value of multi-objective optimization, which enables decision-makers to balance
competing criteria and select the architecture that best aligns with project goals.

Figure 3.39: Pareto front of the multi-objective optimization continuous database max
dim 15
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Configuration Cost[$] Mass [Kg]
1 971.25 3.667
2 892.25 3.754
3 892.25 3.754
4 813.25 3.841
5 792.5 4.09

Table 3.14: Pareto-optimal configuration (max dim 15)

Figure 3.40: Zoom of pareto-front of the multi-objective optimization continuous database
max dim 15
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Figure 3.41: Multi-objective Optimized Network Architecture Configuration 4 (max dim
15)

ECU Cost ($) Model Mass (kg)
ECU_2 140.00 Arty A7-35T 0.883
ECU_5 198.00 AX7Z010B 1.000
ECU_9 277.00 AX7Z010B 1.000
ECU_10 277.00 Arty A7-100T 0.913
BUS_53 0.25 CAN 0.045

Total 813.25 – 3.841

Table 3.15: ECU costs, models, and masses (Multi-objective max dim 15 Configuration
4)

112



3.7 – Results

Figure 3.42: Multi-objective Optimized Network Architecture Configuration 1 (max dim
15)

ECU Cost ($) Model Mass (kg)
ECU_1 277.00 Arty A7-100T 0.913
ECU_2 277.00 Arty A7-100T 0.913
ECU_3 140.00 Arty A7-35T 0.883
ECU_4 277.00 Arty A7-100T 0.913
BUS_11 0.25 CAN 0.045

Total 971.25 – 3.667

Table 3.16: ECU costs, models, and masses (Multi-objective max dim 15 Configuration
1)
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Conclusions

This thesis has addressed the challenge of designing and optimizing automotive electronic
architectures by integrating MBSE and MDO into a unified framework. Motivated by
the increasing complexity of modern vehicles, where the number of Electronic Control
Units has grown significantly due to rising functionality and connectivity demands, the
work has sought to demonstrate how digital continuity between system modeling and
optimization can support early and informed decision making. The primary contribution
of this thesis lies in the integration of MBSE and MDO. SysML models were developed
in Cameo Systems Modeler, where requirements, functions, and architectures were cap-
tured in a traceable structure to ensure consistency across different system views; from
these models, structured CSV tables were extracted, representing the interactions among
functions, computational loads, and communication signals. These datasets served as
the direct inputs to the Python optimization environment, which was implemented using
the GEMSEO framework. This workflow represents digital continuity, permitting the
easy transition from modeling the system level to optimizing quantitatively. The second
contribution involves the processes of developing and applying optimization strategies.
The application of optimization strategies entailed consideration of both single-objective
optimization strategies and multi-objective optimization strategies while using both con-
tinuous curve-fitted models and discrete catalog-based ECU databases. Constraints such
as maximum computational load, number of interfaces, and functional group allocations
were explicitly included to ensure the feasibility of the optimized architectures. The re-
sults also illustrate clear trends in these areas; single-objective optimization identified
the relationship between the number and complexity of ECUs and system cost, while
multi-objective optimization produced Pareto fronts for the trade-off of cost and weight.
Although integrating MBSE with MDO has shown its worth and provided some good re-
sults, the analysis also points out a number of limitations of the current framework. For
example, the comparison between the continuous cost model and the discrete database
shows a significant divergence in results, indicating that the polynomial fitting process
used in the continuous model could not fully capture the real cost–performance behavior
of ECUs. A broader and more representative database would reduce this gap, but its cre-
ation proved difficult due to the limited availability of technical and economic data, much
of which remains confidential within manufacturers. Another limitation concerns the es-
timation of function weights: instead of measuring the actual computational demand of
each function, the loads were approximated by categorizing them, which inevitably intro-
duces simplifications into the model. Even with these obstacles, the result obtained from
the multi-objective optimization effort are quite positive; it shows the capacity of the
framework to optimize costs and weights concurrently, while suggesting Pareto-optimal
configurations that offer reasonable trade-offs for system architects. This validates the
added value of MBSE and MDO to support early stage decision making and to establish
alternative architectures within real-system-level constraints. Onward into the future,
multiple paths for future work present themselves. First, developing the ECU database
and developing a real data set for communication buses would enable dramatic improve-
ment of the optimization process and fidelity of results. Second, applying continuous
model to multi-objective optimization would allow a more comprehensive investigation
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of the design space and smoother trade-off curves between competing objectives. Third,
reintegrating optimized ECU networks directly into Cameo would be a significant step
toward achieving a complete digital continuity and would further close the loop between
system modeling and optimization. In addition to these improvements, the incorpora-
tion of additional disciplines into the optimization framework is encouraged. For exam-
ple, adding power consumption as an optimization variable would allow consideration
of energy efficiency alongside cost and weight, which is particularly relevant for electric
and hybrid vehicles. In addition, considering the placement of ECUs within the vehicle
would provide spatial dimensions to the problem and incorporate packaging constraints,
wire lengths, and thermal management. In conclusion, this thesis illustrates the strong
potential of integrating system modeling with optimization to address the challenges
posed by increasingly complex automotive electronics. The framework developed here
improve traceability, decision-making, and establishes the basis for conducting compre-
hensive multidisciplinary trade-off analyses. Beyond the immediate results, it also lays a
solid foundation for future extensions and industrial applications, pointing toward a more
efficient, robust, and systematic approach to the design of next-generation automotive
architectures.
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